
ProDOS 8
#20: Mirrored Devices and SmartPort 1 of 2

Apple II
Technical Notes

Developer Technical Support
ProDOS 8
#20: Mirrored Devices and SmartPort

Revised by: Matt Deatherage November 1988
Written by: Matt Deatherage May 1988

This Technical Note describes how ProDOS 8 reacts when more than two SmartPort devices are
connected, how applications using direct device access should behave, and other related issues.
This Note supersedes Section 6.3.1 of the ProDOS 8 Technical Reference Manual.

Although SmartPort theoretically can handle up to 127 devices connected to a single interface (in
practice, electrical considerations curtail this considerably), ProDOS 8 can handle only two
devices per slot. This is because ProDOS uses bit 7 of its unit_number is used to distinguish
drives from each other, and a single bit cannot distinguish more than two devices.

When it boots, ProDOS checks each interface card (or firmware equivalent in the IIc or IIGS) for
the ProDOS block-device signature bytes ($Cn01 = $20, $Cn03 = $00, and $Cn05 = $03), so it
can install the appropriate device-driver address in the system global page. If the signature bytes
match, ProDOS then checks the SmartPort signature byte ($Cn07 = $00), and if that byte
matches and the interface is in slot 5 (or located at $C500 in the IIc or IIGS), ProDOS does a
SmartPort STATUS call to determine how many devices are connected to the interface. If only
one or two drives are connected to the interface, ProDOS installs its block-device entry point (the
contents of $CnFF added to $Cn00) in the device-driver vector table, which starts at $BF10. In
this particular instance, ProDOS would put the vector at $BF1A for slot 5, drive 1, and if two
drives were found, at $BF2A for slot 5, drive 2 .

If the interface is in slot 5 and more than two devices are connected, ProDOS copies the same
block-device entry point that it uses for slot 5, drives 1 and 2 in the device driver table entry for
slot 2, drive 1, and if four drives are connected, for slot 2, drive 2. Further in the boot process, if
ProDOS finds the interface of a block device in slot 2 (not possible on a IIc), it replaces the
vectors copied from slot 5 with the proper device-driver vectors for slot 2; this is the reason
mirroring is disabled if there is a ProDOS device in slot 2. Note that non-ProDOS devices (i.e,
serial cards and ports, etc.) do not have vectors installed in the ProDOS device-driver table, so
they do not interfere with mirroring.

When ProDOS makes an MLI call with the unit_number of a mirrored device, it sets up the
call to the device driver then goes through the vector in the device-driver table starting at $BF00.
When the block device driver (located on the interface card or in the firmware) gets this MLI
call, it checks the unit number which is stored at $43 and verifies if the slot number (bits four,
five, and six) is the same as that of the interface. If it is not, the ProDOS block device driver of

Apple II Technical Notes

2 of 2 Developer Technical Support

the interface realizes it is dealing with a mirrored device, internally adds three to the slot number
and two to the drive number, then processes it, returning the desired information or data to
ProDOS.

If an application must make direct device-driver calls (something which is not encouraged), it
should first check devlst (starting at $BF32) to verify that the unit_number is from an
active device. In addition, the application should mask off or ignore the low nibble of entries in
devlst and know that one less than the number of devices in the list is stored at $BF31
(devcnt). The application then should use the unit_number to get the proper device-driver
vector from the ProDOS global page; the application should not construct the vector itself,
because this vector would be invalid for a mirrored device.

The following code fragment correctly illustrates this technique. It is written in 6502 assembly
language and assumes the unit_number is in the accumulator.

devcnt equ $BF31
devlst equ $BF32
devadr equ $BF10
devget sta unitno ; store for later compare instruction

ldx devcnt ; get count-1 from $BF31
devloop lda devlst,x ; get entry in list

and #$F0 ; mask off low byte
devcomp cmp unitno ; compare to the unit_number we filled
in

beq goodnum ;
dex
bpl devloop ; loop again if still less than $80
bmi badunitno ; error: bad unit number

goodnum lda unitno ; get good copy of unit_number
lsr a ; divide it by 8
lsr a ; (not sixteen because devadr entries

are
lsr a ; two bytes wide)
tax
lda devadr,x ; low byte of device driver address
sta addr
lda devadr+1,x ; high byte of device driver address
sta addr+1
rts

addr dw 0 ; address will be filled in here by
goodnum
unitno dfb 0 ; unit number storage

Similarly, applications which construct firmware entry points from user input to “slot and drive”
questions will not work with mirrored devices. If an application wishes to issue firmware-
specific calls to a device, it should look at the high byte of the device-driver table entry for that
device to obtain the proper place to check firmware ID bytes. In the sample code above, the high
byte would be returned in addr+1. For devices mirrored to slot 2 from slot 5, this technique will
return $C5, and ID bytes would then be checked (since they should always be checked before
making device-specific calls) in the $C500 space. Applications ignoring this technique will
incorrectly check the $C200 space.

Further Reference
• ProDOS 8 Technical Reference Manual

November 1988

ProDOS 8
#20: Mirrored Devices and SmartPort 3 of 2

• ProDOS 8 Technical Note #21, Identifying ProDOS Devices

