
File Type: $D8 (216) Auxiliary Type: $0001 1 of 26

Apple II
File Type Notes

Developer Technical Support

®

File Type: $D8 (216)
Auxiliary Type: $0001

Full Name: Audio Interchange File Format AIFF-C File
Short Name: AIFF-C File

Written by: Matt Deatherage March 1991

Files of this type and auxiliary type contain sampled sounds in Apple Computer’s Audio
Interchange File Format AIFF-C (AIFF-C).

The Audio Interchange File Format (Audio IFF) provides a standard for storing sampled sounds.
The format is quite flexible, allowing the storage of monaural or multichannel sampled sounds at
a variety of sample rates and sample widths.

This Note describes version 1.0 (February 3, 1991) of AIFF-C. This Note describes AIFF-C as it
pertains to Apple II developers.

AIFF-C conforms to the “EA IFF 85” Standard for Interchange Format Files developed by
Electronic Arts.

Although AIFF-C is an interchange format, application designers should find it flexible enough
to use as a data storage format as well. If an application does choose to use a different storage
format, it should be able to convert to and from the format defined in this document. This ability
to convert will facilitate the sharing of sound data between applications. Apple Computer
officially recommends that all sound applications read and write AIFF-C files.

AIFF-C is the result of several meetings held with music developers over a period of ten months
during 1987 and 1988 as well as revisions to the original Audio IFF standard conducted during
the summer of 1990. Apple Computer greatly appreciates the comments and cooperation
provided by all developers who helped define this standard.

Another “EA IFF 85” sound storage format is “8SVX” IFF 8-bit Sampled Voice, by Electronic
Arts. “8SVX,” which handles eight-bit monaural samples, is intended mainly for storing sound
for playback on personal computers. AIFF-C is intended for use with a larger variety of
computers, sampled sound instruments, sound software applications, and high fidelity recording
devices.

Apple II File Type Notes

2 of 26 Developer Technical Support

The official name for this standard is Audio Interchange File Format AIFF-C. If an application
program needs to present the name of this format to a user, such as in a “Save As…” dialog box,
the name can be abbreviated to Audio IFF or AIFF-C.

March 1991

File Type: $D8 (216) Auxiliary Type: $0001 3 of 26

Differences between Audio IFF and AIFF-C

The differences between the original AIFF and AIFF-C were kept to a minimum. Applications
which currently support AIFF should be easily upgradable to AIFF-C. If you are unfamiliar with
Audio IFF, you might want to skip directly to “The Chunk Concept” later in this Note.

The following changes have been made from AIFF:

• The FORM identifier was changed from “AIFF” to “AIFC”. This distinguishes
AIFF-C files from AIFF files. Existing AIFF programs, until they are upgraded,
will simply ignore AIFF-C files. See the explanation below for this change.

• The Common Chunk has been extended to include a compression type ID and a
compression type name. AIFF-C is thus capable of storing compressed audio data
generated from any compression algorithm.

• The Sound Data Chunk can contain compressed audio data. The Chunk format
has not been modified.

• The Sound Accelerator (Saxel) Chunk is new. It is designed to eliminate initial
“artifacts” caused by the decompression algorithm when playback begins at a
random point defined by a Marker.

• The Format Version Chunk is new. This Chunk is designed to provide a smooth
transition for potential future upgrades to the AIFF-C specification.

Transition from FORM AIFF to FORM AIFC

Renaming the FORM type from AIFF to AIFC was done to minimize confusion for the end user.
Imagine a possible scenario if the FORM type was not changed: A user running an application
which stored compressed audio in AIFF-C format would save his compressed audio data as an
AIFF File type (via the “Save As ...” dialog box). He could then launch another application
which reads AIFF, but not AIFF-C, and the application would not be able to play his sound. The
application may even crash. By making the difference between the file types explicit, the user
will not experience this problem. The user still won’t be able to transfer compressed audio data
to the second application, but at least he will know why.

Here are the guidelines which developers should follow to aid the transition from AIFF to AIFF-
C:

1. Applications which currently read FORM AIFF files should also be able to read
FORM AIFC files.

2. Applications which currently create FORM AIFF files should maintain this
capability for now, but should offer the FORM AIFC format as the default option
to the user.

3. New applications which have not supported AIFF should strongly consider
supporting only AIFF-C, at least for the creation of audio files.

The Chunk Concept

Apple II File Type Notes

4 of 26 Developer Technical Support

The “EA IFF 85” Standard for Interchange Format Files defines an overall structure for storing
data in files. AIFF-C conforms to the “EA IFF 85” standard. This Note describes those portions
of “EA IFF 85” that are germane to AIFF-C. For a more complete discussion of “EA IFF 85,”
please refer to "EA IFF 85” Standard for Interchange Format Files.

March 1991

File Type: $D8 (216) Auxiliary Type: $0001 5 of 26

AIFF-C, like all IFF-style storage formats, is a series of discrete pieces, or “chunks.” Each
chunk has an eight-byte “header,” which is as follows:

ckID 4 Bytes The ID for this chunk. These four bytes must be ASCII
characters in the range $20-$7F. Spaces may not precede
printing characters, although trailing spaces are allowed.
Characters outside the range $20-$7F are forbidden. A
program can determine how to interpret the chunk data by
examining ckID.

ckSize Rev. Long The length of this chunk, excluding ckSize and cdID. You
may think of this value as the offset to the end of the chunk.
Note that this is a Reverse Long; the bytes are stored high byte
first.

ckData Chunk The data, specific to each individual chunk. There are exactly
ckSize bytes of data here. If the length of the chunk is odd, a
pad byte of $00 must be added at the end. The pad byte is not
included in ckSize.

Since AIFF-C is an interchange format, it will come as no surprise to find that all constants, such
as each chunk’s ckSize field, are stored in reverse format (the bytes of multiple-byte values are
stored with the high-order bytes first). This is true for all constants, which are marked in their
individual descriptions by the Reverse notation.

Note: All numeric values in this Note are signed unless otherwise noted. This is
different from the normal File Type Note convention.

An AIFF-C file is a collection of a number of different types of chunks. There is a Common
Chunk which contains important parameters describing the sampled sound, such as its length and
sample rate. There is a Sound Data Chunk which contains the actual audio samples. There are
several other optional chunks which define markers, list instrument parameters, store
application-specific information, etc. All of these chunks are described in detail in this Note.

File Structure

The chunks in an AIFF-C file are grouped together in a container chunk. “EA IFF 85” Standard
for Interchange Format Files defines a number of container chunks, but the one used by AIFF-C
is called a FORM. A FORM has the following format:

ckID 4 Bytes The ID for this chunk. These four bytes must be “FORM.”
ckSize Rev. Long The length of this chunk, excluding ckSize and cdID. You

may think of this value as the offset to the end of the chunk.
Note that this is a Reverse Long; the bytes are stored high byte
first. Also note that the data portion of the chunk is broken
into two parts, formType and chunks.

formType 4 Bytes Describes what’s in the FORM chunk. For AIFF-C files,
formType is always “AIFC.” This indicates that the chunks
within the FORM pertain to sampled sound. A FORM chunk of
formType AIFC is called a FORM AIFC.

Apple II File Type Notes

6 of 26 Developer Technical Support

chunks Bytes The chunks contained within the FORM. These chunks are
called local chunks. A FORM AIFC along with its local
chunks make up an AIFF-C file.

March 1991

File Type: $D8 (216) Auxiliary Type: $0001 7 of 26

Figure 1 is a pictorial representation of a simple AIFF-C file. It consists of a single FORM
AIFC which contains two local chunks, a Common Chunk, and a Sound Data Chunk.

FORM AIFC 'FORM'
176464
'AIFC'

'COMM'
50
...

'SSND'
176358
...

Common Chunk

Sound Data
Chunk

Other Chunks

Figure 1–Simple AIFF-C File

There are no restrictions on the ordering of local chunks within a FORM AIFC.

The FORM AIFC is stored in a file with file type $D8 and auxiliary type $0001. AIFF-C files
may be identified in other file systems as well. On a Macintosh under MFS or HFS, the FORM
AIFC is stored in the data fork of a file with file type “AIFC.” This is the same as the formType
of the FORM AIFC.

Note: Applications should not store any data in the resource fork of an AIFF-C file,
since this information may not be preserved by all applications or in translation to
foreign file systems. Applications can use the Application Specific Chunk,
described later in this Note, to store extra information specific to their application.

In file systems that use file extensions, such as MS-DOS or UNIX, it is recommended that AIFF-
C file names have the extension “.AFC.”

A more detailed visual example of an AIFF-C file may be found later in this Note. Please refer
to it as often as necessary while reading the remainder of this Note.

Local Chunk Types

The formats of the different local chunk types found within a FORM AIFC are described in the
following sections, as are their ckIDs.

There are two types of chunks: required and optional. The Common Chunk is required. The
Sound Data chunk is required if the sampled sound has a length greater than zero. All other
chunks are optional. All applications that use FORM AIFC must be able to read the required
chunks and can choose to selectively ignore the optional chunks. A program that copies a FORM

Apple II File Type Notes

8 of 26 Developer Technical Support

AIFC should copy all the chunks in the FORM AIFC, even if it chooses not to interpret the
optional chunks.

March 1991

File Type: $D8 (216) Auxiliary Type: $0001 9 of 26

Dealing with Unrecognized Local Chunks

When reading an IFF file, your program may encounter local chunk types that it doesn't
recognize, perhaps extensions defined after your program was written. In a FORM AIFC, this
situation also applies to Application-Specific Chunks with unrecognized application signatures.
(The application signature acts as a chunk subtype.) Clearly your program cannot process the
contents of unrecognized chunks.

So what should your program do when it encounters unrecognized chunks in an IFF FORM?
The safest thing is to simply discard them while reading the FORM. If your program copies the
FORM without edits, then it’s nicer (but not necessary) to copy unrecognized chunks also. But
if your program modifies the data in any way, then it must discard all unrecognized chunks
since it can’t possibly update the unrecognized data to be consistent with the modifications.

To ensure that this standard remains usable by all developers across machine families, only
Apple Computer, Inc. should define new chunk types for FORM AIFC. If you have suggestions
for new chunk types, Apple is happy to listen. Please send all comments to the address listed in
“About File Type Notes” to the attention of “AIFF-C Suggestions.”

The Format Version Chunk

The Common Chunk describes fundamental parameters of the sampled sound.

ckID 4 Bytes The ID for this chunk. These four bytes must be “FVER.”
ckSize Rev. Long The length of this chunk, excluding ckSize and cdID. For the

Format Version Chunk, this is always 4.
timeStamp Rev. Unsigned Long Indicates the version of AIFF-C with which this file

was created. Units are the number of seconds since 12:00 a.m.
(midnight), January 1, 1904. This document describes
Version 1 of AIFF-C, for which the value of timeStamp
should be $A2805140 (May 23, 1990, 2:40 PM).
Only Apple may alter the value of timeStamp.

Do not confuse the Format Version with the creation date of the file. The Format Version refers
to the rules embodied in this, or future, documents which specify how an AIFF-C file is
arranged. When your application checks for compatibility with the Format Version chunk, do
not do a range check (e.g. less than or equal to this date). You must do an exact comparison of
dates to know for certain that your application can correctly read and process a specific AIFF-C
file. Do not modify the timeStamp value. If you have a request for a new Format Version,
please submit it to Apple Computer at the address in “About File Type Notes”. Through this
mechanism where only Apple Computer can issue official AIFF-C releases with new
timeStamps, we can ensure the maximum compatibility of AIFF-C files across applications.

The Format Version Chunk is required. One and only one Format Version Chunk must appear
in a FORM AIFC.

Why the Format Version Chunk was added

Apple II File Type Notes

10 of 26 Developer Technical Support

“Gee, if we’d had a Version Chunk in AIFF, we wouldn’t have to change the FORM type for
AIFF-C.”—an anonymous AIFF File Type Note author (circa 1990)

From the above proverb, we gained the wisdom to include a Format Version Chunk in the
AIFF-C specification. The philosophy is that the Chunk names which you recognize will
contain information in the format you are familiar with. If you don't find a Chunk which your
application requires, then examine the Format Version Chunk to determine if the file is
corrupted or if there is a mismatch between your application and the file. In any case, you'll be
able to give a more enlightened message to the user.

See how the following steps simplify your life (and ours) to determine if a FORM AIFC is
usable:

When reading an AIFF-C file:

1. First, find the FORM AIFC field. If you don’t find it, issue an alert like “This file
doesn’t contain an AIFF-C standard audio recording.”, then exit from these
directions.

2. Try to find all the chunks which are critical to your application (probably COMM
and SSND, but we can imagine an application that only needs the COMM chunk,
e.g. to determine the playback duration).

If found, those familiar chunk IDs indicate that the chunk contents are in the
format you expect. You're golden. Exit these directions.

3. If not found, don’t crash yet. Instead, check for the Format Version Chunk.

If you can find it and it does not contain a date which you recognize, issue an alert
like “This file contains an unrecognized version of the AIFF-C standard.” You
may also want to indicate the file’s Format Version and the format versions which
your application recognizes.

Otherwise, issue an alert with text similar to “This file seems to be chopped
cabbage.” It might also be nice to say which Chunks are missing.

Remember:

• In order to survive interchange and format evolution, reader programs must be
robust about chunk order, missing chunks, and unexpected chunks.

• Contrary to the original Audio IFF specification, when a program encounters an
unrecognized chunk, it should just skip it. Do not copy it to a new, edited file.
This is the general rule in IFF because there’s no way to maintain the integrity of
unrecognized chunks when the surrounding data is edited.

How the Format Version Chunk will help potential future upgrades

March 1991

File Type: $D8 (216) Auxiliary Type: $0001 11 of 26

If and when we design evolutionary changes to the file format, we will try to make the new
representation backward compatible (e.g. just add new chunk types). If we must change the
format of existing data, then we will change the relevant Chunk IDs. For example, let’s say that
the INST Chunk needs to be upgraded to have more than 2 loop points. In this case, we would
replace the INST Chunk with a new Chunk—let’s call it “LOOP”. In the transition time between
widespread adoption of the new LOOP Chunk, a FORM could contain both the old INST Chunk
and the new LOOP Chunk. Applications which know about the new LOOP Chunk would be able
to process it correctly, while preserving the INST Chunk for other applications. Applications
which do not use the INST or LOOP Chunks are unaffected. Applications which need the old
INST Chunk can still use it, but should upgrade to the new LOOP Chunk since there is no longer
any guarantee that other (editing) applications will preserve the old INST Chunk.

Apple II File Type Notes

12 of 26 Developer Technical Support

Here’s how we would have upgraded AIFF to handle compressed audio, if we had had a Format
Version Chunk already in AIFF:

• Compression is optional. What follows is only for the compressed case.
• Don’t change the format of the COMM Chunk. Existing programs can still read it.
• Add a “Compression Descriptor” Chunk containing the 4-letter compression type

code and the compression name string. (The code is for programs. The string is
for alerts when the code is unrecognized.)

• Replace the SSND Chunk with a Compressed Sound-Data Chunk "CSND".
(Existing programs will ignore it.)

• Change the Format Version date (for the sake of alerts).
• Add the optional Saxel Chunk.

We chose to change the FORM type from AIFF to AIFC because, lacking the Format Version
Chunk, existing applications would not be able to issue a helpful error message. Some existing
applications may even crash if they did not find the SSND Chunk.

The Common Chunk

The Common Chunk describes fundamental parameters of the sampled sound.

ckID 4 Bytes The ID for this chunk. These four bytes must be “COMM.”
ckSize Rev. Long The length of this chunk, excluding ckSize and cdID. For the

Common Chunk, this is 22 plus the length of the string (the
string includes a pad byte when needed to make it an even
number of bytes in length).

numChannels Rev. Word The number of audio channels for the sound. A value of 1
means monophonic sound, 2 means stereo, 4 means four-
channel sound, and so on. Any number of audio channels may
be represented. The actual sounds samples are stored in the
Sound Data Chunk.

numSampleFrames Rev. Unsigned Long The number of sample frames in the Sound Data
Chunk. Sample frames are described below. Note that
numSampleFrames is the number of sample frames, not the
number of bytes nor the number of sample points (also
described below) in the Sound Data Chunk. The total number
of sample points in the file is numSampleFrames multiplied by
numChannels.

sampleSize Rev. Word The number of bits in each sample point. This can be any
number from 1 to 32.

sampleRate Rev. Extended The sample Rate at which the sound is to be played back, in
sample frames per second.

compressionType 4 Bytes The ID for the compression algorithm used. A table of
possible values is in the “More About Compression” section
of this Note.

compressionName String A Pascal string containing a human-readable description of the
compression algorithm used. A table of possible values is in
the “More About Compression” section of this Note.

One, and only one, Common Chunk is required in every FORM AIFC.

March 1991

File Type: $D8 (216) Auxiliary Type: $0001 13 of 26

Sample Points and Sample Frames

A large part of interpreting AIFF-C files revolves around the two concepts of sample points and
sample frames.

An uncompressed sample point is a linear, two’s-complement value representing a sample of a
sound at a given point in time. A sample point may be from 1 to 32 bits wide, as determined by
sampleSize in the Common Chunk. Sample points are stored in an integral number of
contiguous bytes. One- to eight-bit wide sample points are stored in one byte, 9- to 16-bit wide
sample points are stored in two bytes, 17- to 24-bit wide sample points are stored in three bytes,
and 25- to 32-bit wide sample points are stored in four bytes (most significant byte first). When
the width of a sample point is not a multiple of eight bits, the sample point data is left justified,
with the remaining bits zeroed. An example case is illustrated in Figure 2. A 12-bit sample
point, binary 101000010111, is stored left justified in two bytes. The remaining bits are set to
zero.

12 bit sample point
is left justified 4 bits are

zero padded

rightmost

01 0 1 0 0 0 0 1 0 1 1 1 0 0 0

Figure 2–A 12-Bit Sample Point

Sample frames are sets of sample points which are interleaved for multichannel sound. Single
sample points from each channel are interleaved such that each sample frame is a sample point
from the same moment in time for each channel available. This is illustrated in Figure 3 for the
stereo (two channel) case.

frame 0 frame 1 frame N

•• •ch 1 ch 2 ch 1 ch 2 ch 1 ch 2

 = one sample point

sample sample sample

Figure 3–Sample Frames for Multichannel Sound

For monophonic sound, a sample frame is a single sample point. For multichannel sounds, you
should follow the conventions in Figure 4.

Apple II File Type Notes

14 of 26 Developer Technical Support

stereo

3 channel

4 channel

6 channel

channel

left right

left right center

center right surround

center right

1 2 3 4 5 6

left left right
centercenter surround

left

quad
front front rear rear
left leftright right

Figure 4–Sample Frame Conventions for Multichannel Sound

Note: Portions of Figure 4 do not follow the Apple IIGS standard of right on even
channels and left on odd channels. The portions that do follow this convention
usually use channel two for right instead of channel zero as most Apple IIGS

standards. Be prepared to interpret data accordingly.

Sample frames are stored contiguously in order of increasing time. The sample points within a
sample frame are packed together; there are no unused bytes between them. Likewise, the
sample frames are packed together with no pad bytes.

For compressed sounds, these definitions essentially hold but are modified slightly. See the
“More About Compression” section later in this Note for all the details.

The Sound Data Chunk

The Sound Data Chunk contains the actual sample frames.

ckID 4 Bytes The ID for this chunk. These four bytes must be “SSND.”
ckSize Rev. Long The length of this chunk, excluding ckSize and cdID. If the

sound data is padded to make it an even number of bytes in
length, the pad byte is not included in ckSize.

offset Rev. Unsigned Long Determines where the first sample frame in the
soundData starts, in bytes. Most applications will not use
offset and should set it zero. Use for a non-zero offset is
explained below.

blockSize Rev. Unsigned Long Used in conjunction with offset for block-aligning
sound data. It contains the size in bytes of the blocks to which
soundData is aligned. As with offset, most applications will
not use blockSize and should set it to zero. More information
on blockSize is given below.

soundData Bytes Contains the actual sample frames that make up the sound.
The number of sample frames in the soundData is determined
by the numSampleFrames parameter in the Common Chunk.

The Sound Data Chunk is required unless the numSampleFrames field in the Common Chunk is
zero. A maximum of one Sound Data Chunk may appear in a FORM AIFC.

March 1991

File Type: $D8 (216) Auxiliary Type: $0001 15 of 26

Block-Aligning Sound Data

There may be some applications that, to ensure real time recording and playback of audio, wish
to align sampled sound data with fixed-size blocks. This alignment can be accomplished with
the offset and blockSize parameters of the Sound Data Chunk, as shown in Figure 5.

numSampleFrames sample frames

block N - 1 block N block N + 1 block N + 2

unusedunused sample frames

offset
bytes

soundData[]

blockSize bytes

Figure 5–Block-Aligned Sound Data

In Figure 5, the first sample frame starts at the beginning of block N. This is accomplished by
skipping the first offset bytes of the soundData. Note too, that the soundData bytes can extend
beyond valid sample frames, allowing the soundData bytes to end on a block boundary as well.

The blockSize specifies the size in bytes of the block to which you would align the sound data.
A blockSize of zero indicates that the sound data does not need to be block-aligned.
Applications that don’t care about block alignment should set the blockSize and offset to zero
when creating AIFF-C files. Applications that write block-aligned sound data should set
blockSize to the appropriate block size. Applications that modify an existing AIFF-C file should
try to preserve alignment of the sound data, although this is not required. If an application does
not preserve alignment, it should set the blockSize and offset to zero. If an application needs to
realign sound data to a different sized block, it should update blockSize and offset accordingly.

The Marker Chunk

The Marker Chunk contains markers that point to positions in the sound data. Markers can be
used for whatever purposes an application desires. The Instrument Chunk, defined later in this
Note, uses markers to mark loop beginning and end points.

ckID 4 Bytes The ID for this chunk. These four bytes must be “MARK.”
ckSize Rev. Long The length of this chunk, excluding ckSize and cdID.
numMarkers Rev. Unsigned Word The number of markers (defined below) in the

Marker Chunk. If non-zero, this is followed by the markers
themselves. Because all fields in a marker are an even number
of bytes, the length of any marker will always be even. Thus,
markers are packed together with no unused bytes between
them, although the markers themselves need not be ordered in
any particular manner.

Marker Markers Defined below.

Apple II File Type Notes

16 of 26 Developer Technical Support

A marker has the following format:

MarkerID Rev. Word The ID for this marker. This is a number that uniquely
identifies the marker within a FORM AIFC. The number can
be any positive, non-zero integer, as long as no other marker
within the same FORM AIFC has the same ID.

position Rev. Unsigned Long Determines the marker’s position in the sound data.
Markers conceptually fall between two sample frames. A
marker that falls before the first sample frame in the sound
data is at position zero, while a marker that falls between the
first and second sample frame in the sound data is at position
one. Units for position are sample frames, not bytes nor
sample points.

markerName String Pascal-type string containing the name of the mark. If the
length of the string is not an even number of bytes, include a
zero pad byte.

Uncompressed Sample Frames

position 0 position 5 position 12

Figure 6–Uncompressed Sample Frame Marker Positions

Note: Some “EA IFF 85” files store strings as C-style strings (null terminated). AIFF-C
uses Pascal-style (length byte) strings because they are easier to skip over when
scanning a file or a chunk.

Apple recommends that audio editor programs update markers when the audio data is edited.

The Marker Chunk is optional. No more than one Marker Chunk can appear in a FORM AIFC.

Important: If a segment of sound data containing one or more Markers is
relocated in the sound stream, the Markers within the segment
being moved must be recalculated. If a segment of sound data is
being deleted, all Markers within that segment should be deleted
and all Markers after that segment must be adjusted. If sound data
is inserted at a point in the sound data stream, all Markers after that
point must be adjusted. Any Saxels (see “Sound Accelerator
Chunks” later in is Note) which are associated with the updated or
deleted Markers must also be updated if affected by the new
Marker values. Updating Markers in some cases may have
implications in the user interface and the application designer
should consider when the user should be notified or asked about
the consequences of an edit.

March 1991

File Type: $D8 (216) Auxiliary Type: $0001 17 of 26

The Instrument Chunk

The Instrument Chunk defines basic parameters that an instrument, such as a sample, could use
to play the sound data.

ckID 4 Bytes The ID for this chunk. These four bytes must be “INST.”
ckSize Rev. Long The length of this chunk, excluding ckSize and cdID. For the

Instrument Chunk, this field is always 20.
baseNote Byte The note at which the instrument plays the sound data without

pitch modification. Units are MIDI (Musical Instrument
Digital Interface) note numbers, and are in the range 0 through
127. Middle C is 60.

detune Byte Determines how much the instrument should alter the pitch of
the sound when it is played . Units are cents (1/100 of a
semitone), and range from -50 to +50. Negative numbers
mean that the pitch of the sound should be lowered, while
positive numbers mean that it should be raised.

lowNote Byte Suggested lowest note on a keyboard for playback of the
sound data. The sound data should be played if the instrument
is requested to play a note between the lowNote and highNote,
inclusive. The base note does not have to be within this range.
Units for lowNote and highNote are MIDI note values.

highNote Byte Suggested highest note on a keyboard for playback of the
sound data. See the description of lowNote above.

lowVelocity Byte The low end of the suggested range of velocities for playback
of the sound data. The sound data should be played if the
note-on velocity is between lowVelocity and highVelocity,
inclusive. Units are MIDI velocity values, 1 (lowest velocity)
through 127 (highest velocity).

highVelocity Byte The high end of the suggested range of velocities for playback
of the sound data. See the description of lowVelocity above.

gain Rev. Word The amount by which to change the gain of the sound when it
is played. Units are decibels. For example, 0 dB means no
change, 6 dB means double the value of each sample point,
while -6 dB means halve the value of each sample point.

sustainLoop Loop A loop that is to be played when an instrument is sustaining a
sound. The format of loops is described below.

releaseLoop Loop A loop that is to be played when an instrument is in the release
phase of playing back a sound. The release phase usually
occurs after a key on an instrument is released. The format of
loops is described below.

Loops

Sound data can be looped, allowing a portion of the sound to be repeated to lengthen the sound.
A loop is marked with two points, a begin position and an end position. There are two ways to
play a loop, forward looping and forward/backward looping. In the case of forward looping,
playback begins at the beginning of the sound, continues past the begin position and continues to
the end position, at which point playback starts again at the begin position. The segment
between the begin and end positions, called the loop segment, is played repeatedly until
interrupted by a user action, such as the release of a key on a sampling instrument.

Apple II File Type Notes

18 of 26 Developer Technical Support

begin position end position

sample frames loop segment

Figure 7–Sample Frame Looping

With forward/backward looping, the loop segment is first played from the begin position to the
end position, and then played backwards from the end position to the begin position. This flip-
flop pattern is repeated over and over again until interrupted.

To end a loop, finish the current loop section and don’t repeat it any more. This usually means
playing to the end position, but it can mean playing back to the beginning position if in the
backwards half of a forward/backward loop.

The following structure describes a loop:

playMode Rev. Word The type of looping to be performed.
0 = no looping
1 = Forward looping
2 = Forward/Backward looping
If 0 is specified, the loop points are ignored during playback.

beginLoop Rev. Word A Marker ID of the marker to the begin position.
endLoop Rev. Word A Marker ID of the marker to the end position. The begin

position must be less than the end position. If this is not the
case, the loop segment has zero or negative length and no
looping occurs.

When looping on compressed sound data, make sure to pay particular attention to setting the
markers to the expanded sound data (see the section on the Marker Chunk in this Note). Extra
attention may be required for smooth playback between the end of the looped data and the
beginning of the looped data due to discontinuities in the sound data encountered by the
expansion algorithm. In this case, the best recourse may be to modify sound samples in the
beginning or end part of the loop, or to avoid compressing the looped data.

The Instrument Chunk is optional. No more than one Instrument Chunk can appear in a FORM
AIFC.

ASIF Note: The Apple IIGS Sampled Instrument Format also defines a chunk with ID
of “INST,” which is not the same as the AIFF-C Instrument Chunk. A
good way to tell the two chunks apart in generic IFF-style readers is by the
ckSize fields. The AIFF-C Instrument Chunk’s ckSize field is always 20,
whereas the Apple IIGS Sampled Instrument Format Instrument Chunk’s
ckSize field, for structural reasons, can never be 20.

March 1991

File Type: $D8 (216) Auxiliary Type: $0001 19 of 26

More About Compression

AIFF-C supports multiple types of compression. Although AIFF-C itself has no intrinsic
knowledge of any compression scheme (that is, there is nothing in any of the chunks that
depends on the behavior of any compression scheme), it does include flexible support for
multiple compression types—for identifying the compression type, for informing users about it,
and for using structures like markers and loops with compressed sound data.

The Common Chunk contains a four-byte compressionType and an ASCII compressionName,
identifying the compression used to both the program and to the user. AIFF-C debuts with five
pre-defined compression values:

ASCII
compressionType compressionName meaning
NONE not compressed uncompressed, that is, straight digitized samples
ACE2 ACE 2-to-1 2-to-1 IIGS ACE (Audio Compression / Expansion)
ACE8 ACE 8-to-3 8-to-3 IIGS ACE (Audio Compression / Expansion)
MAC3 MACE 3-to-1 3-to-1 Macintosh Audio Compression / Expansion
MAC6 MACE 6-to-1 6-to-1 Macintosh Audio Compression / Expansion

Table 1—Existing Compression Schemes

Apple IIGS programs will normally not have access to MACE decompression, and the reverse is
true for Macintosh program with ACE decompression. In these cases, you can use the ASCII
compressionName to inform the user of the sound’s compressed source, giving him significantly
more information than “I can’t decompress this sound.”

The compression of sound is fairly straightforward. The diagrams below should help illustrate
the point for the four standard Apple compression algorithms. Examples are for 8-bit linear
monophonic sound samples.

Original uncompressed single channel sound data:

8-bits 8-bits 8-bits . . .

Marker:

8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits

0 1 2 3 4 5 6 7 8 9 10

2:1 Compressed Sound Data:

. . .

Figure 8—ACE 2:1 Apple IIGS Tool Frame size = 1 byte

Apple II File Type Notes

20 of 26 Developer Technical Support

Original uncompressed single channel sound data:

8-bits 8-bits 8-bits . . .

Marker:

8:3 Compressed Sound Data:

8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits

0 1 2 3 4 5 6 7 8 9 10

Figure 9—ACE 8:3 Apple IIGS Tool Frame size = 3 bytes

Original uncompressed single channel sound data:

8-bits 8-bits 8-bits . . .

Marker:

3:1 Compressed Sound Data:

8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits

0 1 2 3 4 5 6 7 8 9 10

. . .

8-bits

Figure 10—3:1 Macintosh Audio Compression & Expansion
Frame size = 2 bytes

Original uncompressed single channel sound data:

8-bits 8-bits 8-bits . . .

Marker:

6:1 Compressed Sound Data:

8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits 8-bits

0 1 2 3 4 5 6 7 8 9 10

Figure 11—6:1 Macintosh Audio Compression & Expansion
Frame size = 1 byte

The sample frame size is the basic unit of a compressed data block. For the Macintosh 6:1 and
the ACE 2:1 utilities, the frame size is 1 byte. For the Macintosh 3:1 utility, the frame size is 2
bytes. For the ACE 8:3 utility, the frame size is 3 bytes.

March 1991

File Type: $D8 (216) Auxiliary Type: $0001 21 of 26

For storage of multichannel compressed sounds, the conventions listed in the Common Chunk
section should be followed, using a sample frame of compressed sound data in place of
uncompressed samples. Here are some examples:

Stereo: Macintosh 6:1 and IIGS ACE 2:1

Stereo: ACE 8:3

channel:

Sample frame:

1 1 1 1 1 1 1 12 2 2 2 2 2 2 2

channel:

Sample frame:

2 21 1 1

0 1 2 3 4 5 6 7

compressed sound bytes:

compressed sound bytes:

0 1 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

. . .

. . .

Figure 12—Multichannel Compressed Sounds

Markers

Markers positions (see Marker Chunk section) are targeted to expanded (uncompressed) sound
data. Thus, a calculation must be done to map from a position in the compressed data stream to
the target position in the uncompressed sound data. Fortunately, the existing compression
utilities are linear - there is a straight multiplicative ratio between the size of compressed sound
data to uncompressed sound data. Here is a table which can help you to calculate the actual
Marker position, given an offset index into the compressed (single channel) sound data:

Compression (Bytes) Single channel sound data
Macintosh 3:1 Compressed data offset: 0 2 4 6 8 10 12 14

Marker Position: 0 6 12 18 24 30 36 42

Macintosh 6:1 Compressed data offset: 0 1 2 3 4 5 6 7
Marker Position: 0 6 12 18 24 30 36 42

ACE 2:1 Compressed data offset: 0 1 2 3 4 5 6 7
Marker Position: 0 2 4 6 8 10 12 14

ACE 8:3 Compressed data offset: 0 3 6 9 12 15 18 21
Marker Position: 0 8 16 24 32 40 48 56

Table 2—Marker Positions in Compressed Sound

It is possible to specify a Marker position which is not a multiple of the compression rate (e.g.
Marker position of 19 for Macintosh 3:1 compressed sound data). In this case, the playback
system must be contain enough intelligence to:

Apple II File Type Notes

22 of 26 Developer Technical Support

1. Expand a compressed sample frame and discard the initial expanded sample(s)
before playback, and

2. Stop playback of samples before the last expanded sample. In the case of a
compressed sound which must be looped, this capability provides added accuracy
in determining the best loop points.

March 1991

File Type: $D8 (216) Auxiliary Type: $0001 23 of 26

The Sound Accelerator Chunk

Audio decompression algorithms contain internal parameters which track the behavior the sound
being expanded. As these internal parameters depend on the history of the previous sound
samples, a simple attempt to begin playback at arbitrary positions in the compressed sound data
would result in artifacts and distortion of the initial portion of the expanded sound. A Saxel
stores information about the compressed sound at a Marker position, thus providing a means for
high quality playback of random selections of compressed sound data.

Background

Generally, a decompressor must start from the beginning of the compressed data stream. It
requires running state (e.g. internal filter parameters or recently decompressed samples) to
decompress the next sample. To start playback at a marker point somewhere within the audio
stream, you could:

a. decompress the data from the beginning and start playing once you reach the
marker, or

b. use additional data to locate the marked point within the compressed data stream
and load up the decompressor state, then start playing, or

c. compute the marked point within the compressed data stream (only possible for
fixed-ratio compression types), initialize the decompressor as if it were starting at
the beginning, and ignore the startup transient (only useful for decompressors
that would “settle down” in this case).

Method a is always possible as a fall-back. Method b is much faster, if you have the required
data. And that's what Saxel (Sound Accelerator) chunks are for. Method c may be acceptable
for certain applications and/or certain classes of audio compression.

A Sound Accelerator (Saxel) chunk is used in combination with a Marker when the sound data is
compressed. The saxel carries the required data to locate a point in the compressed data stream
and to initialize the decompressor. Saxels enable method b and a modified method a:

d. decompress the data from the previous marker that has a Saxel and start playing
once you reach the desired marker.

Note: As of this writing, the Saxel formats for Macintosh Audio Compression and
Expansion (MACE) compression had not been finalized, and are therefore not
included in this Note. Apple would welcome any ideas you have on the topic at
the address in “About File Type Notes.”

The Sound Accelerator (Saxel) Chunk has the following format:

ckID 4 Bytes The ID for this chunk. These four bytes must be “SAXL.”
ckSize Rev. Long The length of this chunk, excluding ckSize and cdID.
numSaxels Rev. Word The number of saxels in this chunk. Multiple Saxel Chunks

are allowed in a single FORM AIFC. Since the total amount of
Saxel data for a heavily-edited sound file may be quite large, it

Apple II File Type Notes

24 of 26 Developer Technical Support

may be easier for applications to store the various Saxels
independently of each other.

Saxels Saxels The Saxels themselves.

March 1991

File Type: $D8 (216) Auxiliary Type: $0001 25 of 26

A Saxel has the following format:

MarkerID Rev. Word The ID of the marker for which the sound accelerator data is
to be used. It’s considered good practice to supply a Saxel for
every marker—that way, you don’t have to guess which
markers will be used as playback points.

size Rev. Word The length in bytes of the sound accelerator data, saxelData.
The data must be padded with a zero byte at the end if
necessary to make it an even number of bytes in length. This
pad byte, if present, is not included in size.

saxelData Bytes The Sound Acceleration Data

Sound Acceleration Data for Apple IIGS ACE Compression

Beginning with System Software 5.0.3, ACE has a way to retrieve the exact state of the
decompression algorithm, expressly for the inclusion of such data in Saxel Chunks of AIFF-C.
Future versions of ACE will include a tool call to retrieve this data. For version 1.2 of ACE, the
values to include as saxelData are the first 16 bytes of ACE’s direct page. ACE’s direct page can
be obtained from the Tool Locator routine GetWAP with systemOrUser = $0000 and tsNum
= 29.

For versions later than 1.2 of ACE, the information can be obtained through the new ACE calls
GetACEExpState ($0D1D) and SetACEExpState ($0E1D). Both calls take the same
parameter list and return no errors:

- - Long—address of buffer

<—SP

Previous contents

 theBuffer

Figure 13—Stack Diagram for new ACE calls

Versions of ACE prior to 1.2 do not support retrieving the compression state and should not be
used with AIFF-C.

The MIDI Data Chunk

The MIDI Data Chunk can be used to store MIDI data. Please refer to Musical Instrument
Digital Interface Specification 1.0, available from the International MIDI Association, for more
details on MIDI.

The primary purpose of this chunk is to store MIDI System Exclusive messages, although other
types of MIDI data can be stored in the block as well. As more instruments come to market, they
will likely have parameters that have not been included in the AIFF-C specification. The MIDI
System Exclusive messages for these instruments may contain many parameters that are not
included in the Instrument Chunk. For example, a new sampling instrument may have more than

Apple II File Type Notes

26 of 26 Developer Technical Support

the two loops defined in the Instrument Chunk. These loops will likely be represented in the
MIDI System Exclusive message for the new machine. This MIDI System Exclusive message
can be stored in the MIDI Data Chunk.

March 1991

File Type: $D8 (216) Auxiliary Type: $0001 27 of 26

ckID 4 Bytes The ID for this chunk. These four bytes must be “MIDI.”
ckSize Rev. Long The length of this chunk, excluding ckSize and cdID.
MIDIdata Unsigned Bytes A stream of MIDI Data. If the length of the MIDI data is odd,

a pad byte must follow it to make it even.

The MIDI Data Chunk is optional. Any number of MIDI Data Chunks may exist in a FORM
AIFC. If MIDI System Exclusive messages for several instruments are to be stored in a FORM
AIFC, it is better to use one MIDI Data Chunk per instrument than one big MIDI Data Chunk
for all of the instruments.

The Audio Recording Chunk

The Audio Recording Chunk contains information pertinent to audio recording devices.

ckID 4 Bytes The ID for this chunk. These four bytes must be “AESD.”
ckSize Rev. Long The length of this chunk, excluding ckSize and cdID. For the

Audio Recording Chunk, this value is always 24.
AESChannelStatusData 24 Bytes These 24 bytes are specified in the AES Recommended

Practice for Digital Audio Engineering—Serial Transmission
Format for Linearly Represented Digital Audio Data, section
7.1, Channel Status Data. This document describes a format
for real-time digital transmission of digital audio between
audio devices. This information is duplicated in the Audio
Recording Chunk for convenience. Bits 2, 3, and 4 of byte
zero are of general interest as they describe recording
emphasis.

The Audio Recording Chunk is optional. No more than one Audio Recording Chunk may appear
in a FORM AIFC.

The Application Specific Chunk

The Application Specific Chunk can be used for any purposes whatsoever by developers and
application authors. For example, an application that edits sounds might want to use this chunk
to store editor state parameters such as magnification levels, last cursor position, etc.

ckID 4 Bytes The ID for this chunk. These four bytes must be “APPL.”
ckSize Rev. Long The length of this chunk, excluding ckSize and cdID. For the

Audio Recording Chunk, this value is always 24.
OSType 4 Bytes Identifies a particular application. For Apple II applications,

these four bytes should always be ‘pdos’ ($70 $64 $6F $73).
For non-Apple applications, these four bytes should be
‘stoc’. In these cases, the beginning of the data area is
defined to be a Pascal string containing the name of the
application. For Macintosh applications, this is simply the
four-character signature as registered with Developer
Technical Support.

AppSignature String Pascal string identifying the application.
data Bytes Data specific to the application.

Apple II File Type Notes

28 of 26 Developer Technical Support

Note: AppSignature does not exist unless OSType is “pdos” or “stoc”. In all other
cases, the data area starts immediately following the OSType field.

Be sure to plan for the future when defining the data section of your Application Specific Chunk.
Use a version numbering scheme or other appropriate method that will enable the current and
future versions of your applications to interpret the data in the FORM AIFC. Specifically, the
current application should be able to inform the user when a new version is encountered which it
cannot handle (and possibly even prompt the user with a solution). Future applications should be
able to handle older versions of the data or guide the user to a solution.

The Application Specific Chunk is optional. Any number of Application Specific Chunks may
exist in a single FORM AIFC.

The Comments Chunk

The Comments Chunk is used to store comments in the FORM AIFC. “EA IFF 85” has an
Annotation Chunk (used in ASIF) that can be used for comments, but the Comments Chunk has
two features not found in the “EA IFF 85” chunk. They are a time-stamp for the comment and a
link to a marker.

ckID 4 Bytes The ID for this chunk. These four bytes must be “COMT.”
ckSize Rev. Long The length of this chunk, excluding ckSize and cdID.
numComments Rev. Unsigned Word The number of comments in the Comments Chunk.

This is followed by the comments themselves. Comments are
always an even number of bytes in length, so there is no
padding between comments in the Comments Chunk.

Comment Comment The comments. There are numComments of them.

The format of a comment is described below:

timeStamp Rev. Unsigned Long Indicates when the comment was created. Units are
the number of seconds since 12:00 a.m. (midnight), January 1,
1904. This is the standard Macintosh time format. Macintosh
routines to manipulate this time stamp may be found in Inside
Macintosh, Volume II.

Note: Apple IIGS System Software 5.0.3 and later contains a Miscellaneous Tools
routine, ConvSeconds, which can convert times in the format of timeStamp
into standard ProDOS, GS/OS or HyperCard IIGS dates.

marker Rev. Word A Marker ID. If this comment is linked to a marker (to store a
long description of a marker as a comment, for example), this
is the ID of that marker. Otherwise marker is zero, indicating
there is no such link.

count Rev. Word Count of the number of characters in the following text. By
using a word instead of a byte, much larger comments may be
created.

March 1991

File Type: $D8 (216) Auxiliary Type: $0001 29 of 26

text Bytes The comment itself. If the text is an odd number of bytes in
length, it must be padded with a zero byte to ensure that it is
an even number of bytes in length. If the pad byte is present,
it is not included in count.

The Comments Chunk is optional. No more than one Comments Chunk may appear in a single
FORM AIFC.

Apple II File Type Notes

30 of 26 Developer Technical Support

The Text Chunks

These four chunks are included in the definition of every “EA IFF 85” file. All are text chunks;
their data portion consists solely of text. Each of these chunks is optional.

The Name Chunk

This chunk names the sampled sound.

ckID 4 Bytes The ID for this chunk. These four bytes must be “NAME.”
ckSize Rev. Long The length of this chunk, excluding ckSize and cdID.
Name Bytes ASCII characters ($20–$7F) representing the name. There

should be ckSize characters.

No more than one Name Chunk may exist within a FORM AIFC.

The Author Chunk

This chunk can be used to identify the creator of a sampled sound.

ckID 4 Bytes The ID for this chunk. These four bytes must be “AUTH.”
ckSize Rev. Long The length of this chunk, excluding ckSize and cdID.
author Bytes ASCII characters ($20–$7F) representing the name of the

author of the sampled sound. There should be ckSize
characters.

No more than one Author Chunk may exist within a FORM AIFC.

The Copyright Chunk

The Copyright Chunk contains a copyright notice for the sound. The copyright contains a date
followed by the copyright owner. The chunk ID “(c) ” serves as the copyright character (©).
For example, a Copyright Chunk containing the text “1989 Apple Computer, Inc.” means “©
1989 Apple Computer, Inc.”

ckID 4 Bytes The ID for this chunk. These four bytes must be “(c) .”
ckSize Rev. Long The length of this chunk, excluding ckSize and cdID. You

may think of this value as the offset to the end of the chunk.
notice Bytes ASCII characters ($20–$7F) representing a copyright notice

for the voice or collection of voices. There should be ckSize
characters.

No more than one Copyright Chunk may exist within a FORM AIFC.

March 1991

File Type: $D8 (216) Auxiliary Type: $0001 31 of 26

The Annotation Chunk

Use of this comment is discouraged within FORM AIFC. The more powerful Comments Chunk
should be used instead.

ckID 4 Bytes The ID for this chunk. These four bytes must be “ANNO.”
ckSize Rev. Long The length of this chunk, excluding ckSize and cdID. You

may think of this value as the offset to the end of the chunk.
Note that this is a Reverse Long; the bytes are stored high byte
first.

author Bytes ASCII characters ($20–$7F) representing the name of the
author of the voices or collection of voices. There should be
ckSize characters.

Many Annotation Chunks may exist within a FORM AIFC.

Chunk Precedence

Several of the local chunks for FORM AIFC may contain duplicate information. For example,
the Instrument Chunk defines loop points and MIDI System Exclusive data in the MIDI Data
Chunk may also define loop points. What happens if these loop points are different? How is an
application supposed to loop the sound? Such conflicts are resolved by defining a precedence
for chunks. This precedence is listed in Table 2.

Format Version Chunk Highest precedence
Common Chunk
Instrument Chunk
Saxel Chunk
Comments Chunk
Marker Chunk
Sound Data Chunk
Name Chunk
Author Chunk
Copyright Chunk
Annotation Chunk(s) —in the order they appear in the FORM
Audio Recording Chunk
MIDI Data Chunk(s)
Application Specific Chunks Lowest precedence

Table 2–Chunk Precedence

The Format Version Chunk has the highest precedence, while the Application Specific Chunk
has the lowest. Information in the Common Chunk always takes precedence over conflicting
information in any other chunk. The Application Specific Chunk always loses in conflicts with
other chunks. By looking at the chunk hierarchy, for example, one sees that the loop points in
the Instrument Chunk take precedence over conflicting loop points found in the MIDI Data
Chunk.

Apple II File Type Notes

32 of 26 Developer Technical Support

It is the responsibility of applications that write data into the lower precedence chunks to make
sure that the higher precedence chunks are updated accordingly.

March 1991

File Type: $D8 (216) Auxiliary Type: $0001 33 of 26

AIFF-C Examples

Illustrated below are examples of several FORM AIFC files. An AIFF-C file is simply a file
containing a single FORM AIFC.

These examples have been designed to illustrate several of the possible variations of sound data
and Chunk formats you may encounter. A careful study of these examples will clarify the
Chunk specifications. Remember that the Chunks may appear in any order in a FORM
AIFC—the order shown here is only for the sake of the examples.

Example 1—A file containing approximately 4.476 seconds of 8-bit monophonic
uncompressed sound data sampled at 22.25454 KHz:

FORM AIFC file ckID
ckSize

formType

ckID
ckDataSize

numChannels
numSampleFrames

sampleSize
sampleRate

compressionType
compressionName

ckID
ckDataSize

offset
blockSize
soundData

Common
Chunk

Marker
Chunk

Sound Data
Chunk

8
22254.54

'F' 'O' 'R' 'M'
99764

'A' 'I' 'F' 'C'

38
1

66
4
101

318

115
47829

' ' 'd' 'r' 'u' 'm' '2'

0
0

. . .
sample frames

99611

99611th
sample frame

99619

'C' 'O' 'M' 'M'

'N' 'O' 'N' 'E'
14 'n' 'o' 't' ' ' 'c' 'o' 'm' 'p''r' 'e' 's' 'e''s'
'M' 'A' 'R' 'K'

9 'b' 'e' 'g'

9 'b' 'e' 'g'

'S' 'S' 'N' 'D'

ckID
ckDataSize

numMarkers
id

position
markerName

id
position

markerName
id

position
markerName

id
position

markerName

108
97127

' ' 'd' 'r' 'u' 'm' '2'
103
45233

' ' 'd' 'r' 'u' 'm' '1'

9 'e' 'n' 'd'

9 'e' 'n' 'd'

0

pad byte

0'd'

' ' 'd' 'r' 'u' 'm' '1'

'F' 'V' 'E' 'R'
4

Version
Chunk

ckID
ckDataSize
timestamp 2726318400

Figure 14–Sample FORM AIFC #1

Apple II File Type Notes

34 of 26 Developer Technical Support

Example 2—A file containing approximately 28.972 seconds of 8-bit sound data sampled
at 22.25454 and compressed by a factor of 2 using the Apple IIGS Audio Compression and
Expansion tool.

FORM AIFC file
ckID

ckSize
formType

ckID
ckDataSize

numChannels
numSampleFrames

sampleSize
sampleRate

compressionType
compressionName

ckID
ckDataSize

numMarkers
id

position
markerName

id
position

markerName

ckID
ckDataSize

offset
blockSize

soundData

Common
Chunk

Marker
Chunk

Sound Data
Chunk

8
22254.54

'F' 'O' 'R' 'M'
215164

'A' 'I' 'F' 'C'

34
1

38
2
97

35
' ' 'p' 'h' 'r'

24
58713

44

0
0

107460

214928

'C' 'O' 'M' 'M'

'A' 'C' 'E' '2'
11 'A' 'C' 'E' ' ' '2' '-' 't' 'o' '-''1'
'M' 'A' 'R' 'K'

11 'b' 'e' 'g'

'S' 'A' 'X' 'L'

'S' 'S' 'N' 'D'

'a' 's' 'e' '1'

' ' 'p' 'h' 'r'11 'b' 'e' 'g' 'a' 's' 'e' '3'
ckID

ckDataSize
numSaxels

id
size

saxelData
id

size
saxelData

2
97
16

. . .

. . .

sample frames 107460th
sample frame

. . .

Results from ACE

16
24

Results from ACE

Saxel
Chunk

'F' 'V' 'E' 'R'
4

Version
Chunk

ckID
ckDataSize
timestamp 2726318400

Figure 15–Sample FORM AIFC #2

March 1991

File Type: $D8 (216) Auxiliary Type: $0001 35 of 26

Example 3—A file containing approximately 2.325 seconds of 16-bit stereo uncompressed
sound data sampled at 44.1 KHz (CD quality).

FORM AIFC file ckID
ckSize

formType

ckID
ckDataSize

numChannels
numSampleFrames

sampleSize
sampleRate

compressionType
compressionName

ckID
ckDataSize

numMarkers
id

position
markerName

id
position

markerName
ckID

ckDataSize
baseNote

detune
lowNote

highNote
lowVelocity

highVelocity
gain

sustainLoop.playMode
sustainLoop.beginLoop

sustainLoop.endLoop
releaseLoop.playMode

releaseLoop.beginLoop
releaseLoop.endLoop

ckID
ckDataSize

offset
blockSize
soundData

Common
Chunk

Marker
Chunk

Instrument
Chunk

Sound Data
Chunk

16
44100.00

'F' 'O' 'R' 'M'
410256

'A' 'I' 'F' 'C'

38
2

34
2
101

6853
' ' 'l' 'o' 'o' 'p' 0

102
84572

' ' 'l' 'o' 'o' 'p' 0

20

-3
57
63
1

127
6
1

101
102
0

101
102

0
0 . . .

first sample frame

102527

102527th sample frame

410116

'C' 'O' 'M' 'M'

'N' 'O' 'N' 'E'
14 'n' 'o' 't' ' ' 'c' 'o' 'm' 'p' 'r' 'e' 's' 'e''s'
'M' 'A' 'R' 'K'

8 'b' 'e' 'g'

8 'e' 'n' 'd'
'I' 'N' 'S' 'T'

'S' 'S' 'N' 'D'

60

ch 1 ch 2 ch 1 ch 2

0'd'

'F' 'V' 'E' 'R'
4

Version
Chunk

ckID
ckDataSize
timestamp 2726318400

Figure 16–Sample FORM AIFC #3

Apple II File Type Notes

36 of 26 Developer Technical Support

Further Reference
• Apple Numerics Manual, Second Edition
• File Type Note File Type $D8, Auxiliary Type $0000, Audio Interchange File Format
• File Type Note File Type $D8, Auxiliary Type $0002, Apple IIGS Sampled Instrument

Format
• Audio Interchange File Format v1.3 (APDA)
• AES Recommended Practice for Digital Audio Engineering—Serial Transmission Format

for Linearly Represented Digital Audio Data, Audio Engineering Society, 60 East 42nd
Street, New York, NY 10165

• MIDI: Musical Instrument Digital Interface, Specification 1.0, the International MIDI
Association.

• "EA IFF 85" Standard for Interchange Format Files (Electronic Arts)
• "8SVX” IFF 8-bit Sampled Voice (Electronic Arts)

