
File Type: $D8 (216) Auxiliary Type: $0002 1 of 8

Apple II
File Type Notes

Developer Technical Support
File Type: $D8 (216)
Auxiliary Type: $0002

Full Name: Apple IIGS Sampled Instrument File
Short Name: ASIF File

Written by: John Worthington & Matt Deatherage March 1989

Files of this type and auxiliary type contain instruments in the Apple IIGS Sampled Instrument
Format (ASIF).

The Apple IIGS Sampled Instrument Format (ASIF) is the standard format used for storing Apple
IIGS Sampled Instruments on disk. All sampled instruments supplied by Apple for the Apple
IIGS Note Synthesizer will use this format. Likewise, all utilities supporting Note Synthesizer
sampled instruments will also use this format.

ASIF is designed around the needs of the current Apple IIGS Note Synthesizer and Apple IIGS

sound hardware. While the format of ASIF (especially INST chunks) is greatly influenced by
the Note Synthesizer, the information may be sufficient for other sampled sound synthesizers to
accurately render the sound.

Most instrument files for the Apple IIGS have a ProDOS file type of $D6. ASIF files are instead
identified as file type $D8, auxiliary type $0002 because of their sampled nature. All other
instruments for the the Apple IIGS will be identified by file type $D6.

Note: Earlier ASIF documentation, not widely circulated, defined ASIF files as file type
$CA, auxiliary type $8000. As documented in this Note, ASIF has been
reassigned to file type $D8 and auxiliary type $0002. Applications which read
files based on the old file type and auxiliary type should not perform adversely,
since no other application should be creating files with that combination.
However, we strongly urge developers to create ASIF files with file type $D8 and
auxiliary type $0002 only. We further encourage developers to revise existing
programs to use this new assignment at their earliest convenience.

ASIF files conform to the “EA IFF 85” Standard for Interchange Format Files developed by
Electronic Arts. Electronic Arts additionally has some public domain code available for reading
and writing IFF files.

ASIF is provided more for compatibility than for interchange. It is a highly Apple IIGS specific
file format. Those wishing the highest level of sampled sound compatibility across programs

Apple II File Type Notes

2 of 8 Developer Technical Support

and CPUs should use Audio Interchange File Format (Audio IFF). Audio IFF is documented in
Apple II File Type Note for file type $D8, auxiliary type $0000.

March 1989

File Type: $D8 (216) Auxiliary Type: $0002 3 of 8

This Note defines the required chunks INST and WAVE, as well as the optional (“NAME”),
copyright (“(c) ”), author (“AUTH”), and annotation (“ANNO”) chunks. These are all
“standard” chunks. Additional chunks for private or future needs may be added later. Figure 1,
located at the end of this Note, illustrates the ASIF format in a box diagram.

Required Data Chunks

An ASIF file consists of a single FORM ASIF, which contains one and only one WAVE chunk and
one or more INST chunks. Each ASIF file defines at least one instrument.

INST chunks contain all of the Note Synthesizer specific information needed to define an
instrument, exclusive of the actual wave form. The information in the INST chunk defines the
characteristics of an instrument such as the envelope, pitch range, and maximum pitch bend.
There must be at least one INST chunk for each instrument in the ASIF file.

WAVE chunks contain the waveforms for a given instrument. A WAVE chunk may contain
waveforms used by more than one instrument. In most cases, the waveforms used by an
application will be merged into a single 64K block that is loaded into DOC RAM when the
application is launched. In this case, there would be several INST chunks referring to that single
WAVE chunk. Most music applications will probably store instruments one to a file, which is the
preferred way of distributing ASIF instruments.

Note: The length of any chunk must be even. If a chunk has an odd length, a pad byte
of $00 must be added to the end of the chunk. The pad byte, if present, should
never have a value other than $00.

The FORM Chunk

ckID 4 Bytes The ID for this chunk. These four bytes must be “FORM.”
ckSize Rev. Long The length of this chunk, excluding ckSize and cdID. You

may think of this value as the offset to the end of the chunk.
Note that this is a Reverse Long; the bytes are stored high byte
first.

ckType 4 Types The type of chunk. These four bytes must be “ASIF.”
(chunks…)

Immediately following the 12-byte FORM chunk header are the data chunks of the ASIF file.
There most be one and only one WAVE chunk, and at least one INST chunk. Optionally there
may be name (“NAME”), copyright (“(c) ”), author (“AUTH”), or annotation (“ANNO”) chunks.
All data chunks are part of the larger FORM chunk, referred to as the FORM ASIF because of the
ID and Type of this chunk.

Apple II File Type Notes

4 of 8 Developer Technical Support

The INST Chunk

ckID 4 Bytes The ID for this chunk. These four bytes must be “INST.”
ckSize Rev. Long The length of this chunk, excluding ckSize and cdID. You

may think of this value as the offset to the end of the chunk.
Note that this is a Reverse Long; the bytes are stored high byte
first.

InstName String A Pascal String containing the name of the instrument referred
to by this INST block. This string should be used as the
display name of the instrument.

Note: The length byte of InstName is also referred to as INameLength.

SampleNum Word The number of the sample in the WAVE chunk to which this
instrument refers.

Envelope 8 InstSegs Eight linear InstSegs defining the instrument’s envelope.

The InstSeg is a three-byte linear segment that describes a level and a slope. The level is
called the breakpoint and represents the linear amplitude of the sound. The slope is
described by an increment added or subtracted from the current level at the update rate.
Regardless of the increment, the breakpoint will never be exceeded. All ASIF
instruments assume an update rate of 200 Hz. The increment is a two-byte fixed pointer;
that is, the lower eight bits represent a fraction. Thus when the increment is one, it
represents 1/256. In this case, the increment would have to be added 256 times (1.28
seconds) to cause the level to go up by 1. At a 200 Hz update rate each increment takes 5
milliseconds. If an application wishes to use an update rate other than 200 Hz, the
envelope must be scaled as necessary. If the envelope is not scaled, the instrument will
not sound correct.

The breakpoint is a byte between 0 and 127 ($00 and $7F). It should represent sound
level in a logarithmic scale: every 16 steps change the amplitude by 6 dB.

Therefore the envelope is composed of eight InstSegs:

stage1 Byte Breakpoint 1
2 Bytes Increment 1

stage2 Byte Breakpoint 2
2 Bytes Increment 2

stage3 Byte Breakpoint 3
2 Bytes Increment 3

stage4 Byte Breakpoint 4
2 Bytes Increment 4

stage5 Byte Breakpoint 5
2 Bytes Increment 5

stage6 Byte Breakpoint 6
2 Bytes Increment 6

stage7 Byte Breakpoint 7
2 Bytes Increment 7

stage8 Byte Breakpoint 8
2 Bytes Increment 8

March 1989

File Type: $D8 (216) Auxiliary Type: $0002 5 of 8

Increment 1 is used to go from the initial level of 0 up to the level of breakpoint 1.
Increment 2 is used to go from breakpoint 1 to breakpoint 2, and so on. The sustain level
of the envelope, if there is one, is created by setting the increment to zero, causing the
envelope to get stuck on that level. The last segment used for release should always have
a breakpoint of zero, so the sound eventually reaches silence. Unused segments should
have a zero breakpoint and a non-zero increment.

ReleaseSegment Byte Specifies the release segment of the envelope. This must be a
number from 1 to 7. The release may take several segments to
get to zero. The last segment should always be zero.

PriorityIncrement Byte A number that will be subtracted from the generator priority
when the envelope reaches the sustain segment. The sustain
segment is the first segment with a zero increment. When the
release segment is reached, the priority is cut in half. The
priority of each generator is also decremented by one each
time a new generator is allocated. This causes older notes to
be preferred for stealing.

PitchBendRange Byte The number of semitones that the pitch will be raised when the
pitchwheel reaches 127 (the center value is 64). The legal
values for PitchBendRange are 1, 2, and 4.

VibratoDepth Byte The initial fixed depth of vibrato, ranging from 0 to 127.
Vibrato is a triangular-shaped Low Frequency Oscillator
(LFO) modulating the pitch of both oscillators in a generator.
A VibratoDepth of zero turns the vibrator mechanism off,
which saves some CPU time (since vibrato is implemented in
software).

VibratoSpeed Byte Controls the rate of the vibrato LFO. It can be any byte value,
although the range from 5 to 20 is most useful. The frequency
range is linear, in 0.2 Hz steps.

UpdateRate Byte Unused; set to zero. Previous versions of ASIF listed this byte
as the update rate in .4 Hz, but a one-byte field is not large
enough to provide suitable resolution (102 Hz is the maximum
allowed), much less the standard Note Synthesizer value of
200 Hz (the byte would have to hold the value 500; not an
easy task for a byte). All ASIF instruments are assumed to
have an update rate of 200 Hz.

AWaveCount Byte The number of waves in the following AWaveList. There can
be up to 255 waves in the AWaveList.

BWaveCount Byte The number of waves in the following BWaveList. There can
be up to 255 waves in the BWaveList.

AWaveList AWaveCount Waves.
BWaveList BWaveCount Waves.

The WaveList structure is a variable-length array where each entry is six bytes long. The
information is particular to the DOC, and the developer should refer to the DOC
information in the Apple IIGS Hardware Reference and the Apple IIGS Toolbox Reference
Update when creating instruments. Each six-byte entry represents a waveform and
contains information about the allowable pitch range of the waveform. This means that
the waves can be “multi-sampled” across an imaginary keyboard. When a note is played,
WaveListA and WaveListB will be examined, and one waveform will be picked and
assigned to each oscillator.

Each wave in a WaveList has the following 6-byte format:

Apple II File Type Notes

6 of 8 Developer Technical Support

TopKey Byte The highest MIDI semitone this waveform will play. The
Note Synthesizer will examine the TopKey field of each
waveform until it finds one greater than or equal to the note it
is trying to play. The items in the WaveList should be in order
of increasing TopKey values. The last wave should have a
TopKey value of 127. The TopKey value is the split point
between the waveforms.

The next three bytes will be stuffed into the DOC registers:

WaveAddress Byte The high byte of the waveform address. Note that the value
selected for WaveAddress should assume that the waveform
starts in page zero. When the waveform is actually placed in
DOC RAM, the values must be adjusted as appropriate. As an
example, for a waveform starting at $8000 in DOC RAM, this
value would be $80.

WaveSize Byte Sets both the size of the wavetable and the frequency
resolution.

DOCMode Byte Placed in the DOCs Mode register. The interrupt-enable
should always be zero.

Some ways this may be used are:
Synthesizer ($00), where both oscillators (A and B) run in free
run mode
Sample, no loop: Oscillator A in swap mode ($06) and
oscillator B in one-shot halted mode ($03). Oscillator A will
play its wave once and start Oscillator B, which will play its
wave to the end once and stop.
Sampled with loop: Oscillator A in swap mode ($06), and
Oscillator B in free-run halted mode ($01). Oscillator A will
play its wave once and then start Oscillator B, which will play
continuously until the note ends.

The high nibble of the DOCMode is the channel number. This
must be set correctly for stereo output. While all of the
currently available stereo cards will map even-numbered
channels to the right and odd-numbered channels to the left,
software should use channel 0 for right and channel 1 for left.
This will ensure compatibility with cards that provide more
than two channels of output. If you are not designing stereo
instruments, always set the channel to zero.

RelPitch Word Used to tune the waveform. This will compensate for
different sample rates and waveform sizes. The high byte is in
semitones, but can be a signed number. The low byte is in
1/256 semitone increments. Note that the low byte is first in
memory; this is a regular 65816 Word. A setting of zero is the
default for sounds that gave one cycle per page of waveform
memory.

The WaveList structure is designed to give greater flexibility in creating realistic
instrumental timbres. It allows “multi-sampling” with different samples of sounds on
different ranges of pitch. It allows mixing of various sized wave forms, with different
tuning on each semitone, to allow separate tuning of each note. This is one way to

March 1989

File Type: $D8 (216) Auxiliary Type: $0002 7 of 8

duplicate special tuning systems like “just temperament.” The wave pointers need not be
different in this case, just the RelPitch fields.

Tuning is accurate to 1/128 of a semitone in the Note Synthesizer, subject to the
resolution setting of the DOC. For accurate tuning on lower notes, it may be necessary to
use higher settings in the DOC resolution register.

Note: The Audio Interchange File Format (Audio IFF) also has a chunk named “INST”
which will appear to a standard IFF reader the same as the ASIF “INST” chunk.
To tell the two apart, check the ckSize field. The Audio IFF “INST” chunk will
always have ckSize of 20 bytes, and the ASIF “INST” chunk will never have a
chunk size of 20 bytes.

The WAVE chunk

ckID 4 Bytes The ID for this chunk. These four bytes must be “WAVE.”
ckSize Rev. Long The length of this chunk, excluding ckSize and cdID. You

may think of this value as the offset to the end of the chunk.
Note that this is a Reverse Long; the bytes are stored high byte
first.

WaveName String A Pascal String containing the name of the waveform referred
to by this WAVE block.

Note: The length byte of WaveName is also referred to as WaveNameLen.

WaveSize Word The size of the waveform WaveData, in bytes. WaveSize may
be any value from $0000 to $FFFF. This is a zero-based
counter; WaveData that is one byte long would result in a
WaveSize of $0000. This allows full 64K WaveData entries.

NumSamples Word The number of different sounds in this WAVE chunk.
NumSamples describes the number of entries in SampleTable.
Note that this is not necessarily the number of instruments.
Although not required, there should be a WaveList entry in an
INST chunk for each entry in the SampleTable.

SampleTable NumSamples Samples.

SampleTable is a table of the waveforms corresponding to different “samples”. Each
entry in SampleTable is 12 bytes long. Each sample entry is defined as follows:

Location Word The byte offset to the waveform from the beginning of the
WAVE chunk.

Size Word The size of the waveform in 256-byte pages. Size is specified
in pages since the sample size passed to the DOC must be in
pages.

OrigFreq Fixed The original frequency that was sampled, in hertz. For
example, if A440 was sampled, the value of this field would
be 440.00. A value of zero in this field means that the original
frequency of the sample is unknown.

SampRate Fixed The sample rate used to generate this sample, in hertz. A
value of zero in this field means that the original sample rate is
unknown.

Apple II File Type Notes

8 of 8 Developer Technical Support

There are NumSamples of these sample entries in the SampleTable.

WaveData WaveSize Bytes The actual waveform. The DOC uses samples in an eight-bit
linear format. A value of $80 is considered to be a zero
crossing. Positive values are greater than $80; negative values
are less than $80. Although WaveData may contain zeros as
oscillator control values, it should never contain a zero value
as a sample value since this halts the oscillator.

March 1989

File Type: $D8 (216) Auxiliary Type: $0002 9 of 8

Optional Data Chunks

There are currently three types of optional data chunks. These chunks may be included in an
ASIF file if desired. They are considered part of the set of “standard” chunks in the Electronic
Arts “EA IFF 85” definition.

The NAME Chunk

This chunk names the instrument of collection of instruments defined in the ASIF file. This
chunk may be used to supply a display name for a collection of instruments. This can be useful
since IFF programs know about the NAME chunk, but may not know about the name field in
INST or WAVE chunks.

ckID 4 Bytes The ID for this chunk. These four bytes must be “NAME.”
ckSize Rev. Long The length of this chunk, excluding ckSize and cdID.
Name Bytes ASCII characters ($20–$7F) representing the name. There

should be ckSize characters.

The AUTH Chunk

ckID 4 Bytes The ID for this chunk. These four bytes must be “AUTH.”
ckSize Rev. Long The length of this chunk, excluding ckSize and cdID.
author Bytes ASCII characters ($20–$7F) representing the name of the

author of the voices or collection of voices. There should be
ckSize characters.

The “(c) ” Chunk

ckID 4 Bytes The ID for this chunk. These four bytes must be “(c) .”
ckSize Rev. Long The length of this chunk, excluding ckSize and cdID. You

may think of this value as the offset to the end of the chunk.
notice Bytes ASCII characters ($20–$7F) representing a copyright notice

for the voice or collection of voices. There should be ckSize
characters.

The ANNO Chunk

ckID 4 Bytes The ID for this chunk. These four bytes must be “ANNO.”
ckSize Rev. Long The length of this chunk, excluding ckSize and cdID. You

may think of this value as the offset to the end of the chunk.
Note that this is a Reverse Long; the bytes are stored high byte
first.

author Bytes ASCII characters ($20–$7F) representing the name of the
author of the voices or collection of voices. There should be
ckSize characters.

Other Chunk Types

Apple II File Type Notes

10 of 8 Developer Technical Support

There are many types of IFF chunks other than those described in this document. New chunks
may be added to ASIF files in the future. If an application encounters a chunk it doesn’t
recognize when reading an ASIF file, it should ignore it. Note that all chunks should be
preserved when copying an IFF file.

Figure 1 illustrates a sample ASIF file as a box diagram.

'FORM' 76112

'ASIF'

'NAME' 9

"Jazz Band"

'INST' 50

3 "Sax" 0 ...

'INST'

5 "Drums" 1 ...

82

"INST" 51

4 "Bass" 2 ...

'INST' 112

5 "Piano" 3 ...

'WAVE' 65656

10 "Jazz Stuff" 65535 4 ...

Figure 1–Sample ASIF File

Further Reference
• Apple IIGS Toolbox Reference Update
• Advanced Sampler’s Guide (Ensoniq Corporation)
• “Programming the Ensoniq Mirage,” Keyboard Magazine, November 1986
• “EA IFF 85” Standard for Interchange Format Files, Electronic Arts, Inc. Describes the

underlying conventions for all IFF files.

