HyperTalk” Beginner’s Guide

for the App[c Ics®



& Apple Computer, Inc.

This manual and the software described in it are copyrighted, with all rights
reserved. Under the copyright laws, this manual or the software may not be
copied, in whole or part, without written consent of Apple, except in the
normal use of the software or to make a backup copy of the software. The same
proprietary and copyright notices must be affixed to any permitted copies as
were affixed to the original. This exception does not allow copies to be made for
others, whether or not sold, but all of the material purchased (with all backup
copies) may be sold, given, or loaned to another person. Under the law, copying
includes translating into another language or format.

You may use the software on any computer owned by you, but extra copies

cannot be made for this purpose.

The Apple logo is a registered trademark of Apple Computer, Inc. Use of the
“keyboard” Apple logo (Option-Shift-K) for commercial purposes without rhb
prior written consent of Apple may constitute trademark infringement and
unfair competition in violation of federal and state laws.

© Apple Computer, Inc., 1990
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, HyperCard,
and HyperTalk are registered

trademarks of Apple Computer, Inc.

Adobe, Adobe Illustrator, and
PostScript are registered trademarks,
and Adobe Garamond, Adobe
[llustrator 88, and Adobe Separator
are trademarks, of Adobe Systems
Incorporated.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Linotronic is a registered trademark

of Linotype Co.

MacPaint is a registered trademark
of Claris Corporation.

NuBus is a trademark of Texas
[nstruments.

QMS is a registered trademark, and
ColorScripr is a trademark, of
QMS, Inc.

QuarkXPress is a registered
trademark of Quark, Inc. .

Simultaneously published in the
United States and Canada.

Mention of third-party products is
for informational purposes only and
constitutes neither an endorsement
nor a recommendation. Apple
assumes no responsibility with
regard to the performance or use of
these products.




Preface  About This Book vii

Chapter 1

What you need to know to use this book viii
How to use this book viii
Other sources of information x

Getting Started 1

What you will build 2

Starting up HyperCard 4

Setting your user level 4

Creating a practice stack 6

Working in the background 7

And now . . . a litde scripting 9
Creating a Home button 9
Adding a button to the Home stack 15

Message handlers 17

Visual effects 19

Putting information into your stack 23
Adding fields to the background 23
Typing in the fields 27
Adding more cards to the stack 29
Buttons for traveling 29
Creating Next and Previous buttons 29

iil

o |



Chapter 2

Chapter 3

Adding graphics 32
What you've done so far 34
Syntax summaries 35

Go 35

Visual 36

Fields and Other Containers 37

Putting values into containers 38

Putting values into the Message box 38
Fields as containers 40

Putting values into a field 40

Creating a pop-up field 44
Variables 49

Creating a Sort button 49
What you've done in this chapter 53
Syntax summaries 55

Answer 55

Hide 56

Put 57

Show 58

Sort 59

Scripts That Make Decisions 61

If structures 62
Creating a Quit button 63
Repeat structures 67
Creating an Index button 68
Properties and functions 77
Setting properties 77
Using functions 78
Going from an index entry to acard 80
What you've done in this chapter 84

Contents




Syntax summaries 86
Click 86
DoMenu 87
Find 87
If 88
Lock screen and unlock screen 89
Repeat 90
Set 91
Wait 92

Chapter4 Handling Messages 93

How messages travel 94
Creating a Sound button 96
Moving the handler to the card level 97
Moving the handler to the background level 100
Handlers calling handlers 101
Writing the “calling” handler 102
Writing the “called” handler 103
Intercepting a message 106
Calling handlers from the Message box 109
Handlers as building blocks 110
What you've done in this chapter 111
Syntax summaries 112
Play 112
Send 114

Chapter 5 More Scripting Ideas 115

Customizing your Collection stack 116
Presentation stacks 117

Creating main topics card 118

Creating cards about a topic 118
Animation 120

Animating a series of cards 120

Animating with Paint tools 122

Contents v

]



A stack for fun 126
Where to go from here 130
What you've done in this chapter 131
Syntax summaries 132
Choose 132
Drag 133
Show cards 133

Appendix HyperTalk Summary 135

Syntax statement notation 136
Commands 137

Functions 142

Keywords 147

System messages 148

Properties 149

Constants 152

Operator precedence 153

Script editor keyboard commands 154
Shorteuts for seeing scripts 155
Synonyms and abbreviations 155

Glossary 157
Index 165
Quick Reference Card

Tell Apple card

vi Contents




About This Book

Tﬂs book shows you how to start using HyperTalk®, the language
that’s built into HyperCard® I1Gs®. With HyperTalk, you can write
your own instructions, called seripts, for HyperCard to Carry out.
Writing scripts is called seripting

You can create, customize, and personalize HyperCard stacks
without learning how to write scripts; but scripting with HyperTalk
gives you even more control over your computer.

If writing scripts sounds a lot like programming to you, you're
right; however, you do not need any previous experience with

programming to write scripts. If you can read this paragraph, you
can write a script.

Vil




viii

What you need
to know to use
this book

How to use
this book

To get the most out of this book, you should already know the
basics of using an Apple” I1Gs computer; for instance, how to use
the mouse, menus, and icons on the screen. You should also know
how to find your way around in a HyperCard stack. If you have
gone through the first three or four chapters of Getting Started with
HyperCard 11Gs, you probably know enough to begin.

Specifically, you should know how to use buttons to get around in
stacks and how to use the HyperCard menus and tools. You should
have browsed through some stacks, looked through part of the
HyperCard 11Gs Help stack, and perhaps personalized a stack—for
example, you might have used the Address stack to store some
information.

If you already have experience with programming in another
language, you might want to go directly to the HyperCard 11GS
Script Language Guide, published by Addison-Wesley Publishing Co.

This book is intended to help you get started and let you get a feel
for scripting on your own. You won't find long, technical
explanations of HyperTalk concepts here; but you will be able to see
clearly how specific scripts work.

Most chapters in this book include exercises made up of numbered
steps. Each step consists of a short instruction in boldface type and
then (usually) further explanation in plain type. Depending on your
level of expertise with HyperCard, you may find that you can sav
time in some of the exercises by reading just the boldface steps. O
course you can stop and read the more-detailed explanations in
plain type whenever you need to.

Preface: About This Book




Each chapter builds on what you've done in previous chaprers, so
L

it’s important that you start at Chapter 1 and work through the
book in order.

= In Chapter 1, “Getting Started,” you’ll create a practice stack,
which you'll use for scripting throughout this book. You'll make
some buttons for the stack and complete their scripts.

s In (:h;lptt'r 2, “Fields and Other Containers,” you'll write some
simple scripts that explore the way HyperCard stores and
retrieves information.

= In Chaprer 3, “Scripts That Make Decisions,” you'll write some
more powerful scripts.

s In Chapter 4, “Handling Messages,” you'll explore how buttons
and other objects receive and send messages.

» In Chapter 5, “More Scripting Ideas,” you'll look at other ways
you can use scripts in stacks. You'll see how to create animation,
a presentation stack, and a stack just for fun.

= The Appendix, “HyperTalk Summary,” contains a complete list
of HyperTalk commands, functions, and other elements.

You'll also find a glossary of terms, an index, and a quick reference
card, which you can remove from this book and keep handy while
you work on your scripts.

At the end of the book is a Tell Apple card. By answering the
questions and mailing the card to Apple, you help us improve our
products and documentation. Fill the card out after you've worked
with this book.

Preface: About This Book IN



Other sources Of  Because this book is intended s an introduction to scripting for

information beginners, it is not comprehensive. HyperTalk comprises many
commands, functions, keywords, and other elements that are not
explained in this book. The HyperCard package includes the

following reference materials:

HyperTalk Help: A stack that provides easy access to information

é’ % about HyperTalk. You will find this stack

indispensable as you begin to learn scripting,

HyperCard 1IGs Help: A stack that answers your questions about

é, ﬁ HyperCard’s menus and tools.

HyperCard 11Gs Reference: A book that contains reference
information about all aspects of HyperCard other
than scripting,

You may also want to consult the following books, which were
written at Apple and are published by Addison-Wesley as part of the
Apple Technical Library:

HyperCard Stack Design Guidelines: A book that provides
information about how to design and build stacks. Its focus is the
look and behavior of stacks (for example, navigation methods and
card layouts) rather than the mechanics of scripts.

HyperCard 11Gs Script Language Guide: A book that provides .
detailed reference information about scripts and HyperTalk. This
book is for people with some programming or scripting experience.

Several other books have been written about HyperTalk. Check
with your favorite bookseller to see what titles are currently
available.

Preface: About This Book




Chapter 1

Getting Started

Have you ever wished your computer could do things your way?
Most application programs are designed to perform one type of
task, like word processing or creating graphics. But what about all
the things you do that don't fit neatly into other people’s categories?

HyperCard® I1Gs® lets you create your own ways of doing

things on your computer. If you have read Gerting Started with
HyperCard 11Gs, you already know how to work with HyperCard
tools such as the Button and Field tools. This guide introduces you
to scripting—writing sets of instructions called scripts that give you
even more control over the way HyperCard stacks work.



What you will build

HyperCard scripts are written in the HyperTalk® language, which is
similar to English in many ways. HyperTalk uses common words
such as go, put, and it in much the same way that people use these
words in everyday life. In this book you'll learn how to combine
these words with other words to form instructions that HyperCard
can understand. As you work through the book, you'll build your
vocabulary of HyperTalk words. You'll also learn how to write
larger, more powerful sets of instructions.

You do not need any prior experience with computer languages to
use this book. You should, however, know how to get around in
HyperCard stacks, and how to use some of the tools described in

Getting Started with HyperCard 116s.

In this book you'll learn scripting by building a practice stack from
scratch and writing scripts for it. If you work through Chaprers 1-4
in order, you'll end up with a stack you can use to catalog a collection
of record albums, cassettes, or compact disks. (Figure 1-1 shows a
sample card from a completed version of the practice stack.)

i ' i\
il Ihnut this stock
| L ke g [ |

Figure 1-1  Sample card from the practice stack

Chapter 1: Getting Started




If you don't feel like cataloging a collection of recordings, don't
worry. In Chapter 5 you'll learn how to modify the practice stack
for other purposes. You can modify it to keep track of books,
baseball cards, computer software, your favorite restaurants, the
inventory for a business, or anything else you might want to catalog,

Here are some examples:

i ine

Istors T-’.: L i
freat food, but the service is i R
terrible! P Ve
e sre i et 4@ 2D
[ year+make ooy’ ]
| 1068 Shelby Tlm s‘
model (lassic Cars
ri:nbrq il ] Y
asking price T
[s35.00 | { U
notes

Original aronge point. Lowmiles, i
ready ta drive or show

[
Bboun. is stock | [ it _]

Figure 1-2  Some variations on the practice stack

As you build the practice stack, you'll learn basic scripting concepts
and techniques. By the time you're finished with this book, you'll
know enough to create stacks for your own purposes.

Each chapter in this book builds on material you've completed in
previous chapters, so you should go through the chapters in order.
In this chapter you'll create the practice stack and write some simple
scripts to control the actions of buttons.

Chapter 1: Getting Started 3



Stafting UP  This book is meant to be used with HyperCard “up and running”

HyperC

ard  on your Apple HGs® computer. You'll need to perform che steps

as directed in the sections that follow to get the most out of the
material.

First, start up HyperCard as you normally would. (The HyperCard

11Gs Reference includes instructions if you need them.) If you already
have HyperCard running, go to the Home stack. You're ready to go
on when you see the first card of the Home stack on your screen.

S e

0 BT
A 1111

]

1’ Hom Stack / Welcome o Kevin

HyperCardI1GS |

& |
Help Picture Puzzler .

Tour Story Board

Copyright @ 1990 Apple Computer, Inc. ¥

IO [ veskser ][ Tooikir ][ Auic [ Bosement ]

e et e S e R v AT e neeneenr s A

Figure 1-3  The first card of the Home stack

Seulﬂg YOUI' To work with scripts, your user level must be set to Scripting. Start
user level from the first card of the Home stack and set your user level as

described in the following steps:
1. Click the User Preferences button.

The User Preferences card appears.

Chapter 1: Getting Started




2. Click the Scripting button on the User Preferences card.

For now, leave the check box options Blind Typing, Power Keys,
and Text Arrows unchecked. (For more information abour these

options, refer to the HyperCard 11GS Reference.)

Figure 1-4 shows the User Preferences card with Scripting
selected.

i % ?4.”332 R i3 o ey o

| Home Stack / User Preferences ; ;

; Search Paths
Return

5. Edit the scripts of buttons, fields, ; : i
cards, backgrounds, and stacks. [ 8lind Tuping

Scripting

: : Y, Create buttons ond fields. Link
: hulhonng | buttons to cords and stocks.

o 3. Use the Point tools to change the = R
Painting || ™ gppearance of cards and backarounds. L1 Power Keus
Tﬂ)lﬂg 2. iflis:lfi:?tks_ Enter ond edit text in ] Text Rrrows .

. 1. For clicking only. Youmay explore '
BNWIIHE _stocks but not change them.

Figure 1-4  The User Preferences card of the Home stack

When you set the user level to Authoring or Scripting, a new
menu title, Objects, appears in the menu bar. Commands in chis
menu allow you to get information about and change properties
of HyperCard objects—buttons, fields, cards, backgrounds, and
stacks. (You'll learn more about objects later on.) The user level
must be set to Scripting before you can look at, write, or change
these objects’ scripts.

Chapter 1: Getting Started



Cl'e?.lr.lﬂg d  Now that you've set the user level to Scripting, the next task is
pt‘aCtiC(f stack to create the stack that you'll work with throughout this book. You
can make a new stack at any time from anywhere in HyperCard;
you don't have to go back to the Home card. Just follow these steps:

1. Choose New Stack from the File menu.
A dialog box appears in which you can name the stack.
2. Type the name collection for your stack:

If you make an error while typing the name, use the Delete key
to erase it and retype. The dialog box should look similar to this:

@® :Hord.Disk:
17424 free of 32767 K. (mj .
[ tiome ] (New Folder )
3 HyperCard
T
Hew Stock Nome: (&3
[Collection] | Tancel )
[ Copy Current Background

Figure 1-5 The New Stack dialog box

From now on your practice stack will be referred to as the
Collection stack.

Chapter 1: Getting Started




Working in the
background

3. When you're ready, click Create (or press Return).

You should see a completely blank card on your screen with the
menu bar at the top. This card is the first—and right now the
only—card of your Collection stack.

When you create a new stack, you automatically get three things:
the stack itself, a background, and the first card. If you selected the
Copy Current Background option, you would also get the
background pictures, fields, or buttons of the card you were on
when you chose the New Stack command. Otherwise, as in this
case, you have a blank card to work witch.

You can think of the background in HyperCard as a kind of
“holding area” for general elements. If a picture, a field, or a button
is in the background, it appears on every card that shares that
background. If you put a button in the background, for example,
you will have that button constantly available throughout a number
of cards—you don't need to re-create it on every card. So far the
Collection stack has only one background, so all the cards you
create will share that background.

In the rest of this chapter you’ll add buttons and fields to the
background of the Collection stack.

Chapter 1: Getting Started



Before you go on,
= Choose Background from the Edit menu.

The word Background appears in the menu bar, indicating that
you're working in the background:

r & File [T 6o Tools Objects Backgraund E ”1;& iﬂ{.[i{'LlIﬁ_'S
- ¥ | vou're working in
fut & the buckground.
Capp at
Paste av
Clew
New Card AN
Delete Cord
Cut Cord

Copy Card .

Text Style.. al
#Backaground . OB

Figure 1-6  Working in the background

You can also work in the background by pressing “-B. (The -
key is called the Command key and is to the left of the Space bar
on the keyboard.) Keyboard shortcuts like ™ -B can save you a
lot of time when you’re creating a stack. You'll have many
opportunities to practice HyperCard’s most useful keyboard
shorteuts as you work through this book.

Chapter 1: Getting Started




And now . ..
a little scripting

Creating a Home button

)
2 F
&S| 7
] o] [
IO [0
AT

The Button tool

In this section you will create a button and write a script for it. You
may already know how to copy and paste buttons with prewritten
scripts. In this book you’ll complete the scripts yourself.

Whenever you see a small picture of a house in HyperCard, you can
be pretty sure that clicking it will take you to the Home card. In
this section you'll add a Home button to your stack and complete
ItS SCIIpE.

First you'll create the button. You may already know how to create
buttons by choosing New Button from the Objects menu. In

this book you'll use a keyboard shortcut to create buttons. Follow
these steps:

1. Make sure you're working in the background.

You should see the word Background in the menu bar. If you
don't see Background, press  -B.

2. Choose the Button tool from the Tools menu.

The pointing hand (Browse tool) on the screen changes to an
arrow pointer.

[f you prefer to work with a palette, you can turn the Tools
menu into a palette by dragging past its bottom edge to “rear”
it off the menu bar.

3. With the pointer anywhere on the card, hold down
the " key.

The arrow pointer changes to a crosshair.

Chapter 1: Getting Started



4. While holding down the (" key, press the mouse button and
drag to create a small button about half an inch square.

Release the mouse button and the * key when the button is
approximately the correct size. The new button is automatically
selected—you can tell by the moving dashed line around its
edges. (This effect is sometimes called “marchin g ants.”) While
it’s selected, you can stretch or shrink the button by dragging

a corner.

5. Move the button to the lower-right corner of the background.

"To move the button, position the pointer near the center of the
button and drag,

Because the button is in the backeround, it will appear in this
pp
position on every card in the stack, so you can always go Home.

6. Double-click the button to see its Button Info dialog box.

Or choose Button Info from the Objects menu.

Button Nome: [| ]
Bkand button number:1  Bkgnd button ID: 1
[ Show Nome Style: [ tronsporent !i Pop-up menu for setting

[CJAuto Hilite a button's style

Fomily: | 0 (none) |
[ Share Hilite e

|1.jnlt Tu..,l | Font... | .
|5criut...l Colors... [ 0K ‘_n [Eunul}

Figure 1-7 A Button Info dialog box

Chapter 1: Getting Started




i 48 om

Some house icons

11.

HyperCard buttons have a variety of styles and features from
which to choose. You customize a button’s appearance and
actions through the Button Info dialog box.

A vertical bar marks the insertion point in the Burton Name
box, ready for you to type a name.

Type Home to name the button (but don’t press Return).

If you press Return prematurely, don’t worry; just double-click

the button again to get back to the Button Info dialog box.
Click the Auto Hilite check box to select it.

The Auto Hilite option causes the button to briefly change colo

when it’s clicked.

. Click the Icon button.

Another dialog box appears in which you can select an icon for
the button.

Choose one of the house icons.

Scroll through the window until you find the house icons and
click the one you want.

Click OK to close the list of icons.
You see the Button Info dialog box again.

Next you'll write a script for this button.

Chapter 1: Getting Started

r



Writing the script

You create and change scripts in a dialog box called the scripz editor.

To see the script for the new Home button, make sure the Button
tool is selected, and follow these steps:

1. Click the Script button in the Button Info dialog box.

The script editor for the Home button appears.

Seript of Bkgnd button [D 1 = "Home"

| i
]

(_Find ) ( Print ) ( 0K ) (Cancel)

Figure 1-8  The script editor

Notice that the text at the top of the script editor identifies this
script as “Script of Bkgnd button ID 1 = “Home™"—your new
button. Nortice also the vertical bar cursor.

The next step is to type the statements that define the
button’s action.

2 Type on mouseUp and press Return.

Be sure to type mousetp as one word. If you make a
mistake, use the Delete key to erase it and finish typing the
script correctly.

Chapter 1: Getting Started




3.
4.

Type go to stack "Home" and press Return,
Type end mouseup and press Return.

These three lines make up the complete script for the Home
button.

on mouseUp
go to stack "Home"

end mouselUp

The script editor automatically indents lines within scripts. This
indenting helps you check your scripts. on and ena should
always line up at the leftmost edge of the script editor when
you're finished typing a script; if they don't line up, press the Tab
key to check the script’s formatting, If they still don’t line up,
you may have left out something important; check the script
again.

By the way: It doesn't matter how you capitalize Hyper Talk
words. Words that are formed from two words (such as

mousetp) are usually typed in small letters with a capiral in the
middle likeThis to make them more readable. «

To save your script and leave the script editor:

5.

Click OK.

The script editor disappears, and you're looking at the
Collection stack with your new button.

By clicking OK (or pressing the Enter key), you save any
changes you made to the script and return to the stack you're
working on. If you click Cancel, you close the script editor
without saving changes.

Chapter 1: Getting Started 13



Do
SOOGS0
PR O] =]

The Browse ool

Trying out the Home button
Now see if the Home button works as it’s supposed to.
1. Choose the Browse tool from the Tools menu.

2. Click the Home button.

The Home stack appears. Welcome Home!

[f something else appears, such as a dialog box saying “Can't
understand,” you may have made a typing mistake. Switch to the
Button tool, double-click the Home button, and click Script in the
Button Info box to check the script. Make sure everything is
correct, then click OK and try out the Home button again.

How the script works

As you mighr guess, the script you wrote describes whart should
happen when someone clicks the Home button.

Whenever you move the mouse, your Apple IIGS computer and
HyperCard software track the movement electronically. You see the
movement as a change in the position of the pointer on the screen.
When you press and release the mouse button, the mouse sends an
electrical signal to the computer, much the way a light switch works
when you turn it on or off. The same thing is true when you press
different keys on the keyboard. The HyperCard software interprets
these signals from the system and translates them into HyperTalk
system messages.

MouseUp is a system message that means the mouse button has been
released; an on-screen HyperCard button receives this message
when someone clicks it (that is, positions the Browse tool on it and
then presses and releases the mouse burtton).

Whether something happens when the on-screen button receives
the mouseup message depends on whether the burton’s script ‘
contains any instructions for that message.

Chapter 1: Getting Started

e



Adding a button to the
Home stack

The first line of your script, en mouseup, signals HyperCard that
instructions for the mouseup message exist. The next line, go to

stack "Home", tells HyperCard to go to the Home stack.

The word go is a HyperTalk command; it means what you might
expect. Go must be followed by a destination—a description of a
stack or a card. In this case, you used the name of the stack rorme.

Each line in a script is called a HyperCard statement. In a more-
complicated script, the instructions signalled by mouseup could
consist of many statements. The last line of your script, end
mouseUp, indicates the end of the instructions for the mouseup
message.

Translated into English, the instructions in your script say:

“When someone clicks this button, go to the Home stack. That’s all.”

Wouldn't it be convenient to have a button in the Home stack that
would take you directly to your collection stack? In this section
you'll create one.

Make sure you're looking at the Home stack and follow
these steps:

1. Choose the Button tool.
2. While holding down the (" key, drag to create a new button.

Make the button about an inch wide and a half-inch high. Move
it to any open space on the card.

3. Double-click the button to see its Info box.

4. Name the button collection

Chapter 1: Getting Started 15



16

&

Stack icon

Writing the script

Click Show Name and Auto Hilite to select them.

When Show Name is selected, the button’s name appears inside
the button.

Click Icon.
The list of icons appears.

Choose the stack icon.

. Click OK to close the list of icons.

The Button Info dialog box appears again.

Now you’re ready to write the script.

L
2,

Click the Script button to see the script editor.

Type the following script (pressing Return at the end of
each line):

on mouseUp
go to stack "Collection"
end mouseUp

. Click OK.

The Home stack appears with the Collection button in place.
Try out the new button by clicking it with the Browse tool.
If your Collection stack appears, congratulations!

If something else happened: You may have misspelled a word or
left out a space in the button’s script. If you got a directory dialog
box asking where the stack is, you may have typed the stack’s

name incorrectly. <

Chapter 1: Getting Started




Message handlers

The words go to stack "collection" tell HyperCard to go to the
Collection stack. HyperTalk is a flexible language; any of these
statements would also have worked in the button’s script:

go "Collection"
go to "Collection"

go to card 1 of stack "Collection™

You may already know that buttons, fields, backgrounds, cards, and
stacks are HyperCard elements known as objects. An object can send
and receive messages. (For example, when you click a button, the
button receives a mouseup message.) As you've seen, when an object
receives a message, it can act on the message according to
instructions in the object’s script. More specifically, the object acts
according to instructions in the message handler.

A message handler is a set of instructions to be carried out when a
particular object receives a particular message. It’s called a handler
because it “handles” the message. Handlers always begin with the
word on and end with the word end, and both words are followed
by the name of whatever message the handler deals with—for
example, on mousevp. Each of the scripts you have written so far
contain only one message handler, but an object’s script can contain
a number of handlers, each one handling a different message. The
word script therefore refers to all the handlers for a given object.

Chapter 1: Getting Started 17



In some ways writing a script for a HyperCard object is like training
a dog (see Figure 1-9). The dog is like a HyperCard object, and a
spoken command is like a message. Each of the dog’s tricks—the
response of a particular dog to a particular command—is like a
message handler. And the sum rtotal of all the dog’s tricks represents
the “script” for the dog. When the dog receives a message (for
example, “fetch”), the dog searches through its script for the
appropriate handler and then acts according to the instructions in

that handler.

on sit 4 sceript
sit down
wag my tail
end sit

on fetch { .
get the stick - Message
i
§

bring it back j )
end fgcgh handler
{
on shakeHands ]
raise my paw
end shakeHands

=

Figure 1-9  Message handlers: an analogy

<+ By the way: The words on and end belong to a special group of
HyperTalk words known as keywords. Keywords are used to

control which statements are executed in a script. %

Chapter 1: Getting Started




Visual effects  visual effects can make the movement from one card o another
more obvious and interesting. In this section you'll learn how to
write scripts to display visual effects.

Adding a visual effect to the Home button

First modify the script for the Home button.

1,
2.
3

Choose the Button tool.

Double-click the Home button to see its Info dialog box.
Click Script.

The script editor appears showing the button’s script.

By the way: Even though you had to switch to the background
when you created this button, you do not have to switch to the
background to change its script. #

Click before the word go to set the insertion point at the
beginning of the second line.

g Type visual effect barn door close and press Return.

The script should now look like this:

on mouselp
visual effect barn door close
go to stack "Home"

end mouselp

Click OK.
Choose the Browse tool and click the Home button.

The first card of the Home stack gradually appears on the
screen, closing in from the edges of the screen.

Chapter 1: Getting Started 19



20

Adding a visual cffect to the Collection button

Now you'll modify the script for the Collection button that you
added to the Home stack. You'll use a shortcut for seeing a button’s
script.

1. With the Browse tool chosen, hold down the (3 and Option
keys.

Pressing these two keys lets you see the outlines of all buttons on
the card.

2. While holding down s and Option, click the Collection

button.

The script editor appears showing the button’s script. (Release
the keys after the script editor appears.)

The (3-Option-click shortcut allows you to go directly o a
button’s script without switching to the Button tool first—a
handy feature when you're doing a lot of scripting.

3. Click before the word go to set the insertion point at the
beginning of the second line.

4, Type visual effect barn door open and press Return.
The Collection button’s script should now look like this:
on mouselUp

visual effect barn door open
go to stack "Collection"

end mouseUp .

5. Click OK.
6. Try out the Collection button.

The first card of your Collection stack appears to open from the
center of the screen.

Chapter 1: Getting Started




The syntax of the visual command

All languages—for people and computers—have rules of synzax.
Syntax is a description of the way in which words are combined to
form meaningful statements. For example, in English the statement
“Go to the store” makes sense because it follows the rules of English
syntax. However, the statement “The go store to” doesn't make
sense because it doesn't use proper syntax.

HyperTalk syntax is much like English syntax, which makes
HyperTalk an easy language to use. It’s not always true, however,
that a statement that makes sense in English will make sense in
HyperTalk. For example, HyperCard cannot understand the

command
visual effect slowly dissolve

because the words are in the wrong order. (The correct order is
visual effect dissolve slowly.) If}fOLl wrote l'his command.

you would see a “Can’t understand” dialog box like this:

Con't understand arguments of commond

visual.
[ Script ] [Euunel ]

Figure 1-10 A “Can't understand” dialog box

Clicking Script in a “Can’t understand” dialog box opens the script
editor and places the insertion point in the statement HyperCard
can't understand. You can then correct any errors in syntax or
spelling and try your script again.

Chapter 1: Getting Started 21



The syntax of a HyperTalk statement describes the general,
underlying structure that a statement must follow. In order for
HyperCard to understand a statement, it must contain the correct
elements in the correct order. Certain conventions are used to show
the syntax of HyperTalk statements. For example, here’s the syntax
of the visual command:

visual [effect] effectName [speed) [to image ]

Syntax elements in this kind of type are typed exactly as they
appear.

Elements in italic are placeholders. In an actual statement, you
would replace effect:Name with the name of an actual visual effect,
such as barn door close. .

Syntax elements enclosed in brackets [ ) are optional. (You don't
include the brackets in an actual command.) In the visual
command, the elements [effect], [speed],and [to image )
are optional.

Knowing a command’s syntax is as important as knowing what it
does. But don’t worry—you don't have to memorize syntax. A
reference section, “Syntax Summaries,” appears at the end of each
chapter in this book, describing the syntax of the commands you've
learned. The Appendix and HyperTalk Quick Reference card list
the syntax of every HyperTalk command. The HyperTalk IIGs

Help stack and the HyperCard I11GS Script Language Guide describe
the syntax of every command in detail. .

Chapter 1: Getting Started




P Ut[iﬂg information  so far the Collection stack consists of a single card with a Home
into your stack  button. In this section you'll add fields to the background of

e stack, type some text into the fields, and add some cards to
the stack.

Adding fields to the  First you'll add four fields to the background. When you’re
background  finished, the background will look similar to this:

Category field

-
Artist ﬁt]d____(._ |
. Title field — I

Notes field

<

Gk

Figure 1-11  Background fields for the Collection stack.

Because you'll place these fields in the background, they will appear
on every card in your stack. However, the text contained in the
fields can be different on every card.

Creating the Category field

You can always get a new field by choosing New Field from the
Objects menu. In this book you’ll use a keyboard shortcut to make
fields.

Follow these steps:
1. Press "-B to work in the background.

The word Background appears in the menu bar.

Chapter 1: Getting Started 23



[IIINIIN 2. Choose the Field tool.

m=E The pointing hand (Browse tool) on the screen changes to an
;5 7|7 arrow pointer.

"B[OJ|D| 3. With the pointer anywhere on the card, hold down the " key.
HIOIC The arrow pointer changes to a crosshair.

_ 4. While holding down the % key, press the mouse button
The Field tool and drag to create a new field one line high and about three

inches wide.

This method for creating a field is similar to the method you
used to create your Home button. Release the mouse button and
the (7 key when the field is the size you want. The new field is &
automatically selected, as indicated by the “marching ants”
around it. While it’s selected, you can stretch or shrink the field
by dragging a corner.

5. Move the field to the top of the background (as shown in
Figure 1-11).

To move the field, position the pointer near the center of the
field and drag. Because the field is in the background, it will

appear in this position on every card in the stack.
6. Double-click the field to see the Field Info dialog box.
Or choose Field Info from the Objects menu.

HyperCard fields have a variety of styles and features from n,
which to choose. You customize a field’s appearance and actio

through the Field Info dialog box.

A vertical bar marks the insertion point in the Field Name box,
ready for you to type a name.

Chapter 1: Getting Started




Field Nome: || |
Bkgnd field number: 1 Bkand field ID: 1

[CJLock Text Style: Pop-up menu for choosing
I Auto Tab a field's style

CJ0on't Search ] Show Lines

[I5hared Text [IwWide Margins

iScriptu.I Itulnrs.,.l ' 0K 'ltuncell

Figure 1-12  The Field Info dialog box.

7. Type category to name the field (but don’t press Return).

8. Choose “rectangle” from the pop-up menu to set the field’s
style.
9. If you'd like, choose a font for the field.

Click the Font button to display the Text Style dialog box. Then

choose a font and size. (Choose a font that’s easy to read, such as
Shaston 8.) When you've selected a font, click OK to return to
the Button Info dialog box.

10. If you'd like, choose colors for the field.

Click the Colors button to display the Field Color dialog box.
Then choose a color for the frame of the field and the text inside
the field. When you've selected the colors you want, click OK to
return to the Field Info dialog box.

11. Click OK to close the Field Info dialog box.

~J
R |

Chapter 1: Getting Started



Creating the Artist, Title, and Notes fields

Now you need to add three more fields to the background. This
time you'll use a shortcut to create each field. Make sure you're still
in the background and that the Field tool is still selected, then
follow these steps:

1. While holding down the Option and Shift keys, position the
pointer near the center of the Category field and drag down.

You should see an exact duplicate of the Category field move
down the screen, leaving the original Category field in place.
Dragging the field while you hold down the Option key creates
an exact duplicate of the field. Dragging the field while you hold
down the Shift key restricts your movement of the field to
straight up and down or straight left and right. Dragging the .
field while you hold down both keys produces both eftects
simultaneously. (Both of these shortcuts also work for burtons.)

Now all you need to do is change the name, and you'll have a
new field with the same size and other characteristics as the

Category field.

2. Double-click the new field to see its Field Info dialog box, and
name the field artist

Except for its name, number, and ID, the Artist field will have all
the same characteristics as the Category field.

3. Using the same shortcut, Option-Shift-drag the Artist field to
create a third background field, and name it Title &

4. Option-Shift-drag the Tide field to create a fourth background

field, and name it notes

In addition to changing the name of this field, you should
change the fields style to “scrolling.” After you rename the field,
enlarge it by dragging a corner, until it’s a few inches high, as
shown in Figure 1-11.

26 Chapter 1: Getting Started



Typing in the fields

Now that you've created all the fields for your stack, you're ready to

type some text into them. Figure 1-13 shows some examples of
cards with text typed in the fields. For your own stack, type in
information about your own records, tapes, or compact disks.

[Boghts |
Best of Bach |

(Mogiseers
[soundbdvice |

[ country |
[[hna aren ]
| Suddest Hits |
r ]

5

Figure 1-13  Sample record cards

Chapter 1: Getting Started

27



To type text into the fields, follow these steps:

1.

Choose the Browse tool.

Choosing the Browse tool automatically takes you out of the
background. In this case, it takes you to the first and only card in
the stack.

Click inside the Category field and type the category of music
to which the recording belongs.

Type “Rock,” “Jazz,” “Classical,” “Country,” or any other

category you want to use. Don't press Return.

Press the Tab key.

The insertion point moves to the next field you created—in Ll'l.l’
case, the Artist field.

Type the name of the artist featured on the recording.

Type the name as you would like it to be sorted alphabetically.

For example, if you want your cards to be sorted by the artist’s

last name, you should enter “Johann Sebastian Bach” as “Bach,
Johann Sebastian.”

. Press the Tab key to move to the Title field and type the title of

the recording.

. If you'd like, press the Tab key to move to the Notes field and

type the names of songs or any other information you want to

keep about the recording. &

Chapter 1: Getting Started




Adding more cards
to the stack

Buttons for traveling

Creating Next and
Previous buttons

Now add at least two more cards to the stack. Follow these steps:

[

. Select New Card from the Edit menu.

Or press (3-N. A new card appears on the screen.

If a field disappears when you create a new card: You may have
placed the field in the card layer rather than the background
layer. To move a field from the card layer to the background, go
back to the card where you last saw the field; then click the field
with the Field tool to select it. Press (3-X to cut the field, press
(t-B to go to the background, and press (5-V to paste the field in
the background. (You'll also have to return to the card layer and
retype the contents of the field.) <

Type information about another recording into the fields on
the new card.

Repeat these steps to add as many cards as you want to your stack.

Now that your stack contains several cards you'll create two buttons
that allow you to move forward and backward between cards.

"To make the buttons, use the same steps you followed when you
made the Home button:

1;

Press (-B to work in the background.
The word Background appears in the menu bar.

2. Choose the Button tool.

Chapter 1: Getting Started 29



30

o

A right
AITOW icon

3. While holding down the ' * key, drag to create two new
transparent buttons.

Make each new burtton abourt the same size as the Home button.

4. Position the two new buttons side-by-side, near the Home
button.

Drag each button by its center to move it.

Customizing the button on the right

Make the button on the right into a Next button:

1. With the Button tool still selected, double-click the button on
the right. .
The Button Info dialog box appears.

2. Name the button next.

3. Click the Icon button to see the available icons.

4. Choose any icon that points to the right.

Click the icon you want.

5. Click OK to close the list of icons.

You see the Button Info dialog box again.

You want the Next button (the button on the right) to take you to
the next card in the stack. Put your instructions into the button’s .
SCTIpt NOW.

6. Click the Script button to see the script editor.

Chapter 1: Getting Started




Type the following script (pressing Return at the end of
each line).

on mouselp
visual effect scroll left
go to next card

end mouseUp

Click OK.

The script editor disappears. You should see the icon you chose
on the burtton.

Now try out the Next button to see how it works.

9. Choose the Browse tool and click the Next button.

Each time you click the button you go to the next card in

the stack.

You can use the Next button to move forward through the cards in
the Collection stack. Cards in a stack are arranged in a circle, so the
first card is the next one after the last card.

Customizing the button on the left

Make the button on the left a Previous button:

L.

Chapter 1: Getting Started

Choose the Button tool and double-click the button on
the left.

The Button Info dialog box appears.
Name the button previous

Click the Icon button to see the available icons.

. Choose an icon that points to the left.

It’s best to use the same kind of arrow that you chose for the first
button, but pointing the opposite way.

3l



32

Adding graphics

5. Click OK to close the list of icons.
The Button Info dialog box appears again.
Now you'll write a script for the Previous button.

6. Click Script to open the script editor and type the following
script:
on mouselp
visual effect scroll right

go to previous card
end mouseUp

7. Click OK.

The script editor disappears. You should see the icon you chose
on the button. &

8. Try out the Previous button.

Choose the Browse tool and click the Previous button. Each time
you click the button you go to the previous card in the stack.

Moving to adjacent cards isn't the only possibility, of course; you
can create other buttons to take you to any card of any stack you
want by specifying in a script where you want to go.

If you'd like to give your stack a distinctive look, you can take some
time now to design graphics for the background. Well-designed
graphics can make your stack easier to use, as well as more appt‘alinp
visually.

You can create graphics by using the Paint tools, or you can copy
clip art from the Art Ideas stack. You may also want to change the
fonts in the background fields or the position of the fields and
buttons. You'll be adding more buttons to the background later, so
be sure to leave space for them.

Chapter 1: Getting Started




The Paint tools _|

o|E
25| &

=V
i) [ ] [
dh|O|o2
AlD|Z

IO (For instructions on how to use paint tools, see the HyperCard 11G5

Reference. For tips on how to design stacks, see HyperCard Stack
Design Guidelines, published by Addison-Wesley.)

You can leave your stack as it is, copy one of the designs suggested
in Figure 1-14, or have fun creating a design of your own. When
you're satisfied with the way your stack looks, you can move on to
Chapter 2.

B 1. 81ueprint for Trouble 410
Z,Toulluireut 215
Family 3:30 5

d W BUsEe

UL L e PR

4l 1 Elueurmtiur
il Trouble 41
| I;tn]lu Great

i 3 ‘a".h“" s Fomily

Figure 1-14  Some possible designs

Chapter 1: Getting Started

33



34

o ? .
What YOU V€  In this chapter you've created a stack in which you can practice
scripting in the rest of this book. You've created fields and added
cards to the stack. You've also created some buttons and written

done so far

their scripts.

Here’s a list of the HyperTalk words you have learned:

Keywords

on

end

System Messages

mouselp

Commands

qo

visual [effect]

Chapter 1: Getting Started

This word signals the beginning of a set of
instructions. It must be followed by the name
of a message, SUCh 45 mouseUp.

This word signals the end of a set of
instructions. It must be followed by the n

of a message, such as mouseup. All HyperTalk
message handlers conclude with an end
statement,

When you click something, such as a button
on the screen, the system sends mouseup
when the mouse button is released. (If the
pointer is moved off the screen button before
the mouse burtton is released, mouseup is

not sent.)

This command is used to move from one
card to another, within a stack or between
stacks.

Causes the visual effects you specify. A
visual command must eventually be
followed by a go command.




Syntax summaries

Go

The following reference section describes the basic structure of the
two HyperTalk commands you've learned so far.

The g0 command takes you to the specified card or stack. If you
name a stack without specifying a card, you go to the first card in
the stack. If you don't name a stack, you go to the specified card in
the current stack. You can specify a visual effect to be used on
opening the card by using the visual command before you use the
g0 command.

Syntax

go [to] stack
go [to) background (of stack ]
go [to) card [of background] [of stack

The words stack, background, and card are placeholders. You would

replace them with a word or phrase that describes a stack, a

background, or a card.
Examples
go "Home"

go to first card
go to card 3 of background 2 of "Presentation"

Chapter 1: Getting Started 35



36

Visual

The visual command lets you display visual effects while going

from one image to another. The visual
be followed by a go command.

command must eventually

Syntax

visual [effect] effectName (speed) [to image )
EffectName is one of the following:

barn door close scroll up
barn door open venetian blinds
checkerboard wipe down
dissolve wipe left
fade wipe right
iris close wipe up

iris open zoom close .
plain zoom 1in
scroll down Zoom open
scroll left Zoom out
scroll right

Speed is one of the following;

fast very fast
slow([ly] very slow[ly]
Image is one of the following:

black gray

card inverse

color number white

Note: number is a number between 1 and 16, representing one of .

the colors in the color palette.
Examples

visual effect barn door open
visual dissolve slowly to white

Chapter 1: Getting Started




Chapter 2

Fields and Other Containers

In everyday life a container is something you can put things into.
In HyperTalk a containeris a place in the computer’s memory
where you can put a value such as a number or some text. You can
put values into containers; you can also get values out of containers
to use elsewhere as needed.

In this chapter you'll learn about three different kinds of containers:
the Message box, fields, and variables. You'll also learn how you can
use scripts to work with values in containers. You'll add some more
features to your Collection stack, and you’ll increase your

vocabulary of HyperTalk commands.

[f you took a break at the end of the previous chaprer, start up
HyperCard and go to the Collection stack before you read on.



38

Putting values
INto containers

Putting values into
the Message box

You use the put command to put a value into a container. In this
section, you'll practice using the put command ro pur values into
the Message box. Later in this chapter you'll use the put command

In SCripts.

First open the Message box.
1. Press -M to open the Message box.
Or choose Message from the Go menu.

The vertical bar that marks the insertion point should be inside
the Message box, ready for you to type. If for any reason you
previously typed something into the box, the earlier entry will
still be there. When you start typing, whatever you type will
replace the old text.

Figure 2-1  The Message box

Chapter 2: Fields and Other Containers



e T}-’Pc pul "lello"™ into the message box EII‘ICI press Return.
The word Hello appears in the Message box.

The put command does what you would expect—it puts a value
where you want it to go. In its most basic form, the syntax of the
put command is:

put expression [into container ]

The placeholder expression is a word or phrase that specifies a value.

For example, the expression 2 + 2 specifies the value 4.

The placeholder container can be a field, a variable, or the Message
box. If you don't specify a container, the value is put into the
Message box.

% By the way: After you press Return, you can start typing a
new message into the Message box right away, even though
you can't see the vertical bar. Whatever you type will replace
the old text. <

3. T}v'pf: put "The time is" && the time and press Return.
Some text appears in the Message box. For example:
The time is 12:00 PM

Including quotation marks around text characters tells Hyper lalk
to interpret literally whatever is inside. It treats what's inside the
quotation marks as a string of text characters.

Chapter 2: Fields and Other Containers

39



If you don’t include quotation marks, HyperTalk evaluates the
expression. That is, it replaces the expression with the value of the
expression. For example, it replaces the time with the time
currently set in your Apple I1Gs.

The double ampersand (ss) joins two pieces of text together with a
space in between. In this case, it joins the words the time is and
the current system time. (If you wanted to join two pieces of text
together without a space, you would use a single ampersand.)

4. Close the Message box.

Click the close box in the upper-left corner, or press "~ -M.

¢
Fields as containers  Fields are objects. They can receive and send messages and

can have scripts. Fields are also containers that can hold text
and numbers.

Putting values into a field In Chapter 1 you put text into fields by typing in the fields. In this
section you'll write a script that puts text into a field.

First you need to create a background field named vabe1. This field
will display the number of each card in your stack, so you can easily
tell where you are in the stack.

40 Chapter 2: Fields and Other Containers




Creating the Label field

To create the field, follow these steps:

18

Press (i-B to work in the background.
The word Background appears in the menu bar.
Choose the Field tool from the Tools menu.

Hold down the " key and drag to create a field one line high
and about an inch long,

Move the field to any available space in the background by
dragging its center.

Double-click the field to see its Info box.
Or choose Field Info from the Objects menu.
Name the field r1abe1 and set the field’s characteristics.

Choose “rectangle” for the field’s style. If you'd like, specify the

field’s font and colors.

Click OK to close the Field Info dialog box.

Writing a script for the background

You could label all cards in your stack by going to each one and
typing its number into the Label field. But you can also write a
script telling HyperCard to do it for you.

You’ll write a script that puts a description of each card into the
Label field. The field will contain a text string with two pieces: the
word card and the number of the current card.

Chapter 2: Fields and Other Containers

41



on cpenCard

To write the script, follow these steps:

I. Choose Bkgnd Info from the Objects menu.
The Info dialog box for the background appears.

2. Click the Script button.

The script editor for the background appears. The line at the top
of the script editor identifies it as the background script.

3. Type the following script:

put "Card" && number of this card into background field "Label"

end openCard

In English, the script says, “When a card opens, put the word &
Card and the number of the card into the background field
named Label. That’s all.”

4. Click OK.

5. Try out the script by choosing the Browse tool and clicking the
Next button several times.

Each time you go to another card, you should see in the Label
field the word card followed by the number of the current card.

+ If something else happened: Open the background script and
check it for spelling errors. Also make sure that the Label field is

in the background and that its name matches the name you used

1IN your script. < .

Chapter 2: Fields and Other Containers




How the script works

Just as HyperCard sends the system message mouseup every time
you click the mouse button, it sends the message cpencard every
time you go to a different card in a stack. When you open any card
in the Collection stack, the opencard message handler executes and
puts the number of the current card into the Label field. Because
the opencard handler is in the script for the background, it affects
every card sharing this background—not just a particular card.

The advantage of using a script to label cards is that you won't have
to worry about labeling the cards yourself, even if you add or delete
cards. HyperCard will take care of it for you.

Script editor tips

As you begin to write longer scripts, you'll find it helpful to know
the keyboard commands for cutting, copying, and pasting text in
the script editor:

Key combination  Action

©-C Copies the selected text to the Clipboard.
1-X Cuts the selected text to the Clipboard.
G-V Pastes the contents of the Clipboard at the

insertion point.

Option-Return Breaks long statements into more than one
line (so that they will fit in the script editor
dialog box). Pressing Option-Return inserts a
“soft” Return character at the end of a line,
symbolized by this character (=), in your
script.

The Appendix and the HyperTalk Quick Reference Card contain
complete lists of keyboard shortcuts you can use while working in
the script editor.

Chapter 2: Fields and Other Containers 43



44

Creating a pop-up field Now it’s time to give yourself a well-deserved pat on the back; you'll
create a field that displays the credits for your stack. You'll create a
button that makes the field appear, and write a script that makes the
field disappear when you click it.

Figure 2-2 shows an example of how the new field and button
might look:

ROTEG 1 R ARG E A
1. Blueprint for Trouble Y10
2 Tntﬂl]p Great 2:13

5

3. Roscoe's Family 2:30
Y. Talk in French 2.35
b ry 5:10

Figure 2-2 A sample Credits field

Chapter 2: Fields and Other Containers




Making the Credits field

You can start from any card in the Collection stack. Create the field
by following these steps:

1.

Ve
8.

Press . -B to work in the background.
The word Background appears in the menu bar.
Create a new field.

Use any method you want. Make the field about two-inches
long and an inch high. It’s okay if the field covers other fields

or buttons.

Double-click the field to see its Info box.
Name the field credits

. Click Shared Text.

Background fields with shared text contain the same text on
every card.

Choose “shadow” from the pop-up menu to set the field’s
style.

If you want to, choose a font and colors for the field.
Click OK to close the Field Info dialog box.

Now you'll type your message in the field. Because it’s a
background field with shared text, the message you type will
appear on every card in the stack.

9.
10.

Choose the Browse tool.

Click inside the Credits field to see the insertion point, then
type the credits for your stack.

Type any message you want.

Chapter 2: Fields and Other Containers 45



40

Making an About This Stack button

Next you'll create a button that makes the Credits field appear and
disappear. Make sure you're still working in the background, and

follow these steps:

1. Choose the Button tool and create a new button about an inch

wide and one-half inch high.
Drag the button to any available space in the background.

Double-click the button to see its Info dialog box.

Name the button About This stack and select Auto Hilite.
Choose “rectangle” for the button’s style.

If you want to, choose a font and colors for the button. .

SRR

Click Script to see the script editor and type the following

script:

on mouseUp
show bg field "Credits"
end mouselp

The letters bg are an abbreviation for the word background. The
appendix includes a complete list of HyperTalk abbreviartions.

In HyperTalk, you must use card or cd in frontof field to
specify a card field. If you leave out card, HyperCard assumes you
mean a background field. Conversely, you must use background,
bkand, o bg in front of button to specify a background button, .
otherwise HyperCard assumes you mean a card button. To avoid
confusion, it’s a good idea to always use card or background when
referring to fields and buttons.

7. Click OK.

Chapter 2: Fields and Other Containers




Writing a script for the Credits field

Next _V(}I.I'H write a script that makes the Credits field disﬂppcar
when you click it.

1.

Chapter 2: Fields and Other Containers

Choose the Field tool and double-click the Credits field to see

its Info box.

. Select Lock Text to lock the field.

When a field is locked, you can't type in the field. (You have to
unlock the field if you want to type in it.)

When you click a locked field, HyperCard sends mousevp and
other system messages to the field.

. Click Script.

The script editor for the Credits field appears.

. Type the following script:

on mouseDown

hide me
end mouseDown
MouseDown 18 a system message that’s sent as soon as the mouse
button is pressed.
The HyperTalk word me refers to the object in whose script the
word appears. In this case, me refers to the Credits field.

Click OK.



48

Trying out the scripts
Now see how the About button and Credits field work.

1. Choose the Browse tool and click the Credits field.

The field disappears.
2. Click the About This Stack button.

The Credits field reappears.

If something else happened: Make sure the script for the button is
spelled correctly. Also make sure that the name of the Credits
field is spelled correctly.

&

If the Credits field still won't appear when it is supposed to, open
the Message box and type: show last bg field. Then check l'..
spelling of the Credits field name in the Field Info box.

3. Click the Credits field to make it disappear.

How the scripts work
When someone clicks the About This Stack button, the mouseup

handler in the button’s script executes. The statement, show bg
field "credits" makes the Credits field visible.

When you press the mouse down when the cursor is in the Credits
field, the field’s mousebown handler executes. The statement hide

me makes the Credits field disappear.

To be able to send messages to a field by clicking i, the field must .
be locked. Otherwise, clicking the field merely places the insertion
point inside the field.

You can use the hide command to hide a field, a button, a window
(such as the Message box), the menu bar, the background picture
(graphics in the background), or the card picture (graphics on the
card that aren’t in the background). The show command does just
the opposite; you use show to reveal hidden elements.

Chapter 2: Fields and Other Containers




Vatiables wu bl aamed coitanse it ca hiave any value you choose
to put into it. In this section you’ll create a button that uses a
variable in its script.

Creating a Sort button

on mouselp

First you'll create a button that sorts all the cards in your stack
alphabetically. When a user clicks the Sort button, a dialog box will
appear asking the question “Sort by what?” and presenting three
possible replies: Category, Title, or Artist. When the user chooses,
the stack is sorted alphabetically according to the contents of the
chosen field.

Follow these steps to create the Sort button:

1.
p

Press (i-B to work in the background.
Choose New Button from the Objects menu.

A new button appears. When you choose the New Button
command, you automatically switch to the Button tool, and the
new button is automatically selected.

Drag the button to any available space in the background.
Name the button sort.

The Show Name and Auto Hilite options are already selected.

. If you want to, choose a font and colors for the button.

Click Script to see the script editor and type the following

script:

answer "Sort by what?” with "Category" or "Title" or "Artist"
put it into reply
sort by background field reply

end mousellp

6. Click OK.

Chapter 2: Fields and Other Containers 49



Now try the Sort button to sce how it works:
7. Choose the Browse tool and click the Sort button.

The following dialog box appears.

Sort by what?

(Category ) (mitle ) ([ artise )

Figure 2-3  Dialog box displayed by the Sort button

8. Click Artist. .

HyperCard reorders the cards in the stack alphaberically
according to the contents of the Artist field. Browse through
your stack with the arrow buttons to see that the names of the
artists are in alphabetical order.

If you would rather sort your cards by category or title, you can use
the Sort button to do that, too.

How the script works

The answer command asks the user of your stack a question, and
presents up to three possible replies in the form of buttons in a
dialog box. In this case it asks the question sort by what? and
presents three possible replies: category, Title, and artist. (Th
answer command always highlights the last reply, so it’s a good idea
to list the safest or “most correct” answer last.)

Chapter 2: Fields and Other Containers




When someone clicks a reply in the dialog box, that reply is put
into a special HyperTalk variable named it. For example, when
you click Artist, the value artist is putinto it.

The next statement in the script, put it into reply, puts the
contents of it into another variable, which you've named repiy.
The names of variables can be almost anything you choose, but it’s
a good idea to name them something that describes what’s
contained in them.

If you clicked Artist, the variable reply would then contain the

value artist. Therefore, the statement
sort by background field reply

is evaluated as

sort by background field Artist

and HyperCard sorts all the cards in your stack according to the
contents of the Artist field.

< Local versus global: 'The variables discussed here are local
variables; that is, they and their values exist only within the
handler in which they’re created. HyperCard also has global
variables, whose values are available to all handlers everywhere.
You declare a variable as a global variable by using the g1obal

keyword. For information about global variables and the giobal

keyword, see the HyperTalk IIGs Help stack or the HyperCard
11GS Script Language Guide. <

Chapter 2: Fields and Other Containers

51



I
~J

Putting comments in the handler

The following version of the handler for the Sort button shows
comments that describe the action of the handler’s statements.
Comments are text lines typed into a script that are not part of the
instructions. In HyperTalk, a comment must be preceded by a
double hyphen (--); a double hyphen indicates to HyperCard that
the text following is a comment and should be ignored.

You don't have to type these comments into your own script; they
are shown for example only.

—-- This button sorts the stack according to a field chosen by the user
on mouseUp
answer "Sort by what?” with "Category" or "Title" or "Artist™

-- The user's response is now in the wvariable it .
put it into reply -- Response is now in reply
sort by background field reply -- Sorts the stack

end mouselp

As you see, comments can be placed either at the beginning of a line
or after a statement.

Although HyperCard ignores comments, other scripters generally
appreciate them. Adding comments to your scripts is an excellent way
to document what your scripts do. Comments not only help other
scripters understand what you've done, but also help yox remember
when you look at old scripts long after you've written them.

Chapter 2: Fields and Other Containers




What you've done
in this chapter

You've learned how to use fields, variables, and the Mcssagc: box as

containers for text and numbers.

You've also added some features to your Collection stack: a handler
that automatically numbers the cards in the stack, a pop-up field,
and a Sort button.

System messages

openCard

mouseDown

Commands

answer
hide

put

show

sort

A message sent by HyperCard when a card
is opened.

A message sent by HyperCard when the mouse
button is pressed down.

Puts a box on the screen containing a question
and up to three response buttons.

Makes buttons, fields, windows, and pictures
invisible.

Takes something and puts it somewhere. The
word put must be followed by the name of the

thing you want to put somewhere and the name
of the place where you want to put it.

Causes hidden buttons, fields, windows, and
pictures to become visible.

Sorts all the cards in a stack.

Chapter 2: Fields and Other Containers



Operators

&

bl

Script editor

(Ampersand) This symbol joins two pieces, or
strings, of text together with no space berween
them.

(Double ampersand) This combination symbol
joins two pieces of text with a space berween
them.

(“Soft” return character—produced by pressing
Option-Return at the end of a line) Breaks long
statements into more than one line in the script
editor window.

(Double hyphen) Indicates that whar follows is a.
comment and should be ignored by HyperCard.

keyboard commands

Miscellaneous

bg

me

it

Copies the selected text to the Clipboard.
Cuts the selected text to the Clipboard.

Pastes the contents of the Clipboard at the
insertion point.

Abbreviation for background.
The object in whose script the word appears. @)
The name of a special HyperTalk variable. Certain

commands, such as answer, puta value into it.

Chapter 2: Fields and Other Containers




Syntax summaries

Answer

"T'his section describes the syntax of the commands you used in this

chapter.

The answer command displays a dialog box with a question and
up to three buttons for the user to choose from, each representing a
different reply. If you don't specify a reply, HyperCard displays a
single OK button in the box.

HyperCard puts the label of whatever button gets clicked into a

variable named it.
Syntax

answer question

answer question with reply

answer question with replyl or reply2

answer question with replyl or reply2 or reply3

Question can be any text you like—usually a question that invites
the user to answer. Replyl, reply2, and reply3 are the labels for
buttons representing the choices. The size limit for a reply is abour
11 characters, depending on the width of the characters.

Example

answer "Pick a color:" with "Red" or "Blue" or "Green"

L

Chapter 2: Fields and Other Containers

L



Hide

The hide command makes invisible a button, field, picture, or
window. (See also “Show,” later in this section.)

Syntax

hide button
hide ﬁe&d’

hide card picture

hide picture of card

hide background picture
hide picture of 5.-1:.@3?‘01{:1&'

hide menuBar
hide message box
hide tool window
hide pattern window .
hide go window

hide card window

Button, field, card, and background are expressions identifying
(}bjCCtS {FUI' example, background button 1.)

card picture consists of all elements on the card level created with
a Paint tool. Background picture consists of all graphic elements

on the background level.
Examples
hide background field "Credits"

hide picture of card 1
hide message box

Chapter 2: Fields and Other Containers




Pul

The put command places the value of an expression into
a container.

Syntax

put expression

put expression into [chunk of] container
put expression after [chunk of] container
put expression before [chunk of] container

Expression can be any description of a text string or a number.

Cbﬂﬂk consists Oftht words character, word, item, OI' line
preceded by an ordinal or followed by a number, range of numbers,
or another chunk expression.

Container is an expression that identifies a field, a variable, the
Message box, or the selection. If you don't specify a container,
container is the Message box.

The preposition into causes anything already in the destination
container to be replaced by the expression. The preposition before
places the expression at the beginning of what's in the container (if
anything), and after puts the expression at the end.

Examples

put 256

put 256 into Total

put 256 into line 1 of card field 3

put 256 before word 4 of line 1 of card field 3
put 256 after word 3 of line 1 of card field 3

Chapter 2: Fields and Other Containers 37



Show  The show command makes visible a button, field, picture, or
window.

Syntax

show button [at point)
show field [at point)

show card picture

show picture of card

show background picture
show picture of background

show menuBar

show message box

show tool window [at point]
show pattern window [at point]
show go window [at point]

show card window

See “Hide,” earlier in this section, for a description of the

placeholders.

Point consists of the horizontal and vertical coordinates of a point
on the screen, separated by a comma. This optional phrase, at
point, lets you place a button or field wherever you want. If you
don’t include it, the window or object appears wherever it was
before it was hidden.

Examples
show background field "Credits"
show background field "Credits" at 10,20

show Message box
show picture of card 1

58 Chapter 2: Fields and Other Containers




Sort

The sort command allows you to reorder all the cards in a stack
from within a script.

Syntax
sort [ sertDirection) imrrﬁ'g.'lf] by expression

SortDirection is ascending or descending. If you don't specify a
direction, the direction is ascending. SortStyleis text, numeric,
dateTime, Or international. If you don't specify a style, the style
IS text.

Expression is any expression. The sort command orders all the cards
in a stack according to the value of expression, which is evaluated

individually for each card in the stack.
Examples

sort by card field 1
sort descending numeric by card field 1

Chapter 2: Fields and Other Containers 59






Chapter 3

Scripts That
Make Decisions

]:n this chapter you'll learn how to control which statements are
executed in a message handler, as well as the order in which they are
executed. You'll create some buttons for your Collection stack and
write scripts that use the HyperTalk words it and repeat. By
using if and repeat you can write scripts that are more responsive
and efficient.

[f you took a break at the end of Chapter 2, start up HyperCard
and go to the Collection stack before you go on.

61




J&

It structures

a7 )
ﬁ”:}‘

o

In English, we use the word if to talk about an action that depends or
a certain condition. For example, we might say “If I am hungry, then
I'll eat dinner.” If the condition “I am hungry” is true, then the ac'1
“I’ll eat dinner” will be performed.

In HyperTalk, the word it is used in much the same way. 1f and
then are HyperTalk keywords that work together in arrangements
called if structures. 1f structures are used to test conditions and
specify different actions, depending on the results.

If structures come in a few varieties; the most basic version 1s:

if condition then
dction
end 1f

The placeholder condition stands for the thing being rested. It's

an expression that HyperCard can evaluate as either true or false. T he
placeholder action stands for the instruction lines that follow

if the condition is true. The last line, end if, signals the end of the
Instructions.

Here’s how the English example would look if it could be written in
HyperTalk:
if I am hungry then

1'1]l eat dinner
end 1f

Chapter 3: Scripts That Make Decisions




Creating a Quit button

(In English, the word then is often implied; in HyperTalk you must
always include it.)

In this section you'll create a button that uses an if structure in its
script. When you click the button, a dialog box will appear asking
you whether you want to quit HyperCard. The dialog box will
display two options: OK and Cancel. If you click OK, you quit
HyperCard. If you click Cancel, the dialog box disappears and
nothing else happens.

Follow these steps to make the Quit button:

1.
2.

6.

Press -B to work in the background.

Select New Button from the Objects menu, and move the new
button to any available space in the background.

Name the button guit and select Auto Hilite.

If you want to, choose a font and colors for the button.

. Click Script to see the script editor, and type the following

script:

on mouselp
answer "Quit HyperCard?" with "OK" or "Cancel"
if it is "OK" then
doMenu "Quit HyperCard"
end if
end mouseUp

Notice that the contents of the if structure are automatically
indented. The statements beginning with if and end if
should always line up. If they don’t line up, you may have

misspelled a word or left out something,

Click OK.

Chapter 3: Scripts That Make Decisions 03



04

Trying out the Quit button
Now try the Quit button to see how it works:

1. Choose the Browse tool and click the Quit button.
This dialog box appears:

Quit HyperCard?

[ 0K ] ([ cancel )

Figure 3-1  Dialog box displayed by the Quit button

2. Click Cancel.

The text string cancel is put into the variable it.

Because the condition it is "ox" is not true, HyperCard
doesn't execute the action specified within the it structure. The

dialog box disappears, and nothing else happens.
3. Click the Quit button again.

The dialog box appears again.
4, Click OK.

The text string ok is put into the variable irt.

The condition it is "ox" is true, so HyperCard execures the (™)
statement within the if structure—and you quit HyperCard.

The doMenu command lets you execute any of HyperCard’s menu
commands from within a script. In this case it executes the Quit
HyperCard command. (Be sure to put quotes around the name of
the menu command.)

To continue in this chapter you'll need to start up HyperCard again
and return to the Collection stack.

Chapter 3: Scripts That Make Decisions




Adding an additional action

An if structure can specify not only an action to be taken when a
condition is true, but also an alternative action to be taken when the
condition is false. 1£ structures of this type have the general form

if condition then
dction

else
anotherAction

end if

In this version the placeholder anotherAction stands for an
alternative instruction line or lines. An example in English might be
something like this: “If I am hungry, then I'll eat dinner; otherwise

[else] T'll go to the movies.” Here’s how it would look if it could be
written in HyperTalk:

if I am hungry then
I'1l eat dinner
else
I'l1l go to the movies
end if

Modifying the Quit button

In this section you'll add two statements to the script for the Quit
button. You'll add an else statement and a statement that specifies
an alternative action for when a user clicks Cancel.

1. Open the script for the Quit button.

2. Click before end it to position the insertion point at the
beginning of the next-to-last line.

3. Type the following lines (press Return after each line):

else
answer "Glad you reconsidered.” with "No problem!"

Chapter 3: Scripts That Make Decisions 65



The lines will automatically indent. When you press Return for
the final time, end mouseup should line up at the lefrmost
margin.

Here’s the completed script (the two new statements are shown

in boldface type):

on mouselp
answer "Quit HyperCard?" with "OK" or "Cancel"
if it is "OK" then
doMenu "Quit HyperCard"
else
answer "Glad you reconsidered." with "No problem!"
end if
end mouselUp

4. Click OK. i
5. Try the Quit button.

When you click the Quit button with the Browse tool, you get
the alert box, just as before. Clicking Cancel (the choice
represented by else) makes another alert box appear with a
friendly comment and reply—just for fun. (No further
instructions are specified for the “No problem!” butron.)

Decisions within decisions

It’s possible to specify more than two separate actions by nesting if
structures inside other if structures. Here’s how an English

example might look if it could be written in HyperTalk: o

if I am hungry then
if there's some food in the house then
I'l1l cook
else
I1'll order a pizza
else
if there's a good movie at the theater then
I'l1l go to the movies
else
1'l1]l watch television
end if

66 Chapter 3: Scripts That Make Decisions




Repeat structures

repeat is a keyword that tells HyperCard to perform a command

or series of commands over and over again. Suppose you wanted to
create a sequence in which your stack moved through a series of six

cards, with a one-second pause between cards. You could write the
instructions this way:

go to next card
wait 1 second
go to next card
wait 1 second
go to next card
wait 1 second
go to next card
wait 1 second
go to next card
wait 1 second
go to next card
wait 1 second

Or you could write a repeat structure, like this:

repeat 6 times

go to next card

wait 1 second
end repeat

Chapter 3: Scripts That Make Decisions



68

Creating an Index button

Repeat structures cause HyperCard to go around in a “loop,”
repeating steps until a particular endpoint occurs. Being able to use
repeat structures saves you from having to retype or duplicate
statements over and over again.

Repeat structures come in several varieties. The first line of
a repeat structure can have any of these general forms:

repeat [for] number [times]

repeat with variable= startingValue to endingValue
repeat with variable = startingValue down to endingValue
repeat until condition

repeat while condition

repeat [forever]

The statement or list of statements that you want to have repeatcdff)
can follow any of these first lines. At the end, you must include end
repeat to indicate the end of the list. (For more informarion abour
variations of the repeat structure, see the end of this chapter.)

In this section you'll create a button that uses a repeat structure to

generate an index for your stack. Each index entry will include the
name of the recording artist and the title of the record. (Figure 3-2
shows what the index might look like.)

Later in this chapter you'll write a script that lets you go to a card by
simply clicking an index entry.

Chapter 3: Scripts That Make Decisions




10| Roron, Ann Saddest Hits

11 Boch, J.S. Art of the Fugue
il Bach, J.S. Best of Bach
1] Beethoven, L. Symphony Humber 5
01| Beethoven, L. Sumphony Humber 9
11| Cellini, Francesca [ Must Say
.| Cotter, Sean Born to be Blue
.| Donny ond the Donuts  Hole Lotta Love
1| Gossord ond Hills BigProduction

| Holst, Gustav The Plonets

Kngbe, Kevin Live from Flint Center

| Liszt, Franz Hungarion Rhapsody

| Loralee Don't Change a Thing

|| Mozart, WA, Eine Kleine Nochtmusik
| Mozart, WR. Piono Concerto Humber 14
.|| Mozart, W.R. Symphony Number 41
1] MoSisters Sound Rdvice

Figure 3-2 A sample index card

Creating the Index card

First you need to add a new card to your stack. Make sure you're
looking at the Collection stack, and follow these steps:

1. Choose New Card from the Edit menu.
Or press (-N. A new card appears.

2. Choose Card Info from the Objects menu.,
The Card Info dialog box appears.

Cord Nome: | |

Card [0: 20840. Cord number 31 out of 39

Contains 0 card fields.
Contoins 0 cord buttons.
[JCon't delete
[J0on't Search

(seript.) (Cotors.) (0K _J) (Cancel)

Figure 3-3  Card Info dialog box

Chapter 3: Scripts That Make Decisions

69



"'“

Name the card 1ndex
Click Don’t Search to select it.

When the Don't Search option is selected, HyperCard will not

search this card when you use the find command.

. Click OK.

Creating the Entries field

Now you'll add a field to the Index card that will display the list of

index entries. Make sure you are »ot in the background, and follow
these steps:

k;
2

Choose the Field tool. .

While holding down the ' key, drag to create a large field (like
the scrolling field shown in Figure 3-2).

Make the field large enough to cover the Category, Artist, Title,
and Notes fields.

Double-click the field to see its Info box.

Notice that the field is a card field (not a background field). The
field appears only on this card.

Name the field entries
Select “scrolling” for the field’s style.

. If you want to, choose a font and colors for the field. @

Use a small font, such as Shaston 8.

. Click OK to close the Field Info dialog box.

Chapter 3: Scripts That Make Decisions




Creating the Index button

Now vou'll create the button that automarically generates
y Y 8

the index.

&

Press . -B to work in the background.

The Index button will appear on every card in your stack, so
make sure you see the word Background in the menu bar,

Choose New Button from the Objects menu and move the
new button to any available space in the background.

Name the button 1ndex

If you want to, choose a font and colors for the button.

Writing a script to go through all the cards

You will write the script for the Index button in several stages. First
you'll use a repeat structure to go through all the cards in the
Collection stack.

Follow these steps:

1.

Chapter 3: Scripts That Make Decisions

Click Script in the Button Info dialog box and type the

following script:

on mouselp
repeat with count = 1 to the number of cards
go to card count
end repeat
end mouselUp

The contents of a repeat structure are automatically indented.
The repeat and end repeat statements should always line up.



2. Click OK.
3. Try out the Index button.

HyperCard goes to the first card in the stack, then to the second,
then to the third, and so on—until it reaches the last card in the
stack.

How the script works so far

The handler uses a repeat structure to go through all the cards in
the stack. The repeat statement uses the repeat with form,

which has this syntax:
repeat with variable = startingNumber to endingNumber .

In this case you’ve named the variable count. The starting number
is 1 and the ending number is the number of cards in the stack.

The first time through the loop, count equals 1. Therefore
HyperCard evaluates the statement

go to card count
as
go to card 1

The next time through the loop, count equals 2, so HyperCard
goes to card 2 of the stack. The process continues and HyperCard
goes to card 3, and 4, and so on—until count equals the number
of cards in your stack. At that point, the loop finishes and the
handler moves on to the next statement, which is end mousste.

Chapter 3: Scripts That Make Decisions




Adding statements that compile the index

Now you will add statements to the script that put information into
the index. As you go to each card, you'll put the contents of the
Artist field and Title field into a variable. Each time the handler

goes to another card, it will put the entry for that card affer what is
already in the variable. In this way the variable will accumulate all of
the index entries. Finally the handler will put the contents of the
variable into the Entries field.

Follow these steps:

L.
2.

Open the script for the Index button.

Type the statements that are shown in bold in the following
script:

You'll need to break the long put command into two lines by
pressing Option-Return after "ritle"

on mouseUp
put empty into list
repeat with count = 1 to the number of cards
go to card count
put bg field "Artist" & " " & bg field "Title" —
& Return after list
end repeat
go to card "Index"
put list into card field "Entries"
end mouselUp

Make sure everything is spelled correctly and that the statements
are in the right order.

3. Click OK.

Try the Index button.

You go to the first card in the stack, then the second, and so
on until you reach the end of the stack. Then you go back to
the Index card, where a list of recordings appears inside the
Entries field.

Chapter 3: Scripts That Make Decisions 73



74

« If something else happened: Check your spelling and try the script
again. Make sure that the names of the Index card and Entries
field are spelled correctly and match the names you used in your
script. 4

Each index entry consists of the contents of the Artist field, followed
by a few spaces and the contents of the Title field.

Because you put a Return character at the end of each entry, all the
entries begin on new lines. Some entries may take up more than
one line. Entries take up more than one line if they are long and
“wrap” onto a second line or if you typed Return characters when
you entered text into the Artist and Tide fields.

The index includes an entry for every card in your stack—including
the Index card itself. Because the Index card has nothing in its Artist
and Title fields, the entry for the Index card is a blank line. If you
have any blank cards in your Collection stack, they also appear as
blank lines in the index.

Some finishing touches

Now you'll add an if structure to the script that checks each card to
make sure that something has been typed into the Artist field. If the
Artist field is blank, the index won't include that card.

You'll also add a 1ock screen command at the beginning of the
handler to freeze the screen while HyperCard goes from card to

card “behind the scenes.” .

Chapter 3: Scripts That Make Decisions




Follow these steps:

1. Open the script for the Index button.

2. Type the statements that are shown in bold in the following
script:

on mouselUp
lock screen
put empty into list
repeat with count = 1 to the number of cards

go to card count

if bg field "Artist" is not empty then
put bg field "Artist" & " " & bg field "Title" -
& Return after list

end if

end repeat
go to card "Index"
put list into card field "Entries"
unlock screen
end mouseUp

The put statement should automatically indent and the i<
statement should line up with the end if statement.

3. Click OK.
4. Try the Index button.

After a pause, you go to the Index card where the list of
recordings is displayed. The list should contain only cards for
which you typed something into the Artist field.

As you probably guessed, the 1ock screen command locks the
screen. When you lock the screen, the screen image won't change
until either an unlock screen command is executed or all handlers
have finished executing. Because HyperCard doesn’t have to redraw
the screen every time the script goes to another card in your stack, it
can compile the Index more quickly.

Chapter 3: Scripts That Make Decisions 75



Creating a keyboard command

Every time you click the Index button, HyperCard recompiles the
index for your stack. This process can be time-consuming,
especially if your stack contains many cards. Now you’ll modify the
Index button’s script so that it recompiles the index only if you hold
down the Option key when you click the button. Otherwise you go
directly to the Index card without compiling the index.

Follow these steps:

1. Open the script for the Index button, and type the statements
shown in bold in the following script:

on mouselUp
if the optionKey is down then .
lock screen
put empty into list
repeat with count = 1 to the number of cards
go to card count
if bg field "Artist" is not empty then

put bg field "Artist" & " " & bg field "Title" =
& Return after list
end if

end repeat
go to card "Index"
put list into card field "Entries"
unlock screen

else
go to card "Index"

end if

end mouseUp

2. Click OK. "2
3. Try out the Index button.

When you click the Index button, HyperCard tests the condition
the optionKey is down. If the option key is pressed, HyperCard
compiles the index. Otherwise you go directly to the Index card.

Chapter 3: Scripts That Make Decisions




Properties and
functions

Setting properties

In this section you'll write a script that lets you go to a card by
simply clicking its index entry. To understand how the script works,
you'll first need to understand two important HyperTalk concepts:
properties and functions. You'll practice using properties and
functions in the Message box, and then you’ll write another scripr.

The properties of a HyperCard object are characteristics of the object
that you can set. For example, every button has a name property
that specifies the name of the button, a style property that
specifies the style of the button, and so on.

Usually you set properties by choosing options in the object’s Info
dialog box or on the User Preferences card of the Home stack. But
you can also set properties by using HyperTalk’s set command.
Follow these steps to see how:

1. Open the Message box.

2. Type set the hilite of bg button "Home" to true and press
Return.

The Home button becomes highlighted. (You might need to

move the Message box to see it.)

The nhilite isa property of buttons, which has a value of true
when the button is highlighted and fa1se when it's not.

3. Typc set the hilite of bg button "Home" to false and
press Return.

The Home button returns to normal.

Chapter 3: Scripts That Make Decisions



78

Using functions

The syntax of the set command is:
set [the] property [of aéjﬂ‘f] to exprc‘m'on

The placeholder property is a HyperCard property. What expression
may be depends on the property.

A complete list of properties appears in the Appendix. You can find
detailed information about properties in the HyperTalk Help stack
or the HyperCard 11cs Seript Language Guide.

HyperTalk contains both commands and functions. A command
(such as go or put) carries out an action, whereas a function returns
a value of some sort. For example, the time is a HyperCard
function that returns the current time set in your Apple IIGs.

To practice using some other functions, make sure the Message box
is still open and follow these steps:

1. Type put the date and press Return.
The date set in your Apple 11GS appears in the Message box.

Next you'll use the clickioc function (short for “click location”),
which returns a description of the point where you last clicked on
the screen.

2. Click anywhere on the screen, then type put the clickLoc
and press Return.

Two numbers separated by a comma appear in the .
Message box.

Chapter 3: Scripts That Make Decisions




These numbers represent the horizontal and vertical position of
the point where you last clicked on the screen. The first number
tells you how far the point is from the left edge of the card, and
the second number tells you how far it is from the top of the
card. The distances are measured in pixels. (A pixel is the smallest
dot you can draw on the screen.)

For example, if you clicked 20 pixels from the left edge of the
card window and 35 pixels from the top of the card, the
clickLoc would have a value of 20, 35. The value of the upper-
left corner of the screen is 0, 0.

o Type set the location of bg button "Home" to the
clickLoc and press Return.

The Home button instantly moves to where you last clicked
the mouse.

The 1ocation isa property of buttons (and fields), which
describes the location of the center of the button. In English, the
command says: “Move the Home button so thar its center is
located where the mouse was last clicked.”

4. Close the Message box and move the Home button back to
where you want it to appear.

The Appendix contains a complete list of HyperTalk functions. The
HyperTalk Help stack and the HyperCard IIGs Script Language
Guide describe how to use each function, as well as how to write
your own functions.

Chapter 3: Scripts That Make Decisions 79



50

Going from an index
entry to a card

In this section you'll write a script that lets you go to a card by
clicking its index entry. This script is a little trickier than the others
you've written. You'll write the script in stages to get a better idea of
how it works.

Go to the Index card (if you're not already there) and follow these
steps:

1.
2.

-

Select the Field tool.
Double-click the Entries field to see its Info dialog box.
Click the Lock Text and Don’t Search options to select them.

Selecting the Lock Text option locks the field so you can't type in
it. When a field is locked, clicking the field with the Browse tot
doesn’t place the insertion point in the field; instead it sends a
mouselUp MEssage to the field.

Selecting Don't Search tells HyperCard not to search this field
when you execute a £ind command. If you are searching for a
particular record, you would want to find the card for thar
record, not its index entry.

Click the Script button and type the following script for the
Entries field:

on mouselp

set the lockText of me to false

click at the clickLoc

put the selectedLine

set the lockText of me to true .
end mouseUp

When you're finished, press Enter to close the script editor.

Chapter 3: Scripts That Make Decisions




5. Try out the script by clicking any index entry with the Browse
tool.

A description of the line you clicked appears in the Message box.
For example, if you clicked the second line, the message would
say:

line 2 of card field 1

s If something else happened Check your spelling and try the script

again. Also make sure that the Entries field is locked. 4

How the script works so far
You haven't finished the script, but here’s how it works so far.

Because the Entries field is locked, clicking the field does not set the
insertion point inside the field. Instead it sends a mouseup message
to the field, causing the mouseup handler in the field’s script to
execute.

The statement set the lockText of me to false temporarily
unlocks the Entries field. (LockText is a property of fields, which

has a value of true when the field is locked and false when it’s
unlocked.)

The next statement click at the clickloc tells HyperCard to
click at the point where you last clicked the mouse. This
temporarily places the text cursor in the line that you clicked.

The statement put the selectedLine puts into the Message box a
description of the line you clicked. (The selectedrine isa funcrion
that returns a description of the line in which the text cursor is

placed.)

Finally, the statement set the lockText of me to true relocks
the Entries field so that it can respond to a mouseup message the
next time you click it.

Chapter 3: Scripts That Make Decisions 51



Finishing the script

The script now knows which line you clicked. But what does that
line contain?

1. Open the script for the Entries field and type the boldface
words in the following script:

on mouselp
set the lockText of me to false
click at the clickLoc
put the value of the selectedLine
set the lockText of me to true
end mouselUp

When you're finished, press Enter.

2. Click an index entry with the Browse tool. ¢

The contents of the line you clicked should appear in the
Message box.

The value of isa function that returns the value of any expression.

In this case, it returns a text string consisting of the contents of the
line you clicked—that is, the index entry for that line.

Now that your handler knows which recording you're interested in,

the next step is to go find the right card. You'll use HyperCard’s

find command to do that.

3. Open the script for the Entries field, select the word put, and

change it to find

Chapter 3: Scripts That Make Decisions




The completed script should look like this:

on mouselp
set the lockText of me to false
click at the clickLoc
find the value of the selectedLine
set the lockText of me to true

end mouselp

When you're finished, press Enter.
4. Click an index entry with the Browse tool.

If you went to the correct card, congratulations! You're doing
great,

The find command tells HyperCard to search through the fields
in the stack for the index entry that the user clicked. (Because you
selected the Don't Search option for the Entries field, it won't search

the Entries field.)

w [f something else happened: Check your spelling and try the script
again. Make sure that the Lock Text and Don't Search options
are selected in the Entries field’s Info dialog box.

Chapter 3: Scripts That Make Decisions 83



What you've done
in this chapter

In this chapter you learned how to use if structures and repeat
structures, how to set properties, and how to use functions. You
added a Quit button to your stack, and you wrote a script that
compiles an index for your stack, and a script that lets you go to a
card by clicking an index entry.

Here are the new HyperTalk words you learned.

Keywords

if Begins an if structure.

then Used in if structures to mark the beginning of a
list of actions to be carried out.

else Used when you want to specify an alternative
action in an if structure. .

repeat Begins a4 repeat Structure.

Commands

click Causes the same actions that happen when you
click a specified point on the screen.

doMenu Lets you execute a menu command from within a
SCript.

find Searches all the cards in a stack for a text string.

lock screen Prevents HyperCard from updating the screen
until an unlock screen command is
encountered or until all handlers have finished .
executing.

set Changes the value of HyperCard properties.

Chapter 3: Scripts That Make Decisions




Properties
hilite

location

lockText

Functions
clickLoc
date

selectedLine

value

Determines whether a button is highlighted.

Determines the location of the center of a button

or field.
Determines whether a field is locked.

Returns the location where the user last clicked.
Returns the current date set in your Apple I1Gs.

Returns a description of the line in a field where
the text cursor has been placed.

Returns the value of an expression.

Chapter 3: Scripts That Make Decisions



80

Syntax summaries

Click

This section describes the syntax of the commands you used in this
chapter, along with the syntax of the i and repear keywords.

The click command causes the same actions that happen when
you click the mouse at a specified point.

Syntax
click at point
click at peint with ﬁq!

click at point with keyl, key2
click at peint with keyl, key2, key3

Point is a description of a point on the screen: two integers separated
by a comma, representing the horizontal and vertical distance fmi
the top-left corner of the screen.

Keyl, key2, and key3 can be any of the following key names:

shiftKey, optionKey, O commandEey.
Examples

click at 50,60
click at the clickLoc with cpticnKey

Chapter 3: Scripts That Make Decisions




DoMenu

Find

The doMenu command lets you execute any of HyperCard’s menu
commands from within a script.

Syntax
doMenu  menultem

Menultem can be the name of a menu command or the name of a
desk accessory in the Apple menu. Include three typed periods if
that’s how a command is shown in the menu; for instance, "card
info...". You must type the three periods; don't use the ellipsis
character (Option-semicolon).

Examples

doMenu "New Card"
doMenu "Print Stack..."

The tind command searches for a text string in all the card and
background fields (visible or not) of the current stack. You can limit

the search to a specific background field by specifying a field.
Syntax
find text [in backgroundField |

Iext can be any text string. BackgroundField is an expression that

identifies a background field.
When HyperCard finds a word beginning with zext, it stops

searching and places a rectangle around the word.
Examples

find "Moz"
find "Mozart" in background field "Artist"

Chapter 3: Scripts That Make Decisions 87



If The it keyword beginsan if structure. An if structure tests a
condition, then executes one or more statements if the condition is
true. If the condition is false, statements following the optional
else keyword are executed.

Syntax
if condition then statement
if condition then statement else statement

if condition then
statements

else
statements

en'_-i ij__ .
if condition then

Staternents
end if

Condition is an expression that evaluates to either true or false.
Statement is a single HyperTalk statement. Statements can be one or
more statements.

Example

if Response = "Correct" then
answer "That's correct!"
else
answer "Sorry, try again."
end if

Chapter 3: Scripts That Make Decisions




DoMenu

Find

The doMenu command lets you execute any of HyperCard’s menu
commands from within a script.

Syntax
doMenu  menultem

Menultem can be the name of a menu command or the name of a
desk accessory in the Apple menu. Include three typed periods if
that's how a command is shown in the menu; for instance, "card
info...". You must type the three periods; don’t use the ellipsis
character (Option-semicolon).

Examples

doMenu "New Card"

"P

doMenu rint Stack...

The find command searches for a text string in all the card and
background fields (visible or not) of the current stack. You can limit
the search to a specific background field by specifying a field.

Syntax
find text [in backgroundField |

Text can be any text string. BackgroundField is an expression that

identifies a background field.
When HyperCard finds a word beginning with zext, it stops

searching and places a rectangle around the word.
Examples

find "Moz"
find "Mozart" in background field "Artist"

Chapter 3: Scripts That Make Decisions 8



If

The ir keyword beginsan if structure. An if structure tests a
condition, then executes one or more statements if the condition is
true. If the condition is false, statements following the optional
else keyword are executed.

Syntax
if condition then statement
if condition then statement else statement

if condition then
staternents
else

Statewmients

P
|

end 1f .

if condition then
statements
end if

Condition is an expression that evaluates to either true or false.
Statement is a single HyperTalk statement. Stazements can be one or
more statements.

Example

if Response "Correct" then
answer "That's correct!”
else
answer "Sorry, try again."
end if

Chapter 3: Scripts That Make Decisions



Lock screen and
unlock screen

The 1ock screen command prevents HyperCard from updating

the screen until HyperCard encounters an uniock
command or all handlers have finished executing.

Syntax

lock screen
unlock screen
unlock screen with visualEffect

visualEffect is any of the forms of the visual command.
Examples

lock screen

unlock screen with wvisual effect zoom out slowly

Chapter 3: Scripts That Make Decisions



Repeat A repeat statement identifies the first line of a repeat structure.
Syntax
repeat [forever]

This loop repeats forever, or until an exit statement is
encountered.

repeat [for] number [times]
Number specifies how many times the loop executes.

repeat until condition
repeat while condition

Condition is an expression that evaluates to true or false. The .
repeat until loop repeats as long as condition is false.
The repeat while loop repeats as long as condition is true.

repeat with wvariable = start to finish
repeat with wvariable = start down to finish

Variable is a variable name, and startand finish are integers. At the
beginning of the loop, variable equals the value of start. With each
pass through the loop, the value of variable increases by 1. (In the
down to form, the value of variable decreases by 1 with each pass
through the loop.) Execution ends when the value of variable equals

the value of finish.
Example
repeat for 100 times .

add 1 to Message Box
end repeat

90 Chapter 3: Scripts That Make Decisions




Sel

The set command allows you to change various HyperCard
properties from within a script.

Syntax
set [the] property [of object] to expression

Property stands for a changeable characteristic of the HyperCard
environment or of an object.

Object is an identifier for an object, such as its number, 1D, or
name.

What expression is depends on the property. Some properties, such
as hilite, have the values true or false. Others, such as
userLevel, have numeric values. Still others—such as the nare
property of a button—have as their value a string of characters.

Examples
set the userlevel to 5

set the hilite of card button 1 to true
set the name of card field 1 to "Horse"

Chapter 3: Scripts That Make Decisions

P



Wait  The wait command causes HyperCard to pause for a specified
period of time, or until a specified condition is true.

Syntax

wait [for] number
wait [for] number seconds
wait until cendition
wait while condition

Number specifies how long you want HyperCard to pause. If you
want seconds, you must add second, seconds, or the abbreviation
sec or secs; otherwise, HyperCard uses ticks, which have a value
of Y0 second. No other measurements (such as minutes) can be
used.

Condition is an expression that evaluates to true or false. The
wait until form pauses until conditionis true. The wait while
form pauses until conditionis taise.

Examples

wait 2 seconds

wait 30 -- waits 30 ticks (or one-half second)
wait until the mouse is down

wait while the mouse is up

92 Chapter 3: Scripts That Make Decisions




Chapter 4

Handling Messages

As you know, a message handler is a group of HyperTalk
statements beginning with an on statement, such as on mouseUp
and ending with an end statement. All the scripts you've written so
far contain only one message handler, but scripts often conrain
more than one handler.

In this chapter you'll write new handlers and explore the way
messages travel between objects. You will add another feature to your
Collection stack

a button that plays a sound when you click it.

If you took a break at the end of Chapter 3, start up HyperCard

and go to your Collection stack before you go on.



How messages travel

94

HyperCard can send system messages to a button, a field, or the
current card. For example, if you click a button, HyperCard sends a
mouseUp message to the button. If you click a locked field, .
HyperCard sends mouseup to the field. If you click anywhere else

on the card, HyperCard sends mousevp directly to the card.

A message can travel from one HyperCard object to another—until
it is handled. For example, when someone clicks a button, a
mouseUp message is sent to the button. If that button’s script doesn't
have a handler for mouseup, the message is passed to the current
card. If the current card’s script doesn't have a mouseup handler, the
message is passed to the background. As long as the message does
not encounter a handler, it continues traveling—rto the stack, then

to the Home stack, and finally to HyperCard itself.

This sequence is called the message-passing order; it’s illustrated in

Figure 4-1. .

Chapter 4: Handling Messages




’\J}
BUTTON
Button Field

Il [

VA A
Current card
d
Beckground

Current background

Current stack

Home stack

<&

HyperCard

Figure 4-1 The message-passing order

Chapter 4: Handling Messages 95



You can place handlers at different levels. Where you place a handler
has an effect on its availability. For example, in Chapter 2, when you
wrote the handler to label all the cards of the Collection stack, you
placed it in the background script; that placement meant that the
handler was available for every card sharing that background. If you
had placed the handler in the script for one of the cards, it would
have been available only to that card; no other cards would have
been labeled.

In this section you'll see how messages move around in HyperCard.
First you'll make a button and write a message handler for the
button’s script. Later you’ll move the handler to different levels in
the message-passing order and observe the difference in the

handler’s action. .

Creating a Sound button  You'll create a button that plays a sound when you click it. Follow
these steps:

1. Press (“-B to work in the background.
2. Choose New Button from the Objects menu.

Drag the button to any available space in the background.
3. Name the button sound
4. If you want to, choose a font and colors for the button.
5. Click Script and type the following message handler:

on mouselp
play "boing"
end mouselUp

The p1ay command lets you play sounds from within scripts.
Boing is the name of the sound that plays.

9% Chapter 4: Handling Messages




Moving the handler
to the card level

< Alternative for hearing-impaired people: 1t you can't hear well,
type this line in place of or in addition to the play statements to
see the effect of the handler:

flash 3

This command causes the entire screen image to flash rapidly
three times when the button is clicked. (The white parts of the
card switch to black and the black parts to white; then they
change back again.) <

6. Click OK.
7. Click the Sound button with the Browse tool.

You hear the “boing” sound (or see the screen image flash).

@ If something else happened: Check the script’s spelling and make
sure you have included quotation marks in the right places. If
the script is correct, make sure you have the Sound Volume in
the Control Panel turned up far enough. <

When you click the Sound button, a mouseup message is sent to
the button. This causes the mouseup handler to execute, and the
boing plays (or the screen flashes).

Where you place a handler in HyperCard affects its action. A
handler at the “top” level—that is, in a button script or a field
script—can respond only to a message received by thar button or
field. The same handler further “down” in the message-passing
order—that is, at the card, background, or stack level—can respond
to a message sent by any objects higher up, unless those objects
intercept the message with their own handlers. (See Figure 4-1
carlier in this chapter.)

What the message-passing order means to you is that you can
control whether your handlers act very locally—only for a particular
button, for example—or more globally, for an entire card,
background, or stack.

Chapter 4: Handling Messages 97



98

In this section you'll move the mouseup handler of the Sound
button to a different level in the object hierarchy to experience the
change in its response.

First notice that the handler works only if you click the Sound
button. If you click anywhere else on the card, you won't hear

anything,
The next step is to move the handler to the script for one particular
card. You'll cut the mouseup handler from the Sound button’s script

and paste it into the script for the Index card that you created in
Chaprer 3. Follow these steps:

1. Go to the Index card.
2. Open the script for the Sound button. @
3. Select the mouseup handler.
Drag the mouse across the entire handler to select it.
4. Press “-X to cut the handler and place it on the Clipboard.

The script editor should now have nothing in it. If you still sce
the handler there, try steps 2—4 again. Every object has a script,
even if there’s nothing in it. Scripts with nothing in them are
called empty scripts.

5. Click OK.

Now you'll open the script for the Index card.

6. Choose Card Info from the Objects menu. ©
The Card Info dialog box appears.

7. Click Script.

The script for the Index card appears.

Chapter 4: Handling Messages




. Press (-V to paste the handler into the script for the

Index card.

The mousetp handler appears in the script for the Index card.

. Click OK.

Trying out the card script

Now test the effects of moving the handler to the card level.

:

Click the Sound button with the Browse tool.

The “boing” plays (or the screen flashes) just as it did before.
The mouseup message passes through the empty button script
and goes on to the card script.

Click anywhere else on the Index card (except on a button or
field).

The “boing” plays (or the screen flashes) because whenever you
click the card, mouseup goes directly to the card, which now
contains the handler for mouseup in its script.

. Click the Next button.

You go to the next card as usual—without hearing a sound. The
mouseUp message goes to the Next button, where the message is
handled by the mouseup handler in the burton’s scripr.

Now that you are on a card other than the Index card, notice what

happens when you click the card.

4,

Click anywhere on the card (except on a button or field).

Nothing happens because there is no mousevp handler in this
card’s script.

Chapter 4 Handling Messages 99




M()\*’iﬂg the handlerto Now yuu'“ take the handler out of the card scripl and move it to
the background level  the background script:

1. Go to the Index card.

2. Choose Card Info from the Objects menu.
The Card Info dialog box appears.

3. Click Script to see the script editor.
The script for the Index card appears.

« Keyboard shortcur: You can press (:-Option-C to see the script
editor of the current card without having to go through the
Info box.

4. Drag the mouse across the entire handler to select it. @
5. Press -X to cut the script and place it on the Clipboard.
The card script should now be empty.
6. Click OK to close the Index card’s script.
7. Choose Bkgnd Info from the Objects menu.
The Background Info dialog box appears.
8. Click Script.
The script for the current background appears.
9. Press ( -V to paste the handler into the background script.
10. Click OK to close the background script. [
11. Test the effects.

Using the Browse tool, click the Sound button, then click
elsewhere on the card, just as before. You should hear the
“boing” (or see the screen flash) in every case. The mouseup
message goes through the empty Sound button script and
empty card script to the background script, which now contains
the handler.

100 Chapter 4: Handling Messages




Handlers calling
handlers

Now move to any other card in the stack and click any area
except a button or field. You should still hear the “boing” (or
see the screen flash). The handler is now available to any card

sharing the background.

If you moved the handler to the stack level, the same thing would
happen because the Collection stack has only one background;
however, if a stack has more than one background, only a handler at
the stack level or above would be available to all cards of all

backgrounds.

All the handlers you've written so far respond to system messages
sent by HyperCard (such as mousetp and opencard). HyperCard
sends system messages in response to events such as mouse clicks,
keyboard actions, and the creation or deletion of objects. (The
Appendix contains a list of all HyperCard system messages.) But
there are other ways for handlers to “get the message.”

Each time HyperCard executes a statement within a handler, it
sends that statement as a message. A message sent from one handler
can cause another handler to execute. It’s as though the handlers are
talking to each other, with one handler telling the other to begin
executing.

In this section you'll write a handler that “calls” another handler.
First you'll write a handler that sends a message, then you’ll write a

handler that responds to that message.

Chapter 4: Handling Messages 101



Writing the
“calling” handler

You will write a script for the Sound button so that a message
named playSound is sent whenever someone clicks the button.
Later you'll change the mouseup handler in the background script
so that it responds to the playsound message. Follow these steps:

1. Open the script for the Sound button.
The script should be empty.
2. Type the following handler.

on mouselp
playSound

end mouseUp

In English, the script says, “When someone clicks this button,
send a message named playsound. That's all.”

The message name playsound is arbitrary. You could use any
other word (except a HyperTalk keyword); this name seems
appropriate because it describes the action of the handler.

< Alternative for hearing-impaired people: 1f you are using the
flash 3 alternative instead of the notes, you could use a

different name, such as razzlepazzle (butdontuse f1asn). Be

sure, however, that you use your alternative name in the steps
that follow. <

3. Click OK.

You will need to write a handler that handles the p1aysound
message. But for now, see how the script works so far.

Chapter 4: Handling Messages




Writing the
“called” handler

4. Click the Sound button with the Browse tool.

You see a “Can’t understand” dialog box. HyperCard can't
understand the playsound message because it can't find a
playSound handler anywhere. In other words, there’s no handler
that begins with the statement on playsound and ends with the
statement end playSound.

Can't understond “ploySound".

Figure 4-2  “Can't understand” dialog box

5. Click Cancel to close the “Can’t understand” dialog box.

Now you'll create a handler that responds to the p1aysound
message that’s sent when someone clicks the Sound button. You
could write a handler from scratch, but in this case you’'ll simply
change the mouseup handler in the background scripr to a
playSound handler.

1.
2.

Choose Bkgnd Info from the Objects menu.
Click the Script button.
"The scripr for the background appears.

Keyboard shortcut: You can press 5-Option-B to see the script
for the current background. «

. Select the word mouseup in the first line of the handler.

Drag across the word as you would when selecting any text, or
just double-click the word.

Type playSound

playSound rcplaces mouseUp,

Chapter 4: Handling Messages 103



104

5. Select mouseup in the last line of the handler and replace it by
typing playSound

The completed handler looks like this:

on playSound
play "boing"
end playSound

You have changed the handler from a mousevp handler
to a playsound handler. It now responds to the message
playSound instead of the message mouseUp.

6. Click OK.

You have created a handler that sends a message named playsound,
as well as a handler that responds to playsound. Now see how the .
two handlers work together.

7. Click the Sound button with the Browse tool.

When the Sound button receives mouseup, its handler in turn
sends the message playsound. That message goes through the
message-passing order until it’s intercepted by the playsound
handler in the background script. The playsound handler
executes, and you hear the “boing.” Figure 4-3 shows the path
taken by the playsound message.

Clicking anywhere else on the card won't cause the notes to play,
because the background handler isn't a mouseup handler any more.

In this section you've essentially defined a new command named
playSound. The playSound command pla}fs a “boing” sound. .
That's really all there is to defining your own commands. Think of
what you want a command to do, think of a name for it, and write

a handler that uses the name after on and end, with the

appropriate HyperTalk statements in between.

Chapter 4: Handling Messages




First, HyperCard
sends 1 mousel p
messuge o the
Sound button.

Then, the Sound
button sends a
playSound
message.

Finally, the
playSound
message is handled
by the background

d :
s oun [t R
Button Field
v U A
Current card
Heckgrovnd

Current background

&7

Current stack

=

Home stack

HyperCard

Figure 4-3 Message traveling to a handler in the background script

Chapter 4: Handling

Messages

105



106

Intercepting a message

% By the way: 1ts generally best to avoid using the name of an
existing HyperTalk command or function as the name of a
command you create. See the HyperCard 1IGS Script Language
Guide for details on naming commands.

When HyperCard sends a statement within a handler as a message,
the message goes first to the object that contains the handler being
executed. (For example, when the Sound button sends a playsound
message, the message first goes to the button itself.) If the object’s
script doesn't have a handler for the message, the message next
travels to the current card. If the script for the current card doesn't
have an appropriate handler, the message continues through the
message-passing order, as shown earlier in Figure 4-1. .

Once a message is handled, it does not continue passing through
the message-passing order. Therefore it’s possible for an object at
the “top” of the message-passing order to intercept a message before
the message can travel to objects at the “bottom.”

In this section, you'll write a playsound handler for the script of the
Index card. This card-level handler will make the Sound burtton
play a different sound when you're on the Index card.

Follow these steps to write the script:
1. Go to the Index card.

2. Choose Card Info from the Objects menu, then click the
Script button to see the card’s script. ®

Or press -Option-C.
3. Type the following handler:
on playSound
play "harpsichord" "c e g"

end playSound

This handler plays three notes using the harpsichord sound.

Chapter 4: Handling Messages




4. Click OK.
5. Click the Sound button with the Browse tool.

The playsound handler in the card script executes, and you hear
the three notes.

6. Go to any other card in the stack and click the Sound butron.

The playsound handler in the background script executes, and
you hear the “boing.”

How the handlers work

When you click the Sound button, the button’s mouseup handler
sends a playSound MESsage. Because there is no playSound
handler in the button’s script, the message passes to the script

for the current card.

When the Index card is the current card, the p1aysound handler in
the card script handles the playscund message. The card scripr
intercepts the message before it can pass to the background script.
Figure 4-4, on the next page, shows the path taken by the
playSound message when the Index card is the current card.

When the Index card is not the current card (that is, when there is
no playsound handler in the script for the current card) the
playSound message continues passing from object to object in the
message-passing order until it gets to the playsound handler in the
background script, as shown in Figure 4-3.

% By the way: You can allow a message to continue passing
through the message-passing order after it has been handled
by using the pass keyword. (For more information about
pass, see the HyperTalk Help stack or the HyperCard IIGs

Seript Language Guide.) +

Chapter 4: Handling Messages 107



First, HyperCard |

- y 2
sends 4 mouseUp
message to the

St'JUI'Ld hur[{)n, sssssssassssssEs
Sound | || [eeeeeeeeeenennn

Then, the Sound Button Field

button sends i ,
4 playSound * \':_? N

messdge.

Finally, the
playSound
message is
handled by the
Index card's script. Current card

Backgrovnd

(The playSound
message does not
pass to the
background.)

Current background

&

Current stack

&

Home stack

HyperCard

Figure 4-4 Message being intercepted by a handler in the card script

108 Chapter 4: Handling Messages




Calling handlers from
the Message box

By writing a different playsound handler for the script of each card,
you can play a different sound on each card in your Collection
stack. (The reference section at the end of this chapter explains how
to use the p1ay command.)

Whenever you type something into the Message box and press
Enter, the contents of the Message box are sent as a message to the
current card.

In this section you'll use the Message box to call the p1ayscund
handler. Follow these steps:

1. Open the Message box.
2. Type playsound and press Return.

A playsound message is sent from the Message box to the
current card. If you're still on the Index card, the message is
handled by the p1aysound handler in the card script and you
hear the three harpsichord notes. If you're on another card, the
playSound message travels to the background script, and you
hear “boing.”

You can use the Message box this way when you want to test
how a particular handler works. All you do is type the name of
the handler and press Return.

You can send a message directly to a specific object, bypassing the
message-passing order, by using the send keyword. The sena
keyword works in the Message box as well as in handlers. Now
you'll send a mouseup message from the Message box directly to a
button.

Chapter 4: Handling Messages 109



Handlers as
building blocks

3. Type send mouseUp tc bg button "next" and press Return,

A mouseup message goes to the Next button. The mouseup
handler in the button’s script executes, and you go to the next
card in the stack, just as if you had clicked the burron.

The send keyword lets you send messages against the normal flow
of the message-passing order—for example, from a stack script to a
button or from one button to another button.

4. Close the Message box.

In some ways getting things done in HyperTalk is no different from
getting things done in everyday life. When you want to perform a .
large, complex procedure, you can divide the procedure into smaller,
more easily manageable parts. These smaller parts of a complex
procedure are sometimes called subprocedures.

For example, suppose you want to make spaghetti. You might divide
the main procedure, “make spaghett,” into three subprocedures:
“cook pasta,” “cook sauce,” and “add sauce to pasta.” If you could
describe the procedure of making spaghetti as a HyperTalk script, it
would look something like this:

on makeSpaghetti

cookPasta
cookSauce
addSauce'l'oPasta
end makeSpaghetti .

The handler for the main procedure (makespaghetti) calls
handlers for three subprocedures (cookpasta, cooksauce, and
addSauceToPastal

HyperCard handlers can be used as subprocedures in much the same
way. Understanding how handlers can call other handlers will be a
big help you as you begin to write longer, more complex scripts.

Chapter 4: Handling Messages




What you've done
in this chapter

In this chapter you have demonstrated the three ways that

HyperCard can send messages:

w  System messages (such as mouseup) are sent in response to some
event, such as a mouse or keyboard action.

n Statements within handlers (such as playsound) are sent when the
statements are executed.

»  The contents of the Message box are sent when you type something
in and press Return.

You've learned how a message handler can “call” other handlers,
how messages can travel from one object to another, and how
handlers can be used as subprocedures.

Here’s a list of the HyperTalk words you have learned:

Commands

pPlay

Keywords

send

Miscellaneous

harpsichord

boing

Causes sounds to play.

Sends messages directly to objects.

Names of sounds used with the p1ay
command.

Chapter 4: Handling Messages 111



Syntax summaries

Play

This section describes the syntax of the play command and the
send kcyword.

The play command lets you play sounds from within a script.
Syntax

play | sound] | termipo] | notes)
play stop
Soundis harpsichord or boing—which are included with

HyperCard—or the name of a digitized sound from some
outside source.

Iempo is the word tempo followed by a positive integer that sets Ll-b
speed of play. The value 100 is a medium speed; higher numbers
play faster. If you don't specify a tempo, tempe 100 is assumed.

Notes make up the melody sequence. Notes are represented by the
letters A through G. Rests (or pauses) are represented by the letter R,

If you don't specify any notes, HyperCard plays a single note in the
sound you specify. You should include quotation marks around the
sound and the notes.

You can include further modifiers after the note name, such as an
accidental (a sharp or flat), an octave specification, and a duration
code. Here’s the syntax for a note:

noteName [accidental 1 [ octave] [ duration)
Accidental is either # for sharp or b for flat. ®

Octave is a whole number that specifies the pitch range. For
example, g#4 would be the G-sharp note in the middle range, or
what musicians call the middle-C octave. Higher numbers give

higher ranges, and vice versa. If you don't specify a number,
HyperCard uses 4.

Chapter 4: Handling Messages




Duration is a letter code indicating how long to hold the note
before the next note sounds. Here are the codes for note duration:

whole note (four counts)
half (two counts)

quarter (one count)

eighth (one-half count)
16th (one-fourth count)

t  32nd (one-eighth count)

% G4th (one-sixteenth count)

m o T =

n

If you don't specify a duration code, HyperCard assumes a
quarter note.

A period (.) after the duration code indicates a dotted note, which
means a note with a duration value of half again as much; that is, w.
would indicate six counts (four plus half of four). A numeral 3 after
the duration code indicates a triplet.

The codes for octave and duration carry over to subsequent notes
unless you change them; this feature saves you from having to type
numbers and letters over and over.

Here are some examples of notes with modifiers:

Note

specification ~ Meaning

d# 5w D-sharp above high C held for four counts

Bbdq B-flat above middle C heldfor one count

e5h. E above high C held for threecounts (because of
the period after the duration code n)

Example

play "harpsichord" tempo 300 "ecg d#g gg cSw"

Chapter 4: Handling Messages 113



114

Send

Dealing with long lines

You can put a long sequence of notes into a script; however, the
script editor doesn't wrap lines or let you scroll to see lines that
extend beyond the window. You can press Return or Option-Return
to wrap a long line temporarily while you type the notes; however, if
you use this method you must delete the Returns to “unwrap” the
lines when you're finished. If you don't, the script won't work
properly. HyperCard doesn't understand a line break of any sort

inside quortation marks.

Another alternative is to wrap a long line permanently by inserting a
closing quoration mark and the double ampersand (ss) followed by
an Option-Return (-): .

play "harpsichord" "c3 de fgabcdde " && —
"gabchde £fgabcs"

Notice that you must also begin the wrapped line with a
quotation mark.

The send keyword directs a message to any object in the current
stack or to another stack, but not to a specific object in another
stack. It sends a message directly to the specified object, bypassing
any other objects in the usual message-passing hierarchy.

Syntax
send " messageName " [to U'C'fi'“]'

The quotation marks around the name of the message aren't neede
if the message is a single word, like mouseup.

Object is an identifier for any object, such as its number, ID, or
name. If you use the name, you must enclose it in quotation marks.

Example

nd mouseUp to background button "“Home

Chapter 4: Handling Messages




Chapter 5

More Scripting Ideas

As you built your Collection stack, you learned some of the
basic methods you can use for Hypeﬂhik scripting, In this chaprer
you'll learn other ways of using scripts in stacks.

This chapter explains how to modify the Collection stack for

other purposes. It also describes some other simple stacks you can
build—including a presentation stack, animation stacks, and a
stack just for fun—and explains the basic steps involved in building
and scripting these stacks. You can try building the stacks if you
wish, or you can use them as a source of ideas for creating stacks on
your own.



CUStomiZing YOUTI'  You can easily modify the Collection stack to catalog things other
Collection stack than records. For instance, you could modify the stack along the

lines shown in Figure 5-1.

(1F THE Camman Name

ll’irunhu I
Govwa & Spedes

o [ serrusious spilieans |
Vabitat

l Amazon river |

Notss
o Grovs tn 15 nches. 4r

Index | Sort | duit | o a E!I:-?mm'lutu

fbout this stock| Card 7

Al

Figure 5-1 Another variation on the records stiack

To modify the Collection stack for some other purpose, follow these
basic steps:
1. Save a copy of the Collection stack by choosing Save a Copy

from the File menu.

2. Change the names of the Artist and Title fields to indicate the
new contents of the fields.

3. Change the scripts of the Sort and Index buttons, replacing all
references to the Artist and Title fields with the new field @

names.

You might also want to delete the Sound button and create more
appropriate graphics.

116 Chapter 5: More Scripting Ideas




J - ™y 3 £ - F l -5 & ~ I >

Presentation stacks You can use HyperCard to combine text, graphics, animation, and
sound into a dazzling presentation. This section shows you how to
create a basic presentation stack. You can fill in the contents of the

presentation (and the dazzle) yourself.

There are many ways you can organize a presentation. One way is
to tell a story from beginning to end by having users go forward or
backward from card to card. In most stacks, though, users have
opportunities to branch to different parts of the stack, depending
on what interests them. (See HyperCard Stack Design Guidelines,
published by Addison-Wesley, for a discussion of different ways to

structure a stack and how to make stacks easy to navigate.)

The stack described in this section uses a simple tree structure that
& users can easily navigate. The first card of the stack lists the topics of
the presentation. A user chooses a topic of interest by clicking a
button. Once a topic has been chosen, the user can navigate
through a series of cards about that topic. The user can also return
to the main topics card at any time. Figure 5-2 illustrates the
structure of the stack.

Figure 5-2  Stack with a tree structure

Chapter 5: More Scripting Ideas 117



118

Cl't?il[iﬂf..{ amain  Hereis an Cxamplc of a main topic& card.

topics card

Creating cards
about a topic

Wildlife of Monterey County
Click a topic

L 7

Figure 5-3  Main topics card with art the user can click .

The card shows several pictures, each corresponding to a topic the
user can pick. Each picture is covered with a transparent button that
takes the user to a card about the chosen topic. For example, the
button covering the flower picture has this script:

on mouselp
visual effect dissolve
go to card "Wildflowers"

end mouselp

In this case, wildfiowers is the name of the first card in a series of
cards about wildflowers.

Once you have decided what the topics of your presentation are,
you can create a series of cards about each topic. Figure 5-4 shows
an example of a card abour a topic.

You can create topic cards by following these basic steps:

1. If you want the background of the topic cards to be different
from the background of the main topics card, create a second
background for your stack.

Chapter 5: More Scripting Ideas




You do this by choosing New Background from the
Objects menu.

“ousands of q:ams uf wﬂi’m&rs are native E‘H‘ntarug
County. Among the most commony are the-California Poppy,

the Sky Lupine, Indian Paintbrush, and the California Wid Ross.
Most of these flowers bioom from late March

\ ":'l - l'L
Ty il e ¢.n-.‘”‘..n.

Figure 5-4 A topic card

2,

Create buttons for the background.

You'll probably want a Next button, a Previous button, and a
button that returns the user to the main topics card.

The Topics button in Figure 5-4 takes the user back to the main
topics card; it has the following script.

on mouseUp
visual effect dissolve
go to card "Topics"
end mouselp

Create background fields.

You will probably want a field for the heading, as well as a field
for the text on each card.

Add cards to your stack.

Write the text and create the graphics for your presentation.

Chapter 5: More Scripting Ideas 119



Animation

Animating a series of cards

You can use HyperTalk commands to create animation effects.

Animation combined with visual effects and sound can turn a

presentation, a demonstration, or a training stack into an exciting

audiovisual experience. This section explains two ways to create

animation effects with I—[}-'perTu“{ commands.

You can animate a series of cards hy’ p&inring slighrl}' different Images

on successive cards, then showing the cards rapidly—creating the

appearance of movement. Figure 5-5 shows an example of a multiple

card animation sequence.

You can practice creating an animation sequence by E{:J]c__:u'ing

these steps:

1

| o]

. Add a few cards to the stack, and create graphics for each card.

Create a new stack.

Name the stack Animation or any other name you'd like.

You can paint your own graphics or copy them from the Art
[deas stack.

Each card should look slightly different from the card before
it. To create each card, copy the image from the pl‘(‘\'inm card,
then change the image by moving gl'uphiw or adding graphics

to the card.

Create a button that makes HyperCard flip through the cards.

In Figure 5-5, the button is named Drive the Train. Here’s the @)
script for the button:



The show cards command goes rapidly through a specified number
of cards. You specify how many cards you want to show.

Figure 5-5  Lxample of multiple card animation

Chapter 5: More Scripting Ideas 121



b
e

Animating with Paint tools

You can create animation effects by using HyperCard’s paint
tools within scripts. In this section you'll learn the basics of
paint animation, and you’ll write a script that creates computer-
generated art.

You'll write a script that paints rectangles and lines of random sizes,
shapes, and colors. Each “painting” is unique, but Figure 5-6 shows

an example of what one might look like.

Figure 5-6 A HyperTalk-generated “painting”

To paint each shape, your script will:

» choose the appropriate tool (either the Rectangle tool or the
Brush tool)

s choose a random color or pattern (When the Brush tool is .
selected, it will also choose a brush shape.)

s drag from a random point on the screen to another random
point.

Follow these steps to make the stack:
1. Create a new stack.

Name the stack Painting or any other name you'd like.

Chapter 5: More Seripting Ideas




2. Open the stack script.

Choose Stack Info from the Objects menu and click Script. Or
press -Option-S.

3. Type the following script:

on mouselUp
set the dragSpeed to 200
set the filled to true
repeat until the mouse is down
choose rectangle tool
set the pattern to random(32)
drag from random(320), random({200) to —
random (320), random{(200) with optionkey
choose brush tool
set the brush to random(32)
set the pattern to random(32)
drag from random(320, random(200) to —
random(320) , random (200)
end repeat
choose browse tool
end mouseUp

4. Try out the script by clicking anywhere on the stack with the

Browse tool.
Watch the screen as lines and rectangles of different colors appear.
5. To stop the animation, click the mouse again.

If you'd like to start a new painting on a blank card, choose New
Card from the Edit menu.

< If something else happened: Check your script and try again. You
cannot open the script editor while a Paint tool is chosen. To
open the script editor you must have the Browse tool, Button
tool, or Field tool chosen. <

Chapter 5: More Scripting Ideas 123



How the script works

When you click anywhere on the stack, a mouseup message travels
to the stack and the mouseup handler executes.

The statement set the dragSpeed to 200 determines how fast
drags will occur. The higher the dragspeed, the faster the drag, If
you don't specify a speed, drags occur instantly.

The next statement sets the filled property to true, which means
that rectangles and other polygons will be painted as solid shapes,
instead of outlines,

Next comes a repeat structure that keeps looping until you click the
mouse fthat iS, until the mouse is down}. Each time thI‘(Jngh the
loop, the script paints one rectangle and one line. .

First the script chooses the Rectangle tool, as though you had
chosen it from the Tools menu.

The next statement set the pattern to random(32) sets the
pattern property to a random number between 1 and 32. Each
position in the Patterns menu has a corresponding number, as

shown in Figure 5-7.

[T By 1 B Bl
T BT
1ty mty 3 nmiw|=zx
¥ | | i M
b s lla]l» .
g
2 s |2 »
Il s lala
| ] ] . k¥

Figure 5-7  Values for the pattern property

124 Chapter 5: More Scripting Ideas




To choose a pattern randomly, the script uses the random function,

which has this syntax:
random ( number)

The random function returns an integer from 1 to number. Thus
evaluate the expression random(32) asa random integer from 1

to 32.
The next statement
drag from random(320), random(200) to random(320),random(200) with optionKey

uses the drag command to drag from a random point on the
screen to another random point while holding down the Option
key. (Holding down the Option key paints rectangles as solid
shapes without showing black outlines.) The syntax of the drag
command is:

drag from startingloint to endingPoint [with key)

StartingPoint and endingPoint are points on the screen. Each point is
specified by two numbers separated by a comma. The first number

specifies the distance (in pixels) from the left edge of the screen, and
the second number specifies the distance from the top of the screen.

The top-left point on the screen has the coordinates 0,0; the
bottom-right point has the coordinates 320,200. Therefore, the
expression random(320) , random {200) speciﬁcs any random pOiI‘lt
on the screen.

After the rectangle has been drawn, the script chooses the Brush
tool and a random brush shape. The brush property determines
which brush shape is used; it can have a value from 1 to 32, as
shown on the next page in Figure 5-8.

Chapter 5: More Scripting Ideas 125



120

A stack for fun

Figure 5-8 Values for the brush property

The second drag command drags the Brush tool to painta
straight line.

When you click the mouse, the script stops looping through the <

repeat structure.

Finally the script chooses the Browse tool again.

Here’s another stack that produces random events with interesting
results. It’s easy to build and fun to play with. It randomly generates
newspaper headlines from lists of words that you supply.

1. Create a new stack.
Name the stack Headlines or whatever you like.

Next you'll add some fields and buttons to the first (and only) card

in the stack. &
2. Create three fields named Man, Bites, and Dog.

Choose “scrolling” for the field’s style.
3. Type some words or phrases into the fields.

In the field named Man, type the names of some friends. In the
field named Bites, type some verbs. In the field named Dog, type
some nouns. Press Return after each word or phrase to put it on
a separate line,

Chapter 5: More Scripting Ideas




For now you can just type two or three lines into each field. It will
be easy to add more words later. Figure 5-9 suggests some words

you can type into these fields. Have fun making up your own.

Man field Bites field Dog field
[ 1
findy ites {] [Doa
Sorah Is Thing from Yenus
Kevin Weds Boss
José sous: I'm Bigfoot
Chi Seenwith Hollywood Storlet
Jody Befriends Infant Genius
Rafig Reploced by o Fish
Holly Yeorns for 3 | Self

Figure 5-9  Some text for the Man, Bites, and Dog ficlds

4. Create a button named Show/Hide that makes the scrolling
fields appear and disappear.

Write the following script for the button:

on mouselp

if the
show
show
S5Now

else
hide
hide
hide

end if

visible of

card
card

card

card
card
card

end mouselp

field
field
field

field
field
field

Chapter 5: More Scripting Ideas

card field "Man" is false then
"Man"
"HE tag"

"L]L',JLJ'"

llManTl
"Bites"
"Dog"



The visible property of a field determines whether the field is
shown or hidden. When a field is shown, the visible property

of the field has a value of true. When the field is hidden, the
visible property has a value of faise.

This script tests whether the Man field is hidden. If the Man field
is hidden, the script shows all three scrolling fields. Otherwise, if
the Man field is shown, the script hides all three fields.

Select the Browse tool and try out the Show/Hide button. By
clicking the button, you should be able to make the scrolling
fields appear and disappear.

Now you'll create a field for the headline and a button that
randomly generates headlines. ®

5.

Create a field named Headline.

Choose a large, bold font. Choose “center” for the field's text
alignment.

Create a button named Write Headline.

Write the following script for the button. Press Option-Return
to insert a “soft” return character (—) where necessary.

on mouselp
put any line of card field "Man" && —
any line of card field "Bites" && —
any line of card field "Dog" -
into card field "Headline"

end mouseUp .

Try out the Write Headline button.

Each time you click the button, a different headline appears. If
something else happens, check your script and try again.

Chapter 5: More Scripting Ideas




8. Paint some graphics on the card to make it look like the front
page of a newspaper.

Here is one possible design:

A TolprBimln A

Kevin Weds

Space Alien

Figure 5-10 Sample graphics for the Man Bites Dog stack

How the Make Headline button works

The script combines any line from the Man field, any line from the
Bites field, and any line from the Dog field into a single string of
text—which is put into the Headline field.

Games are often based on randomly occurring events, such as the
roll of dice. One way to create random events in HyperTalk is to
list all of the possible outcomes in a field and then get any 1ine

of the field.

Chapter 5: More Scripting Ideas 129



130

Where to go
from here

Now that you're an experienced scripter, you can go on to other
sources to learn more about HyperTalk and more ways of using
HyperCard. Many people have written books on HyperCard and
scripting that you might find helpful. The HyperCard 1IGs Script
Language Guide contains complete descriptions of HyperTalk
elements. The HyperTalk Help stack is also a good reference to
consult while you're working,.

Look again at the stacks that come with HyperCard, especially
Button Ideas. See what you can observe about the way their scripts
work, and how you might modify some of the scripts to suit your
own ways of doing things. Create a stack you can use as a repository
for buttons with prewritten handlers and other scripts that you can
copy and paste when you want them. Talk to other HyperCard
scripters about the stacks they’ve built and how they’ve built therf)

Most of all, enjoy the creative environment that HyperCard
provides. Experiment. Build your own stacks for your own
purposes, learning more about HyperTalk as you need to. Your
most valuable knowledge of scripting is likely to come from your
own experience.

Chapter 5: More Scripting Ideas




What you 've done  You've learned how to modify your Collection stack for different
in this Chﬂptef purposes, how to create a simple presentation stack, two ways to

add animation effects to stacks, and a fun way to use the random

function.

Commands

choose Chooses a tool just as though you chose it from
the Tools menu by using the mouse.

drag Does the same thing as dragging the mouse.

show cards Shows cards one after another on the screen. The
cards to be shown (all or some number) must be
In sequence.

Properties

dragSpeed A global property that determines how fast the
drag command is executed.

filled A painting property—when set to t rue, shapes
are filled as they are drawn.

pattern A painting property with a value of 1 to 32,
corresponding to the pattern selected in the
Patterns menu.

visible A property of fields and buttons that has a value
of true when the object is shown and false
when it is hidden.

Functions

mouse Gives the state of the mouse button: either up
Or down.

random Gives a random integer between 1 and a specified
number.

Chapter 5: More Scripting Ideas 131



Syntax summaries

Choose

Here is the syntax of the commands you learned in this chaprer.

The choose command allows you to select a HyperCard tool from
within a script.

You can use the choose command only when the user level is set to
Painting, Authoring, or Scripting. You can set and reset the
userLevel property inside a handler with the set command, if

¥ -
you don't want to change the user level permanently in a stack.

Syntax

choose toolName tool
choose tool number

ToolName is any one of the HyperCard tools from the Tools men
You must always use tool after the name. Here are the HyperTalk
names for the tools that you can use:

browse field reg[ular] poly[gon]
brush lasso round rect [angle]
bucket line select

button oval spray

curve pencil text

eraser rect [angle]

Number is a positive integer corresponding to one of the rools.

The only tool you can't choose from within a script is the
Polygon tool.

Examples

choose button tool
choose tool 9

Chapter 5: More Scripting Ideas

i




Drag

Show cards

The drag command allows you to manipulate objects and graphics
on a card from within a script. It has the same effect as dragging the

IMOuse mﬂnuil_”}’ ﬁ'()rn onc p{)int to ﬂﬂuthef.
Syntax

drag from point to point

drag from point to point with keyl

drag from point to point with keyl, key2

drag from point to point with keyl, key2, key3

Point consists of the horizontal and vertical coordinates of a point
on the screen, separated by commas. You can find the coordinates
of a point by placing the pointer there and typing the mouseroc
into the Message box.

ﬁ@y!,&gy2‘and.kqg3can.be shiftKey, optionKey, OI commandEey.

Examples

drag from 5,5 to 80,130
drag from 5,5 to 80,130 with commandKey

The show cards command lets you quickly display a number of
cards in sequence,

Syntax

show [all] cards
show positivelnteger cards

Positivelnteger is the number of cards you want to show if you don't

want to show all of them.
Examples

show all cards
show 5 cards

I'_(‘l T T - T f‘-.-."lnr:':\'r Tdome
“hapter 5: More Scripting Ideas

123
133






Appendix

HyperTalk Summary

Illis appendix contains

Syntax statements for all built-in HyperTalk commands,
functions, and keywords

Lists of system messages, properties, and constants
A table of operators and their order of precedence
Script editor keyboard commands

Shortcuts for seeing scripts

Synonyms and abbreviations



136

Syntax statement
notation

-
kﬁdd 25 to line 1 of card field "sum”
L.

/'_

( Answer "Hov are you?" with "Fine, thanks
N

k Beep 3 \‘\\\

Syntax statements show the most general form of a command or €3
function, with all elements in the correct order. The syntax
statements in this book use the following typographic conventions:

» Words or phrases in this kind of type are Hypertalk language
elements that you type exactly as shown.

s Square brackets [ ] enclose optional elements that may be
included if you need them. (Don't type the brackets.) In some
cases optional elements change what the command does; in
other cases they simply make the command more readable.

s Words in #talic are placeholders describing general elements, not
specific names; you must replace them in an actual command.
For example, ¢ffectName stands for any of the Hyper Talk visual
effect names, such as barn door, checkerboard, or zoom out. .

It doesn't matter whether you use uppercase or lowercase leters in
HyperTalk, but names formed from two words are often shown in
small letters with a capital in the middle (1ikeThis) to make them
more readable.

Appendix: HyperTalk Summary




Commands

This section lists the syntax of all HyperTalk commands. For more
information about other HyperTalk commands, see the HyperTalk
Help stack or the HyperCard 11Gs Script Language Guide.

add number to [chunk of) container

answer guestion

answer gquestion with reply

answer question with replyl or reply2

answer guestion with repfyf or rf‘p{}*g or rqn{;aj
answer file text [of type fileTjpe)

arrowKey direction

ask question (with defaultAnswer)

ask password gquestion [with defaultAnswer]
ask file text [with fileName]

beep | number]

choose taolName tool
choose tool numéber

click at point

click at point with keyl

click at point with keyl, key2

click at peint with keyl, key2, key3

close file fileName

close printing

controlKey keyNumber

convert [chunk of] container to format [and format]

create stack stackName [with bdckgmund}

delete chunk of container
delete [stack] stackName

dial number
dial number with modem [ modemCommands)

divide [chunk of] container by number

Appendix: HyperTalk Summary 137



doMenu menultern [without dialog]

drag
drag
drag
drag

edit

from peint to point

from point to point with keyl

from point to peint with keyl, key2

from peint to point with keyl, key2, key3

script of object

enterkey

export paint to file fMﬂHHHE

find
find
find
find
find
find

text

text [in backgroundField |

chars text [in backgroundField |
word text [in backgroundField |
whole text [in backgroundField |
string text [in backgroundField |

functionKey keyNumber

get expression

go (to] stack
go [to] background [of stack )
go [to] card [of background] [of stack ]

help

hide

hide

hide
hide
hide
hide

hide
hide
hide
hide
hide
hide

blﬂf{)?’!
feld

card picture
picture of card
background picture
picture of background

menuBar
message box
tool window
pattern window
go window

card window

import painl Troan Tile ﬁﬁw;rmr

Appendix: HyperTalk Summary




lock screen

multiply [chunk of] container by number
open [ fileName with) applicationName
open file fileName

open printing [with dialog]

[termpo | [ notes]

card into | chunk of] container
card after [chunk of] container
‘ard before [chunk of] container

print freld

print _f.;f;';'\".-.rm:’ with rJJ,';rm"f.';:‘fff);.'r'\-";.fmt’

print card

print number cards
print card

print all cards

push card

put ;‘,\}m'c'_v_f."rm

put expression into |chunk of) container
put f.x'prc’_r_ﬂ'an after [chunk of] container
put expression before [chunk of] container

read from file fileName at start for numberOfChars
read from file fileName for numberOfChars
from file _,‘ff’r‘.”\."}.'m.-.' until character
file fileName until end
file ﬁf‘r:‘.-ﬂ\-"m).’c* until eof

returnkey

Appendix: HyperTalk Summary 139




140

save this stack as fileName

save this stack as ‘,-‘Jr.'!fJNr.'H.':'

save [stack] stackName as fileName
save [stack] stackName as pathName

select button

select field

select text of container
select before text of container
select after text of comtainer

select chunk of container
select before chunk of container
select after chunk of container

select empty
Note: container s a field or the Message box.
set [the] praperty [of object] to expression

show button [at point]
show field [at point]

show card picture

show picture of card

show background picture
show picture of background

show menuBar

show message box

show tool window [at point]
show pattern window [at pabﬁ}
show go window [at lpm'n.:‘]
show card window

show number cards
show all cards

sort [sortDirection] [sortStyle] by expression
subtract number from [chunk of] container

tabkey

Appendix: HyperTalk Summary




type fext

type fext with keyl

type fext with keyl, key2

type ftext with keyl, key2, key3

unlock [the] printTemplate

unlock screen
unlock screen with visualEffect

Note: visualEffect is any form of the visual command.

visual [effect] effectName [speed) [to image]
wait [for] number [seconds|
wait until condition

wait while condition

write text to file fileName [at start]

Appendix: HyperTalk Summary



I"UHC[IUHS This section lists the syntax for all of Hyperlalk’s built-in functions,
as well as the value returned by the function.

When using functions in HyperTalk statements you must either use
the word the before the function name or add parentheses after it
(both forms are shown in the list that follows). The parentheses are
used to enclose any values on which the function operates. These
values are called parameters. If the function takes several parameters
(for example, the average function), you must separate the

parameters with commas. For a more complete discussion of
functions and parameters, see the HyperTalk Help stack or the
HyperCard 11GS Script Language Guide.

Syntax of function

Value returned by function .

the abs of (number)
abs ( number)

annuity (rate, periods)

the atan of (number)
atan ( number)

average ( numberList)

the charToNum of character
charToNum { character)

the clickLoc
clickLoc ()

the commandKey
commandKey ()

compound ( rate, periods)

the cos of number
cos ( number)

142 Appendix; HyperTalk Summary

Absolure value of number

Current or future value of an annuity

Arc tangent of number, expressed in radians

Average of the numbers in numberList

ASCII value of a character

Horizontal and verrical coordinates of the
point where the user last clicked

Position of the Command key (the ' key): .

up or down

Present or future value of a compound
interest-bearing account

Cosine of number, expressed in radians

=



Syntax of function

the date

the long date

the short date

the abbreviated date
date ()

the diskSpace
diskSpace ()

the exp of number
exp ( number)

the expl of number
expl (number)

the exp2 of number
exp2 ( number)

the foundChunk
foundChunk ()

the foundField
foundrield()

the foundLine
foundLine ()

the foundText

foundText ()

the length of texr
length ( text)

the 1ln of number
1n ( number)

the 1nl of number
1nl (number)

the log2 of number
log2 ( number)

max ( numberList)

Appendix: HyperTalk Summary

Value returned by function

Current date set in the Apple 11Gs

Amount of free space on the current disk
Mathematical exponential (e raised to the

power of number)

1 less than mathematical exponential:
exp()-1

The value of 2 raised to the power of number
Description of where the text is found in

a field

Which field the found text is in

Which line the found rext is in

Characters found by the find command
Number of characters in a text string
Base-¢ (natural) logarithm of number
Base-¢ (natural) logarithm of (1 + number)

Base-2 logarithm of number

Highest number in numberList

143



144

Syntax of function

mir ( ssemberlist)

I

nouse L

the mouseClick
mouseClick ()

the mouseH

the mouseloc
mouselLoc ()

the mouseV
mouseV ()

[the] number of objects
number ( objects)

[the| number of chunks in text
number (chunks in text)

[the] number of cards in background
number (cards in background)

the numToChar of number
numToChar ( numéber)

of fset (textl, text?2)

the optionkKey
optionKey ()

the param of number
param ( number)

the paramCount
paramCount ()

Appendix: HyperTalk Summary

Value returned by function

Lowest number in numberlist

Position of the mouse button: up or down

True or false, depending on whether the
mouse button is clicked

Horizontal position of the pointer on mouseH ()

the screen

Horizontal and vertical coordinates of
the pointer

Vertical position of the pointer

Number of burttons/fields on the current
card or background, or the number of
backgrounds or cards in the current stack

Number of characters, words, lines, and so
on in a specified text string

Number of cards in specified background
Character corresponding to an ASCII value
Number of characters between the
beginnings of two strings

Position of the Option key: up or down

Value of a parameter in a list

Total number of parameters

e




Syntax of function

the params
params ()

the random of number

random ( numéber)

the result
result ()

the round of number

round { number)

the screenRect
screenkect ()

the seconds
seconds ()

the selectedChunk
selectedChunk ()
the selectedField
selecrtedField|()
the selectedLine

selectedLine ()

the selectedText
selectedText ()

the shiftKey
shiftKey ()

the sin of number
sin ( number)

the sound
sound ()

Appendix: HyperTalk Summary

alue returned by function

Entire list of parameters
Random integer from 1 to number
A textstring if find or go is unsuccessful

Nearest integer to number (odd integer
plus 0.5 rounds up; even integer plus 0.5
rounds down)

The rectangle of the screen in which
HyperCard’s card window is displayed.

Number of seconds berween midnight
January 1, 1904, and the current time
in your Apple 11Gs

Description of the location of the
selecred rext

Which field the selected rext is in
Which line the selected text is in

Text currently selected

Position of the Shift key: up or down

Sine of number, expressed in radians

Name of the sound resource currently playing
(or done if none is playing)



140

Syntax of function

the sgrt of number
sgrt ( number)

the tan of number
tan ( number)

the target
target ()

the ticks
ticks ()

the time
the long time
the short time

the abbreviated time

time ()

the tool
tool ()

the trunc 'l.}f HH}'HE’E."
trunc ( number)

the value of expression
value ( expression)

Appendix: HyperTalk Summary

Value returned by function

Square root of a number Wt naember is
negative gives the result NAN(001)
meaning “not a number”

Tangent of number, expressed in radians
Description of the original recipient of

amoessage

Number of ticks (4 second) since the
Apple 11GS was last started

Current time set in the Apple 11Gs

Name of the currently chosen tool
Integer part of number

Value of expression




Keywords

The following list includes HyperTalk keywords and their syntax.

Keywords are predefined; you can't redefine them—for instance,
you can't use a keyword as the name of a variable.

send is the only keyword that can be used in the Message box.

do expression
else

end functionName
end messageName
end 1f

end repeat

exil functionName
exit messageName
exit repeat

exit to HyperCard

function functionNane

function functionName parameterList
global wvariablelist

if condition then

next repeat

on messageName
on messageName parameterList

pass functionName
pass  messageName

repeat [forever]
repeat [for] number [times]
repeat until condition
repeat while condition
repeat with wvariable
repeat with wariable

start to finish
start down to finish

return expression

send " messageName| parameterList]" [to object]
send " messageName| parameterList]" to HyperCard

Appendix: HyperTalk Summary

14



148

System messages

HyperCard sends these messages to the objects specified to inform

them of system events. Some messages include a variable (va),

which depends on the message. For example, the arrowkey variable
can b€ left, right, up, Or down.

Messages sent to a button

deleteButton
mouseDown
mouseEnter
mouseleave

Messages sent to a field

closeField
deleteField
enterInField
mouseDown
mouseEnter
mouselLeave
mousesStillDown

mouseStillDown
mouselp
mouseWithin
newButton

mouselp
mouseWithin
newField
openField
returnInField
tabKey

Messages sent to the current card

arrowKey var
closeBackground
closeCard
closeStack
controlKey wvar
deleteBackground
deleteCard
deleteStack
doMenu wvar
enterKey
functionKey wvar
help

hide wvar

idle

mouseDown

Appendix: HyperTalk Summary

mouseStillDown
mouselp
newBackground
newCard
newStack
ocpenBackground
cpenCard
openStack

quit

resume
returnKey

show var
startup
suspend

tabKey




Properties

This section lists the properties of the HyperCard environment and

of objects.

cantDelete
cantModify
colorSet
dontSearch
ID

Button properties

name

number
script
showPict
useColorSet

autoHilite

rect [angle]

bottom right
bottomRight script
family sharedHilite
frameColor showName
height style
hilite textAlign
hilited textColor
ican textFont
iconBackColor textHeight
iconFrontColor textSize
1D textStyle
left top
loc[ation] topleft
name visible
number width

Card properties

cantDelete name
cantModify number
colorSet script
dontSearch showPict
D useColorSet

Appendix: HyperTalk Summary

144



150

Field properties

autoTab scroll
bottom sharedText
bottomRight showLines
dontSearch style
frameColor textAlign
height textColor
ID LextFont
left textHeight
loc[ation] textSize
lockText textStyle
name top

number topLeltl
rect [angle] visible
right wideMargins
script width
Global properties

blindTyping lockRecent
borderColor lockScreen
cursor numberFormat
dragSpeed powerKeys
editBkgnd printTemplate
language textArrows
lastError userLevel
lockErrors userModify
lockMessages version
Painting properties

brush pattern
centered polySides
filled textAlign
grid textFont
lineSize textHeight
multiple textSize
multiSpace textStyle
out 11nad

Appendix: HyperTalk Summary




Stack properties

cantDelete
cantModify
colorSet
freeSize
name

Window properties

bottom
bottofmRight
height

left
loc[ation]
rect [angle]

Appendix: HyperTalk Summary

script

size
useColorSet
version

right
top
topleft
visible
width



Constants

Constants are named values that never change. You can't use the
name of a constant as a variable name.

Constants Description

down The value of the key functions for the Command, Oprion,
and Shift keys and for the mouse button when pressed

empty A string containing nothing (the null string)—
sameas " "
false The opposite of true
formFeed The form feed character, ASCII 12
lineFeed The line feed character, ASCII 10
pi The value of pi to 20 decimal places .
quote The double quortation mark character
return The return character, ASCII 13
space The space character, ASCIl 32—sameas " "
tab The horizontal tab character, ASCIT 9
t rue The opposite of false
up The value of the key functions for the Command, Oprion,

and Shift keys and for the mouse button when not
currently pressed

zero...ten The numbers 0 through 10

Appendix: HyperTalk Summary



Operator precedence

The table below shows the order of precedence of HyperTalk
operators. The order of precedence determines which operation
HyperCard performs first when evaluating an expression. Operators
are evaluated from left to right, except for exponentiation, which is
from right to left. Parentheses force evaluation in a certain order; for
example, 2+3+5 yields 11, but 2+ (3+5) yields 16.

Order  Operators

[ =)

6

9
10

()

not

* / div med

is in
contains
is not in
= <> #

is

is not

and

or

Appendix: HyperTalk Summary

Type of operator

Grouping

Minus sign for numbers

Logical negation for true or false values
Exponentiation for numbers

Multplication and division for
numbers

Addition and subtraction for numbers
Concatenation of rext
Comparison for numbers or text

Comparison for rext

Comparison for numbers or text

Logical for true or false values
Logical for true or false values

L N



SCHPT edltOI The following table lists keyboard combinations used to edir and
keyboard commands ~ format scripss.

key
combination Effect
-A Select entire script
G Copy selection to Clipboard
-k Find text (same as Find button)
-G Find next occurrence of same text
-H Find current selection
-P Print selection or (if no selection) entire script .
(same as Print button)
Y% Paste Clipboard contents at insertion poinz
-X Cut selection to Clipboard
-period Close script without saving changes
Enter Close script and save changes
Return Return character—indicates end of HyperTalk statement
Option-Return Wrap line without return character (“soft” return—
symbolized by — in scripts. Don't use a “soft” return
inside quotation marks.)
Tab Format script

154 Appendix: HyperTalk Summary




Shortcuts for
seeing scripts

Synonyms and
abbreviations

The following table lists shortcuts for displaying the scripts of

HyperCard objects.

Script

Button script

Field script

Card seript
Background script

Stack script

Shortcut(s)

Click button while pressing
Option and ~ keys

Double-click burron with Burton
tool while pressing Shift key

Click field while pressing
Option, * 7, and Shift keys

Double-click field with Field tool
while pressing Shift key

Press - -Option-C
Press . -Oprion-B

Press  -Oprion-5

This table lists synonyms and abbreviations that you can use in

SCIIpLS.

Term
abbreviated
background
backgrounds

button

buttons

Appendix: HyperTalk Summary

Synonym or
abbreviation

abbr
abbrev

bg
bkgnd

bgs
bkgnds

btn
btns

(comtinticd )

153



156

Term

card

cards
character
characters
commandKey
field
fields
gray
location

message box

middle
picture
polygon
previous
rectangle
regular

secaond (fme untr)

spray can

ticks

Appendix: HyperTalk Summary

Synonym or
abbreviation

cd

cds
char
chars
cmdKey
fld
flds
grey
loc

message
msg box
msg

mid
pict
poly

prev

sSecs
seconds

spray
tick




;llg()l’i[hl]] A step-by-step procedure for solving a
problem or accomplishing a task. Writing
HyperTalk handlers or programs in other
languages often begins with figuring out a suitable
algorithm for a task.

ASCII  Acronym for American Standard Code for
Information Interchange, pronounced “ASK-ee.” A
standard that assigns a unique number to each
text character and control character. ASCII code is
used for representing text inside a computer and
for transmitting information between computers
and other devices.

background A type of HyperCard object; a
emplate shared by a number of cards. Each
card with the same background has the same
background picture, background fields, and
background buttons in its background layer.
Like other HyperCard objects, every background
has a script. You can place handlers in a
background script that you want to be accessible
to all the cards with that background.

imd{gmund button A burtton that is common to all
cards sharing a background. Compare with card
button.

Glossary

background ficld A field chat is common to all

cards sharing a background; its size, position,

and default text format remain constant on all
cards associated with that background, but its
text can change from card to card. Compare with

card field.

background layer The layer behind the card layer,

containing all the elements of the background.
You see the elements of both layers when you look
at a card, as if the card layer were a transparent
layer in front of the background layer. The
background button or background field
created most recently is the topmost object in

the background layer (that is, closest within the
background layer to the front of the screen). The
background picture is behind (farther from the
front of the screen) the objects in the background
layer.

background picture A picture that is common to

all cards sharing a background. You see the
background picture by choosing Background
from the Edit menu. Compare with card picture.



button A type of HyperCard object; a rectangular
“hot spot” on a card or background that
responds when you click it according to the
instructions in its script. For example, clicking a
right arrow button with the Browse tool can take
you to the next card.

card A type of HyperCard object; a rectangular area
that can hold buttons, fields, and graphics. All
cards in a stack are the same size. Each card is a
composite of two layers—a foreground layer,
called the card layer, and a background layer.
You see the elements of both layers when you look
at a card, as if the card layer were a transparent
layer in front of the background layer. Each layer

can contain its own buttons, fields, and graphics.

card button A button in the card layer of a single
card. Compare with background button.

card field A field in the card layer of a specific card;
its size, position, text attributes, and contents are
limited to the card on which the field is created.

Compare with backgmund field.

card Iik},-'t‘r The la}'cr in front of the bad{grmmd
layer. You see the elements of both layers when
you look at a card, as if the card layer were a
transparent layer in front of the background layer.
The card button or card field created most
recently is the topmost object in the card layer
(that is, closest within the card layer to the front
of the screen). The card picture is behind (farther
from the front of the screen) the objects in the
card layer and in front of all the elements in the

background layer.

card picture A picture in the card layer of a single
card. Compare with background picture.

chunk A piece of a character string represented as a
chunk expression. Chunks can be specified as
any combination of characters, words, items, or
lines in a container or other source of value.

chunk expression A HyperTalk description of a
unique chunk of the contents of any container or
other source of value.

command A response to a particular message; a
built-in message handler residing in HyperCard.
Compare with function and keyword. Sce also

external command.

command-key ("-key) equivalent The
combination of the " key and another key
on the keyboard that you can press instead of
choosing a command from a menu.

comments Descriptive lines of text in a script or
program that are intended not as instructions
for the computer but as explanations for people
to read. Comments are set off from instructions
by symbols called delimiters, which vary from
language to language. In HyperTalk, a double
hyphen (--) indicates the beginning of a

comment.

constant A named value that never changes. For
example, the constant empty stands for the null
string, a value that can also be represented by the
literal expression " ". HyperCard contains a
number of constants, such as true, false, up,
down, and pi. Compare with variable.

container A place where you can store a value (text
or a number). Examples are fields, the Message
box, the selection, and variables.

control structure A block of HyperTalk statements
defined with keywords that enable a script to
control the order or conditions under which
specific statements execute.

Glossary




current  (adj.) The card, background, or stack you're
looking at now. For example, the current card is
the one you see in the active window on your
screen.

debug To locate and correct an error or the cause of
a problem or malfunction in a computer

program, such as a HyperTalk script.

delimiter A character or characters used to mark the
beginning or end of a sequence of characters; that
is, to define limits. For example, in HyperTalk
double quotation marks act as delimiters for
literals, and comments are set off with two

hyphens at the beginning of the comment and a
.Etlll.'ﬂ charactf:r at dlf.' lEl"l.d.

empty Used to describe scripts that contain no
handlers. Every HyperCard object has a scripr,
even if the script is empty. See also null.

expression A HyperTalk description of how to geta
value; a source of value or complex expression
built from sources of value and operators.

external command (Also known as XCMD.) A
command written in a computer language other
than HyperTalk but made available to HyperCard
to extend its built-in command set. External
commands can be artached to a specific stack or
to HyperCard itself. See also external function.

external function (Also known as XFCN.) A
function written in a computer language other
than HyperTalk but made available to HyperCard
to extend its built-in function set. External
functions can be attached to a specific stack or to
HyperCard itself. Sce also external command.

field A type of HyperCard object; a container in
which you type field text (as opposed to Paint
text). HyperCard has two kinds of ficlds—card

fields and background fields.

function A named value that HyperCard calculates
each time it is used. The way in which the value is
calculated is defined internally for HyperTalk’s
built-in functions, and you can define your own
functions with function handlers. Sometimes a
script must supply a function with starting values
or parameters. Compare with command and
keyword.

function call  The use of a function name in a
HyperTalk statement or in the Message box,
invoking either a function handler or a built-in
function.

function handler A handler that executes in
response to a function call matching its name.

global properties The properties that determine
aspects of the overall HyperCard environment.
For example, userLevel is a global property that
determines the current user level setting,

global variable A variable that is valid for all
handlers in which it is declared. You declare a
global variable by preceding its name with the
keyword global.Compare with local variable.

handler A block of HyperTalk statements in the
script of an object thart executes in response to a
message or a function call. The first line in a
handler must begin with the word on, and the
last line must begin with the word end. Both on
and end must be followed by the name of the
message or function. HyperTalk has message
handlers and function handlers.

hicrarchy = See object hierarchy.

Glossary 159



Home cards The first five cards in the standard
Home stack, designed to hold buttons that take
you to stacks, applications, and documents.
Choose Home from the Go menu (or press  -H)
to get to the card in the standard Home stack that
you've seen most recently. You can also type go
nome in the Message box or include it as a
statement in a handler.

HyperTalk The built-in script language for
HyperCard users.

identifier A character string of any If.ngth, beginning
with an alphabetic character, containing any
alphanumeric character and, optionally, the
underscore character. Identifiers are used for
variable and handler names.

integer A number with no decimal part. For
example, -6, 0, and 125 are all integers; 2.54 is
not an integer.

keyword Any one of the 13 words that have a
special meaning in HyperTalk statements.
Examples of keywords are end, if, on, repeat,
and send.

link A short script, usually in a button but
potentially in any HyperCard object, that allows
you to move immediately to a specific card in a
stack, to an application, or to a document. For
example, clicking a button that contains a link to
your Addresses stack takes you immediately to the
first card of that stack.

literal A string of characters intended to be taken
literally. In HyperTalk, you use quotation marks
(" ) as delimiters to set off a string of characters
as a literal, such as the name of an object or a
group of words you want to be treated as a text
string,.

160

local variable A variable that is valid only within
the handler in which it is used (local variables
need not be declared). Compare with global
variable.

loop A section of a handler that is repeated until a
limit or condition is met, such as ina repeat
structure.

message A string of characters sent to an object
from a script or the Message box, or that
HyperCard sends in response to an event.
Messages that come from the system—from
events such as mouse clicks, keyboard actions, or
menu commands—are called system messages.
Examples of HyperTalk messages are mouseup, .
go, and push card. See also handler and ﬂbject
hierarchy.

Message box A container that you use to send
messages to objects or to evaluate expressions.

message handler A handler that executes in
response to a message matching its name,

message-passing order  The order in which a
message is passed between objects. For example,
a message that goes first to a button, such as
mouseUp, would £0 next to the card, then to [l’le
background, then to the stack, and finally ro
HyperCard itself, unless intercepred and acted
upon by a handler. See also object hierarchy.

metasymbol = See syntax.
null Having no value at all, not even zero. The
HyperTalk constant empty is defined as a string

containing nothing—that is, a null string. A
string containing 0 would not be empry.

Glossary




number A character string consisting of any
combination of the numerals 0 through 9,
optionally including one period (.) representing a
decimal value. A number can be preceded by a
hyphen or a minus sign to represent a negative
value.

object  An element of the HyperCard environment
that has a script associated with it and that can
send and receive messages. There are five kinds of
HyperCard objects: buttons, fields, cards,
backgrounds, and stacks.

object descriptor A HyperTalk description that
‘peciﬁes a unique object. An object descriptor is
ormed by combining the name of the type of
object with a specific name, number, or ID
number. For example, background button 3
is an object descriptor.

object hierarchy The hierarchy of objects according
to their message-passing order. For example, for
a message such as mouseUp, the button that first
receives the message is higher in the object
hierarchy than the background, the stack, or
HyperCard itself.

object properties The properties that determine
how HyperCard objects look and act. For
example, the autohilite property of a button

.:lf:termines whether the button will highlight

when clicked.

operator A character or group of characters that
causes a particular calculation or comparison to

occur. In HyperTalk, operators operate on values.

For example, the plus sign (+) is an arithmetic
operator that adds numerical values.

painting properties The properties that control
aspects of HyperCard's painting environment,
which is invoked when you choose a Paint tool.
For example, the brush property determines the

shape of the Brush tool.

palette A small window that displays icons or
patterns you can select by clicking. You can see
two of HyperCard’s palettes, the Tools palette and
the Patterns palette, simply by “tearing oft” their
respective menus. To see the Go palette, type
show go window In the Message box. See also
tear-off menu.

parameters Values passed to a handler by a message
or function call. Any expressions after the first
word in a message are evaluated to yield the
parameters; the parameters to a function call are
enclosed in parentheses or, if there is only one, it
can follow of.

parameter variables Local variables in a handler
that receive the values of parameters passed with
the message or function call initiating the
handler’s execution.

piC[Ul‘L’ Any graphic or part of a graphic, created
with a Paint tool or imported from an external
file, that is part of a card or background.

pixel Short for “picture element”; the smallest dot
you can draw on the screen. The position of the
pointer is often represented by two numbers
separated by commas. These numbers are
horizontal and vertical distances of the poinrer
from the left and top edges of the card window,
measured in pixels. The upper-left corner of the
screen has the coordinates 0, 0.

Glossary 161



point In printing, the unit of measurement of the
h-:'_'ight of a text character; one point is abour . of
an inch. When you sclect a tont, you can also
select a point size, such as 10-point, 12-point, and
so on. Also, a location on the screen described by
two integers, separated by a comma, that
represent horizontal and vertical offsets measured
.in pixels from the upper-left corner of the card
window or (in the case of the card window itself)
of the screen.

properties The defining characteristics of any
HyperCard object and of HyperCard’s
environment. For example, setting the user level
to Scripting changes the userLevel property of
HyperCard to the value 5. Properties are often
selected as options in dialog boxes or on palettes,
or they can be set from handlers. See also global
properties, object properties, painting
properties, and window properties.

Recent A special dialog box that holds pictorial
representations of the last 18 unique cards viewed.
Choose Recent from the Go menu to get the
dialog box. Also, as in recent card, a HyperTalk
adjective describing the card you were viewing
immediately prior to the current card.

recursion The continuing repetition of an operation

or group of operations. Recursion occurs when a
handler calls itself.

resource fork The part of a file that contains
resources such as icons and sounds.

script - A collection of handlers written in HyperTalk
and associated with a particular object. You use
the script editor to add to and revise an object’s
script. Every object has a script, even though some
scripts are empty; that is. they contain nothing,

162

script editor A large window in which you can type
and edit a seript. The title bar of the scripr editor
describes the object to which the seript belongs.
You can use the Edit menu, the Script menu, and
keyboard commands to edit text in the script
editor. See also handler, object, and script.

scripting  The act of writing scripts, or programs in
HyperTalk. Also refers to the user level that

allows you to look at and change objects’ scripts.

search path  When you open a file from within
HyperCard, HyperCard attempts to locate the
stack, document, or application you want by
searching the folders listed on the Search Paths
card in the Home stack. Each line on the Searc
Paths card indicates the location of a folder,
including the disk name (and folder and subfolder
names, if any). This information is called a search
path. Items in a search path are separared by
colons, like this: :my disk:HyperCard
folder:my stacks:

Search Paths card A card in the Home stack used to
store information about the location of stacks,
documents, and applications that you open while
HyperCard is running. See also search path.

selection A container that holds the currently
sclected area of text. Note that text found by the
find command is not selected. .

shared text Field text that appears on every card in a
background. Shared text can only be edited from

the background layer.

source of value HyperCard’s most basic
expressions; the language elements from which
values can be derived: constants, containers,
functions, literals, and properties.

Glossary




stack A type of HyperCard object that consists of a
collection of cards; a HyperCard document.

statement A line of HyperTalk code inside a
handler or typed into the Message box. A
handler can contain many statements. Statements
within handlers are first sent as messages to the
object containing the handler and then to
succeeding objects in the object hierarchy.
Statements typed into the Message box are sent to
the current card.

string A sequence of characters. You can compare
and combine strings in different ways by using
perators. In HyperTalk, for example, 23 + 23
‘/ill result in 46; but 23 & 23 will result
in 2323.

subprocedure A part of a larger procedure. You can
write scripts that perform complex tasks by
dividing the task into parts and writing message
handlers to perform each subprocedure.

syntax A description of the way in which language
elements fit together to form meaningful phrases.
A syntax statement for a command shows the
command in its most generalized form, including
placeholders (sometimes called metasymbols) for
elements you must fill in, as well as oprional
elements.

s’m message A message sent by HyperCard to
an object in response to an event such as a mouse
click, keyboard action, or menu command.
Examples of HyperCard system messages are
mouselp, doMenu, and newCard.

target The object thar first receives a message.

tear-off menu A menu that you can remove from
the menu bar by dragging the pointer beyond the
menu’s edge. HyperCard has three menus that
can be torn off: the Tools menu, the Partterns
menu, and the Go menu. When torn off, these
menus are referred to as palettes.

text property A quality or attribute of a character’s
appearance. Text properties include style, font,
and size.

tick Approximately one-sixtieth (60) of a second.
The wait command assumes a value in rticks
unless you specify seconds by adding secs or

seconds.

user level A property of HyperCard, ranging from
1 to 5, that determines which of HyperCard’s
capabilities are available. You can select the user
level on the User Preferences card in the Home
stack. Each user level makes all the options from
the lower levels available, and gives you additional
capabilities. The five user levels are: Browsing,
Typing, Painting, Authoring, and Scripting.

User Preferences card The last card in the Home
stack, where you can set your user level and select
or deselect the Blind Typing, Power Keys, and
Arrow Keys in Text options.

value A piece of information on which HyperCard
operates. All HyperCard values can be treated as
strings of characters—they are not formally
separated into types. For example, a numeral
could be interpreted as a number or as rext,
depending on what you do with it in a HyperTalk

handler.

Glossary 163



variable A named container that can hold a value
consisting of a character string of any length. You
can create a variable to hold some value (either
numbers or text) simply by using its name with
the put command and putting the value into it
HyperCard has local variables and global

variables. Compare with constant.

window properties  The properties that determine
how windows such as the Message box and the
Tool and Pattern palettes are displayed. For
example, the visible property of a window
determines whether that window is displayed on
the screen.

164 Glossary




& (ampersand) 54

[] (brackets), syntax elements in 22, 136
55 (double ampersand) 40, 54

-~ (double hyphen) 52, 54

— (soft return) 43, 54

A
abbreviations, for scripts 155-156
About button 46—48
algorithm, defined 157
ampersand, double (s&), with text characters 40, 54
ampersand (&), with text characters 54
agimation effects
8.1“{ 120-121
with Paint tools 122-126
scripts for 120-126
answer command 50
defined 53
syntax of 55
Art Ideas stack 32
ASCII, defined 157

B
background
adding fields 23-26
defined 157
function of 7
properties listed 149
background button, defined 157
background field
defined 157
moving message handlers to 100-101, 105
with shared text 4547
specifying 46
background layer, defined 157
background picture, defined 158
background properties, list of 149
bg. See background
brush properties, values for 125-126
Button Info dialog box 10
buttons. See also background button; card button
About 4648
adding to Home stack 15-17
for animation stack 120-121
customizing 11, 30

165



buttons (continued) Command key, in keyboard shortcuts 8

defined 158 command-key equivalent, defined 158
Home 9-11, 19-20 commands. See also external command; keyboard
Next 29-31 commands

Previous 31-32

properties listed 149

Quit 63-66

Show/Hide 127-128

Sort 49-50

Sound 96-97

system messages sent to 148
Write Headline 128-129

B
Can't understand dialog box 21, 103
capiralization, in HyperTalk 13, 136
card. See also index card; topic card
adding to stack 29
animation sequence for 120-121
defined 158
labels for 4142
properties listed 149
system messages sent to 148
card button, defined 158
card field
defined 158
specifying 46
Card Info dialog box 69
card layer, defined 158
card picture, defined 158
choose command 131
syntax of 132
chunk, defined 158
chunk expression, defined 158
click command 84
syntax of 86
clickLoc function 78-79, 85
color, choosing for fields 25

alphaberical list of 137-141
answer 950, 53, 55
choose 131, 132
click 84, 86
defined 15, 158
defining new 104
doMenu 64, 84, 87
drag 131, 133
find 82-83, 84, 87
go 34, 35
hide 48, 53, 56
lock screen 74-75, 84, 89
play 111,112
put 38, 39, 53, 57
set 77,78, 84, 91
show 48, 53, 58
show cards 131, 133
sort 53,59
syntax of 22
visual 21-22, 34, 35, 36
wait 92
comments
adding to scripts 52
defined 158
constants
defined 159
list of 152
container
defined 159
function of 37
Message box as default 57
putting values in 38-40
control structure, defined 159
Credits field, creating 4447

current, defined 159

Index




D
date function 78, 85
debug, defined 159
delimiter, defined 159
doMenu command 64, 84
syntax of 87
double hyphen (--), preceding comment 52, 54
drag command 131
syntax of 133
dragSpeed property 131

E

else keyword 84

e , defined 159
e“fcyword, defined 34
entries field. See index
expression, defined 159

external command, defined 159
external funcrion, defined 159

F
Field Info dialog box 24-25
fields. See also background field; card field
adding text 27-28
adding to background 23-26
as container 40—43
creating 24-25
defined 159
king and unlocking 47, 48, 80
oving between 29-32
pop-up 44
properties listed 150
putting values in 4042
specifying kinds of 46
system messages sent to 148
visible property of 127
Field ool 24
filled property 131
find command 82-83, 84
syntax of 87
font, choosing for fields 25

function call, defined 159
function handler, defined 160
functions. See also external funcrion
alphabetical list of 142-146
clickLoc 78-79, 85
date 78, 85
defined 78, 159
mouse 131
random 125
selectedLine 81, 85
value 82, 85

G

global keyword 51
global properties
defined 160
list of 150
gjuh;ﬂ variable 51
defined 160
go command 34
syntax of 35

H
handler. See also message handler
defined 160
hide command 53
function of 48
syntax of 56
hierarchy. See object hierarchy
hilite property 77, 85
Home button
creating 9-11
visual effect script for 19-20
Home card, defined 160
Home stack
adding buttons 15-17
first card 4
HyperTalk language 2
syntax of. See syntax; syntax statements
hyphen, double (--), preceding comment 52, 54

Index

167



[,] local variable 49-51

id;?ntiﬁcr, defined 160 defined 160 ‘ )
if keyword 84 location property, defined 79, 85
syn.tax of 88 locking fields 47, 48
if structures lock screen command 74—75, 84
adding conditions 65-66 syntax of 89
function of 62-63 lockText property 81, 85
nesting 66 loop. See also repeat structures
image (in visual effects), list of terms 36 defined 161
index, script for generating 68-74
Index button, creating 68-74 M
indexicard 69 me, used for object 47, 54

integer, defined 160

: message. See also message handler; message-passing
it, as variable 51, 54

order; system messages

italics, for placeholders 22, 136 defined 161 .
Message box 38
K calling handlers from 109-110
keyboard commands, for script editor 154 as default destination for put command 57
keyboard shortcuts dcflr.led 161 .
for creating fields 23-24, 26 putting values in 38-40
for editing text in scripts 43 CEE%C; []:;ﬂs:dllg 147
i i mess
keyf‘.(::gizzmg P 152 calling from Message box 109-110
alphabetical list of 147 calling from other handlers 101-103
defined 160 defined 17, 161
else 84 location of 96
end 34 message-passing order and 97
function of 18 message-passing order 94, 95
global 51 defined 161
if 84, 88 metasymbol. See syntax
on 34 mouseDown system message 53 .
pass 107 mouse function 131
repeat 84 mouseUp system message 14
send 109, 111, 114, 147 d{:ﬁncd 34
then 84 music. See sounds
L N

name property, defined 77

nesting, if structures 66

labels, script for adding to cards 41-42

line breaks, in scripts 114

link, defined 160 New Stack dialog box 6
li[r:r;ﬂ defined 160 Next button, creating 29-31
168 Index



D
date function 78, 85
debug, defined 159
delimiter, defined 159
doMenu command 064, 84
syntax of 87
double hyphen (--), preceding comment 52, 54
drag command 131
syntax of 133
dragSpeed property 131

E
else keyword 84

e , defined 159
echword, defined 34
entries field. See index
expression, defined 159

external command, defined 159
external function, detined 159

F
Field Info dialog box 24-25
fields. See also background field; card field
adding text 27-28
adding to background 23-26
as container 4043
creating 24-25
defined 159
&cking and unlocking 47, 48, 80
oving between 29-32
pop-up 44
properties listed 150
putting values in 4042
specifying kinds of 46
system messages sent to 148
visible property of 127
Field tool 24
filled property 131
find command 82-83; 84
syntax of 87
font, choosing for fields 25

function call, defined 159
function handler, defined 160
functions. See also external function
alphabetical list of 142-146
clickLoc 78-79, 85
date 78, 85
defined 78, 159
mouse 131
random 125
selectedLine 81, 85

value 82, 85

G

global keyword 51
global properties
defined 160
list of 150
global variable 51
defined 160
go command 34
syntax of 35

H
handler. See also message handler
defined 160
hide command 53
function of 48
syntax of 56
hierarchy. See object hierarchy
hilite property 77,85
Home button
creating 9-11
visual effect script for 19-20
Home card, defined 160
Home stack
adding buttons 15-17
first card 4
HyperTalk language 2
syntax of. See syntax; syntax statements
hyphen, double (--), preceding comment 52, 54

Index

167



I,] local variable 49-51

identifier, defined 160 defined 160 \ _
if keyword 84 location property, defined 79, 85
syn.mx of 88 locking fields 47, 48
if strucrures lock screen command 74-75, 84
adding conditions 65-66 syntax of 89
function of 62-63 lockText property 81, 85
nesting 66 loop. See also repeat structures
image (in visual effects), list of terms 36 defined 161
index, script for generating 68-74
Index button, creating 68-74 M
Indexicaed 69 me, used for object 47, 54

integer, defined 160

it as variable 51, 54 message. See also message handler; message-passing

order; system messages

italics, for placeholders 22, 136 defined 161 .
Message box 38
K calling handlers from 109-110

- . v . H 3 y - . 57
keyboard commands, for script editor 154 as default destination for put command 5’

keyboard shortcurs dthr_lf:d 161
for creating fields 23-24, 26 putting values in 38-40
for editing text in scripts 43 send keyword in 147
for seeing scripts 155 message handler 18

keywords calling from Message box 109-110
alphabetical list of 147 calling from other handlers 101-103
defined 160 defined 17, 161
else 84 location of 96
aon 34 message-passing order and 97
function of 18 message-passing order 94, 95
global 51 defined 161
if 84, 88 metasymbol. See syntax
o 34 mouseDown system message 53 .
— v mouse function 131
Lrepeat 84 mouseUp System message 14
send 109, 111, 114, 147 defined 34
then B4 music. See sounds

9 N

name property, defined 77

nesting, if structures 66

labels, script for adding to cards 41-42

line breaks, in scripts 114

link. defined 160 New Stack dialog box 6
literal, defined 160 Next button, creating 29-31
168 Index



note (music), specifying 112, 113
null, defined 161
number, defined 161

O
object
defined 161
scripting and 5, 17
object descriptor, defined 161
object hierarchy. See also message-passing order
defined 161
object property, defined 161
octave, specifying 112
on _keyword, defined 34
o;.:ard system message 43, 53
operators
defined 161
order of precedence in HyperTalk 153
in scripts 54
Option key, in scripting shortcuts 155
Option-Return (=)
defined 43

function in text 54

P
painting, with HyperTalk scripts 122-124
painting properties

defined 162

list of 150

tools

In animation scripts 122-123

script editor and 123

using 32-33
palette, defined 162
parameters

defined 162

for functions 142
parameter variable, defined 162
parentheses ( () ), in syntax of functions 142
pass keyword 107

pattern property 131
values for 124
pause, setting with wait command 92
period (.)
in doMenu command 87
with duration code 113
picture, defined 162
pixel 79
defined 162
play command 111
syntax of 112
point, defined 806, 162
presentation stack, creating 117-119
Previous button, creating 31-32
properties. See also global properties; painting
properties; text properties; window properties
alphabetical list of 149-151
background properties 149
button properties 149
card properties 149
defined 162
dragSpeed 131
field properties 150
filled 131
hilite 77,85
location 79, 85
lockText 81, 85
name 77
serting 77-78
visible 127
put command
defined 53
function of 38
syntax of 39, 57

Q

Quit button
creating 6300
quotation marks (" ")
line breaks inside 114
with sounds in a script 112
with text characters 39-40

Index 169



R

random events, scripts for stacks producing 126-129
random function 131
in setting patterns 125
Recent dialog box, defined 162
recursion, defined 162
repeat keyword 84
syntax of 90
repeat structures 66, 123-124
resource fork, defined 162

S

screen
locating horizontal and vertical coordinates 79,
125,133
locking and unlocking 89
script editor
defined 163
keyboard commands for 43, 54, 154
opening 21
with paint tools 123
using 12-13
scripting. See also script editor, using
defined 163
Objects menu and 5
SCTIpts
abbreviations and synonyms for 155-156
adding comments 52
L'huosing tools from within 132
defined 163
format of 13
keyboard shortcuts for seeing 155
long lines in 114
message handlers in 17
purpose of 14
saving changes 13
statements in 15
search path, defined 163
Search Paths card, defined 163
selectedLine function 81, 85
selection, defined 163

170

send keyword 111
in Message box 109, 147
syntax of 114
set command
with properties 77, 84
syntax of 78, 91
shared text, defined 163
shortcuts. See keyboard shortcuts
show cards command 131
syntax of 133
show command
defined 53
function of 48
syntax of 58
Show/Hide button, creating 127-128
“soft” return character. See Oprion-Return
Sort button, creating 49-50
sort command
defined 53
syntax of 59
Sound button, creating 96-97
sounds
with play command 111
scripts for playing 96-97, 102-104, 106-109
syntax for creating 112114
source of value, defined 163
speed (in visual effects), list of terms 36
square brackets (1), in syntax notation 22, 136
stack
creating 6-7
defined 163
properties listed 151
statement, defined 15, 163
string, defined 163
style property, defined 77
subprocedure, defined 110, 163
synonyms, for scripts 155-156
syntax. See also commands
conventions 21-22

defined 163

crrors in 21

[ndex



syntax statements
commands 137-141
functions 142-146
keywords 147
notation for 22, 136

system messages 101, 111
alphabetical list of 148
defined 14, 164
mouselDown 53
mouseUp 14, 34, 94
openCard 43,53

dl

target, defined 164

t ff menu, defined 164

tn)o, specifying 112

text, keyboard commands for editing 43, 154
text properties, defined 164

Text Style dialog box, choosing fonts 25
the, in functions syntax 142

then keyword 84

tick, defined 164

time function 39,78

tools, selecting with choose 132

U
unlock screen command, syntax of 89
user level, defined 164

User Preferences card 5

‘eﬁned 164

V
value
defined 164
putting into containers 3840
putting into fields 4042
value function 82, 85

variable. See also global variable; local variable;
parameter variable

defined 49, 164
naming 51

visible property 131
defined 128

visual command
defined 34
syntax of 21-22, 36

visual effects
list of 36
scripts for 19-20

W, XY, Z
wait command, syntax of 92
window properties 151

defined 164
Write Headline button, creating 128-129

Index



Quick Reference Carc

o HyperTalk’

S(.l’lpt editor The following table lists keyboard combinations used to edit and
keyboard commands ~ formac scripts.

Key
combination Effect

-A Select entire script
-C Copy selection to Clipboard
-F Find text (same as Find button)
-G Find next occurrence of same text
-H Find current selection
1P Print selection or (if no selection) entire script

(same as Print button)

3V Jaste Clipboard contents at insertion point
=X Cut selection to Clipboard
“-period Close script without saving changes
Enter Close script and save changes
. Return Return character—indicates end of HyperTalk statement
Option-Return Wrap line without return character (“soft” return—

symbolized by — in scripts. Don't use a “soft” return
inside quotation marks.)

Tab Format script

©Apple Computer, Inc., 1990

Apple, the Apple logo, and HyperTalk are registered trademarks
of Apple Computer, Inc.



Commands

This section lists the syntax of all HyperTalk commands. For more
i nformation about other HyperTalk commands, see the HyperTalk
Help stack or the HyperCard I1Gs Script Language Guide.

add number to [chunk of] container

answer question

answer question with reply

answer question with replyl or reply2

answer question with replyl or reply2 or reply3
answer file fext [of type fileTypel

arrowKey direction

ask question [with defaultAnswer]
ask password question [with defaultAnswer)
ask file text [with fileName)

beep [ number)

choose toolName tool
choose tool number

click at peint

click at point with keyl

click at point with keyl, key2

click at peint with keyl, key2, key3

close file fileName

close printing

controlKey keyNumber

convert [chunk of) container to format [and format]

create stack stackName [with f;ar'.i'gmurfd]

delete chunk of container
delete [stack] stackName

dial number
dial number with modem [ modemCommands)

divide [chunk of] container Dy number



doMenu menultemn [without dialog)

drag from point to point

drag from peoint to point with keyl

drag from point to point with keyl, key2

drag from point to point with keyl, key2, key3

edit script of object
enterKey
export paint to file filename

find tfext

find fext [in backgroundField |

find chars text [in backgroundField |
find word fext [in backgroundField |
find whole fext [in backgroundField |
find string fext [in backgroundField |

functionKey keyNumber
get expression

go [to] stack
go [to] background [of stack ]
go [to] card [of background) [of stack ]

help

hide button
hide freld

hide card picture

hide picture of card

hide background picture
hide picture of background

hide menuBar

hide message box
hide tool window
hide pattern window
hide go window

hide card window

import paint from file ﬁfenﬂmr



lock

[the] printTemplate

lock screen

multiply [chunk of] container by number

open [fileName with] applicationName

open file fileName

open printing [with dialog]

play sound [tempo] |notes]

play stop

pop card
pop card into [chunk of] container

pop card after [chunk of] container
pop card before [chunk of)] container

print

freld

print fileName with applicationName

print
print
print
print

push

card

number cards
card

all cards

card

put  expression

put expression
put expression
put  expression

read
read
read
read
read

into [chunk of]
after [chunk of] container
before |[chunk of] container

contamer

from file fileName at start for numberOfChars
from file fileName for numberOfChars

from file fileName until character

from file fileName until end

from file fileName until eof

reset paint

returnkey



save
save
save
sSave

this stack as fileName
this stack as pathName
[stack] stackName as fileName
[stack] stackName as pathName

select button
select fleld

select text of container
select before text of container
select after text of container

select chunk of container
select before chunk of container
select after chunk of container
select empty

Note: container is a field or the Message box.

set [thel property [of object] to expression

show
show

show
show
show
show

show
show
show
show
show
show

show
show

sort

button [at point)
ﬁfH lat point)

card picture
picture of card
background picture

picture of background

menuBar

message box

tool window [at peint]
pattern window [at peint]
go window [at peint)

card window

number cards
all cards

[ sortDirection] [sortStyle] by expression

subtract number from [cﬁurzk of] container

tabKey




Ly fext

type fext with keyl

type fext with keyl, key2

type text with keyl, key2, key3
unlock [the] printTemplate

unlock screen
unlock screen with wvisualEffect

Note: visualEffect is any form of the visual command.
visual [effect] effectiName [speed) [to image]

wait [for] number [seconds]

wait until condition

wait while condition

write text to file fileName (at start]



