
File Type: $1A (26) Auxiliary Type: All 1 of 6

Apple II
File Type Notes

Developer Technical Support
File Type: $1A (26)
Auxiliary Type: All

Full Name: AppleWorks Word Processor File
Short Name: AppleWorks WP File

Revised by: Matt Deatherage & John Kinder, CLARIS Corporation September 1989
Written by: Bob Lissner February 1984

Files of this type and auxiliary type contain an AppleWorks® Word Processor file.
Changes since May 1989: Updated to include AppleWorks 2.1 and AppleWorks 3.0.

Files of type $1A and any auxiliary type contain an AppleWorks Word Processor file.
AppleWorks is published by CLARIS. CLARIS also has additional information on AppleWorks
files SEG.PR and SEG.ER. For information on AppleWorks, contact CLARIS at:

CLARIS Corporation
5201 Patrick Henry Drive
P.O. Box 58168
Santa Clara, CA 95052-8168

Technical Support
Telephone: (408) 727-9054
AppleLink: Claris.Tech

Customer Relations
Telephone: (408) 727-8227
AppleLink: Claris.CR

AppleWorks was created by Bob Lissner. AppleWorks 2.1 was done by Bob Lissner and John
Kinder of CLARIS. AppleWorks 3.0 was done by Alan Bird, Rob Renstrom and Randy Brandt of
Beagle Bros Software with John Kinder of CLARIS.

Definitions

The following definitions apply to AppleWorks files in addition to those defined for all Apple II
file types:

MRL Data base multiple record layout

Apple II File Type Notes

2 of 6 File Type: $1A (26) Auxiliary Type: All

SRL Data base single record layout
RAC Review/Add/Change screen
DB AppleWorks or /// E-Z Pieces Data Base
SS AppleWorks or /// E-Z Pieces Spreadsheet
WP AppleWorks or /// E-Z Pieces Word Processor
AW AppleWorks or /// E-Z Pieces

Auxiliary Type Definitions

The volume or subdirectory auxiliary type word for this file type is defined to control uppercase
and lowercase display of filenames. The highest bit of the least significant byte corresponds to
the first character of the filename, the next highest bit of the least significant byte corresponds to
the second character, etc., through the second bit of the most significant byte, which corresponds
to the fifteenth character of the filename.

AppleWorks performs the following steps when it saves a file to disk:

1. Zeros all 16 bits of the auxiliary type word.
2. Examines the filename for lowercase letters. If one is found, it changes the

corresponding bit in the auxiliary type word to 1 and changes the letter to
uppercase.

3. Examines the filename for spaces. If one is found, it changes the corresponding
bit in the auxiliary type word to 1 and changes the space to a period.

When files are read from disk, the filename and auxiliary type information from the directory file
entry are used to determine which characters should be lowercase and which periods should be
displayed as spaces. If you use the auxiliary type bytes for a different purpose, AppleWorks will
still display the filenames, but the wrong letters are likely lowercase.

File Version Changes

Certain features present in AppleWorks 3.0 files are not backward-compatible to 2.1 and earlier
versions. Such features are noted in the text. AppleWorks Word Processor files which may not
be loaded by versions prior to 3.0 are identified by a non-zero byte at location +183, referred to
as location SFMinVers.

Those features added for AppleWorks 2.0, 2.1 and 3.0 not previously documented are indicated
with that version number in the margin.

Word Processor Files

Word Processor files start with a 300 byte header, followed by a number of variable length line
records, one for each line on the screen.

Developer Technical Support September 1989

File Type: $1A (26) Auxiliary Type: All 3 of 6

Header Record

The header contains the following information:

+000 to +003 Not used.
+004 Byte $4F (79)
+005 to +084 Bytes Tab stops. Either equal sign (=) or vertical bar (|) If

SFMinVers is non-zero, these will be one of the following
values:
“=“ - no tab
“<“ - left tab
“^” - center tab
“>“ - right tab
“.” - decimal tab.

+085 Byte Boolean: Zoom switch.
+086 to +089 Four bytes not used.
+090 Byte Boolean: Whether file is currently paginated (i.e., whether the

page break lines are displayed).
+091 Byte Minimum left margin that should be added to the margin that

is appearing on the screen. This is normally one inch, shown
in 10ths of an inch, 10 or $0A.

+092 Byte Boolean: Whether file contains any mail-merge commands.
+093 to +175 Bytes Not used. Reserved.

3.0 +176 Byte Boolean: Whether there are multiple rulers in the document.
3.0 +177 to +182 Bytes Used internally for keeping track of tab rulers.
3.0 +183 Byte SFMinVers. The minimum version of AppleWorks needed

to read this document. If this document contains 3.0 specific
features (tabs and multiple tab rulers, for example), this byte
will contain the version number 30 ($1E). Otherwise, it will
be zero ($00).

+184 to +249 Bytes Reserved.
+250 to +299 Bytes Available. Will never be used by AppleWorks. If you are

creating this type of file, you can use this area to keep
information that is important to your program.

Line Records

Line records are of three different types. The first line record after the 300 byte header
corresponds to line 1, the next is line 2, and so on. The first two bytes of each line record contain
enough information to establish the type.

If SFMinVers is non-zero, the first line record (two bytes long) is invalid and should be
skipped.

Apple II File Type Notes

4 of 6 File Type: $1A (26) Auxiliary Type: All

Carriage Return Line Records

Carriage return line records have a $D0 (208) in byte +001. Byte +000 is a one byte integer
between 00 and 79 that is the horizontal screen position of this carriage return.

Command Line Records

Command line records are formatting commands that appear on the screen in the form:

--------Double Space

for example. These records can be identified by a value greater than $D0 (208) in byte +001.
They are:

Byte +001 Command Byte +000
3.0 $D4 reserved (used internally as ruler)
3.0 $D5 Page header end
3.0 $D6 Page footer end
3.0 $D7 Right justified

$D8 Platen width Byte 10ths of an inch
$D9 Left margin Byte 10ths of an inch
$DA Right margin Byte 10ths of an inch
$DB Chars per inch Byte
$DC Proportional-1 No meaning
$DD Proportional-2
$DE Indent Byte Characters
$DF Justify
$E0 Unjustify
$E1 Center
$E2 Paper length Byte 10ths of an inch
$E3 Top margin Byte 10ths of an inch
$E4 Bottom margin Byte 10ths of an inch
$E5 Lines per inch Byte
$E6 Single space
$E7 Double space
$E8 Triple space
$E9 New page
$EA Group begin
$EB Group end
$EC Page header
$ED Page footer
$EE Skip lines Byte Count
$EF Page number Byte
$F0 Pause each page
$F1 Pause here
$F2 Set marker Byte Marker number
$F3 Page number Byte (add 256)
$F4 Page break Byte Page number
$F5 Page break Byte (add 256)
$F6 Page break Byte (break in middle of paragraph)
$F7 Page break Byte (add 256 in middle of paragraph)
$FF End of file

Developer Technical Support September 1989

File Type: $1A (26) Auxiliary Type: All 5 of 6

Text Records

Text records are the lines where text has been typed. The format is:

+000 to +001 Word Number of bytes following this word. Since the maximum is
about 80, byte +001 is always zero. Use byte +001 to identify
text lines.

3.0 +002 If bit 7 is on, this line contains Tab and Tab Filler special
codes (described below). The remaining seven bits are the
screen column for the first text character. Usually will be
zero, but may vary as a result of left margin, centering, and
indent commands.
If this byte is $FF, this text line is actually a ruler—ASCII
equivalent of what appears on the top of the screen.

+003 Byte If bit 7 (the high bit) of this byte is on, there is a carriage
return on the end of this line. If off, no carriage return.
Bits 6-0: Number of bytes of text following this byte.

+004 to nnn Actual text bytes. Consists of ASCII characters and special
codes. The special codes are values from $01 to $1F, and
indicate special formatting features:

Code Meaning
$01 Begin boldface
$02 Boldface end
$03 Superscript begin
$04 Superscript end
$05 Subscript begin
$06 Subscript end
$07 Underline begin
$08 Underline end
$09 Print page number
$0A Enter keyboard
$0B Sticky space
$0C Begin Mail merge

3.0 $0D Reserved
3.0 $0E Print Date
3.0 $0F Print Time
3.0 $10 Special Code 1
3.0 $11 Special Code 2
3.0 $12 Special Code 3
3.0 $13 Special Code 4
3.0 $14 Special Code 5
3.0 $15 Special Code 6
3.0 $16 Tab character
3.0 $17 Tab fill character

(used in formatting
lines)

3.0 $18 Reserved

File Tags

Apple II File Type Notes

6 of 6 File Type: $1A (26) Auxiliary Type: All

All AppleWorks files normally end with two bytes of $FF; tags are anything after that.
Although File Tags were primarily designed by Beagle Bros, they can be used by any
application that needs to create or modify an AppleWorks 3.0 file.

Because versions of AppleWorks before 3.0 stop at the double $FF, they simply ignore
tags.

The File Tag structure is as follows:

+000 Byte Tag ID. Should be $FF.
+001 Byte 2nd ID byte. These values will be defined and

arbitrated by Beagle Bros Software. Beagle may be
reached at:

Beagle Bros Inc
6215 Ferris Square, #100
San Diego, CA 92121

+002 to +003 Word Data length. If this is the last tag on the file, the low
byte (+002) will be a count of the tags in this file, and
the high byte (+003) will be $FF.

+004 to nnn Bytes Actual tag data, immediately followed by the next
four-byte tag ID. These bytes do not exist for the last
tag.

There is a maximum of 64 tags per file. Each tag may be no larger than 2K.

AppleWorks is a registered trademark of Apple Computer, Inc. licensed to Claris
Corporation.

