
File Type: $E0 (224) Auxiliary Type: $0005 1 of 4

Apple II
File Type Notes

Developer Technical Support

®

File Type: $E0 (224)
Auxiliary Type: $0005

Full Name: DiskCopy disk image
Short Name: DiskCopy disk image

Written by: Matt Deatherage, Dave Lyons & Steve Christensen May 1992

Files of this type and auxiliary type contain disk images from Apple’s DiskCopy program on the
Macintosh.

DiskCopy is a program written by Steve Christensen of Apple Computer, Inc., for internal use in
duplicating and distributing 3.5” floppy disks. Because of its utility in distributing disk images
on the Macintosh, DiskCopy is used in several Apple developer products even though DiskCopy
is not an official Apple product and is not supported as such.

Since the monthly Developer CD Series discs contain many DiskCopy disk images, and since the
AppleShare and HFS FSTs in System Software 6.0 and later automatically translate DiskCopy
files (HFS file type dImg and creator dCpy) to Apple II file type $E0 and auxiliary type $0005,
the format is provided here for your utility use only. Apple does not guarantee that files not
generated by DiskCopy will work with DiskCopy.

Definitions

DiskCopy uses a simple checksum algorithm to help insure data integrity for archived disk
images. The algorithm for generating the 32-bit checksum is as follows:

Initialize checksum to zero
For each data Reverse Word:

Add the data Reverse Word to the checksum
Rotate the 32-bit checksum right one bit (wrapping bit 0 to bit 31)

The following 65816 assembly language routine calculates a DiskCopy checksum. It’s not a
speedy operation—it takes about 12 seconds to calculate the checksum on an 800K disk image.
Anyone finding an assembly routine that can perform this task in under 5 seconds may apply for
their IIGS Certificate of Deityship, as documented in the File Type Note for file type $B6.

(Oh, by the way, any entries have to be under 1K in size—the following routine is 88 bytes. So
don’t think unwinding loops is your ticket to fame and fortune.)

Apple II File Type Notes

2 of 4 File Type: $E0 (224) Auxiliary Type: $0005

**
*
* Compute checksum for DiskCopy data
*
* v1.2 by David A. Lyons, 18-May-92
*
* MPW IIgs assembly format
*
* Inputs on stack:
* Push pointer to data (long)
* Push size of data (long) (Must be even!)
* JSL CalcChecksum
* STA TheChecksum+2
* STX TheChecksum
*
* Output:
* Checksum in A and X (bytes +0 and +1 in X, bytes +2 and +3 in A)
* (The inputs have been removed from the stack)
*
**
CalcChecksum PROC
 phd ;save caller's direct page reg
 lda #0
 pha
 pha ;push initial checksum value (zero)
 tsc
 tcd

checksum equ 1
oldD equ checksum+4
theRTL equ oldD+2
dataSize equ theRTL+3
dataPtr equ dataSize+4

*** Set dataSize to -(dataSize/2)-1 so we can count up by one
*** (instead of down by two) to see when we're done
 lda <dataSize+2
 lsr a
 eor #$ffff
 sta <dataSize+2
 lda <dataSize
 ror a
 eor #$ffff
 sta <dataSize

 ldy #0
nextWord inc <dataSize
 bne moreData
 inc <dataSize+2
 beq noMoreData
moreData

*** Get next 16-bit word from the data buffer
 lda [<dataPtr],y
 xba ;swap to 65816 byte order

*** Add the data word to the checksum
 clc
 adc <checksum
 sta <checksum
 bcc noCksumRoll
 inc <checksum+2
noCksumRoll

Developer Technical Support May 1992

File Type: $E0 (224) Auxiliary Type: $0005 3 of 4

*** Rotate the 32-bit checksum right one bit, wrapping bit 0 into bit 31
 lda <checksum+2
 lsr a
 ror <checksum
 bcc bit0was0
 ora #$8000 ;if we rotated a 1 out of bit 0,
bit0was0 sta <checksum+2 ; then set bit 31

*** Advance to the next word and go back for more
 iny
 iny
 bne nextWord ;go back for more data
 inc <dataPtr+2
 bra nextWord ;go back for next bank of data

noMoreData pla
 xba
 tay
 pla
 xba
 tax ;pull checksum into YX (put in 68000 order)

 pld ;restore caller's direct page reg

 lda 2,s
 sta 2+8,s
 lda 1,s
 sta 1+8,s
 pla
 pla
 pla
 pla ;discard input values

 tya
 rtl

 EndP

 END

The following definition is used in this document in addition to those defined for all Apple II file
types:

Checksum A 32-byte quantity calculated using the previously-defined algorithm. When
these are contained in the file, they are in Reverse order.

File Structure

All of the information for a DiskCopy disk image is in the data fork. The resource fork usually
contains Macintosh resources (in Macintosh resource fork format), including vers resources
listing the checksums. This allows Macintosh users to use the Macintosh Finder’s “Get Info…”
function to quickly examine the checksums.

Apple II File Type Notes

4 of 4 File Type: $E0 (224) Auxiliary Type: $0005

The File Format

Because this is a native Macintosh file format, all the multi-byte constants are stored in Reverse
order.

diskName (+000) 64 Bytes A Pascal String containing the name of the disk.
This field takes 64 bytes regardless of the length of
the String.

dataSize (+064) Rev. Long The number of bytes (not blocks) of user data. User
data is the 512 bytes of each block that a normal
block-reading command returns.

tagSize (+068) Rev. Long The number of bytes of tag data. Tag data is the
extra 12 bytes of “scavenger” information present on
400K and 800K Mcaintosh disks. Apple II operating
systems always leave these bytes zeroed, and they’re
not present on 720K or 1440K disks. If there are no
tag bytes, this field will be zero.

dataChecksum (+072) Checksum Checksum of all the user data on the disk. The
checksum algorithm is called for the entire disk, not
on a block-by-block or sector-by-sector basis. This is
in Reverse order (most significant byte first).

tagChecksum (+076) Checksum Checksum of all the tag data on the disk. If there is
no tag data, this should be zero. This is in Reverse
order (most significant byte first).

diskFormat (+080) Byte 0 = 400K
1 = 800K
2 = 720K
3 = 1440K (all other values are reserved)

formatByte (+081) Byte $12 = 400K
$22 = >400K Macintosh (DiskCopy uses this value
for all Apple II disks not 800K in size, and even for
some of those)
$24 = 800K Apple II disk

private (+082) Rev. Word Must be $0100. If this field is not $0100, the file
may be in a different format.

userData (+084) dataSize Bytes
The data blocks for the disk. These are in order from
block zero through the end of the disk.

tagData (+xxx) tagSize Bytes The tag data for this disk, starting with the tag data
for the first block and proceeding in order. This field
is not present for 720K and 1440K disks, but it is
present for all other formats even if all the data is
zeroes.

Further Reference
• GS/OS Reference

