
File Type: $E0 (224) Auxiliary Type: $0001 1 of 5

Apple II
File Type Notes

Developer Technical Support

®

File Type: $E0 (224)
Auxiliary Type: $0001

Full Name: AppleSingle File
Short Name: AppleSingle File

Revised by: Matt Deatherage November 1990
Written by: Matt Deatherage March 1989

Files of this type and auxiliary type contain a file in AppleSingle format.
Changes since March 1990: Added information about AppleSingle version 2.0.

AppleSingle is one of two standards (the other is AppleDouble) put forth by Apple Computer,
Inc. for representing files on foreign file systems while preserving all attributes of the file’s home
system on file systems that do not support the same attributes.

Experience indicated that a single format would be inadequate to cover all cases. Two closely
related formats, however, can serve most needs. Although the primary impetus for developing
these formats is storing extended files (files with both resource and data forks) on file systems
that do not support the notion of two forks, the proposed formats are general enough that they
can be used to represent a file from any file system on any other file system.

AppleSingle keeps all attributes and the contents of both forks in a single file in the foreign file
system, and this Note describes this file format. AppleDouble keeps the data fork as a separate
file from the file attributes and the resource fork, and is described in the File Type Notes for File
Type $E0, Auxiliary Types $0002 and $0003.

AppleSingle is intended to be used primarily as a storage format, especially for cases where you
must store an extended file on a foreign file system and later reconstruct the extended file.
AppleDouble is more appropriate for applications where the users of the foreign file system
might want to modify the contents of the file. Since most applications keep file data in the data
fork, AppleDouble format saves the contents of the data fork in one file. All other file attributes,
including the resource fork, are kept in a separate file.

Reasons for Using AppleSingle

There are several reasons for supporting an interchange format between file systems. Perhaps
the most germane is one of the least obvious: handling extended files on foreign file systems
which do not support extended files.

Apple II File Type Notes

2 of 5 File Type: $E0 (224) Auxiliary Type: $0001

For example, the ProDOS FST in GS/OS can create an extended file on a ProDOS disk.
However, ProDOS 8 is unable to operate on the file, since it sees it as having an unsupported
storage type. If a telecommunications program or other utility capable of transferring files is
operating under ProDOS 8 and attempts to receive an extended file, it is unable to create the file.

At this point, the application could use READ_BLOCK and WRITE_BLOCK commands, along
with a knowledge of the ProDOS file system, to create the file on its own. However, this is
strongly discouraged. The ProDOS file system format for extended files is not documented and
could change in the future. In addition, the program could be running on a eight-bit system. If
the disk is only used on an eight-bit system, the extended files would not only be unwanted, but
also unremovable without using the disk on an Apple IIGS or later system running GS/OS.

However, if the application is aware of the AppleSingle format, it can quickly store an extended
file in AppleSingle, leaving the conversion back to the extended file to GS/OS, or another
operating system. This is the recommended way for ProDOS 8 applications to create and handle
extended files. Use either AppleSingle or AppleDouble.

AppleSingle Format

An AppleSingle file contains a header followed by data. The header consists of several fixed
fields and a list of entry descriptors, each pointing to an entry. Apple defines the following
standard entries: Data Fork, Resource Fork, Real Name (name in the home file system),
Comment, Icon and File Info. Each entry is optional, so it may not appear in the file.

Note: All numeric entries, including entries representing ProDOS data structures (such
as file type and auxiliary type) are Reverse ordered. This is provided so any host
CPU can attempt to interpret entries in the header without having to know the
standard byte-ordering of the home file system. Therefore, in this Note you see
descriptive entries like “Rev. 4 Bytes.” This serves as a reminder that all header
fields are stored high byte first, even though the notation Bytes does not imply
any specific ordering in other File Type Notes.

Also note that ASCII strings are not stored in reverse order, just non-ASCII constants.

The Header:

Magic Number Rev. Long The Magic Number field is modeled after the feature in UNIX.
It is intended to be used in whatever way the foreign file
system distinguishes a file as AppleSingle format. See the
section “Identifying AppleSingle Files.” The Magic Number
for AppleSingle format is $00051600, which is stored reverse
as $00 $05 $16 $00 (reverse of normal 65816/6502 order).

Version Number Rev. Long The version of AppleSingle format, in case the format evolves
(more fields may be added to the header). The version
described here is $00010000, stored (reverse) as $00 $01 $00
$00.

Developer Technical Support November 1990

File Type: $E0 (224) Auxiliary Type: $0001 3 of 5

Home File System 16 Bytes A fixed-length, 16-byte ASCII string not preceded by a length
byte, but possibly padded with blanks. Apple has defined
these values:
“ProDOS” $50726F444F5320202020202020202020
“Macintosh” $4D6163696E746F736820202020202020
“MS-DOS” $4D532D444F5320202020202020202020
“Unix” $556E9878202020202020202020202020
“VAX VMS” $56415820564D53202020202020202020
Apple welcomes suggestions for other file systems that should
be included in this list.

Number of entries Rev. Word Tells how many different entries are included in the file. This
unsigned reverse word may be zero. If it is non-zero, then that
number of entry descriptors immediately follows this field.

For Each Entry:

Entry ID Rev. Long Identifies the entry. Apple has defined the following Entry
IDs and their values:
1 = Data Fork
2 = Resource Fork
3 = Real Name (The file’s name in the home file system)
4 = Comment* (standard Macintosh comment)
5 = Icon, B&W* (standard Macintosh black and white icon)
6 = Icon, Color* (reserved for Macintosh color icon)
7 = File Info (file attributes, dates, etc.)
9 = Finder Info* (standard Macintosh Finder Info)
Entry IDs marked with asterisks (*) are not used for most files
created under ProDOS or GS/OS. Furthermore, icon entries
probably do not appear in most files since they are typically
stored as a bundle in the application file’s resource fork on the
Macintosh. Apple reserves the range of Entry IDs from $0 to
$7FFFFFFF for future use. The rest of the range is available
for other systems to define their own entries. Apple does not
arbitrate the use of the rest of the range.
Descriptions of the standard entries are given below.

Offset Rev. Long An unsigned reverse long which indicates the byte offset from
the start of the file to the start of the entry.

Entry Length Rev. Long An unsigned reverse long which indicates the length of the
entry in bytes. The length may be zero.

Standard Entries:

The Real Name Entry:

The Real Name entry indicates the file’s original filename in the host file system. This is not a
Pascal or C string; it is just ASCII data. The length is indicated by the Entry Length field for the
Real Name entry.

The File Info Entry:

Apple II File Type Notes

4 of 5 File Type: $E0 (224) Auxiliary Type: $0001

The File Info entry (Entry ID = 7) is different for each home file system. For ProDOS files, the
entry is 16 bytes long and consists of the creation date and time and the modification date and
time in ProDOS 8 (ProDOS 16/class zero GS/OS) form, the access word, a two-byte file type
and four-byte auxiliary type. This is detailed in standard format below, along with defined File
Info entries for some other file systems.

ProDOS:

Create Date Rev. 2 Bytes Creation date packed into standard ProDOS 8 format.
Create Time Rev. 2 Bytes Creation time packed into standard ProDOS 8 format.
Modification Date Rev. 2 Bytes Modification date packed into standard ProDOS 8 format.
Modification Time Rev. 2 Bytes Modification time packed into standard ProDOS 8 format.
Access Rev. Word The file’s access. This may be used directly in ProDOS 16 or

GS/OS calls; only the low byte is significant to ProDOS 8.
File Type Rev. Word The file type of the original file. Only the low byte is

significant to ProDOS 8.
Auxiliary Type Rev. Long The auxiliary type of the original file. Only the low word is

significant to ProDOS 8.

Note: Although the ProDOS Access field, File Type and Auxiliary Type are the same
length as found in ProDOS 16 and GS/OS structures, the Create and Modification
Dates and Times are stored in two-byte (albeit byte-reversed) ProDOS 8 format,
not eight-byte Apple IIGS format.

Macintosh:

Create Date Rev. Long Unsigned number of seconds between January 1, 1904, and
the creation time of this file.

Modification Date Rev. Long Unsigned number of seconds between January 1, 1904, and
the last modification of this file.

Last Backup Date Rev. Long Unsigned number of seconds between January 1, 1904, and
the last backup time of this file.

Attributes Rev. Long 32 boolean flags. Once the bytes are unreversed, bit zero is
the locked bit and bit one is the protected bit.

MS-DOS:

Modification Date Rev. 4 Bytes MS-DOS format modification date.
Attributes Rev. 2 Bytes MS-DOS attributes.

Unix:

Create Date/Time Rev. 4 Bytes Unix creation date and time.
Last Use Date/Time Rev. 4 Bytes Unix time for the last time this file was used.
Last Mod. Date/Time Rev. 4 Bytes Unix time for the last time this file was modified.

The Finder Info Entry:

The Finder Info entry (Entry ID = 9) is for files where the host file system is Macintosh. It
consists of 16 bytes of Finder Info followed by 16 bytes of Extended Finder Info. These are the

Developer Technical Support November 1990

File Type: $E0 (224) Auxiliary Type: $0001 5 of 5

fields ioFlFndrInfo followed by ioFlXFndrInfo, as described in Inside Macintosh,
Volume IV-183. Newly created files have zeroes in all Finder Info subfields. If you are creating
an AppleSingle file whose home system is Macintosh, you may zero all unknown fields, but you
may want to set the fdType and fdCreator subfields.

The Entries:

The entries themselves follow the header field and the entry descriptors. The actual data
representing each entry must be in a single, contiguous block. The offset field in that entry’s
descriptor points to it. The entries could appear in any order, but since the data fork is the entry
that is most commonly extended, Apple strongly recommends that the data fork always be kept
last in the file to facilitate its extension. Apple also recommends that those entries that are most
often read, such as Real Name, File Info (and Finder Info if present) be kept as close as possible
to the header to maximize the probability that a read of the first few blocks of the file retrieves
these entries.

It is possible to have holes in the file (unused space between entries). To find the holes, you
must take the list of entry descriptors and sort them into increasing offset order. If the offset
field of an entry is greater than the offset plus the length of the previous entry (sorted), then a
hole exists between the entries. You can make use of such holes; for example, if a file’s
comment is ten bytes long, you could create a hole of 190 bytes after the comment field to easily
allow for the comment to later expand to its maximum length of 200 bytes. Because an
AppleSingle file may contain holes, you must find each entry by getting its offset from its entry
descriptor, not by assuming that it begins after the previous entry.

Byte ordering in file header fields follows 68000 convention, and each header field has been so
noted by the Reverse operator.

Identifying AppleSingle files

As this is an interchange format, from a ProDOS directory entry there is no way to guarantee
which files are AppleSingle files. Apple has allocated File Type $E0, Auxiliary Type $0001 for
files which are AppleSingle files. We strongly encourage ProDOS 8 and GS/OS applications to
use this file type and auxiliary type assignment when creating AppleSingle files.

AppleSingle files which do not have file type $E0 and auxiliary type $0001 can most easily be
identified by opening them and attempting to interpret them. If they are not AppleSingle files,
the Magic Number is not contained in the first four bytes of the file. The chances that the file
would begin with those four bytes and not be an AppleSingle file, on a purely random basis, are
4,294,967,295 to 1. The chances that both the Magic Number and the Version bytes would be
the same in a non-AppleSingle file are roughly 1.8 x 10^19 to 1.

About AppleSingle 2.0

Apple II File Type Notes

6 of 5 File Type: $E0 (224) Auxiliary Type: $0001

AppleSingle 2.0 is a revision to the original AppleSingle specification described in this Note.
AppleSingle 2.0 comes closer to the ideal of an interchange format by allowing file information
for multiple file systems in the same AppleSingle file.

AppleSingle 2.0 basically replaces the File Info entry (ID = 7) with a File Dates entry (ID = 8)
and one or more host file system entries, such as a Macintosh File Info entry (ID = 10), a
ProDOS File Info entry (ID = 11), or an MS-DOS File Info entry (ID = 12). Information on
these entries and AppleSingle 2.0 can be found in the AppleSingle/AppleDouble Formats for
Foreign Files Developer’s Note, available from APDA, AppleLink, and the Developer CD
series.

Further Reference
• Inside Macintosh, Volume IV
• ProDOS 8 Technical Reference Manual
• GS/OS Reference
• AppleSingle/AppleDouble Formats for Foreign Files Developer’s Note

