®

Apple IIes® Toolbox

Reference, Volume
Beta Draft
APDA™ # AQ229LL/A

.

-
=

TRy PSR bt s s s e € S
o Hoanaaaas e e
Lo o o .
o

\v;{% %
.

S

«, Apple IIcs* Toolbox Reference

Volume 3
Beta Draft
This package contains:
1 Manual Apple 1IGS Toolbox Reference, Volume 3
Set of Release Notes None
Disk None
1 2-inch Binder Cover
1 2-inch Spine Identification

If you have any questions, please call:

1-800-282-2732 (U.S)
1-408-562-3910 (International)
1-800-637-0029 (Canada)

A0229LL/A 9/5/89

s

€«
Apple. IIgs. Toolbox Reference

Volume 3

€.

Beta Draft
Developer Technical Publications
© Apple Computer, Inc. 1989

& APPLE COMPUTER, INC.

This manual is copyrighted by
Apple or by Apple’s suppliers, with
all rights reserved. Under the
copyright laws, this manual may not
be copied, in whole or in part,
without the written consent of Apple
Computer, Inc. This exception does
not aliow copies to be made for
others, whether or not sold, but all
of the material purchased may be
sold, given, or lent to another
person. Under the law, copying
includes translating into another
language.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the *keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws,

© Apple Computer, Inc., 1989
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, Apple IIGS,
AppleShare, ImageWriter,
LaserWriter, and Macintosh

are registered trademarks of
Apple Computer, Inc.

APDA, Apple Desktop Bus, GS/OS,
MPW, and QuickDraw are
trademarks of

Apple Computer, Inc,

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

POSTSCRIPT is a registered trademark,
and Hlustrator is a trademark, of
Adobe Systems Incorporated.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in
the manual or in the media on
which a software product is
distributed, APDA will replace the
media or manual at no charge to
you provided you return the item
to be replaced with proof of
purchase to APDA.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY OR
REPRESENTATION, EITHER
EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS
MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND
REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU
OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent,
or employee is authorized to
make any modification, extension,
or addition to this warranty.

Some states do not allow the
exclusion or limitation of implied
warranties or liability for incidental
or consequential damages, so the
above limitation or exclusion may
not apply to you. This warranty
gives you specific legal rights, and
you may also have other rights
which vary from state to state.

Apple 1IGS Toolbox Reference, Volume 3

Preface

26

27

Beta Draft
Contents
Contents il
Figures and tables xxii
What'’s in this volume xxvii
Organization xxviii
Typographical conventions xxviii
Call format xxix
Indexes XXX

Apple Desktop Bus Tool Set Update 26-1
Error correction 26-2

Clarification 26-3

Audio Compression and Expansion Tool Set 27-1

Error correction 27-2

About Audio Compression and Expansion
Uses of the ACE Tool Set 27-3
How ADPCM works 274

ACE housekeeping routines ~ 27-5
ACEBootInit $011D 27-5
ACEStartUp $021D 27-6
ACEShutDown $031D 27-7
ACEVersion $041D 27-8
ACEReset $051D 279
ACEStatus $061D 27-10
ACEInfo $071D 27-11

27-2

Contents

30 August 1989

Apple LGS Toolbox Reference, Volume 3 Beta Draft

Audio Compression and Expansion tool calls

ACECompBegin $0BI1D
ACECompress $091D 27-13
ACEExpand $0AID 27-15
ACEExpBegin $0CID

ACE Tool Set error codes 27-18

28 Control Manager Update
Error corrections 282
Clarifications 283
New features in the Control Manager

Keystroke processing in controls

The Control Manager and resources

New and changed controls
Simple button control 28-7
Check box control ~ 28-7
Icon button control 28-7
LineEdit control 28-8
List control 28-9
Picture control 289
Pop-up control 28-10
Radio button control 28-11
Scroll bar control 28-11
Size box control 28-11
Static text control 28-11
TextEdit control 28-12

New control definition procedure messages

Initialize routine
Drag routine 28-13
Record size routine
Event routine 28-14
Target routine 28-15
Bounds routine 28-16
Window size routine 28-17
Tab routine 28-18
Notify multipart routine
Window change routine
New Control Manager calls ~ 28-21
CallCtlDefProc $2C10

28-13

28-13

iv Apple TIGS Toolbox Reference, Volume 3

30 August 1989

27-12
27-12

27-17

28-1

284

284
28-5

28-6

28-12

28-19
28-20

28-21

Apple LGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

CMLoadResource $3210 28-23
CMReleaseResource $3310 28-24
FindTargetctl $2610 28-25
GetCtlHandleFromID $3010 28-26
GetCtlID $2A10 28-27
GetCtlMoreFlags $2E10 28-28
GetCtlParamPtr $3510 28-29
InvalCtls $3710 28-30
MakeNextCtlTarget $2710 28-31
MakeThisCtlTarget $2810 28-32
NewControl2 $3110 28-33
NotifyCtls $2D10 28-35
SendEventToCtl $2910 28-36
setctlip $2B10 28-38
SetCtlMoreFlags $2F10 28-39
SetCtlParamPtr $3410 2840
Control Manager error codes 28-41
New Control Manager templates and records ~ 28-42
NewControl2 input templates 28-42
Control template standard header 28-43
Keystroke equivalent information =~ 28-48
Simple button contro] template 28-49
Check box control template ~ 28-51
Icon button control template 28-53
LineEdit control template 28-56
List control template 28-58

Picture control template 28-61
Pop-up control template 28-63
Radio button control template 28-69

Scroll bar control template 28-71
Size box control template 28-73
Static text control template 28-75
TextEdit control template 28-77

Control Manager code example ~ 28-83

New control records 28-89
Generic extended control record 28-89
Extended simple button control record 28-95
Extended check box control record ~ 28-98
Icon button control record 28-101
LineEdit control record 28-104

Contents v

Apple LGS Toolbox Reference, Volume 3 Beta Draft

vi

List control record 28-107
Picture control record 28-110
Pop-up control record 28-113

Extended radio button control record 28-118

Extended scroll bar control record
Extended size box control record

Static text control record 28-127
TextEdit control record 28-131

29 Desk Manager Update 29-1

30

31

32

New features in the Desk Manager 29-2
Scroliable CDA menu 29-2
Run queue 29-3
Run queue example ~ 29-5
New Desk Manager calls 29-6
AddTorung $1F05 296
RemoveFromRunQ $2005 29-7
RemoveCDA $2105 29-8
RemoveNDA $2205 299

Dialog Manager Update 30-1
Error corrections 30-2

Event Manager Update 31-1

New features in Event Manager 31-2
Joumaling changes 31-2
Keyboard input changes 31-3

New Event Manager calls 315
GetKeyTranslation $1B06 31-5
SetAutoKeyLimit $1A06 31-6
SetKeyTranslation $1C06 31-7

Font Manager Update 32-1

New features in the Font Manager 32-2
New call 32-3
InstallWwithStats $1C1B 32-3

Apple IIGs Toolbox Reference, Volume 3

28-121
28-124

30 August 1989

Apple LIGS Toolbox Reference, Volume 3 Beta Draft

33 Integer Math Tool Set Update
Clarifications 33-2

34 LineEdit Tool Set Update

New features in LineEdit 34-2
New call 34-5
GetLEDefProc $2414
35 List Manager Update 35-1

Clarifications 35-2
List Manager definitions 35-2

New features in the List Manager

New List Manager calls 35-5
DrawMember2 $111C 35-5
NewList2 $161C 35-6
NextMember2 $121C 35-8
ResetMember2 $131C
SelectMember2 $141C
SortList2 $151C 35-11

36 Memory Manager Update
Error correction 36-2
Clarification 36-2
New features in the Memory Manager

Out-of-memory queue 36-2

Out-of-memory Routine example

New Memory Manager calls ~ 36-8
AddToOOMQueue $0C02
RealFreeMem $2F02 36-9
RemoveF romOOMQueue

37 Menu Manager Update 37-1
Error corrections 37-2
Clarifications 37-2
New features in the Menu Manager

$0D02

30 August 1989

331

34-1

34-5

35-4

359
35-10

36-1

36-2
36-5
36-8

36-10

37-4

Contents

vii

Apple 1IGs Toolbox Reference, Volume 3

Menu caching

Beta Draft

37-6

Caching with custom menus

Pop-up menus

37-8

37.7

Pop-up menu scrolling options 37-10
How to use pop-up menus

New Menu Manager data structures

Menu item template 37-15

Menu template

37-18

Menu bar template ~ 37-20
New Menu Manager calls 37-21
GetPopUpDefProc $3BOF

HideMenuBar
InsertMItem2
$3EOF 37-24

NewMenu?2
NewMenuBar2

$450F 37-22
$3FOF

$430F 37-25

PopUpMenuSelect $3COF

SetMenuTitle2
SetMItem2
SetMItemName?2
ShowMenuBar

38 MIDI Tool Set

$400F

$410F 37-30

$420F
$460F 37-32

38-1

About the MIDI Tool Set 38-2
Using the MIDI Tool Set 38-4
Tool dependencies 38-7
MIDI packet format 38-7
MIDI Tool Set service routines
Real-time command routine
Real-time error routine
Input data routine ~ 38-12
Output data routine 38-13
Starting up the MIDI Tool Set
Reading time-stamped MIDI data 38-16
Fast access to MIDI Tool Set routines
MIDI application considerations 38-22
MIDI and AppleTalk 38-22
Disabling interrupts ~ 38-22
MIDI and other sound-related tool sets 38-23

The MIDI clock

vili Apple IIGS Toolbox Reference, Volume 3

38-23

37-12

37-21
37-23
37-27
37-29

37-31

38-9
38-10
38-11

38-14

37-15

38-20

30 August 1989

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Input and output buffer sizing 38-24

Loss of MIDI data ~ 38-25

Number of MIDI interffaces ~ 38-25
MIDI Housekeeping calls 38-26

MidiBootInit $0120 38-26
Midistartup $0220 38-27
MidiShutDown $0320 38-28

Midiversion $0420 38-29
MidiReset $0520 38-30
MidiStatus $0620 38-31
MIDI tool calls 38-32
MidiClock $0B20 38-33
MidiControl $0920 38-36
MidiDevice $0A20 3843
MidiInfo $0C20 38-46
MidiReadPacket $0D20 38-49
MidiWritePacket $0E20 38-51
MIDI Tool Set error codes ~ 38-53

39 Miscellaneous Tool Set Update 39-1

Error corrections 39-2

New features in the Miscellaneous Tool Set 39-2
Queue handling 39-3
Interrupt state information 39-4

New Miscellaneous Tool Set calls 39-5
AddToQueue $2E03 39-5
DeleteFromQueue $2F03 39-6

GetCodeResConverter $3403 39-7
GetInterruptState $3103 39-8
GetIntStateRecSize $3203 39-9

GetROMResource $3503 39-9
ReadMouse2 $3303 39-10
ReleaseROMResource $3603 39-10
SetInterruptState $3003 39-11

40 Note Sequencer 40-1

About the Note Sequencer 40-2
Using the Note Sequencer ~ 40-3

Contents ix

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft

Sequence timing 40-3

Using MIDI with the Note Sequencer 40-4

The Note Sequencer as a command interpreter

Error handlers and completion routines 40-6
Note commands 40-7

Filler notes 40-8

Filler note command 40-8
NoteOff command 40-9
NoteOn command 40-9

Control commands 40-10
CallRoutine command 40-11
Jump command 40-12
Pitch Bend command 40-13
Program Change command 40-14
Tempo command 40-14
Turn Notes Off command 40-15
Vibrato Depth command 40-15
Register commands 40-16
Dec Register command ~ 40-17
IfGo Register command 40-17
Inc Register command ~ 40-18
Set Register command ~ 40-18
MIDI commands 40-19
MidiChannelPressure command ~ 40-20
MidiControlChange command 40-20
MidiNoteOff command 40-20
MidiNoteOn command 40-21
MidiPitchBend command 40-21
MidiPolyphonicKeyPressure command ~ 40-22
MidiProgramChange command ~ 40-22
MidiSelectChannelMode command 40-22
MidiSetSysExIHighWord command 40-23
MidiSystemExclusive command ~ 40-23
MidiSystemCommon command 40-24
MidiSystemRealTime command 40-25
Patterns and phrases 40-26
A sample Note Sequencer program 40-28
Note Sequencer housekeeping calls ~ 40-37
SegBootInit $011A 40-37
SeqStartUp $021A 40-38

X Apple IIGs Toolbox Reference, Volume 3

40-5

30 August 1989

Apple 1IGS Toolbox Reference, Volume 3

Beta Draft 30 August 1989

SeqShutDown $031A 40-41
SeqVersion $041A 40-42
Seqreset $051A 40-43
SeqStatus $061A 40-44

Note Sequencer calls 40-45
ClearIncr $0A1A 4045
GetLoc $0CI1A 40-46
GetTimer $0B1A 40-47
SeqAllNotesOff $0DI1A 40-48
SetIncr $091A 40-49
SetInstTable $121A 40-50
SetTrkInfo $0EIA 40-51
StartInts $131A 40-52
StartSeq $0FIA 40-53
StartSeqRel $151A 40-55

Sample sequence with relative addressing 40-58

StepSeq $101A 40-60
StopInts $141A 40-61
Stopseq $111A 40-62

Note Sequencer error codes 40-63

41 Note Synthesizer 41-1

About the Note Synthesizer 41-2

Using the Note Synthesizer ~ 41-2
The sound envelope 41-2

Note Synthesizer envelopes 41-4

Instruments 41-6
DOC memory 41-10
Generators 41-10

Note Synthesizer housekeeping calls 41-14
NSBootInit $0119 41-14
NSStartUp $0219 41-15
NSShutDown $0319 41-16
NSversion $0419 41-17
NSReset $0519 41-18
NSStatus $0619 41-19

Note Synthesizer calls 41-20
AllNotesOff $0D19 41-20
AllocGen $0919 41-21

Contents Xxi

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft ‘ 30 August 1989

DeAllocGen $0A19 41-22
Noteoff $0C19 41-23

Noteon $0B19 41-24
NSSetUpdateRate $0E19 41-26
NSSetUserUpdateRtn $0F19 41-27

Note Synthesizer error codes 41-28

42 Print Manager Update 42-1
Error corrections 42-2
Clarifications 42-2
New features in the Print Manager 42-3
New Print Manager calls 424

PMLoadDriver $3513 42-4
PMUnloadDriver $3413 42-5
PrGetDocName $3613 42-6
PrGetPgOrientation $3813 42-7
PrGetPrinterSpecs $1813 42-8
PrSetDocName $3713 429

Previously undocumented Print Manager calls 42-1C
PrGetNetworkName $2B13 42-10
PrGetPortDvrName $2913 42-11

PrGetPrinterDvrName $2813 42-12
PrGetUserName $2A13 42-13
PrGetZoneName $2513 42-14

Print Manager error codes 42-15

43 QuickDraw Il Update 43-1
Error corrections 43-2
New features in QuickDraw II 43-3
QuickDraw II speed enhancement 43-3
New font header layout 43-5

44 QuickDraw II Auxiliary Update 44-1
New features in QuickDraw IT Auxiliary 44-2
New QuickDraw II Auxiliary calls 44-3
CalcMask $0EI2 44-3
Seedrill $0D.. 44-8

xii Apple 1IGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft
SpecialRect $0C12 44-15
45 Resource Manager 45-1

About the Resource Manager 45-2

About resources 45-5
Identifying resources 45-5
Resource types 45-6

Resource IDs 45-6
Resource Names 45-7

Using resources ~ 45-8
Resource attributes 459

Resource file format 45-11
Resource File IDs 45-11

Resource file search sequence 45-12

Resource file layout and data structures
Resource file header 45-15
Resource map 45-16

Resource free block 45-18
Resource reference record
Resource converter routines 45-20

45-19

ReadResource 45-21
WriteResource 45-23
ReturnDiskSize 45-25

Application switchers and desk accessories

Resource Manager housekeeping routines
ResourceBootInit $011E 45-28
ResourceStartUp $021E 45-29
ResourceShutDown $031E 45-30
ResourceVersion $041E 45-31
ResourceReset $051E 45-32
ResourceStatus $061E 45-33

Resource Manager tool calls ~ 45-34
AddResource $0CIE 45-34
CloseResourceFile $0BIE
CountResources $221E 45-37
CountTypes $201E 45-38
CreateResourceFile $091E
DetachResource $181E 45-40
GetCurResourceApp $141E 4541

30 August 1989

45-13

45-26
45-28

45-36

45-39

Contents

xiii

Apple 1IGS Toolbox Reference, Volume 3

GetCurResourceFile

GetIndResource $231E 45-43
GetIndType $211E 4545
GetMapHandle $261E 45-46
GetOpenFileRefNum $1F1E 45-48
GetResourceAttr $1BIE 45-50
GetResourceSize $IDIE 45-51
HomeResourceFile $151E 45-52
LoadAbsResource $271E 45-53
LoadResource $0EIE 45-55
MarkResourceChange $101E
MatchResourceHandle $1EIE
OpenResourceFile $0AIE 45-60
ReleaseResource $171E 4562
RemoveResource $0F1E 45-63
ResourceConverter $281E 45-64
SetCurResourcedpp $131E 45-66
SetCurResourceFile $111E
SetResourceAttr $1CIE 4568
SetResourceFileDepth $251E
SetResourceID $1A1E 45-70
SetResourceload $241E 45-71
UniqueResourceID $191E 45-73
UpdateResourceFile $0DI1E
WriteResource $161E 45-76

Resource Manager summary ~ 45-77

46 Scheduler 46-1

47 Sound Tool Set Update 47-1

Error corrections
Clarification 47-3
FFStartSound

Moving a sound from the Macintosh to the Apple IIGS

Sample code
New information

Beta Draft

47-2
47-3

47-5
47-6

$121E

Introduction to sound on the Apple IIGS

Note Sequencer

47-8

xiv Apple IS Toolbox Reference, Volume 3

45-42

45-57
45-58

45-67

45-69

45-75

47-7

30 August 1989

47-5

Apple IIGS Toolbox Reference, Volume 3 Beta Draft

Note Synthesizer 47-8
Sound General Logic Unit (GLU) ~ 47-9
Vocabulary 47-9
Oscillator 479
Generator 47-9
Voice 479
Sample rate 47-10
Drop sample tuning ~ 47-10
Frequency 47-11
Sound RAM 47-11
Waveform 47-11
DOC registers 47-11
Frequency registers 47-12
Volume register ~ 47-13

Waveform Data Sample register ~ 47-13
Waveform Table Pointer register ~ 47-13

Control register ~ 47-13
Channel register ~ 47-14

30 August 1989

Bank-Select/Table-Size/Resolution register 47-14

Oscillator Interrupt register 47-16

Oscillator Enable register 47-16
A/D Converter register 47-16
MIDI and interrupts 47-17
New Sound Tool Set calls 47-18
FFSetUpSound $1508 47-18
FFStartPlaying $1608 47-20
ReadDOCReg $1808 47-21
SetDOCReg $1708 47-23

48 Standard File Operations Tool Set Update

48-1

New features in the Standard File Operations Tool Set 48-2

New filter procedure entry interface 48-4

Custom item drawing routines 48-5
Standard File data structures 48-6
Reply record 48-6
Multifile reply record 48-8
File type list record ~ 48-9
Standard File dialog templates ~ 48-12

Open File dialog box templates 48-13

Contents

XV

Apple IIGS Toolbox Reference, Volume 3

xvi

Beta Draft

Save File dialog box templates 48-19

New or changed Standard File calls

SFAllCaps $0D17 48-27
SFGetFile2 $0E17 48-28
SFMultiGet2 $1417 48-30
SFPGetFile2 $1017 48-32

SFPMultiGet2 $1517

SFPPutFile2 $1117 48-36
SFPutFile2 $0F17 48-39
SFReScan $1317 48-41
SFShowInvisible $1217
Standard File error codes 48-43

49 TextEdit Tool Set 49-1

About the TextEdit Tool Set 49-2
TextEdit call summary 49-4

How to use TextEdit 49-6

48-27

48-34

48-42

Standard TextEdit key sequences 49-11
Internal structure of the TextEdit Tool Set

TextEdit controls and the Control Manager 49-14
TextEdit filter procedures and hook routines
Generic filter procedure 49-16

doEraseRect ($0001)

doEraseBuffer ($0002)

doRectChanged ($0003)
Keystroke filter procedure
Word wrap hook 49-24

Word break hook 49-26
Custom scroll bars 49-28
TextEdit data structures 49-29

High-level TextEdit structures

TEColorTable 49-30

TEFormat 49-34

TEParamBlock 49-36

TERuler 49-44
TEStyle 49-46
Low-level TextEdit structures
TERecord 49-47
KeyRecord 49-59

Apple 1IGs Toolbox Reference, Volume 3

49-17
49-18
49-19
49-20

49-30

49-47

30 August 1989

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

StyleItem 49-62
SuperBlock 49-63
SuperHandle 49-64
SuperItem 49-65
TabItem 49-66
TextBlock 49-67
TextList 49-68
TextEdit housekeeping routines 4969
TEBootInit $0122 49-69
TEStartUp $0222 49-70
TEShutDown $0322 49-71
TEVersion $0422 49-72
TEReset $0522 49-72
TEStatus $0622 49-73
TextEdit tool calls 49-74
TEActivate $0F22 49-74
TEClear $1922 49-75
TEClick $1122 49-76
TECompactRecord $1728 49-78

TECopy $1722 49-79

TECut $1622 49-80
TEDeactivate $1022 49-81
TEGetDefProc $2222 49-82

TEGetInternalProc $2622 49-83
TEGetLastError $2722 49-84
TEGetRuler $2322 49-85
TEGetSelection $1C22 49-87
TEGetSelectionStyle $1E22 49-88
TEGetText $0C22 4991
TEGetTextInfo $0D22 49-95
TEIdle $0E22 49-98
TEInsert $1A22 49-99
TEKey $1422 49-102

TEKill $0A22 49-103
TENew $0922 49-104
TEOffsetToPoint $2022 49-106
TEPaintText $1322 49-108
TEPaste $1822 49-110
TEPointToOffset $2122 49-111
TEReplace $1B22 49-113

Contents xvii

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

TEScroll $2522 49-116

TESetRuler $2422 49-118

TESetSelection $1D22 49-120

TESetText $0B22 49-121

TEStyleChange $1F22 49-124

TEUpdate $1222 49-127
TextEdit summary 49-128

50 Text Tool Set Update 50-1
'New features in the Text Tool Set 50-2

51 Tool Locator Update 51-1
New features in the Tool Locator 51-2
Tool set startup and shutdown ~ 51-2
Tool set numbers 51-6
Tool set dependencies ~ 51-8

New Tool Locator calls 51-14
MessageByName $1701 51-14
SetDefaultTpT $1601 51-17
ShutDownTools $1901 51-18
StartUpTools $1801 51-19

52 Window Manager Update 52-1

Error corrections 52-2
New features in the Window Manager 52-3
Alert windows 52-5
Special characters 529
Alert window example 52-10
TaskMaster result codes 52-12
Window Manager data structures 52-14
Window record 52-14
Task record 52-17
New Window Manager calls ~ 52-22
AlertWindow $590E 52-22
CompileText $600E 52-24
DrawInfoBar $550E 52-27
EndFrameDrawing $5BOE 52-28

xviil Apple IIGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

ErrorWindow $620E 52-29
GetWindowMgrGlobals $580F 52-31
NewWindow2 $610E 52-32
ResizeWindow $5COE 52-35
StartFrameDrawing $5A0E 52-36
TaskMasterContent $5DOE 52-37
TaskMasterDA $5FOE 52-39
TaskMasterKey $5EQE 52-40
GDRPrivate $540E 5243
Error messages 52-44

E Resource Types E-1

rAlertString $8015 E-2
rControlList $8003 E-3

rControlTemplate $8004 E-4
Control template standard header E-5
Keystroke equivalent information E-10
Simple button control template E-11

Check box control template E-13
Icon button control template E-15
LineEdit control template E-18
List control template E-20

Picture control template E-24
Pop-up control template E-26
Radio button contro! template E-30

Scroll bar.contro! template ~ E-32
Size box control template E-34
Static text control template E-36
TextEdit control template E-38
rClInputString $8005 E-43
rClOutputString $8023 E-44
rCString $801D E-45
rIcon $8001 E-46
rKTransTable $8021 E-47
rListRef $801C E-49
rMenu $8009 E-50
rMenuBar $8008 E-53
rMenuItem $800A E-54
rPString $8006 E-56

Contents xix

" Apple 1IGS Toolbox Reference, Volume 3

XX

rResName $8014 E-57
rStringList $8007
rText $8016 E-60
rTextBlock $8011
rTextBox2 $800B
rToolStartup $8013
rTwoRects $801A
rWindColor $8010
rWindParaml $800E
rWwindParam2 $800F

Delta Guide F-1

Apple Desktop Bus F-2
Error correction F-2
Clarification F-3

Control Manager F4
Error corrections F-4
Clarifications F-5

Dialog Manager F-6
Error corrections F-6

Integer Math Tool Set
Clarifications F-7

List Manager F-8
Clarifications F-8

Beta Draft

E-59

E-61
E-62
E-63
E-65
E-66
E-68
E-72

List Manager definitions

Memory Manager F-10
Error correction F-10
Clarification F-10

Menu Manager F-11
Error corrections F-11
Clarifications F-11

Miscellaneous Tool Set
Error corrections F-13

Print Manager F-14
Error corrections F-14
Clarifications F-14

QuickDraw II F-15
Error corrections F-15

Sound Tool Set F-16

Apple 11Gs Toolbox Reference, Volume 3

F-13

30 August 1989

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft

Error corrections F-16
Clarification F-16

FFStartSound F-17
Moving a sound from the Macintosh to the Apple IIGs
F-18

Sample code F-19
Window Manager F-20

Error corrections F-20
Glossary GL-1

Index X-1

Contents

30 August 1989

Xxxi

Apple 1IGS Toolbax Reference, Volume 3 Beta Draft 30 August 1989

Figures and tables

Chapter 28 Control Manager Update 28-1

Figure 28-1 Control template standard header 28-43

Figure 28-2 Keystroke equivalent record layout 28-48
Figure 28-3 Item template for simple button controls 28-49
Figure 28-4 Control template for check box controls ~ 28-51
Figure 28-5 Control template for icon button controls 28-53
Figure 286 Control template for LineEdit controls ~ 28-56
Figure 28-7 Control template for list controls 28-38

Figure 28-8 Control template for picture controls 28-61
Figure 28-9 Control template for pop-up controls 28-63
Figure 28-10 “Unpopped” pop-up menu . 2867

Figure 28-11 *Popped” pop-up menu, left-justified title 28-67
Figure 28-12 “Popped” pop-up menu, right-ustified title 28-68
Figure 28-13 Control template for radio button controls 28-69

Figure 28-14 Control template for scroll bar controls 28-71
Figure 28-15 Control template for size box controls ~ 28-73
Figure 28-16 Control template for static text controls 28-75
Figure 28-17 Control template for TextEdit controls ~ 28-77
Figure 28-18 Generic extended control record 28-90

Figure 28-19 Extended simple button control record 28-96
Figure 28-20 Extended check box control record 28-99
Figure 28-21 Icon button control record 28-101

Figure 28-22 LineEdit control record 28-105

Figure 28-23 List control record 28-107

Figure 28-24 Picture control record ~ 28-111

Figure 28-25 Pop-up control record ~ 28-113

Figure 28-26 Extended radio button control record ~ 28-119

Figure 28-27 Extended scroll bar control record 28-122
Figure 28-28 Extended size box control record 28-125
Figure 28-29 Static text control record 28-128

Figure 28-30 TextEdit control record 28-131

xxii Apple IIGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

Chapter 34 LineEdit Tool Set Update 34-1
Figure 34-1 LineEdit Edit record (new layout) 34-3

Chapter 37 Menu Manager Update 37-1
Figure 37-1 Scrolling menus with indicator at bottom 37-5
Figure 37-2 Window with pop-up menus 379
Figure 37-3 Dragging through a pop-up menu 37-10
Figure 374 Type 1 pop-up menu 37-11
Figure 37-5 Type 2 pop-up menu 37-12
Figure 37-6 Menu item template 37-15
Figure 37-7 Menu template 37-18
Figure 37-8 Menu bar template 37-20
Table 37-1 Menu Manager calls that work with pop-up menus ~ 37-13

Chapter 38 MIDI Tool Set 38-1
Figure 38-1 MIDI application environment 385

Chapter 39 Miscellaneous Tool Set Update 39-1

Figure 39-1 Queue header layout 39-3
Figure 39-2 Interrupt state record layout 39-4

Chapter 40 Note Sequencer 40-1
Figure 40-1 Format of a seqltem 40-5
Figure 40-2 Note command format 40-7
Figure 40-3 Control command format 40-10
Figure 40-4 Register command format 40-16
Figure 40-5 MIDI command format ~ 40-19

Chapter 41 Note Synthesizer 41-1
Figure 41-1 Sound envelope, showing attack, decay, sustain, and
release 41-3
Figure 41-2 Typical Note Synthesizer envelope 41-4
Figure 41-3 Instrument data structure 41-6
Figure 414 Generator control block 41-12

Figures and tables xxiii

Apple IIGS Toolbox Reference, Volume 3 Beta Draft

Chapter 43

Chapter 45

Chapter 47

Chapter 48

Chapter 49

QuickDraw I Update 43-1

Figure 43-1 New font header layout 43-5
Resource Manager 45-1

Figure 45-1 Resource file intemal layout 45-14
Table 45-1 Resource Manager constants 45-77
Table 45-2 Resource Manager data structures 45-78
Table 45-3 Resource Manager error codes 45-80
Sound Tool Set Update 47-1

Figure 47-1

DOC registers ~ 47-15

Standard File Operations Tool Set Update

Figure 48-1
Figure 48-2
Figure 48-3

New-style reply record ~ 48-6
Muttifile reply record 48-8
File type list record 48-10

TextEdit Tool Set 49-1

Figure 49-1
Figure 49-2
Figure 49-3
Figure 404
Figure 49-5
Figure 496
Figure 49-7
Figure 49-8
Figure 499
Figure 49-10
Figure 49-11
Figure 49-12
Figure 49-13
Figure 49-14
Table 49-1
Table 49-2
Table 49-3

TEColorTable layout 49-31
TEFormat layout 49-34
TEParamBlock layout 49-37
TERuler layout 49-44

TEStyle layout 4946

TERecoxd layout 49-48
KeyRecord layout 49-60
StyleItem layout 49-62
SuperBlock layout 49-63

SuperHandle layout 49-64
SuperItem layout 49-65
TabItem layout 49-66
TextBlock layout 4967
TextList layout 49-68

TextEdit constants 49-128
TextEdit data structures 49-130
TextEdit error codes 49-138

xxiv Apple 1IGs Toolbox Reference, Volume 3

48-1

30 August 1989

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Chapter 51 Tool Locator Update 51-1

Figure 51-1 Tool set StartStop record 51-4
Table 51-1 Tool set numbers 51-6
Table 51-2 Tool set dependencies 51-8

Chapter 52 Window Manager Update 521
Figure 52-1 Window record definition 52-15
Figure 52-2 Task Record definition 52-18
Table 52-1 Standard alert window sizes 52-7
Table 52-2 Substitution string array 52-10
Table 52-3 TaskMaster result codes 52-12

Appendix E Resource Types E-1

Figure E-1 Alert string, type ralertString ($8015) E-2

Figure E-2 Control List, type rControlList ($8003) E-3

Figure E-3 Control template standard header E-5

Figure E4 Keystroke equivalent record layout E-10

Figure E-5 Item template for simple button controls E-11

Figure E-6 Control template for check box controls E-13

Figure E-7 Contro! template for icon button controls E-15

Figure E-8 Control template for LineEdit controls ~ E-18

Figure -9 Control template for list controls E-21

Figure E-10 Control template for picture controls E-24

Figure E-11 Control template for pop-up controls E-26

Figure E-12 Control template for radio button controls E-30

Figure E-13 Control template for scroll bar controls ~ E-32

Figure E-14 Control template for size box controls E-34 -

Figure E-15 Control template for static text controls E-36

Figure E-16 Control template for TextEdit controls ~ E-38

Figure E-17 GS/OS class input string, type rC1InputString ($8005)

E-43

Figure E-18 GS/OS class1 output string, type rC1OutputString
($8023) E-44

Figure E-19 C string, type rCString ($801D) E-45

Figure E-20 Icon, type rIcon ($8001) E-46
Figure E-21 Keystroke translation table, type rkTransTable ($8021)
E-47

Figure E-22 List member reference array element, type rListRef
($801C) E-49

Figures and tables xxv

" Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Figure E-23 Menu template, type rMenu ($8009) E-50

Figure E-24 Menu bar record, type rMenuBar ($8008) E-53

Figure E-25 Menu item template, type rMenuItem ($800A) E-54

Figure E-26 Pascal string, type rPString ($8006) E-56

Figure E-27 Resource name array, type rResName ($8014) E-57

Figure E-28 Pascal string array, type rStringList ($8007) E-59

Figure E-29 Text block, type rText ($8016) E-60

Figure E-30 Text block, type rTextBlock ($8011) E-61

Figure E-31 LETextBox2 input text, type rTextBox2 ($800B) E-62

Figure E-32 Tool start stop record, type rToolstartup ($8013)
E-63

Figure E-33 Two rectangles, type rTwoRects ($801A) E-65

Figure E-34 Window color table, type rwindColor ($8010) E-66

Figure E-35 Window template, type rWwindParam1 ($800E) E-69

Figure E-36 Window template, type rwindParam2 ($800F) E-72

xxvi Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Bela Draft ‘ 30 August 1989

Preface What'’s in this volume

This third volume of the Apple 1IGs Toolbox Reference contains new
material describing numerous changes to the Apple 1IGs® Toolbox. There
are six previously undocumented tool sets, many new tool calls, and
numerous corrections and additions. This document comprises both new
material and information issued in a previous update that was available
only from APDA™ (the Apple Programmers and Developers Association).

xxvii

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Organization

Like the first two volumes of the Apple lIGS Toolbox Reference, this book contains chapters
that are devoted to individual tool sets or managers. The chapters are arranged
alphabetically by tool set name. Chapters documenting the six new tool sets appear in
alphabetical order among the other chapters. Chapters that discuss previously existing
tool sets or managers carry the same titles as before, with the addition of the word
Update. Note that chapters in this book have been numbered sequentially following the
last chapter in Volume 2 of the Toolbax Reference.

Each chapter contains a brief introductory note, which indicates whether the chapter
updates existing material or describes a new tool set or manager. Update chapters contain
one or more of these sections:

Error corrections Corrects errors in the previous toolbox documentation

Clarifications Provides additional information about previously documented
toolbox features, including bug fixes

New features Describes new tool set features

New tool calls Defines new tool calls

New chapters follow the organizational style of the first two volumes.

In addition to the chapters that discuss the various tool sets and managers, this book
contains several appendixes:

Appendix E (“Resource Types”) Contains format and content information for all
defined Apple IIGS resource types
Appendix F (“Delta Guide”) Collects all corrections to and clarifications of

the previous volumes of the Toolbox Reference
in a single location

Typographical conventions

This update largely obeys the typographical conventions of the Apple 1iGS Toolbox
Reference. New terms appear in boldface when they are introduced. Tool call parameter
names are given in italics. Record field names, routine names, and code listings appear in
the courier font.

For the Beta draft, new or substantially changed text carries change bars.

xxviii Apple IIGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3

Bela Draft : 30 August 1989

Call format

This book documents tool calls for all the new tool sets and several of the existing tool

sets.

Certain elements of this format may not appear in all calls. For example, not all calls return
error codes, and so not all call descriptions contain a list of error codes. Similarly, stack

diagrams are omitted from those

calls that do not affect the stack.

ToolCallName $callnumber

A description of the call’s function.

Parameters

Stack before call

Previous contents

— longParmName -

wordParmName

Stack after call

Previous contents

- Result -

Long—Description of longParmName parameter

Word—Description of wordParmName parameter
<—S§P

Long—Description of call result value (if any)
<—SP

Errors $xxxx Error name Description of the error code

C The C language function declaration for the call.

stackField Detailed description of stack input or output parameter, where

appropriate.

Preface

xxix

Apple 1IGS Toolbox Reference, Volume 3 Beia Draft 30 August 1989

Indexes

Volume 3 contains three indexes. First, there is an index of calls that are new in this
update, arranged alphabetically. Next is an index listing all tool calls, both those in the
Apple 11Gs Toolbox Reference and those documented in this volume. This index is included
to make it easier to find a particular call's description, whether it is a new call or one that
was previously documented. Finally, there is a general index covering both this book and
the first two volumes of the Apple IIGS Toolbox Reference.

Note that the Beta draft only has a single index, covering the contents of Volume 3.

xxx Apple IIGS Toolbox Reference, Volume 3

Apple 1GS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Chapter 26 Apple Desktop Bus Tool Set Update

This chapter contains new information about the Apple® Desktop Bus™
Tool Set. The complete reference to this tool set is in Volume 1,
Chapter 3 of the Apple IIGS Toolbox Reference.

261

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Error correction

The parameter table for the ReadKeyMicrobata tool call (§0A09) in Volume 1 of the
Toolbox Reference incorrectly describes the format for the readconfig command ($0B).
The description should be as follows.

Command dataLength Name Action

$0B 3 readConfig Read configuration; dataPtr refers to a
3-byte data structure:

Byte ADB keyboard and mouse
addresses
low nibble - keyboard
high nibble - mouse
Byte Keyboard layout and display
language
low nibble - keyboard layout
high nibble - display language
Byte Repeat rate and delay
low nibble - repeat rate
high nibble - repeat delay

The description of this configuration record is also wrong in the tool set summary. The
following table shows the correct information.

Name Offset Type Definition

ReadCon£igRec (configuration record for ReadkeyMicroData)
rcADBAddr $0000 Byte ADB keyboard and mouse addresses
low nibble - keyboard
high nibble - mouse
rcLayoutOrLang $0001 Byte Keyboard layout and
display language
low nibble - keyboard layout
high nibble - display language
rcRepeatDelay $0002 Byte Repeat rate and delay
low nibble - repeat rate
high nibble - repeat delay

262 Applé 11Gs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3

Beta Draft 30 August 1989

Clarification

This section presents new information about the AsyncapBReceive call.

You can call AsyncapBRreceive to poll a device using register 2, and it will return certain
useful information about the status of the keyboard. The call returns the following
information in the specified bits of register 2:

Bit 5:

Bit 3:

Bit 2:

Bit 1:

Bit 0:

0-Caps Lock key down
1-Caps Lock key up
0-Control key down
1-Control key up
0-Shift key down
1-Shift key up
0-Option key down
1-Option key up
0-Command key down
1-Command key up

Chapter 26 Apple Desktop Bus Tool Set Update

26-3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft . 30 August 1989

Chapter 27 Audio Compression and
Expansion Tool Set

This chapter documents the features of the new Audio Compression and
Expansion (ACE) Tool Set. This is a new tool set, not previously
documented in the Apple IIGS Toolbox Reference.

27-1

Apple 1IGS Toolbax Reference, Volume 3 Beta Draft ' 30 August 1989

Error correction

This is a note to call to your attention an error in the Apple IIGS Toolbox Reference Update
(distributed by APDA™). The description for the ACEExpand tool call carried an
incorrect parameter block. This book contains a corrected description.

About Audio Compression and Expansion

The Audio Compression and Expansion (ACE) tools are a set of utility routines that
compress and expand digital audio data. The tool set is designed to support a variety of
methods of audio signal compression, but at present only one method is implemented.

With the present method of compression supported by the ACE tools, you can choose
either of two compression ratios. You can compress a digital audio signal to half its
original size or to three-eighths its original size. The ratio used is determined by a
parameter of the ACE call that does the compression or expansion.

The obvious advantages of compressing an audio signal are that it takes up less space on
the disk, and less time is needed to transfer the data. A digital sample that is compressed
to half its original size occupies only half the space and takes only half as long to transfer.
Such a sample can load from the disk twice as fast as the uncompressed version, and is
much more economical to upload to or download from a commercial computer network.
Note, however, that data compression and expansion requires significant processor
resources, and therefore takes some time.

272 Apple IiGs Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Uses of the ACE Tool Set

Software often includes sound effects, music, or speech. The problem with digitized
sound is that it requires considerable storage space. A faithful monophonic digitization
of 30 seconds of an FM radio signal occupies nearly a megabyte (MB) of disk space. A user
might be somewhat reluctant to use a program that occupies so much space only to
achieve sound effects. The ACE Tool Set provides you with the means to compress
digitized sound signals to minimize this problem.

ACE presently supports Adaptive Differential Pulse Code Modulation (ADPCM). This
compression method assumes that audio signals tend to be relatively smooth and
continuous. If the amplitude (loudness) of a typical audio signal is plotted against time,
the graph is relatively smooth compared to a spreadsheet, a text document, or other
typical files that may contain arbitrarily distributed byte-values. As a result, it is possible
to compute the probable value of the next sample in the signal. ADPCM uses a static
model of what the change between any given value and the next might likely be and a
dynamic model of what the next actual change should be, based on the values last
observed. It examines the next signal to compare its predictions against the observed
value, and then encodes the difference between its prediction and the actual value.

ADPCM relies on the relative predictability of audio signals. If the changes in an audio
signal are too great or sudden, the value that ADPCM records will be erroneous. In general,
there is a certain statistically predictable amount of error that appears in any signal that is
compressed by this method. The errors appear, not as distortions of the quality of the
sound, but as pink noise, or hiss, much like the hiss on ordinary cassette recordings. Thus,
although ADPCM compression is suitable for many sound compression tasks, particularly
for sound effects or speech in games or business software, it is not the best choice for
very high-fidelity reproduction. A signal compressed by the ADPCM method will likely be
too noisy for use in professional audio, such as film soundtrack recording.

Chapter 27 Audio Compression and Expansion Tool Set ~ 27-3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft . 30 August 1989

How ADPCM works

The ADPCM method assumes that any particular digital sample in a block of audio data
has a value that is relatively close to those on either side of it. In fact, the noise in the
reproduced signal arises from samples that vary more than the method supports. ADPCM
predicts what the next value will be, and compares it with the value that is actually there.
The difference is encoded in a value that is some number of bits in size, that size being
specified by the application code. With ADPCM the programmer can specify encoded
values either 3 or 4 bits wide. Since the original data is stored in 8-bit samples, the
compression rate is either 8 to 3 or 8 to 4, depending on which size a particular program
specifies.

Errors result when the difference between the original signal and the value that ADPCM
predicts is greater than can be encoded in the specified number of bits. The encoded
value then effectively becomes a random value, and so is perceived as audio noise. If the
target code is 3 bits wide, then the difference observed by the compression algorithm is
more likely to be out of range than if the code size is 4 bits. Greater compression
therefore results in greater loss of fidelity.

As stated earlier, the fidelity loss sounds like hiss, not like a gross distortion of the audio
signal. Even using inaccurate predictive models, ADPCM tends to produce hiss rather than
more offensive forms of distortion. The technique tracks the gross characteristics of
audio signals well even when the rate of errors is high. At worst, an expanded signal sounds
faithful to the original, though muffled by noise.

/A Important The noisier a sampled signal is, the noisier the sample compressed by
using ADPCM will be. Any noise that is introduced into the signal
produces discontinuities in the audio data and causes errors in the
compression and expansion process. For this reason, any editing,
equalization, or other sound-processing effects should be applied to
the original signal before it is compressed. ADPCM compression
should be the last process applied to an audio signal before it is stored
on the final disk. &

274 Apple 1IGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

ACE housekeeping routines

These routines allow you to start and stop the ACE tools and to obtain tool set status
information.

ACEBootInit $011D

Performs any initializations of the ACE tools that are necessary at boot time.

A Warning Applications must not make this call. a

Parameters This call has no input or output parameters. The stack is unaffected.
Errors None
C extern pascal void ACEBootInit ():

Chapter 27 Audio Compression and Expansion Tool Set 27-5

Apple 1IGS Toolbax Reference, Volume 3 Beta Draft ‘ 30 August 1989

ACEStartUp $021D

Initializes the ACE tools for use by an application. ACEStartUp sets aside a region of
bank $00, specified by dPageAddr, for use as the ACE tools’ direct page. At present, ACE
uses one 256-byte page of bank $00 memory as its direct page. Future versions of the ACE
tools may use a different amount of memory for the direct page, so applications should
determine the correct size for the direct page with a call to AcEInfo. The tool set’s direct
page should always begin on a page boundary.

Parameters

Stack before call

Previous contents

dPageAddr Word—Bank $0 starting address of direct-page space
<—SP

Stack after call

| Previous contents |

l | <—SP
Errors $1D01 acelsActive ACE Tool Set already started up.
$1D02 aceBadDP Requested direct-page location
invalid.
C extern pascal void ACEStartUp(dPageAddr);
Word dPageAddr;

276 Apple IIGs Toolbox Reference, Volume 3

Apple 1IGs Toolbox Reference, Volume 3 Beta Draft 30 August 1989

ACEShutDown $031D

Performs any housekeeping that is required to shut down the ACE Tool Set. Applications
that use the ACE tools should always make this call before quitting. The application, not
the ACE Tool Set, must allocate and deallocate direct-page space in bank zero.

Parameters This call has no input or output parameters. The stack is unaffected.
Errors $1D03 aceNotActive ACE Tool Set not started up.
C extern pascal void ACEShutDown () ;

Chapter 27 Audio Compression and Expansion Tool Set 27-7

Apple IIGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

ACEVersion $041D

Returns the version number of the currently installed ACE Tool Set. This call can be made
before a call to ACESt artUp. The versionInfo result will contain the information in the
standard format defined in Appendix A, “Writing Your Own Tool Set,” in Volume 2 of the
Toolbox Reference.

Parameters

Stack before call

Previous contents
Space Word—Space for result
<—SP
Stack after call
Previous contents
versionInfo Word—Version number of ACE Tool Set
<—S§P
Errors None
C extern pascal Word ACEVersion();

278 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

ACEReset $051D

Resets the ACE Tool Set. This call is made by a system reset.

A Warning Applications should never make this call because it
performs tool set initializations appropriate to a
machine reset. a

Parameters This call has no input or output parameters. The stack is unaffected.
Errors None
C extern pascal void ACEReset ();

Chapter 27 Audio Compression and Expansion Tool Set 279

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

ACEStatus $061D

Returns a Boolean flag, which is TRUE (nonzero) if the tool set has been started up, and
FALSE (zero) if it has not. This call can be made before a call to AcEStartup.

& Note: If your program issues this call in assembly language, initialize the result space on
the stack to NIL. Upon retumn from ACEStatus, your program need only check the
value of the returned flag. If the ACE Tool Set is not active, the returned value will be

FALSE (NIL).

Parameters

Stack before call

Previous contents

Space Word—Space for result
<—SP

Stack after call

Previous contents
activeFlag Word—Boolean value indicating whether tool set is active
<—SP
Errors None
C extern pascal Word ACEStatus();

2710 Apple 1IGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

ACEInfo $071D

Returns certain information about the currently installed version of the ACE tools. This call
can be made before a call to aACEStartUp. The infoltemCode parameter specifies what
information the call is to return. At present, the only valid value is 0. This value specifies
that the call will return the size in bytes of the direct page that ACE requires.

Parameters

Stack before call

Previous contents
- Space - Long—Space for result
infoltemCode Word—What type of information to return
<—S§P
Stack after call
Previous contents
- infoltemValue - Long—Requested information ~
<—SP
Errors $1D04 aceNoSuchP;aram Requested information type not
supported.
C extern pascal LongWord ACEInfo (infoltemCode);
Word binfoItemCode;

Chapter 27 Audio Compression and Expansion Tool Set 27-11

Apple IIGS Toolbax Reference, Volume 3 Beta Draft 30 August 1989

Audio Compression and Expansion tool calls

The Audio Compression and Expansion tool calls are all new calls, added to the Apple I1GS
Toolbox since the first two volumes of the Apple 1IGs Toolbox Reference were published.

ACECompBegin $0B1D

Prepares the ACE tools to compress a new audio sequence. After ACECompress
completes the process of compression and returns, the ACE tools normally save certain
relevant state information so that subsequent calls to ACECompress can be used on
succeeding parts of the same audio sequence. It is often desirable to break a long audio
signal into smaller parts for compression. The preservation of appropriate state variables
allows a call to ACECompress to compress part of such a signal and then, for a
subsequent call, to continue the compression process where the previous call left off.

Just before a program calls ACECompress to process a new audio sample, it should call
ACECompBegin to ensure that all saved state information is cleared and that
ACECompress is starting with a “clean slate.” When an application is compressing a long
audio sample as a number of smaller pieces, it should call ACECompBegin only before the
Jirst subsequence. Thereafter, the application should not make this call until all parts of
the sequence have been processed. The state information that ACE preserves between
calls allows ACECompress to process subsequent blocks, using appropriate information
from previous ones.

Call AcECompBegin only before compressing the first sequence of a series of sub-
sequences, or before compressing a single sequence that is not part of a longer sequence.

Parameters This call has no input or output parameters. The stack is unaffected.
Errors $1D03 aceNotActive ACE Tool Set not started up.
C extern pascal void ACECompBegin();

2712 Apple 11GS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

ACECompress $091D

Compresses a number of blocks of digital audio data-and stores the compressed data at a
specified location. Each input block contains 512 bytes of data to be compressed. Your
program also specifies the compression method, using the method parameter.

Before issuing the ACECompress tool call, your program should call ACECompBegin to
prepare the ACE Tool Set for audio compression.

¢ Note: Because ACECompress is guaranteed to reduce the size of every byte of source
data, the resulting data can be stored in the same place as the source data. That is, the
source and destination locations in RAM can be the same.

Parameters

Stack before call

Previous contents
- src - Long—Handle to the source data
- srcOffset - Long—Offset from src to the actual storage location
- dest - Long—Handle to storage for the resulting data
- destOffset - Long—Offset from dest to the actual storage location
nBlks Word—Number of 512-byte blocks of source data
method ~ Word—Method of compression
<—S§P
Stack after call
I Previous contents I
| | e
Errors $1D05 aceBadMethod Specified compression method
not supported.
$1D06 aceBadSrc Specified source invalid.
$1D07 aceBadDest Specified destination invalid.
$1D08 aceDataOverlap Specified source and destination
areas overlap in memory.

Chapter 27 Audio Compression and Expansion Tool Set 27-13

" Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

C extern pascal void ACECompress(src, srcOffset, dest,
destOffset, nBlks, method):

Handle src, dest;
Long srcOffset, destOffset;
Word nBlks, method;
src, dest Contain handles to source and destination data locations,

respectively.

srcOffset, destOffset Contain byte offsets from locations specified by src and dest,
respectively. These parameters allow your program to position within
an input sample or output buffer.

nBlks Specifies the number of 512-byte blocks of audio data to be
compressed.
method Specifies the compression method to be used by ACECompress

when processing the data. A value of 1 causes each byte of input data
to be compressed to a 4-bit quantity; a value of 2 yields 3 bits per
byte of input data.

Clearly, the value of the method parameter helps determine the size of
the resulting data that ACECompress stores at destOffset bytes
beyond the location specified by dest. When using method 1 (4-bit
compression), you can calculate the number of bytes ACECompress
will produce by multiplying the contents of the nBlks parameter by the
number of bytes in a data block (512), multiplying that result by the
number of result bits per input byte (4), and then dividing by the
number of bits in a byte (8). Expressed as a formula, the calculation
would be

((nBlks*512)*4)/ 8

For method 2, the same basic calculation applies, except that each
input byte results in 3 output bits

((nBlks* 512)*3)/ 8

2714 Apple IIGS Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft . - 30 August 1989

ACEExpand $0A1D

Expands a previously compressed audio sample, using the method specified by the
method parameter, and stores it at the specified location. Unlike ACECompress,
ACEExpand cannot store its results in the same location as its source since the resulting
data is 2 to 2.67 times as large as the source.

Parameters

Stack before call

Previous contents

- src - Long—Handle to the source data
- srcOffset - Long—Offset from src to the actual storage location
- dest - Long—Handle to storage for the resulting data
- destOffset - Long—Offset from dest to the actual storage location
nBlks Word—Number of 512-byte blocks to be stored at dest
method Word—Method of compression
<—SP

Stack after call

l Previous contents |
| | e

Chapter 27 Audio Compression and Expansion Tool Set ~ 27-15

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Errors

src, dest

srcQffset, destOffset

nBlks

method

$1D05 aceBadMethod Specified compression method
not supported.

$1D06 aceBadsrc Specified source invalid.

$1D07 aceBadDest Specified destination invalid.

$1D08 aceDataOverlap Specified source and destination

areas overlap in memory.

extern pascal void ACEExpand(src, srcOffset, dest,
destOffset, nBlks, method):;

Handle src, dest:;
Long srcOffset, destOffset;
Word nBlks, method;

Contain handles to source and destination data locations,
respectively.

Contain byte offsets from locations specified by src and dest,
respectively. These parameters allow your program to position within
the input compressed data or output buffer.

Specifies the number of 512-byte blocks of expanded data to be
returned at the location destQffset bytes beyond dest. .

Specifies the method used when the sample was compressed. A value
of 1 indicates that ACEExpand is to expand each 4-bit quantity in the
compressed sample into an 8-bit byte. A value of 2 causes
ACEExpand 10 process 3-bit quantities in the compressed sample.

27-16 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

ACEExpBegin $0CID

Prepares ACE to expand a new sequence. Like ACECompBegin, ACEExpBegin clears any
stored state information from previous calls to expand compressed data. You can expand
a large compressed sample by processing it as a series of subsequences with repeated calls
1o ACEExpand, because certain appropriate state variables are preserved from call to
call. If you are calling ACEExpand to work on a new sequence that bears no relation to any
other compressed sequence, or to expand a short sequence in just one call to
ACEExpand, you should make this call first to clear these state variables. If, on the other
hand, you are making a call to ACEExpand to expand a sequence that is a part of a longer
sequence and is not the first subsequence, you should not make this call first, because it
will throw away all information that ACE has recorded about the previous sequences.

Parameters This call has no input or output parameters. The stack is unaffected.
Errors $1D03 aceNotActive ACE Tool Set not started up.
C extern pascal void ACEExpBegin{():;

Chapter 27 Audio Compression and Expansion Tool Set 2717

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft . 30 August 1989

ACE Tool Set error codes

This section lists the error codes that may be returned by Audio Compression and Expansion Tool Set
calls.

Value Name Definition

$1D01 acelsActive ACE Tool Set already started up.

$1D02 aceBadDP Requested direct-page location invalid.

$1D03 aceNotActive ACE Tool Set not started up.

$1D04 aceNoSuchParam Requested information type not supported.

$1D05 aceBadMethod Specified compression method not supported.

$1D06 aceBadSrc Specified source invalid.

$1D07 aceBadDest Specified destination invalid.

$1D08 aceDataOverlap Specified source and destination areas overlap
in memory.

2718 Apple 1IGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Chapter 28 Control Manager Update

This chapter documents new features of and information about the
Control Manager. The complete Control Manager documentation is in
Volume 1, Chapter 4 of the Toolbox Reference.

281

- Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Error corrections

This section documents errors in Chapter 4, “Control Manager,” in Volume 1 of the Toolbox
Reference.

= The color table for the size box control in the Toolbox Reference is incorrect, The
correct table follows, with new information in boldface.

growOutline word Color of size box’s outline
Bits 8-15 = 7€10
Bits 4-7 = outline color
Bits 0-3 = Zero
growNorBack word Color of interior when not highlighted
Bits 815 = Ze10
Bits 4-7 = background color
Bits 0-3 = jcon color

growSelBack word Color of interior when highlighted

Bits 8-15 = Zero

Bits 4-7 = background color

Bits 0-3 = icon color

s On page 4-76 of the Toolbox Reference, in the section that covers the SetCt1Params

call, it states that the call “Sets new parameters to the control’s definition
procedure . . .” This description is misleading; the call does not directly set the
parameters. Rather, it sends the new parameters to the control’s definition procedure,
unlike setct1value, which actually sets the appropriate value in the control record
and then passes the value on to the definition procedure.

282 Apple 1IGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

Clarifications

The following items provide additional information about features previously described
in the Toolbox Reference.

» The barAarrowBack entry in the scroll bar table was never implemented as first
intended, and is now no longer used.

» The Control Manager preserves the current port across Control Manager calls, including
those that are passed through other tools, such as the Dialog Manager.

» The Control Manager preserves the following fields in the port of a window that
contains controls:

bkPat background pattern
pnLoc pen location
pnSize pen size

pnMode pen mode

pnPat pen pattern

pnMask pen mask

pnVis pen visibility
fontHandle handle of current font
fontID ID of current font
fontFlags font flags

txSize text size

txFace text face

txMode text mode

spExtra value of space extra
chExtra value of character extra
fgColor foreground color
bgColor background color

» The control definition procedures for simple buttons, check boxes, and radio buttons
can now compute the size of their boundary rectangles automatically. The computed
size is based on the size of the title string for the button.

» To ensure predictable color behavior, you should always align color table-based
controls on an even pixel boundary in 640 mode. If you do not do so, the control will
not appear in the colors you specify, due to the effect of dithering.

Chapter 28 Control Manager Update 283

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

New features in the Control Manager

The Control Manager now supports a number of new features. This section discusses these
new features in detail.

» Colors in control tables now use all four color bits in both modes; they formerly used
only 2 bits in 640 mode. This change affects all control color tables defined in the
Toolbox Reference. For any applications that use color controls in 640 mode, the effect
is that controls will be a different color. This change was made so that dithered colors
can be used with controls.

» The scroll bar control definition procedure now maintains the required relationship
among the ctlvalue, viewSize, and datasSize fields of a scroll bar record. Prior
to Apple 1IGS System Software 5.0, it was the responsibility of the application to ensure
that the ct1value field never exceeded the difference between datasize and
viewSize (dataSize - viewSize). The scroll bar control definition procedure now
adjusts the ct1value or datasSize field if the other quantities are set to invalid
values.

For example, if viewSize = 30 and datasize = 100, then the maximum ct 1value
allowed is 70. If an application set the ct1value field to 80, the Control Manager
would adjust datasizeto 110. In this same example, if ct1value =70 and the
application set datasize to 90, the Control Manager would adjust ct1value to 60.

Changes to the viewsize field can also invalidate the three settings. In the example
mentioned before, in which ct1value = 70, viewsize = 30, and datasize = 100,
setting viewSize 10 40 would cause Control Manager to set ct 1value to 60.

Keystroke processing in controls
Apart from the normal use of keystrokes to enter data, the Control Manager now supports

two special uses for keyboard data: keystroke equivalents and switching between
certain types of controls.

284 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGs Toolbax Reference, Volume 3 Beta Draft : 30 August 1989

Many types of controls support keystroke equivalents, which allow the user to select the
control by pressing a keyboard key. You assign a keystroke equivalent for a control in its
contro] template (see “New Control Manager templates and records” later in this chapter
for specifics on control templates). When the user presses that key, your program receives
an event just as if the user had clicked in the control. Further, the system will automatically
highlight and dim the control. Note that this feature is only available to controls that have
been created with the NewCont ro12 tool call, and for which the fct1wantsEvents bit
has been set to 1 in the moreFlags word of the control template. See “New and changed
controls” later in this chapter for information about which controls support keystroke
equivalents.

Edit field controls (LineEdit controls and TextEdit controls) accept keystrokes as part of
their normal function. Note, however, that there can be more than one edit field control in
a window. Under these circumstances, the user moves among these controls by pressing
the Tab key. In addition, the system must keep track of which control is meant to receive
user keystrokes. To do so, the Control Manager now supports the notion of a target
control. The target control is that edit field control which is the current recipient of user
actions (keystrokes and menu items).

The Control Manager and resources

You can now specify most data for the Control Manager using either pointers, handles, or
resource IDs (see “Chapter 45, “Resource Manager,”” in this book for complete
information on resources). Because the form of the specification may differ, the Control
Manager (as well as many other tool sets) also requires a reference type, which indicates
whether a particular reference is a pointer, handle, or resource ID. You set the reference
type and the reference as appropriate in the control template you pass to the Control
Manager NewCont rol2 tool call.

You can use resources to store a wide variety of items for the Control Manager. For
example, the titles associated with simple buttons, radio buttons, and check boxes
created with the NewCont ro12 tool call may be stored as resources. As a result, your
application may free the space devoted to the title string after the control has been
created. Similarly, you can define control definition procedures as resources. The Control
Manager will load the code when it is needed.

The Control Manager handles resources differently, based upon the data’s degree of
permanence. For temporary information, Control Manager loads the resource, uses the
data, and then frees the resource (using the ReleaseResource 100l call). For permanent
information, the Control Manager loads the resource each time the resource is accessed. -
Such resources should be unlocked and unpurgeable.

Chapter 28 Control Manager Update 285

Apple IIGS Toolbax Reference, Volume 3 Beta Draft 30 August 1989

The current version of the Apple 1IGS system software keeps the control definition
procedure for icon button controls in the system resource file. In the future, the sytsem
may store other defProcs in this resource file. Consequently, you should ensure that the
Resource Manager can reach the system resource file in any resource search path you set up
(see Chapter 45, “Resource Manager,” later in this book for more information on the
resource file search path).

New and changed controls

The Control Manager now supports more standard control types. In addition to the
original standard controls (buttons, check boxes, radio buttons, size boxes, and scroll
bars), the Control Manager now supports the following controls:

= Static text controls display text messages in a rectangle that you define. The
displayed text supports word wrap and character styling. This text cannot be edited
by the user.

= Picture controls draw a picture into a defined rectangle.

s Icon button controls allow you to present an icon as part of a button control. A
defined icon is displayed within the bounds of the rectangle that represents the button
control on the screen. Icon buttons include support for keyboard equivalents.

» LineEdit controls allow the user to enter single-line items.

= TextEdit controls, supported by the new TextEdit tool set (see
Chapter 49, *TextEdit,” in this book), allow the user to edit text within a defined
rectangle, which can extend beyond a single line.

s Pop-up menu controls support scrolling lists of possible selection options that
appear when the user selects the control.

= List controls display scrollable lists of items.

In order to create any of these new controls, you must set up the appropriate control
template and call NewCont ro12. Unlike the NewCont rol tool call, which accepts its
contro! definition on the stack, NewControl2 defines controls according to the
contents of one or more control templates. These templates contain all the information
necessary for the Control Manager to create controls. Your application fills each control
template with the data appropriate to the control you wish to create. The Control
Manager uses this input specification to construct the corresponding control record and
create the control. You can use this technique to create any control, not just the new
control types. For complete information on the format and content of these control
templates, see “New Control Manager templates and records” later in this chapter.

286 Apple IIGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

All controls created by NewCont rol2, rather than NewCont rol, are referred to as
extended controls. Functionally, extended controls do not differ from controls created
by NewCont rol. In fact, extended control records will work with all Control Manager tool
calls. However, the control record for an extended control contains more data than the
old-style record. In addition, many new Control Manager calls and features are valid only
for extended controls. Note that any control created by NewControl2 is an extended
control, not just the new control types. For complete information on the format and
content of extended control records, see “New Control Manager templates and records”
later in this chapter.

You may directly call NewCont rol2 or you may invoke it indirectly by calling
NewWindow2. See Chapter 45, “Resource Manager,” and
Chapter 52, “Window Manager Update,” for details on new window calls.

The following sections discuss each type of control supported by the Control Manager.
For the original controls, these sections address new features provided by the Control
Manager. For new control types, these sections introduce you to the functionality now
provided.

Simple button control

Simple button controls created with the NewCont ro12 tool call can support keystroke
equivalents, which allow the user to activate the button by pressing an assigned key on the
keyboard. See “Keystroke processing” earlier in this chapter for details.

Check box control

Check box controls created with the NewCont ro12 tool call can support keystroke
equivalents, which allow the user to activate the box by pressing an assigned key on the
keyboard. See “Keystroke processing” earlier in this chapter for details.

Icon button control

This new type of control can display an icon as well as text in a defined window. You
specify the boundary rectangle for the window and a reference to the icon when you
create the control (see Chapter 17, “QuickDraw II Auxiliary,” in Volume 2 of the Toolbox
Reference for information about icons). You can create icon button controls only with the
NewCont rol2 tool call.

Chapter 28 Control Manager Update 287

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Icon button controls operate much like simple button controls. Note, however, that with
icon controls, the control rectangle is inset slightly from its specified coordinates before
the button is drawn. As a result, outlined round buttons stay completely within the
specified control rectangle (this is not the case for an outlined round simple button
control). Icon button controls support keyboard equivalents (see “Keystroke processing”
earlier in this chapter for details).

The icon is drawn each time the control is drawn. The icon and text are centered in the
specified control rectangle. If the control has no text, the icon is still centered. The icon is
not clipped to the control rectangle. If the icon is larger than the specified control
rectangle, then when you erase the control, that portion of the icon that lay outside the
rectangle will not be erased.

Note that icon controls require the QuickDraw II Auxiliary and Resource Manager tool
sets. Note as well that the contro! definition procedure for icon buttons is kept in the
system resources file.

LineEdit control

This new control type lets your application manage single-line, editable items in a window.
You specify the boundary rectangle for the text, the maximum number of characters
allowed, and an initial value for the displayed text string when you create the control with
the NewCont rol2 tool call. The text is updated each time the control is drawn. LineEdit
controls also support password fields, which do not echo the characters entered by the
user. Rather, the control echoes each typed character as an asterisk.

LineEdit controls respond to both mouse and keyboard events. If your application uses
TaskMaster, the system will handle most events automatically. To take full advantage of
TaskMaster, set the tmContentControls, tmControlKey, and tmIdleEvents flags
in the taskMask field of the task record to 1 (see

Chapter 52, “Window Manager Update,” for information about the new features in
TaskMaster).

If your application does not use TaskMaster, when the user presses the mouse button in a
LineEdit control your application must call TrackControl to track the mouse and
perform appropriate text selection. TaskMaster will do this automatically if you have set
the tmContentControls flagto 1 in the taskMask field of the task record.

288 Apj)le 1IGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Without TaskMaster, your application sends keyboard events to LineEdit controls using
the sendEventTocCt1 tool call (see “New Control Manager calls” later in this chapter).
First, your code must check for menu key equivalents. If none are found, then issue the
SendEventToCt1 call, setting targetonlyFlag to FALSE (all controls that want
events are searched), windowptr to NIL (find the top window), and
extendedTaskRecPtr to refer to the task record containing the keystroke
information. Again, TaskMaster will do all this for you if you have set the tmCont rolkey
flag to 1 in the taskMask field.

To keep the caret flashing, your application must send idle events to the LineEdit control.
In order to do this, issue a sendEventToct1 call, setting targetonlyFlag to TRUE
(send event only to target control), windowPt r to NIL (use top window), and
extendedTaskRecPtr to refer to the task record containing the event information.
TaskMaster will do this for you if you have set the tmrdleEvents flag to 1 in the
taskMask field.

The LineEdit tool set performs line editing in LineEdit controls. If you want to issue
LineEdit tool calls directly from your program, retrieve the LineEdit record handle from
the ct1pata field of the control record for the LineEdit control.

List control

This new control type allows your program to display lists from which the user may select
one or more items. You have the benefit of full List Manager functionality, with respect to
such features as selection window scrolling and item selection (single item, arbitrary
items, or ranges). You specify the parameters for the list as well as the initial conditions
for its display when you define the control. The Control Manager and the List Manager
take care of the rest. You can create list controls only with the NewCont ro12 tool call.

List controls use the List Manager tool set. In order to understand how to use this control
in your application, see Chapter 11, “List Manager,” in Volume 1 of the Toolbox Reference.

Picture control

This new control type displays a QuickDraw picture in a specified window. You specify
the boundary rectangle for the control and a reference to the picture when you create the
control. The picture is drawn each time the control is drawn. You can create picture
controls only with the NewContro12 tool call.

Chapter 28 Control Manager Update 289

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

Note that when the picture is drawn, the boundary rectangle for the control is used as the
picture destination rectangle (see Chapter 17, “QuickDraw II Auxiliary,” in Volume 2 of
the Toolbox Reference for details about picture drawing). As a consequence, the picture
may be scaled at draw time if the original picture frame does not have the same
dimensions as the control rectangle. To force the picture to be displayed at its original
size, and thus avoid scaling, set the lower-right corner of the control rectangle to (0,0).
The Control Manager recognizes this value at control initialization time, and sets the
control rectangle to be the same size as the picture frame.

In general, a click in a picture control is ignored. However, the Control Manager provides
facilities to inform your application if the user clicks in the control. To make a picture
control inactive, set the ct LHilite field to $FF, otherwise the control is active and may
receive user events,

Note that picture controls require the QuickDraw II Auxiliary tool set.

Pop-up control

This new control type allows you to define and support pop-up menus inside 2 window.
You specify the boundary rectangle for the control, along with a reference to the menu
definition when you create the control with the NewCont ro12 tool call. The menu title
becomes the title of the control, and the current selection for the control is defined by the
initial value.

Pop-up controls respond to both mouse and keyboard events. If your application uses
TaskMaster, the system will handle most events automatically. To take full advantage of
TaskMaster, set the tmContentControls and tmControlKey flags in the taskMask
field of the task record to 1 (see Chapter 52, “Window Manager Update,” for information
about the new features in TaskMaster).

If your application does not use TaskMaster, when the user presses the mouse button
inside a Pop-up control, your application must call TrackControl to track the mouse
and present the pop-up menu to the user. TaskMaster will do this for you if you have set
the tmContentControls flagto 1 in the t askMask field.

Without TaskMaster, your program sends keyboard events to pop-up menu controls using
the sendEventTocCt1 tool call (see “New Control Manager calls” later in this chapter).
First, check for menu key equivalents. If none are found, then issue the
SendEventToCt1 call, setting targetonlyFlag to FALSE (all controls that want
events are searched), windowpt r to NIL (find the top window), and
extendedTaskRecPtr {0 refer to the task record containing the keystroke
information. TaskMaster will do all this for you if you have set the tmControlkey flag to
1in the taskMask field.

2810 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft . 30 August 1989

Note that the Control Manager places the current user selection value into ct1value. If
you need to retrieve the user selection number, you may do so from this field.

Radio button control

Radio button controls created with the NewContro12 tool call can support keystroke
equivalents, which allow the user to choose a button by pressing an assigned key on the
keyboard. See “Keystroke processing” earlier in this chapter for details.

Scroll bar control

Scroll bar controls provide no new features.

Size box control

You can now set up size box controls to automatically invoke Growwindow and
Sizewindow if you create the control with the NewCont ro12 tool call. When the user
drags the size box, if the £callwindowMgr bit in the £1ag field of the size box control
template is set to 1 (see the description of the size box control template in “New Control
Manager templates and records” later in this chapter), the Control Manager will call
GrowWindow and SizeWindow to track the control and resize the window rectangle. If
this flag is set to 0, then the control is merely highlighted.

Static text control

This new control type displays uneditable (hence, “static”) text in a specified window.
You can place font, style, size, and color changes into the displayed text, affording you
great freedom to create a distinctive text display. In addition, static sext controls can
accommodate text substitution. With this feature, you can customize the displayed text
to fit run-time circumstances. You can create static text controls only with the
NewControl2 tool call.

If you are going to use text substitution in your static text, your application must set up
the control template correctly (set £SubstituteText in £lag to 1) and tell the system
where the substitution array is kept (issue the setct1Paramptr Control Manager tool
calD). The text substitution array has the same format as that used by the AlertWindow
call (see Chapter 52, “Window Manager Update,” for information about alertwindow
and for substitution array format and content).

Chapter 28- Control Manager Update

2811

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

In general, applications ignore clicks in static text controls. However, the Control
Manager provides facilities to inform your application if the user clicks in the control. To
make a static text control inactive, set the ct1Hilite field to $FF, otherwise the
control is active and may receive user events.

Note that static text controls require the LineEdit, QuickDraw II Auxiliary, and Font
Manager tool sets.

TextEdit control

This control lets the user create, edit, or view multiline items in a window. You specify the
boundary rectangle for the edit window, parameters governing the amount of text to be
entered, and, optionally, some initial text to display. The TextEdit control does the rest.
You can only create TextEdit controls with the NewCont rol2 tool call.

The TextEdit control uses the TextEdit tool set. TextEdit is a new tool set, and is
completely described in Chapter 49, “TextEdit,” later in this book. You should familiarize
yourself with the material in that chapter before using this control.

New control definition procedure messages

Previously, control definition procedures had to support 13 message types (see

Chapter 4, “Control Manager,” in Volume 1 of the Toolbox Reference for a discussion of the
original message types). When you create custom controls with new contro} records (see
“New Control Manager templates and records” later in this chapter), your control will have
to support some additional messages.

Value Control Message Description

13 ctlHandleEvent Handle a keystroke or menu selection

14 ctlChangeTarget Issued when control’s target status has
changed

15 ctlChangeBounds Issued when control’s boundary
rectangle has changed

16 ctlWindChangeSize Window has been grown or zoomed

17 ctlHandleTab Control has been tabbed to

18 ctlNotifyMultiPart A multipart control must be hidden,

' drawn, or shown
19 ctlWinStateChange Window state has changed

2812 Apple IIGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

In addition, the initCtl, dragCntl, and recSize messages have new control routine
interfaces when used with extended controls. The following sections discuss each new or
changed message in detail.

If you must draw when handling control messages, your control definition procedure
should save the current GrafPort and set the port correctly for your control before
drawing. After your defProc is finished drawing, restore the previous GrafPort. Note that
saving the current GrafPort includes saving penstate, all pattern and color information,
and all regions in the port to which your program draws.

To maintain compatibility with future versions of the Control Manager, contro! definition
procedures should always return a retValue of 0 for unrecognized and unsupported control
message types. In addition, if you use custom control messages, be careful to assign type
values greater than $8000 (decimal 32,767).

Initialize routine

Previously, ctiParam contained param1 and param2 from NewCont rol. If you create
your custom control with NewCont ro1, these input parameters are the same. However, if
you create your control with NewCont ro12 (see “New Control Manager calls” later in this
chapter), then ct/Param contains a pointer to the control template for the control.

Drag routine

The result code for the drag routine now contains additional information that allows
control definition procedures to abort tracking. Previously, retValue indicated whether or
not your defProc wanted the Control Manager to do the dragging. For controls created
with NewCont rol, this is still the case. For controls created with NewCont ro12, your
defProc uses the low-order word of retValue exactly as before (zero means that the
Control Manager should drag the control; nonzero means your control definition
procedure handled it). Your defProc returns the part code of the control in the high-order
word (see Chapter 4, “Control Manager,” in Volume 1 of the Toolbox Reference for
information on control part codes). If this value is 0, then the Control Manager assumes
that the user aborted the drag operation and performs no screen updates.

Record size routine

Previously, ct/Param was undefined for this routine. Now, the Control Manager sets
ctlParam to 0 for controls created with NewControl. For controls created with
NewControl2, ctlParam contains a pointer to the control template.

Chapter 28 Control Manager Update 28-13

Apple IIGS Toolbox Reference, Volume 3 Bela Draft : 30 August 1989

Event routine

To pass information for all events, including keystroke or mouse events, the Control
Manager calls the control definition procedure with the ct 1HandleEvent message. Only
controls you create with either the £ct1want sEvents bit or the fCt1CanBeTarget
bit set to 1 in the moreF1ags field of the control template will receive this message (see
“New Control Manager templates and records” later in this chapter for detailed
information on these flags). The first qualifying control in the control list gets the first
opportunity to handle the event. If that control processes the event, then no other
controls see it. If, however, that control does not process the event, the Control Manager
passes the event to the next qualifying event in the list. This process continues until a
control handles the event, or the list is exhausted. If no defProc handles the event,
TaskMaster passes the event to the application.

Parameters

Stack before call

Previous contents
- Space - Long—Space for resuit
ctiMessage Word—ct1HandleEvent message
- ctlParam - Long—Pointer to task record containing event information
~theControlHandle- Long—Handle to control
<—§P
Stack after call
Previous contents
- retValue -~ Long—S$FFFFFFFF if control took the event; $0 if control did not
<—S§P

2814 Apple 1IGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Target routine

To signal a change in the control's target status (the control is now, or is no longer, the
target), the Control Manager calls the control definition procedure with the
ctlChangeTarget message. Note that this message is sent to both the previous target
control and the new target control. Your contro! definition procedure can distinguish
which control is the new target by examining the fct1Target bitin the ct1MoreFlags
field of the control record. The new target control will have this bit set to 1 in its control
record. The previous target will have the bit set to 0.

In response to the ct1ChangeTarget message, some control definition procedures will
change the appearance of their control on the screen or perform other actions as
appropriate. For example, LineEdit and TextEdit controls display an insertion point or a
text selection only when they are the target.

Parameters

Stack before call

Previous contents
- Space - Long—Space for result
ctiMessage Word—ct1lChangeTarget message
- ctlparam - Long—Undefined
~theControlHandle- Long—Handle to control
<—S§P
Stack after call
Previous contents
- retValue - Long—Undefined
<—§P

Chapter 28 Control Manager Update 2815

Apple 1IGS Toolbox Reference, Volume 3 Beia Draft : 30 August 1989

Bounds routine

To signal to the control that its boundary rectangle has changed the Control Manager calls
the control definition procedure with the ct 1changeBounds message. In response to
this message, your control definition procedure should adjust its internal control record
variables to account for the new rectangle. For example, any subrectangles defined for a
control may need to change whenever the boundary rectangle changes.

& Note: This message is not supported by control definition procedures currently
provided by Apple; however, you should handle this message in any custom controls
you create.

Parameters

Stack before call

Previous contents
- Space - Long—Space for result
ctiMessage Word—ct1ChangeBounds message
- ctlParam - Long—Undefined
~theControlHandle- Long—Handle to control
<—SP
Stack after call
Previous contents
- retValue - Long—Undefined
<—SP

2816 Apple 1IGS Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Bela Draft 30 August 1989

Window size routine

The Control Manager calls the control definition procedure with the
ct1lWindChangeSize message whenever the user has changed the size of the control
window. In response to this message, your control definition procedure should do what is
necessary to maintain a consistent screen presentation. This may entail resizing multipart
controls, moving size boxes, and so on.

Parameters

Stack before call

Previous contents
- Space - Long—Space for result
ctiMessage Word—ct1WindChangeSize message
-~ ctlParam - Long—Undefined
~theControlHandle- Long—Handle to control
<—SP
Stack after call
Previous contents
- retValue - Long—Undefined
<—SP

Chapter 28 Control Manager Update 2817

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

Tab routine

Your control definition procedure receives the ct 1HandleTab message when the user
has hit the Tab key while another control is the target. That control's defProc will have
issued the MakeNextCtlTarget tool call before sending this control message. As a
result, your control is the target control. The control definition procedure should perform
the appropriate actions in response to becoming the target as a result of a Tab keystroke,
rather than a mouse click. For example, in response to this message, LineEdit and
TextEdit control definition procedures select all the text in the control in preparation for
user input.

Parameters

Stack before call

Previous contents
- Space - Long—Space for result
ctiMessage Word—ct1lHandleTab message
- ctlParam - Long—Undefined
—theControlHandle- Long—Handle to control
<—S§P
Stack after call
Previous contents
- retValue - Long—Undefined
<—Sp

2818 Apple 1IGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Notify multipart routine

The Control Manager calls the contro! definition procedure with the
ctlNotifyMultiPart message to signal that a multipart control needs to be hidden,
shown, or drawn. This message is relevant only to multipart controls, which may not fit
within their boundary rectangle (for example, list controls consist of the list itself and a
scroll control, which is separate). That is, the £Ct1IsMultiPart bitinthe morerlags
field of the control template must be set to 1 for a control to receive this message. In
response to this message, your defProc must do what is needed to hide or show the
control completely.

The low-order word of ct/Param tells the defProc what to do.

0 Hide the entire control

1 Erase the entire control

2 Show the entire control

3 Show one control
Parameter

Stack before call

Previous contents
- Space - Long—Space for result
ctiMessage Word—ct 1NotifyMultiPart message
- ctlParam - Long—High-word is undefined; low-word contains option
~theControlHandle-| - =~ Long—Handle to control
| <—SP
Stack after call
Previous contents
- retValue - Long—Undefined
<—SP

Chapter 28 Control Manager Update ~ 28-19

Apple 1IGS Toolbox Reference, Volume 3 Bela Draft 30 August 1989

Window change routine

The Control Manager calls the control definition procedure with the
ctlwinStateChange message to signal that the state of the window containing the
control has changed. For example, a control definition procedure will receive this message
whenever the control’s window is activated or deactivated. At this time, the control
definition procedure may draw dimmed controls in windows that have been unhidden.

The low-order word of the ct/Param parameter contains the new state of the window:

$0000 The window has been deactivated
$0001 The window has been activated

The high-order word is undefined.
Parameter

Stack before call

Previous contents
- Space - Long—Space for result
ctiMessage Word—ct1lwinStateChange message
- ctlparam - Long—Low word contains new window state; high word undefined
—theControlHandle- Long—Handle to control
<—S§P

Stack after call

Previous contents

- retValue - Long—Undefined

<SP

2820 Apple 11Gs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

New Control Manager calls

The following sections describe new Control Manager tool calls, in alphabetical order by
call name.

callCtlDefProc $2C10

This routine calls the specified control with the specified control message and parameter.
Set the param parameter to 0 if the control definition procedure does not accept an input
parameter (see “New contro! definition procedure messages” earlier in this chapter for
information on input parameters for defProc messages).

Parameters

Stack before call

Previous contents]
- Space - Long—Space for result from control definition procedure
- ctiHandle - Long—Handle of control to be called
message Word—Control message to send to control definition procedure
- param - Long—Parameter to pass to control definition procedure
<—SP

Stack after call

Previous conlents

- Result - Long—Result value from control definition procedure

<—SP

Errors None

Chapter 28 Control Manager Update 28-21

Apple 1iGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

C extern pascal Long CallCtlDefProc{ctlHandle,

message, param);

Handle ctlHandle;
Word message;
Long param;

28-22 Apple 1IGS Toolbox Reference, Volume 3

Apple LIGS Toolbox Reference, Volume 3

Beta Draft 30 August 1989

CMLoadResource $3210

This is an entry point to the internal Control Manager routine that loads resources. You
specify the resource type and ID of the resource to be loaded. See
Chapter 45, “Resource Manager,” for more information on resources.

Any errors during resource load result in system death.

A Warning

Parameters
Stack before call

Previous contents

- Space -

resourceType

- resourcelD -

Stack after call

Applications must never issue this call. a

Long—Space for result
Word—Type of resource to load
Long—ID of resource to load
<—S§p

Previous contents
- resourceHandle - Long—Handle of loaded resource
<—S§P
Errors None
C extern pascal Handle CMLoadResource (resourceType,
.resourcelD);
Word resourceType;
Long resourcelD;

Chapter 28 Control Manager Update

2823

Apple 11GS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

CMReleaseResource 53310

This is an entry point to the internal Control Manager routine that releases resources. You
specify the resource type and ID of the resource to be released. The resource is released
by marking it purgeable. See Chapter 45, “Resource Manager,” for more information on
1esources.

Any errors result in system death.

A Warning Applications must never issue this call. a

Parameters

Stack before call

Previous contents
resourceType Word—Type of resource to release
- resourcelD - Long—ID of resource to release
<—SP
Stack after call
| Previous contents |
| | s
Errors None
C extern pascal void CMReleaseResource (resourceType,
resourcelD);
Word resourceType;
Long resourcelD;

2824 Apple IIGs Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft . - 30 August 1989

FindTargetCtl $2610

Searches the control list for the active window and returns the handle of the target contro!
(the control that is currently the target of user keystrokes). FindTargetCt1 retums the
handle of the first control that has the fct1Target flagsetto 1in the ct1MoreFlags
field of its control record. If no target control is found or an error occurs, then the call
returns a NIL handle.

This call will only return a handle to an extended control.
Parameters

Stack before call

Previous contents
- Space - Long—Space for result
<—S§P
Stack after call
Previous contents
- Result - Long—Handle of target control (if found); NIL if none or error
| ' <—SP
Errors $1004 noCtlError No controls in window
$1005 noSuperCtlError No extended controls in window
$1006 noCtlTargetError No target extended control
$100C noWind_Err No front window
C extern pascal Handle FindTargetCtl():

Chapter 28 Control Manager Update 2825

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

GetCtlHandleFromID $3010

Retrieves the handle to the control record for a control with a specified ct 11D field value.
The ct 11D field is an application-defined tag for a control. Set the ct 11D field with the
setct 11D tool call; read the contents of the ct 11D field with Getct11D.

If an error occurs, the returned handle is NIL.
This call is valid only for extended controls.
Parameters

Stack before call

Previous contents
- Space - Long—Space for result
- windowPir -~ Long—Pointer to window for control list search; NIL=top window
- ciliD - Long—ID value for desired control
<—SP
Stack after call
Previous contents
- ctiHandle - Long—Handle for specified control
<—SP
Errors $1004 noCtlError No controls in window
$1005 noSuperCtlError No extended controls in window
$1009 noSuchIDError The specified ID cannot be
found
$100C nowind Err There is no front window
C extern pascal Long GetCtlHandleFromID (windowPtr,
ctlID);

Pointer windowPtr;
Long ctlID;

2826 Applé 11Gs Toolbox Reference, Volume 3

Apple 1IGS Toolbox. Reference, Volume 3 Beia Draft . 30 August 1989

GetCtlID $2A10

Returns the ct 11D field from the control record of a specified control. The ct11p field is
an application-defined tag for a control. Your application can use this field in many ways.
For example, since the value of ct11p is known at compile time, you can construct
efficient routing code for handling control messages for many different controls.

Use the setct 11D Control Manager tool call to set the ct 11D field.

If the specified control is not an extended control, the resulting ID is undefined, and an

error is returned.
Parameters

Stack before call

Previous contents

- Space -

- ctiHandle -

Stack aftér call

Long—Space for result

Long—Handle to control
<—S§P

Previous contents
- ctlID - Long—ct 11D for specified control
<—SP
Errors $1004 noCtlError No controls in window"
$1007 notSuperCtlError Action valid only for extended
controls '
C extern pascal Long GetCtlID(ctlHandle);
Handle ctlHandle;

Chapter 28 Control Manager Update

2827

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft . 30 August 1989

GetCtlMoreFlags $2E10

Gets the contents of the ct1MoreF1ags field of the control record for a specified
control. The ct1MoreF1lags field contains flags governing target status, event
processing, and other aspects of the control.

Use the setCt1MoreFlags Control Manager tool call to set the ct1MoreFlags field.

If the specified control is not an extended control, the result is undefined, and an error is
returned.

Parameters

Stack before call

Previous contents
Space Word—Space for result
- ctlHandle - Long—Handle to control
<—SP
Stack after call
Previous contents
ctiMoreFlags Word—ct1MoreFlags for specified control
<—SP
Errors $1004 noCtlError No controls in window
$1007 notSuperCtlError Action valid only for extended
controls '
C extern pascal Word GetCtlMoreFlags(ctlHandle);
Handle ctlHandle;

2828 Apple IIGS Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3

Beta Draft 30 August 1989

GetCtlParamPtr $3510

Retrieves the pointer to the current text substitution array for the Control Manager. This
array contains the information used for text substitution in static text controls (see

“Static text control” elsewhere in

this chapter for details).

Set the contents of this field with the setct1paramptr Control Manager tool call.

¢ Note: This pointer is global to the Control Manager; it is not associated with a specific
control. As a result, desk accessories should be very careful when using this feature to

save and restore the previous

Parameters

Stack before call

Previous contents

- Space -

Stack after call

contents of the field.

Long—Space for result

<—S§P

Previous contents
- SubArrayPtr - Long—Pointer to text substitution array
<—SP
Errors | None
C extern pascal Pointer GetCtlParamPtr();

Chapter 28 Control Manager Update

2829

- Apple IIGS Toolbox Reference, Volume 3 Beta Draft

30 August 1989

InvalCtls $3710

This call invalidates all rectangles for all controls in a specified window.
Parameters

Stack before call

Previous contents
- windowPtr - Long—Pointer to window for operation
<—S§P

Stack after call

I Previous contents

| <—SP
Errors None
C extern pascal void InvalCtls (windowPtr);

Pointer windowPtr;

2830 Apple IIGS Toolbox Reference, Volume 3

Apple IIGS Toolbax Reference, Volume 3 Beta Draft : 30 August 1989

MakeNextCtlTarget $2710

Makes the next eligible control the target control. This routine searches the control list of
the active window for the first target control (fCt1Target bit on in the
ctlMoreFlags field of the control record). It then clears the target flag for this control,
and searches for the next control in the control list that can be the target
(fctlcanBeTarget bitsetto 1in ct1MoreFlags), and makes that control the target.
The call returns the handle of the new target control.

Both affected controls (the old and new target) will receive ct 1ChangeTarget
messages from the Control Manager.

If an error occurs, the returned handle is NIL.

This call is valid only for extended controls.
Parameters

Stack before call

Previous contents

- Space - Long—Space for result handle)

<—§P

Stack after call

Previous conlents
- Result - Long—Handle of new target control; NIL if error
<—§P
Errors $1004 noCtlError : No controls in window
$1005 noSuperCtlError No extended controls in window

$100B noCtlToBeTargetError
No control could be made target

C extern pascal Handle MakeNextCtlTarget ()

Chapter 28 Control Manager Update 28-31

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

MakeThisCtlTarget $2810

This routine makes the specified control the target. You specify the control that is to
become the target control by passing its handle to this routine. This call will work for both

active and inactive windows.

Both affected controls (the old and new target) will receive ct1ChangeTarget
messages from the Control Manager.

This call is valid only for extended controls.

Parameters
Stack before call

Previous contents
- ctToBeTarget - Long—Handle to control to be made target
<—SP
Stack after call
I Previous contents |
| | <—SP
Errors $1007 notSuperCtlError Action valid only for extended
controls
$1008 canNotBeTargetError Specified control cannot be
- made target
C extern pascal void MakeThisCtlTarget (ctlToBeTarget) ;
Handle ctlToBeTarget;

2832 Applé 11Gs Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

NewControl2 §3110

Creates one or more new controls. You specify the parameters governing those controls in
control templates that are passed to NewControl2 (see “New Control Manager
templates and records” later in this chapter). If NewControl2 creates a single control, it
returns the handle to that control in Result. If NewCont rol2 creates two or more
controls, it returns 0. For sample code showing how to use the NewCont ro12 tool call, see
“Control Manager code example” later in this chapter.

All controls created by NewCont rol12 have new style control records and are extended
controls.

Parameters

Stack before call

Previous contents
- Space - Long—Space for result
- ownerPtr - Long—Pointer to window for control(s)
referenceDesc Word—Describes contents of reference
- reference - Long—Reference of a type defined by referenceDesc
<—SP

Stack after call

Previous contents -
- Result - Long—Control handle (if sipgle control created) or 0
<—SP
Errors None
C | extern pascal Handle NewControlZ2 (ownerPtr,

referenceDesc, reference);

Pointer ownerPtr;
Word referenceDesc;
Long reference;

Chapter 28 Control Manager Update 28-33

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

referenceDesc Defines the contents and type of item referenced by reference.
Possible values for referenceDesc are:
singlePtr 0 referenceis a pointer to a single item
template
singleHandle 1 referenceis a handle for a single item
template

singleResource 2 referenceis a resource ID of a single
item template

ptrToPtr 3 referenceis a pointer to a list of
pointers to item templates

ptrToHandle 4 reference is a pointer to a list of handles
for item templates

ptrToResource 5 reference s a pointer to a list of
resource IDs of item templates

handleToPtr 6 referenceis a handle to a list of pointers

to item templates
handleToHandle 7 referenceisa handle to a list of handles
for item templates
handleToResource 8 referenceis a handle to a list of resource
IDs of item templates
resourceToResource 9 reference is a résource ID of a
list of resource IDs of item templates

If reference defines a list, that list is a contiguous array of template
references (pointers, handles, or resource IDs), terminated with a
NULL entry.

2834 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

NotifyCtls $2D10

Calls the control definition procedures for extended controls in a specified window,
sending a specified control message and parameter. You determine which controls are to
be called by setting up the mask field. This routine compares the value of mask with that
of the ct 1MoreFlags field of the control record for each control in the window. If any
of the bits you have specified in mask are setto 1in ct 1MoreF1ags, the control is sent
the message you have specified (mask is bitwise ANDed with ct 1MoreFlags; a nonzero
result yields a call to the control).

Set the param parameter to 0 if the control definition procedure does not accept an input
parameter (see “New control definition procedure messages” earlier in this chapter for
information on input parameters for defProc messages).

Parameters
Stack before call

Previous contents
mask Word—Bit mask to be compared with ct 1MoreFlags
message Word—Control message to send to control definition procedures
- param - Long—Parameter to pass to control definition procedures
- window - Long—GrafPort of window whose control list is to be searched
<—S§P
Stack after call
I Previous contents l
| | <—SP
Errors None
C extern pascal void NotifyCtls (mask, message, param,
window) ;
Word mask, message;
Long param, window;

Chapter 28 Control Manager Update 28-35

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

SendEventToCtl $2910

Passes a specified extended task record (which must comply with the new format defined
in Chapter 52, “Window Manager Update,” in this book) to the appropriate control or
controls. This call returns a Boolean indicating whether the event was fielded by a control,
and returns the handle of the control that serviced the event in taskpata2 of the task
record for the event.

The targetOnlyFlag parameter governs the way the Control Manager searches for a control
to field the event. If targetOnlyFiag is set to TRUE, sendEventToCt1 sends the event to
the target control. If there is no target control, Result is FALSE and taskpata2 is
undefined.

If targetOnlyFlag is set to FALSE, sendEventToCt1 conducts a two-part search for a
contro! to field the event. First, Control Manager looks for non-edit field controls that
want keystrokes (for example, buttons with keystroke equivalents). The Control Manager
tries to send the event to each such control (with the ct 1HandleEvent control
message). If no control accepts the event, the Control Manager looks for an edit field
control (LineEdit or TextEdit) that can become the target. If no control accepts the
event and there is no target, Result is FALSE and taskData2 is undefined. Otherwise,
Result is TRUE and taskbata2 contains the handle of the accepting control.

This call is valid only for extended controls.

¢ Note: If a control can be made the target (fCt1CanBeTarget is setto 1in
ct1MoreFlags of its control record), then the Control Manager will send it events
regardless of the setting of the fCt1wantsEvents bit.

Parameters
Stack before call

Previous contents
Space Word—Space for result Boolean
targetOnlyFlag Word—(Boolean) TRUE=send to target only; FALSE=all controls
- windowPtr - Long—Pointer to window to search; NIL for top window
- eTaskRecPir - Long—Pointer to extended task record for event
<—SP

2836 Applé 11GS Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Stack after call

Previous contents

Result Word—(Boolean) TRUE if event accepted; otherwise FALSE
<-—SP
Errors $1005 noSuperCtlError No extended controls in window
$100C nowWind_Err There is no front window
C extern pascal Boolean SendEventToCtl (targetOnlyFlag,

windowPtr, eTaskRecPtr);

Word targetOnlyFlag;
Pointer windowPtr, eTaskRecPtr;

Chapter 28 Control Manager Update 2837

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

SetCtlID $2B10

Sets the ct 11D field in the control record of a specified control. The ct 11D field is an
application-defined tag for a control. Your application can use this field in many ways.
For example, since the value of ct11p is knowable at compile time, you can construct
efficient routing code for handling control messages for many different controls.

Retrieve the ct 11D field for a control with the et ct 11D Control Manager call.
If the specified control is not an extended control, an error is retumed.
Parameters

Stack before call

Previous contents
- newlD - Long—New ct 11D value for the control
- ctiHandle - Long—Handle to control
<—S§P
Stack after call
I Previous contents |
| | e
Errors $1004 noCtlError No controls in window
$1007 notSuperCtlError Action valid only for extended
controls
C extern pascal void SetCtlID(newID, ctlHandle);
Long newlD;

Handle ctlHandle;

2838 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

SetCtlMoreFlags $2F10

Sets the contents of the ct 1MoreFlags field of the control record for a specified
control. The ct1MoreFlags field contains flags governing target status, event
processing, and other aspects of the control.

Retrieve the ct 1MoreFlags field for a control with the Getct 1MoreF1lags Control
Manager call.

If the specified control is not an extended control, an error is returned.
Parameters
Stack before call

Previous contents
newMoreFlags Word—New ct 1MoreFlags value for the control
- ctliHandle - Long—Handle to control
<—SP
Stack after call
I Previous contents I
| l <—SP
Errors $1004 noCtlError No controls in window
$1007 notSuperCtlError Action valid only for extended
controls '
C extern pascal void SetCtlMoreFlags (newMoreFlags,
ctlHandle);
Word newMoreFlags;

Handle ctlHandle;

Chapter 28 Control Manager Update

2839

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

SetCtlParamPtr $3410

Sets the pointer to the current text substitution array for the Control Manager. This array
contains the information used for text substitution in static text controls (see “Static
text controls” elsewhere in this chapter).

Retrieve the contents of this field with the GetCt1Paramptr Control Manager tool call.

& Note: This pointer is global to the Control Manager; it is not associated with a
specific control. As a result, desk accessories should be very careful when using this
feature to save and restore the previous contents of the field.

Parameters

Stack before call

Previous contents
- subArmayPtr - Long—New pointer to text substitution array
<—SP

Stack after call

I Previous contents |

| I
Errors None
C extern pascal void SetCtlParamPtr (subArrayPtr):

Pointer subArrayPointer;

2840 Apple IIGs Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Control Manager error codes

Value Name Definition

$1001 wmNot StartedUp Window Manager not initialized

$1002 cmNotInitialized Control Manager not initialized

$1003 noCtlInList Control not in window list

$1004 noCtlError No controls in window

$1005 noSuperCtlError No extended controls in window

$1006 noCtlTargetError No target extended control.

$1007 notSuperCtlError Action valid only for extended controls

$1008 canNotBeTargetError Specified control cannot be made
target

$1009 noSuchIDError The specified ID cannot be found

$100A tooFewParmsError Too few parameters specified

$100B noCtlToBeTargetError No control could be made target

$100C noWind_Err There is no front window

-Chapter 28 Control Manager Update 2841

Apple 1IGS Toolbax Reference, Volume 3 Beta Draft . 30 August 1989

New Control Manager templates and records

This section describes the format and content of all Control Manager control templates
and records. In addition, “Control Manager code example” shows how to use control
templates with the NewCont ro12 tool call.

NewControl2 input templates

Each type of control has its own control template, corresponding to the control record
definition for the control type. The item template is an extensible mechanism for defining
new controls. Rather than placing all the control parameters on the stack at run time, the
template holds these parameters in a standard format that can be defined at compile
time, Furthermore, the templates can be created as a resource, simplifying program
development and maintenance, reducing code size, and reducing fixed memory usage.
Your program can pass more than one input template to NewCont rol2 at a time.

All control templates have the same seven-field header. Some templates have additional
fields that further define the control. In order to provide extensible support for variable
length templates, one of the header fields is a parameter count. The value of the
parameter count field tells the Control Manager how many parameters to use, which allows
for optional template fields.

The following sections define the item templates for each control type. Field names
marked with an asterisk (*) represent optional fields.

2842 Apple 1Igs Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Control template standard header

Each control template contains the standard header, which consists of seven fields.
Following that header, some templates have additional fields, which further define the
control to be created. The format and content of the standard template header is shown
in Figure 28-1.

Custom control definition procedures establish their own item template layout. The only
restriction placed on these templates is that the standard header be present and well
formed. Custom data for the control procedure may follow the standard header.

= Figure 28-1 Control template standard header

sm f— pCount -t WOI‘d
$02 |]

— D -1 Long
$06

: rect - Rectangle
$OE | -

- pProcRef - long
Sz flag — Ward
314__ moreFlags - Word
$16 | .

- refCon = Long

— -

pCount Count of parameters in the item template, not including the pCount

field. Minimum value is 6, maximum value varies depending upon the
type of control template.

Chapter 28 Control Manager Update 2843

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

ID Sets the ct 11D field of the control record for the new control. The
ct 11D field may be used by the application to provide a
straightforward mechanism for keeping track of controls. The control
ID is a value assigned by your application, which the control “carries
around” for your convenience. Your application can use the ID, which
has a known value, to identify a particular control.

rect Sets the ct 1Rect field of the control record for the new control.
Defines the boundary rectangle for the control.

procRef Sets the ct 1P roc field of the control record for the new control. This
field contains a reference to the control definition procedure for the
control. The value of this field is either a pointer to a control
definition procedure, or the ID of a standard routine. The standard

values are:

simpleButtonControl $80000000 Simple button
checkControl $82000000 Check box
iconButtonControl $07FF0001 Icon button
editlLineControl $83000000 LineEdit
listControl $89000000 List
pictureControl $8D000000 Picture
popUpControl $87000000 Pop-up
radioControl $84000000 Radio control
scrollBarControl $86000000 Scroll bar
growControl $88000000 Size box
statTextControl $81000000 Static Text
editTextControl $85000000 TextEdit

2844 Apple 1IGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

flag A word used to set both ct1Hilite and ctlFlag in the control
record for the new control. Since this is a word, the bytes for
ctlHilite and ct1Flag are reversed. The high-order byte of £1ag
contains ct1Hilite, while the low-order byte contains ct1rlag.
The bits in £1ag are mapped as follows:

Highlight bits 8-15 Indicates highlighting style:
0 Control active, no highlighted
parts

1-254 Part code of highlighted part
255 Control inactive

Invisible bit 7 Governs visibility of control:
0 - Control visible
1 - Control invisible

Variable bits 0-6 Values and meaning depends upon
control type

Chapter 28 Control Manager Update 2845

Apple IIGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

moreFlags Used to set the ct1MoreFlags field of the control record for the
new control,

The high-order byte is used by the Control Manager to store its own
control information. The low-order byte is used by the control
definition procedure to define reference types.

The defined Control Manager flags are:

fCtlTarget $8000 If set to 1, this control is currently the target of
any typing or editing commands.

fCtlCanBeTarget $4000 If set to 1 then this control can be made the
target control.

fCtlWantEvents $2000 If set to 1 then this control can be called when

events are passed via the SendEventToCtl
Control Manager call. Note that, if the
fCtlCanBeTarget flag is set to 1, this control
will receive events sent to it regardless of
setting of this flag.

fCtlProcRefNotPtr $1000 If set to 1, then Control Manager expects
ctlProc to contain the ID of a standard
control procedure. If set to 0, then ct1Proc
contains a pointer to the custom control
procedure. -

fCtlTellAboutSize $0800 If set to 1, then this control needs to be
notified when the size of the owning window
has changed. This flag allows custom control
procedures to resize their associated control
images in response to changes in window size.

fCtlIsMultiPart $0400 If set to 1, then this is a multipart control. This
flag allows control definition procedures to
manage multi-part controls (necessary since the -
Control Manager does not know about all the
parts of a multi-part control).

2846 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

The low-order byte uses the following convention to describe
references to color tables and titles (note, though, that some control
templates do not follow this convention):

titleIsPtr $00 Title reference is by pointer
titleIsHandle $01 Title reference is by handle
titleIsResource $02 Title reference is by resource ID
colorTableIsPtr $00 Color table reference is by pointer
colorTableIsHandle $04 Color table reference is by handle
colorTableIsResource $08 Color table reference is by resource ID
refCon Used to set the ct 1Re£Con field of the control record for the new

control. Reserved for application use.

Chapter 28 Control Manager Update 2847

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Keystroke equivalent information
Many of these control templates allow you to specify keystroke equivalent information

for the associated controls. Figure 28-2 shows the standard format for that keystroke
information.

= Figure 282 Keystroke equivalent record layout

$00 keyl Byte
$01 key2 Byte
$02 keyModifiers — Word
S04 keyCareBits ~{ Word
keyl This is the ASCII code for the upper or lower case of the key
equivalent. '
key2 This is the ASCII code for the lower or upper case of the key

equivalent. Taken with key1, this field completely defines the values
against which key equivalents will be tested. If only a single key code
is valid, then set key1 and key2 to the same value.

keyModifiers These are the modifiers that must be set to 1 in order for the
equivalence test to pass. The format of this flag word corresponds to
that defined for the event record in Chapter 7, “Event Manager,” in
Volume 1 of the Toolbox Reference. Note that only the modifiers in the
high-order byte are used here.

keyCareBits These are the modifiers that must match for the equivalence test to
pass. The format for this word comresponds to that for
keyModifiers. This word allows you to discriminate between
double-modified keystrokes. For example, if you want Control-7 to
be an equivalent, but not Option-Control-7, you would set the
controlKey bit in keyModi fiers and both the optionKeyand the
controlKey bits in keyCareBits to 1. If you want Return and Enter
to be treated the same, the keyPad bit should be set to 0.

2848 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Simple button control template

Figure 28-3 shows the template that defines a simple button control.

= Figure 28-3 Item template for simple button controls

$00 [pCount — Word—Parameter count for template: 7, 8, or 9
$02 | -

= 1D — Long—Application-assigned control ID
$06

: rect . Reaangle—Boundary rectangle for control
$OE | i

= procRef —| Long—simpleButtonControl =$§80000000
$12 | flag ~{ Word--Highlight and control flags for control
$4 | noreriags — Word—Additional control flags
$16 | _

= refCon —~| Long—Application-defined value
$1a 1 _

= titleRef — Long—Reference to title for button
$1E |]

~ *colorTableref —i Long—Reference to color tabie for control (optional)
$2)

*keyEquivalent Block, 6 bytes—Keystroke equivalent data (optional)

i |

Chapter 28 Control Manager Update 28-49

Apple IIGS Toolbox Reference, Volume 3

Defined bits for f1ag are

Reserved
ctlInvis
Reserved
Button type

bits 8-15
bit 7
bits 2-6
bits 0-1

Defined bits for moreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlwWantsEvents
fCtlProcNotPtr
fCtiTellAboutSize
Reserved

Color table reference

Title reference

bit 15
bit 14
bit 13
bit 12
bit 11
bits 4-10
bits 2-3

bits 0-1

Beta Draft 30 August 1989

Must be set to 0

1=invisible, O=visible

Must be set to 0

Describes button type:

0 = single-outlined round-cornered button
1 = bold-outlined round-cornered button
2 = single-outlined square-cornered button
3 = single-outlined square-cornered drop-
shadowed button

Must be set to 0

Must be set to 0

Set to 1 if button has keystroke equivalent
Must be set to 1

Must be set to 0

Must be set to 0

Defines type of reference in colorTableRref.
See Chapter 4, “Control Manage:,” in Volume 1
of the Toolbox Reference for the definition of
the simple button color table.

00 - color table reference is pointer

01 - color table reference is handle

10 - color table reference is resource ID

11 - invalid value

Defines type of title reference in titleRef:
00 - title reference is pointer

01 - title reference is handle

10 - title reference is resource ID

11 - invalid value

keyEquivalent Keystroke equivalent information stored at keyEquivalent is
formatted as shown in Figure 28-2.

2850 Apple IIGS Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Check box control template

Figure 28-4 shows the template that defines a check box control.

= Figure 28-4 Control template for check box controls

$00 pCount Word--Parameter count for template: 8, 9, or 10
$02 beo Long—Application-assigned control ID
$06
: rect - Rectangle—Boundary rectangle for control
$0E |
- procRef Long— checkBoxControl =$82000000
$121 flag Word—Highlight and control flags for control
$14 — moreFlags Word—Additional control flags
$16 |
- refCon Long—Application-defined value
$1AL
— titleRef Long—Reference to title for box
$IEL ynictalvalue Word—Initial box setting: 0 for clear, 1 for checked
$20 1
— *colorTableRef Long—Reference to color table for contro! (optional)
$24
© wkeyEquivalent : Block, 6 bytes—Keystroke equivalent data (optional)

i 1

Defined bits for £1ag are

Reserved bits 815 Must be setto 0
ctlInvis bit 7 1=invisible, O=visible
Reserved bits 0-6 Must be set to 0

Chapter 28 Control Manager Update 2851

" Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Defined bits for morerlags are

fCtlTarget bit 15 Must be set to 0
fCtlCanBeTarget bit 14 Must be set to 0
fCtlWantsEvents bit 13 Set to 1 if check box has keystroke equivalent
fCt1ProcNotPtr bit 12 Must be set to 1
fCt1lTellAboutSize bit 11 Must be set to 0
Reserved bits 410 Must be set to 0
Color table reference bits 2-3 Defines type of reference in colorTableRref

(see Chapter 4, “Control Manager,” in Volume 1
of the Toolbox Reference for the definition of
the check box color table)
00 - color table reference is pointer
01 - color table reference is handle
10 - color table reference is resource ID
11 - invalid value
Title reference bits 0-1 Defines type of title reference in titleRref:
00 - title reference is pointer
01 - title reference is handle
10 - title reference is resource ID
11 - invalid value

keyEquivalent Keystroke equivalent information stored at keyEquivalent is
formatted as shown in Figure 28-2.

2852 Applé 11Gs Toolbox Reference, Volume 3

Apple LGS Toolbox Reference, Volume 3 Beta Draft ' 30 August 1989

Icon button control template

Figure 28-5 shows the template that defines an icon button control. For more information
about icon button controls, see “Icon button control” in this chapter.

» Figure 28-5 Control template for icon button controls

$00 | pCount —| Word—Parameter count for template: 7, 8, 9, 10, or 11
sz 1D —~ Long—Application-assigned control ID
$06

: rect - Rectangle—Boundary rectangle for control
$OE| _

- procRef — Long—iconButtonControl =$07FF0001
$12(flag ~ Word—Highlight and control flags for control
$14 - moreFlags — Word—Additional control ﬂags
$16 | R

— refCon - Long—Application-defined value
$1A[_

- iconRef —{ Long—Reference to icon for control
SIE| |

— *titleRef ~{ Long—Reference to title for control (optional)
$2| _

— »colorTableRef —{ Long—Reference to color table for control (optional)
$61 .o splayMode - Word—Bit flag controlling icon appearance (optional)
$28

*keyEquivalent . Block, 6 bytes—Key equivalent information (optional)

Chapter 28 'Control Manager Update 2853

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Defined bits for f1ag are

ctlHilite bits 8-15 Sets the ct1Hilite field of the control record
ctlInvis bit 7 1=invisible, O=visible

Reserved bits 3-6 Must be set to 0

showBorder bit 2 1=No border, 0=Show border

buttonType bits 0-1 Defines button type:

00 - single-outlined round-cornered button

01 - bold-outlined round-cornered button

10 - single-outlined square-cornered button

11 - single-outlined square-comered and drop-
shadowed button

Defined bits for moreF1lags are

fCt1lTarget bit 15 Must be set to 0
fCtlCanBeTarget bit 14 Must be set to 0
fCtlWantsEvents bit 13 Must be set to 0
fCt1ProcNotPtr bit 12 Must be set to 1
fCtlTellAboutSize bit 11 Must be set to 0
Reserved bits 610 Must be setto 0
Icon reference bits 4-5 Defines type of icon reference in iconRef:

00 - icon reference is pointer
01 - icon reference is handle
10 - icon reference is resource ID
: 11 - invalid value
Color table reference bits 2-3 Defines type of reference in colorTableRef;
the color table for an icon button is the same as
that for a simple button (see
Chapter 4, “Control Manager,” in Volume 1 of
the Toolbox Reference for the definition of the
simple button color table)
00 - color table reference is pointer
01 - color table reference is handle
10 - color table reference is resource ID
11 - invalid value
Title reference bits 0-1 Defines type of title reference in titleRref:
00 - title reference is pointer
01 - title reference is handle
10 - title reference is resource ID
11 - invalid value

2854 Apple 1IGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft : : 30 August 1989

titleRef Reference to the title string, which must be a Pascal string. If you are
not using a title but are specifying other optional fields, set
moreFlags bits 0 and 1 to 0, and set this field to zero.

displayMode Passed directly to the DrawIcon routine, and defines the display
mode for the icon. The field is defined as follows (for more
information on icons, see Chapter 17, “QuickDraw II Auxiliary,” in
Volume 2 of the Toolbox Reference):

Background Color bits 12-15 Defines the background color to apply to black
part of black-and-white icons.

Foreground Color bits 811 Defines the foreground color to apply to white
part of black-and-white icons.

Reserved bits 3-7 Must be set to 0

offLine bit 2 1=AND light-gray pattern to image being
copied
0=Don't AND the image

openlcon bit 1 1=Copy light-gray pattern instead of image

. 0=Don't copy light-gray pattern
selectedIcon bit 0 1=Invert image before copying

0=Don't invert image

Color values (both foreground and background) are indexes into the
current color table. See Chapter 16, “QuickDraw I1,” in Volume 2 of the
Toolbox Reference for details about the format and content of these
color tables.

keyEquivalent Keystroke equivalent information stored at keyEquivalent is
formatted as shown in Figure 28-2.

Chapter 28 - Control Manager Update 28-55

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

LineEdit control template

Figure 28-6 shows the template that defines a LineEdit control. For more information
about LineEdit controls, see “LineEdit control” in this chapter.

= Figure 28-6 Control template for LineEdit controls

$00 | pCount — Word—Parameter count for template: 8
$02 | _

= 10 ~1 Long—Application-assigned control ID
$06

: rect . Rectangle—Boundary rectangle for control
$OB [_]

- procRef — Long—editLineControl =$83000000
12 flag —| Word—Highlight and control flags for control
§14 — moreFlags —| Word—Additional control flags
$16 | o

— refCon —| Long—Application-defined value
$IAL paxsize | Word—Maximum length of input line (in bytes)
$1C [|

- defaultref — Long—Reference to default text

Defined bits for £1ag are

Reserved bits 815 Must be setto 0
ctlinvis bit 7 1=invisible, O=visible
Reserved bits 0-6 Must be set to 0

2856 Apple 1IGs Toolbox Reference, Volume 3

Apple 1iGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Defined bits for moreFlags are

fCtlTarget bit 15 Must be set to 0
fCtlCanBeTarget bit 14 Must be set to 1
fCtlWantsEvents bit 13 Must be set to 1
fCt1lProcNotPtr bit 12 Must be set to 1
fCtlTellAboutSize bit 11 Must be set to 0
Reserved bits 210 Must be setto 0
Text reference bits 0~1 Defines type of text reference in defaultRef

00 - text reference is pointer

01 - text reference is handle

10 - text reference is resource ID
11 - invalid value

maxSize Specifies the maximum number of characters allowed in the LineEdit
field. Valid values lie in the range from 1 to 255.

The high-order bit indicates whether the LineEdit field is a password
field. Password fields protect user input by echoing asterisks, rather
than the actual user input. If this bit is set to 1, then the LineEdit field
is a password field.

Note that LineEdit controls do not support color tables.

Chapter 28 Control Manager Update ~ 28-57

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft

List control template

30 August 1989

Figure 28-7 shows the template that defines a list control. For more information about list

controls, see “List control” in this chapter.

s Figure 28-7 Control template for list controls

001 pCount —| Word—Parameter count for template: 14 or 15
$02 | —]

— D — Long—Application-assigned control ID
$06

: rect - Rectangle—Boundary rectangle for control
$0E —]

— procRef —i ($0E) Long—listControl =$89000000
s flag —{ Word—Highlight and control flags for contro}
$14 b— moreFlags ~—~ Word—Additional control ﬂags
$16 | -

— refcon — Long—Application-defined value
S1A listSize —{ Word—Number of members in list
$IC|_ 1istView —{ Word—Number of members visible in window
SIE| 1istType — Word—Type of list entries, selection options, etc.
S0 iisestart —| Word—First visible list member
$22 —

— listDraw —{ Long—Pointer to member drawing routine
$60)ictmemnergnt —| Word—Height of each list item (in pixels)
$81 1istMenmsize — Word—Size of list entry (in bytes)
$24 —

— listRef —{ Long—Reference to list of member records
$2E] -

— scolorTableRef — Long—Reference to color table for control (optional)

2858 Apple IIGs Toolbox Reference. Volume 3

Apple IIGS Toolbox Reference, Volume 3

Defined bits for £1aqg are

Reserved bits 8-15
ctlInvis bit 7
Reserved bits -6

Defined bits for moreFlags are

fCtlTarget bit 15
fCtlCanBeTarget bit 14
fCtlWantsEvents bit 13
fCt1ProcNotPtr bit 12
fCtlTellAboutSize bit 11
fCtlIsMultiPart bit 10
Reserved bits 4-9
Color table reference bits 2-3
List reference bits 0-1

Beta Draft ' 30 August 1989

Must be set to 0
1=invisible, O=visible
Must be set to 0

Must be set to 0

Must be set to 0

Must be set to 0

Must be set to 1

Must be set to 0

Must be set to 1

Must be setto 0

Defines type of reference in colorTableRef
(the color table for a List control is described in
Chapter 11, “List Manager,” in Volume 1 of the
Toolbox Reference)

00 - color table reference is pointer

01 - color table reference is handle

10 - color table reference is resource ID

11 - invalid value

Defines type of reference in 1istRef (the
format for a list member record is described in
Chapter 11, “List Manager,” in Volume 1 of the
Toolbox Reference)

00 - list reference is pointer

01 - list reference is handle

10 - list reference is resource ID

11 - invalid value

Chapter 28 Control Manager Update

28-59

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft

listType Valid values for 1i st Type are as follows:

Reserved bits3-15 Must be set to 0.

30 August 1989

fListScrollBar bit 2 Allows you to control where the scroll bar for the

list is drawn:

1 - Scroll bar drawn on inside of boundary
rectangle. The List Manager calculates space
needed, adjusts dimensions of boundary
rectangle, and resets this flag.

0 - Scroll bar drawn on outside of boundary

rectangle.

fListSelect bit 1 Controls type of selection options available to

the user:

1 - Only single selection allowed
0 - Arbitrary and range selection allowed
fListString bit 0 Defines the type of strings used to define list

items:

1 - C-strings ($00-terminated)

0 - Pascal strings

For details on the remaining custom fields in this template, see the discussion of “List
Controls and List Records” in Chapter 11, “List Manager,” of Volume 1 of the Toolbox

Reference. ‘

2860 Apple IIGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft ' 30 August 1989

Picture control template

Figure 28-8 shows the template that defines a picture control. For more information about
picture controls, see “Picture control” in this chapter.

s Figure 28-8 Control template for picture controls

$00 | pCount - Word—Parameter count for template: 7
$02 [_

— ID ~{ Long—Application-assigned control ID
$06

: rect - Rectangle—Boundary rectangle for control
$OE [|

= procRef - Long—pictureControl =$8D000000
$12(flag - Word—Highlight and contro! flags for control
$14 — moreFlags — Word-—Additiona! control ﬂags
S]

= refCon —~{ Long—Application-defined value
$1AL _

- pictureret —| Long--Reference to picture for control

Defined bits for £1ag are

ctlHilite bits 8-15 Specifies whether the control wants to receive
mouse selection events; the values for
ctlHilite are as follows:

0 Control is active

255 Control is inactive
ctlInvis bit 7 1=invisible, O=visible
Reserved bits 0-6 Must be set to 0

Chapter 28 Control Manager Update 28-61

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Defined bits for moreFlags are

fCtlTarget bit 15 Must be set to 0
fCtlCanBeTarget bit 14 Must be set to 0
fCtlWantsEvents bit 13 Must be set to 0
fCt1lProcNotPtr bit 12 Must be set to 1
fCtlTellAboutSize bit 11 Must be set to 0
Reserved bits 2-10 Must be set to 0
Picture reference bits 0-1 Define type of picture reference in
pictureRef:

00 - invalid value

01 - reference is handle

10 - reference is resource ID
11 - invalid value

2862 Apple 1IGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Pop-up control template

Figure 28-9 shows the template that defines a pop-up control. For more information about
pop-up controls, see “Pop-up control” in this chapter.

s Figure 28-9 Control template for pop-up controls

S0 pcount —{ Word—Parameter count for template: 9 or 10
$02 1 _

- D — Long—Application-assigned control ID
$06

: rect . Rectangle—Boundary rectangle for control
$0E | N

- procRef — Long—popUpCont rol=$87000000
sz flag -| Word—Highlight and control flags for control
§14 L moreFlags — Word—Additional control ﬂags
$16 | n

- refCon ~ Long—Application-defined value
$IAL ciciewsarn - Word—Width in pixels of title string area
$1ICL .

— menuRef — Long—Reference to menu definition
$20 - initialvalue - AWord—-Ilem ID of initial item
21 -

- scolortabieret —| Long—Reference to color table for control (optional)

Chapter 28 Control Manager Update 28-63

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Defined bits for £1ag are

ctlHilite bits 8-15 Specifies whether the control wants to receive
mouse selection events; the values for
ctlHilite are as follows:

0 Control is active
255 Control is inactive
ctlInvis bit 7 1=invisible, 0=visible
fType2PopUp bit 6 Tells the Control Manager whether to create a

pop-up menu with white space for scrolling (see
Chapter 37, “Menu Manager Update,” for details
on Type 2 pop-up menus):

1 - Draw pop-up with white space (Type 2)

0 - Draw normal pop-up

fDontHiliteTitle bit 5 Controls highlighting of the control title:
1 - Do not highlight title when control is popped
up
0 - Highlight title

fDontDrawTitle bit 4 Allows you to prevent the title from being drawn

(note that you must supply a title in the menu
definition, whether or not it will be displayed);
if titlewidth is defined and this bit is set to
1, then the entire menu is offset to the right by
titlewWidth pixels:
1 - Do not draw the title
0 - Draw the title

fDontDrawResult bit 3 Allows you to control whether the selection is
drawn in the pop-up rectangle:
1- Do not draw the result in the result area after
a selection
0 - Draw the result

£InWindowOnly bit 2 Controls the extent to which the pop-up menu
can grow; this is particularly relevant to Type 2
pop-ups (see
Chapter 37, “Menu Manager Update,” for details
on Type 2 pop-up menus):
1 - Keep the pop-up in the current window
0 - Allow the pop-up to grow to screen size

2864 Apple IIGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

fRightJustifyTitle bit1 Controls title justification:
1 - Right justify the title; note that if the title is
right justified, then the control rectangle is
adjusted to eliminate unneeded pixels (see
Figure 28-12), the value for titlewidth is also
adjusted
0 - Left justify the title
fRightJustifyResult bit 0 Controls result justification:
1 - Right justify the selection
0 - Left justify the selection titlewidth
pixels from the left of the pop-up rectangle.

Defined bits for moreFlags are

fCtlTarget bit 15 Must be set to 0

fCtlCanBeTarget bit 14 Must be set to 0

fCtlWantsEvents bit 13 Must be set to 1 if the pop-up has any

keystroke equivalents defined

fCtlProcNotPtr bit 12 Must be set to 1

fCtlTellAboutSize bit 11 Must be set to 0

Reserved bits ~10 Must be setto 0

Color table reference bits 34 Defines type of reference in coloxrTableRef

(the color table for a menu is described in
Chapter 13, *Menu Manager,” in Volume 1 of the
Toolbox Reference)
00 - color table reference is pointer
01 - color table reference is handle
10 - color table reference is resource ID
11 - invalid value

fMenuDefIsText bit 2 Defines type of data referred to by menuRe £:
1 - menuRef iS 2 pointer to a text stream in
NewMenu format (see
Chapter 13, *Menu Manager,” in Volume 1 of the
Toolbox Reference for details) -
0 - menuRef£ is a reference to a Menu Template
(again, see Chapter 13, “Menu Manager,” in
Volume 1 of the Toolbox Reference for details on
format and content of a Menu Template)

Chapter 28 Control Manager Update 28-65

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft ' 30 August 1989

Menu reference bits 0-1 Defines type of menu reference in menuref (if
fMenuDefIsText is setto 1, then these bits
are ignored):

00 - menu reference is pointer

01 - menu reference is handle

10 - menu reference is resource ID
11 - invalid value

rect Defines the boundary rectangle for the pop-up and its title, before the
menu has been “popped” by the user. The Menu Manager will calculate
the lower, right coordinates of the rectangle for you, if you specify
those coordinates as (0,0).

initialvalue The initial value to be displayed for the menu. The initia! value is the
default value for the menu, and is displayed in the pop-up rectangle of
“unpopped” menus. You specify an item by its ID, that is, its relative
position within the array of items for the menu (see
Chapter 37, “Menu Manager Update,” for information on the layout
and content of the pop-up menu template). If you pass an invalid
item ID then no item is displayed in the pop-up rectangle.

titleWidth Provides you with additional control over placement of the menu on
the screen. The titlewidtn field defines an offset from the left
edge of the control (boundary) rectangle to the left edge of the pop-
up rectangle (see Figure 28-11). If you are creating a series of pop-up
menus and you want them to be vertically aligned, you can do this by
giving all menus the same x1 coordinate and t it 1ewidth value. You
may use titlewidth for this even if you are not going to display the
title (fDontDrawTitle flagissetto 1in £1ag). If you set
titlewidth to 0, then the Menu Manager determines its value based
upon the length of the menu title, and the pop-up rectangle
immediately follows the title string. If the actual width of your title
exceeds the value of titlewidth, results are unpredictable.

menuRef Reference to menu definition (see Chapter 13, “Menu Manager,” in
Volume 1 of the Toolbox Reference and
Chapter 37, “Menu Manager Update,” in this book for details on menu
templates). The type of reference contained in menuRref£ is defined
by the menu reference bits in moreFlags.

2866 Applé 1IGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

s Figure 28-10 “Unpopped” pop-up menu

(Pop-up rectangle)

¥

Baud rate:| 300

= Figure 28-11 “Popped” pop-up menu, left-justified title

(control rect Y———

GLyD .. 110
Baud rate: v 300 .

[e—titlewideh = 100—> enp &y M (x2,y2)

1200 &H
2400
4800
9600

Chapter 28 Control Manager Update 2867

Apple 1IGS Toolbax Reference, Volume 3 Beta Draft ' 30 August 1989

s Figure 28-12 *“Popped” pop-up menu, right-justified title

(control rect) —————

old new
(x1,yD) &x1yD) 110
L
<—titleWidth = 100—» enq CX
1200 &H
2400
4800
9600

2868 Apple IIGs Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Radio button control template

Figure 28-13 shows the template that defines a radio button control:

= Figure 28-13 Control template for radio button controls

$00 - pCount — Word—Parameter count for template: 8, 9, or 10
$02 | -

= pis — Long—Application-assigned control ID
$06

: rect - Rectangle—Boundary rectangle for control
$OE | -

= procRef — Long—radioButtonControl =$84000000
12 flag — Word—Highlight and control flags for contral
$141 moreFlags — Word—Additiona! control flags
$16 -

- refcon —~ Long-—Application-defined value
SIAL -

= titleRef -4 Long—Reference to title for button
$IEl iciaivalue - Word—Initial setting: 0 for dmr, 1 for set
$20 -

— +colorTabierer — Long—Reference to color table for control (optional)
$24

*keyEquivalent Block, 6 bYIeS—KCYSIIOkC equxvalem data (opLional)

i |

Chapter 28 Control Manager Update 28-69

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Defined bits for £1ag are

Reserved bits 8-15 Must be setto 0
ctliInvis bit 7 1=invisible, O=visible
Family number bits 0~6 Family numbers define associated groups of

radio buttons; radio buttons in the same family
are logically linked, that is, setting one radio
button in a family clears all other buttons in the
same family

Defined bits for moreF1ags are as follows:

fCtlTarget bit 15 Must be set to 0

fCtlCanBeTarget bit 14 Must be set to 0

fCtlWantsEvents bit 13 Set to 1 if button has keystroke equivalent
fCt1lProcNotPtr bit 12 Must be set to 1

fCtlTellAboutSize bit 11 Must be set to 0

Reserved bits 410 Must be set to 0

Color table reference bits 2-3 Defines type of reference in colorTableRef

(see Chapter 4, “Control Manager,” in Volume 1
of the Toolbox Reference for the definition of
the radio button color table)
00 - color table reference is pointer
01 - color table reference is handle
10 - color table reference is resource ID
11 - invalid value
Title reference bits 0~1 Defines type of title reference in titleRef:
00 - title reference is pointer
01 - title reference is handle
- 10 - title reference is resource ID
11 - invalid value

keyEquivalent Keystroke equivalent information stored at keyEquivalent is
formatted as shown in Figure 28-2.

2870 Apple IIGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Scroll bar control template

Figure 28-14 shows the template that defines a scroll bar control:

= Figure 28-14 Control template for scroll bar controls

$001 pcount —| Word—Parameter count for template: 9 or 10
$02 2 -

- 1D ~ Long—Application-assigned contro! ID
$06

: rect : Rectangle—Boundary rectangle for control
$0E| _

— procRef — Long—scrollControl =$86000000
$12] flag | ‘Word—Highlight and control fiags for control
$141 moreFlags ~| Word—Additional control flags
$16 _

- refCon — Long—Application-defined value
S1AL maxSize —~ Word—Initial size of displayed item
$ICL viewsize ~| Word—Amount of item initially visible
SIE - initialvalue - Word—Initial setting
$201 .

[scolorTableref ~| Long—Reference to color table for control (optional)

Chapter 28 Control Manager Update 28-71

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft " 30 August 1989

Defined bits for £1ag are

Reserved bits 815 Must be setto 0

ctlInvis bit 7 1=invisible, O=visible

Reserved bits 5-6 Must be set to 0

horScroll bit 4 1=horizontal scroll bar, O=vertical scroll bar
rightFlag bit 3 1=bar has right arrow, O=bar has no right arrow
leftFlag bit 2 1=bar has left arrow, O=bar has no left arrow
downFlag bit 1 1=bar has down arrow, O=bar has no down arrow
upFlag bit 0 1=bar has up arrow, O=bar has no up arrow

Note that extraneous flag bits are ignored, based upon state of horscro1l1 flag. For
example, for vertical scroll bars, rightFlagand leftFlag are ignored.

Defined bits for moreFlags are

fCtlTarget bit 15 Must be set to 0
fCtlCanBeTarget bit 14 Must be set to 0
fCtlWantsEvents bit 13 Must be set to 0
fCt1ProcNotPtr bit 12 Must be set to 1
fCtlTellAboutSize bit 11 Must be set to 0
Reserved bits 4-10 Must be setto 0
Color table reference bits 2-3 Defines type of reference in colorTableRef (see

Chapter 4, “Control Manager,” in Volume 1 of
the Toolbox Reference and “Clarifications” earlier
in this chapter for the definition of the scroll
bar color table)
00 - color table reference is pointer
01 - color table reference is handle
10 - color table reference is resource ID
11 - invalid value

Reserved bits 0-1 Must be set to 0

2872 Apple IIGs Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draﬂ 30 August 1989

Size box control template

Figure 28-15 shows the template that defines a size box control:

» Figure 28-15 Control template for size box controls

$00 | pCount — Word—Parameter count for template: 6 or 7
$02 []

— D — Long—Application-assigned control ID
$06

: rect . Rectangle—Boundary rectangle for control
$OE i

— procRef — Long— growCont rol =$88000000
$12 | flag ~ Word—Highlight and control flags for control
$14 [moreFlags — Word—Additional contro! flags
$16 | _

= refcon — Long—Application-defined value
$20 { _

— *colorTableRef —| Long—Reference to color table for control (optional)

Defined bits for £1ag are

Reserved bits 8-15 Must be set to 0

ctlinvis bit 7 1=invisible, O=visible

Reserved bits 1-6 Must be set to 0

fCallWindowMgr bit 0 1=call Growwindow and sizeWindow to track
this control
O=just highlight control

Chapter 28 Control Manager Update 28-73

Apple IIGS Toolbox Reference, Volume 3 Beta Draft ’ 30 August 1989

Defined bits for moreFlags are

fCtlTarget bit 15 Must be set to 0
fCtlCanBeTarget bit 14 Must be set to 0
fCtlWantsEvents bit 13 Must be set to 0
fCt1lProcNotPtr bit 12 Must be set to 1
fCtlTellAboutSize bit 11 Must be set to 0
Reserved bits 4-10 Must be setto 0
Color table reference bits 2-3 Defines type of reference in colorTableRef

(see “Error Corrections” earlier in this chapter
for the definition of the size box color table)
00 - color table reference is pointer
01 - color table reference is handle
10 - color table reference is resource ID
11 - invalid value

Reserved bits 0-1 Must be set to 0

2874 Apple 1IGs Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Static text control template

Figure 28-16 shows the template that defines a static text control. For more information
about static text controls, see “Static text control” in this chapter.

» Figure 28-16 Control template for static text controls

$00 | pCount — Word—Parameter count for template: 7, 8, or 9
$02 | -

= D — Long—Application-assigned control ID
$06

: rect - Rectangle—Boundary rectangle for control
$OR | _

— procRef — Long—statTextControl =$81000000
s12 flag — Word—Highlight and control flags for control
LY moreFlags — Word—Additional control flags
$16 | _

= refcCon —~ Long—Application-defined value
$1A[_

= textRef —{ Long—Reference to text for control
SIE| *textSize — Word—Text size field (optional)

20 *Just — W&;d—lniﬁal justification for text (optional)

Defined bits for £1ag are

Reserved bits 8-15 Mustbe setto 0

ctllnvis bit 7 1=invisible, O=visible

Reserved bits 2-6 Must be set to 0

fSubstituteText bit 1 0=no text substitution to perform
1=there is text substitution to perform

fSubTextType bit 0 0=C strings

1=Pascal strings

‘Chapter 28 Control Manager Update 28-75

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Defined bits for moreFlags are

fCtlTarget bit 15 Must be set to 0
fCtlCanBeTarget bit 14 Must be set to 0
fCtlWantsEvents bit 13 Must be set to 0
fCt1ProcNotPtr bit 12 Must be set to 1
fCtlTellAboutSize bit 11 Must be set to 0
Reserved bits 2-10 Must be set to 0
Text Reference bits 0-1 Defines type of text reference in textRef:

00 - text reference is pointer

01 - text reference is handle

10 - text reference is resource ID
11 - invalid value

textSize The size of the referenced text in characters, but only if the text
reference in textRef is a pointer. If the text reference is either a
handle or a resource ID, then the Control Manager can extract the
length from the handle.

just The justification word is passed on to LEText Box2 (see
Chapter 10, “LineEdit Tool Set,” in Volume 1 of the Toolbox Reference
for details on the LETextBox2 tool call), and is usea to set the initial
justification for the text being drawn. Valid values for just are

leftJustify 0 Textis left justified in the display window

centerJustify 1 Text is centered in the display window

rightJustify -1 Textis right justified in the display window

fullJgustify 2 Textis fully justified (both left and right) in
the display window

Static text controls do not support color tables. In order to display text of different
color, you must embed the appropriate commands into the text string you are displaying.
See the discussion of LETextBox2 in Chapter 10, “LineEdit Tool Set,” in Volume 1 of the
Toolbox Reference for details on command format and syntax.

2876 Apple 1IGs Toolbox Reference, Volume 3

Apple 11GS Toolbox Reference, Volume 3 Beia Draft 30 August 1989

TextEdit control template

Figure 28-17 shows the template that defines a TextEdit control. For more information
about TextEdit controls, see “TextEdit control” in this chapter.

s Figure 28-17 Contro! template for TextEdit controls

s001 pCount — Word—Parameter count for template: 7 to 23
$02 _

= 1D -4 Long—Application-assigned control ID
$06

: rect - Rectangle—Boundary rectangle for control
$OE{ |

— procRef — long—editTextControl=$§85000000
12 flag — Word—Highlight and control flags for control
$14 — moreFlags — Word—Additional control flags
$16 | |

— refCon — Long—Application-defined value
$1A _

- textFlags — Long—Specific TextEdit control flags (see below)
$1E , A

: *indentRect - Rectangle—Defines text indentation from control rect (optional)
$261 -

— *vertBar —| Long—Handle to vertical scroll bar for control (optional)
$2A] .vertamount —{ Word—Vertical scroll amount, in pixels (optional)
$2C1 -

— *horzBar — Long—Reserved; must be set to NILL (optional)
$30 - *horzAmount - Word—-Reserved; must be setto 0 (optional)

continued

Chapter 28 Control Manager Update 28-77

Apple IIGS Toolbox Reference, Volume 3 Beta Draft

continued
$32 -

— *styleRef — Long—Reference to initial style information for text (optional)
$36 | +textvescriptor — Word—Defines format of initial text and textRe £ (optional)
$38 | —

- *textRef ~ Long—Reference to initial text for edit window (optional)
$3C L -

- *textLength — Long-—-lﬂngth of initial text (optional)
$40 | —

- *maxChars — Long-—Maximum number of characters allowed (optional)
$44 -

— *maxLines ~ Long—Reserved; must be set to 0 (optional)

481 *maxCharsPerLines — Word—Reserved; must be set to 0 (optional)
$4A *maxHeight — Word—Reserved; must be set to 0 (optional)
$4C 1 n

= *colorRef ~1 Long—Reference to TextEdi color table (optional)

§$50 L *drawMode — Word—QuickDraw II text mode for edit window (optional)
$§52

«filterprocetr - Long—Pointer to filter routine for this control (optional)

Defined bits for £1ag are

Reserved bits 815 Must be setto 0
ctlInvis bit 7 1=invisible, O=visible
Reserved bits 0-6 Must be set to 0

2878 Apple IIGS Toolbox Reference, Volume 3

30 August 1989

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Defined bits for moreFlags are

fCtlTarget bit 15 Must be set to 0
fCtlCanBeTarget bit 14 Must be set to 1
fCt1lWantsEvents bit 13 Must be set to 1
fCt1lProcNotPtr bit 12 Must be setto 1
fTellAboutSize bit 11 If set to 1, a size box will be created in the

lower-right corner of the window. Whenever the
control window is resized, the edit text will be

resized and redrawn,
fCt1lIsMultiPart bit 10 Must be set to 1 |
Reserved bits 4-9 Must be set to 0
Color table reference bits 2-3 Defines type of reference in colorRef; the

color table for a TextEdit control
(TEColorTable) is described in
Chapter 49, “TextEdit,” in this book:
00 - color table reference is pointer
01 - color table reference is handle
10 - color table reference is resource ID
11 - invalid value
Style reference bits 0-1 Defines type of style reference in styleRref;
the format for a TextEdit style descriptor is
described in Chapter 49, “TextEdit,” in this
book:
00 - style reference is pointer
01 - style reference is handle
10 - style reference is resource ID
11 - invalid value

A Important Do not set £TellaboutSize to 1 unless the control also has a
vertical scroll bar. &

Valid values for textFlags are

fNotControl bit 31 Must be set to 0

fSingleFormat bit 30 Must be set to 1

fSingleStyle bit 29 Allows you to restrict the style options available
to the user:

1 - Allow only one style in the text
0 - Do not restrict the number of styles in the
text

Chapter 28 Control Manager Update 28-79

" Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

fNoWordWrap bit 28 Allows you to control TextEdit word wrap
behavior: .
1 - Do not word wrap the text; only break lines
on CR ($0D) characters
0 - Perform word wrap to fit the ruler
fNoScroll bit 27 Controls user access to scrolling:
1 - Do not allow either manual or auto-scrolling
0 - Scrolling permitted
fReadOnly bit 26 Restricts the text in the window to read-only
operations (copying from the window will still
be allowed):
1 - No editing allowed
0 - Editing permitted
fSmartCutPaste bit 25 Controls TextEdit support for smart cut and
paste (see Chapter 49, “TextEdit,” for details
on smart cut and paste support):
1 - Use smart cut and paste
0 - Do not use smart cut and paste
fTabSwitch bit 24 Defines behavior of the Tab key (see
Chapter 49, “TextEdit,” for details):
1 - Tab to next control in the window
0 - Tab inserted in TextEdit document
fDrawBounds bit 23 Tells TextEdit whether to draw a box around the
edit window, just inside rect; the pen for this
box is two pixels wide and one pixel high
1- Draw rectangle
0 - Do not draw rectangle
fColorHilight bit 22 Must be set to 0.
fGrowRuler bit 21 Tells TextEdit whether to resize the ruler in
= response to the user resizing the edit window; if
set to 1, TextEdit will automatically adjust the
right margin value for the ruler:
1 - Resize the ruler
0 - Do not resize the ruler
fDisableSelection bit 20 Controls whether user can select text:
1 - User cannot select text
0 - User can select text

2880 Applé IIGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft ' 30 August 1989

fDrawInactiveSelection
bit 19 Controls how inactive selected text is

displayed:
1 - TextEdit draws a box around inactive
selections
0 - TextEdit does not display inactive
selections

Reserved bits 0-18 Must be set to 0

indentRect Each coordinate of this rectangle specifies the amount of white space
to leave between the boundary rectangle for the control and the text
itself, in pixels. Default values are (2,6,2,4) in 640 mode and (2,4,2,2)
in 320 mode. Each indentation coordinate may be specified
individually. In order to assert the default for any coordinate, specify
its value as $FFFF.

vertBar Handle of the vertical scroll bar to use for the TextEdit window. If you
do not want a scroll bar at all, then set this field to NIL. If you want
TextEdit to create a scroll bar for you, just inside the right edge of the
boundary rectangle for the control, then set this field to $FFFFFFFF.

vertAmount Specifies the number of pixels to scroll whenever the user presses the
up or down arrow on the vertical scroll bar. In.order to use the default
value (9 pixels), set this field to $0000.

horzBar Must be set to NIL.
horzAmount Must be set to 0.

styleRef Reference to initial style information for the text. See the description
of the TEFormat record in Chapter 49, “TextEdit,” for information
about the format and content of a style descriptor. Bits 1 and 0 of
moreFlags define the type of reference (pointer, handle, resource
ID). To use the default style and ruler information, set this field to
NULL.

textDescriptor
Input text descriptor that defines the reference type for the initial

text (which is in textRef£) and the format of that text. See
Chapter 49, “TextEdit,” for detailed information on text and
reference formats.

textRef Reference to initial text for the edit window. If you are not supplying
any initial text, then set this field to NULL.

Chapter 28 Control Manager Update 28-81

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

textLength If textRe£ is a pointer to the initial text, then this field must contain
the length of the initial text. For other reference types, TextEdit
extracts the length from the reference itself.

¢ Note: You must specify or omit the textDescriptor, textRef, and textLength
fields as a group.

maxChars Maximum number of characters allowed in the text. If you do not want
to define any limit to the number of characters, then set this field to
NULL.

maxLines Must be set to 0.

maxCharsPerLines
Must be set to NULL.

maxHeight Must be set to 0.

colorRef Reference to the color table for the text. This is a Text Edit color table

(see Chapter 49, “TextEdit,” for format and content of
TEColorTable). Bits 2and 3 of moreF1ags define the type of
reference stored here.

drawMode This is the text mode used by QuickDraw II for drawing text. See
Chapter 16, “QuickDraw II,” in Volume 2 of the Toolbox Reference for
details on valid text modes.

filterProcPtr Pointer to a filter routine for the control. See Chapter 49, “TextEdit,”
for details on TextEdit generic filter routines. If you do not want to
use 2 filter routine for the control, set this field to NIL.

2882 Apple 1IGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft : : 30 August 1989

Control Manager code example

This section contains an example of how to create a list of controls for a window with a
single NewContro12 call. If you wish to try this in your own program, you will need to
create a window that is 160 lines high and 600 pixels wide.

; Equates for the new control manager features
; ctlMoreFlags

.
’

fCtlTarget equ $8000
fCtlCanBeTarget equ $4000
fCtlWantEvents equ $2000
fCtlProcRefNotPtr equ $1000
fCtlTellAboutSize equ $0800
titleIsPtr equ $0000
titleIsHandle equ $0001
titleIsResource equ $0002
colorTablelsPtr equ $0000
colorTableIsHandle equ $0004
colorTablelIsResource equ $0008

H .
; NewControl2 ProcRef values for standard control types

.
’

simpleButtonControl equ $80000000
checkControl equ $82000000
radioControl equ $84000000
scrollBarControl equ $86000000
growControl equ $88000000
statTextControl equ $81000000
editLineControl equ $83000000
editTextControl equ $85000000
popUpControl equ $87000000
listControl equ $89000000
iconButtonControl equ S$O07FF0001
pictureControl equ $8D000000

Chapter 28 Control Manager Update 28-83

Apple I1IGS Toolbax Reference, Volume 3 Beta Draft 30 August 1989

; Here is the definition of my control list, note it is simply a list

; of pointers. These do not have to be in any special order. This list
; should always be terminated with a zero.

MyControls dc.L theButton,theScroll,theCheck
dc.L Radiol,Radio2,StatControl

dc.lL LEditControl,PopUp,IconButton,0

; Scroll bar color table as defined by the original control manager.
; The structure of these tables has not changed for the existing
; control types.

.
’

MyColorTable

dc.W 0 outline color

dc.W SO00FO arrow unhilited black on
white

dc.W $0005 arrow hilite blue on black

dc.W $S00F0 arrow Background color

dc.W $00F0 Thumb unhilited

dc.W $0000 Thumb hilited

dc.W $0030 Page region solid
black/white

dc.W $00FO Inactive bar color

.
?

; Definition of a simple vertical scroll bar

.
’

theScroll dc.W 10 number of parms
dc.L 1) application ID
dec.wW 10,10,110,36 rectangle
dc.L scrollBarControl scrollbar def proc
dc.W 3 ; vertical scroll bar w/
arrows
dc.W fCtlProcRefNotPtr set procnotptr flag
dc.L 0 refcon
dc.W 100 ; max size
dc.W 10 size of view
dc.W 5 initial value
dc.L MyColorTable color table to use

2884 Apple 1IGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3

’

; Definition of a simple button

’

SimpTitle str

theButton dc.W
dec.L
dc.W
de.L
W
W
L
L

dc

dec.
de.
dc.

’

; Definition of a check box control

.
’

CheckTitle str

theCheck dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.

.
’

EPHE s E o

"CheckBox'

8 H
3 ;
25,40,0,0 ;
checkControl ;
0 ;
fCtiProcRefNotPtr ;
0 H
CheckTitle ;
0

Beta Draft 30 August 1989

; simple button
visible, round corner

'Button'

7 ; num params

2 ; app ID
10,40,0,0 ; a 25x30 button
simpleButtonControl

0 ;
fCtlProcRefNotPtr+fCtlWantEvents

0

simpTitle ; button Title

num params
app ID
bounding rect
control type
flags
MoreFlags
RefCon
TitlePointer

; Definition of a radio button control

.
’

RadiolTitle str
Radiol | dc.w 8
dc.L 4

de.
dc.
de.
dc.
dc.
dc.
dc.

W
L

Lo o o I

'Radiol’

45,40,0,0
radioControl

1
fCtlProcRefNotPtr
0

RadiolTitle

1

Chapter 28 Control Manager Update 2885

" Apple 1IGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

; Definition of another radio button control
;

Radio2Title str 'Radio2’

Radio2 dc.W 8
dc.L 5
dc.W 65,40,0,0
dc.L radioControl
de.W 1
dc.W fCtlProcRefNotPtr
dc.L O
dc.L Radio2Title
dc.W O

; Definition of a static text control
StatTitle dc.B 'This is Stat Text'
StatControl dc.W 8
dc.L 6
dc.w 120,10,135,210
dc.L statTextControl
dc.W O
dc.W fCtlProcRefNotPtr
dc.L 0
dc.L StatTitle
dc.W 17

L
L

; Definition of an edit line control
;

EditDefault str 'DefaultText'’

LEditControl
dc.W 8
dc.L 7
dc.W 120,240,135,440
dc.L editLineControl
dc.W O
dc.W fCtlProcRefNotPtr
dec.L O
dc.W 30
dc.L EditDefault

2886 Apple TGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft ' 30 August 1989

.
’

; Definition of a pop up menu control (and its menu)

’

PopUpMenu dc.
dec.
de.
dc.
dc.
dc.

PopUp dc.
dc.
de.
dec.
dc.
dc.
dc.
dc.
dc.
dc.

;

U o w ww

22 EC = =

'SPopUpMenu: \N6', $00

'--Selection 1\N259',500
t-~Selection 2\N260',500
'--Selection 3\N261',500
'—-Selection 4\N262',$00

9

8

25,140,40,380

popUpContirol

0

fCtlProcRefNotPtr+fMenuDefIsText

0

100

PopUpMenu

259 ; initial wvalue

; Definition of an icon button control

.
4

IconButtonTitle
str 'Icon Button'

Icon dc.
dc.
dec.
dc.

£ £ £ =

0 ;black and white icon
200

10 ;icon height in pixels
40 ;icon width in pixels

Chapter 28 Control Manager Update 2887

Apple 1IGS Toolbox Reference, Volume 3

; Data for icon goes here (omitted)

.
’

IconButton

dc.w 10

ds.l1 1

dc.w 40,40,80,100

dc.l iconButtonControl

dec.w O

dc.w FctlProcRefNotPtr
dc.1 0

dc.1
dc.l

Icon
IconButtonTitle

dc.1l MyColorTable
dc.w O

Beta Draft

.
’

30 August 1989

pCount

ID

button rectangle

defproc

single outline,
round-cornered

get defproc from
resource

pointer to icon

pointer to p-string
title

pointer to color table
standard drawing of icon

To create the above new controls in 2 window use the NewControl2 call:

pha

pha

Pushlong WindPointer
PushWord #ptrToPtr
PushlLong #MyControls
_NewControl2

pla

pla

2888 Apple IIGS Toolbox Reference, Volume 3

room for result

Pointer to Owner window
Input verb for ptr to table
pointer to table of templates

discard these bytes,
for single ctl returns a value

only verb

Apple IIGS Toolbox Reference, Volume 3 Beta Draf! : 30 August 1989

New control records

The NewCont ro12 tool call creates extended control records (as discussed earlier in this
chapter in “New and changed controls”). This section describes the format and content of
the control records created by NewControl2.

A Warning All control record layouts and field descriptions are provided so that
programs may read these records for needed information. Your
program should never set values into control records.a

Generic extended control record

Currently, the Control Manager’s standard, or generic, control record is $28 bytes long (see
Chapter 4, “Control Manager,” in Volume 1 of the Toolbox Reference for information about
existing control records). To support the new controls (those created with
NewControl2), the generic control record has several new fields. The layout of the new
generic control record follows.

Chapter 28 Control Manager Update 28-89

Apple 1IGS Toolbox Reference, Volume 3 Beia Draft

s Figure 28-18 Generic extended control record

$00

$04

$10
$11

s12[

$14

$18 [

$1C

$20 [

$24

8381

$3c

$3E

ctlNext

ctlOwner

$08

ctlRect

ctlFlag

ctlHilite

ctlvValue

ctlProc

ctlAction

ctlData

ctlRefCon

ctlColor

$28

ctlReserved

ctlID

ct1lMoreFlags

ctlVersion

Long

Long

- Rectangle

Byte
Byte

Word

Long

Long

Long

long

Long

 Block, $10 bytes

Long

Word

Word

2890 Apple IIGS Toolbox Reference, Volume 3

30 August 1989

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

ctlNext A handle to the next control associated with this control's window. All
the controls belonging to a given window are kept in a linked list,
beginning in the wCont ro1 field of the window record and chained
together through the ct1Next fields of the individual control
records. The end of the list is marked by a zero value; as new controls
are created, they're added to the beginning of the list.

ctlOwner A pointer to the window port to which the control belongs.

ctlRect The rectangle that defines the control’s position and size in the local
coordinates of the control's window.

ctlFlag A bit flag that further describes the control. The appropriate values are
shown for each control in the sections that follow.

ctlHilite Specifies whether and how the control is to be highlighted and
indicates whether the control is active or inactive. This field also
specifies whether the control wants to receive selection events. The
values for ct1Hilite are as follows:

0 Control active; no highlighted parts—this value will cause
events to be generated when the mouse button is pressed in
the control

1-254 Part code of a highlighted part of the control

255 Control inactive—this value indicates that no events are to
be generated when the mouse button is pressed in the
control

Only one part of a control can be highlighted at any one time, and no
part can be highlighted on an inactive control. See

Chapter 4, “Control Manager,” in Volume 1 of the Toolbox Reference for
more information on highlighting.

ctlvalue The control’s current setting. For check boxes and radio buttons, zero
means the control is off, and a nonzero value means it's on. For scroll
bars, the value is between 0 and the data size minus the view size. The
field is also available for custom controls to use as appropriate.

Chapter 28 Control Manager Update 2891

Apple LIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

ctlProc

ctlAction

ctlData

ctlRefCon

For standard controls, this field indicates the control type, identified
by its ID. For custom controls, this field contains a pointer to the
control definition procedure (defProc) for this type of control.

For controls created with NewControl, valid ID values are:

simpleProc $00000000 Simple button
checkProc $02000000 Check box
radioProc $04000000 Radio button
scrollProc $06000000 Scroll bar
growProc $08000000 Size box

For controls created with NewControl2, the £Ct1ProcRefNotPtr
flag in ct 1MoreFlags allows the Control Manager to discriminate
between pointers and IDs. Valid ID values (used with
fCt1ProcRefNotPtr setto 1) are:

simpleButtonControl $80000000 Simple button

checkControl $82000000 Check box
iconButtonControl $07FF0001 Icon button
editLineControl $83000000 LineEdit
listControl $89000000 List
pictureControl $8D000000 Picture
popUpControl $87000000 Pop-up
radioControl $84000000 Radio control
scrollBarControl $86000000 Scroll bar
growControl $88000000 Size box
statTextControl $81000000 Static text
editTextControl $85000000 TextEdit

Pointer to the control’s custom action procedure, if any.

TrackControl may call the custom action procedure to respond to

the user dragging the mouse inside the control. See
Chapter 4, “Control Manager,” in Volume 1 of the Toolbox Reference for
more information about TrackControl.

Reserved for use by the control definition procedure, typically to hold
additional information for a particular control type. For example, the
standard definition procedure for scroll bars uses the low-order word
as the view size and the high-order word as the data size. The standard
definition procedures for simple buttons, check boxes, and radio
buttons store the address of the control’s title.

This field is reserved for application use.

2892 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

ctlColor This field contains a reference to the color table to use when drawing
the control. If the field is set to NIL, the Control Manager uses a
default color table defined by the control's definition procedure.
Otherwise, ct 1Color contains a pointer, handle, or resource ID for
the color table to use. Bits 2 and 3 of ct1MoreF1ags usually allow
the Control Manager to discriminate between these different data

types.

ctlReserved This space is reserved for use by the control definition procedure. In
some cases, the use is prescribed by the system. For example,
keyboard equivalent information is stored here for controls that
support keyboard equivalents,

ctlID This field may be used by the application to provide a straightforward
mechanism for keeping track of controls. The control ID is a value
assigned by your application with the 1 field of the control template
used to create the control. Your application can use the ID, which has
a known value, to identify a particular control.

ctlMoreFlags This field contains bit flags that provide additional control
information needed for new-style controls (those created with
NewControl2). You can use the GetCt 1MoreF1lags Control
Manager call to read the value of this field from a specified control
record. Use the setCt1MoreFlags call to change the value.

The high-order byte is used by the Control Manager to store its own
control information. The low-order byte is used by the control
definition procedure to define reference types.

The defined Control Manager flags are:

fCtlTarget $8000 If set to 1, this control is currently the target of
any typing or editing commands.

fCtlCanBeTarget $4000 If set to 1 then this control can be made the
target control. -

fCt1lWantEvents $2000 If set to 1 then this control can be called when

events are passed via the SendEventToCtl
Control Manager call. Note that, if the
fCtlCanBeTarget flag is set to 1, this control
will receive events sent to it regardless of
setting of this flag.

Chapter 28 Control Manager Update 2893

Apple IIGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

fCtlProcRefNotPtr $1000 If set to 1, then Control Manager expects
ctlProc to contain the ID of a standard
control procedure. If set to 0, then ct1Proc
contains a pointer to the custom control
procedure.

fCt1TellAboutSize $0800 If set to 1, then this control needs to be
notified when the size of the owning window
has changed. This flag allows custom control
procedures to resize their associated control
images in response to changes in window size.

fCtlIsMultiPart $0400 If set to 1, then this is a multipart control. This
flag allows control definition procedures to
manage multi-part controls (necessary since the
Control Manager does not know about all the
parts of a multi-part control).

The low-order byte uses the following convention to describe
references to color tables and titles (note, though, that some control
templates do not follow this convention):

titleIsPtr $00 Title reference is by pointer
titleIsHandle $01 Title reference is by handle
titleIsResource $02 Title reference is by resource ID
colorTableIsPtr $00 Color table reference is by pointer
colorTableIsHandle $04 Color table reference is by handle
colorTableIsResource $08 Color table reference is by resource ID

ctlvVersion This field is reserved for future use by the Control Manager to
distinguish between different versions of -control records.

2894 Appie 11GS Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Extended simple button control record

Figure 28-19 shows the format of the extended control record for simple button controls.

Chapter 28 Control Manager Update 2895

Apple IIGS Toolbox Reference, Volume 3 Beta Draft

s Figure 28-19 Extended simple button control record

$00

$04

508 |

$10
$11

$12
$14

$18

$1C

$20

$24

$28 |

$2E

38

$3C
$3E

T

ctlNext

ctlOowner

ctlRect

ctlFlag

ctlHilite

ctlValue

ctlProc

ctlAction

ctlData

ct1lRefCon

ctlColor

keyEquiv

ctlReserved

ctllD

ctlMoreFlags

ctlversion

Long—Handle to next control; NIL for last control

Long—Pointer to window to which contro! belongs

- Rectangie—Defines button's boundary rectangle

Byte—Defines button style
Byte—Current type of highlighting

Word-—Not used; set to 0

Long—simpleButtonCont ro1=§80000000
Long—Pointer to custom procedure; NIL if none
Long—Reference to button title string
Long—Reserved for application use

Long—Optional color table reference; NIL if none

© Block, $06 Bytes—Key equivalent record

. Block, $0A bytes—Reserved

Long—Application-assigned ID

Word—Additional control flags
Word—Set to 0

2896 Apple 1IGs Toolbox Reference, Volume 3

30 August 1989

Apple 1IGS Toolbox Reference, Volume 3

Valid values for ct1Flag are

ctlInvis bit 7
Reserved bits 2-6
Button type bits 0-1

Valid values for ct 1MoreFlags are

Beia Draft . 30 August 1989

1=invisible, O=visible

Must be set to 0

Describes button type:

0 = single-outlined round-cornered button
1 = bold-outlined round-cornered button
2 = single-outlined square-cornered button
3 = single-outlined square-cornered drop-
shadowed button

fCtlTarget bit 15 Must be set to 0
fCtlCanBeTarget bit 14 Must be set to 0
fCtlWantsEvents bit 13 Set to 1 if button has keystroke equivalent
£Ct1ProcNotPtr bit 12 Must be set to 1
fCtlTellAboutSize bit 11 Must be set to 0
Reserved bits 4~10 Must be set to 0
Color table reference bits 2-3 Defines type of reference in ct1colox (if itis
not NIL). See Chapter 4, “Control Manager,” in
Volume 1 of the Toolox Reference for the
definition of the simple button color table.
00 - color table reference is pointer
01 - color table reference is handle
10 - color table reference is resource ID
11 - invalid value
Title reference bits 0-1 Defines type of title reference in ctlData:
00 - title reference is pointer
01 - title reference is handle
10 - title reference is resource ID
11 - invalid value
keyEquiv Keystroke equivalent information stored at keyEquiv is formatted
as shown in Figure 28-2.

‘Chapter 28- Control Manager Update

2897

Apple IIGS Toolbax Reference, Volume 3 Beta Draft 30 August 1989

Extended check box control record

Figure 28-20 shows the format of the extended control record for check box controls.

2898 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

s Figure 2820 Extended check box control record

$00 | -

- ctlNext — Long—Handle to next control; NIL for last control
$04 | 4

o ctlOwner —{ Long—Pointer to window to which control belongs
$08

: ctlRect . Rectangle—Defines check bax’s boundary rectangle
$10 ctlFlag Byte—Defines check box visibility
$11 ctlHilite Byte—Current type of highlighting
2L cewvatse | Word—0 if not checked; 1 if checked
$14 | _

— etlProc - Long—checkControl=§8§2000000
$181 _

= ctlhction = Long—Pointer to custom procedure; NIL if rone
$1C|_ -

- ct1Data —| Long—Reference to check box title string
$20 | _

- ctlRefCon — Long—Reserved for application use
$4 [A

- cticColor — Long—Optional color table reference; NIL if none
$28

: keyEquiv Block, $06 BY[CS-—KCY equxvalem record
$2E

. ct1lReserved - Block, $0A bytes—Reserved
$38 .

- ctlIp — Long—Application-assigned ID
$3C - ctlMoreFlags — Word—Additional control ﬂags
$3E - ctlVersion - Word—Setto 0

Chapter 28 Control Manager Update 28-99

Apple 1IGS Toolbox Reference, Volume 3

Valid values for ct 1Flag are

ctlInvis bit 7
Reserved bits 0-6

Valid values for ct IMoreFlags are

Beta Draft E 30 August 1989

1=invisible, O=visible
Must be set to 0

fCtlTarget bit 15 Must be set to 0
fCtlCanBeTarget bit 14 Must be set to 0
fCt1lWantsEvents bit 13 Set to 1 if check box has keystroke equivalent
fCt1lProcNotPtr bit 12 Must be set to 1
fCtlTellAboutSize bit 11 Must be set to 0
Reserved bits 410 Must be set to 0
Color table reference bits 2-3 Defines type of reference in ct1color (ifitis
not NIL). See Chapter 4, “Control Manager,” in
Volume 1 of the Toolbox Reference for the
definition of the check box color table.
00 - color table reference is pointer
01 - color table reference is handle
10 - color table reference is resource ID
11 - invalid value
Title reference bits 0-1 Defines type of title reference iii ct1pata:
00 - title reference is pointer
01 - title reference is handle
10 - title reference is resource ID
11 - invalid value
keyEquiv Keystroke equivalent information stored at keyEquiv is formatted

as shown in Figure 28-2.

28100 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beia Draft 30 August 1989

Icon button control record

Figure 28-21 shows the format of the control record for icon button controls.

s Figure 28-21 Icon button control record

$00] _

- ct1Next — Long-—Handle to next control; NIL for last control
$04 _

- ctlOwner -~ Long—Pointer to window to which control belongs
$08

: ctiRect . Rectangle—Defines icon boundary rectangle
$10 ctlFlag Byte—Defines control visibility and button style
$11 ctiHilite Byte—Controls highlighting
$12 - ctivalue —| Word—Not used; set to 0
$14 []

— ctlProc — Long—iconButtonControl=§07FF0M)]
$181 _

— ctlAction — Long—Pointer to custom procedure; NIL if none
s$icl]

— ctlData — Long—Optional reference to title string for button
$20 _

— ctlRefCon — Long—Reserved for application use
$24 | _

— ctlcolor —{ Long—Optional color table reference; NIL if none
$28

X keyEquiv : Block, $06 bytes—Key equivalent record

continued

Chapter 28 Control Manager Update 28101

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft ' 30 August 1989

continued
$2E
: ctlReserved - Block, $0A bytes—Reserved
$38 | _
— ct1ID — Long—Application-assigned ID

$3CL ctimoreriags | Word—Additional control flags

$3E - ctlVersion - Word—Setto 0
$40 []

— iconRef —~{ Long—Reference to icon
$44

|~ displayMode — Word—Bit flag defining icon’s appearance

Valid values for ct1F1ag are

ctlInvis bit 7 1=invisible, O=visible
Reserved bits 3-6 Must be set to 0
showBorder ' bit 2 1=No border, 0=Show border
buttonType bits 0-1 Defines button type:

00 - single-outlined round-cornered button

01 - bold-outlined round-cotnered button

10 - single-outlined square-cornered button

11 - single-outlined square-comered and drop-
shadowed button

28102 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbax Reference, Volume 3

Valid values for ct 1MoreFlags are

fCtlTarget bit 15
fCtlCanBeTarget bit 14
fCtlWwantsEvents bit 13
fCtlProcNotPtr bit 12
fCtlTellAboutSize bit 11
Reserved bits 6~10
Icon reference bits 4-5

Color table reference bits 2-3

Title reference bits 0-1

Beta Draft 30 August 1989

Must be set to 0

Must be set to 0

Must be set to 0

Must be set to 1

Must be set to 0

Must be set to 0

Defines type of icon reference in iconRref:
00 - icon reference is pointer

01 - icon reference is handle

10 - icon reference is resource ID

11 - invalid value

Defines type of reference in ct1color (if itis
not NIL). The color table for an icon button is
the same as that for a simple button. See
Chapter 4, “Control Manager,” in Volume 1 of
the Toolbox Reference for the definition of the
simple button color table,

00 - color table reference is pointer

01 - color table reference is handle

10 - color table reference is resource ID

11 - invalid value

Defines type of title reference in ct1pata:
00 - title reference is pointer

01 - title reference is handle

10 - title reference is resource ID

11 - invalid value

ctlData Holds the reference to the title string, which must be a Pascal string.

displayMode Passed diréctly to the DrawIcon routine, and defines the display
mode for the icon. The Control Manager sets this field from the
displayMode field in the icon button control template used to

create the control.

keyEquiv Keystroke equivalent information stored at keyEquiv is formatted
as shown in Figure 28-2.

Chapter 28 Control Manager Update 28103

Apple IIGS Toolbox Reference, Volume 3 Beta Draft

LineEdit control record

Figure 28-22 shows the format of the control record for LineEdit controls.

s Figure 2822
$00|

- ctlNext
S04

— ctlOwner
$08

. ctlRect
510 ctlFlag
$11 ctlHilite
512 b ctlValue
$14

- ctlProc
$181

P ctlAction
$1C|

- ctlData
$20|_

- ctlRefCon
$241

- ctlColor
$28

. ctlReserved
$38]_

- ctlID
SSC e ctlMoreFlags
$3E - ctlVersion

28104

LineEdit control record

Long—Handle to next control; NIL for last control

Long—Pointer to window to which control belongs

. Rectangle—Defines control boundary rectangle

Byte—Defines control visibility
Byte—Controls highlighting

Word—Not used; must be set to 0

Long— editLineControl=$§83000000

Long—Pointer to custom procedure; NIL if none

Long—Handle to LineEdit edit record

Long--Reserved for application use

Long—Not used; must be set 10 0

: Block, $10 bytes—Not used; must be set to 0

Long—Application-assigned ID

Word—Additional contro! flags

Word—Setto 0

Apple IIGs Toolbox Reference, Volume 3

30 August 1989

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Valid values for ct1F1ag are

ctlInvis bit 7 1=invisible, O=visible
Reserved bits 0-6 Must be set to 0

Valid values for ct 1MoreFlags are

fCtlTarget bit 15 Must be set to 0
fCtlCanBeTarget bit 14 Must be set to 1
fCtlWantsEvents bit 13 Must be setto 1
fCtlProcNotPtr bit 12 Must be set to 1
fCtlTellAboutSize bit 11 Must be set to 0
Reserved bits 210 Mustbe setto 0
Text reference bits 0-1 Defines type of text reference in ct1pata

00 - text reference is pointer

01 - text reference is handle

10 - text reference is resource ID
11 - invalid value

ctlData Control Manager stores the handle to the LineEdit edit record in the
ctlData field. If you want to issue LineEdit tool calls directly, you
can retrieve the handle from that field.

Note that LineEdit controls do not support color tables.

Chapter 28 Control Manager Update 28-105

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

List control record

Figure 28-23 shows the format of the control record for list controls.

s Figure 28-23 List control record

so0 []
- ct 1Next -
$04 [-
- ctlOwner -
$08
. ctlRect
310 ctlFlag
$11 ctlHilite
512 }— ctlvValue —
$14 i
= ctlProc -
$18 []
P~ ctlAction -
sic[”]
P ctlData -
$20| _
- ctlRefCon -
4] _
- ctlColor -
$8 1 _
- ct 1MemDraw -
SZC o ct 1MemHeight -—
SZE - ctlMemSize -
continued
28106

Long—Handle to next control; NIL for last control

Long—Pointer to window to which control belongs

- Rectangle—Defines control boundary recangle

Byte—Defines style of scroll bar for list window
Byte—Not used; must be setto 0

Word—Reserved

Long—1listControl =$85000000

Long—Pointer to custom procedure; NIL if none

Long—High-word is1istSize;low-word is viewSize

Long—Reserved for application use

Long—Reference to the color table for the control

Long—Pointer to list member drawing routine

Word—List member height in pixels

Word—List member record size in bytes

Apple IIGS Toolbox Reference, Volume 3

Apple IIGs Toolbox Reference,

continued

Volume 3 Beta Draft 30 August 1989

$30

ctlListRef

$34

ctllistBar

$38

$3C

ctlID

$3E

ctiMoreFlags

ctlVersion

-

Long—Reference to list member records

Long—Handle of control's scroll bar control

Long—Application-assigned ID

Word—Additional control flags
Word—Set to 0

Valid values for ct 1F1ag are

ctllInvis

Reserved

bit 7 1=invisible, O=visible
bits 0-6 Must be set to 0

Chapter 28 Control Manager Update 28107

' Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Valid values for ct 1MoreFlags are

fCt1lTarget bit 15 Must be set to 0
fCtlCanBeTarget bit 14 Must be set to 0
fCtlWantsEvents bit 13 Must be set to 0
fCt1ProcNotPtr bit 12 Must be set to 1
fCt1lTellAboutSize bit 11 Must be set to 0
fCtlIsMultiPart bit 10 Must be set to 1
Reserved bits 4-9 Must be set to 0
Color table reference bits 2-3 Defines type of reference in ct1Colox (if it is

not NIL). The color table for a List control is
described in Chapter 11, “List Manager,” in
Volume 1 of the Toolbax Reference:
00 - color table reference is pointer
01 - color table reference is handle
10 - color table reference is resource ID
11 - invalid value

List reference bits 0-1 Defines type of reference in 1istRef. The
format for a list member record is described in
Chapter 11, “List Manager,” in Volume 1 of the
Toolbox Reference.
00 - list reference is pointer
01 - list reference is handle
10 - list reference is resource ID
11 - invalid value

28-108 Appie 1IGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Bela Draft ' 30 August 1989

Picture control record

Figure 28-24 shows the format of the control record for picture controls.

» Figure 28-24 Picture control record

$00 |]

— ctlNext ~ Long—Handle to next control; NIL for last control
$04 | -

- ctlOwner — Long—Pointer to window to which control belongs
$08

: ctirect . Rectangle—Defines picture boundary rectangle
$10 ctlFlag Byte—Defines picture visibility
$11 ctlHilite Byte—Controls event generation for control
$12 ctlvalue -~ Word—Not used; set to 0
$14] |

— ctlProc — Long—pictureControl=$8D000000
$181 _

— ctlAction —{ Long—Pointer to custom procedure; NIL if none
$1C|_ _

- ctlData ~| Long—Reference to picture
$20 4

— ctlRefCon — Long—Reserved for application use
$24 | _

- ctlColor — Long—Not used; must be setto 0
$28

: ctlReserved . Block, $10 bytes—Not used
$381 _

- ct1ID — Long—Application-assigned ID
L 1MoreFlags - Word—Additional control flags
$3E - ctlVersion — Word—Setto 0

Chapter 28 Control Manager Update 28109

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Valid values for ct1F1ag are

ctlinvis bit 7 1=invisible, O=visible
Reserved bits 0-6 Must be set to 0

Valid values for ct 1MoreF1lags are

fCtlTarget bit 15 Must be set to 0
fCtlCanBeTarget bit 14 Must be set to 0
fCtlWantsEvents bit 13 Must be set to 0
fCt1ProcNotPtr bit 12 Must be set to 1
fCtlTellAboutSize bit 11 Must be set to 0
Reserved bits 2-10 Must be set to 0
Picture reference bits 0-1 Define type of picture reference in ct1pata:

00 - invalid value

01 - reference is handle

10 - reference is resource ID
11 - invalid value

ctlHilite Specifies whether the control wants to receive mouse events. The
values for ct1Hilite are as follows:

0 Events will be generated when the mouse button is pressed in the
control

255 No events will be generated when the mouse buttron is pressed
in the control

28-110 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft

Pop-up control record

Figure 28-25 shows the format of the control record for pop-up menu controls.

» Figure 28-25 Pop-up control record

$00

$04

$10
$11
$12.

$14

$18

$1CL

$20 |

$24

$28

ctlNext

ctlOwner

$08

ctlRect

ctlFlag

ctlHilite

ctlValue

ctlProc

ctlAction

ctlbata

ctlRefCon

ctlColor

menuRef

continued

Long—Handle to next control; NIL for last control

Long—Pointer to window to which control belongs

- Rectangle—Defines control boundary rectangle

Byte—Defines control visibility and other attributes
Byte—Not used; must be set to 0

Word—Currently selected item

Long—popUpCont rol =$§87000000
Long—Pointer to custom procedure; NIL if none
Long—Not used; must be setto 0
Long—;-Reserved for application use
Long—Reference to the color table for the control

Long—Reference to menu definition

30 August 1989

Chapter 28- Control Manager Update 28111

Apple IIGS Toolbox Reference, Volume 3

Beta Draft 30 August 1989

continued

$2C | _

— menuEnd —~ Long—Must be setto 0
$30

: popUpRect - Rectangle—Calculated by Menu Manger
$38 | -

- ct1ID — Long—Application-assigned ID
$3c .
e ctlMoreFlags -~ Word—Additional control flags
$40 - ctlversion — Word—Setto 0

- titlewidth — Word—Pixel width of title position of menuy

Valid values for ct 1F1ag are

ctlInvis bit 7
£Type2PopUp bit 6
fDontHiliteTitle bit 5

fDontDrawTitle bit 4

fDontDrawResult bit 3

1=invisible, O=visible

Indicates type of pop-up menu:

1 - Draw pop-up with white space (Type 2)

0 - Draw normal pop-up

Controls highlighting of the control title:

1- Do not highlight title when control is popped

up
0 - Highlight title

. Indicates whether the Control Manager is to

draw the menu title:

1 - Do not draw the title

0 - Draw the title

Indicates whether result is shown:

1 - Do not draw the result in the result area after
a selection

0 - Draw the result

28112 Apple IIGs Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3

fInWindowOnly bit 2

fRightJustifyTitle bit1

fRightJustifyResult bit 0

Beta Draft 30 August 1989

Controls the extent to which the pop-up menu
can grow; this is particularly relevant with
respect to Type 2 pop-ups (see

Chapter 37, “Menu Manager Update,” for details
on Type 2 pop-up menus):

1 - Keep the pop-up in the current window

0 - Allow the pop-up to grow to screen size
Controls title justification:

1 - Right justify the title; note that if the title is
right justified, then the control rectangle is
adjusted to eliminate unneeded pixels (see
Figure 28-12), the value for titlewidth is also
adjusted

0 - Left justify the title

Controls result justification:

1 - Right justify the selection

0 - Left justify the selection titlewidth
pixels from the left of the pop-up rectangle.

Chapter 28 Control Manager Update 28113

" Apple 1IGS Toolbox Reference, Volume 3 Beta Draft ~ 30 August 1989

Valid values for ct 1MoreFlags are

fCtlTarget bit 15 Must be set to 0

fCtlCanBeTarget bit 14 Must be set to 0

fCtlwantsEvents bit 13 Must be set to 1 if the pop-up has any

keystroke equivalents defined

fCtlProcNotPtr bit 12 Must be set to 1

fCtlTellAboutSize bit 11 Must be set to 0

Reserved bits 510 Must be set to 0

Color table reference bits 34 Defines type of reference in colorTableRef

(the color table for a menu is described in
Chapter 13, “Menu Manager,” in Volume 1 of the
Toolbox Reference)
00 - color table reference is pointer
01 - color table reference is handle
10 - color table reference is resource ID
11 - invalid value

fMenuDefIsText bit 2 Defines type of data referred to by menuRref:
1-menuRef is a pointer to a text stream in
NewMenu format (see
Chapter 13, “Menu Manager,” ir: Volume 1 of the
Toolbox Reference for details)
0 - menuRef is a reference to a Menu Template
(again, see Chapter 13, “Menu Manager,” in
Volume 1 of the Toolbax Reference for details on
format and content of a Menu Template)

Menu reference bits 0-1 Defines type of menu reference in menuref (if
fMenuDefIsText is setto 1, then these bits
are ignored):
00 - menu reference is pointer
01 - menu reference is handle
10 - menu reference is resource ID
11 - invalid value

28114 Apple 1IGs Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft ‘ 30 August 1989

ctlRect

ctlValue

titleWidth

menuRef

pefines the boundary rectangle for the pop-up and its title, before the
menu has been “popped” by the user. The Menu Manager will calculate
the lower-right coordinates of the rectangle for you, if you specify
those coordinates as (0,0).

Contains the item number of the currently selected item.

Contains the value set in the titlewidth field of the pop-up menu
control template used to create the control.

Reference to menu definition (see Chapter 13, “Menu Manager,” in
Volume 1 of the Toolbox Reference and

Chapter 37, “Menu Manager Update,” in this book for details on menu
templates). The type of reference contained in menuref is defined
by the Menu reference bits in ct 1MoreFlags. This field is set from
the menuRre£ field of the pop-up menu control template used to
create the control.

Chapter 28 Control Manager Update 28-115

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Extended radio button control record

Figure 28-26 shows the format of the extended control record for radio button controls.

28116 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft ' 30 August 1989

= Figure 28-26 Extended radio button control record

$00

$04

§08 |

$10
1
$12

$14

$18

$1C

$20

$24

$2E

§38

$3C
$3E

ctlNext

ctlOwner

ctlRect

ctlFlag

ctlHilite

ctlValue

ctlProc

ctlAction

ctlData

ctlRefCon

ctlColor

$28

keyEquiv

ctlReserved

ctlID

ctlMoreFlags

ctlVersion

Long—Handle to next control; NIL for last control

Long—Pointer to window to which control belongs

: Rectangle—Defines radio button’s boundary rectangle

Byte—Defines button visibility and family affinity
Byte—Current type of highlighting

Word—0 if off; 1 if on

Long— radioCont ro1=$84000000

Long—Pointer to custom procedure; NIL if none

Long—Reference to radio button title string

Long—Reserved for application use

Long—Optional color table reference; NIL if none

: Block, $06 Bytes—Key equivalent record

- Block, $0A bytes—Reserved

Long—Application-assigned ID

Word—Additional control flags
Word—Set to 0

Chapter 28 Control Manager Update 28117

Apple 1IGS Toolbax Reference, Volume 3 Beta Draft 30 August 1989

Valid values for ct1Flag are

ctlinvis bit 7 1=invisible, 0=visible

Family number bits 0-6 Family numbers define associated groups of
radio buttons. Radio buttons in the same family
are logically linked. That is, setting one radio
button in a family clears all other buttons in the

same family
Valid values for ct 1MoreFlags are
fCtlTarget bit 15 Must be set to 0
fCtlCanBeTarget bit 14 Must be setto 0
fCt1lWantsEvents bit 13 Set to 1 if button has keystroke equivalent
fCt1ProcNotPtr bit 12 Must be set to 1
fCt1TellAboutSize bit 11 Must be set to 0
Reserved bits 4-10 Must be set to 0
Color table reference bits 2-3 Defines type of reference in ct1Colox (if itis

not NIL). See Chapter 4, “Control Manager,” in
Volume 1 of the Toolbox Reference for the
definition of the radio button color table.
00 - color table reference is pointer
01 - color table reference is handle
10 - color table reference is resource ID
11 - invalid value

Title reference bits 0-1 Defines type of title reference in ct1pata:
00 - title reference is pointer
01 - title reference is handle
10 - title reference is resource ID
11 - invalid value

keyEquiv Keystroke equivalent information stored at keyEquiv is formatted
as shown in Figure 28-2.

28118 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Extended scroll bar control record

Figure 28-27 shows the format of the extended control record for scroll bar controls,

Chapter 28 Control Manager Update 28119

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

s Figure 28-27 Extended scroll bar control record

$00 |]
- ct1Next — Llong—Handle to next control; NIL for last control
$04 | -
— ctlowner -~ Long—Pointer to window to which control belongs
$08
: ctlRect . Rectangle—Defines scroll bar's boundary rectangle
$10 ctlFlag Byte—-Style of scroll bar
$11 ctlHilite Byte—Current type of highlighting
$12 ctlvalue — Word—Thumb position between 0 and (dataSize — viewSize)
$14 '

— ctlproc — Long—scrollControl=$86000000

$18 | _

= ctlhction — Long—DPointer to custom procedure; NIL if none
$S1IC]

— ctlData — Long—High-order word=dataSize, low-order word= viewSize
$20

- ctlRefCon — Reserved for application use

$24 | _

— ctlcolor — Long—Optional color table reference; NIL if none
$28

: thumbRect . Rectangle—Defines thumb rectangle
$30

: pageRegion - Rectangle—Defines page region, thumb bounds
$38 1 i

- ct1ID ~! Long—Application-assigned ID
$3C| ctiMorerlags —| Word—Additional control flags

$3E - ctlversion — Word—Setto 0

28120 Apple IIGS Toolbox Reference, Volume 3

Apple 1iGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Valid values for ct1Flag are

ctlInvis bit 7 1=invisible, O=visible

Reserved bits 5-6 Must be set to 0

horScroll bit 4 1=horizontal scroll bar, O=vertical scroll bar
rightFlag bit 3 1=bar has right arrow, O=bar has no right arrow
leftFlag bit 2 1=bar has left arrow, O=bar has no left arrow
downFlag bit 1 1=bar has down arrow, O=bar has no down arrow
upFlag bit 0 1=bar has up arrow, O=bar has no up arrow

Note that extraneous flag bits are ignored, based upon the state of the horscrol1 flag.
For example, for vertical scroll bars, rightFlagand 1eftFlag are ignored.

Valid values for ct 1MoreFlags are

fCtlTarget bit 15 Must be set to 0
fCtlCanBeTarget bit 14 Must be set to 0
fCtlwantsEvents bit 13 Must be set to 0
fCtlProcNotPtr bit 12 Must be set to 1
fCt1lTellAboutSize bit 11 Must be set to 0
Reserved bits 4-10 Must be setto 0
Color table reference bits 2-3 Defines type of reference in ct1Color (if itis

not NIL). See Chapter 4, “Control Manager,” in
Volume 1 of the Toolbox Reference and
“Clarifications” in this chapter for the
definition of the scroll bar color table.
00 - color table reference is pointer
01 - color table reference is handle
10 - color table reference is resource ID
11 - invalid value

Reserved bits 0-1 Must be set to 0

Chapter 28 Control Manager Update 28121

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft

Extended size box control record

Figure 28-28 shows the format of the extended control record for size box controls.

» Figure 2828 Extended size box control record

$00

$04

$10
$1
$12

$14

$18

$1C

$20

$24

§38

$3C
$3E

ctlNext

ctl0wner

$08

ctlRect

ctlFlag

ctlHilite

ctlValue

ctlProc

ctlAction

ctlData

ctlRefCon

ctlColor

8

ctiReserved

ctlID

ctlMoreFlags

ctlVersion

Long—Handle to next control; NIL for last control

Long—Pointer to window to which control belongs

- Rectangle—Defines size box’s boundary rectangle

Byte—Define size box visibility
Byte—Current type of highlighting

Word—Not used; set to 0

Long—growCont ro1=$88000000

Long—Pointer to custom procedure; NIL if none

Long—Not used; setto 0

Long—Reserved for application use

Long—Optional color table reference; NIL if none

- Block, §10 bytes—Not used; setto 0

Long—Application-assigned ID

Word—Additional control flags
Word—Set to 0

28122 Appie 11GS Toolbox Reference, Volume 3

30 August 1989

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Valid values for ct1F1ag are as follows:

ctlInvis bit 7 1=invisible, O=visible
Reserved bits 1-6 Must be set to 0
fCallwWindowMgr bit 0 1=call GrowWwindow and sizeWindow 10 track

this control; O=just highlight control

Valid values for ct 1MoreFlags are as follows:

fCtlTarget bit 15 Must be set to 0
fCtlCanBeTarget bit 14 Must be set to 0
fCtlWwantsEvents bit 13 Must be set to 0
fCt1ProcNotPtr bit 12 Must be set to 1
fCtlTellAboutSize bit 11 Must be set to 0
Reserved bits 410 Must be setto 0
Color table reference bits 2-3 Defines type of reference in ct1Colox (if it is

not NIL). See “Error Corrections” in this chapter
for the definition of the size box color table.
00 - color table reference is pointer
01 - color table reference is handle
10 - color table reference is resource ID
11 - invalid value

Reserved bits 0~1 Must be set to 0

Chapter 28 Control Manager Update 28123

Apple IIGS Toolbox Reference, Volume 3 Beta Draft ' 30 August 1989

Static text control record

Figure 28-29 shows the format of the control record for static text controls.

28124 Apple 11GS Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3

Beta Draft

30 August 1989

Figure 28-29 Static text control record

$00 | _

— ctlNext —| Long—Handle to next control; NIL for last control
$04 N

— ctlowner — Long—Pointer to window to which control belongs
$08

: ctlRect - Rectangle—Defines text window boundary rectangle
$10 ctlFlag ‘Byte—Define text display and storage attributes
$11 ctlHilite Byte—Controls event generation for control
sz ctlvalue —| Word—Text size field, if ct 1Dat a contains a Pointer
$14| _

— ctiProc —} Long—statTextControl=$81000000
$18] |

= ctlAction - Long—Pointer to custom procedure; NIL if r.one
$1C|_ |

— ctlData —| Long—Reference to text for window
$20| _

= ct1lRefCon — Long—Reserved for application use
$24 | 4

— ctlColor — Long—Not used; must be set to 0
$81 ctldust -~ Word—Initial justification word
$2A

: ctlReserved . Block, $0E bytes—Not used
$381 _

— ct1ID -~ Long—Application-assigned ID
$CL ctimoreriags -] Word—Additional control flags
$3E — ctlVersion —| Word—Setto 0

Chapter 28 - Control Manager Update 28125

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Valid values for ct1Flag are

ctlInvis bit 7 1=invisible, O=visible

Reserved bits 2-6 Must be set to 0

fSubstituteText bit 1 0=no text substitution to perform
1=there is text substitution to perform

fSubTextType bit 0 0=C strings

1=Pascal strings

Valid values for ct 1MoreFlags are

fCtlTarget bit 15 Must be set to 0
fCtlCanBeTarget bit 14 Must be set to 0
fCtlWantsEvents bit 13 Must be set to 0
fCt1lProcNotPtr bit 12 Must be set to 1
fCt1TellAboutSize bit 11 Must be set to 0
Reserved bits 210 Must be set to 0
Text reference bits 0-1 Defines type of text reference in ct1pata:

00 - text reference is pointer

01 - text reference is handle

10 - text reference is resource ID
11 - invalid value

ctlHilite Specifies whether the control wants to receive mouse selection
events. The values for ct 1Hilite are as follows:

0 Events will be generated when the mouse button is pressed in the
control
255 No events will be generated when the mouse button is pressed in

the control

ctlvalue Contains the size of the referenced text in characters, but only if the
“text reference in ct1Data is a pointer. If the text reference is either a
handle or a resource ID, then the Control Manager can extract the
length from the handle.

28126 Apple IIGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

ctlJust The justification word is passed on to LETextBox2 (see
Chapter 10, “LineEdit Tool Set,” in Volume 1 of the Toolbox Reference
for details on the LETextBox2 tool call), and is used to set the initial
justification for the text being drawn. Valid values for ct1Just are

leftJgustify 0 Textis left justified in the display window

centerJustify 1 Textis centered in the display window

rightJustify -1 Textis right justified in the display window

fullJgustify 2 Textis fully justified (both left and right) in
the display window

Static text controls do not support color tables. To display text of different color, you
must embed the appropriate commands into the text string you are displaying. See the
discussion of LETextBox2 in Chapter 10, “LineEdit Tool Set,” in Volume 1 of the Toolbox
Reference for details on command format and syntax.

Chapter 28 Control Manager Update 28-127

Apple LGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

TextEdit control record

Figure 28-30 shows the format of the control record for TextEdit controls.

» Figure 28-30 TextEdit control record

$00 | _

— ct1Next ~| Long—Handle to next control; NIL for last control
$04 | -

— ct10owner ~ Long—Pointer to window to which contro! belongs
$08

: ctlRect . Reatangle—Defines control boundary rectangle
$10 ctiFlag Byte—Defines control visibility
$11 ctiHilite Byte—Not used; must be set to 0
$12 | ctlvalue — Word—Contains the last reported TextEdit error code
$14 | _

— ctlProc - Long—editTextControl=$85000000
$18 | _

= ctlAction — Long—Pointer to custom procedure; NIL if none
$1IC| _

- ctlData — Long—Pointer to filter procedure
$20 | |

= ct1RefCon — Long—Reserved for application use
$24 | _

- ctlcolor — Long—Reference to the color table for the control
$28 | -

— textFlags — Long—TextEdit bit flags
$2C1 -

— textLength — Long—Length of text

continued

28128 Apple IIGSs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft

continued
$30
. blockList
$38 _
ctlID -
$3C ctl1MoreFlags -
E
33 ctlvVersion —
$40
. viewRect
$48 |]
totalHeight -
$4C
: lineSuper
$58
: styleSuper
$64 _
stylelist -
$68 _
rulerList -
$6C lineAtEndFlag -
$6E | _
selectionStart =
72| _
selectionEnd -
continued

- Textlist—Cached link into TextBlock list

Long—Application-assigned ID

Word—Additional control flags
Word—Set to 0

: Rectangle—Boundary rectangle for text

Long—Height, in pixels, of text

. SuperHandle—Cached link into text lines

. SuperHandle—Cached link into style list

Long—Handle to array of TEStyle records

Long—Handle to array of TERuler records

Word—Line break flag

Long—Starting text offset for current selection

Long—Ending text offset for current selection

30 August 1989

Chapter 28 Control Manager Update 28-129

Apple 1IGS Toolbax Reference, Volume 3 Beta Draft 30 August 1989

continued
§76 | selectionactive — Word—Flag indicating whether current selection is active
§78 | selectionstate Word—State information about current selection
$7TA1 -

— caretTime — Long—Blink interval for caret, in system ticks

§7E — nullstyleActive -4 Word—Flag indicating whether null style is active
$80

: nullstyle . TEStyle—Null style definition
$8C | -

— topTextoffset — Long—Offset to top line of displayed text
$90 — topTextVPos — Word—DPosition of display window into text, in pixels
$92 | -

— vertscrollBar — Long—Handle to vertical scroll bar control record
$96 | .

—~ vertscrollPos — Long—Current position of vertical scroll bar
$9A | .

— vertscrollMax = Long—Maximum allowable vertical scroll

$9E | vertscrollamount Word—Number of pixels to scroll on each dlick

$0AL
— horzscrollBar —| Long—Currently not supported

sad [
~ horzscrollPes —| Long—Currently not supported

$A81
horzscrollMax = Long—Currently not supported

continued

28130 Apple IIGS Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

continued

SACL norzscrollamount — Word—Currently not supported
SAE| -

|- growBoxHandle — Long—Handle of size box control record
s82[N

~ maximumChars — Long—Maximum number of characters allowed in text
$BO| -

— maximumlines ~{ Long—Currently not supported
$BA

- maxCharsPerline —{ Word—Currently not supported
$BC - maximumHeight — Word—Curremly not supported
$BE - textDrawMode —{ Word—QuickDraw II drawing mode for text
$CO L -

—~ wordBreakHook — Long—Pointer to word break hook routine
$C4

- wordWrapHook —| Long—Pointer to word wrap hook routine

$C8 _

- keyFilter —~ Long—Pointer to keystroke filter routine
§cC

! theFilterRect . Rectangle—Rectangle for generic filter procedure
$D4 | theBuffervhos ~ Word—Vertical component of current position
$D6 '

- theBuffertitos — Word—Horizontal component of current position

continued

Chapter 28 Control Manager Update 28131

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

continued

$D8

: theKeyRecord . KeyRecord—Parameters for keystroke filter routine
$E6 | _

~ cachedselcoffset — Long—Cached selection text offset
SEAL achedsercvpos ~ Word—Vertical component of cached buffer position
SECL ., chedselchpos = Word—Horizontal component of cached buffer position
$EE

: mouseRect . Rectangle—Boundary rectangle for multiclick mouse commands
$F6 | _

= mouseTime ~ Long—Time of last mouse click
SPAL mouseKind = Word—Kind of mouse click last performed
sec

~ lastClick — Long—Location of last mouse dlick

$100 savedHPos =1 Word—Cached horizontal character position

$102|
[~ anchorpoint —{ Long—Starting point of current selection

Valid values for ct 1F1ag are

ctlInvis bit 7 1=invisible, O=visible
Reserved bits 0~6 Must be set to 0

28132 Apple IIGS Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Valid values for textFrlags are

fNotControl bit 31 Must be set to 0
fSingleFormat bit 30 Must be set to 1
fSingleStyle bit 29 Indicates the style options available to the user

1 - Allow only one style in the text
0 - Do not restrict the number of styles in the
text
fNoWordWrap bit 28 Indicates TextEdit word wrap behavior
1- Do not word wrap the text; only break lines
on CR ($0D) characters
0 - Perform word wrap to fit the ruler
fNoScroll bit 27 Controls user access to scrolling
1 - Do not allow either manual or auto-scrolling
0 - Scrolling permitted
fReadOnly bit 26 Restricts the text in the window to read-only
operations (copying from the window will still
be allowed)
1 - No editing allowed
0 - Editing permitted
fSmartCutPaste bit 25 Controls TextEdit support for smart cut and
paste (see Chapter 49, “TextEdit,” for details
on smart cut and paste support)
1 - Use smart cut and paste
0 - Do not use smart cut and paste
fTabSwitch bit 24 Defines behavior of the Tab key (see
Chapter 49, “TextEdit,” for details)
1 - Tab to next control in the window
) 0 - Tab inserted in TextEdit document
fDrawBounds bit 23 Indicates whether TextEdit will draw a box
around the edit window, just inside ct1Rect
(the pen for this rectangle is 2 pixels wide and 1.
pixel high) '
1- Draw rectangle
0 - Do not draw rectangle
fColorHilight bit 22 Must be set to 0.
fGrowRuler bit 21 Indicates whether TextEdit will resize the ruler
in response to the user resizing the edit window.
If set to 1, TextEdit will automatically adjust
the right margin value for the ruler
1- Resize the ruler
0 - Do not resize the ruler

Chapter 28 Control Manager Update 28-133

Apple lIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

fDisableSelection bit 20 Controls whether user can select text
1 - User cannot select text
0 - User can select text

fDrawlnactiveSelection

bit 19 Controls how inactive selected text is displayed

1 - TextEdit draws a box around inactive
selections
0 - TextEdit does not display inactive
selections

Reserved bits 0-18 Must be set to 0

textLength Number of bytes of text in the record. Your program must not modify

this field.
blockList Cached link into the linked list of TextBlock structures, which

contain the actual text for the record. The actual TextList structure
resides here. Your program must not modify this field.

28134 Apple 1IGs Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3

Valid values for ct 1MoreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWwantsEvents
fCtlProcNotPtr
fTellAboutSize

fCtlIsMultiPart
Reserved
Color table reference

Style reference

bit 15
bit 14
bit 13
bit 12
bit 11

bit 10
bits 4-9
bits 2-3

bits 0-1

Beta Draft 30 August 1989

Must be set to 0

Must be set to 1

Must be set to 1

Must be set to 1

If set to 1, a size box will be created in the
lower-right corner of the window, Whenever the
control window is resized, the edit text will be
resized and redrawn,

Must be set to 1 |
Must be set to 0

Defines type of reference in ct1Color (if it is
not NIL). The color table for a TextEdit control
(TEColorTable) is described in

Chapter 49, “TextEdit,” later in this book

00 - color table reference is pointer

01 - color table reference is handle

10 - color table reference is resource ID

11 - invalid value

Defines type of style reference in styleref.
The format for a TextEdit style descriptor is
described in Chapter 49, “TextEdit,” later in this
book

00 - style reference is pointer

01 - style reference is handle

10 - style reference is resource ID

11 - invalid value

A Important Do not set £TellaboutSize to 1 unless the control also has a

vertical scroll bar. a

viewRect Boundary rectangle for the text, within the rectangle defined in
boundsRect, which surrounds the entire record, including its
associated scroll bars and outline.

totalHeight Total height of the text in the TextEdit record, in pixels.

lineSuper Cached link into the linked list of superBlock structures that define
the text lines in the record.

Chapter 28 Control Manager Update 28135

" Apple LIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

styleSuper Cached link into the linked list of superBlock structures that define
the styles for the record.

styleList Handle to array of TESty1le structures, containing style information
for the record. The array is terminated with a long set to $FFFFFFFF,

rulerList Handle to array of TERuler structures, defining the format rulers for
the record. Note that only the first ruler is currently used by TextEdit.
The array is terminated with a long set to $FFFFFFFF.

lineAtEndFlag Indicates whether the last character was line break. If so, this field is
set to $FFFF.

selectionStart
Starting text offset for the current selection. Must always be less than

selectionEnd.

selectionEnd Ending text offset for the current selection.Must always be greater
than selectionStart.

selectionActive
Indicates whether the current selection (defined by

selectionStart and selectionEnd) is active:

$0000 Active
$FFFF Inactive

selectionState Contains state information about the current selection range:

$0000 Off screen
$FFFF On screen
caretTime Blink interrval for caret, expressed in systebm ticks.
nullStyleActive
Indicates whether the null style is active for the current selection:
$0000 Do not use null style when inserting text
$FFFF Use null style when inserting text
nullStyle TEStyle structure defining the null style. This may be the default
style for newly inserted text, depending upon the value of
nullStyleActive. .

topTextoffset Text offset into the record corresponding to the top line displayed on
the screen.

28136 Applé IIGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft ‘ 30 August 1989

topTextVpos Difference,in pixels, between the topmost vertical scroll position
(corresponding to the top of the vertical scroll bar) and the top line
currently displayed on the screen. This is, essentially, the vertical
position of the display window in the text for the record.

vertScrollBar Handle to the vertical scroll bar control record.

vertScrollpos Current position of the vertical scroll bar, in units defined by
vertScrollAmount,

¢ Note: that while TextEdit supports vert ScrollPos as a long, standard Apple 1IGS
scroll bars support only the low-order word. This leads to unpredictable scroll bar
behavior when editing large documents.

vertScrollMax Maximum allowable vertical scroll, in units defined by
vertScrollAmount.

vertScrollAmount
Number of pixels to scroll on each vertical arrow click.

horzScrollBar Handle to the horizontal scroll bar control record. Currently not
supported :

horzScrollpos Current position of the horizontal scroll bar, in units defined by
horzScrollamount. Currently not supported

horzScrollMax Maximum allowable horizontal scroll, in units defined by
horzScrollaAmount. Currently not supported

horzScrollaAmount ‘
Number of pixels to scroll on each horizontal arrow click. Currently not

supported. -
growBoxHandle Handle of size box control record.
maximumChars Maximum number of characters allowed in the text.

maximumLines Maximum number of lines allowed in the text. Currently not supported.

maxCharsPerLine
Currently not supported.

maximumHeight Maximum text height, in pixels. This value allows applications to easily
constrain text to a display window of a known height. Currently not
supported.

Chapter 28 Control Manager Update 28137

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

textDrawMode QuickDraw II drawing mode for the text. See
Chapter 16, “QuickDraw I1," in the Toolbox Reference for more
information on QuickDraw II drawing modes.

wordBreakHook Pointer to the routine that handles word breaks. See
Chapter 49, “TextEdit,” for information about word break routines.
Your program may modify this field.

wordWrapHook Pointer to the routine that handles word wrap. See
Chapter 49, “TextEdit,” for information about word wrap routines.
Your program may modify this field.

keyFilter Pointer to the keystroke filter routine. See Chapter 49, “TextEdit,”
for information about keystroke filter routines. Your program may
modify this field.

theFilterRect Defines a rectangle used by the generic filter procedure for some of its
routines. See Chapter 49, “TextEdit,” for information about generic
filter procedures and their routines. Your program may modify this
field.

theBuffervpos Vertical component of the current position of the buffer within the
port for the TextEdit record, expressed in the local coordinates
appropriate for that port. This value is used by some generic filter
procedure routines. See Chapter 49, “TextEdit,” for information
about generic filter procedures and their routines. Your program may
modify this field.

theBufferHPos Horizontal component of the current position of the buffer within the
port for the TextEdit record, expressed in the local coordinates
appropriate for that port. This value is used by some generic filter
procedure routines. See Chapter 49, “TextEdit,” for information
about generic filter procedures and their routines. Your program may
modify this field.

theKeyRecord Parameter block, in KeyRecord format, for the keystroke filter
routine. Your program may modify this field.

cachedSelcOffset
Cached selection text offset. If this field is set to $FFFFFFFF, then the

cache is invalid and will be recalculated when appropriate.
cachedSelcVPos

Vertical component of the cached buffer position, expressed in local
coordinates for the output port.

28138 Apple 1IGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft - : 30 August 1989

cachedSelcHPos
Horizontal component of the cached buffer position, expressed in

local coordinates for the output port.

mouseRect Boundary rectangle for multiclick mouse commands. If the user clicks
the mouse more than once within the region defined by this rectangle
within the time period defined for multiclicks, then TextEdit
interprets those clicks as multiclick sequences (double- or triple-
clicks). The user sets the time period with the Control Panel.

mouseTime System tickcount when the user last released the mouse button.
mouseKind Type of last mouse click:
0 Single click
1 Double-click
2 Triple-click
lastClick Location of last user mouse click.
savedHPos Cached horizontal character position. TextEdit uses this value to

manage where it should display the caret on a line when the user
presses the up or down arrow.

anchorPoint Defines the character from which the user began to select text for the
current selection. When TextEdit expands the current selection (as a
result of user keyboard or mouse commands, or at the direction of a
custom keystroke filter procedure), it always does so from the
anchorPoint, NOt selectionStart Of selectionEnd.

Chapter 28 - Control Manager Update 28-139

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Chapter 29 Desk Manager Update

This chapter documents new features of the Desk Manager. The
complete reference to the Desk Manager is in Volume 1, Chapter 5 of the
Apple IIGs Toolbax Reference.

29-1

Apple IIGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

New features in the Desk Manager

It is now possible for a new desk accessory (NDA) to be 2 modal dialog box. When an
NDA is opened, it returns a pointer to its window. The Desk Manager saves this pointer
and marks the NDA open. The current version of the Desk Manager checks the returned
window pointer, and if its value is 0 (if it is a null pointer) then the Desk Manager does not
mark the NDA open. Subsequent attempts to open the NDA simply select the open
window until the NDA is closed. A programmer can therefore write an NDA that opens a
modal dialog box when chosen. When the dialog box is dismissed, the NDA can be chosen
again without having been explicitly closed.

Scrollable CDA menu

The classic desk accessory (CDA) menu is now scroliable. Previously, the menu held a
maximum of 13 entries in a fixed display. Now, up to 249 desk accessories can be installed
and displayed.

Scrolling takes place only on systems with 14 or more CDAs installed. When the menu is
scrollable, the system displays a more message at each scrollable end of the menu. That is,
if there are additional items above those currently visible, the more message appears at
the top of the menu. Similarly, if there are more items below those currently visible, a more
message appears at the bottom of the menu. Messages may be placed at both the top and
bottom of the menu, if appropriate.

The new menu behaves somewhat differently from the old one, When the user returns to
the CDA menu from an accessory, the name of that accessory is highlighted (previously,
the Control Panel entry was highlighted). In addition, the user can no longer wrap from the
bottom of the menu to the top, or vice versa.

29-2 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft ‘ 30 August 1989

The valid keystrokes for the CDA menu are:

Keystroke Effect

Up Arrow Moves selection box up one entry in the menu; no effect if at
the top of the menu

Command-Up Arrow Moves selection box up one page in the menu; no effect if at
the top of the menu

Down Arrow Moves selection box down one entry in the menu; no effect if

at the bottom of the menu

Command-Down Arrow Moves selection box down one page in the menu; no effect if
at the bottom of the menu

Enter or Retum Selects the highlighted item
Esc Selects Quit
Run queue

The run queue allows you to install tasks (run items) that need to be called periodically.
You establish the periodicity of the call by managing a field in the run item header. The
Desk Manager has two new system calls, AddToRunQ and RemoveFromRung, that allow
you to install and remove run items from the queue.

The system examines the run queue at system task time, when the system is guaranteed to
be free and all tools are available. For each run item in the queue, the system adjusts the”
period header field. If the specified time period has elapsed, the system then calls the
fun item,

The run queue is quite similar to the heartbeat queue, and should be used in its place.

Chapter 29 Desk Manager Update ~ 29-3

Apple IIGS Toolbox Reference, Volume 3 Bela Draft 30 August 1989

Each run item must be preceded by a header formatted as follows:

$00 | -
- Reserved ~{ Long—Used by system as link to next run queue item
S04 period ~ Word (unsigned)—Period to wait, in ticks
$06 | signature ~| Ward—Header signature, to ensure integrity—set to $A55A
$08 | -
= Reserved ~ Long—Used by system to know when item was last executed
period Specifies the minimum number of system ticks that are to elapse

between run item executions. Each system tick represents 1/60th of a
second. A value of 0 indicates that the item is to be called as often as
possible. A value of $FFFF indicates that the item should never be
called. While the run queue supports call frequencies up to
approximately 60 per second, the timing is less accurate for periods
shorter than one second.

A Important Run item code must reset the period field before retuming control to
the system. Failure to do so will result in a period of 0, which will
cause the item to be called constantly. a

signature Used by the system to ensure that the header is well formed. The value
of this field must be $A55A.

The entry point must immediately follow the header. Run items need not check the busy
flag, since the system is guaranteed to be free before any run item is invoked. However,
run items must be careful to save and restore the operating environment, since they may
be invoked from TaskMaster, as well as from an application. You should also be careful to
either unload your run items at application termination, or ensure that remaining items are
not purgeable.

While the run queue and heartbeat queue (see Chapter 14, “Miscellaneous Tool Set,” in
Volume 1 of the Toolbox Reference for information about the heartbeat queue) are
somewhat similar, there are some significant differences. First, the run item header has an
additional field (the second rReserved field). Second, the system does not remove items
from the run queue when their period reaches 0.

294 Apple IIGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft ' 30 August 1989

Run queue example

Following is an example run item, which beeps the speaker every 15 minutes.

; RunQ example task that beeps every 15 minutes.

; It is provided in MPWIIgs assembler format. The first portion is the
; task header.

.
’

BeepHdr Record
ds.L 1 ; reserve 1 long for link to next runQ entry
period dc.W SD2F0 ; number of 60th of a sec (54000=15 minutes)
dc.W $A55A ; signature used to test for queue integrity
dc.L O ; used by desk mgr to keep track of the time
EndR

; Now the actual code of the task goes here.
BeepTask Proc
with BeepHdr

_SysBeep ; beep the speaker once

lda #SD2F0 ; and now recharge the period for next call
sta >period ; NOTE:Use long addressing: DataBank unknown
rtl ; and to exit use an RTL

EndP

The following code installs the above item into the run queue

PushLong #BeepHdr
ldx #$1F05
js1 >$E10000

Chapter 29 Desk Manager Update ~ 29-5

Appie 1iGS Toolbax Reference, Volume 3 Beta Draft 30 August 1989

New Desk Manager calls

The following new Desk Manager calls support the run queue and desk accessory removal.

AddToRunQ $1F05

Adds the specified routine to the head of the run queue.
Parameters

Stack before call

Previous contents
- runltemPtr - Long—Pointer to run item to add
<—SP
Stack after call
Previous contents I
| <—SP
Errors None
C extern pascal void AddToRunQ (runlItemPtr);

Pointer runltemPtr;

296 Apple IIGs Toolbox Reference, Volume 3

Apple 1iGS Toolbox Reference, Volume 3 Beta Draft

30 August 1989

RemoveFromRunQ $2005

Removes the specified run item from the run queue.
Parameters

Stack before call

Previous contents
- runltemPir - Long—Pointer to run item to remove
<—SP

Stack after call

| Previous contents I

| | e
Errors None
C extern pascal void RemoveFromRunQ(runItemPtr);

Pointer runltemPtr;

Chapter 29 Desk Manager Update 29-7

Apple 1IGS Toolbox: Reference, Volume 3 Beta Draft 30 August 1989

RemoveCDA $2105
Removes the specified CDA from the Desk Manager CDA list. This routine does not
dispose of the memory used by the DA.

This routine is the complement of Tnsta11cpa (which is described in
Chapter 5, “Desk Manager,” in the Toolbox Reference).

You should be very careful before issuing this call. Users generally install desk accessories
for their own use; you should not spontaneously remove them from the system. Also, note
that many desk accessories install other custom code (in the run queue, for example); you
should not remove them unless you know that the other code has been removed, as well.

Parameters

Stack before call

Previous contents

- idHandle -~ Long—Handle to CDA header
<—SP

Stack after call

l Previous contents
| <—SP
Errors $0510 DaNotFound - Specified desk accessory not
found.
C extern pascal void RemoveCDA (idHandle) ;

Handle idHandle;

298 Apple IIGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox: Reference, Volume 3 Beta Draft 30 August 1989

RemoveNDA $2205
Removes the specified NDA from the Desk Manager NDA list. This routine does not
dispose of the memory used by the DA.

This routine is the complement of Instal1Npa (which is described in
Chapter 5, “Desk Manager,” in the Toolbox Reference).

This call does not rebuild the Apple menu. Your application must rebuild the menu by
issuing the FixappleMenu tool call.

Parameters
Stack before call

Previous contents
- idHandle - Long—Handle to NDA header
<—SP

Stack after call

l Previous contents |

| | s
Errors $0510 DaNotFound Specified desk accessory not

found.

C extern pascal void RemoveNDA (idHandle);

Handle idHandle;

Chapter 29 Desk Manager Update 299

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Chapter 30 Dialog Manager Update

This chapter documents new features of the Dialog Manager. The
complete reference to the Dialog Manager is in Volume 1, Chapter 6 of
the Apple 1IGS Toolbax Reference.

30-1

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft) 30 August 1989

Error corrections

This section explains changes that have been made to the Dialog Manager's
documentation in the Apple IIGs Toolbax Reference.

s The documentation for setDItemType on page 6-82 of the Toolbox Reference says
that the call is used to change a dialog item to a different type. In fact,
SetDItemType should be used only to change the state of an item from enabled to
disabled or vice versa.

= The Dialog Manager does not support dialog item type values of picItem or
iconItem, contrary to what the Toolbax Reference states in Table 6-3 on page 6-12.

302 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Chapter 31 Event Manager Update

This chapter documents new features of the Event Manager. The
complete reference to the Event Manager is in Volume 1, Chapter 7 of the

Apple IIGS Toolbox Reference.

31-1

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

New features in Event Manager

The following sections discuss new features of the Event Manager.

Journaling changes

Previously, journaling did not capture operations that involved the ReadMouse
Miscellaneous Tool Set call, because that call did not support journaling, As discussed in
Chapter 39, “Miscellaneous Tool Set Update,” in this book, ReadMouse has been changed
to support journaling. As a result, journaling routines must now handle a new journal code.

When an application calls ReadMouse, and journaling is on, your journaling routine will be
called with a joumal code of 6 and resultPtr will point to a 6-byte record containing
ReadMouse data. This record has the following format:

$00 e statusMode — Word—Mouse status/mode bytes
$021 ylocation —{ Word—Absolute y location of pointing device
S41 xLocation — Word—Absolute x location of pointing device

statusMode Mouse status and mode bytes, as described on pages 14-35 and 14-36
of the Toolbox Reference.

312 Apple IIgs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Keyboard input changes

The system now processes keyboard input through a translation routine, allowing Apple
1IGS and Macintosh® keystrokes to match. The translation routine uses a resource-based
keystroke translation table, which is identified by a unique resource ID. You can assign
other tables to suit the needs of a particular language or keyboard. There are new Event
Manager calls to read or write the current keyboard translation table resource ID.

Note that the system translates keystrokes before performing dead key replacements. To
modify dead-key sequences you may find it easier to modify the appropriate
transTable entry, since that table is more straightforward than the deadkeyTable
and replacementTable.

The keystroke translation table must be formatted as foliows:

$000 |
: transTable . 256 Bytes—Keystroke translation array
$100
: deadKeyTable . xx Bytes—Dead-key validation array
$100+xx

replacementTable . yy Bytes—Dead-key replacement array

transTable This is a packed array of bytes used to map the ASCII codes produced
by the keyboard into the character value to be generated. Each cell in
the array directly corresponds to the ASCI code that is equivalent to
the cell offset. For example, the t ransTable cell at offset $0D (13
decimal) contains the character replacement value for keyboard code
$0D, which, for a straight ASCII translation table, is a Return character
(CR). The t ransTable cells from 128 to 255 ($80 to $FF) contain -
values for Option-key sequences (such as Option-S).

Chapter 31 Event Manager Update 31-3

Apple 1IGS Toolbox Reference, Volume 3 " Beta Draft ' 30 August 1989

deadKeyTable This table contains entries used to validate dead keys. Dead key
refers to keystrokes used to introduce multikey sequences that result
in single characters. For example, pressing Option-u followed by e
yields an e with an umlaut. There is one entry in deadkeyTable for
each defined dead key. The last entry_must be set to $0000. Each entry
must be formatted as follows:

deadKey Byte—Character code for dead key
offset Byte—Offset from deadKeyTable into replacementTable
deadKey Contains the character code for the dead key. The system uses

this value to check for user input of a dead key. The system
compares this value with the first user keystroke.

offset Byte offset from beginning of deadkeyTable into relevant
subarray in replacementTable, divided by 2. The system
uses this value to access the valid replacement values for the
dead key in question.

replacementTable
This table contains the valid replacement values for each dead key

combination. This table is made up of a series of variable-length
subarrays, each relevant to a particular dead key. The last entry in each
sub-array must be set to $0000. Each entry in the
replacementTable must be formatted as follows:

scanKey Byte—Character code for dead key combination
replaceValue Byte—Result character code for dead key combination

scanKey Contains a valid character code for dead key replacement. The
system uses this field to determine whether the user entered a
valid dead key combination. The system compares this value
with the second user keystroke.

replacevalue Contains the replacement value for the character specified in
scanKey for this entry. The system delivers this value as the
replacement for a valid dead key combination.

314 Apple IIGs Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

New Event Manager calls

There are several new Event Manager calls, many concerning the new keyboard translation
feature.

GetKeyTranslation $1B06

Returns the identifier for the currently selected keystroke translation table. Before setting
a new translation table, your application should read and save the current identifier. When
your application terminates, it should restore the previous keystroke translation table.
Use the setKeyTranslation call to modify the current identifier.

Parameters

Stack before call

Previous contents

Space Word—Space for result
<—SP

Stack after call

Previous contents
kTransID Word—Keyboard translation identifier ($0000 to $00FF)
<—S§P
Errors None
C extern pascal Word GetKeyTranslation();

Chapter 31 Event Manager Update 315

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft ' 30 August 1989

SetAutoKeyLimit $1A06

Controls how repeated keystrokes are inserted into the event queue. The default value for
the limit is 0, which specifies that auto-key events are inserted only if no other events are
already in the queue. The newLimit parameter determines how many auto-key events must
be in the event queue before PostEvent ceases to add them. For example, if newLimit is
0, then the default condition is maintained: PostEvent will not add auto-key events
unless the queue is empty. However, if newlLimitis 5, then PostEvent will add five auto-
key events to the queue before it reverts to the rule that no more auto-key events are to
be posted.

Parameters

Stack before call

Previous conlents
newlLimit Word—Limit for inserted auto-key events
<—SP
Stack after call
| Previous contents
| <—SP
Errors None
C extern pascal void SetAutoKeyLimit (newLimit):
Word newlLimit;

316 Apple TGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

SetKeyTranslation $1C06

Sets a new keystroke translation table. Once set, the selected keystroke translation table
stays in effect until this call is issued again, irrespective of application termination,
system resets, or system power off. Before setting a new value for the keystroke
translation table, your application should read and save the current value, using the
GetKeyTranslation tool call. Your application should then restore that previous value
when it is finished.

The system reads keystroke translation tables from resources of type $8021 and ID
$OFFF06xx, where xx derives from the low-order byte of the kTransID parameter.

This call uses the current resource search path to find the specified resource. If you want
your translation to stay in effect after your application has terminated, you must place
the translation table resource in the system resource file.

If the system cannot find a resource corresponding to the value specified in kTransiD, the
keyboard defaults to the standard keystroke translation table ($00FF).

Parameters

Stack before call

Previous contents

kTransID Word—Keystroke translation table identifier (fow-order byte)
<—§P

Stack after call

Previous contents I
| <—SP
Errors None
C extern pascal void SetKeyTranslation(kTransID);
Word kTransID;
kTransID The following are standard values for kTransID:

$0000 Use old-style Apple IIGS keyboard mapping
$00FF Use standard keyboard remapping (makes Apple 11GS key
sequences match Macintosh)

Chapter 31 Event Manager Update

317

Apple 1iGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Chapter 32 Font Manager Update

This chapter documents new features of the Font Manager. The complete
reference to the Font Manager is in Volume 1, Chapter 8 of the
Apple 11GS Toolbax: Reference.

321

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

New features in the Font Manager

= The current version of the Font Manager incorporates several changes. In previous
versions, FMStartUp opened each font file in the FONTS folder, and constructed lists
of information for all available fonts. These lists contained font IDs, font names, and
so forth for every font in the FONTS folder. The present version of the Font Manager
does this same work the first time it starts up, but caches all the information it
compiles in a file called FONT.LISTS in the FONTS folder.

The next time the Font Manager starts up, it checks all the creation and modification
dates and times in font files against the information in FONT.LISTS. It compiles new
FONT.LISTS information only if it finds new font files or other evidence of change.
Otherwise, it simply starts up with the information stored in the FONT.LISTS file. In
most cases, because it doesn’t have to open every font file, the Font Manager can start
up much more quickly.

= A bug has been fixed in the ChooseFont call. Previously, ChooseFont would hang
the system if any update events were pending when the call was made. Now,
ChooseFont Will not hang the system under these circumstances; the system leaves
update events in the Event Queue for processing by the application.

= In addition, the ChooseFont dialog now uses Newwindow2, with a control template
that can be kept in a resource file. As a result, this dialog can be internationalized more
easily.

» Scaled fonts may now contain more than 65,535 bytes of data. See
Chapter 43, “QuickDraw II Update,” later in this book for the layout of the new font
record.

» A bug that corrupted the font family list has been fixed. This bug had varied
symptoms, including incorrect font name displays in the Choose Font dialog and in the
Font menu, and Font Manager crashes, among others.

322 Apple 1IGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

New call

The new call InstallwithStats is provided to simplify the process of installing fonts. It aliows an
application to preserve certain information that is normally lost during font installation.

InstallWithStats $1CI1B

Installs a font and returns information about that font. When an application requests the
installation of a font, the Font Manager attempts to install the requested font, but it may
not be available. In such cases, the Font Manager will install the closest match it can find
to the requested font.

InstallwithStats installs a font just as if the application had called 1nstalilFont,
but it returns a Font StatRec in the buffer pointed to by resultPtr. This record contains
the ID of the installed font, which may be different from the font requested. It also
contains the purge status that the font had before it was installed. Since purge status can
be changed by installation, this information can make it easier to restore a font's purge
status. If you need to know an installed font's purge status, use FindFontStats.

Parameters

Stack before call

Previous contents
- desiredlD - Long—Font ID of desired font
scaleWord Word—Desired font size
- resultPtr - Long—Pointer to buffer to receive RontStatRec
<—SP

Stack after call

I Previous contents |

l I <—S§P
Errors None

Chapter 32 Font Manager Update 323

Apple 1IGS Toolbax: Reference, Volume 3 Beta Draft . 30 August 1989

resultPir

$00

$04

324

extern pascal void InstallwWithStats(desiredID,

scaleWord, resultPtr);

Long desiredID;
Word scaleWord;
Pointer resultPtr;

On return from InstallwWithStats, the buffer pointed to by
resultPtr will contain a Font StatRec formatted as follows

resultID — Long—Font ID record

resultstats = Word—FontStatBit s defining font status

Apple IIGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft ‘ 30 August 1989

Chapter 33 Integer Math Tool Set Update

This chapter documents changes to the Integer Math Tool Set. The
complete reference to Integer Math is in Volume 1, Chapter 9 of the
Apple IIGS Toolbox Reference.

331

Apple 1LiGS Toolbox Reference, Volume 3 Bela Draft 30 August 1989

Clarifications

» The Long2pec Integer Math tool call now correctly handles input long values that have
the low-order three bytes set to zero. Previously, if the input long had its low-order
three bytes set to zero, Long2pec would always return a zero value, even if the high-
order byte was non-zero.

332 Apple IIGS Toolbox Reference, Volume 3

Apple IIGS Toolbax Reference, Volume 3 Beta Draft .

Chapter 34 LineEdit Tool Set Update

‘This chapter documents new features of the LineEdit Tool Set. The
complete reference to LineEdit is in Volume 1, Chapter 10 of the
Apple I1GS Toolbox Reference.

30 August 1989

341

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

New features in LineEdit

= LineEdit now supports password fields. Password fields do not echo user input as
typed. Instead, each input character is echoed with a special character. Your
application can set the echo character; the default is asterisk (*).

The LineEdit edit record has a new field, 1epwchar, that supports the password
feature. This field defines the screen echo character for password fields. It is located
at the end of the edit record. The LineEdit record is now formatted as shown in Figure
34-1.

To indicate that a LineEdit field is a password field, set the high-order bit of the
maxSize field in the LineEdit control template to 1 (see “LineEdit control template” in
Chapter 28, “Control Manager Update,” earlier in this book for more information).

» Figure 34-1 shows the layout of the new LineEdit record.

342 Apple 1IGs Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

» Figure 34-1 LineEdit Edit record (new layout)

$00 []
— lelineHandle —| Long—Handletotext
$04 L. leLength - Word—]_ntegcr; current text length
$051 leMaxlength — Word—Integer; maximum text length
$08
: leDestRect . Rectangle—Destination rectangle
$10
: leViewRect . Rectangle—View rectangle
$18[”]
— lePort — Long—Pointer to GrafPort
SIC| lelineHite -4 Word—Integer; used for highlighting
$IE = leBaseHite — Word—Integer; used for drawing text
$201 leSelstart —| Word—Integer; used for start of selection range
21 leselEnd ~| Word—Integer; used for end of selection range
S| leActFlg —| Word—Reserved for internal use
$26 leCarAct —-| Word—Reserved for internal use
S8 leCarOn —| Word—Reserved for internal use
$2A1 i
- leCarTime ~ Long—Reserved for internal use
$2E [_
- leHiliteHook =4 Long—Pointer to highlight routine
$32]
- lecaretHook —{ Long—Pointer to caret routine
§36 | leJust — Word—Justification control word
$B81 lePWChar — Word—Password field screen echo character

Chapter 34 LineEdit Update 343

" Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

leMaxLength Indicates the maximum text length allowed in the LineEdit field. Valid
values range from 1 to 255. The high-order bit governs whether the
field is a password field. If the bit is set to 1, then the field is a
password field, and user input is echoed with character values
specified by the contents of the 1epPwChar field.

lePWChar Defines the character to be echoed in password fields. This field
contains the ASCII code for the echo character in its low-order byte.
Default system value is asterisk (x).

344 Apple IIGs Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft) 30 August 1989

New call

This new LineEdit tool call returns the address of the current LineEdit control definition
procedure.

GetLEDefProc $2414

Returns the address of the current LineEdit control definition procedure. The system
issues this call when the Control Manager starts up in order to obtain the address of the
LineEdit control definition procedure. This call is not intended for application use.

Parameters

Stack before call

Previous contents
- Space - Long—Space for result
<—S§P
Stack after call
Previous contents
- defProcPtr - Long—Pointer to LineEdit control definition procedure
<—SP
Errors None
C extern pascal Pointer GétLEDefProc 0\ ;

Chapter 34 LineEdit Update 345

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

Chapter 35 List Manager Update

This chapter documents new features of the List Manager. The complete
reference to the List Manager is in Volume 1, Chapter 11 of the
Apple I1GS Toolbox Reference.

351

Apple 1IGS Toolbax Reference, Volume 3 Beta Draft 30 August 1989

Clarifications

s The Apple IIGS Toolbox Reference states that a disabled item of a list cannot be
selected. In fact, a disabled item can be selected, but it cannot be highlighted. The
List Manager provides the ability to select disabled (dimmed) items so that it is
possible, for instance, for a user to select a disabled menu choice as part of a help
dialog. To make an item unselectable, set it inactive (see “List Manager definitions”
later in this chapter).

= Any List Manager tool call that draws will change fields in the GrafPort. If you are using

List Manager tool calls you must set up the GrafPort correctly and save any valuable
GrafPort data before issuing the call.

a Member text is now drawn in 16 colors in both 320 and 640 mode.

s Previous versions of List Manager documentation do not clearly define the relationship
between the 1istview, 1istMemHeight, and 1istRect fields in the list record.
To clarify this point, note that the following formula must be true for values in any list
record:

(listView *listMemHeight) +2=1listRect.v2 -listRect.vl

If you set 1istVview to 0, the List Manager will automatiéally adjust the
1istRect.v2 field and set the 1istview field so that this formula-holds. Note that
if you pass a 0 value for 1istview the bottom boundary of 1istRect may change
slightly. '

List Manager definitions

The following terms define the valid states for a list item.

inactive Bit 5 of the list item’s memF 1ag field is set to 1. Inactive items appear
dimmed and cannot be highlighted or selected.

disabled Bit 6 of the list item’s memF1ag field is set to 1. Disabled items appear
dimmed and cannot be highlighted.

enabled Bit 6 of the list item’s memF1ag field is set to 0. Enabled items appear

normal and can be highlighted.

selected Bit 7 of the list item’s memF1ag field is set to 1. This bit is set when a
user clicks on the list item, or the item is within a range of selected items.
A selected item appears highlighted only if it is also enabled.

352 Apple IIGS Toolbox Reference, Volume 3

Appie 1IGS Toolbox Reference, Volume 3 _ Beta Draft - 30 August 1989

highlighted A member of a list appears highlighted only when it is both selected and
enabled. This means that bit 7 of the memF1ag field is set to 1 and bit 6
is set to 0. A highlighted member is drawn in the highlight colors.

Chapter 35 List Manager Update 35-3

Apple LGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

New features in the List Manager

s The latest revision of the List Manager includes new versions of the tool calls that
provide more flexible interfaces for application programmers in two ways. First, these
new List Manager routines allow your application to pass an item number, rather than a
list record pointer, to identify an item to process. This frees you from tracking pointer
values, and allows you to focus on the more useful item number. Second, your
application need no longer maintain the list record. All new tool calls allow you to
identify the list by a handle to the list control record. List Manager returns this handle
atCreatelist of, preferably, NewControl2 time.

= The 1istType field now supports a flag that governs where the scroll bar is to be
created. Bit 2 of 1istType determines whether the scroll bar is created inside or
outside of 1istRect. If the bit is set to 1, the List Manager adjusts the right side of
listRect to accommodate the scroll bar, creates the scroll bar inside of the adjusted
listRect, and then sets the flag to 0. If the bit is set to 0, the scroll bar resides
outside 1istRect. This works the same way with old-style control records.

A Important When using resources with the List Manager, be careful to define the
memory referenced by 1istRef (see “NewList2” later in this chapter)
as unpurgeable if you plan to use the sortList call. Otherwise, in
response to a2 memory allocation request, the sorted list may be
purged from memory. Then, when your application next issues a List
Manager call, the system will reload the unsorted list. &

354 Apple IIGS Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

New List Manager calls

The following new List Manager calls support a new, more flexible programming interface.
In general, these calls provide the same functionality as the old versions.

DrawMember2 $111C

Draws one or all members of a specified list. If your application goes directly to the
member record to change the state of a member, the application should then call
DrawMember Of DrawMember2. Unlike DrawMembe r, this call accepts an item number
specification for the member to draw. Passing an item number of 0 causes the List
Manager to redraw the entire list,

Parameters

Stack before call

Previous contents
itemNum Word—Item number to redraw
- ctiHandle - Long—Handle of the list control
<—SP

Stack after call

l Previous contents I
| I <—SP
Errors None
C extern pascal void DrawMember2 (itemNum, ctlHandle);
Word itemNum;
Handle ctlHandle;

Chapter 35 List Manager Update 355

Appile 1IGS Toolbox Reference, Volume 3

Beta Draft

30 August 1989

NewList2 §1

61C

Resets the list control according to a specified list record. Your application passes the

parameters controlling the creation of the list on the stack, rather than in a list record (as

with NewList).
Parameters

Stack before call

Long—Pointer to member draw routine; NIL for default routine

Word—Item number of first displayed list member
Long—Reference to list

Word—Descriptor for listRef
Word—Number of items in the list

Long—Handle of the list control returned by NewControl2

<—SP

<—SP

extern pascal void Newlist2 (drawPtr, listStart,

listRef, listRefDesc,
ctlHandle);

listSize,

drawPtr;
listStart,
listRef;
ctlHandle;

listRefDesc, listSize;

Pointer to custom list member drawing routine. NIL value causes the
List Manager to use its standard routine.

Previous contents
- drawPtr -
listStart
- listRef -
listRefDesc
listSize
- ctiHandle -
Stack after call
l Previous contents |
Errors None
C
Pointer
Word
Long
Handle
drawPir
356

Apple IIGS Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

listStant Item number of first list item to display. A value of $FFFF tells the List
Manager to use the value currently stored in the list control record.
Never set this parameter to 0.

listRef Reference (pointer, handle, or resource ID) to the list. The value of
listRefDesc governs how the List Manager interprets this field. A value
of $FFFFFFFF tells the List Manager to use the value currently stored in
the list control record.

listRefDesc Defines the type of reference stored in listRef.
0 listRef reference is a pointer
1 listRef reference is a handle
2 IistRef reference is a resource ID

$FFFF nochange

& Note: If you set either listRef or listRefDesc to -1, then you must set the other field to
the same value.

listSize Number of entries in the list. A value of $FFFF tells the List Manager to
use the value currently stored in the list control record.

Chapter 35 List Manager Update ~ 35-7

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft ' 30 August 1989

NextMember2 $121C

Searches a specified list record, starting with a specfied item, and returns the item number
corresponding to the next selected item. This call accepts an item number and control
handle as input. If you pass an item number of 0, the List Manager starts its search from
the beginning of the list.

Parameters

Stack before call

Previous contents
Space Word—Space for result
itemNum Word—Item number of starting point for search
- ctiHandle - Long—Handle of the list control
<—SP
Stack after call
Previous contents
itemNum Word—Item number of selected member; 0 if no more
<—S§P
Errors None
C extern pascal Word NextMember2 (itemNum, ctlHandle);
Word itemNum;
Handle ctlHandle;

358 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

ResetMember2 $131C

Searches a specified list control, starting with the first list member, and retumns the item
number of the first selected member in the list. If the user has not selected a member, then
the returned item number is 0. This call accepts a control handle as input.

Parameters
Stack before call

Previous contents
Space Word—Space for result
- ctiHandle -] Long—Handle of the list control
<—S§P
Stack after call
Previous contents
itemNum Word—Item number of selected member; 0 if no more
<—SP
Errors None
C extern pascal Word ResetMember2 (ctlHandle);

Handle ctlHandle;

Chapter 35 List Manager Update 359

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

SelectMember2 $141C

Selects a specified member, deselects any other selected members of the list, and scrolls
the list display so that the specified member is at the top of the display. This call accepts
a control handle and an item number as input.

Parameters

Stack before call

Previous contents
itemNum Word-—Item number of member to select
- ctiHandle - Long—Handle of the list control
<—SP
Stack after call
I Previous contents I
l I <—SP
Errors None
C extern pascal void SelectMember2 (itemNum,
ctlHandle);
Word itemNum;
Handle ctlHandle;

3510 Apple IIGS Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

SortList2 $151C

Alphabetizes a specified list by rearranging the array of member records. This call accepts
a control handle and 2 pointer to a custom comparison routine as input.

Parameters
Stack before call

Previous contents
- comparePtr - Long—Pointer to comparison routine; NIL for standard compare
-~ ctiHandle - Long—Handle of the list control
<—SP
Stack after call
| Previous contents I
| | s
Errors None
C extern pascal void Sortlist2 (comparePtr, ctlHandle);

Pointer comparePtr;
Handle ctlHandle;

Chapter 35 List Manager Update 35-11

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Chapter 36 Memory Manager Update

This chapter documents new features of the Memory Manager. The
complete reference to the Memory Manager is in Volume 1, Chapter 12 of
the Apple IIGS Toolbox Reference.

361

Apple 1IGS Toolbax Reference, Volume 3 Beta Draft : 30 August 1989

Error correction

On page 12-10 of the Toolbox Reference, Figure 12-7 shows the low-order bit of the User ID
is reserved. This is not correct. The figure should show that the main1D field comprises
bits 0~7, and that the main1D value of $00 is reserved.

Clarification

The Toolbox Reference documentation of the set Handlesize call (§1902) states “If you
need more room to Jengthen a block, you may compact memory or purge blocks.” This is
misleading. In fact, to satisfy a request the Memory Manager will compact memory or
purge blocks in order to free sufficient contiguous memory. Therefore, the sentence
should read “If your request requires more memory than is available, the Memory Manager
may compact memory or purge blocks, as needed.”

New features in the Memory Manager

The Memory Manager allocates handles much faster than before. The Memory Manager
remembers the last handle allocated, and starts its search for new memory from that
location, resulting in improved allocation time.

Out-of-memory queue

The out-of-memory queue allows application code to gracefully recover from low-
memory conditions in the system. The out-of-memory queue consists of a series of out-
of-memory routines, which are created and installed by application programs. When the
Memory Manager cannot create a handle from memory currently available, it calls each of
the out-of-memory routines. These routines can then either free up memory that is not
crucial to the function of an application, or notify the application that it is time to tell
the user to.save and exit.

362 Apple 1iGS Toolbox Reference, Volume 3

Apple lIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

When the Memory Manager encounters a low-memory condition, it performs the following
steps:

1. Invokes each out-of-memory routine until a routine reports that it has freed enough
memory to satisfy the request. If a routine does free enough memory, the Memory
Manager then allocates the handle and returns control to the calling application.

2. Compacts memory and retries the allocation. If the allocation is successful, the
Memory Manager returns control to the calling application.

3. Purges Level 3 handles. If this frees enough memory, the Memory Manager compacts
memory, allocates the handle, and returns to the calling application.

4. Purges Level 2 handles. If this frees enough memory, the Memory Manager compacts
memory, allocates the handle, and returns to the calling application.

5. Purgeslevel 1 handles. If this frees enough memory, the Memory Manager compacts
memory, allocates the handle, and returns to the calling application.

6. Again invokes each out-of-memory routine. If a routine frees enough memory, the
Memory Manager allocates the handle and returns to the application. Otherwise, the
Memory Manager reports an out-of-memory condition to the application.

Note that the Memory Manager may invoke an out-of-memory routine twice during the
same low-memory condition. In the invokation parameter block for an out-of-memory
routine, the Memory Manager passes a flag indicating whether this is the first or second
time through the out-of-memory queue. By examining this flag, routines can react
differently based upon the urgency of the low-memory condition.

Any application, desk accessory, or init that installs an out-of-memory routine must also
remove that routine from the out-of-memory queue. Add routines to the queue with the
AddTo00MQueue 100l call; remove them with the RemoveF romooMQueue tool call.

Out-of-memory routines may use any Memory Manager tool call. However, routines that
must issue calls that allocate memory (such as NewHandle) should reserve the needed
memory at initialization, so that the space will be available during a low-memory
condition. For example, if you want your out-of-memory routine to save some user data
to disk before purging a memory block, your application should reserve enough memory |
for the file open before installing the routine. When the routine gains control, it can then
free the reserved memory, issue the file system calls, and purge the unneeded application
memory without creating a recursive low-memory condition. See the code example for
sample application and out-of-memory routine code.

Chapter 36 Memory Manager Update 363

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

An out-of-memory routine must be preceded by a header formatted as follows:

$00 [_
— Reserved —{ Long—Used by system as link to next queue item
$04 — version — Word—Must be set to 0
$06 | signature — Word—Header signature, to ensure integrity—set to $A55A
version Allows system to discriminate between current and future types of
out-of-memory routines. Must be set to 0.
signature Used by the system to ensure that the header is well-formed. The value

of this field must be $A55A.

The out-of-memory routine code must immediately follow the signature word. If the
Memory Manager finds an invalid header for any out-of-memory routine, it terminates
with a system death error code of $0209.

When the out-of-memory routine gets control, the Memory Manager will have formatted
the input stack as follows:

Previous contents
- Space - Long—Space for result
- bytesNeeded - Long—Number of bytes the Memory Manager needs
stage Word—TFlagword indicating stage of low-memory condition
- RTLAddr - 3 Bytes—Return address
<—§P
stage Indicates the stage of the low-memory condition. This flag allows the

routine to determine whether this is the first or second invokation for
this condition. If the field is set to 0, then this is the first invokation,
and the Memory Manager has not done anything else. If the field is set
to 1, then this is the second invokation for this low-memory
condition, and the Memory Manager will report an out-of-memory
condition to the calling application if it cannot find enough memory
to satisfy the request.

364 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

The out-of-memory routine must strip off the input parameters and return the number of
bytes freed in the space provided. On exit, therefore, the routine should format the stack
as follows:

Previous contents
- amountFreed - Long—Number of bytes of memory freed by routine
- RTLAddr - 3 Bytes—Return address
<—SP

Out-of-memory Routine example

The following code example has two parts: the first shows how your application can install

a routine in the out-of-memory queue; the second is a sample out-of-memory routine.

; first allocate a handle with enough memory for our low memory exit
; this example will use a 16k handle

pha ; room for result-

pha

Pushlong #5$4000 ; size of handle

PushWord MyID ; my applications ID

PushWord #0 ; no bits set, unlocked and moveable
PushLong #0 ; address (Not used)

_NewHandle

Pulllong ResvHand ; and pull off the reserve handle

PushLong #MyOOMRtn ; address of the OOM header
_AddToOOMQueue
stz OOMFlag ; zero our low memory indicator

Note that this application maintains the ooMF1ag field in its global storage area.

Chapter 36 -Memory Manager Update ~ 36-5

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

The following is the actual out-of-memory queue entry itself. It has been written for the
MPW™ Apple IIGS assembler.

’

; This is the OOMQueue header for our routine

.
’

MyOOMRtn

.
14

Record

dc.L 0 ; used by queue manager
dc.W 0 ; OOMEntry version
dc.W $A55A ; Queue entry signature
EndR

; Now for my out-of-memory routine

MyOOM

; first set
RTLAdr
Stage
BytesNeeded
Result

; before we

-
[4

proc

up the equates for the stack frame passed to us by the
memory mgr

equ 1 ; return address we will go back to
equ RTLAdr+3 ; indicates when called
equ Stage+2 ; number of bytes the mem mgr needs

equ BytesNeeded+4 ; return number of bytes freed
start we should zero out the result
lda #0

sta Result,s ; zero the result on the stack
sta Result+2,s

; Since this routine can be called before and after purging data

; we want to wait till the memory manager has purged everything it can

; before we

panic so the first thing we do is test the Stage

lda Stage,s : get the passed stage
beq OOMEnd ; if 0 then don't free anything

; Now that we know that the memory manager has tried everything else,

we test to see if we have done this before by testing
the OOMFlag

lda >OOMFlag ; must use long address DB=unknown
bne OOMEnd ; if non-zero then memory already free

366 Apple IIGs Toolbox Reference, Volume 3

Apple IIGS Toolbax Reference, Volume 3 Beta Draft 30 August 1989

; since we know that we have not freed the reserve memory yet
; we will do so now and set the flag.

PushLong >ResvHand ; handle to our reserve space
_DisposeHandle ; and dispose of it

lda #SFFFF ; now set our flag to true

sta >0O0MFlag ; so that the event loop knows low mem
lda #$4000 ; and signal the memory manager how
sta Result, s ; much mem we freed

; Now return to the memory manager first adjusting the stack to remove
the

; passed params
OOMEnd
LongA Off ; turn on 8 bit accumulator
SEP #3520
pla ; load the return address for safe
ply ; keeping for a sec
plx ; now pull off 6 bytes of parameters
plx
plx
phy ' ; put the return addr back
pha
LongA On ; turn on 16 bit accumulator
REP #$820
RTL ; and return

Chapter 36 Memory Managér Update 36-7

" Apple IIGS Toolbox Reference, Volume 3 Bela Draf! : 30 August 1989

New Memory Manager calls

RealFreeMem is a new Memory Manager call designed to provide accurate information
about available memory. Other new Memory Manager calls support the out-of-memory
queue.

AddToOOMQueue $0C02

Adds the specified out-of-memory routine to the head of the out-of-memory queue. The
input routine pointer should contain the address of the routine header block.

Parameters
Stack before call

Previous contents
- headerPtr - Long—Pointer to out-of-memory routine
<—S§P

Stack after call

I Previous contents I

| | <—SP
Errors $0381 invalidTag Correct signature value not found

in header

C extern pascal void AddToOOMQueue (headerPtr);

Pointer headerPtr;

368 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3

Bela Draft ' 30 August 1989

RealFreeMem $2F02

Retumns the number of bytes in memory that are free, plus the number that could be made
free by purging. FreeMem only returns the number of bytes that are actually free, ignoring
memory that is occupied by unlocked purgeable blocks. Since unlocked blocks of
allocated memory can be freed by purging, FreeMem does not provide an accurate
picture of the memory that is actually available. Rea1F reeMem provides a more accurate

value.
Parameters

Stack before call

Prerious contents

- Space -

Stack after call

Long—Space for result

<-—S§P

Previous contents
- freeBytes - Long—Number of available bytes in memory
<—SP
Errors None
C extern pascal Long RealFreeMem():

Chapter 36 Memory Manager Update

36-9

Apple llbs Toolbox Reference, Volume 3 Beta Draft 30 August 1989

RemoveFromOOMQueue $0D02

Removes the specified out-of-memory routine from the queue. The input routine pointer
should contain the address of the routine header block.

Parameters

Stack before call

Previous contents
- headerPtr - Long—Pointer to out-of-memory routine
<—S§P
Stack after call
Previous contents
<—S§P
Errors $0381 invalidTag Correct signature value not found
in header
$0380 notInList Specified routine not found in
queue
C extern pascal void RemoveFromOOMQueue (headerPtr);

Pointer headerPtr;

3610 Apple IIGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft ' 30 August 1989

Chapter 37 Menu Manager Update

This chapter documents new features of the Menu Manager. The
complete reference to the Menu Manager is in Volume 1, Chapter 13 of
the Apple IIGS Toolbox Reference.

371

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Error corrections

= In the description of the set SysBax tool call (pages 13-86 and 13-3), the Toolbox
Reference states that, after an application issues this call, the new system menu bar
becomes the current menu bar. This is incorrect. Your application must issue the
SetMenuBar t00l call to make the new menu bar the current menu bar.

s In the definition of the menu bar record (pages 13-17-18), the Toolbox Reference shows
that bits 0-5 of the ct1F1ag field are used to indicate the starting position for the
first title in the menu bar. This is incorrect. The ct1Hilite field defines the starting
position for the first title, Note further that the entire ct 1rilite field is used in this
manner. The documented purpose of the ct1Hilite field (number of highlighted
titles) is not supported by the Menu Bar record.

Clarifications

s The setBarColors tool call changes the color table for all menu bars in a window. If
you want to use separate color tables for different menu bars, your application must
build 2 menu bar color table and modify the ct1colox field of the appropriate
control record to point to this custom color table. See “SetBarColor” in
Chapter 13, “Menu Manager,” in Volume 1 of the Toolbox Reference for the format and
contents of a menu bar color table.

s The description of the InsertMenu tool call should also note that your application
must call FixMenuBar before calling DrawMenuBar in order to display the modified
menu bar.

= The description of the InitPalette tool call in the Toolbox Reference should also
note that the call changes color tables 1 through 6 to comrespond to the colors needed
for drawing the Apple logo in its standard colors.

s The calcMenusize call uses the newWidth and newHeight parameters to compute a
menu’s size. These parameters may contain the width and height of the menu, or may
contain the values $0000 or $FFFF. A value of $0000 tells c: - “enusize to calculate
the parameter automatically. A value of $FFFF tells it to caicuiate the parameter only if
the current setting is 0.

372 Apple 1iGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

The effect of all three uses:

o Pass the new value. The value passed will become the menu’s size. Use this
method when a specific menu size is needed.

o Pass $0000. The size value will be automatically computed. This option is useful if
menu items are added or deleted, rendering the menu’s size incorrect. The menu’s
height and width can be automatically adjusted by calling calcMenusize with
newWidth and newHeight equal to $0000.

o Pass SFFFF. The width and height of 2 menu is 0 when it is created. FixMenuBar
calls calcMenusize with newWidth and newHeight equal to $FFFF to calculate
the sizes of those menus with heights and widths of 0.

Chapter 37 Menu Manager Update ~ 37-3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

New features in the Menu Manager

This section lists several new features of the Menu Manager, and some information that
was not previously clear.

» Menus in windows can now display the Apple character (ASCII $14), though it will not
be multicolored.

» Menus now use their outline color for lines that separate menu items.

» The NewMenuBar call automatically sets bit 31 of the ct1owner field in the menu bar
record to 1, if the designated menu bar is a window menu bar (the value passed for the
window is not 0).

s The default position for the first menu title in a menu bar is 10 pixels indented from the
left edge of the screen, in 640 mode; in 320 mode the item is indented 5 pixels.

= The Menu Manager's justification procedures adjust for menu bars in windows. Menus
will be moved to the left if they would otherwise appear to the right of the menu bar's
right end.

s The default menu bar has the following coordinates: top = 0; left = 0; height = 13;
width = the width of the screen.

s MenuShutDown does not return an error if the Menu Manager has already been shut
down.

= Your application can now create empty menus. To create an empty menu, set the first
byte in the first menu line item to either null ($00) or retumn ($0D), signifying the end of
the menu definition. For example:
dc.b '$$ Empty Menu \N1',$00 ; menu title and ID
dc.b $00 ; first character in first
; item to null (or return)
; indicates end of menu def.

Or, using a menu template:

EmptyMenu
dc.W 0 ; version
dc.W 1 ; menu id
dc.W O ; menu flag
dc.L Title ; menu title
dc.L $00000000 ; indicates end of item list

Title str 'Empty Menu'

374 Apple IIGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft ' , 30 August 1989

= The Menu Manager now correctly supports outline and shadow text styles. As a result,
the existing Toolbox Reference description of the setMItemStyle tool call, and the
menu text style word defined in that description, is now correct.

In addition, the Menu Manager now suppots two new special characters for menu
definition:

O Outline the text

S Shadow the text

Other special characters are listed on page 13-14 of Volume 1 of the Toolbox Reference.
Note that this feature requires the QuickDraw II Auxiliary Tool Set.

= Menus now scroll up or down if their items will not fit on the screen. When a menu is
scrollable in a direction, an arrow indicator appears at the appropriate end of the
menu, signifying that there are more items available. See Figure 37-1.

The indicator does not highlight, but the menu contents scroll when the user drags over
it. When the last item is displayable, the indicator disappears. Indicators may appear
at both the top and bottom of a menu, if appropriate.

Menus scroll at two speeds, depending upon where the user drags in the indicator. If
the user drags within the first five pixels of an indicator, scrolling runs at its slow speed.
Dragging anywhere beyond this point results in fast scrolling.

= Figure 37-1 Scrolling menus with indicator at bottom

2400
2400

4800
4800

9600
9600
hd

.3 X

& Note: 1f your application defines menus within a moveable window, dragging that
window close to the bottom of the screen may force some of the menus to be
scrollable. If there is not room for three visible items (up and down indicators and one
menu item), then the menu will drop below the visible screen area.

Chapter 37 Menu Manager Update ~ 37-5

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

» The menu record has been slightly modified. The £irstItemand numofItems byte
fields have been combined into a single word field, numofItems, at offset $0C into
the record. This field specifies the number of items in the menu.

» Bit 8 of the flag field in the menu record is now defined as the alwaysCalimChoose
flag. When this flag is set to 1, the Menu Manager calls the mChoose routine in the
defProc for a custom menu even when the mouse is not within the menu rectangle. This
feature supports tear-off menus.

» Keyboard equivalents and check marks now appear in plain text regardless of the style
of the associated menu item.

» The Menu Manager can now handle large fonts in menus.

Menu caching

The current version of the Menu Manager introduces new menu caching features. Menu
caching is designed to provide faster display of menus under certain circumstances. When
a menu is drawn on the screen, the area of the screen that it covers is copied into a buffer,
When the menu goes away, the contents of the buffer are copied back to the screen.

With the menu caching feature, when the saved screen image is copied back to the screen,
the menu that goes away is copied into the buffer. In other words, the Menu Manager
swaps the menu image with the screen image. Therefore, the next time that menu is pulled
down, the Menu Manager can copy it from the buffer instead of drawing a new image.

If the menu image changes—for example, an item is disabled or the items on the menu
change—then the cached image is inaccurate, and the Menu Manager must redraw the
menu. In those cases where a menu image does not change, the menu bar can respond to
the user more quickly.

Menu caching should not increase memory requirements, because menu images are
purgeable when not displayed on the screen.

This menu caching scheme should work properly with all existing standard menus. You will
have to alter custom menus, however, so that they can take advantage of menu caching,
Custom menus will still function normally, as long as they do not change the menu record
directly, but they will not be able to take advantage of the menu caching scheme to speed
up display.

Caching does not work with menus in windows, so the InsertMenu call automatically
disables caching for such menus.

37-6 Apple 1IGS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Caching with custom menus

Bit 3 of the MenuF1lag field in a menu record indicates whether a menu’s definition
procedure knows about caching. A value of 1 indicates that the menu in question is
cacheable. A custom menu that uses caching must definea menu record that sets this flag
and allocates an extra field, a handle to the cache in which the menu image will be stored,
as shown in the following figure.

$00 | menulD — Word—Menu's ID number
$021 menuWidth —{ Word—Width of menu
$041 menuHeight — Word—Height of menu
$06 1 .

- menuProc — Long—Pointer to menu definition procedure
$0A menuFlag Byte—Flags (bit 3 set to 1 for cached menus)
$0B menuRes Byte-—Reserved
soct numOfItems — Word—Number of menu items
SOE| titlewidth — Word—Width of title
$10| _

- titleName ~| Long—Pointer to title string for menu
$141]

= menuCache ~{ Long—Handle to cache for menu image

Chapter 37 Menu Manager Update 377

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

Pop-up menus

Menu Manager now supports pop-up menus. Pop-up menus exist in a window, not in the
menu bar. Figure 37-2 shows a window with pop-up menus. The screen representation of a
pop-up is a box with a one-pixel-thick drop shadow. When the user clicks the mouse
inside the pop-up box, the menu appears, with the current value highlighted under the
arrow, as shown in Figure 37-3. If the menu has a title, the title is highlighted whenever the
menu is visible.

Pop-up menus work in the same way as other menus: the user can move around within the
menu, select an item by positioning over it, or not select any item by dragging outside the
menu. Pop-up menus support scrolling, if it is needed to view all the menu items. Pop-up
menus are useful for setting values or choosing from lists of related values.

Pop-up menus support most of the standard features and calls available with standard
menus:

= Pop-up menu items support keystroke equivalents. Pop-up menus will display the
equivalent (Apple logo with character). Note that if a pop-up item's keystroke
equivalent conflicts with a standard menu item equivalent, the pop-up menu may not
receive the keystroke, TaskMaster passes the keystroke to the system first, unless the
tmCont rolKey flag in the wmTaskMask field of the task record is set to 0 (do not
pass keys to controls in the active window).

= Pop-up menu items can be dimmed to indicate that they are disabled and cannot be
chosen.

s Fach item in a2 pop-up menu can have its own text styles.

378 Apple IIGS Toolbox Reference, Volume 3

Apple IIGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

» Figure 372 Window with pop-up menus

Pop-up title Pop-up box
PN /

AN r 4

\ Modem setup... /

Baud rate:| 300

Bits per character:| 7

Stop bits:| 1

Parity:| Even

CCanc;l) (0K)

Chapter 37 Menu Manager Update ~ 37-9

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft : . 30 August 1989

» Figure 37-3 Dragging through a pop-up menu

Pop-up item
Inverted
pop-up title y/
110 \ 110
600 &Y| | 600
1200 &H 1200
2400 2400
9600 | 9600 '

Pop-up menu scrolling options

There are two types of pop-up menus, which are distinguished by their support for
scrolling: type 1 pop-up menus and type 2 pop-up menus.

The Menu Manager determines the size rectangle into which to draw a type 1 pop-up menu
based upon the relative position of the current item within the menu and the window
constraints of the pop-up menu (see Figure 37-4). The Menu Manager draws the pop-up
menu with the current item highlighted and positioned adjacent to the menu title. The
menu extends up and down only as far as is necessary to display the remaining items in
each direction, and indicators as appropriate, within the boundary rectangle for the
window. Therefore, with type 1 pop-up menus, it is possible to obtain a display such as
that shown in Figure 37-4, where the user can display only a single item.

37-10 Apple 11GS Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beia Draft 30 August 1989

= Figure 37-4 Type 1 pop-up menu

Bau_g rate:

Bits per character:|_ 7

Stop bits:| 1

Parity:] Even

Gancel) C 0K)

When the Menu Manager needs to make a type 2 pop-up menu scrollable, it creates a menu
that is long enough to receive all the menu items, within the bounds of the screen. In this
manner, the user never sees a menu with too few item lines to be useful. Figure 37-5 shows
how the Baud rate pop-up menu from Figure 37-4 would appear if it had been defined as a
type2 pop-up menu.

Chapter 37 Menu Manager Update 37-11

Apple IIGS Toolbox Reference, Volume 3 Beta Draft : 30 August 1989

s Figure 37-5 Type 2 pop-up menu

A .
9600 Baud rate: JRELEL

9600

By dragging over the scroll indicator, the user can eventually scroll all menu items that will
fit on the screen into view, regardless of menu proximity to top or bottom of screen.

How to use pop-up menus

Your application can define pop-ups in two ways: either as controls or menus.

If your application defines its pop-ups as controls, using the NewCont ro12 Control
Manager tool call, then drawing, updating, resizing, and tracking will all be handled by
TaskMaster and TrackControl automatically. TaskMaster will also deal with any
keystroke equivalents you have defined. See Chapter 28, “Control Manager Update,” for
details on how to create a pop-up control template and invoke NewControl2.

If, on the other hand, your application defines its pop-ups as menus, it gains flexibility
but has more responsibility. Your application must draw the pop-up box and title,
highlight the title, recognize mouse-down events in the pop-up box or title, and change
the current entry in response to user choices. Your application must also deal with
keystroke equivalents. Once your program detects a mouse-down event inside the Pop-
up box or title, it must call PopUpMenuselect to display the menu and track the mouse.
This call returns the item ID of the selected item (0 if none selected). Your program can
use this item ID to determine which item was selected. Your program must pass this item
ID to PopUpMenuSelect the next time the user clicks in the pop-up.

3712 Apple 11GS Toolbox Reference, Volume 3

Apple 11IGs Toolbox Reference, Volume 3 Beta Draft 30 August 1989

& Note: When you create a pop-up control with NewControl2, calling setMItem,
SetMItem2, SetMItemName, SetMItemName2, SetMItemStyle,
SetMenuTitle of SetMenuTitle2 does not change the appearance of the pop-up
until the pop-up is redrawn. If your application changes the pop-up title, the system
does not change the control rectangle to account for a length change. To resize the
control rectangle, your program must dispose of the existing control and create a new
one with NewControl2.

Table 37-1 lists the Menu Manager routines that work with pop-up menus. Refer to the call
descriptions in either the Toolbox Reference or in this chapter for details on each call.

s Table37-1 Menu Manager calls that work with pop-up menus

CalcMenusize
CheckMItem
CountMItems
DeleteMItem
DisableMItem
EnableMItem
GetMenuFlag
GetMenuTitle
GetMHandle
GetMItem
GetMItemFlag
GetMItemMark
GetMItemStyle
GetMTitleWidth
InsertMItem
SetMenuBar
SetMenuFlag
SetMenulD
SetMenuTitle
SetMenuTitle2
SetMItem
SetMItem2
SetMItemBlink

Chapter 37 Menu Manager Update 37-13

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

SetMItemFlag
SetMItemMark
SetMItemName
SetMItemName2
SetMItemStyle
SetMTitleWidth

Each of the routines listed in Table 37-1 operate on the current menu bar. If your
application defined its pop-ups using NewContro12, then it must set the pop-up to be
the current menu, by issuing the SetMenuBar call and specifying the control handle for
the pop-up as input. -

If your application uses PopUpMenuSelect, rather than NewCont ro12, then it must
insert the pop-up menu into the current menu bar by calling I1nsertMeny, issue the
desired Menu Manager tool calls, then remove the pop-up menu from the menu bar by
calling peleteMenu. Your program passes the handle to the pop-up menu to each of
these routines.

37-14 Apple IIGs Toolbox Reference, Volume 3

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft . 30 August 1989

New Menu Manager data structures

The new Menu Manager calls allow you to define menus using templates, analogous to the
templates used by the NewCont ro12 Control Manager tool call, which can then be stored
in fixed memory, in allocated memory referenced by handle, or in resources. When using
any of these new calls, your program must specify the input data according to these
templates.

& Note: Any strings referenced in these data structure descriptions are Pascal strings.
Note as well that all flag bit definitions are backward compatible. That is, no existing
bits have been redefined. In addition, note that the menuF1lag field is now defined
as a word, rather than a byte. The byte following the old menuF1ag byte, menures,
was never used, and has been collapsed into menuFlag.

Menu item template

Figure 37-'6 shows the template that defines the characteristics of a menu item. Use it with
new Menu Manager calls that require menu item templates. -

s Figure 37-6 Menu item template

$00 [version - Word—Version number for template; must be set to 0
$02 | {temID ~| Word—Menu item ID
$04 itemChar Byte—Primary keystroke equivalent character
$05 itemAltChar Byte—Alternate keystroke equivalent character
$06 | itemCheck — Word—Character code for checked items
§08 | itemFlag - Word—Menu item flag word
$0A |- -
- itemTitlerer — Long—Reference to itemtitle string
version Identifies the version of the menu item template. The Menu Manager

uses this field to distinguish between different revisions of the menu
item template. Must be set to 0.

Chapter 37 .Menu Manager Update ~ 37-15

Apple 1IGS Toolbox Reference, Volume 3 Beta Draft 30 August 1989

itemID Unique identifier for the menu item. See Chapter 13, “Menu Manager,”
in the Toolbox Reference for information on valid values for item1p.

itemChar, itemAltChar
These fields define the keystroke equivalents for the menu item. The
user can select the menu item by pressing the Command key along with
the key corresponding to one of these fields. Typically, these fields
contain the upper and lower case ASCII codes for a particular
character. If you only have a single key equivalence, set both fields

with that value.

itemCheck Defines the character to be displayed next to the item when it is
checked.

itemFlag Bit flags controlling the display attributes of the menu item. Valid

values for itemFlag are:

titleRefType bits 14-15 Defines the type of reference in itemTitleRef:
00 - Reference is pointer
01 - Reference is handle
10 - Reference is resource ID
11 - Invalid value

Reserved bit 13 Must be set to 0
shadow bit 12 Indicates item shadowing:
0 - No shadow
1 - Shadow
outline bit 11 Indicates item outlining
0 - Not outlined
1 - Outlined
Reserved bits 8-10 Must be set to 0
disabled bit 7 Enables or disables the menu item:

0 - Item enabled
1 - Item disabled
divider bit 6 Contro