
ProDOS 8
#9: Buffer Management Using BASIC.SYSTEM 1 of 2

Apple II
Technical Notes

Developer Technical Support
ProDOS 8
#9: Buffer Management Using BASIC.SYSTEM

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald October 1985

This Technical Note discusses methods for allocating buffers which will not be arbitrarily
deallocated in BASIC.SYSTEM.

Section A.2.1 of the ProDOS 8 Technical Reference Manual describes in detail how an
application may obtain a buffer from BASIC.SYSTEM for its own use. The buffer will be
respected by BASIC.SYSTEM, so if you choose to put a program or other executable code in
there, it will be safe.

However, BASIC.SYSTEM does not provide a way to selectively deallocate the buffers it has
allocated. Although it is quite easy to allocate space by calling GETBUFR ($BEF5) and also
quite easy to deallocate by calling FREEBUFR ($BEF8), it is not so easy to use FREEBUFR to
deallocate a particular buffer.

In fact, FREEBUFR always deallocates all buffers allocated by GETBUFR. This is fine for
transient applications, but a method is needed to protect a static code buffer from being
deallocated by FREEBUFR for a static application.

Location RSHIMEM ($BEFB) contains the high byte of the highest available memory location for
buffers, normally $96. FREEBUFR uses it to determine the beginning page of the highest (or
first) buffer. By lowering the value of RSHIMEM immediately after the first call to GETBUFR,
and before any call to FREEBUFR, we can fool FREEBUFR into not reclaiming all the space. So
although it is not possible to selectively deallocate buffers, it is still possible to reserve space that
FREEBUFR will not reclaim.

Physically, we place the code buffer between BASIC.SYSTEM and its buffers, in the space from
$99FF down.

After creating the protected static code buffer, we can call GETBUFR and FREEBUFR to
maintain temporary buffers as needed by our protected module. FREEBUFR will not reclaim the
protected buffer until after RSHIMEM is restored to its original value.

Apple II Technical Notes

2 of 2 Developer Technical Support

The following is a skeleton example which allocates a two-page buffer for a static code module,
protects it from FREEBUFR, then deprotects it and restores it to its original state.

START LDA #$02 ;get 2 pages
JSR GETBUFR
LDA RSHIMEM ;get current RSHIMEM
SEC ;ready for sub
SBC #$02 ;minus 2 pages
STA RSHIMEM ;save new val to fool FREEBUFR
JSR FREEBUFR ;CALL FREEBUFR to deallocate.

At this point, the value of RSHIMEM is the page number of the beginning of our protected buffer.
The static code may now use GETBUFR and FREEBUFR for transient file buffers without fear of
freeing its own space from RSHIMEM to $99FF.

To release the protected space, simply restore RSHIMEM to its original value and perform a JSR
FREEBUFR.

END LDA RSHIMEM ;get current val
CLC ;ready for ADD
ADC #2 ;give back 2 pages
STA RSHIMEM ;tell FREEBUFR about it
JSR FREEBUFR ;DO FREEBUFR
RTS

You can reserve any number of pages using this method, as long as the amount you reserve is
within available memory limits.

Further Reference
• ProDOS 8 Technical Reference Manual

