
APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Apple][Computer Family
Technical Documentation

—————————————————————————————————
File Type Notes

—————————————————————————————————
Apple Computer -- Developer CD -- March 1993

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 1 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FT.Assign.Form
###

Request for File Type and Auxiliary Type Assignment
Apple Developer Technical Support

Before you ship your application, you must request file type and auxiliary
type assignments for files you create from Apple Developer Technical Support.
File type and auxiliary type combinations are used to identify files and their
contents. The limited supply of file types requires that file types be
defined generically and that specific auxiliary types be assigned by Apple for
application use.

If you use a file type or auxiliary type which is not assigned to you, future
versions of the Apple II or IIGS system software may identify your files with
the wrong application, resulting in unpredictable results. For example, you
might accidentally use a type for your data files that future system software
will identify as code.

Apple assigns as many auxiliary types as you need in the appropriate file
types. We also try to direct you towards file format standards that increase
your application's ability to work with other applications. Assigned file
type and auxiliary type combinations are used by the Finder(TM) to identify
files on machines with sufficient memory.

For more information, please see "About File Type Notes" and the letter that
comes with this form, or contact Developer Technical Support if you have any
further questions.

If you are requesting more than one assignment, please copy this form and send
us one copy for each assignment. You do not have to fill in the entire
address if the forms are attached to each other. Thank you.

Send the completed form to:

 Apple Developer Technical Support
 Attn: Apple II File Type Assignment
 20525 Mariani Ave. M/S 75-3T
 Cupertino, CA 95014
 AppleLink: AIIDTS
 Internet: AIIDTS@AppleLink.Apple.com
 MCI Mail: AIIDTS (264-0103)

Developer Name:__

Address:___

Technical Contact:___

Telephone (daytime):___

Product Name (required):___

Generic type of data in file:__
(Use "About File Type Notes"

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 2 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

as a guide) __

Kind of file as you wish it to
appear in the Finder(TM):__
(30 characters maximum)
 __

END OF FILE FT.Assign.Form

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 3 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FT.Letter
###

Dear Apple II Developer:

Please find enclosed the form for a requested File Type and Auxiliary Type
assignment for Apple II computers. Because the number of file types is
severely limited (256 total), Apple Computer defines file types as generic
descriptions of file contents and assigns specific auxiliary types to
individual developers for specific file formats. These combinations must be
assigned by Apple, not solely arbitrated, due to the specialized assignment
nature of generic file type descriptions.

Please copy the form and use it to request all file type and auxiliary type
assignments.

The following pointers may assist you and prevent delays when requesting an
assignment:

 o You may use previously documented file formats without obtaining an
 assignment for them (for example, you do not have to request an
 assignment for text files, Apple Preferred graphics files or Audio IFF
 sound files).

 o You may use file types $F1 through $F8 at your convenience. Apple does
 not and will not arbitrate or document the use of these files.

 o You should request an assignment if you create new file formats that you
 wish to identify from a directory entry. For example, text files are
 identified by a file type of $04. If you wish to be able to identify
 your files similarly, you should request an assignment.

 o Many programs identify files only by file type and not by auxiliary
 type. These programs only identify your files by the general category
 of the file type, so it is important that we assign the best-suited type
 to your files. Please be as specific as possible in the "Generic type
 of data in file" field so we don't have to ask you for more information.

 o All fields on the form are required and must not be left blank. If you
 cannot fill out a field (for example, your program doesn't have a final
 name yet), please use temporary file types and auxiliary types in file
 types $F1 through $F8 until all the information is available. If
 requesting multiple assignments, you may leave the address, technical
 contact and telephone number lines blank as long as the forms are
 attached to each other and one of them has all the fields completed.

 o We can accommodate multiple requests (several combinations for one
 program), but we cannot accommodate requests where the auxiliary type
 field has been used as a field of flags. Only Apple Computer, Inc. can
 make such assignments, and then only for files that are system-wide and
 not specific to a particular application.

 o When your application ships using your assignment, tell us. Otherwise
 we do not publish or acknowledge the assignment in any way to the world
 at large, and it is not included in the system software. We do not wish
 to pre-announce anyone's software.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 4 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 o Please use a separate form for each requested file type and auxiliary
 type assignment.

If you can, we would appreciate the file format so we can publish it in an
Apple II File Type Note. More information can be found in "About File Type
Notes". If you have further questions, please feel free to contact us at the
address on the registration form.

Thank you,

Apple Computer, Inc.
Developer Technical Support

END OF FILE FT.Letter

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 5 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.00.xxxx
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $00 (0)
Auxiliary Type: All

Full Name: Typeless file
Short Name: Unknown

Written by: Matt Deatherage March 1990

Files of this type and auxiliary type contain data that is unknown to the
file's creator.

Files of type $00 contain data that is unknown to the program that creates the
file. There are instances where programs, especially utilities, have to
create files before they know the eventual file type and auxiliary type of the
file. A good example of this is a telecommunications program that downloads a
file without a Binary II or other header to preserve the file's attributes.
Not knowing the file type, the program has little choice but to assign the
file as an "unknown" type until such time as the real file type can be
determined or assigned.

Files should be given type $00 when the creating program cannot determine the
real file type. Reasonable guesses can be made (to continue the above
example, a telecommunications program might assign file type $04 for all files
transferred without protocol, guessing that ASCII transfers are probably for
ASCII Text files).

File type $00 is not to be used for files regularly used by applications
simply because the application programmer didn't wish to obtain a file type
and auxiliary type assignment.

The auxiliary types for this file type are reserved; any files created of type
$00 should be created with auxiliary type $0000.

END OF FILE FTN.00.xxxx

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 6 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.01.xxxx
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $01 (1)
Auxiliary Type: All

Full Name: Bad Blocks file
Short Name: Bad blocks

Written by: Matt Deatherage March 1990

Files of this type and auxiliary type contain blocks that should not be used
by the file system.

Files of type $01 contain physical media blocks that should not be used by the
file system. A utility program can scan a disk looking for blocks that cannot
be read and can then synthesize a file containing those blocks. Such a file
should have type $01.

Files of this type should not be touched. If a program finds one, it should
leave it alone. If you must delete such a file, be sure to double-check with
the user.

Versions of ProDOS 8 prior to 1.8 can cause file system corruption (on ProDOS
disks, of course) if you attempt to delete a file of bad blocks, so be sure
not to do this. Attempting to delete a bad blocks file is only marginally
reasonable for people manually attempting disk repair. A bad blocks scanning
utility does not need to delete the old bad blocks files before creating new
ones; it should just create new files as necessary. Apple Computer, Inc.,
does not support deleting a bad blocks file.

The auxiliary types for this file type are reserved; any files created of type
$01 should be created with auxiliary type $0000.

END OF FILE FTN.01.xxxx

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 7 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.08.0000
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $08
Auxiliary Type: $0000 to $3FFF

Full Name: Apple II Graphics File
Short Name: Graphics File

Revised by: Matt Deatherage May 1989
Written by: Matt Deatherage November 1988

Files of this type and auxiliary type contain standard Apple II graphics
files.
Changes since November 1988: The offset was incorrectly listed as +121
instead of +120. The hexadecimal value of $78 is correct.

Files of type $08 and any auxiliary type less than or equal to $3FFF contain a
standard Apple II graphics file in one of several modes. After determining
that the auxiliary type is not $4000 or $4001 (which have been defined for
high-resolution and double high-resolution pictures packed with the Apple IIGS
PackBytes routine), you can determine the mode of the file by examining byte
+120 (+$78). The value of this byte, which ranges from zero to seven, is
interpreted as follows:

 Mode Page 1 Page 2
 280 x 192 Black & White 0 4
 280 x 192 Limited Color 1 5
 560 x 192 Black & White 2 6
 140 x 192 Full Color 3 7

Note that some modes only apply to high-resolution while some only apply to
double high-resolution.

The format of the file is as follows:

+000 to +8191 Bytes High-resolution image or portion of
 double high-resolution image stored
 in auxiliary memory.
+8192 to +16383 Bytes Portion of double high-resolution
 image stored in main memory (not
 present for high-resolution).

File type $08 was originally defined as an Apple /// FotoFile, but now it is
useful for those applications that wish to save high-resolution or double
high-resolution data with a file type other than $06, which is a standard
binary file. If you choose to use this type, you should remember that older
applications which do not check the auxiliary type may attempt to interpret
these files incorrectly.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 8 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

END OF FILE FTN.08.0000

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 9 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.08.4000
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $08
Auxiliary Type: $4000

Full Name: Packed Apple II Hi-Res Graphics File
Short Name: Packed Hi-Res File

Written by: Matt Deatherage November 1988

Files of this type and auxiliary type contain a packed Apple II Hi-Res
graphics screen.

Files of type $08 and auxiliary type $4000 contain a packed Apple II Hi-Res
graphics screen which has been packed with the same algorithm that PackBytes
on the Apple IIGS uses. This algorithm takes the 8K graphics screen and
produces a file with an indeterminate length and internal format, so no "mode
byte" at offset +121 is supported as it is with other files of type $08.

You can display a file of this type and auxiliary type by loading it, using
UnPackBytes to decrypt the data, moving it into a high-resolution display
buffer ($2000 or $4000 in the standard Apple II memory map), then simply
toggling the appropriate display soft switches.

File type $08 was originally defined as an Apple /// FotoFile, but now it is
useful for those applications that wish to save high-resolution or double
high-resolution data with a file type other than $06, which is a standard
binary file. If you choose to use this type, you should remember that older
applications which do not check the auxiliary type may attempt to interpret
these files incorrectly.

END OF FILE FTN.08.4000

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 10 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.08.4001
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $08
Auxiliary Type: $4001

Full Name: Packed Apple II Double Hi-Res Graphics File
Short Name: Packed Double Hi-Res File

Written by: Matt Deatherage November 1988

Files of this type and auxiliary type contain a packed Apple II Double Hi-Res
graphics screen.

Files of type $08 and auxiliary type $4001 contain a packed Apple II Double
Hi-Res graphics screen which has been packed with the same algorithm that
PackBytes on the Apple IIGS uses. This algorithm takes the 16K graphics
screen (auxiliary memory portion first) and produces a file with an
indeterminate length and internal format, so no "mode byte" at offset +121 is
supported as it is with other files of type $08.

You can display a file of this type and auxiliary type by loading it, using
UnPackBytes to decrypt the data, moving the first half into auxiliary memory
at location $2000, moving the second half into main memory at location $2000,
then simply toggling the display soft switches and annunciators to turn on
double high-resolution mode.

File type $08 was originally defined as an Apple /// FotoFile, but now it is
useful for those applications that wish to save high-resolution or double
high-resolution data with a file type other than $06, which is a standard
binary file. If you choose to use this type, you should remember that older
applications which do not check the auxiliary type may attempt to interpret
these files incorrectly.

END OF FILE FTN.08.4001

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 11 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.19.xxxx
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $19 (25)
Auxiliary Type: All

Full Name: AppleWorks Data Base File
Short Name: AppleWorks DB File

Revised by: Matt Deatherage & John Kinder, Claris Corporation July 1990
Written by: Bob Lissner February 1984

Files of this type and auxiliary type contain an AppleWorks(R) Data Base file.
Changes since September 1989: Corrected the description of offset +337 in the
header.

Files of type $19 and any auxiliary type contain an AppleWorks Data Base file.
AppleWorks is published by Claris. Claris also has additional information on
AppleWorks files SEG.PR and SEG.ER. For information on AppleWorks, contact
Claris at:

 Claris Corporation
 5201 Patrick Henry Drive
 P.O. Box 58168
 Santa Clara, CA 95052-8168

 Technical Support
 Telephone: (408) 727-9054
 AppleLink: Claris.Tech

 Customer Relations
 Telephone: (408) 727-8227
 AppleLink: Claris.CR

AppleWorks was created by Bob Lissner. AppleWorks 2.1 was done by Bob Lissner
and John Kinder of Claris. AppleWorks 3.0 was done by Randy Brandt, Alan Bird
and Rob Renstrom of Beagle Bros Software with John Kinder of Claris.

Definitions

The following definitions apply to AppleWorks files in addition to those
defined for all Apple II file types:

 MRL Data base multiple record layout
 SRL Data base single record layout
 RAC Review/Add/Change screen
 DB AppleWorks or /// E-Z Pieces Data Base
 SS AppleWorks or /// E-Z Pieces Spreadsheet
 WP AppleWorks or /// E-Z Pieces Word Processor

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 12 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 AW AppleWorks or /// E-Z Pieces

Auxiliary Type Definitions

The volume or subdirectory auxiliary type word for this file type is defined
to control uppercase and lowercase display of filenames. The highest bit of
the least significant byte corresponds to the first character of the filename,
the next highest bit of the least significant byte corresponds to the second
character, etc., through the second bit of the most significant byte, which
corresponds to the fifteenth character of the filename.

AppleWorks performs the following steps when it saves a file to disk:

 1. Zeros all 16 bits of the auxiliary type word.
 2. Examines the filename for lowercase letters. If one is found, it
 changes the corresponding bit in the auxiliary type word to 1 and
 changes the letter to uppercase.
 3. Examines the filename for spaces. If one is found, it changes the
 corresponding bit in the auxiliary type word to 1 and changes the
 space to a period.

When files are read from disk, the filename and auxiliary type information
from the directory file entry are used to determine which characters should be
lowercase and which periods should be displayed as spaces. If you use the
auxiliary type bytes for a different purpose, AppleWorks will still display
the filenames, but the wrong letters are likely lowercase.

File Version Changes

Certain features present in AppleWorks 3.0 files are not backward-compatible
to 2.1 and earlier versions. Such features are noted in the text. AppleWorks
Data Base files which may not be loaded by versions prior to 3.0 are
identified by a non-zero byte at location +218, referred to as location
DBMinVers.

Those features added for AppleWorks 2.0, 2.1 and 3.0 not previously documented
are indicated with that version number in the margin.

Data Base Files

Data base files start with a variable length header, followed by 600 bytes for
each report format (if any), the standard values record, then variable length
information for each record.

Header Record

The header contains category names, record selection rules, counts, screen
positioning information, and all other non-record specific information.

 +000 to +001 Word The number of bytes in the remainder
 of the header record. Use this
 count for your next ProDOS read from
 the disk.
 +002 to +029 Ignore these bytes.
 +030 Byte Cursor direction when the Return key

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 13 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 is pressed in SRL. $01: Order in
 which you defined categories or $02:
 Left to right, top to bottom.
 +031 Byte What direction should the cursor go
 when you press the Return key in the
 MRL? D)own or R)ight.
 +032 to +033 Ignore these bytes.
 +034 Byte Style of display that
 Review/Add/Change was using when the
 file was saved: R: SRL. Slash (/): MRL.
 +035 Byte Number of categories per record.
 Values from $01 to $1E.
3.0 +036 to +037 Word Number of records in file.
 If DBMinVers is non-zero, the high
 bit of this word may be set. If it
 is, there are more than eight
 reports and the remaining 15 bits
 contain the true number of records
 defined.
3.0 +038 Byte Number of reports in a file, maximum
 of 8 (20 for 3.0).
 +039 to +041 Ignore these bytes.
 +042 to +071 Bytes For each of up to 30 columns,
 showing the number of spaces used
 for this column on the MRL. Be sure
 you understand that categories may
 have been rearranged on the MRL.
 Byte +042 refers to the leftmost
 column on the MRL.
 +072 to +077 Ignore six bytes.
 +078 to +107 Bytes For up to 30 categories on the MRL,
 the defined category that appears in
 each position. Byte +078 is the
 leftmost column of the MRL and has a
 value from $01 to $1E that defines
 which of the category names appears
 in this position. These numbers
 change as a result of changing the
 layout of the MRL.
 +108 to +113 Ignore six bytes.
 +114 to +143 Bytes For up to 30 categories on the SRL,
 the horizontal screen position.
 These are changed as a result of
 changing the layout of the SRL.
 AppleWorks makes sure that these
 entries, and the vertical screen
 positions, are kept in order from
 left to right within top to bottom.
 +144 to +149 Ignore these six bytes.
 +150 to +179 Bytes For up to 30 categories on the SRL,
 the vertical screen position.
 +180 to +185 Ignore six bytes.
 +186 to +215 Bytes For up to 30 categories on the SRL,
 which of the category names appears
 in this position. These change as a
 result of changing the SRL. This
 number refers to the category names
 listed below.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 14 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 +216 to +217 Ignore two bytes.
3.0 +218 Byte DBMinVers. The minimum version of
 AppleWorks needed to read this file.
 This will be $00 unless there are
 more than 8 report formats; it will
 then contain the version number 30
 ($1E) or greater.
3.0 +219 Byte The first frozen column in the titles.
3.0 +220 Byte If this is zero, no titles are
 present. If non-zero, this is the
 last frozen column.
3.0 +221 Byte Leftmost active column. This is
 zero-based; if this value is zero,
 it means column one, etc.
 +222 Byte Number of categories on MRL. Will
 be less than or equal to the number
 of categories in the file. SRL
 displays all categories, so there is
 no equivalent number for SRL.
 +223 to +224 Word For the first line of RAC selection
 rules. Zero means no selection
 rules, while any other value refers
 to the category name that is tested.
 The high byte will always be zero.
 +225 to +226 Word Category name for the second line of
 RAC selection rules. Zero means
 that there is only one line.
 +227 to +228 Word Category name for the third line of
 RAC selection rules. Zero means
 that there is no third line.
 +229 to +230 Word For the first line of RAC rules,
 which of the tests is to be applied.
 1 means equals, 2 means greater than
 and so on.
 +231 to +232 Word Test for the second line of rules,
 if any.
 +233 to +234 Word Test for the third line, if any.
 +235 to +236 Word Continuation code for the first
 line: 1: And, 2: Or, 3: Through.
 +237 to +238 Word Continuation code for the second line.
 +239 to +240 Word Continuation code for the third line.
 Not possible, so it is always zero.
 +241 to +272 String Maximum length of 30 bytes.
 Comparison information for the first
 line RAC selection rules.
 +273 to +304 String Comparison for the second line.
 +305 to +336 String Comparison for the third line.
 +337 to +356 Ignore these twenty bytes.
 +357 to +378 String Name of the first category. Maximum
 length of 20 bytes. If the file has
 only one category, the header record
 will end here.
 +379 to +400 String Name of the second category, if any.
 This area will not be on the header
 record if there is only one category.
 +401 22 Bytes Additional 22 byte entries for all
 remaining categories. The size of
 the header record depends on the

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 15 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 number of categories. Space is not
 maintained past the last category.

Report Records

Report records follow the header record. One of the header record categories
tells you how many report records to expect. The number will be from zero to
eight. Each report record is 600 bytes, and contains:

 +000 to +019 String Report name. Maximum length of 19 characters.
 +020 to +052 Bytes Column width for up to 33 columns in
 a tables-style report format. Byte
 +020 is for the leftmost column on a
 tables-style report. There can be
 up to 30 categories from the file,
 plus 3 more calculated columns.
 For labels-style report formats, the
 value is a byte that has the
 horizontal position of this
 category, relative to the left
 margin.
 +053 to +055 Skip 3 bytes.
 +056 to +088 Bytes For tables-style: Number of spaces
 to be printed at the right of
 justified columns.
 For labels-style: Vertical position
 on the report for each of up to 30
 categories. A value of 1 means that
 category is on the first line of
 labels-style report.
 +089 to +091 Skip 3 bytes.
 +092 to +124 Bytes For up to 33 columns of tables-
 style: Values from 1 to 30 refer to
 which category name appears in this
 column on the report. Values of
 $80, $81 and $82 are the three
 calculated categories, from left to
 right.
 For labels-style: Same as tables-
 style, minus the calculated categories.
 +125 to +127 Skip these three bytes.
 +128 to +160 Bytes For up to 33 columns of tables-
 style: $99 means no foot totals, 0
 through 4 means the number of
 decimal places for a foot total.
 For labels-style: For up to 30
 categories on report, Boolean bytes
 whether or not category names are to
 be printed.
 +161 to +163 Skip these three bytes.
 +164 to +196 Bytes For up to 33 columns of tables-
 style: $99 means left justified, 0
 through 4 means right justified with
 0 to 4 decimal places.
 For up to 30 categories of labels-
 style: Boolean bytes whether or not
 to float (OA-J) this category up
 against the category to its left.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 16 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 +197 to +199 Skip three bytes.
 +200 Byte Number of categories on report.
 Includes calculated categories, if any.
 +201 Byte Tables-style. If there is at least
 one calculated category, this
 contains values from 1 to 33: which
 column of the report.
 Labels-style: Values from 3 to 21.
 Position of the line on the screen
 that says "Each record will print nn lines."
 +202 Byte Tables-style: Same as +201, but for
 the second calculated category, if any.
 Labels-style: Unused.
 +203 Byte Tables-style: Same as +201, but for
 the third calculated category, if any.
 Labels-style: Unused
 +204 Byte Tables-style only: If there is a
 group total column, this byte states
 which of the category names is used
 as a basis. Values from 1 to 30.
 +205 Byte Platen width value, in 10ths of an
 inch. For example, a value of 8.0
 inches entered by the user will show
 as 80 or $50.
 +206 Byte Left margin value. All inches
 values are in 10ths.
 +207 Byte Right margin value.
 +208 Byte Characters per inch.
 +209 Byte Paper length value, in 10ths of an inch.
 +210 Byte Top margin value.
 +211 Byte Bottom margin value.
 +212 Byte Lines per inch. 6 or 8.
 +213 Byte Not relevant. Probably always a "C."
 +214 Byte Type of report format.
 H: tables-style, V: labels-style.
 +215 Byte Spacing: S(ingle, D(ouble, or
 T(riple. Expect these three
 letters, even in European versions.
 +216 Byte Print report header. Boolean.
 +217 Byte Tables-style: If user has specified
 group totals, Boolean, just print
 the group totals.
 +218 Byte Labels-style: Boolean, omit the
 line when all entries on the line
 are blank.
 +219 Byte Labels-style: Boolean, keep the
 number of lines the same within each record.
 +220 to +301 String 80-byte string. Title line, if any.
 +302 to +323 String Tables-style. 20-byte string. Name
 of the first calculated category, if any.
 +324 to +355 String Tables-style. 30-byte string.
 Calculation rules for first
 calculated category, if any.
 +356 to +409 String Tables-style. Name and rules for
 second calculated category, if any.
 +410 to +463 String Tables-style. Name and rules for
 third calculated category, if any.
 +464 to +477 String If user has specified "Send special

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 17 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 codes to printer," this is a 13 byte
 string containing those codes.
 +478 Byte Boolean: Print a dash when an entry
 is blank.
 +479 to +592 Words & Strings
 Record selection rules. Exact same
 format as described in the header record.
 +593 to +599 Unused

Data Records

Data records follow the report records. The first data record contains the
standard values. Each following data record corresponds to one data base
record.

These records contain all of the categories within one stream of data. The
category entries are in the same order that the category names appear in the
header record.

Bytes +0 and +1 are a word that contains a count of the number of bytes in the
remainder of the record.

Byte +2 of each record will always be a control byte. Other control bytes
within each record define the contents of the record. Control bytes may be:

 $01-$7F This is a count of the number of following bytes
 that are the contents of a category.
 $81-$9E This (minus $80) is a count of the number of
 categories to be skipped. For example, $82
 means skip two categories.
 $FF This indicates the end of the record.

The information in individual categories may have some special coding so that
date and time entries can be arranged (sorted).

Date entries have the following format:

 +000 Byte $C0 (192). Identifies a date entry.
 +001 to 002 Two bytes
 ASCII year code, like "84" ($38 $34).
 +003 Byte ASCII month code. A means January,
 L means December.
 +004 to +005 Two bytes
 ASCII day of the month, like "31" ($33 $31).

Time entries have the following format:

 +000 Byte $D4 (212). Identifies a time entry.
 +001 Byte ASCII hour code. A means 00 (the
 hour after midnight). X means 23,
 the hour before midnight.
 +002 to +003 Two bytes
 ASCII minute code. Values from 00 to 59.

File Tags

All AppleWorks files normally end with two bytes of $FF; tags are

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 18 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

anything after that. Although File Tags were primarily designed by
Beagle Bros, they can be used by any application that needs to create or
modify an AppleWorks 3.0 file.

Because versions of AppleWorks before 3.0 stop at the double $FF, they
simply ignore tags.

The File Tag structure is as follows:

 +000 Byte Tag ID. Should be $FF.
 +001 Byte 2nd ID byte. These values will be
 defined and arbitrated by Beagle
 Bros Software. Beagle may be
 reached at:

 Beagle Bros Inc
 6215 Ferris Square, #100
 San Diego, CA 92121

 +002 to +003 Word Data length. If this is the last
 tag on the file, the low byte (+002)
 will be a count of the tags in this
 file, and the high byte (+003) will
 be $FF.
 +004 to nnn Bytes Actual tag data, immediately
 followed by the next four-byte tag
 ID. These bytes do not exist for
 the last tag.

There is a maximum of 64 tags per file. Each tag may be no larger than
2K.

AppleWorks is a registered trademark of Apple Computer, Inc. licensed to
Claris Corporation.

END OF FILE FTN.19.xxxx

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 19 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.1A.xxxx
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $1A (26)
Auxiliary Type: All

Full Name: AppleWorks Word Processor File
Short Name: AppleWorks WP File

Revised by: Matt Deatherage & John Kinder, CLARIS Corp. September 1989
Written by: Bob Lissner February 1984

Files of this type and auxiliary type contain an AppleWorks(R) Word Processor
file.
Changes since May 1989: Updated to include AppleWorks 2.1 and AppleWorks
3.0.

Files of type $1A and any auxiliary type contain an AppleWorks Word Processor
file. AppleWorks is published by CLARIS. CLARIS also has additional
information on AppleWorks files SEG.PR and SEG.ER. For information on
AppleWorks, contact CLARIS at:

 CLARIS Corporation
 5201 Patrick Henry Drive
 P.O. Box 58168
 Santa Clara, CA 95052-8168

 Technical Support
 Telephone: (408) 727-9054
 AppleLink: Claris.Tech

 Customer Relations
 Telephone: (408) 727-8227
 AppleLink: Claris.CR

AppleWorks was created by Bob Lissner. AppleWorks 2.1 was done by Bob Lissner
and John Kinder of CLARIS. AppleWorks 3.0 was done by Alan Bird, Rob Renstrom
and Randy Brandt of Beagle Bros Software with John Kinder of CLARIS.

Definitions

The following definitions apply to AppleWorks files in addition to those
defined for all Apple II file types:

 MRL Data base multiple record layout
 SRL Data base single record layout
 RAC Review/Add/Change screen
 DB AppleWorks or /// E-Z Pieces Data Base

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 20 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 SS AppleWorks or /// E-Z Pieces Spreadsheet
 WP AppleWorks or /// E-Z Pieces Word Processor
 AW AppleWorks or /// E-Z Pieces

Auxiliary Type Definitions

The volume or subdirectory auxiliary type word for this file type is defined
to control uppercase and lowercase display of filenames. The highest bit of
the least significant byte corresponds to the first character of the filename,
the next highest bit of the least significant byte corresponds to the second
character, etc., through the second bit of the most significant byte, which
corresponds to the fifteenth character of the filename.

AppleWorks performs the following steps when it saves a file to disk:

 1. Zeros all 16 bits of the auxiliary type word.
 2. Examines the filename for lowercase letters. If one is found, it
 changes the corresponding bit in the auxiliary type word to 1 and
 changes the letter to uppercase.
 3. Examines the filename for spaces. If one is found, it changes the
 corresponding bit in the auxiliary type word to 1 and changes the
 space to a period.

When files are read from disk, the filename and auxiliary type information
from the directory file entry are used to determine which characters should be
lowercase and which periods should be displayed as spaces. If you use the
auxiliary type bytes for a different purpose, AppleWorks will still display
the filenames, but the wrong letters are likely lowercase.

File Version Changes

Certain features present in AppleWorks 3.0 files are not backward-compatible
to 2.1 and earlier versions. Such features are noted in the text. AppleWorks
Word Processor files which may not be loaded by versions prior to 3.0 are
identified by a non-zero byte at location +183, referred to as location
SFMinVers.

Those features added for AppleWorks 2.0, 2.1 and 3.0 not previously documented
are indicated with that version number in the margin.

Word Processor Files

Word Processor files start with a 300 byte header, followed by a number of
variable length line records, one for each line on the screen.

Header Record

The header contains the following information:

+000 to +003 Not used.
+004 Byte $4F (79)
+005 to +084 Bytes Tab stops. Either equal sign (=) or
 vertical bar (|) If SFMinVers is non-
 zero, these will be one of the following
 values:

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 21 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 "=" - no tab
 "<" - left tab
 "^" - center tab
 ">" - right tab
 "." - decimal tab.
+085 Byte Boolean: Zoom switch.
+086 to +089 Four bytes not used.
+090 Byte Boolean: Whether file is currently
 paginated (i.e., whether the page break
 lines are displayed).
+091 Byte Minimum left margin that should be added
 to the margin that is appearing on the
 screen. This is normally one inch, shown
 in 10ths of an inch, 10 or $0A.
+092 Byte Boolean: Whether file contains any mail-
 merge commands.
+093 to +175 Bytes Not used. Reserved.
3.0 +176 Byte Boolean: Whether there are multiple
 rulers in the document.
3.0 +177 to +182 Bytes Used internally for keeping track of tab
 rulers.
3.0 +183 Byte SFMinVers. The minimum version of
 AppleWorks needed to read this document.
 If this document contains 3.0 specific
 features (tabs and multiple tab rulers,
 for example), this byte will contain the
 version number 30 ($1E). Otherwise, it
 will be zero ($00).
+184 to +249 Bytes Reserved.
+250 to +299 Bytes Available. Will never be used by
 AppleWorks. If you are creating this type
 of file, you can use this area to keep
 information that is important to your
 program.

Line Records

Line records are of three different types. The first line record after the
300 byte header corresponds to line 1, the next is line 2, and so on. The
first two bytes of each line record contain enough information to establish
the type.

If SFMinVers is non-zero, the first line record (two bytes long) is invalid
and should be skipped.

Carriage Return Line Records

Carriage return line records have a $D0 (208) in byte +001. Byte +000 is a
one byte integer between 00 and 79 that is the horizontal screen position of
this carriage return.

Command Line Records

Command line records are formatting commands that appear on the screen in the
form:

--------Double Space

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 22 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

for example. These records can be identified by a value greater than $D0
(208) in byte +001. They are:

 Byte +001 Command Byte +000
 __
3.0 $D4 reserved (used internally as ruler)
3.0 $D5 Page header end
3.0 $D6 Page footer end
3.0 $D7 Right justified
 $D8 Platen width Byte 10ths of an inch
 $D9 Left margin Byte 10ths of an inch
 $DA Right margin Byte 10ths of an inch
 $DB Chars per inch Byte
 $DC Proportional-1 No meaning
 $DD Proportional-2
 $DE Indent Byte Characters
 $DF Justify
 $E0 Unjustify
 $E1 Center
 $E2 Paper length Byte 10ths of an inch
 $E3 Top margin Byte 10ths of an inch
 $E4 Bottom margin Byte 10ths of an inch
 $E5 Lines per inch Byte
 $E6 Single space
 $E7 Double space
 $E8 Triple space
 $E9 New page
 $EA Group begin
 $EB Group end
 $EC Page header
 $ED Page footer
 $EE Skip lines Byte Count
 $EF Page number Byte
 $F0 Pause each page
 $F1 Pause here
 $F2 Set marker Byte Marker number
 $F3 Page number Byte (add 256)
 $F4 Page break Byte Page number
 $F5 Page break Byte (add 256)
 $F6 Page break Byte (break in middle of paragraph)
 $F7 Page break Byte (add 256 in middle of paragraph)
 $FF End of file
 __

Text Records

Text records are the lines where text has been typed. The format is:

+000 to +001 Word Number of bytes following this word.
 Since the maximum is about 80, byte +001
 is always zero. Use byte +001 to identify
 text lines.
3.0 +002 If bit 7 is on, this line contains Tab and
 Tab Filler special codes (described
 below). The remaining seven bits are the
 screen column for the first text
 character. Usually will be zero, but may

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 23 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 vary as a result of left margin,
 centering, and indent commands.
 If this byte is $FF, this text line is
 actually a ruler--ASCII equivalent of what
 appears on the top of the screen.
+003 Byte If bit 7 (the high bit) of this byte is
 on, there is a carriage return on the end
 of this line. If off, no carriage return.
 Bits 6-0: Number of bytes of text
 following this byte.
+004 to nnn Actual text bytes. Consists of ASCII
 characters and special codes. The special
 codes are values from $01 to $1F, and
 indicate special formatting features:

 Code Meaning

 $01 Begin boldface
 $02 Boldface end
 $03 Superscript begin
 $04 Superscript end
 $05 Subscript begin
 $06 Subscript end
 $07 Underline begin
 $08 Underline end
 $09 Print page number
 $0A Enter keyboard
 $0B Sticky space
 $0C Begin Mail merge
 3.0 $0D Reserved
 3.0 $0E Print Date
 3.0 $0F Print Time
 3.0 $10 Special Code 1
 3.0 $11 Special Code 2
 3.0 $12 Special Code 3
 3.0 $13 Special Code 4
 3.0 $14 Special Code 5
 3.0 $15 Special Code 6
 3.0 $16 Tab character
 3.0 $17 Tab fill character
 (used in formatting lines)
 3.0 $18 Reserved

File Tags

All AppleWorks files normally end with two bytes of $FF; tags are
anything after that. Although File Tags were primarily designed by
Beagle Bros, they can be used by any application that needs to create or
modify an AppleWorks 3.0 file.

Because versions of AppleWorks before 3.0 stop at the double $FF, they
simply ignore tags.

The File Tag structure is as follows:

+000 Byte Tag ID. Should be $FF.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 24 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

+001 Byte 2nd ID byte. These values will be
 defined and arbitrated by Beagle
 Bros Software. Beagle may be
 reached at:

 Beagle Bros Inc
 6215 Ferris Square, #100
 San Diego, CA 92121

+002 to +003 Word Data length. If this is the last
 tag on the file, the low byte (+002)
 will be a count of the tags in this
 file, and the high byte (+003) will
 be $FF.
+004 to nnn Bytes Actual tag data, immediately
 followed by the next four-byte tag
 ID. These bytes do not exist for
 the last tag.

There is a maximum of 64 tags per file. Each tag may be no larger than
2K.

AppleWorks is a registered trademark of Apple Computer, Inc. licensed to
Claris Corporation.

END OF FILE FTN.1A.xxxx

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 25 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.1B.xxxx
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $1B (27)
Auxiliary Type: All

Full Name: AppleWorks Spreadsheet File
Short Name: AppleWorks SS File

Revised by: Matt Deatherage & John Kinder, CLARIS Corp. September 1989
Written by: Bob Lissner February 1984

Files of this type and auxiliary type contain an AppleWorks(R) Spreadsheet
file.
Changes since May 1989: Updated to include AppleWorks 2.1 and AppleWorks
3.0.

Files of type $1B and any auxiliary type contain an AppleWorks Spreadsheet
file. AppleWorks is published by CLARIS. CLARIS also has additional
information on AppleWorks files SEG.PR and SEG.ER. For information on
AppleWorks, contact CLARIS at:

 CLARIS Corporation
 5201 Patrick Henry Drive
 P.O. Box 58168
 Santa Clara, CA 95052-8168

 Technical Support
 Telephone: (408) 727-9054
 AppleLink: Claris.Tech

 Customer Relations
 Telephone: (408) 727-8227
 AppleLink: Claris.CR

AppleWorks was created by Bob Lissner. AppleWorks 2.1 was done by Bob Lissner
and John Kinder of CLARIS. AppleWorks 3.0 was done by Rob Renstrom, Randy
Brandt and Alan Bird of Beagle Bros Software with John Kinder of CLARIS.

Definitions

The following definitions apply to AppleWorks files in addition to those
defined for all Apple II file types:

 MRL Data base multiple record layout
 SRL Data base single record layout
 RAC Review/Add/Change screen
 DB AppleWorks or /// E-Z Pieces Data Base

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 26 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 SS AppleWorks or /// E-Z Pieces Spreadsheet
 WP AppleWorks or /// E-Z Pieces Word Processor
 AW AppleWorks or /// E-Z Pieces

Auxiliary Type Definitions

The volume or subdirectory auxiliary type word for this file type is defined
to control uppercase and lowercase display of filenames. The highest bit of
the least significant byte corresponds to the first character of the filename,
the next highest bit of the least significant byte corresponds to the second
character, etc., through the second bit of the most significant byte, which
corresponds to the fifteenth character of the filename.

AppleWorks performs the following steps when it saves a file to disk:

 1. Zeros all 16 bits of the auxiliary type word.
 2. Examines the filename for lowercase letters. If one is found, it
 changes the corresponding bit in the auxiliary type word to 1 and
 changes the letter to uppercase.
 3. Examines the filename for spaces. If one is found, it changes the
 corresponding bit in the auxiliary type word to 1 and changes the
 space to a period.

When files are read from disk, the filename and auxiliary type information
from the directory file entry are used to determine which characters should be
lowercase and which periods should be displayed as spaces. If you use the
auxiliary type bytes for a different purpose, AppleWorks will still display
the filenames, but the wrong letters are likely lowercase.

File Version Changes

Certain features present in AppleWorks 3.0 files are not backward-compatible
to 2.1 and earlier versions. Such features are noted in the text. AppleWorks
spreadsheet files which may not be loaded by versions prior to 3.0 are
identified by a non-zero byte at location +242, referred to as location
SSMinVers.

Those features added for AppleWorks 2.0, 2.1 and 3.0 not previously documented
are indicated with that version number in the margin.

Spreadsheet Files

Spreadsheet files start with a 300 byte header record that contains basic
information about the file, including column widths, printer options, window
definitions, and standard values.

Header Record

The spreadsheet header record contains the following entries:

+000 to +003 Skip 4 bytes.
+004 to +130 Bytes The column width for each column.
+131 Byte Order of recalculation. ASCII R or C.
+132 Byte Frequency of recalculation. ASCII A
 or M.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 27 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

+133 to +134 Word Last row referenced.
+135 Byte Last column referenced.
+136 Byte Number of windows: ASCII 1: just
 one window, S: side by side windows,
 T: top and bottom windows.
+137 Byte Boolean: If there are two windows,
 are they synchronized?
+138 to +161 The next 20 (approximately)
 variables are for the current
 window. If there is only one
 window, it is the current window.
 If there are two windows, the
 current window is the window that
 had the cursor in it.
+138 Byte Window standard format for label
 cells. 2: left justified, 3: right
 justified, 4: centered.
+139 Byte Window standard format for value
 cells. 2: fixed, 3: dollars, 4:
 commas, 5: percent, 6: appropriate
+140 Byte More of window standard format for
 value cells. Number of decimal
 places to display. Values from 0 to 7.
+141 Byte Top screen line used by this window.
 This is the line that the
 =====A=========B==== appears on.
 Normally 1 unless there are top and
 bottom windows.
+142 Byte Leftmost screen column used by this
 window. This is the column that the
 hundreds digit of the row number
 appears in. Normally 0 unless there
 are side-by-side windows.
+143 to +144 Word Top, or first, row appearing in
 titles area. This will probably be
 0 if there are no top titles.
+145 Byte Leftmost, or first, column appearing
 in left titles area. This will
 probably be 0 if there are no left
 titles.
+146 to +147 Word Last row appearing in top titles
 area. This will probably be zero if
 there are no top titles.
+148 Byte Last column appearing in left titles
 area. This will probably be zero if
 there are no left titles.
+149 to +150 Word Top, or first, row appearing in the
 body of the window. The body is
 defined as those rows that are on
 the screen, but not in the titles
 area.
+151 Byte Leftmost, or first, column appearing
 in the body of the window.
+152 Byte The screen line that the top body
 row goes on. Normally 2, unless
 there are top titles or top and
 bottom windows.
+153 Byte Leftmost screen column used for the

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 28 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 leftmost body column. Normally 4
 unless there are side titles, or
 side-by-side windows.
+154 to +155 Word Bottom, or last, row appearing in
 this window.
+156 Byte Rightmost, or last, column appearing
 in this window.
+157 Byte The screen line that the last body
 row goes on. Normally $13 (19)
 unless there are top and bottom
 windows.
+158 Byte The rightmost screen column used by
 this window. Normally $4E (78)
 unless there are side-by-side
 windows.
+159 Byte Number of horizontal screen
 locations used to display the body
 columns. Normally $48 (72), because
 8 columns of 9 characters each are
 the standard display. This is
 affected by side-by-side windows,
 side titles, and variable column
 widths.
+160 Byte Boolean: Rightmost column is not
 fully displayed. This can only
 happen when the body portion of the
 window is narrower than the width of
 a particular column.
+161 Flag Byte Titles switch for this window. Bit
 7: top titles, Bit 6: side titles.
 These bits represent top titles,
 side titles, both, and no titles.
+162 to +185 Window information for the second
 window. This is meaningful only if
 there are two windows. This is the
 information for the window that the
 cursor is not currently in. See the
 descriptions for the current window
 (+138 to +161).
+186 to +212 Not currently used.
+213 Byte Boolean: Cell protection is on or off.
+214 Not currently used.
+215 Byte Platen width value, in 10ths of an
 inch. For example, a value of 80
 inches entered by the user will show
 as 80 or $50.
+216 Byte Left margin value. All inches
 values are in 10ths of an inch.
+217 Byte Right margin value.
+218 Byte Characters per inch.
+219 Byte Paper length value, in 10ths of an
 inch.
+220 Byte Top margin value.
+221 Byte Bottom margin value.
+222 Byte Lines per inch. 6 or 8.
+223 Byte Spacing: S(ingle, D(ouble, or
 T(riple. Expect these three
 letters, even in European versions.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 29 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

+224 to +237 Bytes If user has specified "Send special
 codes to printer," this is a 13-byte
 string containing those codes.
+238 Byte Boolean: Print a dash when an entry
 is blank.
+239 Byte Boolean: Print report header.
+240 Byte Boolean: Zoomed to show formulas.
2.1 +241 Byte Reserved; used internally.
3.0 +242 Byte SSMinVers. The minimum version of
 AppleWorks needed to read this
 document. If this document contains
 version 3.0-specific functions (such
 as calculated labels or new
 functions), this byte will contain
 the version number 30 ($1E).
 Otherwise, it will be zero ($00).
+243 to +249 Reserved for future use.
+250 to +299 Available. Will never be used by
 AppleWorks. If you are creating
 these files, you can use this area
 to keep information that is
 important to your program.

Row Records

Row records contain a variable amount of information about each row that is
non-blank. Each row record contains enough information to completely build
one row of the spreadsheet:

3.0 +000 to +001 Word Number of additional bytes to read
 from disk. $FFFF means end of file.
 If SFMinVers is not zero, these two
 bytes are invalid and should be
 skipped. The first row record
 begins at +302 in an AW 3.0 SS file.
+002 to +003 Word Row number.
+004 Byte Beginning of actual information for
 the row. This byte of each record
 will always be a control byte.
 Other control bytes within each
 record define the contents of the
 record. Control bytes may be:

 $01-$7F This is a count of the
 number of following
 bytes that are the
 contents of a cell
 entry.
 $81-$FE This (minus $80) is a
 count of the number of
 columns to be skipped.
 For example, $82 means
 skip two columns.
 $FF This indicates the end
 of the row.

Cell Entries

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 30 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Cell entries contain all the information that is necessary to build one cell.
There are several types:

Value Constants

Value constants are cells that have a value that cannot change. This means
that someone typed a constant into the cell, 3.14159, for example.

+000 Flag Byte Bit 7 is always on.
 Bit 6 on means that if the value is zero,
 display a blank instead of a zero. This
 is for pre-formatted cells that still have
 no value.
 Bit 5 is always on.
 Bit 4 on means that labels cannot be typed
 into this cell.
 Bit 3 on means that values cannot be typed
 into this cell.
 Bits 2,1, and 0 specify the formatting for
 this cell:

 1 Use spreadsheet standard
 2 Fixed
 3 Dollars
 4 Commas
 5 Percent
 6 Appropriate

+001 Flag Byte Bit 7 is always zero.
 Bit 6 is always zero.
 Bit 5 is always zero.
 Bit 4 on indicates that this cell must be
 calculated the next time this spreadsheet
 is calculated, even if none of the
 referenced cells are changed. This bit
 makes sense on for cells that have a
 alculated formula.
 Bits 2, 1, and 0: Number of decimal
 places for fixed, dollars, commas, or
 percent formats.
+002 to +009 8-byte SANE double format floating point
 number.

Value Labels

Note: The entire Value Labels cell record entry requires AppleWorks 3.0
 or later.

Value labels are cells whose function has returned a label value. Formulas
like @Lookup, @Choose and @IF can all return labels as their results.
Specific format:

+000 Flag Byte Bit 7 is always one.
 Bit 6 on means not to display the cell.
 This was originally intended for pre-
 formatted cells that still have no value.
 If a value is placed in this cell, be sure
 to turn this bit off.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 31 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Bit 5 is always zero.
 Bits 4, 3, 2, 1, and 0 are the same as
 regular label cells.
+001 Flag Byte Bit 7 is always one.
 Bit 6 set indicates the last evaluation of
 this formula resulted in @NA.
 Bit 5 set indicates the last evaluation of
 his formula resulted in @Error.
 Bit 4 on indicates that this cell must be
 calculated the next time this spreadsheet
 is calculated, even if none of the
 referenced cells are changed.
 Bit 3 is always one.
 Bits 2 - 0 are ignored.
+002 to nnn String Pascal string containing characters to
 display.
+nnn+1 to xxx Bytes Various control bytes that are "tokens"
 representing the formula that was typed by
 the user. They are defined below.

Value Formulas

Value formulas are cells that contain information that has to be evaluated.
Formulas like AA17+@sum(r19...r21) and @Error are examples. Specific format:

+000 Flag Byte Bit 7 is always on.
 Bit 6 on means to not display the cell.
 This was originally intended for pre-
 formatted cells that still have no value.
 If a value is placed in this cell, be sure
 to turn off this bit.
 Bit 5 is always off.
 Bits 4, 3, 2, 1, and 0 are the same as
 value constants.
+001 Bit 7 is always on.
 Bit 6 on indicates that the last
 evaluation of this formula resulted in an
 @NA.
 Bit 5 on indicates that the last
 evaluation of this formula resulted in an
 @Error.
 Bits 4, 2, 1, and 0 are the same as value
 constants.
+002 to +009 8-byte SANE double floating point number
 that is the most recent evaluation of this
 cell.
+010 to nnn Various control bytes that are tokens
 representing the formula that was entered
 by the user. They are:

 Byte Means

 3.0 $C0 @Deg
 3.0 $C1 @Rad
 3.0 $C2 @Pi
 3.0 $C3 @True
 3.0 $C4 @False
 3.0 $C5 @Not

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 32 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 3.0 $C6 @IsBlank
 3.0 $C7 @IsNA
 3.0 $C8 @IsError
 3.0 $C9 @Exp
 3.0 $CA @Ln
 3.0 $CB @Log
 3.0 $CC @Cos
 3.0 $CD @Sin
 3.0 $CE @Tan
 3.0 $CF @ACos
 3.0 $D0 @ASin
 3.0 $D1 @ATan2
 3.0 $D2 @ATan
 3.0 $D3 @Mod
 3.0 $D4 @FV
 3.0 $D5 @PV
 3.0 $D6 @PMT
 3.0 $D7 @Term
 3.0 $D8 @Rate
 2.0 $D9 @Round
 2.0 $DA @Or
 2.0 $DB @And
 $DC @Sum
 $DD @Avg
 $DE @Choose
 $DF @Count
 $E0 @Error (followed by 3 bytes
 of zero)
 3.0 $E1 @IRR
 $E2 @If
 $E3 @Int
 $E4 @Lookup
 $E5 @Max
 $E6 @Min
 $E7 @NA (followed by three
 bytes of zero)
 $E8 @NPV
 $E9 @Sqrt
 $EA @Abs
 $EB Not currently used
 $EC Not equal (<>)
 $ED greater than or equal to (>=)
 $EE less than or equal to (<=)
 $EF equals (=)
 $F0 greater than (>)
 $F1 less than (<)
 $F2 comma (,)
 $F3 exponentiation sign (^)
 $F4 right parenthesis (")")
 $F5 minus (-)
 $F6 plus (+)
 $F7 divide (/)
 $F8 multiply (*)
 $F9 left parenthesis ("(")
 $FA unary minus (-) i.e., -A3
 $FB (unary plus (+) i.e., +A3)
 $FC ellipses (...)
 $FD Next 8 bytes are SANE

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 33 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 double number
 $FE Next 3 bytes are row,
 column reference
 3.0 $FF Next n bytes are a Pascal
 string

Three of the codes require special information. Code $FD indicates that the
next 8 bytes are a SANE numerics package double precision floating point
number. All constants within formulas are carried in this manner.

Code $FE indicates that the next three bytes point at a cell:

+000 Byte $FE
+001 Byte Column reference. Add this byte to the
 column number of the current cell to get
 the column number of the pointed at cell.
 This value is sometimes negative, but Add
 always works.
+002 to +003 Word Row reference. Add this word to the row
 number of the current cell to get the row
 number of the pointed at cell. This value
 is sometimes negative, but Add always
 works.

Code $FF indicates that the next bytes are a String, where the byte
immediately following the $FF contains the length.

Propagated Label Cells

Propagated label cells are labels that place one particular ASCII character in
each position of a window. Handy for visual effects like underlining.

+000 Flag Byte Bit 7 is always zero.
 Bit 6 is meaningless.
 Bit 5 is always on.
 Bit 4 and bit 3 are protection, just like
 value cells.
 Bits 2, 1, and 0 are meaningless. Put a 1
 here.
+001 Byte This is the actual character that is to be
 put in each position in the cell.

Regular Label Cells

Regular label cells contain alphanumeric information, such as headings, names,
and other descriptive information.

+000 Flag Byte Bits 7, 6, and 5 are always zero.
 Bits 4 and 3 are same as value cells.
 Bits 2, 1, and 0 determine cell
 formatting:
 01 Use spreadsheet standard formatting
 02 Left justify
 03 Right justify
 04 Center
+001 to +nnn Bytes ASCII characters that actually display.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 34 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 The actual length was defined earlier in
 the word that contained the actual number
 of bytes to read from disk.

File Tags

All AppleWorks files normally end with two bytes of $FF; tags are
anything after that. Although File Tags were primarily designed by
Beagle Bros, they can be used by any application that needs to create or
modify an AppleWorks 3.0 file.

Because versions of AppleWorks before 3.0 stop at the double $FF, they
simply ignore tags.

The File Tag structure is as follows:

+000 Byte Tag ID. Should be $FF.
+001 Byte 2nd ID byte. These values will be
 defined and arbitrated by Beagle
 Bros Software. Beagle may be
 reached at:

 Beagle Bros Inc
 6215 Ferris Square, #100
 San Diego, CA 92121

+002 to +003 Word Data length. If this is the last
 tag on the file, the low byte (+002)
 will be a count of the tags in this
 file, and the high byte (+003) will
 be $FF.
+004 to nnn Bytes Actual tag data, immediately
 followed by the next four-byte tag
 ID. These bytes do not exist for
 the last tag.

There is a maximum of 64 tags per file. Each tag may be no larger than
2K.

AppleWorks is a registered trademark of Apple Computer, Inc. licensed to
Claris Corporation.

END OF FILE FTN.1B.xxxx

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 35 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.42.xxxx
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $42 (66)
Auxiliary Type: All

Full Name: File Type Descriptors
Short Name: File Type Names

Written by: Matt Deatherage July 1989

Files of this type contain File Type Descriptor tables.

Introduction

As applications continue to be assigned file type and auxiliary type
combinations, the task of user file identification becomes more complex. If
someone has the list in "About File Type Notes" memorized, simply displaying
the file type and auxiliary type in hexadecimal is a suitable way of
identification. However, few people have memorized this list. Programs such
as the Finder have a need for this information in machine-readable form--not
just a list of ASCII strings describing file types, but a way to take a given
file's file type and auxiliary type and turn it into a string which describes
the file. The Finder is not alone in this need, as parts of command shells,
and sometimes entire programs, exist simply to identify files.

Developer Technical Support (DTS) has taken this opportunity to create a data
structure that may be used by the Finder and any other application wishing to
identify files. By using a separate file, the file identifiers can be updated
between System Software releases, at the discretion of DTS, by releasing new
descriptor files. Other applications may use the same file without having to
reinvent the wheel. Furthermore, the multiple-file structure introduced and
suggested in this Note allows developers to ship File Type Descriptor files
with their software that allow the Finder and other applications to properly
identify these files without a new release of the Finder (much as developers
can supply their own Finder icons).

Note: Updated files, if and when released, will not result in
 changes being made to the System Software. The files as shipped
 with the System Software will remain unchanged until the next
 System Software release. Developer Technical Support reserves the
 right to release updated files for the convenience of those who
 wish to use them.

The File Format

The file's format is designed to give full and fast access to any file

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 36 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

descriptor string, while still remaining flexible enough to grow and be
indicative of new features. Each file has three main parts: a header, an
index, and the strings.

The Header

The file begins with a header which describes all the entries in the file:

+000 Version Word Version number. This is toolbox style, so
 revision x.y would be stored as $0xyy. x
 is the major revision number; when this
 value changes, it means that previously-
 written code will not be able to read this
 file. yy is the minor version number;
 when it changes, there are new fields but
 the old ones are in the same order. This
 Note describes version 1.0 of the File
 Type Descriptor format.
+002 Flags Word This word is all the flags words from all
 the records combined using a binary OR
 instruction. The flags word for each
 entry indicates the type of entry it
 contains (see the section "The Index
 Entries"). A particular bit in this word
 will be set if there exists a record in
 the file where the corresponding bit in
 the flags word is set. For example, bit
 14 will be clear in this word if no index
 entry has bit 14 set.
+004 NumEntries Word The number of entries in this file.
+006 SpareWord Word Reserved for the application's use.
 The Finder calculates a value for each
 file and stores it in this field when the
 file is read into memory. This should be
 zero in the file on disk.
+008 IndexRecordSize
 Word The number of bytes in each index record.
+010 OffsetToIdx Word Offset, from the beginning of the
 file, to the first index entry. This
 field is provided so that other fields may
 be added to the header at a later date
 without breaking existing programs.

The Index Entries

The descriptions for each file type and auxiliary type assignment are pointed
to by index entries for each string. If there is a string in the file that
should be displayed for a particular assignment, there will be an index entry
for it. If there is not an entry in any of the loaded files (see the section
"Having More Than One File Type Descriptor File"), the string for file type
$0000, auxiliary type $00000000 should be displayed.

The index contains one index entry for every file type and auxiliary type
assignment or range (see below) in the descriptor file. All index entries in
a given file are the same length (given in the header) so fast binary-
searching algorithms may be performed. Their format is as follows for files
with major version 1:

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 37 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

+000 Filetype Word The file type that should match for the
 string to which this index entry points.
+002 Auxtype Long The auxiliary type that should match for
 the string to which this index entry
 points.
+006 Flags Flag Word A word, defined bit-wise, indicating the
 type of match this entry contains. The
 following definitions apply if the bit in
 question is set:
 Bit 15: This record matches this file
 type and any auxiliary type. This bit
 would be set, for example, for a record
 for file type $FF (ProDOS 8 application).
 Bit 14: This record matches this
 auxiliary type and any file type.
 Bit 13: This record is the beginning of a
 range of file types and auxiliary types to
 match this string. Any file type and
 auxiliary type combination falling
 linearly between this record and the
 record with the same offset and bit 12 set
 should be given this string by default if
 no specific match is found.
 Bit 12: This record is the end of a range
 of file types and auxiliary types to match
 this string. Any file type and auxiliary
 type combination falling linearly between
 the record with the same offset and bit 13
 set and this record should be given this
 string by default if no specific match is
 found.
 Bits 11-0: Reserved, must be set to zero
 when creating files.

Note: A range uses the file type and auxiliary type combined as a
 six-byte value, with the file type bytes as most significant. For
 example, file type $15, auxiliary type $4000 would fall in the
 range that starts with file type $13, auxiliary type $0800 and
 ends with file type $17, auxiliary type $2000

+008 Offset Word The offset, from the beginning of the
 file, to the Pascal string matching the
 description in this index entry. Note
 that more than one index entry can point
 to the same string.

The Strings

Since each index entry contains an offset to a string, it seems only logical
that somewhere in the file is a string for each index entry. Apple recommends
that the strings be placed in an array at the end of the index for most
efficient use of space and ease in creating the file.

General Truths

So programs using File Type Descriptor files or resources don't have to
construct all information about them each time they are opened, certain

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 38 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

characteristics will be true of all files. The following are characteristics
which will always be true for files or resources with major revision number
$01:

 o The strings describing the files must each be no more than 30
 characters long.
 o The entries must always be sorted primarily by ascending file type
 and secondarily by ascending auxiliary type.
 o Records that match file types or auxiliary types generically (for
 example, file type $FF and any auxiliary type) must contain zeroes
 for the wildcard field. A descriptor for ProDOS 8 application
 files should have file type $00FF, auxiliary type $00000000 and
 bit 15 set in the flags word. This record should be before any
 specific match for a file that has file type $FF and auxiliary
 type $0000, if such a record were to exist. Similarly, records
 which match a certain auxiliary type and any file type should
 appear before records which match file type $00 and that auxiliary
 type.
 o The index entry marking the beginning of a range and the index
 entry marking the end of a range must not have any other index
 entries between them.
 o Range index entries may not have bit 14 set.

Having More Than One File Type Descriptor File

More than one File Type Descriptor file may exist in a given directory.
However, only one file may exist in a given directory with any auxiliary type
from $00000000 to $000000FF. These files are provided by Apple Computer, Inc.
and should not be altered by anything containing carbon atoms. Future
implementations of System Software reserve the right to assume undocumented
properties about File Type Descriptor files with auxiliary types smaller than
$00000100. Editing of the strings in these files is not necessary, since
other files may contain strings to override the ones in these files.

There is no such restriction on auxiliary types of $00000100 or greater.

To provide flexibility in changing file descriptions, applications should
build in the capability to use as many File Type Descriptor files as are
present. Files created by third-parties must follow the following two rules:

 o The auxiliary type must not be lower than $00000100. Auxiliary
 types below $0100 are reserved for Apple.

 o The File Type Descriptors must not contain a match for file type
 $00 and auxiliary type $0000. Such a descriptor contains the
 string to display for a file that does not match any other index
 entry. This entry must only be contained in the File Type
 Descriptor with auxiliary type zero.

A file with auxiliary type zero must exist. Others should be searched in
order of descending auxiliary type, with $FFFFFFFF having highest priority.
(This is why no file must contain a match for file type $00 and auxiliary type
$0000 except the Apple-supplied one; otherwise, no searching would ever be
done beyond the offending file.) In this way, strings in the Apple-supplied
files may be superseded by other strings, without replacing or altering the
Apple-supplied file (a feat that would be difficult anyway, due to the offset

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 39 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

nature of the file structure).

Program Use of More Than One File

Applications should search the directory for as many of the given files as can
be found. If none is found with auxiliary type $0000, then the application
should behave as if no files were found. When searching for a description, a
separate search can be done on each file, stopping when a match is found. The
search algorithm should return the "unknown" string when no specific match is
found in the Apple-supplied file, so the search process will always return
some string. An application should never run out of File Type Descriptors
before finding a match.

Adding a File

Developers who wish to ship their own File Type Descriptor file with their
product may contact Developer Technical Support for assistance in creating the
file.

Memory Considerations

An application (especially a ProDOS 8 application) may not wish to spend
valuable memory on files for file identification purposes, especially if
directory listings are not an important part of the application. Since all
offsets in the File Type Descriptor files are offsets from the beginning of
the file, they may also be used with the ProDOS 8 or GS/OS SetMark call.
Disk-based searches will obviously be much slower, but could be used for
special instances (such as printing complete directories of disks as opposed
to displaying them, or for specific functions that identify files).

About the Finder's Implementation

In Apple IIGS System Software 5.0, the Finder uses File Type Descriptor files.
The Finder's implementation is somewhat limited, as this is a first pass at
this new standard. The following implementation notes apply to Finder 1.3:

 o The Finder looks for the File Type Descriptor files in the Icons
 directory of the boot disk (pathname *:Icons). It does not look
 in other directories or on other disks.
 o Up to 30 File Type Descriptor files will be loaded.
 o Two File Type Descriptor files are shipped with System Software
 5.0. The first, FType.Main, contains file type descriptions for a
 small subset of file types, and no specific auxiliary types. This
 file will be loaded on machines with 512K or less of memory. The
 second file, FType.Aux, contains the rest of the descriptions
 shipped with System Software 5.0, as listed in "About Apple II
 File Type Notes" for July, 1989, and this file will be loaded in
 addition to the first on machines with more than 512K of memory.
 FType.Main has auxiliary type $0000; FType.Aux has auxiliary type
 $0001. The Finder does not depend on the names, but on the
 auxiliary types and file types.
 o If the Finder cannot find any File Type Descriptor files in the
 *:Icons directory, it will terminate with fatal system error
 $4242. If it can not find a File Type Descriptor file with
 auxiliary type $0000, it will terminate with fatal system error
 $4243.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 40 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 o The Finder will only use File Type Descriptor files with major
 version number $01. Also, the file will not be used if it any
 bits in the flags word of the header other than bit 15 are set, or
 if the spare word in the header is not zero, or if there are zero
 entries in the file. The Finder's search algorithm is fast, but
 currently does not handle special index entries other than for a
 given file type and any auxiliary type.

Further Reference

 o About Apple II File Type Notes

END OF FILE FTN.42.xxxx

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 41 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.50.5445
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $50 (80)
Auxiliary Type: $5445

Full Name: Teach Document
Short Name: Teach document

Written by: Matt Deatherage March 1990

Files of this type and auxiliary type contain TextEdit-based documents.

With the advent of TextEdit for the IIGS, many small text-editing applications
have suddenly appeared. Apple may wish to release such a utility with the
System Software in the future, and has defined this simple file format for the
use of such a utility (referred to as "Teach" after the Macintosh program
"TeachText" by Bryan Stearns) and the use of any other text-editing program.

The file format is eminently suitable for a Text Edit record, and applications
should feel free to save any Text Edit record using this file format. The
auxiliary type is the ASCII letters "TE".

The Data Fork

The data fork of a Teach document contains ASCII text. All 256 characters are
allowed. The data fork should not contain anything that shouldn't be
interpreted as ASCII text (for example, no data structures or pointers to
lines, etc.).

The Resource Fork

The resource fork of a Teach document contains two resources. The first
resource is of type rStyleBlock ($8012) and has ID $00000001. This resource
contains all the style information for the text contained in the data fork.
Each Teach document must contain this resource. Programs that use Teach
documents may pass the resource ID $00000001 to TextEdit calls that require
TEFormat data structures, which is the data structure contained in an
rStyleBlock resource. If this resource does not exist, passing the ID to
TextEdit could bring the system down.

The second resource is of type $7001 and has ID $00000001..This resource
contains window position information. If the TextEdit record contains a ruler
which is tied to the window position (so the text rewraps when the window is
resized), when an application saves the record, it must include this resource.
In the same respect, if this resource exists in a Teach file, an application
must use this resource to set the window position and size.

Warning: If an application fails to follow either of these steps,
 TextEdit may hang.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 42 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

The format of this second resource is as follows:

Height (+000) Word The window height in pixels.
Width (+002) Word The window width in pixels.
Top (+004) Word The y coordinate of the window's top.
Left (+006) Word The x coordinate of the window's left edge.
Version (+008) Long Version number. Must be set to zero.

Other resources should not be placed in Teach documents. Any program saving a
document could delete an older file with the same name instead of rewriting
it, causing any other resources to be lost.

Further Reference

 o Apple IIGS Toolbox Reference, Volume 3

END OF FILE FTN.50.5445

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 43 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.50.8010
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $50 (80)
Auxiliary Type: $8010

Full Name: AppleWorks GS Word Processor File
Short Name: AppleWorks GS Word Processor

Revised by: Matt Deatherage & Dave Lyons September 1990
Written by: Sydney R. Polk & Stephan Schwirzke, July 1990
 Claris Corporation
 Matt Deatherage, Apple Computer, Inc.

Files of this type and auxiliary type contain word processor documents from
AppleWorks GS.
Changes since July 1990: Corrected the document format to include a count of
the SaveArray entries, since such a count there is. Also added a description
of how to count rulers.

AppleWorks GS is an integrated desktop productivity system for the Apple IIgs
personal computer. AppleWorks GS includes a word processor, spreadsheet, data
base, communications module and page layout module in one program. The word
processor (whose file format is described herein) is paragraph-based and
allows multiple fonts, styles, sizes, colors and rulers.

For more information on AppleWorks GS, contact:

 Claris Corporation
 5201 Patrick Henry Drive
 P.O. Box 58168
 Santa Clara, CA 95052-8168

 Technical Support
 Telephone: (408) 727-9054
 AppleLink: Claris.Tech

 Customer Relations
 Telephone: (408) 727-8227
 AppleLink: Claris.CR

The AppleWorks GS file format is copyrighted (C) 1990 by Claris Corporation and
is printed here with permission.

Definitions

The following definitions are used in this document in addition to those
defined for all Apple II file types:

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 44 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Paragraph An AppleWorks GS paragraph consists of a paragraph header and a
 carriage return ($0D) with text in between. The paragraph
 header is defined later in this Note.

Font change A font change is signified by the one Byte token $01, followed
 by the Word new font family number.

Style change A style change is signified by the one Byte token $02 followed
 by the new Style Byte. The format of the Style Byte is
 included in this section.

Size change A size change is signified by the one Byte token $03, followed
 by the Byte new font size.

Color change A color change is signified by the one Byte token $04, followed
 by the Byte new color. The color is an offset (0-15) into
 QuickDraw II color table number zero.

Style Byte A style byte is a Byte of bit flags, defined as follows:

 Bit 7: Subscript
 Bit 6: Superscript
 Bit 5: Reserved for future use
 Bit 4: Shadow
 Bit 3: Outline
 Bit 2: Underline
 Bit 1: Italic
 Bit 0: Bold

 When using a Style Byte with QuickDraw II, be sure to mask out
 bits 6 and 7 as QuickDraw II does not support these styles.

Text Block The Text Block is how AppleWorks GS stores text in memory. The
 format is as follows:

 blockSize (+000) Word The length of this Text Block,
 including the block size.
 blockUsed (+002) Word The number of bytes actually
 used by this Text Block.
 If this is less than blockSize,
 the remaining bytes should be
 ignored. This will not happen on
 disk.
 theText (+004) Paragraphs Paragraphs, as defined in this
 section.

 Paragraphs are stored consecutively within Text Blocks, and a
 paragraph is not split over two or more Text Blocks. If there
 is more than one Text Block, consecutive Text Blocks contain
 consecutive sets of paragraphs.

Text Block Records
 Text Block Records consist of a Long giving the size followed
 by a text block. A Text Block Record is redundant.

Reserved Characters
 ASCII characters $01-$07 have special meaning in an
 AppleWorks GS WP file and are considered special characters.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 45 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Character $09 has is the Tab character and character $0D is
 the only paragraph ending character, the Return.

 $01: Font change described in this section
 $02: Style change described in this section
 $03: Size change described in this section
 $04: Color change described in this section
 $05: Page token to be replaced with the page number of
 this page
 $06: Date token to be replaced with the current ASCII date
 $07: Time token to be replaced with the current ASCII time

Dates and times are in the "Thursday, July 5th, 1989 06:30 PM"
format.

 $09: Tab the tab character
 $0D: Return ends a paragraph

Paragraph header
 A paragraph header is seven bytes long:

 firstFont (+000) Word Font family number of the first
 character in the paragraph.
 firstStyle (+002) Style Byte The style of the first character
 in the paragraph.
 firstSize (+003) Byte The size (in points) of the
 first character in the paragraph.
 firstColor (+004) Byte The color of the first character
 in the paragraph, as an offset
 into QuickDraw II color table
 zero.
 reserved (+005) Word Reserved for future use.

Document header
 A document header is found at the beginning of every AppleWorks
 GS word processing file. The header begins at offset zero and
 is 282 bytes long:

 version (+000) Word The version number of the file
 format. This is $1011 for
 AppleWorks GS version 1.0v2
 and 1.1.
 headerSize (+002) Word Total size of the header in
 bytes. This is 282 ($11A) for
 version $0100.
 refRecSize (+004) Word Size of the reference record
 (fields rBits through rColor) in
 bytes. Always 48 ($30).
 rBits (+006) 22 Bytes Each word in rBits
 is a bit flag representing
 the state of one of the
 AppleWorks GS menus when
 the file was saved. For
 example, if bit 0 of the
 fourth word is clear, then
 the first item in the
 fourth menu was disabled
 when the file was saved.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 46 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 rUndo (+028) Long Reserved; set to zero.
 rState (+032) Long Reserved; set to zero.
 rNum (+036) Word Reserved; set to zero.
 rRefCon (+038) Long Reserved; set to zero.
 rChange (+042) Long Reserved; set to zero.
 rPrint (+046) Long Reserved; set to zero.
 rColor (+050) Long Reserved; set to zero.
 cTabSize (+054) Word Size of the color
 table in bytes. This is
 always 64. This is twice
 as large as needed; the
 second 32 bytes of color
 table space are reserved
 for future expansion.
 colorTable (+056) 32 Bytes The QuickDraw II
 color table for this
 document.
 reserved (+082) 32 Bytes Reserved for
 future expansion. The size
 of this field is included
 in cTabSize.
 pRecSize (+120) Word Size of the print
 record in bytes. This is
 always 160.
 printRecord (+122) 160 Bytes A Print
 Manager print record for
 this document.

Word Processor Global Variables
 Some global variables for the document are calculated after the
 file is read; these are marked "reserved." The total size of
 the globals is 386 bytes. The document is actually stored as
 three documents--the text, the header and the footer, as is
 described in the "File Structure" section of this Note. The
 AppleWorks GS word processor swaps a section of data depending
 on whether the text, header or footer was showing when the file
 was saved. The first section reflects the state of the
 document at save time and is a duplicate of one of the other
 three sections, depending on the value of "stuff". The
 switched variables are defined in this section as "SwapVars."

 intVersion (+000) Word AWGS WP internal version;
 currently $0002.
 view (+002) Word The current view.
 Possible values are $0000
 for the text, $0001 for the
 header and $FFFF (-1) for
 the footer.
 stuff (+004) Word Indicates which
 sections variables were
 swapped in when the file
 was saved. Possible values
 are $0000 for the text,
 $0001 for the header and
 $FFFF (-1) for the footer.
 curDate (+006) String The ASCII date
 when the file was saved.
 This field always takes 26

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 47 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 bytes regardless of the
 length of the string.
 curTime (+032) String The ASCII time
 when the file was saved.
 This field always takes 10
 bytes regardless of the
 length of the string.

 Dates and times are in the "Thursday, July 5th, 1989 06:30 PM"
 format.

 curPageNum (+042) String The ASCII current
 page number (e.g., "15").
 This field always takes 8
 bytes regardless of the
 length of the string.

 The next seven fields are used in headers and footers for
 time, date and page tokens.

 docPages (+050) Word Number of pages in
 current document.
 startPage (+052) Word Number with which
 to start pagination.
 reserved (+054) Word Reserved; set to
 zero when writing.
 visRuler (+056) Word Boolean; FALSE ($0000)
 if ruler is not showing,
 TRUE ($0001) if it is.
 reserved (+058) Long Reserved; set to
 zero when writing.
 headerHeight (+062) Word Height of header
 in pixels; maximum of 110.
 footerHeight (+064) Word Height of footer
 in pixels; maximum of 110.

 The next 80 bytes are swapped out variables defined in
 this section:

 currentVars (+066) SwapVars 80 bytes
 reflecting current
 variables when the document
 was saved.
 docVars (+146) SwapVars The document's variables.
 headerVars (+226) SwapVars The header's variables.
 footerVars (+306) SwapVars The footer's variables.

SwapVars The SwapVars are variables that are different for the text,
 header and footer. The set of SwapVars in docVars is the
 variables at the time the file was saved. The remaining three
 sets of SwapVars apply to their sections of the file.

 reserved (+000) Long Reserved; set to
 zero when writing.
 reserved (+004) Long Reserved; set to
 zero when writing.
 reserved (+008) Word Reserved; set to
 zero when writing.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 48 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 lastPrgph (+010) Word The number of the
 last defined paragraph in
 the document. Paragraphs
 are numbered from one.
 pageSize (+012) Word Page size
 (vertically), in pixels.
 topSpace (+014) Word Top space above
 page, in pixels.
 bottomSpace (+016) Word Bottom space below
 page, in pixels.
 paperSize (+018) Word Paper size
 (vertically), in pixels.
 horRulerRes (+020) Word Horizontal resolution
 for ruler, in pixels
 oPageRect (+022) Word Offset from paper
 to page rect, horizontally,
 in pixels.
 windPage (+024) Word The page number
 that begins the current
 window.
 lineOffset (+026) Word How far down the
 top page the window starts,
 in pixels.
 firstPrgph (+028) Word Number of the
 paragraph (paragraphs are
 numbered from one) that has
 the first text on this page.
 firstLine (+030) Word Number of the
 first line in this
 paragraph in the window.
 height (+032) Word The height of the
 paragraph before the first
 line, in pixels in the window.
 topSel (+034) Word The paragraph
 number of the topmost
 portion of the selection,
 or zero for no selection.
 topSelLine (+036) Word The line number of
 the topmost portion of the
 selection.
 selOffset (+038) Word The offset into
 the paragraph in bytes of
 the first character of the
 selection.
 reserved (+040) Long Reserved; set to
 zero when writing.
 insFlag (+044) Word Zero for a single
 insertion point, one for a
 selected range.
 caretEnd (+046) 8 Bytes End points of the
 caret line.
 rangePar (+054) Word The paragraph number of the
 end of the selection.
 rangeLine (+056) Word The line number of
 the end of the selection.
 rangeOffset (+058) Word The offset of the
 end of the selection
 stylePending (+060) Boolean Word

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 49 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 TRUE if the current font
 has been changed but
 nothing has been typed.
 fontID (+062) Long The font ID of the
 current font.
 color (+066) Word The low byte is the current
 color byte (0-15); the
 high byte is zero.
 topPrgphLine (+068) Word The top paragraph
 on the screen.
 topLine (+070) Word The top line of the paragraph
 on the screen.
 topPB (+072) Word Top page boundary--
 the page number of the top
 line in the window.
 bottomPrgph (+074) Word Paragraph number of the
 bottom paragraph on screen
 bottomLine (+076) Word Bottom line on screen
 bottomPB (+078) Word Bottom page boundary--
 the page number of the
 bottom line in the window.

SaveArray entry
 In the main document there will be one entry in a SaveArray for
 each paragraph in the document. Each entry is 12 bytes:

 textBlock (+000) Word Text Block number.
 Text Blocks are numbered
 from zero in the document;
 this entry shows in which
 text block this paragraph
 can be found.
 offset (+002) Word Adding this value
 to the offset of the text
 block gives the beginning
 of the paragraph.
 attributes (+004) Word $0000 = Normal text,
 $0001 = page break paragraph.
 rulerNum (+006) Word Number of the
 ruler associated with this
 paragraph. If this
 paragraph is a page break
 paragraph, ignore this field.
 pixelHeight (+008) Word Height of this
 paragraph in pixels.
 numLines (+010) Word Number of lines in
 this paragraph.

Ruler Each paragraph has a ruler associated with it; the rulers are
 stored in the order in which they appear in the document and are
 numbered consecutively beginning with zero. Rulers are 52 bytes
 long and have the following structure:

 numParagraphs (+000) Word The number of paragraphs
 using this ruler.
 statusBits (+002) Flag Word Bits 15-8: Reserved for
 future use.
 Bit 7: Full justification

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 50 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Bit 6: Right justification
 Bit 5: Center justification
 Bit 4: Left justification
 Bit 3: Paragraph cannot
 break pages if this
 bit is set.
 Bit 2: Triple spaced
 (really double)
 Bit 1: Double spaced
 (really one and
 one half)
 Bit 0: Single spaced
 leftMargin (+004) Word Left margin in
 pixels from the left edge
 of the window.
 indentMargin (+006) Word Indent margin in
 pixels from the left edge
 of the window.
 rightMargin (+008) Word Right margin in
 pixels from the left edge
 of the window.
 numTabs (+010) Word This will be a
 number from one to ten;
 there is always at least
 one tab.
 tabRecs (+012) 10 Tab Records
 A tab record is defined in
 the following section.

Because rulers are defined consecutively from zero, you can use the SaveArray
entries to find the total number of rulers. Look at the ruler number for each
SaveArray entry; the highest-numbered ruler you find is an indication of the
ruler count. For example, if the highest rulerNum in any SaveArray entry is
$0003, there are four rulers in the document.

Tab Record A tab record identifies the type of tab in a ruler:

 tabLocation (+000) Word The location of the tab,
 in pixels, from the left edge
 of the screen.
 tabType (+002) Word The type of tab.
 $0000 is a left tab; $0001
 is a right tab, and -1 ($FFFF)
 is a decimal tab, which
 centers around period characters.

File Format and Structure

The AppleWorks GS Word Processor file is composed of sections defined in
"Definitions." The document structure is as follows:

 docHeader (+000) Document Header
 globals (+282) WP Globals
 docSACount (+668) Word Number of SaveArray
 entries to follow
 docSaveArray (+670) SaveArray entries
 One entry for each paragraph

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 51 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 docRulers (+xxx) Rulers The rulers start here.
 "xxx" is at +670 + 12* the
 number of paragraphs.
 docTextBlocks (+yyy) Text Block Records
 The text block records start
 here. Note that when saved to
 disk, there is no extra space in
 a Text Block so the size is
 equal to the used field.
 "yyy" is at "xxx"+52*number of
 rulers.
 headSaveArray SaveArray entries
 SaveArray entries for this
 document's header. The offset
 depends on the length of the
 document's text blocks.
 headRulers Rulers The rulers for the header.
 headTextBlocks Text Block Records
 The text for the header.
 footSaveArray SaveArray entries
 The SaveArray entries for this
 document's footer.
 footRulers Rulers The rulers for the footer.
 footTextBlocks Text Block Records
 The text for the footer.

Please note that the number of paragraphs stored in the document is always one
greater than the number displayed in the window. The last character is always
a Return character. The number of carriage returns displayed is equal to the
number of carriage returns stored minus one. This is so all of the paragraphs
are guaranteed to end in a carriage return internally.

Blank document sections have a zero in the lastPrgph field of the SwapVars and
have no save arrays, rulers, or text blocks.

The maximum number of paragraphs in a document is 64K-1 (65,535) and the
maximum number of characters in a paragraph is 64K-13 (65,523), giving a
maximum theoretical document size of a healthy 4,294,049,805 characters.

Further Reference

 o Apple IIgs Toolbox Reference, Volumes 1 through 3

END OF FILE FTN.50.8010

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 52 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.53.8002
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $53 (83)
Auxiliary Type: $8002

Full Name: Graphic Disk Labeler Document
Short Name: Graphic Disk Labeler document

Written by: Matt Deatherage March 1990

Files of this type and auxiliary type contain label documents for Graphic Disk
Labeler.

Graphic Disk Labeler is an Apple IIGS application which mixes text and
graphics to create labels for 3.5" floppy disks. It imports most popular
graphics formats and prints in color.

For more information on Graphic Disk Labeler (GDL), contact:

 Triad Venture, Inc.
 P.O. Box 12201
 Hauppauge, New York 11788
 Attention: GDL Technical Support
 (516) 360-0797

The GDL file format is copyrighted (C) 1990 by Triad Venture, Inc. and is
printed here with permission.

File Structure

GDL documents contain the information for GDL to produce a label. A label is
composed of three TextEdit records, a palette, and an optional picture. This
information is in the data fork. The resource fork is reserved and should not
be used.

The File Format

The data fork of GDL files contains the following data:

PicFlag (+000) Boolean Long If this flag is TRUE, the next 5600 bytes
 contain a bit-mapped image of the graphic
 for this label. If this flag is FALSE,
 the next field is not present.
BitMap (+004) 5600 Bytes If PicFlag is TRUE, this is a bit-mapped
 image of this label's graphics. The
 rectangle is 100 pixels high by
 104 pixels wide in 320 mode; this is also

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 53 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 the size of the entire label. This field
 is not present if PicFlag is FALSE.

The remaining fields are present in every GDL document. They start at an
offset referred to in this Note as "n". If there is no picture, "n" is 4; if
there is a picture, "n" is 5604.

TERecGDL1 GDLText GDL-style TextEdit record for the
 text on the back of the label.
TERecGDL2 GDLText GDL-style TextEdit record for the
 text on the spine of the label.
TERecGDL3 GDLText GDL-style TextEdit record for the
 text on the front of the label.
Palette 32 Bytes Standard QuickDraw II Palette for
 this label.

The GDLText fields are defined as follows:

StyleLen (+000) Long Length of TextEdit style
 information (TEStyle info) for
 this TextEdit record.
Style (+004) StyleLen Bytes TextEdit style information.
 There are StyleLen bytes in
 this field.
TextLen (+StyleLen+4) Long Length of the text in this
 TextEdit record.
Text (+StyleLen+8) TextLen Bytes Text for this TextEdit record.
 There are TextLen bytes in this
 field.

Further Reference

 o Apple IIGS Toolbox Reference Manual, Volumes 2 and 3

END OF FILE FTN.53.8002

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 54 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.54.DD3E
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $54 (84)
Auxiliary Type: $DD3E

Full Name: Medley Desktop Publishing Document
Short Name: Medley Document

Written by: Matt Deatherage & Eric Soldan May 1989

Files of this type and auxiliary type contain documents for Medley(TM).

Medley is a WYSIWYG application that integrates word processing, paint, and
page layout programs, with the addition of a spelling checker and thesaurus.
The page layout function supports various shapes for art and text areas. Text
automatically wraps around or within these areas, including irregularly shaped
regions. The word processor is full-featured, as is the paint program. The
dictionary has 80,000 words.

For more information on Medley, contact:

 Milliken Publishing Company
 1100 Research Blvd.
 St. Louis, MO 63132
 Attention: Medley Technical Support
 (314) 991-4220

The Medley file format is copyrighted (C) 1988 by Milliken Publishing Company
and is printed here with permission.

Definitions

The following definition is used in this document in addition to those defined
for all Apple II file types:

C String A series of ASCII bytes terminated with a byte of $00.
 There is no count byte at the beginning, as is the case for
 the String type (also referred to as a "Pascal string").

File Structure

Medley files are basically standard, single-linked tree structures. There is
a single object at the top of the tree, and other objects may branch off this
parent object. Each child object is linked to the parent by a pointer to the
child contained within the parent object. A non-standard thing about the
Medley tree structure is that some objects may have regions or polygons
associated with them. The handles to these objects are stored in the parent

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 55 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

object when in memory, but on disk these handles are quite meaningless.
Because of this difference, the regions or polygons are simply appended to the
parent object itself when written to disk. The size of the region or polygon
is added to the size of the parent object, giving an aggregate size for the
complex object on disk.

The file is written to disk in an order based on a simple tree-walking
algorithm. This algorithm starts with the highest parent object and writes it
to disk. The parent object is checked for child objects. If one exists, it
is written to disk, and then it is checked for child objects. This tree-
walking continues until an object runs out of children. When that occurs,
Medley backs up one tree level, writes the next child object to disk, and
scans it for children. This method continues until all objects are written to
disk.

For example, if a parent object named A had two child objects named B and C,
where B had children E and F, and C had children G and H, the objects would be
written to disk in the following order: A, B, D, E, C, F, G. Figure 1
illustrates this structure.

 | |
 | A |
 |_________|
 |---------------|---------------|
 ____|____ ____|____
 | | | |
 | B | | C |
 |_________| |_________|
 |-------|-------|---------------|-------|-------|
 ____|____ ____|____ ____|____ ____|____
 | | | | | | | |
 | D | | E | | F | | G |
 |_________| |_________| |_________| |_________|

 Figure 1-Example of Parent and Child Tree Structure

Some Medley objects, when in memory, have handles to other objects (such as
regions or polygons) in them. Since handles are meaningless on disk, Medley
stores these complex objects in an aggregate form by writing the contents of
each associated handle to disk following the regular object.

The Objects and Their Formats

All objects have a common 13-byte header, which is as follows:

type (+000) Byte The type of the object. Possible
 values are:
 0 = Null Object (never saved to disk)
 1 = Root Object (never saved to disk)
 2 = File Object
 3 = Page Object
 4 = Paragraph Object
 5 = Area Object
 6 = Art Object
 10 = Document Dictionary Object.
 Objects 7, 8 and 9 are for posting
 undo events. Since these are not
 saved to disk, they are irrelevant

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 56 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 for the file format.
numChildren (+001) Word The number of children for this
 object. Children of the children
 are not included.
endData (+003) Long The size of this object on the
 disk, not counting associated
 handles (such as regions and
 polygons).
reserved (+007) Long Reserved; set to zero when
 creating files.
objRefNum (+011) Word The reference number of this
 object, generally zero.

Each object has the header listed above followed by object-specific data. For
this reason, the description of each object will start with offset +013 (the
byte following the header).

The File Object

rect (+013) 4 Words Standard QuickDraw II rectangle,
 giving the boundary rectangle for
 the entire file.
pathName (+021) 129 Bytes Class zero pathname for the
 file on disk (used by the save
 command).
saved (+150) Byte This byte is 1 if no changes have
 been made to the file since the last
 save.
windowPtr (+151) Long Pointer to the window for this
 file. When creating files, set to
 zero.
wndwNameIndx (+155) Byte Index into table of window
 names. Set to zero when creating
 files
windowOrigin (+156) 2 Words QuickDraw II point
 representing the global origin of
 this file's window.
windowSize.h (+160) Word Height of window in pixels.
 Add to top edge of window to get
 bottom edge of window.
windowSize.v (+162) Word Height of window in pixels.
 Add to left of window to get right
 edge of window.
COrigin (+164) Long QuickDraw II point representing the
 scroll bar origin of this file's
 window. When creating files, set
 this to whatever origin you wish
 Medley to display. Make sure that
 the coordinate is valid.
editHndl (+168) Long Handle to the paragraph containing
 the cursor. This is converted to a
 child number on disk, since handles
 on disk are meaningless.
editOffset (+172) Word Offset to the cursor within the
 paragraph pointed to by editHndl.
cursor (+174) 4 Words Standard QuickDraw II rectangle,
 giving the rectangle used for the
 insert cursor. This can be set to a

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 57 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 null rectangle when creating files,
 and will be calculated when the file
 is loaded.
showAllBorders (+182) Byte If this is set to one, then
 all area borders will display,
 regardless of each area's border
 display setting.
updateRect (+183) 4 Words Standard QuickDraw II
 rectangle used for posting specific
 updates for the interruptible word
 processor. When creating files, set
 this to a null rectangle.
topMrgn (+191) Fixed The top margin in inches.
bottomMrgn (+195) Fixed The bottom margin in inches.
leftMrgn (+199) Fixed The left margin in inches.
rightMrgn (+203) Fixed The right margin in inches.
gutterMrgn (+207) Fixed The gutter margin in inches.
pageWidth (+211) Fixed The width of the page in inches.
pageHeight (+215) Fixed The height of the page in
 inches.
selectPage (+219) Word The active page for area
 editing.
numSelected (+221) Word The number of areas currently
 selected by the user.
sizingDot (+223) Word The sizing dot number of an area
 that was last clicked. This sizing
 dot will be used as the current
 sizing dot when the arrows are used
 to size an area.
effectivePage (+225) Word The page number of the page
 the user was effectively editing.
 This is different from selectPage
 when the user was editing global
 areas at save time, for global areas
 are treated as on page zero.
printRecord (+227) 140 Bytes A standard IIGS Print
 Manager print record; the one in use
 for this document at save time.
 This field can be undefined, if the
 printRecordDefined field is zero.
interruptMode (+367) Word Currently undocumented. (Set
 to zero.)
editScroll (+369) Byte Currently undocumented. (Set to
 zero.)
firstHndl (+370) Long Handle where wrap-around regions
 should actually start; i.e., where
 an update is needed. When creating
 files, set this to zero.
firstMrn (+374) Word MiniRect number (line number of
 paragraph) where wrap-around regions
 should actually start; i.e., where
 an update is needed. When creating
 files, set this to zero.
selectMode (+376) Word Some text is selected if this is
 1. Each paragraph will indicate the
 range of characters selected within
 that paragraph. This allows the
 screen update routine to quickly

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 58 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 determine which characters in a
 paragraph should be drawn selected.
showPgphMarks (+378) Byte Indicates whether paragraph
 marks are currently being shown.
showSpaces (+379) Byte Indicates whether spaces are
 shown with marks and tabs are shown
 with arrows.
showMoveChangeInfo
 (+380) Byte Indicates whether the Move/Change window
 is active.
moveChangeInfoRect
 (+381) 4 Words Standard QuickDraw II Rectangle giving
 the position of the Move/Change
 window.
addNewUndo (+389) Byte Currently undocumented.
revNum (+390) Word Revision number of the version of
 Medley that created this file. For
 files created following this
 standard, use $0100 (for Medley
 2.0).
showRulers (+392) Byte Indicates whether the rulers are
 showing.
windowType (+393) Word The type of window this is. 0 =
 document, 1 = clipboard. When
 creating files, set this to zero.
auxDictPath (+395) 129 Bytes Class zero GS/OS pathname
 to the auxiliary dictionary file for
 this document. When creating files,
 set this to a null pathname (a
 length byte of zero).
grayScale (+524) Word Whether or not grayScale mode is
 active. Zero for color, one for
 grayScale.
printRecordDefined
 (+526) Word Non-zero if a print record is defined.
 This is used because the Printer and
 Port drivers must be loaded before
 calling PrDefault or PrValidate, and
 that means the boot disk must be on
 line. If Medley knows the print
 record is good, it proceeds without
 calling the Print Manager.
evenPageNumText
 (+528) 48 Bytes The text for even-numbered pages to be
 displayed by the page number.
oddPageNumText
 (+576) 48 Bytes The text for odd-numbered pages to be
 displayed by the page number.
pageNumInfo (+624) 32 Words A word for each of the
 pages possible in the file, through
 the absolute maximum of thirty-two.
affectPageRange(+688) 2 Bytes The range of pages
 affected by the Medley "Change Page
 Numbers" command. The first byte is
 the beginning page; the second byte
 is the ending page.
pageNumFont (+690) 4 Bytes A Font Manager FontID,
 identifying the font used for the

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 59 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 page numbers. This is a two-byte
 font family number, followed by a
 one-byte font style and one-byte
 font size.
startPageNum (+694) Word The page number of the first
 page. This is a zero-based counter;
 page one is represented as zero.
offsetFromEdge (+696) Word The distance in points that
 the page numbering text appears from
 the edge of the paper.

Note: The following three fields are in Medley 2.0 files, but do not
 exist in Medley 1.0 files. If you are reading a 1.0 file, the
 value of revNum will be $0000. If reading a 1.0 File Object,
 resize it to 2.0 size (including the three fields below) and
 initialize their values to the values given below.

maxNumPages (+698) Word The maximum number of pages in
 this document. When creating new
 files, initialize this to 32 ($20)
 unless condensed (below) is non-
 zero. If condensed is non-zero, you
 really have to hurt yourself to get
 this field right. Below is the
 algorithm Medley uses to calculate
 this field (in something close but
 not exactly related to pseudo-code).
 Please recall that all variables
 relating to the margins (taken from
 the file object) are Fixed.

workHeight := topMrgn + bottomMrgn
if [condensed is non-zero] then workHeight := workHeight * 2
workHeight := pageHeight - workHeight
workHeight := workHeight * [pixels per vertical inch]
workHeight := workHeight + $0000FFFF
[this counts a fractional point as a whole point]
i := HiWord(workHeight) [this gives the integer portion]
i := i + 3 [accounts for 3-pixel page breaks]
i := (16384 - 208) / i [gives number of pages in conceptual
drawing space. Since Medley allows 48-point characters plus
leading, the tallest a text rectangle may be is 208 pixels. Text
that does not fit in maxNumPages is kept around in a non-
displayable, non-editable, non-printable page. Any shortening of
the document will cause some or all of the previously non-
displayed text to flow up into the document.]
i := min(32,i) [32 is the absolute maximum number of pages Medley
allows due to QuickDraw's conceptual drawing space limitations.]

maxNumPages := i

condensed (+700) Word Indicates whether the document is
 designed to use condensed printing.
 If non-zero, the document is
 designed to use condensed printing.
 When creating files, it is easiest
 not to deal with condensed printing,
 so set this field to zero. However,

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 60 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 if you wish to create a document
 that Medley may edit and print as
 condensed, you must correctly relate
 this field to the previous one by
 the algorithm given above.
reserved (+702) 6 Bytes These six bytes should be set
 to zero.

The Page Object

Pages are the first-level children of files. There is one page object for
each page in a document (file object).

rect (+013) 4 Words Standard QuickDraw II rectangle
 giving the boundary rectangle for
 this page.
wrapDir (+021) Byte The direction of word-wrapping.
 1 = Down, 2 = across.
rgn (+022) Long Handle to the region for this page in
 memory. The region is the page
 rectangle less any areas on that
 page. Global areas are not
 subtracted from this region. They
 are subtracted from the page
 rectangle for the global page (page
 zero). On disk, where the page
 region would be written, you can
 write a 10, followed by the
 rectangle for the page. This is a
 rectangular region. The aggregate
 size of the page object on disk must
 include these 10 bytes. This is
 assuming, of course, that there are
 no areas on that page to make the
 page region non-rectangular.
hideGlobalArt (+026) Byte A non-zero value indicates
 that global art is not displayed on
 this page.
hideGlobalPageParts
 (+027) Byte A non-zero value indicates that global
 page parts are not displayed on this
 page.

The Paragraph Object

Paragraphs are the children of the file object; they are not the children of
page objects since a paragraph may be seen on more than one page or page part.
Paragraph objects are, however, stored on disk immediately following page
objects and their children. Paragraph objects are first-level objects also.

wrapHere (+013) Word Insertion offset point in
 paragraph data where wrapping should
 continue. For wrapping from
 beginning of paragraph, set this
 field to zero.
fullWrap (+015) Word Same as wrapHere, but indicates at
 what point miniRect construction or

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 61 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 reconstruction must continue.
 Again, for full-wrapping of a
 paragraph, set to zero.
rulerOffset (+017) Word Offset in bytes from beginning
 of paragraph object to indicate
 where the ruler starts. (The ruler
 is just before the character data,
 just after the miniRects.) If there
 is no ruler, then the default ruler
 is used by Medley. (If the
 dataOffset value is the same as the
 rulerOffset, then there is no ruler,
 and the default ruler will be used.)
 The default ruler has tabs at each
 1/2 inch mark, no indent or
 paragraph indent, and the right
 margin is at maximum.
dataOffset (+019) Word Offset in bytes from beginning
 of paragraph object to indicate
 where character data starts. If
 there are no miniRects built yet
 (probable if file is being created
 outside Medley) and there is no
 ruler, then this value will be a 32.
numRects (+021) Word The number of discrete text
 rectangles in this paragraph. When
 creating a file, set fullWrap to
 zero, and numRects to zero, and
 place your character data starting
 at byte 32 of a paragraph object,
 and the rectangles will be built
 when the file is loaded by Medley as
 wrap occurs.
begInvOffset (+023) Word Offset from the beginning of
 the character data where inverse
 text starts in this paragraph.
endInvOffset (+025) Word Offset from the beginning of
 the character data where inverse
 text ends in this paragraph.
topLeading (+027) Byte The number of pixels leading
 above each line in this paragraph.
botLeading (+028) Byte The number of pixels leading
 below each line in this paragraphs.
begPgphGap (+029) Byte The number of pixels extra
 leading above this paragraph.
endPgphGap (+030) Byte The number of pixels extra
 leading below this paragraph.
flags (+031) Flag Byte Bits 0 and 1 are used to
 indicate justify mode.
 00 = left justify.
 01 = right justify.
 10 = center justify.
 11 = full justify.
 Bit 7 indicates a page-break after
 this paragraph.
miniRects (+032) MiniRects Any miniRects, if any, are
 contained here. The number of
 miniRects is given by numRects

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 62 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 above.

MiniRects have the following format:

miniRect.rect (+000) 4 Words Standard QuickDraw II
 rectangle that is calculated by the
 wordWrap routine to bound a line of
 text.
mr.begOffset (+008) Word Offset from start of character
 data to the first character this
 miniRect bounds.
mr.endOffset (+010) Word Offset from start of character
 data to just past the last character
 this miniRect bounds.

A Ruler in the document will be after the miniRects, if there are
any. The offset to the Ruler is given by rulerOffset. Rulers are
formatted as follows:

leftPgphMrgn (+000) Byte The left margin for this
 paragraph, in sixteenths of an inch.
rightPgphMrgn (+001) Byte The right margin for this
 paragraph, in sixteenths of an inch.
 This is an offset from the default
 right margin from Medley's "Set
 margins" command. For example, the
 value 16 represents a right margin
 one inch to the left of the default
 right margin.
pgphIndent (+002) Byte The indentation for this
 paragraph, in sixteenths of an inch.
numTabs (+003) Byte The number of tabs in this ruler.
tabs (+004) Tabs There are numTabs of these.

Tabs are formatted as follows:

tab Flag Word Tabs consist of a high byte of flags
 and low byte of position. The bits
 are assigned as follows:
 Bits 15-12 = Reserved; set to zero.
 Bits 11-10 = Tab Leader style:
 00 = No leader
 01 = Leader of dots (.......)
 10 = Leader of dashes (- -)
 11 = Solid Leader (_________)
 Bits 9-8 = Tab Type:
 00 = Left Tab
 01 = Right Tab
 10 = Center Tab
 11 = Decimal Tab
 Bits 7-0 = Byte value; the
 position of this tab as an
 offset from the left
 margin in sixteenths of an
 inch. A value of sixteen
 indicates a tab one inch
 to the right of the left
 margin.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 63 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Following miniRects and rulers is the actual character data for
this paragraph. This is all Bytes. However, a Byte value of
$01 through $07 indicates the beginning of a Font Escape. Font
Escapes indicate changes in style or size of the text, and are
formatted as follows:

FontEscape (+000) Byte An indication of the type of
 text the following fontID affects:
 1 = Regular Text
 2 = Superscript Text
 3 = Subscript Text
 4-7 = Reserved; do not use
fontID (+001) 4 Bytes A Font Manager FontID,
 identifying the font used for the
 page numbers. This is a two-byte
 font family number, followed by a
 one-byte font style and one-byte
 font size.

The text portion of a paragraph always begins with a Font Escape
and ends with the end-of-paragraph character Byte $A6. This
makes the minimum size of a paragraph (assuming no miniRects or
rulers) thirty-eight bytes (32 bytes for the Paragraph Object,
five bytes for the Font Escape and one byte for the $A6).

The Area Object

Area Objects are the children of pages or paragraphs.

type (+013) Byte The type of area this area object
 describes. Possible values are:
 0 = Null Area
 1 = Group Area
 2 = Rectangular Area
 3 = Round Rectangular Area
 4 = Oval Area
 5 = Polygon Area
select (+014) Byte This value is one if this area is
 selected.
showBorder (+015) Byte This value is one if the border
 of this area is showing.
contentType (+016) Byte 0 = Art, 1 = Wrap Down,
 2 = Wrap Across.
rgn (+017) Long Handle to the region that describes the
 shape of this area. On disk, this
 region is at the end of this object
 (see the Reading The File section of
 this Note).
interiorRgn (+021) Long Handle to the regions that
 describes the interior of this area.
 On disk, this region is at the end
 of this object (see the Reading The
 File section of this Note).
sizingRgn (+025) Long Handle that contains all the
 sizing dots. It is too slow to draw
 them one at a time. Also, detecting

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 64 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 that the user clicked in a sizing
 dot can be done quickly -- just not
 which one.
flags (+029) Word Only bit zero of this word is
 significant; if set it indicates
 this area should be printed to
 LaserWriters in gray-scale. All
 other bits of this word should be
 zero.
reserved (+031) Word Reserved for Milliken. Set to
 zero.

At this point is the description of the area itself. This
description varies on the type field above:

For rectangles (type = 2):

rect (+033) 4 Words Standard QuickDraw II rectangle
 describing the rectangle for this
 area.
For round rectangle (type = 3):

rect (+033) 4 Words Standard QuickDraw II rectangle
 describing the boundary rectangle
 for the round rect.
height (+041) Word The height of the oval portion of
 the rectangle.
width (+043) Word The width of the oval portion of the
 rectangle.

For ovals (type = 4):

oval (+033) 4 Words A standard QuickDraw II rectangle
 describing the bounding rectangle
 for this oval. The oval drawn is
 the ellipse inscribed in this
 rectangle.

For Polygons (type = 5):

polygon (+033) Bytes A handle to a QuickDraw II
 polygon. This handle may be passed
 to QD Polygon routines. On disk,
 this polygon is appended to the end
 of this object (see the Reading The
 File section on this Note).

These objects are the last items in the area object.

The Art Object

Art Objects are the children of pages, paragraphs or areas.

BBox (+013) 4 Words A standard QuickDraw II rectangle
 representing the bounding box of
 this art object.
offsetFromRgn (+021) 2 Words Normally zero. The area
 containing an art image can be grown

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 65 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 and shrunk. The art within it is
 not clipped to the bounding
 rectangle of the area until the user
 deselects the area. (If it is saved
 to disk while selected, then it is
 saved unclipped). This allows the
 user to experiment with different
 shapes without clipping the drawing
 within. If the drawing is to the
 left of the left edge of the area,
 or is above the top edge, then this
 offset indicates by how much.
artImage (+025) Bytes The actual bitmap of the art
 image.

The Document Dictionary Object

The Document Dictionary Object is the very last child of the file object, and
contains all the words the spelling checker should ignore even though they are
not in the main dictionary.

count (+013) Word The number of word entries in this
 dictionary object.
wordList (+015) Word Entries List of dictionary word
 entries.

The format of word entries is as follows:

recordLength (+000) Byte The length of this record.
replaceFlag (+001) Byte Reserved, set to zero.
newWord (+002) C String The word in question. This
 word should be counted as spelled
 correctly, and is not in the Main or
 Auxiliary Dictionary.

The length of a record is the length of string plus three bytes
(one for recordLength, one for replaceFlag, and a zero termination
byte).

Reading the File

When reading a Medley file, objects with regions or polygons will have to be
treated specially, since the handles in the objects are invalid and the
regions or polygons actually follow the object in the disk file.

A sequence for reconstructing Medley files in memory is as follows:

 1. Open the file, or set the mark to zero on an open file.
 2. Start with a handle that is 13 ($0D) bytes long. Pass this
 handle to the routine starting in step three.
 3. Save the handle passed to this routine, and read four bytes
 from disk. This Long is the total size of an object, including
 any regions or polygons appended.
 4. Read the 13-byte object header into the handle passed to this
 routine. The endData field of the header gives the size of the
 object, minus any associated regions or polygons. Resize the
 object's handle (the handle passed to you) to this size.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 66 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 5. Read the rest of the object (endData - 13 bytes) into the
 object's handle.
 6. Save the value of numChildren in a local variable and set the
 numChildren field in the object header to zero. The field in
 the header represents the number of children read from disk;
 setting this to zero properly indicates that you haven't read
 any of the children yet.
 7. Look at the object type field. If the object is a file, area,
 or page object, it may have a region associated with it. If the
 object is an area object, it may also have a polygon associated
 with it (if the area type field indicates this is so). You can
 tell if the object has any appended structures by comparing the
 total object size (read in step three) with the endData field
 (read in step four); if an object has no appended structures,
 the two values will be the same.

 If there are structures appended to the object, first zero all
 the handles to the regions inside the object. This allows
 elegant error recovery if an error occurs while reading the
 region or polygon. When the handles are zeroed, read the next
 two bytes from the disk. This Word is the size of the region or
 polygon in bytes. Create a handle of that size, place it in the
 object's field for this handle, and place the size Word in the
 first two bytes of the new handle. Now read the object from
 disk into the new handle starting at the beginning +002 (past
 the size Word).

 Continue in this fashion until all appended regions or polygons
 have been read from disk. Any appended structures will be
 stored in the same order as their handles occur in the object.

 Note: By zeroing the handles before reading the objects, you
 can return from this function with an error, and the
 calling routine will be able to dispose of all handles
 that were actually created. The calling routine will know
 if a handle was actually created or not by examining the
 handle field in the object; NIL handles were not created.

 8. Execute a loop for the old number of children (0 to
 oldNumChildren-1):
 9. Create an object that is 13 ($0D) bytes long. Add this handle
 to the end of the parent object that was last read. Increment
 the number of children. You have just added a child into the
 child table for an object.
 10. Call the recursive subroutine beginning in step three, passing
 it the handle you just created. If it returns an error, return
 the error. This gets you out of the recursion with the correct
 error, no matter how many levels deep you are.
 11. Keep looping until out of children to read. The EOF condition
 does not have to be checked, since you will run out of children
 when you reach the end of the file. If an EOF is reached before
 you read all the children, you did something wrong.
 12. Return no error--the file was successfully read.
 13. When done with all this, you will return to the code just
 beyond step two, where you first called the recursive subroutine
 at step three. If an error is returned, dispose of all the
 handles created by the recursive function. Even if the file
 read is aborted, the tree is complete for as much as was read.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 67 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 (This is why the numChildren field is incremented as you read
 the file.) An alternate way to handle this is to use a
 different userID for the handles created when reading the file;
 this allows you to dispose of all of them with one DisposeAll
 call.
 14. Close the file if you opened it, or reset the mark to its
 previous position if it was already open.

The entire file does not have to be read from disk. By using the size field,
you can skip to the next object in the file. Using this technique, you can
scan the file for whatever it is that interests you.

Note: You may have noticed that objects successfully created in
 memory will have a table of handles to children at the end.
 Objects on disk will not have these handles, since the handles on
 disk are meaningless. The child handle table is reconstructed as
 the file is loaded into memory.

Object Ordering

The file object is the first you will encounter in a Medley file. Its
children are ordered as follows:

Page Object--Page #0. This is the global page object, containing all global
 areas.
Page Object--Page #1. This is the page object for page #1; it must exist.

Other objects are optional, but will appear in the following order:

Page #2 through Page #n
Paragraph #1 through Paragraph #n
Dictionary Object

Some Example Structures

Medley was written mostly in C. Below are some structures relevant to C
programs reading Medley files. Descriptions of the fields may be found
earlier in this Note.

#define NULLOBJ 0 /* Object type assignments. */
#define ROOTOBJ 1 /* These are used in the deskObj 'types' field. */
#define FILEOBJ 2
#define PAGEOBJ 3
#define PGPHOBJ 4
#define AREAOBJ 5
#define ARTOBJ 6
#define DOCDICTOBJ 10

#define AREANULL 0 /* Area object sub-type assignments. */
#define AREAGROUP 1 /* These are used in the areaObj 'types' field. */
#define AREARECT 2
#define AREARRECT 3
#define AREAOVAL 4
#define AREAPOLY 5

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 68 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

#define medleyMainType 0x54
#define medleyAuxType 0xDD3E
#define medleyInfo 1
#define auxDictType 2

#define ARTCONTENT 0 /* These are used in the 'contentType' field of
 area objects.*/
#define WWDOWN 1
#define WWACROSS 2
#define LWGRAYSCALE 0x0001

#define SAMEESC 0 /* These are used in paragraph objects. */
#define FONTESC 1
#define SUPERESC 2
#define SUBESC 3
#define ESCAPES 7

#define SIZEFONTESC 5 /* More paragraph equates. */
#define ENDPGPHCHR 0xA6
#define TABCHR 9
#define SOFTHYPHEN 30
#define STICKYSPACE 31

#define PAGEBREAK 0x80 /* These are used in the pgphObj 'flags' field. */
#define LEFTJUST 0x00
#define RIGHTJUST 0x01
#define CENTERJUST 0x02
#define FULLJUST 0x03
#define JUSTTYPES 0x03

#define LEFTTAB 0x00 /* These are used in the ruler field of paragraph
 objects. */
#define RIGHTTAB 0x01
#define CENTERTAB 0x02
#define DECIMALTAB 0x03
#define TABTYPES 0x03
#define NOLEADER 0x00
#define DOTSLEADER 0x01
#define DASHESLEADER 0x02
#define SOLIDLEADER 0x03

typedef struct Ruler {
 unsigned char leftPgphMrgn;
 unsigned char rightPgphMrgn;
 unsigned char pgphIndent;
 unsigned char numTabs;
 unsigned int tab[];
} Ruler;

#define NEWREVNUM 0x0100

typedef union URect {
 Rect rect;

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 69 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 struct {
 long p1;
 long p2;
 } point;
 struct {
 Point p1;
 Point p2;
 } ele;
} URect;

typedef union UPoint {
 Point ele;
 long point;
} UPoint;

typedef struct region {
 unsigned int size;
 union URect BBox;
 int data[];
} region;

typedef struct polygon {
 int size;
 union URect BBox;
 union UPoint point[];
} polygon;

typedef union ourFontID {
 unsigned long fid;
 struct {
 unsigned int famNum;
 char fontStyle;
 char fontSize;
 } f;
} ourFontID;

struct deskObj {
 char type; $00
 unsigned int numChildren; $01
 unsigned long endData; $03
 unsigned long reserved; $07
 unsigned int objRefNum; $0B
 $0D

 union d {
 data[]; /* Plain label object access field. */

 struct file { /* Level 1 objects are files. */
 union URect rect; /* $0D */
 char pathName[129]; /* $15 */
 char saved; /* $96 */
 GrafPortPtr windowPtr; /* $97 */
 char windowNameIndx; /* $9B */
 long windowOrigin; /* $9C */
 long windowSize; /* $A0 */
 long COrigin; /* $A4 */
 struct deskObj **editHndl; /* $A8 */
 unsigned int editOffset; /* $AC */

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 70 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 union URect cursor; /* $AE */
 char showAllBorders; /* $B6 */
 union URect updateRect; /* $B7 */
 unsigned long topMrgn; /* $BF */
 unsigned long bottomMrgn; /* $C3 */
 unsigned long leftMrgn; /* $C7 */
 unsigned long rightMrgn; /* $CB */
 unsigned long gutterMrgn; /* $CF */
 unsigned long pageWidth; /* $D3 */
 unsigned long pageHeight; /* $D7 */
 int selectPage; /* $DB */
 int numSelected; /* $DD */
 int sizingDot; /* $DF */
 int effectivePage; /* $E1 */
 PrRec printRecord; /* $E3 */
 int interruptMode; /* $16F */
 char editScroll; /* $171 */
 struct deskObj **firstHndl; /* $172 */
 int firstMrn; /* $176 */
 unsigned int selectMode; /* $178 */
 char showPgphMarks; /* $17A */
 char showSpaces; /* $17B */
 char showMoveChangeInfo; /* $17C */
 union URect moveChangeInfoRect; /* $17D */
 char addNewUndo; /* $185 */
 unsigned int revNum; /* $186 */
 char showRulers; /* $188 */
 unsigned int windowType; /* $189 */
 char auxDictPathname[129]; /* $18B */
 unsigned int grayScale; /* $20C */
 unsigned int printRecordDefined; /* $20E */
 char evenPageNumText[48]; /* $210 */
 char oddPageNumText[48]; /* $240 */
 unsigned int pageNumInfo[MAXNUMPAGES];/* $270 */
 unsigned int affectPageRange; /* $2B0 */
 ourFontID pageNumFont; /* $2B2 */
 unsigned int startPageNum; /* $2B6 */
 unsigned int offsetFromEdge; /* $2B8 */
 unsigned int maxNumPages; /* $2BA */
 unsigned int condensed; /* $2BC */
 char reserved[6]; /* $2BE */
 } file; /* $2C4 */

 struct page {
 union URect rect; /* $0D */
 char wrapDir; /* $15 */
 region **rgn; /* $16 */
 char hideGlobalArt; /* $1A */
 char hideGlobalPageParts; /* $1B */
 } page; /* $1C */

 struct pgph { /* Must be level 2 or greater. */
 unsigned int wrapHere; /* $0D */
 unsigned int fullWrap; /* $0F */
 unsigned int rulerOffset; /* $11 */
 unsigned int dataOffset; /* $13 */
 unsigned int numRects; /* $15 */
 unsigned int begInvOffset; /* $17 */

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 71 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 unsigned int endInvOffset; /* $19 */
 char topLeading; /* $1B */
 char botLeading; /* $1C */
 char begPgphGap; /* $1D */
 char endPgphGap; /* $1E */
 char flags; /* $1F */
 struct miniRect { /* $20 */
 union URect rect;
 unsigned int begOffset;
 unsigned int endOffset;
 } miniRect[];
/* Ruler goes here if there is a custom ruler for this paragraph.*/
/* Text starts after the ruler. Text always
 starts with a fontEsc. A fontEsc is 5 bytes,
 a typeByte followed by the fontID. Text
 always ends with end-of-pgph chr. */
 } pgph; /* $20 */

 struct area {
 char type; /* $0D */
 char select; /* $0E */
 char showBorder; /* $0F */
 char contentType; /* $10 */
 region **rgn; /* $11 */
 region **interiorRgn; /* $15 */
 region **sizingRgn; /* $19 */
 unsigned int flags; /* $1D */
 unsigned int reserved; /* $1F */
 union obj {
 union URect rect; /* $21 */
 struct rrect {
 union URect rect; /* $21 */
 int height; /* $29 */
 int width; /* $2B */
 } rrect;
 union URect oval; /* $21 */
 polygon **poly; /* $21 */
 } obj;
 } area; /* $2D */

 struct art {
 union URect BBox; /* $0D */
 union UPoint offsetFromRgn; /* $15 */
 char artImage[]; /* $19 */
 } art;

 struct docDict {
 unsigned int count; /* $0D */
 char wordList[] /* $0F */
 } docDict; /* $0F */

 } d;
};

END OF FILE FTN.54.DD3E

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 72 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.5A.0000
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $5A (90)
Auxiliary Type: $0000
Pathname: *:System:Sounds:Sound.Settings

Written by: Dave Lyons May 1992

The file with this type, auxiliary type, and pathname records the user's
mappings from SysBeep2 codes to sound names.

The File Format

The file lists a number of Word/String pairs, just like an rTaggedStrings
resource:

count (+000) Word Number of word/string pairs.
firstWord (+002) Word Word value of first pair.
firstString (+004) String Pascal string of first pair.
secondWord (+xxx) Word Word value of second pair.
secondString (+yyy) String Pascal string of second pair.
...

The word in each pair is either a SysBeep2 code ($0000..$3FFF) or $FFFE (for
System Beep). The string in each pair is the resource name of an
rSoundSample resource present in any file in the *:System:Sounds folder.

There are two special strings: "*" means Standard Beep, and "0" (zero) means
Silence.

The order of the pairs is not important, but no two pairs can have the same
word value.

Further Reference

 o System 6 Documentation

END OF FILE FTN.5A.0000

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 73 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.5A.0002
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $5A (90)
Auxiliary Type: $0002

Full Name: Battery RAM saved configuration
Short Name: Battery RAM configuration

Written by: Matt Deatherage May 1990

Files of this type and auxiliary type contain images of Apple IIgs Battery
RAM.

Since the IIgs battery-powered RAM contains important system parameters and
control information, many utility programs would like to save an image of all
these parameters for later restoration. This ability can be handy when
changing batteries or in a classroom situation where students may change text
colors and preferences to suit their individual tastes--without regard for the
teacher who has to restore the machine to normal operation for the next class.

Apple has defined the following simple file format for use in such instances.

The File Format

The file format contains a safety catch to prevent parameters defined for new
machines from interfering with older machines.

ROMVersion (+000) Word The version number of the
 Apple IIgs ROM for the machine on
 which this file was created. The
 file should only be restored on
 machines of the same ROM version.
 For example, if this value is $0003,
 the image of Battery RAM should not
 be written to a ROM 01 machine.
 Instead, warn the user of the
 incompatibility.
BRAM (+002) 256 Bytes 256 bytes of battery RAM
 image. This is obtained from the
 ReadBRam tool call and should be
 restored (where appropriate) with
 the WriteBRam tool call.

Further Reference

 o Apple IIgs Firmware Reference
 o Apple IIgs Toolbox Reference, Volume 1

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 74 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

END OF FILE FTN.5A.0002

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 75 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.5A.802F
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $5A (90)
Auxiliary Type: $802F

Full Name: Cool Cursor document
Short Name: Cool Cursor document

Written by: Josef W. Wankerl & Matt Deatherage May 1992

Files of this type and auxiliary type contain cursor resources for Cool
Cursor.

Cool Cursor is a commercial Control Panel available from GS+ Magazine. It
replaces the normal watch cursor with an animated cursor defined by the
rCursor resources in a Cool Cursor document.

For more information on Cool Cursor or GS+ Magazine, contact:

 GS+ Magazine
 P.O. Box 15366
 Chattanooga, TN 37415-0366
 Attention: Cool Cursor Technical Support
 (615) 843-3988

 America Online: GSPlusDiz
 Delphi: GSPlusDiz
 GEnie: JWANKERL
 Internet: jwankerl@pro-gonzo.cts.com

FILE FORMAT

A Cool Cursor document is an extended file with an empty data fork. The
resource fork must contain an rPString ($8006) resource with an ID of
$00000001, which is the name of the cursor. The cursor name is displayed in a
list and must uniquely identify the cursor (i.e. there cannot be two cursors
named "Beachball.") To make sure your cursor's name will not conflict with
existing cursor names you may contact GS+ Magazine.

There are two lists of rCursor ($8027) resources--one list for 640 mode and
one list for 320 mode. Both lists are optional, and if absent the cursor will
default to the standard QuickDraw Auxiliary WaitCursor. The 640 mode rCursor
list is a contiguous set of resources that starts at resource ID $00001000 and
can increase to $00001FFF. The 320 mode rCursor list is a contiguous set of
resources that starts at resource ID $00002000 and can increase to $00002FFF.

For example, a Cool Cursor document called "Beachball" that contained a
two-frame animation for both 640 and 320 modes would have resources as shown

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 76 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

in Table 1:

 Type name Resource ID Resource Contents

 rPString $00000001 Beachball
 rCursor $00001000 the first 640 mode cursor frame
 rCursor $00001001 the second 640 mode cursor frame
 rCursor $00002000 the first 320 mode cursor frame
 rCursor $00002001 the second 320 mode cursor frame

 Table 1--Cool Cursor Example Resource List

Further Reference

 o Apple IIgs Technical Note #76, Miscellaneous Resource Formats

END OF FILE FTN.5A.802F

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 77 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.5A.8031
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $5A (90)
Auxiliary Type: $8031

Full Name: Replicator preferences
Short Name: Replicator preferences

Written by: Josef W. Wankerl & Matt Deatherage May 1992

Files of this type and auxiliary type contain preferences for the disk
duplicating application Replicator.

Replicator is a commerical, desktop-based disk duplicating application
available from GS+ Magazine.

For more information on Replicator or GS+ Magazine, contact:

 GS+ Magazine
 P.O. Box 15366
 Chattanooga, TN 37415-0366
 Attention: Replicator Technical Support
 (615) 843-3988

 America Online: GSPlusDiz
 Delphi: GSPlusDiz
 GEnie: JWANKERL
 Internet: jwankerl@pro-gonzo.cts.com

FILE FORMAT

A Replicator preferences file is an extended file with an empty data fork.
Through version 1.1, Replicator looks for a file named "ReplicatorPrefs" in
the "@" directory and gets preferences from that file if it exists. The
resource fork should contain eight resources of type $0001, with resource IDs
$00000001 through $00000008.

Resource IDs $00000001 through $00000005 are WORD values which correspond to
checkboxes in Replicator's preferences dialog. If the word is zero, the
checkbox is unchecked, while non-zero values indicate the checkbox is checked.

Resource IDs $00000006 through $00000008 are WORD values which correspond to
numeric values in Line Edit controls in Replicator's preferences dialog.
The exact correspondence for these eight values is shown in Table 1.

 ID Preference

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 78 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 $00000001 Duplicate on exact size devices only
 $00000002 Format media only when necessary
 $00000003 Prompt on formatted target disks
 $00000004 Blank screen on formats and writes
 $00000005 Clear errors after disk inserts

 $00000006 Verify disk blocks every nth disk
 $00000007 Validate disk files every nth disk
 $00000008 Compare disk images every nth disk

 Table 1--ID to Preference Mapping

As an example, a Replicator preferences file that has "Duplicate on exact size
devices only" turned off, "Format media only when necessary" turned on,
"Prompt on formatted target disks" turned on, "Blank screen on formats and
writes" turned off, "Clear errors after disk inserts" turned on, "Verify disk
blocks every 10 disks," "Validate disk files every zero disks" and "Compare
disk images every 1 disks" would contain the resources listed in Table 2.

 Resource Type Resource ID Contents
 --
 $0001 $00000001 $0000
 $0001 $00000002 $0001
 $0001 $00000003 $0001
 $0001 $00000004 $0000
 $0001 $00000005 $0001
 $0001 $00000006 $000A
 $0001 $00000007 $0000
 $0001 $00000008 $0001
 --
 Table 2--Replicator Example Resource List

END OF FILE FTN.5A.8031

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 79 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.5A.XXXX
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $5A (90)

Full Name: Application Configuration file
Short Name: Configuration file

Written by: Matt Deatherage May 1992

Files of this type and auxiliary type contain configuration or preferences.

Files of type $5A contain configuration information or preferences for Apple
II software. The original name for this file type is "Configuration," but
it's friendlier to call such application-specific settings "preferences."
It's easier for most people to understand--most people don't "configure"
things often, but everyone has their own preferences.

Any program can have preferences, although it's most common for applications.
However, inits, DAs and other system components can have preferences as
well--see the DTS Sample Code "IR 2.0.1" for an example of an init with a
preferences file.

Apple strongly recommends requesting a preferences auxiliary type if you
create preferences files, so that other programs may identify your files (even
if they don't operate on them). However, if your files are named something
very self-explanatory (such as the Sound Control Panel's "Sound.Settings"
file), you may use auxiliary type $0000 provided you always identify your
files by file name.

Preferences files belong in the same directory as the program that owns them
unless the program is on a network file server, in which case the preferences
should go in the user folder. If you don't use the user folder, each user has
to have write permission to the application folder (not always practical), and
even so all users would have to use the same preferences. For GS/OS
applications, proper preference management is easy--using the "@" prefix puts
your files exactly where they should go. It's a little trickier for
non-applications, but the AppleShare-specific call GetUserPath makes it not
too difficult. The previously-mentioned Sample Code (IR 2.0) shows how an
init written in 65816 assembly language can place preference files properly.

Even if you do this, for registration and future identification purposes, we
recommend you get an auxiliary type assignment. If you intend to identify
your files by name and give them a self-explanatory name, you may request with
your assignment that no custom File Type Descriptor string be included with
the system software, which will save disk space and memory.

Note that using auxiliary type $0000 when identifying preferences by name is
an exception to the normal rule--in other file types, you may NOT use

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 80 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

auxiliary type $0000.

END OF FILE FTN.5A.XXXX

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 81 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.5E.0001
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $5E (94)
Auxiliary Type: $0001

Full Name: Resource file
Short Name: Resource file

Written by: Matt Deatherage May 1990

Files of this type and auxiliary type contain resources of various types.

Files of type $5E and auxiliary type $0001 contain resources in an Apple IIgs
Resource Manager compatible resource fork. The presence or absence of any
particular type or ID of resource cannot be assumed--the file simply contains
zero or more resources. The data fork is reserved and should not be used.

These files are typically used by resource editors, movers and other resource
utilities. Newly-created files should be of type $5E and auxiliary type
$0001, unless a more specific assignment is necessary for a particular
application. Developer Technical Support assigns auxiliary types in those
instances as necessary.

Further Reference

 o Apple IIgs Toolbox Reference, Volume 3

END OF FILE FTN.5E.0001

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 82 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.A0.0000
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $A0 (160)
Auxiliary Type: $0000

Full Name: WordPerfect Word Processing File
Short Name: WordPerfect Document

Written by: Matt Deatherage January 1989

Files of this type and auxiliary type contain WordPerfect(TM) documents.

WordPerfect(TM) for the Apple IIe and IIc provide more than 110 word
processing features. In addition to a 50,000-word spelling checker and a
thesaurus, the program offers footnotes, headers and footers, mail-merge,
macros, search and replace, on-line help, file management, and dozens of
formatting features.

WordPerfect for the Apple IIGS includes all these features and more. The
program has a mouse interface with pull-down menus and allows for the editing
multiple documents. Users can edit an unlimited number of documents at the
same time and can take advantage of any memory available.

For more information on WordPerfect, contact:

 WordPerfect, Inc.
 1555 North Technology Way
 Orem, Utah 84057
 Attention: Apple II WordPerfect Technical Support
 Telephone: (801) 225-5000

The WordPerfect file format is copyrighted (C) 1984, 1985, 1986, 1987 and 1988
by WordPerfect Corporation and is printed here with permission.

File Structure

WordPerfect files are ASCII files. The text is neither encrypted nor
compacted. There is no end-of-file character, and padding past the end of a
document with garbage may cause WordPerfect to crash.

Formatting or function codes are embedded as they occur in the text. No code
is used for beginning of file or end of file. When creating WordPerfect files
from other programs, keep in mind the following:

o The initial WordPerfect margin settings are usually 10 and 74,
 and it is best to keep the line length to 65 or less, unless you
 change the margin settings.
o It is best not to pad with spaces.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 83 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Function Codes

All function codes are listed in hexadecimal. All except the first five have
the high bit set. Function codes above $C0 are discussed under "Multi-Byte
Functions."

 Code Command
 $09 Tab
 $0A Hard New Line
 $0B Soft New Page
 $0C Hard New Page
 $0D Soft New Line

 $80 No operation
 $81 Turn right justification on
 $82 Turn right justification off
 $83 End of centered text
 $84 End of aligned or flushed right text
 $85 (Used in other WordPerfect Corporation Products)
 $86 Center page from top to bottom
 $87 (Used in other WordPerfect Corporation Products)
 $88 (Used in other WordPerfect Corporation Products)
 $89 Tab after the right margin
 $8A Widow/orphan on
 $8B Widow/orphan off
 $8C Hard end of line and soft end of page
 $8D Footnote number (appears only inside of footnotes)
 $8E Reserved
 $8F Reserved
 $90 (Used in other WordPerfect Corporation Products)
 $91 (Used in other WordPerfect Corporation Products)
 $92 (Used in other WordPerfect Corporation Products)
 $93 (Used in other WordPerfect Corporation Products)
 $94 Underline on
 $95 Underline off
 $96 Reverse video on
 $97 Reverse video off
 $98 (Used in other WordPerfect Corporation Products)
 $99 Overstrike
 $9A Cancel hyphenation of following word
 $9B (Used in other WordPerfect Corporation Products)
 $9C Bold off
 $9D Bold on
 $9E Hyphenation off
 $9F Hyphenation on
 $A0 Hard space
 $A1 (Used in other WordPerfect Corporation Products)
 $A2 (Used in other WordPerfect Corporation Products)
 $A3 (Used in other WordPerfect Corporation Products)
 $A4 (Used in other WordPerfect Corporation Products)
 $A5 (Used in other WordPerfect Corporation Products)
 $A6 (Used in other WordPerfect Corporation Products)
 $A7 (Used in other WordPerfect Corporation Products)
 $A8 (Used in other WordPerfect Corporation Products)
 $A9 Hard hyphen in line
 $AA Hard hyphen at end of line

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 84 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 $AB Hard hyphen at end of page
 $AC Soft hyphen
 $AD Soft hyphen at end of line
 $AE Soft hyphen at end of page
 $AF (Used in other WordPerfect Corporation Products)
 $B0 (Used in other WordPerfect Corporation Products)
 $B1 (Used in other WordPerfect Corporation Products)
 $B2 (Used in other WordPerfect Corporation Products)
 $B3 (Used in other WordPerfect Corporation Products)
 $B4 (Used in other WordPerfect Corporation Products)
 $B5 (Used in other WordPerfect Corporation Products)
 $B6 (Used in other WordPerfect Corporation Products)
 $B7 (Used in other WordPerfect Corporation Products)
 $B8 (Used in other WordPerfect Corporation Products)
 $B9 (Used in other WordPerfect Corporation Products)
 $BA (Used in other WordPerfect Corporation Products)
 $BB (Used in other WordPerfect Corporation Products)
 $BC Superscript
 $BD Subscript
 $BE Advance 1/2 line up
 $BF Advance 1/2 line down

Multi-Byte Functions

Multi-byte function codes mark commands which require more than one byte.
They mark both the beginning and end of such functions in the file. The
length is indicated for most functions, but some have a variable length. In
these cases, programs should scan for the second occurrence of the function
code to indicate the end of the function.

 Length Code Command Format
 6 $C0 Margin Reset Byte: $C0
 Byte: Old left margin
 Byte: Old right margin
 Byte: New left margin
 Byte: New right margin
 Byte: $C0

 4 $C1 Spacing reset Byte: $C1
 Byte: Old spacing
 Byte: New spacing
 Byte: $C1
 Note: Spacing values are stored in half-line increments.

 3 $C2 Left margin release Byte: $C2
 Byte: Number of spaces
 to go left
 Byte: $C2
 5 $C3 Center the following text Byte: $C3
 Byte: Type of center:
 0 = between margins
 1 = around current
 column
 Byte: Center column number
 Byte: Starting column
 number
 Byte: $C3

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 85 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Bytes: Centered text
 Byte: $83

 5 $C4 Align or flush right Byte: $C4
 Byte: Align character
 (see below)
 Byte: Align column number
 Byte: Starting column
 number
 Byte: $C4
 Bytes: Aligned text
 Byte: $84
 Note: If the alignment character is $0A (hard new line) then
 this is a flush right and the alignment column number is the
 right margin; otherwise, the alignment column number is the next
 tab stop.

 6 $C5 Reset hyphenation zone Byte: $C5
 (hotzone) Byte: Old left hotzone
 Byte: Old right hotzone
 Byte: New left hotzone
 Byte: New right hotzone
 Byte: $C5

 4 $C6 Set page number position Byte: $C6
 Byte: Old position code
 Byte: New position code
 Codes:
 0 = None
 1 = Top Left
 2 = Top Center
 3 = Top Right
 4 = Top Left
 and Right
 5 = Bottom Left
 6 = Bottom Center
 7 = Bottom Right
 8 = Bottom Left
 and Right
 Byte: $C6
 6 $C7 Set page number Byte: $C7
 Byte: Old number,high byte
 Byte: Old number,low byte
 Byte: New number,high byte
 Byte: New number,low byte
 Byte: $C7
 Note: The page numbers are words with the bytes in the "wrong" order.

 8 $C8 Set page number column Byte: $C8
 positions Byte: Old left position
 Byte: Old center position
 Byte: Old right position
 Byte: New left position
 Byte: New center position
 Byte: New right position
 Byte: $C8
 42 $C9 Set tabs Byte: $C9
 20 Bytes:Old tab table

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 86 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 20 Bytes:New tab table
 Byte: $C9
 Note: Each bit in the tab table represents one position, from
 bit 0 to bit 159.

 3 $CA Conditional end of page Byte: $CA
 Byte: Number of single-
 spaced lines not
 to be broken
 Byte: $CA

 6 $CB Set pitch and/or font Byte: $CB
 Byte: Old pitch
 Byte: Old font
 Byte: New pitch
 Byte: New font
 Byte: $CB
 Note: If the pitch is negative, then it is proportional.

 4 $CC Set temporary margin Byte: $CC
 (indent) Byte: Old temporary margin
 Byte: New temporary margin
 Byte: $CC

 3 $CD End of temporary margin Byte: $CD
 Byte: Temporary margin
 Byte: $CD

 4 $CE Set top margin Byte: $CE
 Byte: Old top margin
 Byte: New top margin
 Byte: $CE

 3 $CF Suppress page Byte: $CF
 characteristics Byte: Suppress code:
 (Any combination
 valid)
 Bit: Meaning:
 0 all suppressed
 1 Page numbers
 suppressed.
 2 Page number
 moved to
 bottom.
 3 All headers
 suppressed
 4 Header A
 suppressed
 5 Header B
 suppressed
 6 Footer A
 suppressed
 7 Footer B
 suppressed
 Byte: $CF

 6 $D0 Set form length Byte: $D0
 Byte: Old form length

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 87 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Byte: Old number of
 text lines
 Byte: New form length
 Byte: New number of
 text lines
 Byte: $D0

 Variable $D1 Header/footer Byte: $D1
 Byte: Old def byte
 (see below)
 Byte: Number of half-lines
 used by old
 header/footer
 2 bytes: $FF
 Byte: Left margin
 Byte: Right margin
 Bytes: ASCII Text
 Byte: $FF
 Byte: Number of half-lines
 used by new
 header/footer
 Byte: New def byte
 (see below)
 Byte: $D1
The format of the def byte is as follows:
Bits 0-1: Type: 0 = Header A Bits 2-7: Occurrence: 0 = Never
 1 = Header B 1 = All pages
 2 = Footer A 2 = Odd pages
 3 = Footer B 4 = Even pages

Note: The low-order two bits of the old def byte (the old types) must be correct.

 Variable $D2 Footnote Byte: $D2
 Byte: Footnote number
 Byte: Number of half-lines
 Byte: $FF
 Byte: Left margin
 Byte: Right margin
 Bytes: ASCII Text
 Byte: $D2
 Note: WordPerfect versions 1.0 and 1.1 use this function code.
 Versions 2.0 and later use function code $E2 instead.

 4 $D3 Set Footnote Number Byte: $D3
 Byte: Old footnote number
 Byte: New footnote number
 Byte: $D3
 Note: WordPerfect versions 1.0 and 1.1 use this function code.
 Versions 2.0 and later use function code $E4 instead.

 4 $D4 (Used in other WordPerfect Corporation Products)

 4 $D5 Set lines per inch Byte: $D5
 Byte: Old LPI code
 Byte: New LPI code
 Byte: $D5
 Note: Only 6 or 8 lines per inch is valid.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 88 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 6 $D6 Set extended tabs Byte: $D6
 Byte: Old starting
 position
 Byte: Old increment
 Byte: New starting
 position
 Byte: New increment
 Byte: $D6
 Note: The starting column position must be at least 160.

 Variable $D7 (Used in other WordPerfect Corporation Products)

 4 $D8 Set alignment character Byte: $D8
 Byte: Old alignment
 character
 Byte: New alignment
 character
 Byte: $D8
 4 $D9 Set left margin release Byte: $D9
 (number of columns Byte: Old number
 to go left) Byte: New number
 Byte: $D9

 4 $DA Set underline mode Byte: $DA
 Byte: Old mode (see below)
 Byte: New mode (see below)
 Byte: $DA
 The underline mode is defined as follows:
 0 = Normal Underline
 1 = Double Underline
 2 = Single Underline Continuous
 3 = Double Underline Continuous

 4 $DB Set sheet feeder bin Byte: $DB
 number Byte: Old number
 Byte: New number
 Byte: $DB
 Note: The number is zero based (bin #1 is stored as 0).

 Variable $DC End of page function Byte: $DC
 (WordPerfect inserts this Byte: Number of 1/2 lines
 and it changes with at end of page,
 each version) low 7 bits
 Byte: Number of 1/2 lines
 at end of page,
 high 7 bits
 Byte: Number of 1/2 lines
 used for footnotes
 Byte*: Number of pages
 used for footnotes
 Byte*: Number of footnotes
 on this page
 Byte: CEOP Flag
 Byte: Suppress code
 Byte: $DC
 Note: Bytes marked with an asterisk (*) are fields present
 only in WordPerfect 2.0 and later.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 89 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 24 $DD (Used in other WordPerfect Corporation Products)

 4 $DE End of temporary margin Byte: $DE
 Byte: Old left
 temporary margin
 Byte: Old right
 temporary margin
 Byte: $DE

 Variable $DF Invisible characters Byte: $DF
 (embedded printer command) Bytes: 7-bit text
 Byte: $DF

 4 $E0 Temporary margin Byte: $E0
 Byte: New right
 temporary margin
 Byte: New left
 temporary margin
 Byte: $E0

 3 $E1 (Used in other WordPerfect Corporation Products)

 Variable $E2 New footnote/endnote Byte: $E2
 (WordPerfect 2.0 and later)Byte: Def byte (see below)
 Byte: Value A (see below)
 Byte: Value B (see below)
 Byte: Value C (see below)
 Byte: Value D (see below)
 Byte: Old footnote length
 in 1/2 lines
 Byte: Number of lines
 on page 1
 Byte: Number of lines
 on page 2
 Byte: Number of lines
 on page 3
 .
 .
 .
 Byte: Number of lines
 on page N
 Byte: Number of pages
 Byte: $FF
 Byte: Left margin
 Byte: Right margin
 Bytes: ASCII Text
 Byte: $E2
 The Def Byte is defined as follows:
 Def Bit 0: 0 = use numbers
 1 = use characters
 Def Bit 1: 0 = footnote
 1 = endnote

 If Def Bit 0 = 0, then Values A and B are the footnote or
 endnote number taken together (see below.) If Def Bit 0 = 1,
 then Value A is the number of characters and Value B is the
 character.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 90 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Note: Values A and B (when taken together) and Values C and D
 (always) are 14-bit numbers split into 7-bit bytes, high order
 byte first.

 Note: For endnotes, there is just a null between Value D and
 the $FF byte.

 150 $E3 Footnote information/ Byte: $E3
 options
 74 Bytes:Old Footnote values
 74 Bytes:New Footnote values
 Byte: $E3

 The footnote values are defined as follows: Byte: Spacing
 in footnotes (in
 half-lines)
 Byte: Spacing between
 footnotes (in
 half-lines)
 Byte: Number of lines
 to keep together
 Byte: Flag byte:
 Bit 0: 1 if numbering
 starts
 on each page
 Bits 1-2: (for footnotes)
 0 = Use numbers
 1 = Use characters
 2 = Use letters
 Bits 3-4: (for endnotes)
 0 = Use numbers
 1 = Use characters
 2 = Use letters
 Bits 5-6: 0 = No line
 separator
 1 = 2" line
 2 = Line from left
 to right
 margin
 3 = 2" line and
 continued
 message
 Bit 7: 0 = footnotes
 after text
 1 = footnotes at
 bottom of page
 Byte: Number of characters
 used in place of
 footnote numbers
 5 Bytes: Characters used in
 place of footnote
 numbers (null
 terminated if less
 than five)
 Byte: Number of
 displayable
 characters in string
 for footnote text

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 91 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 15 Bytes:String for
 footnote text
 Byte: Number of
 displayable
 characters in string
 for endnote text
 15 Bytes:String for
 endnote text
 Byte: Number of
 displayable
 characters in string
 for footnote note
 15 Bytes:String for
 footnote note
 Byte: Number of
 displayable
 characters in string
 for endnote note
 15 Bytes:String for
 endnote note

 6 $E4 New set footnote Byte: $E4
 (WordPerfect 2.0 and later)Byte: Old number,high byte
 Byte: Old number,low byte
 Byte: New number,high byte
 Byte: New number,low byte
 Byte: $E4

 Note: The new number is zero based (stored as new number minus one)
 Note: Footnote numbers are 14-bit numbers split into 7-bit
 bytes, high order byte first.

 23 $E5 (Used in other WordPerfect Corporation Products)
 11 $E6 (Used in other WordPerfect Corporation Products)
 3 $E7 (Used in other WordPerfect Corporation Products)
 3 $E8 (Used in other WordPerfect Corporation Products)
 Variable $E9 (Used in other WordPerfect Corporation Products)
 Variable $EA (Used in other WordPerfect Corporation Products)
 32 $EB (Used in other WordPerfect Corporation Products)
 4 $EC (Used in other WordPerfect Corporation Products)
 Variable $ED (Used in other WordPerfect Corporation Products)
 44 $EE (Used in other WordPerfect Corporation Products)
 18 $EF (Used in other WordPerfect Corporation Products)
 6 $F0 (Used in other WordPerfect Corporation Products)
 106 $F1 (Used in other WordPerfect Corporation Products)
 Variable $F2 (Used in other WordPerfect Corporation Products)
 100 $F3 (Used in other WordPerfect Corporation Products)

END OF FILE FTN.A0.0000

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 92 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.ABOUT.92.06
###

Apple II
File Type Notes

 Developer Technical Support

About Apple II File Type Notes June 1992

This Note accompanies each release of Apple II File Type Notes. This release
includes new Notes for file types $5A, $D8, $E0 and $E2, revised Notes for
file types $B3, $B5, $B6, $B7 and $C7, as well as an updated list of all
currently assigned Apple II file types and auxiliary types.

We welcome your file formats, suggestions on existing Notes, and your requests
for file type or auxiliary type assignments. Please contact us at:

 Apple II File Type Notes
 Developer Technical Support
 Apple Computer, Inc.
 20525 Mariani Avenue, M/S 75-3T
 Cupertino, CA 95014
 AppleLink: DEVSUPPORT
 Internet: DEVSUPPORT@AppleLink.Apple.com

The universal sharing of file formats opens new dimensions to personal
computing, so we want Apple II File Type Notes distributed as widely as
possible. We send them to all Partners and Associates at no charge, and we
also post them on AppleLink in the Developer Services bulletin board and other
electronic sources, including the Apple FTP site (IP 130.43.2.3). You can
also order them through Resource Central. As a Resource Central customer, you
have access to the tools and documentation necessary to develop Apple
II-compatible products. For more information about Resource Central, contact:

 Resource Central, Inc.
 P.O. Box 11250
 Overland Park, KS 66207
 (913) 469-6502
 Fax: (913) 469-6507
 AppleLink: A2.CENTRAL
 Internet: A2.CENTRAL@AppleLink.Apple.com
 GEnie: RC.ELLEN

We place no restrictions on copying the Notes, with the exception that you
cannot resell them. You should note, however, that some of the file formats
are the copyrighted property of the companies which own them. These formats
are identified in the appropriate Notes, and you should treat them with
respect to the applicable copyright laws.

This File Type Note batch was originally released in May 1992. Since that
time, many of the contact addresses have changed and some typographical errors
have been fixed. To note these changes, this document now bears the date June
1992. NO CONTENT OF ANY NOTES HAS CHANGED SINCE MAY 1992.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 93 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

All file type and auxiliary type combinations not listed in this Note are
RESERVED and must not be used by applications without assignment from Apple
Computer, Inc.

Specifically, you may NOT do the following:

 o You may NOT use auxiliary type $0000 for a given file type
 instead of asking for an assignment.

 o You may NOT use an auxiliary type in file type $BF,
 justifying it with, "My program runs under GS/OS and creates
 documents."

 o You may NOT pick your own auxiliary type in a given file type
 and use it without getting an assignment from Apple. You may
 request a specific auxiliary type if you desire, but you must be
 prepared for the instance in which your requested auxiliary type
 is not available.

 o You may NOT redefine the auxiliary type of a file type to suit
 your own purposes. For example, you can't choose to use auxiliary
 type $ABCD in file type $04, since the auxiliary type of file
 type $04 (text file) is already defined to be the record length
 of a random-access text file.

You may use file types and auxiliary types which are not assigned to you if a
complete definition of the contents of the file is published in File Type
Notes or elsewhere. For example, you do not need to be assigned auxiliary
types to use text files or binary files.

If you have any questions at all about file type and auxiliary type policies,
assignments, or other specifics, do not hesitate to contact Developer
Technical Support at the address listed in this Note.

Developer Technical Support requires four things from a developer before
publishing a file format for your application in a File Type Note:

 1. The file format itself, preferably in an ASCII text file.

 2. Assurances that the product is shipping. We don't want to
 jump the gun by releasing a Note for an unannounced product
 or a product which is unavailable. The enclosed list of file
 type assignments includes only those products which we know
 are currently shipping.

 Note : If your product is shipping, but your file type is not
 listed, you need to contact DTS, since engineering uses
 this list to identify files in future Apple products,
 such as future releases of the Apple IIgs Finder. If
 this Note does not list your file type and auxiliary type
 assignments, engineering CANNOT include them in future
 products. The "short" names listed in this Note are used
 as the descriptors for such files, so you should contact
 DTS if a descriptor for one of your files is unsuitable.

 You MUST inform DTS when the program using your file type

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 94 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 assignments ships to be included in future versions of the
 system software, even if you do not wish the file format
 to be published.

 3. Written permission to publish the file format. We don't want
 you to submit the format and then be surprised when we publish it.

 4. Your company name and address, so we can refer readers to you
 for more information about your product.

DEFINITIONS

The following definitions apply to all Apple II File Type Notes and will not
be repeated in each Note:

BOOLEAN A binary indicator stored as a word unless otherwise
 indicated. If any bit of a boolean is set, the boolean is
 TRUE. If it is clear, it is FALSE.
BYTE An 8-bit value.
DOUBLE LONG A 64-bit value, composed of eight byte, four words or two
 long words. The most significant byte is stored last.
FIXED A four-byte signed value where the least significant word
 represents a fractional part and the most significant word
 represents an integer part (i.e., the value 32767.0 would be
 stored as $00 $00 $FF $7F to represent the integer part of
 $7FFF (+32767) and the fractional part of $0000 (0)). The
 value 4.5 would be stored as $00 $80 $04 $00 to represent the
 integer part of $0004 and the fractional part of $8000. The
 value $8000 is represented as 1000000000000000 in binary.
 The bit immediately following the decimal point is set, which
 indicates the value of 2^-1, or one-half. The full binary
 expansion of 4.5 is 0000000000000100.1000000000000000, which
 indicates 2^2 + 2^-1 or 4 + 0.5, which is 4.5. The Apple
 IIgs Integer Math Tools contain routines to assist with Fixed
 arithmetic.
FLAG UNIT Any storage unit (byte, word, long) treated as a series of
 flag bits rather than as a numeric value.
LONG A 32-bit value, composed of four bytes or two words. The
 most significant byte is stored last. For example, $00E102A8
 would be stored as $A8 $02 $E1 $00.
REVERSE The 65xxx series microprocessors normally store values with
 the least significant byte (LSB) first, while other
 microprocessors may store values with the most significant
 byte (MSB) first. The designation Reverse (Rev.) indicates
 that values must be rearranged before using them (i.e., a
 Long value of $11223344 would be stored as $44 $33 $22 $11,
 but a Reverse Long value would be stored as $11 $22 $33 $44).
STRING A Pascal-type string. It consists of a length byte followed
 by up to 255 bytes of ASCII data.
WORD A 16-bit value, composed of two bytes. The most significant
 byte of the word is stored after the least significant byte.
 For example, $02FF would be stored $FF $02.

All bit definitions are given as bit numbers. Bit 0 is always the least
significant bit. The most significant bit of a byte is bit 7; the most
significant bit of a word is bit 15, etc.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 95 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Following is a current list of all file type and auxiliary type assignments.
Assignments with a date indicate the release date of the File Type Note for
that assignment, and all file types and auxiliary types which are not listed
in this Note are reserved and should not be used.

Although Apple strongly recommends the use of file type descriptors, this
document includes a list of three-letter abbreviations solely for developer
convenience. These abbreviations are final as documented and will not be
changed.

FILE TYPE ASSIGNMENTS May 1992

 New ***
 Revised *R*
File Aux. 3Ltr File Type Description
Type Type Abv (File Type Owner) Auxiliary Type Description Date
--
$xx $xxxx abc 1234567890123456789012345 123456789012345678901234567 xx/xx
$00 NON Unknown 03/90
$01 BAD Bad blocks 03/90
$02 PCD Pascal code
$03 PTX Pascal text
$04 TXT ASCII text Random-access record-length
$05 PDA Pascal data
$06 BIN Binary Load address in bank 0
$07 FNT Apple /// Font
$08 FOT Apple II or /// Graphics 05/89
$08 $4000 Packed Hi-Res Image Image Format 11/88
$08 $4001 Packed Double Hi-Res Image Format 11/88
 Image
$08 $8001 Printographer Packed Image Format
 HGR file
$08 $8002 Printographer Packed Image Format
 DHGR file
$08 $8003 Softdisk Hi-Res image Application-Specific
$08 $8004 Softdisk Double Hi-Res Application-Specific
 image
$09 BA3 Apple /// BASIC program
$0A DA3 Apple /// BASIC data
$0B WPF Apple II or /// Word Processor
$0B $8001 Write This Way document Application Specific
$0B $8002 Writing & Publishing Application Specific
 document
$0C SOS Apple /// SOS System
$0F DIR Folder
$10 RPD Apple /// RPS data
$11 RPI Apple /// RPS index
$12 AFD Apple /// AppleFile discard
$13 AFM Apple /// AppleFile model
$14 AFR Apple /// AppleFile report format
$15 SCL Apple /// screen library
$16 PFS PFS document
$16 $0001 PFS:File document Program Specific
$16 $0002 PFS:Write document Program Specific
$16 $0003 PFS:Graph document Program Specific

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 96 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

$16 $0004 PFS:Plan document Program Specific
$16 $0016 PFS internal data Program Specific
$19 ADB AppleWorks Data Base Upper-/lowercase in name 07/90
$1A AWP AppleWorks Word Processor Upper-/lowercase in name 09/89
$1B ASP AppleWorks Spreadsheet Upper-/lowercase in name 09/89
$20 TDM Desktop Manager document
$21 Instant Pascal source
$22 UCSD Pascal Volume
$29 Apple /// SOS Dictionary
$2A 8SC Apple II Source Code Application Specific
$2B 8OB Apple II Object Code Application Specific
$2B $8001 GBBS Pro object Code Application Specific
$2C 8IC Apple II Interpreted Code Application Specific
$2C $8003 APEX Program File Application Specific
$2D 8LD Apple II Language Data Application Specific
$2E P8C ProDOS 8 code module Application Specific
$2E $8001 Davex 8 Command Application Specific
$2E $8002 PTP Point-to-Point drivers Application Specific
$2E $8003 PTP Point-to-Point code Application Specific
$40 DIC Dictionary file Application Specific
$41 OCR data Application Specific
$41 $8001 InWords OCR font table Application Specific
$42 FTD File Type Names Search order 07/89
$43 Peripheral data Application-Specific
$50 GWP Apple IIgs Word Processor
$50 $8003 Personal Journal document Application-Specific
$50 $8011 Softdisk issue text Application-Specific
$50 $5445 Teach document Application Specific 03/90
$50 $8001 DeluxeWrite document Application Specific
$50 $8010 AppleWorks GS Word Application Specific 09/90
 processor
$51 GSS Apple IIgs Spreadsheet
$51 $8010 AppleWorks GS Spreadsheet Application Specific
$52 GDB Apple IIgs Data Base
$52 $8001 GTv database Application Specific
$52 $8010 AppleWorks GS Data Base Application Specific
$52 $8011 AppleWorks GS DB Template Application Specific
$52 $8013 GSAS database Application Specific
$52 $8014 GSAS accounting journals Application Specific
$52 $8015 Address Manager document Application Specific
$52 $8016 Address Manager defaults Application-Specific
$52 $8017 Address Manager index Application-Specific
$53 DRW Drawing
$53 $8002 Graphic Disk Labeler Application Specific 03/90
 document
$53 $8010 AppleWorks GS Graphics Application Specific
$54 GDP Desktop Publishing
$54 $8002 GraphicWriter document Application Specific
$54 $8003 Label It document Application-Specific
$54 $8010 AppleWorks GS Page Layout Application Specific
$54 $DD3E Medley document Application Specific 05/89
$55 HMD Hypermedia Application Specific
$55 $0001 HyperCard IIgs stack Application Specific
$55 $8001 Tutor-Tech document Application Specific
$55 $8002 HyperStudio document Application Specific
$55 $8003 Nexus document Application Specific
$55 $8004 HyperSoft stack Application-Specific
$55 $8005 HyperSoft card Application-Specific

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 97 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

$55 $8006 HyperSoft external Application-Specific
 command
$56 EDU Educational Data Application Specific
$56 $8001 Tutor-Tech Scores Application Specific
$56 $8007 GradeBook Data Applcation-specific
$57 STN Stationery
$57 $8003 Music Writer format Application Specific
$58 HLP Help File
$58 $8002 Davex 8 Help File Application Specific
$58 $8006 Locator help document Application-Specific
$58 $8007 Personal Journal help Application-Specific
$58 $8008 Home Refinancer help Application-Specific
$59 COM Communications File Application Specific
$59 $8010 AppleWorks GS Application Specific
 Communications
$5A CFG Configuration file Application Specific ***05/92
$5A $0000 Sound settings files Identified by name ***05/92
$5A $0002 Battery RAM configuration 05/90
$5A $0003 AutoLaunch preferences Application Specific
$5A $0005 GSBug configuration Application Specific
$5A $8001 Master Tracks Jr.
 preferences
$5A $8002 GraphicWriter preferences Application Specific
$5A $8003 Z-Link configuration Application Specific
$5A $8004 JumpStart configuration Application Specific
$5A $8005 Davex 8 configuration Application Specific
$5A $8006 Nifty List configuration Application Specific
$5A $8007 GTv videodisc Application Specific
 configuration
$5A $8008 GTv Workshop Applicatoin Specific
 configuration
$5A $8009 PTP Point-to-Point Application Specific
 preferences
$5A $800A ORCA/Disassembler Application Specific
 preferences
$5A $800B SnowTerm preferences Application Specific
$5A $800C My Word! preferences Application Specific
$5A $800D Chipmunk configuration Application Specific
$5A $8010 AppleWorks GS Application Specific
 configuration
$5A $8011 SDE Shell preferences Application Specific
$5A $8012 SDE Editor preferences Application Specific
$5A $8013 SDE system tab ruler Application Specific
$5A $8014 Nexus configuration Application Specific
$5A $8015 DesignMaster preferences Application Specific
$5A $801A MAX/Edit keyboard Application-Specific
 template
$5A $801B MAX/Edit tab ruler set Application-Specific
$5A $801C Platinum Paint Application Specific
 preferences
$5A $801D Sea Scan 1000 Application-Specific
 preferences
$5A $801E Allison preferences Application Specific
$5A $801F Gold of the Americas Application-Specific
 options
$5A $8021 GSAS accounting setup Application Specific
$5A $8023 UtilityLaunch preferences Application-Specific
$5A $8024 Softdisk configuration Application Specific

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 98 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

$5A $8025 Quit-To configuration Application Specific
$5A $8026 Big Edit Thing Application-Specific
 preferences
$5A $8027 ZMaker preferences Application-Specific
$5A $8028 Minstrel configuration Application-Specific
$5A $8029 WordWorks Pro preferences Application-Specific
$5A $802B Pointless preferences Application-Specific
$5A $802E Label It configuration Application-Specific
$5A $802F Cool Cursor document Application-Specific ***05/92
$5A $8030 Locator preferences Application-Specific
$5A $8031 Replicator preferences Application-Specific ***05/92
$5A $8035 Home Refinancer Application-Specific
 preferences
$5B ANM Animation file Application Specific
$5B $8001 Cartooners movie Application Specific
$5B $8002 Cartooners actors Application Specific
$5B $8005 Arcade King Super Application Specific
 document
$5B $8006 Arcade King DHRG document Application Specific
$5B $8007 DreamVision movie Application Specific
$5C MUM Multimedia document Application Specific
$5C $8001 GTv multimedia playlist Application Specific
$5D ENT Game/Entertainment Application Specific
 document
$5D $8001 Solitaire Royale document Application Specific
$5D $8002 BattleFront scenario
$5D $8003 BattleFront saved game
$5D $8004 Gold of the Americas game Application-Specific
$5D $8006 Blackjack Tutor document Application Specific
$5D $8010 Quizzical high scores Application-Specific
$5D $8011 Meltdown high scores Application-Specific
$5D $8012 BlockWords high scores Application-Specific
$5E DVU Development utility Application Specific
 document
$5E $0001 Resource file 05/90
$5E $8001 ORCA/Disassembler Application Specific
 template
$5E $8003 DesignMaster document Application Specific
$5F FIN Financial document Application Specific
$5F $8002 Home Refinancer document Application-Specific
$6B BIO PC Transporter BIOS
$6D TDR PC Transporter driver
$6E PRE PC Transporter pre-boot
$6F HDV PC Transporter volume
$A0 WP WordPerfect document WordPerfect 01/89
$AB GSB Apple IIgs BASIC program
$AC TDF Apple IIgs BASIC TDF
$AD BDF Apple IIgs BASIC data
$B0 SRC Apple IIgs source code APW Language type 07/90
$B0 $0001 APW Text file
$B0 $0003 APW 65816 Assembly source code
$B0 $0005 ORCA/Pascal source code
$B0 $0006 APW command file
$B0 $0008 ORCA/C source code
$B0 $0009 APW Linker command file
$B0 $000A APW C source code
$B0 $000C ORCA/Desktop command file
$B0 $0015 APW Rez source file

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 99 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

$B0 $0017 Installer script Application-Specific
$B0 $001E TML Pascal source code
$B0 $0116 ORCA/Disassembler script Application Specific
$B0 $0503 SDE Assembler source code Application Specific
$B0 $0506 SDE command script Application Specific
$B0 $0601 Nifty List data Application-Specific
$B0 $0719 PostScript file Application-Specific
$B1 OBJ Apple IIgs object code
$B2 LIB Apple IIgs Library file
$B3 S16 GS/OS application *R*05/92
$B4 RTL GS/OS Run-Time Library
$B5 EXE GS/OS Shell application *R*05/92
$B6 PIF Permanent initialization Not loaded if bit 15 set *R*05/92
 file
$B7 TIF Temporary initialization Not loaded if bit 15 set *R*05/92
 file
$B8 NDA New desk accessory Not loaded if bit 15 set 09/90
$B9 CDA Classic desk accessory Not loaded if bit 15 set 09/90
$BA TOL Tool 09/90
$BB DVR Apple IIgs Device Driver Not loaded if bit 15 set 11/89
 file
$BB $7F01 GTv videodisc serial Application Specific
 driver
$BB $7F02 GTv videodisc game port Application Specific
 driver
$BC LDF Load file (generic) 07/90
$BC $4001 Nifty List Module Application Specific
$BC $4002 Super Info module Application Specific 03/91
$BC $4004 Twilight document Application Specific
$BC $4007 HyperStudio New Button Application-Specific
 Action
$BC $4008 HyperStudio Screen Application-Specific
 Transition
$BC $4009 DreamGrafix module Application Specific
$BC $400A HyperStudio Extra utility Application-Specific
$BD FST GS/OS File System Not loaded if bit 15 set 09/90
 Translator
$BF DOC GS/OS document
$C0 PNT Packed Super Hi-Res Application Specific
 picture
$C0 $0000 Paintworks Packed picture Application Specific 11/88
$C0 $0001 Packed Super Hi-Res Image Application Specific 11/88
$C0 $0002 Apple Preferred Format Application Specific 12/91
 picture
$C0 $0003 Packed QuickDraw II PICT Application Specific 11/88
 file
$C0 $8001 GTv background image Application Specific
$C0 $8005 DreamGrafix document Application Specific
$C0 $8006 GIF document Application-Specific
$C1 PIC Super Hi-Res picture Application Specific 11/88
$C1 $0000 Super Hi-Res Screen image Application Specific 11/88
$C1 $0001 QuickDraw PICT file Application Specific 11/88
$C1 $0002 Super Hi-Res 3200 color screen image 09/90
$C1 $8001 Allison raw image doc. Application Specific
$C1 $8002 ThunderScan image doc. Application Specific
$C1 $8003 DreamGrafix document Application-Specific
$C2 ANI Paintworks animation
$C3 PAL Paintworks palette

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 100 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

$C5 OOG Object-oriented graphics Application Specific
$C5 $8000 Draw Plus document Application Specific
$C5 $C000 DYOH: Architecture doc. Application Specific
$C5 $C001 DYOH predrawn objects Application Specific
$C5 $C002 DYOH custom objects Application Specific
$C5 $C003 DYOH clipboard Application Specific
$C5 $C004 Application Specific
$C5 $C005 Application Specific
$C5 $C006 DYOH: Landscape Document Application Specific
$C5 $C007 PyWare Document Application-Specific
$C6 SCR Script Application Specific
$C6 $8001 Application Specific
$C7 CDV Control Panel document Not loaded if bit 15 set *R*05/92
$C8 FON Font
$C8 $0000 Font (Standard Apple IIgs Reserved 01/89
 QuickDraw II Font)
$C8 $0001 TrueType font Application-Specific
$C9 FND Finder data
$CA ICN Icons 07/89
$D5 MUS Music sequence Application Specific 01/90
$D5 $0000 Music Construction Set Application Specific
 song
$D5 $0001 MIDI Synth sequence
$D5 $0007 SoundSmith document Application Specific 03/90
$D5 $8002 Diversi-Tune sequence Application Specific
$D5 $8003 Master Tracks Jr. Application Specific
 sequence
$D5 $8005 Arcade King Super music Application Specific
$D6 INS Instrument Application Specific 01/90
$D6 $0001 MIDI Synth instrument
$D6 $0000 Music Construction Set Application Specific
 instrument
$D6 $8002 Diversi-Tune instrument Application Specific
$D7 MDI MIDI data 01/90
$D7 $0000 MIDI standard data Application Specific
$D8 SND Sampled sound Application Specific 01/90
$D8 $0000 Audio IFF document Application Specific 03/91
$D8 $0001 AIFF-C document Application Specific 03/91
$D8 $0002 ASIF instrument Application Specific 03/89
$D8 $0003 Sound resource file Application-Specific ***05/92
$D8 $0004 MIDI Synth wave data
$D8 $8001 HyperStudio sound Application Specific 05/90
$D8 $8002 Arcade King Super sound Application Specific
$D8 $8003 SoundOff! sound bank Application-Specific
$DB DBM DB Master document Application Specific
$DB $0001 DB Master document Application Specific
$E0 LBR Archival library Application Specific
$E0 $0000 ALU library Carolina System Software
$E0 $0001 AppleSingle File Application Specific 11/90
$E0 $0002 AppleDouble Header File Application Specific 11/90
$E0 $0003 AppleDouble Data File Application Specific 11/90
$E0 $0005 DiskCopy disk image Application-Specific ***05/92
$E0 $8000 Binary II File Application Specific 07/89
$E0 $8001 AppleLink ACU document Application Specific
$E0 $8002 ShrinkIt (NuFX) document Application Specific 07/90
$E0 $8004 Davex archived volume Application Specific 05/90
$E0 $8006 EZ Backup Saveset doc. Application Specific 09/90
$E0 $8007 ELS DOS 3.3 volume Application Specific

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 101 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

$E0 $8009 UtilityWorks document Application-Specific
$E0 $800A Replicator document Application-Specific ***05/92
$E2 ATK AppleTalk data
$E2 $FFFF EasyMount document ***05/92
$EE R16 EDASM 816 relocatable file
$EF PAS Pascal area
$F0 CMD BASIC command
$F1 User #1
$F2 User #2
$F3 User #3
$F4 User #4
$F5 User #5
$F6 User #6
$F7 User #7
$F8 User #8
$F9 OS GS/OS System file
$FA INT Integer BASIC program
$FB IVR Integer BASIC variables
$FC BAS AppleSoft BASIC program
$FD VAR AppleSoft BASIC variables
$FE REL Relocatable code
$FF SYS ProDOS 8 application

END OF FILE FTN.ABOUT.92.06

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 102 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.B0.xxxx
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $B0 (176)
Auxiliary Type: All

Full Name: Apple IIgs Source Code File
Short Name: Apple IIgs Source Code

Revised by: Matt Deatherage July 1990
Written by: Jim Merritt & Matt Deatherage May 1990

Files of this type contain source code to be compiled by Apple IIgs native
development environments. This File Type Note obsoletes any publications
bearing this information with earlier publication dates.
Changes since March 1990: Added new vendor and language numbers and altered
the warning about resource forks.

Files of type $B0 contain source code to be used by an Apple IIgs native
development environment, such as APW. The data fork of $B0 files contains
straight ASCII text; nothing that should not be interpreted as ASCII should be
in this kind of file. The resource fork is reserved; it cannot be guaranteed
that resources in these files are preserved by programming utilities. The
resource fork, if it exists, should contain Apple IIgs resources.

The auxiliary type of file type $B0 is used to distinguish between different
compilers or assemblers. The value in the auxiliary type is also referred to
as the "APW Language Number," since APW matches language numbers with the
auxiliary type of $B0 files to determine which compiler or assembler should be
used to compile a source code file. Throughout this Note, "APW Language
Number" is used to mean "auxiliary type of file type $B0," even though a
specific auxiliary type value may be assigned to a native development
environment other than APW, and may, in fact, not represent an APW language.

Developer Technical Support assigns and catalogs all official APW language
numbers, and effective May 1988, DTS has a new scheme for these numbers.
Under the new scheme, the high byte of the APW language number is a vendor
number and the low byte is a language number. To form the APW language
number, combine the vendor number with the language number.

Note: Vendors who form their own language numbers in this fashion should
 also inform Developer Technical Support of the new products to
 ensure proper inclusion in future File Type Descriptors.

Following is a list of the APW languages which do not follow the new scheme;
inclusion of a language on this list does not imply the language product
exists or ever will exist under APW.

 Number Language Code Use

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 103 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 $0 PRODOS Text file (File Type $04)
 $1 Text APW text file
 $2 ASM6502 6502 Assembler
 $3 ASM65816 65816 Assembler
 $4 BASIC Byte Works BASIC
 $5 BWPASCAL Byte Works Pascal
 $6 EXEC Command file
 $7 SMALLC Byte Works small C
 $8 BWC Byte Works C
 $9 LINKED APW linker command language
 $A CC APW C
 $B PASCAL APW Pascal
 $C COMMAND Byte Works command-processor window
 $1E TMLPASCAL TML Pascal
 __

The following is a list of currently defined vendors and languages; inclusion
of a vendor on this list does not imply the vendor is developing, or ever will
be developing, any of the language products listed for APW.

 Vendor Number Vendor Name

 $0 Apple Computer
 $1 The Byte Works
 $2 TML Systems
 $3 Zedcor
 $4 RavenWare
 $5 SEA Software
 $6 DAL Systems
 $7 Adobe Systems

 Language Number Language Name

 $2 6502 Assembler
 $3 65816 Assembler
 $4 BASIC
 $6 Script files
 $9 Linker command file
 $A C
 $B Pascal
 $C Command-processor window
 $D Forth
 $E Small C
 $F Lisp
 $10 Modula-2
 $11 FORTRAN
 $12 Logo
 $13 Prolog
 $14 COBOL
 $15 Resource Description
 $16 Disassembly template
 $17-$18 Reserved
 $19 Page description

The generic vendor names and language descriptions are more familiar in

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 104 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

combination. For example, an "Apple Resource Description" file would be Rez
source code, and "Adobe Systems Page Description" is a Postscript(TM) file.

If, as a developer of native development software, you need a vendor number or
a new language number for a language processor not currently covered on this
list, write to the address in "About File Type Notes", to the attention of
"APW Language Number Administration".

Note: Language number assignments are considered provisional until the
 applicant submits proof of publication of a language processor
 using the assigned number. Acceptable proof must include a
 complete specification for the language that the processor
 recognizes, as well as photocopies of public notices that discuss
 the terms and details of publication (e.g., newspaper and magazine
 ads, software reviews, brochures, circulars, electronic mail
 solicitations, etc.). Unless a developer has made prior
 arrangements with Developer Technical Support, DTS may rescind a
 provisional language number assignment after a period of one
 calendar year from the date of assignment if a developer does not
 submit the required proof of publication.

END OF FILE FTN.B0.xxxx

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 105 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.B3.XXXX
###

 Apple II
File Type Notes

 Developer Technical Support

File Type: $B3 (179)
Auxiliary Type: All

Full Name: ProDOS 16 or GS/OS Application
Short Name: GS/OS Application

Revised by: Dave Lyons May 1992
Written by: Dave Lyons & Matt Deatherage September 1989

Files of this type and auxiliary type contain application programs for the
Apple IIgs.

CHANGES SINCE DECEMBER 1991: Broadened the definition auxiliary type bit 1 to
mean the application can handle getting control with the Super Hi-Res screen
on.

Files of type $B3 contain GS/OS application programs. These files contain
program code in Object Module Format (OMF) that is loaded by the System Loader
or ExpressLoad at an address and is then executed in a documented environment.

The environment and constraints for application programs are documented in
GS/OS Reference; all developers creating file of type $B3 should be familiar
with this material. OMF is documented in _GS/OS Reference_ and the
APW Reference Manual.

The auxiliary type for $B3 files is now defined to indicate properties of the
program contained within the file. Other parts of the system may use this
information to properly control the environment for the program:

 bits 31-16 reserved--must be 0
 bits 15-8 signature byte. $DB means bits 7-0 are valid
 bits 7-3 reserved--must be 0
 bit 2 Message Aware:
 1 = uses Message Center message #1
 0 = ignores Message Center message #1
 bit 1 Desktop Application:
 1 = application can handle the Super Hi-Res
 screen already being on when it first gets
 control, so the system can provide a smooth
 visual transition into the application
 0 = application is not prepared for the Super
 Hi-Res screen to be on
 bit 0 GS/OS Aware:
 1 = uses long prefixes (for example, prefix 9
 instead of prefix 1)

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 106 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 0 = uses short prefixes (less than 63 characters)

 NOTE: If an application has the Desktop Application bit set, it
 should be prepared to get control with either the text or
 the Super Hi-Res screen visible. For example, if some
 error prevents the application from using the desktop
 tools, it may be necessary to call GrafOff before the
 user can read error messages displayed on the text screen
 (although GrafOff is a QuickDraw II call, it's OK to call
 GrafOff even if QuickDraw II is not active).

 If an application does not have the Desktop Application
 bit set (or does not even have a $DBxx auxiliary type),
 the system software reserves the right to force the text
 screen to be visible if QuickDraw II is not started. Do
 not assume that a Quit call from one application to
 another (with QuickDraw II not started) will leave the
 Super Hi-Res screen visible.

END OF FILE FTN.B3.XXXX

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 107 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.B5.XXXX
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $B5 (181)
Auxiliary Type: All

Full Name: ProDOS 16 or GS/OS Shell application file
Short Name: GS/OS Shell application

Revised by: Dave Lyons May 1992
Written by: Dave Lyons & Matt Deatherage September 1989

Files of this type and auxiliary type contain application programs intended
for use within a shell environment for the Apple IIgs.

CHANGES SINCE DECEMBER 1991: Broadened the definition auxiliary type bit 1 to
mean the application can handle getting control with the Super Hi-Res screen
on.

Files of type $B5 contain GS/OS shell application programs. These files
contain program code in Object Module Format (OMF) that is loaded by the
System Loader or ExpressLoad at an address and is then executed under the
control of a command shell (such as APW, for example).

The shell may provide extra services to a shell application that are not
available to normal GS/OS applications (files of type $B3). A shell
application can identify which shell it is running under by examining the
shell identifier.

Information about the shell identifier and other shell application environment
issues may be found in GS/OS Reference and APW Reference, where the shell
application environment is completely documented. OMF is documented in those
manuals as well. All developers creating files of type $B5 should be familiar
with this material.

The auxiliary type for $B5 files is now defined to indicate properties of the
program contained within the file. Other parts of the system may use this
information to properly control the environment for the program:

 bits 31-16 reserved--must be 0
 bits 15-8 signature byte. $DB means bits 7-0 are valid
 bits 7-3 reserved--must be 0
 bit 2 Message Aware:
 1 = uses Message Center message #1
 0 = ignores Message Center message #1
 bit 1 Desktop Application:
 1 = application can handle the Super Hi-Res
 screen already being on when it first gets
 control, so the system can provide a smooth
 visual transition into the application

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 108 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 0 = application is not prepared for the Super
 Hi-Res screen to be on
 bit 0 GS/OS Aware:
 1 = uses long prefixes (for example, prefix 9
 instead of prefix 1)
 0 = uses short prefixes (less than 63
 characters)

 NOTE: If a Shell Application has the Desktop Application bit
 set, it should be prepared to get control with either the
 text or the Super Hi-Res screen visible. For example, if
 some error prevents the application from using the
 desktop tools, it may be necessary to make the QuickDraw
 II call GrafOff before the user can read error messages
 displayed on the text screen (it's OK to call GrafOff
 even if QuickDraw II is not active).

 If a Shell Application does not have the Desktop
 Application bit set (or does not even have a $DBxx
 auxiliary type), the system software reserves the right
 to force the text screen to be visible if QuickDraw II is
 not started. Do not assume that a Quit call from one
 application to another (with QuickDraw II not started)
 will leave the Super Hi-Res screen visible.

END OF FILE FTN.B5.XXXX

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 109 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.B6.XXXX
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $B6 (182)
Auxiliary Type: All

Full Name: ProDOS 16 or GS/OS Permanent Initialization File
Short Name: Permanent initialization file

Modified by: Matt Deatherage May 1992
Written by: Matt Deatherage September 1990

Files of this type contain initialization code that does not get unloaded.

CHANGES SINCE SEPTEMBER 1990: Added new information pertaining to System
Software 6.0 and answered some commonly asked questions.

Files of type $B6 contain permanent initialization code in OMF format. Such
files are often referred to as "inits." They are loaded by GS/OS at boot time
and are never unloaded. The auxiliary type is RESERVED except for bit 15--if
bit 15 is set, the initialization file is not loaded at boot time.

The structure of an init is similar to that of an application. The first byte
of the loaded code image (inits are load files) is the entry point, and the
init must end with an RTL instruction. When GS/OS transfers control to a
permanent initialization file, the processor is in 16-bit native mode. The A
register contains the init's user ID, D points to the bottom of a 4K stack and
direct-page area and S points to near the top of that area. (If the init has
an OMF stack and direct page segment linked in, the D and S registers point to
it instead.) The data bank register is not defined; you should save it, set
it and restore it if you use absolute addressing.

While all tools are available to be started, that doesn't mean tools should
necessarily be started. Inits can be loaded after boot time (such as with IR
2.0, DTS Sample Code for an Apple IIgs Finder Extension), and blindly
attempting to start and shut down tools without first checking their status
can be disastrous in such instances. In particular, inits should never call
TLStartUp or TLShutDown, and should check for the presence of other tools
through each tool's status function before starting it up.

If you're considering starting a tool after init time and leaving it started
(which is only possible when your code gets control after init time), you must
do two things:

 1. Apply for your Certificate of IIgs Deityship at the Matt
 & Dave Ministry of Bits. Do not continue until you
 recieve your certificate.
 2. Read Apple IIgs Technical Note #53, "NDAs and Tools," and
 do what it says.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 110 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Inits that need to tell the difference between boot time and later loading
times (for example, a RAM disk restoration init) can check the result of the
GS/OS call GetName--if there is no name, the system's currently being started
up.

Permanent inits are called at boot time and left in memory until the system is
shut down. However, GS/OS does not call them again (even on a return from
ProDOS 8). If your permanent init wants to periodically get control, it can
use features like heartbeat tasks (installed with SetHeartBeat and IntSource),
GS/OS notification procedures (AddNotifyProc), inter-process communication
features (AcceptRequests) or Run Queue tasks (AddToRunQ).

Your permanent init can tell GS/OS it should be unloaded after execution.
Above GS/OS's RTL address on the stack is a WORD value of $0000. If your init
sets bit zero of this word (LDA #1, STA 4,S assuming you haven't pushed
anything on the stack), GS/OS unloads your init when you return control,
treating it as if it were a temporary init file. This can be useful for inits
that operate with certain hardware--if the hardware isn't present, the init
can go away.

WARNING: This WORD space is not available to permanent
 initialization files that execute from a user's folder on
 an AppleShare file server at boot time unless you're
 using System Software 6.0 or later.

Further Reference

 o GS/OS Reference
 o File Type Note for File Type $B7, Temporary Initialization Files

END OF FILE FTN.B6.XXXX

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 111 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.B7.XXXX
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $B7 (183)
Auxiliary Type: All

Full Name: ProDOS 16 or GS/OS Temporary Initialization File
Short Name: Temporary initialization file

Modified by: Matt Deatherage May 1992
Written by: Matt Deatherage September 1990

Files of this type contain initialization code that is unloaded immediately
after executing.

CHANGES SINCE SEPTEMBER 1990: Added new information pertaining to System
Software 6.0 and answered some commonly asked questions.

Files of type $B7 contain temporary initialization code. Such files are often
referred to as "inits". They are loaded by GS/OS at boot time and are
unloaded immediately after execution. The auxiliary type is RESERVED except
for bit 15--if bit 15 is set, the initialization file is not loaded.

The structure of an init is similar to that of an application. The first byte
of the loaded code image (inits are load files) is the entry point, and the
init must end with an RTL instruction. When GS/OS transfers control to a
temporary initialization file, the processor is in 16-bit native mode. The A
register contains the init's user ID, D points to the bottom of a 4K stack and
direct-page area and S points to near the top of that area. (If the init has
an OMF stack and direct page segment linked in, the D and S registers point to
it instead.) The data bank register is not defined; you should save it, set
it and restore it if you use absolute addressing.

All inits are loaded and executed entirely after the System Software is
initialized; all of GS/OS is present and all of the tools are startable
(although that's not necessarily advised; see later in this Note). The
contents of all prefixes are undefined, and you should save and restore any
prefixes you use. An init that wants to find its own pathname can use the
System Loader call LGetPathname2. The commonly-seen icons at the bottom of
the graphics screen are only available to CDevs in System Software 5.0 through
5.0.4, unless you draw the icon yourself, but under 6.0 and later the
Miscellaneous Tools call ShowBootInfo will display an icon on the graphics
screen or a version line on the text screen like GS/OS components.

While all tools are available to be started, that doesn't mean tools should
necessarily be started. Inits can be loaded after boot time (such as with IR
2.0, DTS Sample Code for an Apple IIgs Finder Extension), and blindly
attempting to start and shut down tools without first checking their status
can be disastrous in such instances. In particular, inits should never call
TLStartUp or TLShutDown, and should check for the presence of other tools

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 112 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

through each tool's status function before starting it up.

Inits that need to tell the difference between boot time and later loading
times (for example, a RAM disk restoration init) can check the result of the
GS/OS call GetName--if there is no name, the system's currently being started
up.

Temporary initialization files are shut down by GS/OS after they perform their
RTL, so they are a good choice for transient purposes. Temporary inits are
good for playing sounds during the boot process, loading pictures, and other
instances where data is passed to other system routines. For example, a
temporary init might read files from a disk and save them to a RAM disk. The
init gets to set up the RAM disk, but after that's done it doesn't need to
stick around and take up memory--and since it's a temporary init, GS/OS
unloads it after its work is done.

Further Reference

 o GS/OS Reference
 o File Type Note for File Type $B6, Permanent Initialization Files

END OF FILE FTN.B7.XXXX

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 113 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.B8.xxxx
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $B8 (184)
Auxiliary Type: All

Full Name: Apple IIgs New Desk Accessory
Short Name: New Desk Accessory

Written by: Dave "Of course I trust you, September 1990
 I'm just checking" Lyons

Files of this type contain Apple IIgs New Desk Accessories in OMF format.

New Desk Accessories are available under the Apple menu of Apple IIgs desktop
applications.

Files of type $B8 in the System:Desk.Accs directory of the boot volume are
automatically loaded with the Loader and installed into the system with
InstallNDA at boot time. Bit 15 of the auxiliary type is the "inactive" bit--
if it's set, the system does not load the file. All other bits in the
auxiliary type are reserved and should be zero.

NDAs are stored on disk in Object Module Format, which is defined in Appendix
F of GS/OS Reference for GS/OS System Software 5.0. Once the Loader brings
your NDA's code into memory, the format is as specified in the Desk Manager
chapter of Apple IIgs Toolbox Reference, volume 1.

NDA authors should be sure to read the material listed under "Further
Reference."

Further Reference

 o Apple IIgs Toolbox Reference, Volumes 1-3
 o GS/OS Reference for System Software 5.0
 o Apple IIgs Technical Note #12, Tool Set Interdependencies
 o Apple IIgs Technical Note #53, Desk Accessories and Tools
 o Apple IIgs Technical Note #71, Desk Accessory Tips and Techniques
 o Apple IIgs Technical Note #83, Resource Manager Stuff
 o Apple IIgs Technical Note #84, TaskMaster Madness
 o Apple IIgs Sample Code Note #19, ActionNDA

END OF FILE FTN.B8.xxxx

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 114 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.B9.xxxx
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $B9 (185)
Auxiliary Type: All

Full Name: Apple IIgs Classic Desk Accessory
Short Name: Classic Desk Accessory

Written by: Dave "Mr. Nifty" Lyons September 1990

Files of this type contain Apple IIgs Classic Desk Accessories in OMF format.

Classic Desk Accessories are available by pressing Command-Ctrl-Esc, whether
or not a desktop application is running.

Files of type $B9 in the System:Desk.Accs directory of the boot volume are
automatically loaded with the Loader and installed into the system with
InstallCDA at boot time. Bit 15 of the auxiliary type is the "inactive" bit--
if it's set, GS/OS does not load the CDA. All other bits in the auxiliary
type are reserved and should be zero.

CDAs are stored on disk in Object Module Format, which is defined in Appendix
F of GS/OS Reference. Once the Loader brings your CDA's code into memory, the
format is as specified in the Desk Manager chapter of Apple IIgs Toolbox
Reference, volume 1.

CDA authors should be sure to read the material listed under "Further
Reference."

Further Reference

 o Apple IIgs Toolbox Reference, Volumes 1 and 3
 o GS/OS Reference
 o Apple IIgs Technical Note #71, Desk Accessory Tips and Techniques

END OF FILE FTN.B9.xxxx

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 115 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.BA.xxxx
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $BA (186)
Auxiliary Type: All

Full Name: Apple IIgs Tool File
Short Name: Tool

Written by: Matt Deatherage September 1990

Files of this type and auxiliary type contain Apple IIgs tool sets.

Files of type $BA contain Apple IIgs tool sets, designed to be called by the
Tool Locator. The data fork is in OMF format; once it's been loaded by
InitialLoad or InitialLoad2, the image in RAM starts with the tool set's
function pointer table (FPT). The resource fork, if it exists, should be
empty or in Apple IIgs Resource Manager format.

All RAM-based system tools are contained in the System folder of the boot
volume, and are named by tool number (for example, tool #27 is named TOOL027).
This convention is for system tools only.

User tools can reside in any directory (the directory with the application is
a good choice) and may follow any naming conventions. User tool sets should
also use file type $BA.

Please note that all system tool set numbers and names are reserved for Apple
Computer, Inc. Third-party developers must not create tools using any system
tool set numbers.

Further Reference

 o Apple IIgs Toolbox Reference, Volume 2, Appendix A
 o Apple IIgs Technical Note #73, Using User Tool Sets

END OF FILE FTN.BA.xxxx

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 116 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.BB.xxxx
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $BB (187)
Auxiliary Type: All

Full Name: Apple IIGS Device Driver File
Short Name: Device driver

Written by: Matt Deatherage November 1989

Files of this type and all auxiliary types contain Apple IIGS device drivers.

An Apple IIGS device driver is defined as code that is necessary to control or
operate a peripheral in a desired manner. A driver file's data fork contains
code (in Object Module Format) that can be loaded by the System Loader or
ExpressLoad and executed.

The format of a driver file depends largely upon the auxiliary type of the
driver. Each driver has a class and an inactive flag in the auxiliary
type, as Figure 1 indicates.

| F | E | D | C | B | A | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|
 _/ _________________________/ _____________________________/
 | | |
 | | |
 | | |___ Driver-specific
 | | classifications
 | |
 | |_________________________________ Driver class
 |
 |___ 1 = inactive, 0 = active

 Figure 1-Auxiliary Type Definition

If bit 15 of the auxiliary type is set, the driver is considered inactive and
should not be used. If the bit is clear, the driver is considered active and
may be used if desired. Users may inactivate drivers from the Finder and are
likely to be confused if a driver they marked as inactive continues to appear.

Bits 14 through 8 determine the driver's class. This mechanism allows many
types of device drivers to share the same OMF-compatible file type. Table 1
lists defined classes of drivers.

 Class Definition

 $00 Print Manager driver

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 117 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 $01 GS/OS driver
 $02 AppleTalk driver
 $03 MIDI Tools driver
 $04--$7E Reserved
 $7F Third-party multimedia driver

 Table 1-Driver Classes

The low byte of the auxiliary type (bits 7 through 0) is referred to as the
subclass, and it depends upon the driver class for interpretation. Below are
the interpretations for the defined driver classes.

Print Manager Drivers

For class $00, the low byte determines the kind of Print Manager driver is
contained in the file. A subclass of $00 indicates a printer driver, a
subclass of $01 indicates a directly-connected port driver, and a subclass of
$02 indicates a network port driver. All other values in the subclass for
Print Manager drivers are reserved.

Printer and Port Drivers are documented in Apple IIGS Technical Note #35,
Printer Driver Specifications and in Apple IIGS Technical Note #36, Port
Driver Specifications.

GS/OS Drivers

GS/OS drivers are class $01. GS/OS groups the subclass into two fields. Bits
7 and 6 indicate the GS/OS driver type. A value of 00 indicates a standard
GS/OS device driver. A value of 01 indicates a GS/OS Supervisor driver. A
value of 10 indicates a GS/OS "boot driver," a GS/OS driver which is loaded
before other GS/OS drivers to control the boot device. For further
information on boot drivers, contact Developer Technical Support. A value of
11 is reserved and must not be used by GS/OS device driver authors.

Bits 5 through 0 are defined by the GS/OS driver type. For standard device
drivers, this field indicates the maximum number of devices supported; the
GS/OS Device Dispatcher will use this field to allocate memory when the driver
is loaded. For all other GS/OS driver types, this field is reserved and
must not be used by GS/OS driver authors.

GS/OS driver definitions are documented in GS/OS Reference, Volume 2.

AppleTalk Drivers

The subclass is used by AppleTalk to determine in which order the drivers
should be loaded. Programmers should treat every AppleTalk driver (all
subclasses) as reserved; do not change the auxiliary type in any way, not
even to deactivate the drivers.

Class $02 drivers are AppleTalk protocol drivers, including ROM patches for
AppleTalk firmware. These drivers are currently loaded and initialized by the
SCC.Manager supervisor driver.

Note: The SCC.Manager driver must not be deactivated as it
 arbitrates use of the serial ports. It is required for AppleTalk
 to function. Similarly, the AppleTalk drivers must not be
 deactivated individually or AppleTalk may not be initialized

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 118 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 correctly. Disable AppleTalk in the Control Panel. You may then
 use the Apple IIGS Installer to remove AppleShare if you wish to
 remove AppleTalk drivers and protocols from a disk.

AppleTalk drivers are loaded only if AppleTalk is enabled in the Control
Panel. The drivers are initialized in alphabetical order; therefore, you
should not change the names of existing AppleTalk drivers.

In the driver subclass, bit 7 indicates whether the flag is a standard
AppleTalk protocol. For protocols that you write and ship, this bit must be
set to 1. If you feel your driver should have this bit set as a standard
protocol, contact Developer Technical Support. Bits 0-3 of the subclass
indicate the maximum ROM version for which the driver should be loaded. For
example, a driver with a value of 1 in this field will not be loaded on a
machine with a ROM version greater than 1. A driver with a value of 3 will
not be loaded on future Apple IIGS machines, but will be loaded on all current
machines.

AppleTalk drivers are called to initialize themselves in full 16-bit native
mode. The A register contains the current AppleTalk channel number (i.e.,
which port is being used for AppleTalk); the X register contains the ROM
version; the Y register contains the AppleTalk firmware slot number. Drivers
should return from initialization with the carry clear and zero in the
accumulator if initialization was successful or carry set and an error code in
A if initialization failed. You may assume that AppleTalk is active during
AppleTalk driver initialization. Your driver should perform necessary
installation tasks (such as opening as socket or adding routines to the
dispatch table at $E1D600) during initialization.

The remaining bits in the driver subclass are reserved and must not be used
by AppleTalk driver authors.

MIDI Tools Drivers

The subclass field for MIDI Tools drivers is currently reserved and should
be set to zero. MIDI Tools Drivers are documented in Apple IIGS Technical
Note #54, MIDI Drivers.

Third-Party Multimedia Drivers

The third-party multimedia driver class indicates drivers used by applications
or other non-system components to control multimedia peripherals such as
videodisc or video tape players. The subclass for this class is assigned
for each driver by Developer Technical Support, as are most file type and
auxiliary type combinations. Developers wishing to provide a multimedia
driver must contact Developer Technical Support for a subclass assignment.

What's Reserved?

Since so many types of drivers are all using the same file type, it is
essential that you adhere to the auxiliary type conventions specified in
this Note. If you are creating a driver whose auxiliary type can not be
completely defined using the guidelines in this Note, contact Developer
Technical Support for assistance, or for further assignment. If you are
creating a driver which does not fit into an existing driver class, contact
Developer Technical Support for a new class assignment.

Do not use any field marked as reserved in this Note to store any number

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 119 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

other than zero.

Further Reference

 o Apple IIGS Toolbox Reference
 o GS/OS Reference, Volume 2
 o Apple IIGS Technical Note #35, Printer Driver Specifications
 o Apple IIGS Technical Note #36, Port Driver Specifications
 o Apple IIGS Technical Note #54, MIDI Drivers

END OF FILE FTN.BB.xxxx

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 120 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.BC.xxxx
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $BC (188)
Auxiliary Types: All

Full Name: Apple IIgs Generic Load File
Short Name: Load file (generic)

Written by: Matt Deatherage July 1990

Files of this type and auxiliary type contain OMF for the Apple IIgs.

Files of type $BC contain data that is to be loaded by one of the Apple IIgs
Loaders (either the System Loader or ExpressLoad). No other information about
the data is known. Load files which do not fit other load file type
definitions ($B3-$BD) should be of type $BC. The most common use for files of
type $BC are code modules.

The following auxiliary type assignment is current for this file type as of
the publication date of this Note:

 Auxiliary Type Short Name Developer
 __
 $0000 Load file (generic) any
 $4001 Nifty List Module DAL Systems
 __

 Table 1-Auxiliary Type Assignments

Note that auxiliary type $0000 is listed as "any" developer. You may create
and use files of $BC and auxiliary type $0000 as you wish; Apple does not
maintain a specific assignment for this auxiliary type. However, if you use
auxiliary type $0000, you must not identify your files exclusively by it.
Many load files can share this auxiliary type, and it alone is not suitable
for file content identification. Apple allows the free use of auxiliary type
$0000 since load files must have a load file type and often further
identification is not necessary.

Also note that auxiliary type $0000 is reserved in other file types; you may
not use auxiliary type $0000 in other file types without assignment from
Developer Technical Support.

Further Reference

 o GS/OS Reference

END OF FILE FTN.BC.xxxx

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 121 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.BD.xxxx
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $BD (189)
Auxiliary Type: All

Full Name: GS/OS File System Translator
Short Name: GS/OS File System Translator

Written by: Matt Deatherage September 1990

Files of this type and auxiliary type contain file system translators for
GS/OS.

Files of type $BD contains file system translators, or FSTs. FSTs do not load
if bit 15 of their auxiliary type is set.

GS/OS calls FSTs to interpret the physical file systems stored on block
devices. By asking translation software to read the file system, GS/OS can
read virtually any file system while having only an abstract file system
assumed in the operating system code. Not all released file system
translators are required, saving space on disk and in memory.

The format for FSTs is Apple confidential and subject to change with every
system software release; Apple will release all future FSTs for GS/OS. Third-
party developers may not create GS/OS FSTs--no documentation is available, and
disassembly of the code for this purpose is not permitted. This is not an
easy decision for Apple, which is a company that was built upon and operates
with the goal to empower individuals through computing. Not revealing
information isn't exactly consistent with this goal. There are, however,
reasons for this policy.

First, FSTs are not as modular as they could be. Some GS/OS level changes
require changes to all of the FSTs to be implemented. These changes range in
magnitude from internal system service call changes to adding new parameters
to existing calls. GS/OS is not tolerant of FSTs that do not know about such
changes. The FST structure is straightforward, but it is also complex enough
that disassembly of existing FSTs does not cover all the bases.

Second, it can create chaos for users. Two file system translators for a file
system is far worse than none at all. No physical file system exactly matches
the GS/OS abstract file system, so every FST must have file system specific
behavior. Although some of these behaviors are well documented (parameters
that do not fit in the abstract file system go in the option_list, for
example), no two independently-designed FSTs for the same file system can
possibly do such things identically.

For example, if there were two third-party DOS 3.3 FSTs available, each would
have its own FSTSpecific subcalls, option_list parameters and other
implementation differences. Since there is only one file_sys_ID per file

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 122 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

system, programs that create correct data structures for one DOS 3.3 FST may
blow up with the other one.

If users somehow manage to figure this out, the only way to change FSTs is to
enter the *:System:FSTs folder, deactivate one FST, activate another one and
reboot, which is not acceptable. Even switching FSTs is unacceptable for
archival and copying programs which may have stored option_list parameters
embedded in files. Futhermore, if the file system is bootable, that makes
boot blocks and a file system stub which are also tied to an FST, and users
would have a horrible time changing those.

The best solution to these problems for Apple's customers (who are also your
customers) is for Apple to maintain control over the development of file
system translators. Apple will provide file system translators for other file
systems. If you have requests for how certain features of any file system
should be handled by future FSTs, please contact Developer Technical Support.

Further Reference

 o GS/OS Reference

END OF FILE FTN.BD.xxxx

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 123 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.C0.0000
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $C0 (192)
Auxiliary Type: $0000

Full Name: Paintworks Packed Super Hi-Res Picture File
Short Name: Paintworks Packed Picture

Written by: Matt Deatherage November 1988

Files of this type and auxiliary type contain a packed Super Hi-Res graphics
image created by Activision's Paintworks program.

Files of type $C0 and auxiliary type $0000 contain a packed Super Hi-Res
graphics image created by Activision's Paintworks program. For more
information on Paintworks, contact:

 Mediagenic, Inc.
 3885 Bohannon Drive
 Menlo Park, CA 94025
 Attn: Paintworks Technical Support

The format of the file is as follows:

+000 to +01F Bytes Super Hi-Res Palette
+020 to +021 Word Background color
+022 to +221 Bytes Patterns. 16 QuickDraw II patterns,
 each 32 bytes in length.
+ 222 to EOF Bytes Packed graphics data. Note that the
 unpacked data could be longer than
 one Super Hi-Res screen (Paintworks
 allows full-page sized documents).

END OF FILE FTN.C0.0000

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 124 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.C0.0001
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $C0 (192)
Auxiliary Type: $0001

Full Name: Packed Apple IIGS Super Hi-Res Image File
Short Name: Packed Super Hi-Res Image

Written by: Matt Deatherage November 1988

Files of this type and auxiliary type contain a packed Apple IIGS Super Hi-Res
screen image.

Files of type $C0 and auxiliary type $0001 contain a packed Apple IIGS Super
Hi-Res screen image, which is created by passing the entire 32K Super Hi-Res
screen area, including the scan line control bytes (SCB) and color tables,
through the PackBytes routine.

If you restore a file of this type to its original 32K size with UnPackBytes,
you can save the unpacked data to a file of type $C1 and auxiliary type $0000
(Apple IIGS Super Hi-Res Graphics Screen Image).

Further Reference
o Apple II File Type Notes, File Type $C1, Auxiliary Type $0000

END OF FILE FTN.C0.0001

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 125 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.C0.0002
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $C0 (192)
Auxiliary Type: $0002

Full Name: Apple IIgs Super Hi-Res Picture File
Short Name: "Apple Preferred" Picture

Revised by: Matt Deatherage December 1991
Written by: Steve Glass, Eagle Berns, Art Cabral October 1987
 & Pete McDonald

Files of this type and auxiliary type contain a Super Hi-Res picture in the
Apple-recommended format.
Changes since September 1990: Added a recommeendation for more conventional
respresentation of 3200-color pictures.

Files of type $C0 and auxiliary type $0002 contain a Super Hi-Res picture in
the format recommended by Apple. The file consists of a series of variable-
length blocks (in any order), each with the same general format:

 Length Long Defines the length of this block,
 including Length itself.
 Kind String String used to identify the type of
 block. The string is stored as a
 series of case-sensitive ASCII
 characters preceded by a length
 byte. To avoid confusion, the use
 of uppercase characters only is
 recommended.
 Data Bytes Variable amount of block-specific
 data.

With this scheme, the file format is flexible and can be extended. Standard
blocks which most applications want are defined below, however, these are not
required. Individual applications can define other blocks. Application-
dependent information can be stored to allow other applications to ignore it.
Your application should simply ignore blocks it finds which it is not prepared
to interpret.

Data Types

 Integer 16-bit signed word.
 LongInt 32-bit signed long word.
 ColorEntry 16-bit word. The nibbles in the word are
 interpreted as RGB values as follows: $0RGB.
 The high nibble of the high byte must be zero
 and should be ignored when reading files. The
 low nibble of the high byte is the value for

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 126 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 red, the high nibble of the low byte is the
 value for green, and the low nibble of the low
 byte is the value for blue (see Figure 16-19 on
 page 16-31 of the Apple IIgs Toolbox Reference).
 ColorTable 16 words: array [0..15] of ColorEntry
 ModeWord 16-bit word. The high byte determines the
 definition of the mode. If high byte = 0, then
 the low byte is the mode bit portion of the SCB
 for the scan line (see Figure 16-22 on page 16-
 34 of the Apple IIgs Toolbox Reference). Other
 bits are reserved and must be zero, as other
 modes are not yet defined.
 DirEntry A two-word structure used to define the
 characteristics of each packed line:
 Integer: Number of bytes to unpack
 ModeWord: Mode
 PatternData 32 bytes of pattern information

MAIN Information Block

Every file usually, but not necessarily (i.e., a file of palettes only),
includes a MAIN block.

 Length LongInt
 Kind String "MAIN"
 MasterMode ModeWord (from the MasterSCB of QuickDraw II.
 When reading a file, this word should
 be used in a SetMasterSCB call.)
 PixelsPerScanLine Integer (must not be zero)
 NumColorTables Integer (may be zero)
 ColorTableArray [0..NumColorTables-1] of ColorTable
 NumScanLines Integer (must not be zero)
 ScanLineDirectory [0..NumScanLines-1] of DirEntry
 PackedScanlines [0..NumScanLines-1] of Packed Data
 (Obtained by performing a PackBytes call
 on the pixel image of a single scan line.)

PATS Information Block

The PATS block contains patterns which may be associated with the picture.

 Length LongInt
 Kind String "PATS"
 NumPats Integer
 PatternArray [0..NumPats-1] of PatternData

SCIB Information Block

The SCIB block contains information relating to the current drawing pattern
for the document. This information is used by paint programs that want to
save a foreground pattern, a background pattern, and a frame pattern with the
image.

 Length LongInt
 Kind String "SCIB"

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 127 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 ForegroundPattern PatternData
 BackgroundPattern PatternData
 FramePattern PatternData

PALETTES Information Block

The PALETTES block contains information on the color tables. Its use is
intended for color table files. If the file being saved contains a pixel
image, then the color tables associated with that picture should be saved in
the MAIN block, and this block would not be used.

 Length LongInt
 Kind String "PALETTES"
 NumColorTables Integer (must not be zero)
 ColorTableArray [0..NumPalettes-1] of ColorTable

Other Information Blocks

Apple Preferred Format is an extensible graphics file format. Since its
release, some developers have contributed other block definitions that other
developers may find to be useful. Please feel free to incorporate these
blocks into Apple Preferred files, but you must be prepared to deal with Apple
Preferred files that do not contain these additional blocks.

MASK Information Block

The MASK block contains information on which portions of a graphic image
should be modified. The structure is similar to that of the MAIN block.
However, the MASK array of PackedScanLines contains zeroes where no drawing is
to occur (where the image is transparent) and ones where drawing may occur
(where the image is solid). The structural similarity to the MAIN block can
help by allowing some of your code to do double work.

 Length LongInt
 Kind String "MASK"
 MasterMode ModeWord (from the MasterSCB of QuickDraw II.
 When reading a file, this word should
 be used in a SetMasterSCB call.)
 PixelsPerScanLine Integer (must not be zero)
 NumColorTables Integer (must be zero)
 NumScanLines Integer (must not be zero)
 ScanLineDirectory [0..NumScanLines-1] of DirEntry
 PackedScanlines [0..NumScanLines-1] of Packed Data
 (Obtained by performing a PackBytes call
 on the pixel image of a single scan line.)

 Note: There is no ColorTableArray, as indicated by a zero value
 in NumColorTables.
 Note: The scan lines to be packed should only contain mask values
 of one and zero.

MULTIPAL Information Block

The MUTLIPAL block contains extra color tables necessary for displaying
pictures that contain up to 3,200 colors on the screen.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 128 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Length LongInt
 Kind String "MULTIPAL"
 NumColorTables Integer (should be the same as NumScanLines
 in MAIN). This is typically 200, but any value
 is legal.
 ColorTableArray [0..NumColorTables-1] of ColorTable.
 These are in the regular (0-15) order.

If you use the MULTIPAL block to store pictures with more colors than are
typically displayable on the screen, Apple recommends you also create a MAIN
block with a 16-color (or grayscale) representation of the picture, so users
may open these files in les specialized applications to at least preview the
picture enclosed.

Further Reference

 o Apple IIgs Toolbox Reference
 o Apple IIgs Technical Note #94, Packing It In (and Out)

END OF FILE FTN.C0.0002

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 129 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.C0.0003
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $C0 (192)
Auxiliary Type: $0003

Full Name: Packed Apple IIGS QuickDraw II Picture File
Short Name: Packed QuickDraw II PICT File

Written by: Matt Deatherage November 1988

Files of this type and auxiliary type contain a packed QuickDraw II picture.

Files of type $C0 and auxiliary type $0003 contain a packed QuickDraw II
picture (a.k.a. PICT, after its counterpart on the Macintosh), and this file
format is the same as file type $C1 and auxiliary type $0001, except files in
this format are packed. If you encounter a file of this type, you should be
able to get its length, allocate a handle of the same size, read the file into
the handle, use UnPackBytes to restore the picture to its original format, and
call DrawPicture to display the picture. Refer to Apple IIGS Technical Note
#46, DrawPicture Data Format for more information on the internal format of
QuickDraw II pictures.

Further Reference
o Apple IIGS Toolbox Reference Manual, Volume 2
o Apple IIGS Technical Note #46, DrawPicture Data Format

END OF FILE FTN.C0.0003

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 130 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.C1.0000
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $C1 (193)
Auxiliary Type: $0000

Full Name: Apple IIGS Super Hi-Res Graphics Screen Image
Short Name: Super Hi-Res Screen Image

Written by: Matt Deatherage November 1988

Files of this type and auxiliary type contain a 32K unpacked picture image.

Files of type $C1 and auxiliary type $0000 contain a 32K unpacked Super Hi-Res
screen image, which is created by writing the entire Super Hi-Res screen area
($E12000-$E19FFF) to a file. If you pass this data through the PackBytes
routine, you can save the result as a file of type $C0 and auxiliary type
$0001 (Packed Apple IIGS Super Hi-Res Image File).

Note: The first release of Activision's PaintWorks assumes that
palette colors are ordered from highest to lowest luminance.

Further Reference
o Apple II File Type Notes, File Type $C0, Auxiliary Type $0001

END OF FILE FTN.C1.0000

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 131 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.C1.0001
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $C1 (193)
Auxiliary Type: $0001

Full Name: Apple IIGS QuickDraw II Picture File
Short Name: QuickDraw PICT File

Written by: Matt Deatherage November 1988

Files of this type and auxiliary type contain an unpacked QuickDraw II
picture.

Files of type $C1 and auxiliary type $0001 contain an unpacked QuickDraw II
picture (a.k.a. PICT, after its counterpart on the Macintosh), and this file
format is the same as file type $C0 and auxiliary type $0003, except files in
this format are unpacked. If you encounter a file of this type, you should be
able to get its length, allocate a handle of the same size, read the file into
the handle, and call DrawPicture to display the picture. Refer to Apple IIGS
Technical Note #46, DrawPicture Data Format for more information on the
internal format of QuickDraw II pictures.

Further Reference
o Apple IIGS Toolbox Reference Manual, Volume 2
o Apple IIGS Technical Note #46, DrawPicture Data Format

END OF FILE FTN.C1.0001

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 132 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.C1.0002
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $C1 (193)
Auxiliary Type: $0002

Full Name: Super Hi-Res 3200 color screen image
Short Name: Super Hi-Res 3200 color image

Written by: Matt Deatherage September 1990

Files of this type and auxiliary type contain pictures with up to 3,200 colors
displayed simultaneously.

Files of type $C1 and auxiliary type $0002 contain Super Hi-Res screen images
with extra color tables so that up to 3,200 colors can be displayed
simultaneously.

Such a display technique is visually striking but is not easy--the program must
watch the Mega II video counters and change the color tables in the palette
for future scan lines while the Apple IIgs is drawing a different scan line.
All such pictures use 320 mode.

This format is for uncompressed 3,200-color pictures. It is often referred to
as "Brooks format" after the designer of the format, John Brooks. For a way
to store these pictures compressed, see the MULTIPAL block in the Apple
Preferred format.

Definition

The following definition is used in this document in addition to those defined
for all Apple II file types:

Color table A table of sixteen two-byte entries, where each entry in the
 table is a master color value ($0RGB, where R is the red
 component, G is the green component and B is the blue
 component).

File Structure

The format for these files is similar to that for Super Hi-Res screen images.

 pixelData (+000) 32000 Bytes
 Pixel data to be displayed on
 the Super Hi-Res screen.
 colorTables (+32000) 200 Color Tables
 One color table for each scan line.
 Each color table is stored in reverse
 order; the color value for color 15
 is stored first.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 133 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Further Reference

 o Apple IIgs Toolbox Reference, Volume 2
 o Apple IIgs Hardware Reference
 o File Type Note for file type $C0, auxiliary type $0002,
 Apple Preferred Format

END OF FILE FTN.C1.0002

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 134 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.C7.XXXX
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $C7 (199)
Auxiliary Type: All

Full Name: Control Panel
Short Name: Control Panel

Revised by: Dave "Flag Bits" Lyons May 1992
Written by: Matt Deatherage & Darryl Lovato September 1989

Files of this type contain control panels (formerly called CDevs) for the
Apple IIgs Control Panels New Desk Accessory.

CHANGES SINCE DECEMBER 1991: Updated for Control Panels NDA 2.0 in System
6.0.

Files of type $C7 contain control panels. When deciding whether to write an
NDA or a control panel, keep in mind that control panels normally don't take
any RAM when they are not in use, don't take up space in the Apple menu, and
automatically re-open at the same screen position where they were last used.
On the other hand, control panels are limited to a single code segment, and
the main window has a fixed size.

Before System 6, the Control Panels NDA presented control panels (then called
"CDevs" to the user) in a single window. In System 6, each control panel
appears in its own window.

AUXILIARY TYPE

The auxiliary type of CDevs is defined bit by bit. Currently, only bit 15 is
defined--it's the "inactive" bit. As with desk accessories, FSTs, and setup
files, the control panel is not loaded or used if this bit is set. All other
bits are reserved and must be set to zero. (In 6.0, inactive control panels
do not appear in the Control Panels NDA's list, but the user can still open
them directly from the Finder.)

HOW CONTROL PANELS WORK

The Control Panels NDA lets the user choose control panels, and it
communicates with open control panels using a small collection of messages.
Most events the Control Panels NDA receives from the system are handled by
calling TaskMasterDA. At certain times, the Control Panels NDA sends messages
to control panels.

The Control Panels NDA takes care of nearly everything necessary, including
tracking controls. Control panel windows are usually just windows full of

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 135 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

extended controls; the control panel receives a HitCDEV message every time the
user adjusts the value of one of the controls.

EVERY control in the control panel window must be an extended control. Older,
non-extended controls are not allowed; all controls MUST be created with
NewControl2. When one of these controls is "hit," the Control Panels NDA
calls the control panel with the HitCDEV message, the control handle, and the
control ID. This allows the control panel to respond to user actions. User
interface items beyond extended controls (for example, modal windows) must be
handled entirely by the control panel (that is, the Control Panels NDA is not
involved).

 NOTE: Setting the fInWindowOnly bit of Pop-up menu controls is
 not recommended.

THE CONTROL PANELS WINDOW

In version 1.0 of the Control Panel NDA there is a single window, and exactly
one control panel is always active in a portion of that window.

With System 6, this is no longer true. Many control panel messages include
"the control panel's window pointer" as one of the parameters. This is
guaranteed to be the window containing the control panel's controls, but
little else is guaranteed.

For example, do not draw outside the area containing your control panel's
controls; do not compute other window sizes from the size of this window; and
do not assume that the Control Panels NDA will offset your controls'
coordinates by the same amount version 1.0 did.

Do not hard-code any window coordinates. The Control Panels NDA shifts all
your controls by some amount horizontally and vertically, but this amount will
not stay the same between different versions of the Control Panels NDA (it can
be zero). If you draw things besides controls in the window, compute the
coordinates relative to a control on the fly.

In System 6.0, each control panel gets its own window.

RESOURCE FORK

The Control Panels NDA opens your control panel's resource fork differently
depending on whether the machine was booted from an AppleShare file server or
from a local volume.

When the machine was booted from AppleShare, your resource fork is opened with
read-only access so that more than one user can have your control panel open
at once. When the machine was booted locally, your resource fork is opened
with "as allowed" access (this means you will have read/write access if the
control panel file is unlocked and was not already opened read-only by some
other part of the system).

When your control panel receives the BootCDEV message at boot time, its
resource fork is always open read-only.

FILE FORMAT

A control panel is defined by three resources (additional resources may be

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 136 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

present). The data fork is normally empty, but a control panel that requires
System 6 or later may put code in the data fork in OMF format (it's up to the
control panel to determine its own pathname and use InitialLoad2 to load code
from the data fork--a control panel can find its pathname by using
GetCurResourceFile, GetOpenFileRefNum, and GetRefInfo).

The three required resources are the CDev code resource (type rCDEVCode=$8018,
ID=$00000001), the CDev flags resource (type rCDEVFlags=$8019, ID $00000001)
and the CDev's icon (type rIcon=$8001, ID=$00000001).

It is a good idea to make sure each released version of your control panel
file has a different creation date, since the system caches certain
information about your control panel in the CDev.Data file. The system uses
the creation date to notice that a new version of your CDev is present.

You may also want to delete the *:System:CDevs:CDev.Data file, if it exists,
as part of your CDev installation process.

THE ICON RESOURCE

Each control panel's icon is a standard icon resource. This icon appears in
the Control Panels window; it is also displayed at boot time if the CDev has
any initialization code (described later).

If the icon is to be displayed during boot time (before System 6.0), it must
be exactly 28 pixels wide. In 6.0, this restriction is gone, but 28 is still
a nice width.

THE CDEV CODE RESOURCE

The rCDevCode(1) resource contains code to do the real work. A code resource
has the same format as an OMF load file; the code resource converter (which is
part of the system) is responsible for loading code resources. Eventually,
InitialLoad2 loads the code from memory. This process gives the rCDevCode
resource a maximum size of 64K.

When the control panel code gets control, the stack is as follows:

 | Previous Contents |
 |___________________|
 | |
 |- space -| Long - Space for result
 |___________________|
 | message | Word - Action for CP to take
 |___________________|
 | |
 |- data1 -| Long - Data passed to control panel
 |___________________|
 | |
 |- data2 -| Long - Data passed to control panel
 |___________________|
 | |
 |- RTLAddr -| 3 Bytes - Return Address
 |___________________|
 | | <- Stack Pointer (SP)

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 137 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

The control panel must remove the input parameters from the stack and perform
an RTL, so the calling routine may then pull the four-byte result parameter
off the stack. Just before the control panel code RTLs, the stack must be
formatted as follows:

 | Previous Contents |
 |___________________|
 | |
 |- result -| Long - Result from control panel
 |___________________|
 | |
 |- RTL Addr -| 3 Bytes - Return Address
 |___________________|
 | | <- Stack Pointer (SP)

This function, like nearly all toolbox functions, is a "Pascal" function, and
may be declared in Pascal as follows:

 function MyControlPanel(message: Integer; data1, data2: Longint): LongInt;

It may be declared in C as follows:

 pascal Long MyControlPanel(message, data1, data2)
 int message;
 long data1, data2;

Data1 and Data2 depend on the value of message; message is the parameter that
tells the CDev code what needs to be done. Higher-level language control
panels can easily be arranged as a giant switch (or case, as the case may be)
statement.

There are twelve defined "CDev" messages. Where parameters are not listed,
they are undefined.

MESSAGE 1: MachineCDEV

The Control Panels NDA always compares the Apple IIgs ROM version against the
minimum ROM version you put in the CDev Flags resource. If the machine's ROM
version is too low, the control panel does not appear (and cannot be opened).

The MachineCDEV message was not supported before System 6.0. In 6.0, if the
wantMachine bit is set in the CDev Flags resource, the control panel receives
MachineCDEV when the user attempts to open it. The input parameters are
undefined. Return a nonzero result to allow the open, or return zero to abort
the open. When returning zero, you may want to display an alert explaining
why the control panel cannot be opened.

MESSAGE 2: BootCDEV

If the wantBoot flag is set in the CDev Flags resource, this routine is called
during the IIgs boot sequence. The parameters are undefined before 6.0. In
6.0, data1 is defined to point to a data word that is initialially zero. If
you set bit 0 of this word while handling the BootCDEV message, the Control
Panels NDA will draw an "X" over your icon (but it will not call SysBeep2 for

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 138 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

you; do that yourself if appropriate).

BootCDEV is called only during a real boot--it doesn't get control on a switch
back to GS/OS from ProDOS 8. The Control Panels NDA draws the icon (from the
icon resource) on the boot screen. (Before 6.0, the icon must be exactly 28
pixels wide if it is drawn at boot time.)

At best, the machine state during this call can be termed bad. QuickDraw II
is not even available. Be sure to save and restore any system resources you
use, including the data bank register and the direct page register.

 NOTE: If your CDev expects to receive a BootCDEV message, it
 should still behave gracefully if BootCDEV was never
 received and the user attempts to use the control panel
 (for example, tell the user to put the file into the
 CDevs folder and restart the system).

 In System 5.0.x, the user could drag your control panel
 into the CDevs folder and then try to use it without
 restarting. In System 6.0, control panels are directly
 launchable from the Finder, but only the ones in the
 CDevs folder receive BootCDEV messages.

MESSAGE 3: Reserved

This message is reserved for future use as a shutdown message.

MESSAGE 4: InitCDEV

If the wantInit flag is set in the CDev Flags resource, this routine is called
with data1 equal to the control panel's window pointer. When InitCDEV is
called, CreateCDEV (message 7) has already been called. Controls should have
been created in CreateCDEV, and this routine is an ideal place to initialize
the controls before they are displayed.

MESSAGE 5: CloseCDEV

This routine is called if the wantClose bit is set in the CDev Flags resource.
If so, CloseCDEV is called when your control panel is closing. This is a good
place to dispose of any memory you allocated or to save settings that need to
be saved. The disposal of the control panel's controls is handled by the
Control Panels NDA. The window pointer is in data1.

MESSAGE 6: EventsCDEV

If the wantEvents bit is set in the CDev Flags resource, the Control Panels
NDA calls this routine with data1 as a pointer to the event record (this is an
Event Manager event record, not a TaskMaster-style task record). The window
pointer is in data2. The Control Panels NDA, like all NDAs, is passed events,
which the it then handles by using the TaskMasterDA call. This routine is
called before TaskMasterDA is called, so the control panel can change the
event record before the Control Panels NDA handles it.

MESSAGE 7: CreateCDEV

This routine is only called if the wantCreate bit is set in the CDev Flags
resource. When called, the control panel's window pointer is in data1. The
control panel must create any controls it has during this call. The control

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 139 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

panel's resource fork is open during this call, so Resource Manager calls may
be made (and controls may be created from resources in the control panel
file). All control rectangles are relative to the upper-left corner of the
part of the window a control panel owns (in 6.0 this happens to be the whole
window). The Control Panels NDA handles setting the offsets of the controls
to the proper place in the window. Initialization of the controls must be
done in the InitCDEV call.

If the wantCreate bit is not set, the control panel must contain an
rControlList (type=$8003) resource with ID $00000001. The Control Panels NDA
automatically creates your controls from the resource.

MESSAGE 8: AboutCDEV

If the wantAbout bit is set in the CDev Flags resource, the Control Panels NDA
calls this routine when the user selects "Help" while your control panel's
icon is selected. The window pointer to the help window is in data1. The
Control Panels NDA takes care of the icon, author, version string and the "OK"
button. The easiest way to handle help is simply to create a static text
control with the help text in it.

If the wantAbout bit is not set, your control panel must have an rControlList
resource with ID $00000002. When the user selects "Help" while your control
panel's is selected, the Control Panels NDA uses this resource to create your
additional About controls.

 NOTE: In 6.0, when a control panel receives the AboutCDEV
 message, the Font Manager and TextEdit are always
 started. The Control Panels NDA can display a control
 panel's About box without ever opening the control panel.
 Making TextEdit available avoids a potential
 incompatibility with some control panels (such as
 General) that start up TextEdit on receiving AboutCDEV,
 assuming they will have a chance to shut it back down
 later, on receiving CloseCDEV.

MESSAGE 9: RectCDEV

Normally, the Control Panels NDA uses the rectangle in the CDev Flags resource
for the control panel's display rectangle. However, if the wantRect bit is
set in the CDev Flags resource, this routine is called before the control
panel is displayed with data1 containing a pointer to the display rectangle.
The rectangle may be modified by this routine. This gives control panels the
chance to use different sized rectangles for different occasions. For
example, on ROM 03, the serial port control panels show fewer parameters when
the port is set to AppleTalk (since fewer parameters are changeable). In that
instance, the RectCDEV routine changes the rectangle to be smaller.

MESSAGE 10: HitCDEV

If the CDev wants to know when a control has been hit, it can set the wantHit
bit in the CDev Flags resource. When called, the handle to the control in
question is in data1 and that control's ID is in data2. The control panel may
then take action based upon the control selection.

If you need the window pointer, you can get it from the ctlOwner field of the
control record handle in data1.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 140 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Note: If your control panel contains any extended List controls, the toolbox
automatically creates a scroll bar control for each list. These scroll bars
are standard (not extended) controls; this is the exception to the rule that
all control panel controls must be extended. When the user tracks the scroll
bar, the HitCDEV data1 parameter is a valid control handle, but data2 is an
unpredictable large value (because no control ID is available for a
non-extended control). In 6.0, the control ID returned in this case is always
$FFFFFFFF.

MESSAGE 11: RunCDEV

This routine is called if the wantRun bit in the CDev flags resource is set.
It enables control panels to receive a call as often as the Control Panels NDA
receives run events from SystemTask (currently once per second).

The control panel's window pointer is in data1. (This is true even before
6.0, but it was not previously documented.)

MESSAGE 12: EditCDEV (6.0 and later)

This routine is called if the wantEdit bit in the CDev flags resource is set,
when the user chooses Undo, Cut, Copy, Paste, or Clear from the Edit menu (if
the items have the proper item numbers), and when the user types Command-Z,
-X, -C, or -V.

The control panel's window pointer is in data2. The low word of data1
indicates what kind of edit operation is happening. The codes are the same as
what SystemEdit passes to NDAs (Toolbox Reference 1, page 5-7):

 $0005 Undo
 $0006 Cut
 $0007 Copy
 $0008 Paste
 $0009 Clear

All other codes are reserved for future use.

THE CDEV FLAGS RESOURCE

The CDEV Flags resource tells the Control Panels NDA which messages the
control panel accepts. It also tells the Control Panels NDA certain things
about the operating environment required for the CDev.

flags (+000) Word The flags word tells the Control Panels NDA
 which messages (defined in the discussion of
 the rCDevCode resource) the control panel
wants:
 Bits 15 - 12: Reserved, must be zero.
 Bit 11: wantEdit
 Control panel wants edit events.
 Bit 10: wantRun
 Control panel wants run events.
 Bit 9: wantHit
 Control panel wants control hits.
 Bit 8: wantRect
 Control panel wants rectangle
 messages.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 141 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Bit 7: wantAbout
 Control panel wants "about"
 messages.
 Bit 6: wantCreate
 Control panel wants create messages.
 Bit 5: wantEvents
 Control panel wants event records.
 Bit 4: wantClose
 Control panel wants close messages.
 Bit 3: wantInit
 Control panel wants initialization
message.
 Bit 2: wantShutDown
 Reserved, must be zero.
 Bit 1: wantBoot
 Control panel wants boot messages.
 Bit 0: wantMachine
 Control panel wants machine messages
 (6.0).
enabled (+002) Byte If this value is zero, the control panel is
 never activated. NOT USED.
version (+003) Byte An integer version number assigned by the
 author.
machine (+004) Byte This byte contains a minimum ROM version
 required for the control panel. For most
 control panels this is 1, but some
 (requiring, for example, hardware text page
 two shadowing) want 3 in this byte.
reserved (+005) Byte Reserved, must be zero.
data rect(+006) 4 Words QuickDraw II rectangle within which the
 control panel is displayed. The top left of
 this rectangle must be (0,0).
name (+014) 16 Bytes A string (Pascal) giving the name of the
 control panel. Names longer than 15 bytes
 are not allowed. Note that this field
 requires 16 bytes regardless of the string
 length.
author (+030) 33 Bytes A string (Pascal) giving the name of the
 control panel's author. Names longer than
 32 bytes are not allowed. Note that this
 field requires 33 bytes regardless of the
 string length.
version (+063) 9 Bytes A string (Pascal) giving the version of the
 control panel. Strings are typically of the
 format "v1.0". Version strings longer than
 eight bytes are not allowed. Note that this
 field requires nine bytes regardless of the
 string length.

OPENING ADDITIONAL RESOURCE FILES

The Control Panels NDA, not any individual control panel, owns the Resource
Manager search path that is in effect when a control panel routine gets
control. While handling a message, you may temporarily open additional
resources files in the same search path, but you must close them and call
SetCurResourceFile to its previous value before returning control to the
Control Panels NDA.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 142 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

There may be extra resource files in the search path that you know nothing
about, so do not assume that your extra file is adjacent to your control
panel's resource file in the search path.

COLOR TABLE SWAPPING

Since control panels generally assume the sixteen standard 640-mode dithered
colors are available, Control Panels NDA 2.0 automatically provides a standard
color table whenever the "Control Panels" window or any individual control
panel window is in front. (It ought to do the same thing for the Help and
credits windows, but it does not.)

The color table provided in 640 mode is identical to the default 640-mode
color table.

The color table provided in 320 mode provides colors almost identical to the
default 640 colors. This is not the same as the default 320-mode color table.
(See Apple IIgs Technical Note #63, Table 3.)

PROGRAMMATIC INTERFACE TO THE CONTROL PANELS NDA

You can use SendRequest in the System 6 Tool Locator to ask the Control Panels
NDA to do two things for you: Open the main window, or open a control panel
from a pathname.

You must send the requests by name to "Apple~Control Panel~".

Request code $9001 is cpOpenControlPanels. dataIn is reserved and must be
zero.

Request code $9000 is cpOpenCDev. dataIn and dataOut are as defined for the
finderSaysOpenFailed request (see the Finder 6.0 documentation). You can also
open a control panel by pathname by sending finderSaysBeforeOpen, as permitted
in the Finder documentation.

Further Reference

 o Apple IIgs Toolbox Reference, Volumes 1-3
 o System 6.0 Documentation

END OF FILE FTN.C7.XXXX

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 143 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.C8.0000
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $C8 (200)
Auxiliary Type: $0000

Full Name: Apple IIGS Font File
Short Name: Font

Written by: Matt Deatherage January 1989

Files of this type and auxiliary type contain QuickDraw II fonts.

The Apple IIGS Font Manager looks in the SYSTEM/FONTS subdirectory of the boot
volume for files with the file type $C8 and auxiliary type $0000. If it finds
files of this type and auxiliary type, the Font Manager opens them as fonts.
Files of this type and auxiliary type which are not fonts, but are in the
SYSTEM/FONTS subdirectory, are opened as fonts, and can cause a system crash.
However, the Font Manager does not treat files in this subdirectory as fonts
if their auxiliary type is not $0000.

The format of a font file is as follows:

String Font name. A Pascal string containing the font family
 name of the font, as seen in the ChooseFont dialog.
Font Immediately following the string is an Apple IIGS
 QuickDraw II Font definition, as documented beginning
 on page 16-41 of the Apple IIGS Toolbox Reference,
 Volume 2.

The only difference between a font in memory and a font file on disk is the
font family name, as a Pascal string, preceding the font definition on disk.

Further Reference

o Apple IIGS Toolbox Reference, Volume 2

END OF FILE FTN.C8.0000

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 144 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.CA.xxxx
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $CA (202)
Auxiliary Type: Reserved

Full Name: Finder Icons File
Short Name: Icons

Written by: Matt Deatherage July 1989

Files of this type and auxiliary type contain icons.

The Apple IIGS Finder keeps the icons it uses in files of type $CA. The
Finder searches for these files in a directory named Icons on each volume
mounted. Each icon contains information not only describing the icon and its
mask (both regular and "small icon" sizes), but also information to match the
icon to files from their file type, auxiliary type, and filename.

The Finder first attempts to load the file Finder.Icons from the Icons
directory on the boot disk, stopping with a fatal error if it is not present
(this file contains icons for devices as well as the icon to match files with
no other icon). It then loads other icon files from that directory, and then
from other disks.

The format of icon files is as follows:

+000 iBlkNext Long When loaded by the Finder, this is the
 handle to the next icon file (a linked
 list terminated by zero). On disk, this
 field should be zero.
+004 iBlkID Word ID number of this type of icon file. This
 field must be $0001 for the Finder to
 recognize the icon file.
+006 iBlkPath Long When loaded by the Finder, this is the
 handle to the pathname of this icon file.
 On disk, this field should be zero.
+010 iBlkName 16 Bytes A 16-byte String of the name of the icon
 file.
+026 iBlkIcons IconData A list of Icon Data records.

The format of Icon Data records is as follows:

+000 iDataLen Word The length of this Icon Data record. A
 value of zero in this field terminates the
 list of Icon Data records.
+002 iDataBoss 64 Bytes The pathname of the
 application that owns this icon. If this
 String has non-zero length, and the file

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 145 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 this icon is associated with is a document
 (not an application, folder, device, or
 trash can), the Finder attempts to launch
 a file with this pathname when this icon
 is opened or printed. This string should
 be empty for non-documents. This is a
 full pathname, and most developers
 creating icons will wish to set this to
 the full pathname of the application on
 the shipping disk.
+066 iDataName 16 Bytes A 16-byte String containing a
 file name. Files on disk must match the
 specification of this string or this icon
 will not be displayed for the files. The
 asterisk (*) serves as a wildcard
 character. For example, the string *.ASM
 matches all filenames ending with the
 characters .ASM.
+082 iDatatype Word File type associated with this icon.
 Files on disk must have this file type for
 this icon to be displayed. A file type of
 $0000 in this field matches any file type
 on disk. As an example, an application
 icon would want to have the filename of
 the application in the iDataName field and
 the file type $00B3 (GS/OS Application) in
 this field. Without the file type
 specification, the icon would show up for
 any file with the application's file name,
 including a folder on a hard disk in which
 the user has placed the application.
+084 iDataAux Word Auxiliary type associated with this icon.
 Similar to the file type field, a value of
 $0000 here matches any auxiliary type on
 disk.
+086 iDataBig Icon The normal size icon image data.
 iDataSmall Icon The small size icon image data.

The format of Icon records is the same as that listed in the QuickDraw II
Auxiliary chapter of the Apple IIGS Toolbox Reference Manual. Previous icon
structure documentation stated the iconType field of the Icon record (also
known as the imType field) had to be zero. This is no longer true; the Finder
respects color icons (bit 15 of iconType set) by not coloring the icon in
funny ways, even if the user asks for it. The Finder still does this if bit
15 of iconType says the icon is a black-and-white icon.

Further Reference

 o Apple IIGS Toolbox Reference, Volume 2
 o Apple IIGS Icon Editor

END OF FILE FTN.CA.xxxx

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 146 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.D5.0007
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $D5 (213)
Auxiliary Type: $0007

Full Name: SoundSmith Music Sequence
Short Name: SoundSmith document

Written by: Matt Deatherage March 1990

Files of this type and auxiliary type contain music sequences used by
SoundSmith.

SoundSmith is a music sequencing program that uses the full sound capabilities
of the Apple IIGS. SoundSmith uses standard Apple Sampled Instrument format
(ASIF) instruments to produce rich stereo sound with a variety of instruments.

For more information on SoundSmith, contact:

 Huibert Aalbers
 Travesía Andrés Mellado, 3
 28015 Madrid
 Spain
 Attn: SoundSmith Technical Support
 Phone: (34)-1-5446940

The File Format

SoundSmith sequences consist of a 600 byte header, followed by three equally-
sized blocks containing the notes in the sequence, the effects to be applied
to the notes, and parameters for the effects. The file concludes with 30
bytes of stereo information.

The Header

signature (+000) 6 Bytes ASCII bytes "SONGOK". An identifier
 to SoundSmith that the file is not
 corrupted.
length (+006) Word The length of each of the three
 equally-sized blocks that follow the
 header (Main, Effects1, and Effects2).
tempo (+008) Word The tempo for the song. A note is
 played each tempo/50th of a second
 (see the "Playing the Music" section
 in this Note).
instBlock1 (+020) InstBlock The instrument parameters for the first
 instrument.
instBlock2 (+050) InstBlock The instrument parameters for the second

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 147 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 instrument.
instBlock3 (+080) InstBlock The instrument parameters for the third
 instrument.
instBlock4 (+110) InstBlock The instrument parameters for the fourth
 instrument.
instBlock5 (+140) InstBlock The instrument parameters for the fifth
 instrument.
instBlock6 (+170) InstBlock The instrument parameters for the sixth
 instrument.
instBlock7 (+200) InstBlock The instrument parameters for the
 seventh instrument.
instBlock8 (+230) InstBlock The instrument parameters for the
 eighth instrument.
instBlock9 (+260) InstBlock The instrument parameters for the ninth
 instrument.
instBlock10 (+290) InstBlock The instrument parameters for the tenth
 instrument.
instBlock11 (+320) InstBlock The instrument parameters for the
 eleventh instrument.
instBlock12 (+350) InstBlock The instrument parameters for the
 twelfth instrument.
instBlock13 (+380) InstBlock The instrument parameters for the
 thirteenth instrument.
instBlock14 (+410) InstBlock The instrument parameters for the
 fourteenth instrument.
instBlock15 (+440) InstBlock The instrument parameters for the
 fifteenth instrument.
musLength (+470) Word Length of the music in SSBlocks.
musList (+472) 128 Bytes List of SSBlocks to play. Each block
 is identified by one byte
 (i.e., 0 3 5 2 2 n means play block 0,
 block 3 block 5, block 2, block 2,
 and block n respectively).

An SSBlock is 896 Bytes (64 * 14 bytes). The Main block is
composed if SSBlocks. An InstBlock is a 30-byte block of
instrument parameters defined as follows:

instName (+000) String ASCII name of the instrument to be
 used. If this is less than 22 bytes
 (21 characters plus the length byte),
 it must be padded to take 22 bytes.
reserved (+022) Word Reserved, set to zero.
volume (+024) Word Volume for this instrument. Although
 this is a word parameter, legal values
 range from 0 to 255.
reserved (+026) Word Reserved, set to zero.
reserved (+028) Word Reserved, set to zero.

The Main block

The main part of the file consists of three equally-sized blocks. The length
of each of the three parts is given by the Length field in the header; the
entire Main block is 3*Length bytes long. Bytes in each block are related to
each other positionally. For example, the first byte of the Effects1 and
Effects2 blocks contain the effects to be applied to the note in the first
byte of the Notes block.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 148 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

The first block is the Notes block. Each byte is a MIDI Note number
representing the note to play.

The second block is the Effects1 block. The high nibble of each byte
determines which instrument should be used to play the note in the
corresponding byte of the Notes block. The low nibble of each byte contains a
value to be used by each effect.

The third block is the Effects2 block, and contains values to be used for the
effects listed in the bytes of the Effects1 block.

Table 1 contains currently defined values for the effects and their values.
All values not listed are reserved and must not be used.

Effects1 byte Effects2 byte

0 = Arpegiatto 0 = no arpegiatto, $xy = increment1 of x, increment2 of y
3 = Set Volume new volume ($00 - $FF)
5 = Decrease Volume volume to subtract from instrument volume
6 = Increase Volume volume to add to instrument volume
F = Set Tempo new tempo

 Table 1-SoundSmith Effects

Stereo Data

The file ends with 30 bytes of stereo data. The data is in 15 words, one for
each instrument. A value of $0000 indicates the instrument uses the right
channel; a value of $FFFF indicates the left channel. The first word
corresponds to the first instrument, and so on.

Playing the Music

Those wishing to play the music in a SoundSmith file should use an interrupt-
driven playback routine. The routine should be called every tempo/50th of a
second. When called, the routine should read the next fourteen notes,
Effects1 and Effects2 bytes, and play them on voices 1 through 14 using the
specified instruments. Since SoundSmith provides 14 voices, you can use the
fifteenth DOC oscillator as a timer to generate the required 50 Hz interrupts.
When the note value is zero, you should do nothing (do not stop the sample).
When the note value is 128 ($80), stop the sample on that voice.

Further Reference

 o Apple IIGS Toolbox Reference, Volume 3

END OF FILE FTN.D5.0007

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 149 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.D5.xxxx
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $D5 (213)
Auxiliary Type: All

Full Name: Music Sequence File
Short Name: Music Sequence

Written by: Matt Deatherage January 1990

Files of this type and auxiliary type contain musical sequences.

Files of type $D5 contain data that is to be interpreted as a sequence of
musical notes. A musical sequence can take several forms. It can be the data
necessary for a music program to recreate the sequence aurally or visually; it
can be information that is fed through sequencing hardware to produce the
appropriate sounds; it can be a list of resource numbers that give a program
the necessary means to recreate a sequence of music. The possibilities are
virtually limitless. The most common use of sequences is to reproduce music
aurally (through sound hardware internal or external to the system) or
visually (to produce music notation on a screen or on paper).

The following auxiliary type assignments are current for this file type as of
the publication date of this Note:

 Auxiliary Type Short Name Developer

 $0000 Music Construction Set song* Electronic Arts
 $8002 Diversi-Tune Sequence DSR
 $8003 Master Tracks Jr. sequence Passport
 $8004 Music Writer document PyGraphics

 Table 1-Auxiliary Type Assignments

The auxiliary types for this file type are reserved; any not listed in this
Note or About File Type Notes must be assigned by Apple Computer, Inc. Using
any file type or auxiliary type not assigned may result in conflicting
identification of files by totally unrelated programs. To obtain an auxiliary
type assignment in this file type, see About File Type Notes.

 * Although Electronic Arts' program Music Construction Set for the
 Apple IIGS only creates sequences of this file type and auxiliary
 type $0000, the program actually attempts to read any file with
 type $D5. Creators of sequence files may wish to note this
 irregularity in their documentation.

END OF FILE FTN.D5.xxxx

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 150 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.D6.xxxx
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $D6 (214)
Auxiliary Type: All

Full Name: Instrument File
Short Name: Instrument

Written by: Matt Deatherage January 1990

Files of this type and auxiliary type contain musical instruments.

Files of type $D6 contain data that is to be interpreted as a definition of a
musical instrument. Programs which work with music have widely varying needs;
while Apple proposes a standard instrument definition (ASIF), it is largely
designed for the Apple IIGS Note Synthesizer and is listed under file type
$D8, Sampled Sound. Programs not using that tool may require files to store
their own instruments. Apple assigns auxiliary types in this file type for
such purposes.

The following auxiliary type assignments are current for this file type as of
the publication date of this Note:

 Auxiliary Type Short Name Developer

 $0000 Music Construction Set inst.* Electronic Arts
 $8002 Diversi-Tune instrument DSR

 Table 1-Auxiliary Type Assignments

The auxiliary types for this file type are reserved; any not listed in this
Note or About File Type Notes must be assigned by Apple Computer, Inc. Using
any file type or auxiliary type not assigned may result in conflicting
identification of files by totally unrelated programs. To obtain an auxiliary
type assignment in this file type, see About File Type Notes.

 * Although Electronic Arts' program Music Construction Set for the
 Apple IIGS only creates sequences of this file type and auxiliary
 type $0000, the program actually attempts to read any file with
 type $D6. Creators of sequence files may wish to note this
 irregularity in their documentation.

END OF FILE FTN.D6.xxxx

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 151 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.D7.xxxx
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $D7 (215)
Auxiliary Type: All

Full Name: MIDI file
Short Name: MIDI data

Written by: Matt Deatherage January 1990

Files of this type and auxiliary type contain data for a Musical Instrument
Digital Interface (MIDI) peripheral.

Files of type $D7 contain data that conforms to the MIDI standard as defined
by the International MIDI Association. All data contained in files of this
type must follow that standard.

Although absolutely anything MIDI can fit in a standard MIDI file, developers
may wish to store peripheral-specific or system-specific information in a file
with a different auxiliary type for easier manipulation of the data. For
example, if you were to write a program to control a Matthew IOP-1 Fabulo-
Synth, you might wish to store the MIDI System Exclusive (SysEx) messages in a
file with a distinctive auxiliary type. In doing so, not only could you find
the information to control the Fabulo-Synth more quickly and conveniently, but
other applications could also know not to even waste time presenting the file
to their users for use on other peripherals. This capability is obviously not
desirable to all creators of MIDI applications; however, Apple assigns
auxiliary types to allow you the choice.

The following auxiliary type assignments are current for this file type as of
the publication date of this Note:

 Auxiliary Type Short Name Developer

 $0000 MIDI standard data IMA
 $8001 Master Tracks Pro SysEx file PassPort

 Table 1-Auxiliary Type Assignments

The auxiliary types for this file type are reserved; any not listed in this
Note or About File Type Notes must be assigned by Apple Computer, Inc. Using
any file type or auxiliary type not assigned may result in conflicting
identification of files by totally unrelated programs. To obtain an auxiliary
type assignment in this file type, see About File Type Notes.

END OF FILE FTN.D7.xxxx

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 152 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.D8.0000
###

Apple II
File Type Notes

 Developer Technical Support
File Type: $D8 (216)
Auxiliary Type: $0000

Full Name: Audio Interchange File Format File
Short Name: Audio IFF File

Written by: Matt Deatherage March 1989

Files of this type and auxiliary type contain sampled sounds in Apple
Computer's Audio Interchange File Format (Audio IFF).

The Audio Interchange File Format (Audio IFF) provides a standard for storing
sampled sounds. The format is quite flexible, allowing the storage of
monaural or multichannel sampled sounds at a variety of sample rates and
sample widths.

This Note describes version 1.3 (January 4, 1989) of the Audio Interchange
File Format. This Note describes Audio IFF as it pertains to Apple II
developers. For a copy of the original Audio IFF specification, you may order
"Audio Interchange File Format v. 1.3" from APDA.

Audio IFF conforms to the "EA IFF 85" Standard for Interchange Format Files
developed by Electronic Arts.

Audio IFF is primarily an interchange format, although application designers
should find it flexible enough to use as a data storage format as well. If an
application does choose to use a different storage format, it should be able
to convert to and from the format defined in this document. This ability to
convert will facilitate the sharing of sound data between applications.

Audio IFF is the result of several meetings held with music developers over a
period of ten months during 1987 and 1988. Apple Computer greatly appreciates
the comments and cooperation provided by all developers who helped define this
standard.

Another "EA IFF 85" sound storage format is "8SVX" IFF 8-bit Sampled Voice, by
Electronic Arts. "8SVX," which handles eight-bit monaural samples, is
intended mainly for storing sound for playback on personal computers. Audio
IFF is intended for use with a larger variety of computers, sampled sound
instruments, sound software applications, and high fidelity recording devices.

The official name for this standard is Audio Interchange File Format. If an
application program needs to present the name of this format to a user, such
as in a "Save As..." dialog box, the name can be abbreviated to Audio IFF.
Although the Apple IIGS Sampled Instrument format is often abbreviated as
"ASIF," referring to Audio IFF files by a four-letter abbreviation (i.e.,
"AIFF") in user-level documentation or program-generated messages should be
avoided.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 153 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

The Chunk Concept

The "EA IFF 85" Standard for Interchange Format Files defines an overall
structure for storing data in files. Audio IFF conforms to the "EA IFF 85"
standard. This Note describes those portions of "EA IFF 85" that are germane
to Audio IFF. For a more complete discussion of "EA IFF 85," please refer to
"EA IFF 85" Standard for Interchange Format Files.

Audio IFF, like all IFF-style storage formats, is a series of discrete pieces,
or "chunks." Each chunk has an eight-byte "header," which is as follows:

ckID 4 Bytes The ID for this chunk. These four bytes must be
 ASCII characters in the range $20-$7F.
 Spaces may not precede printing
 characters, although trailing spaces are
 allowed. Characters outside the range
 $20-$7F are forbidden. A program can
 determine how to interpret the chunk data
 by examining ckID.
ckSize Rev. Long The length of this chunk, excluding ckSize and
 cdID. You may think of this value as the
 offset to the end of the chunk. Note that
 this is a Reverse Long; the bytes are
 stored high byte first.
ckData Chunk The data, specific to each individual chunk. There
 are exactly ckSize bytes of data here. If
 the length of the chunk is odd, a pad byte
 of $00 must be added at the end. The pad
 byte is not included in ckSize.

Since Audio IFF is primarily an interchange format, it will come as no
surprise to find that all constants, such as each chunk's ckSize field, are
stored in reverse format (the bytes of multiple-byte values are stored with
the high-order bytes first). This is true for all constants, which are marked
in their individual descriptions by the Reverse notation.

Note: All numeric values in this Note are signed unless otherwise
 noted. This is different from the normal File Type Note
 convention.

An Audio IFF file is a collection of a number of different types of chunks.
There is a Common Chunk which contains important parameters describing the
sampled sound, such as its length and sample rate. There is a Sound Data
Chunk which contains the actual audio samples. There are several other
optional chunks which define markers, list instrument parameters, store
application-specific information, etc. All of these chunks are described in
detail in this Note.

File Structure

The chunks in an Audio IFF file are grouped together in a container chunk.
"EA IFF 85" Standard for Interchange Format Files defines a number of
container chunks, but the one used by Audio IFF is called a FORM. A FORM has
the following format:

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 154 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

ckID 4 Bytes The ID for this chunk. These four bytes must be
 "FORM."
ckSize Rev. Long The length of this chunk, excluding ckSize and
 cdID. You may think of this value as the
 offset to the end of the chunk. Note that
 this is a Reverse Long; the bytes are
 stored high byte first. Also note that
 the data portion of the chunk is broken
 into two parts, formType and chunks.
formType 4 Bytes Describes what's in the FORM chunk. For Audio
 IFF files, formType is always "AIFF."
 This indicates that the chunks within the
 FORM pertain to sampled sound. A FORM
 chunk of formType AIFF is called a FORM
 AIFF.
chunks Bytes The chunks contained within the FORM. These chunks
 are called local chunks. A FORM AIFF
 along with its local chunks make up an
 Audio IFF file.

Figure 1 is a pictorial representation of a simple Audio IFF file. It
consists of a single FORM AIFF which contains two local chunks, a Common
Chunk, and a Sound Data Chunk.

 | FORM AIFF Chunk |
 | chkID = 'FORM' |
 | formType = 'AIFF' |
 | __________________ |
 | | Common Chunk | |
 | | ckID = 'COMM' | |
 | |__________________| |
 | __________________ |
 | | Sound Data Chunk | |
 | | ckID = 'SSND' | |
 | |__________________| |
 |__________________________|

 Figure 1-Simple Audio IFF File

There are no restrictions on the ordering of local chunks within a FORM AIFF.

The FORM AIFF is stored in a file with file type $D8 and auxiliary type $0000.
Versions 1.2 and earlier of the Audio IFF standard used file type $CB and
auxiliary type $0000. This is incorrect; the assignment listed in this Note
is the correct assignment. Applications which use Audio IFF files with the
older assignment should not perform adversely, since no one should be creating
files of any kind with the older assignment. However, we strongly urge
developers to update their applications as soon as possible to only create
Audio IFF files with file type $D8 and auxiliary type $0000.

Audio IFF files may be identified in other file systems as well. On a
Macintosh under MFS or HFS, the FORM AIFF is stored in the data fork of a file
with file type "AIFF." This is the same as the formType of the FORM AIFF.

Note: Applications should not store any data in the resource fork of
 an Audio IFF file, since this information may not be preserved by
 all applications or in translation to foreign file systems.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 155 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Applications can use the Application Specific Chunk, described
 later in this Note, to store extra information specific to their
 application.

In file systems that use file extensions, such as MS-DOS or UNIX, it is
recommended that Audio IFF file names have the extension ".AIF."

A more detailed visual example of an Audio IFF file may be found later in this
Note. Please refer to it as often as necessary while reading the remainder of
this Note.

Local Chunk Types

The formats of the different local chunk types found within a FORM AIFF are
described in the following sections, as are their ckIDs.

There are two types of chunks: required and optional. The Common Chunk is
required. The Sound Data chunk is required if the sampled sound has a length
greater than zero. All other chunks are optional. All applications that use
FORM AIFF must be able to read the required chunks and can choose to
selectively ignore the optional chunks. A program that copies a FORM AIFF
should copy all the chunks in the FORM AIFF, even those it chooses not to
interpret the optional chunks.

To ensure that this standard remains usable by all developers across machine
families, only Apple Computer, Inc. should define new chunk types for FORM
AIFF. If you have suggestions for new chunk types, Apple is happy to listen.
Please send all comments to the address listed in "About File Type Notes" to
the attention of Audio IFF Suggestions.

The Common Chunk

The Common Chunk describes fundamental parameters of the sampled sound.

ckID 4 Bytes The ID for this chunk. These four bytes must be
 "COMM."
ckSize Rev. Long The length of this chunk, excluding ckSize and
 cdID. For the Common Chunk, this is
 always 18.
numChannels The number of audio channels for the
Rev. Word sound. A value of 1 means monophonic
 sound, 2 means stereo, 4 means four-
 channel sound, and so on. Any number of
 audio channels may be represented. The
 actual sounds samples are stored in the
 Sound Data Chunk.
numSampleFrames The number of sample frames in the Sound Data
Rev. Unsigned Long Chunk. Sample frames are described below.
 Note that numSampleFrames is the number of
 sample frames, not the number of bytes nor the
 number of sample points (also described
 below) in the Sound Data Chunk. The total
 number of sample points in the file is
 numSampleFrames multiplied by numChannels.
sampleSize Rev. Word The number of bits in each sample point.
 This can be any number from 1 to 32.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 156 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

sampleRate The sample Rate at which the sound is
Rev. Extended to be played back, in sample frames per
 second.

One, and only one, Common Chunk is required in every FORM AIFF.

Sample Points and Sample Frames

A large part of interpreting Audio IFF files revolves around the two concepts
of sample points and sample frames.

A sample point is a value representing a sample of a sound at a given point in
time. A sample point may be from 1 to 32 bits wide, as determined by
sampleSize in the Common Chunk. Sample points are stored in an integral
number of contiguous bytes. One- to eight-bit wide sample points are stored
in one byte, 9- to 16-bit wide sample points are stored in two bytes, 17- to
24-bit wide sample points are stored in three bytes, and 25- to 32-bit wide
sample points are stored in four bytes (most significant byte first). When
the width of a sample point is not a multiple of eight bits, the sample point
data is left justified, with the remaining bits zeroed. An example case is
illustrated in Figure 2. A 12-bit sample point, binary 101000010111, is
stored left justified in two bytes. The remaining bits are set to zero.

 ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___
 | | | | | | | | | | | | | | | | |
 | 1 0 1 0 0 0 0 1 | 0 1 1 1 0 0 0 0 |
 |___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|
 <---> <------------->
 12 bit sample point is left justified rightmost
 4 bits are
 zero padded

 Figure 2-A 12-Bit Sample Point

Sample frames are sets of sample points which are interleaved for multichannel
sound. Single sample points from each channel are interleaved such that each
sample frame is a sample point from the same moment in time for each channel
available. This is illustrated in Figure 3 for the stereo (two channel) case.

 sample sample sample
 frame 0 frame 1 frame N
 _____ _____ _____ _____ _____ _____
 | ch1 | ch2 | ch1 | ch2 | . . . | ch1 | ch2 |
 |_____|_____|_____|_____| |_____|_____|

 | | = one sample point
 |_____|

 Figure 3-Sample Frames for Multichannel Sound

For monophonic sound, a sample frame is a single sample point. For
multichannel sounds, you should follow the conventions in Figure 4.

 channel
 1 2 3 4 5 6
 __________ __________ __________ __________ __________ __________
 | left | right | | | | |

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 157 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

stereo | | | | | | |
 |__________|__________|__________|__________|__________|__________|
 | left | right | center | | | |
3 channel | | | | | | |
 |__________|__________|__________|__________|__________|__________|
 | front | front | rear | rear | | |
quad | left | right | left | right | | |
 |__________|__________|__________|__________|__________|__________|
 | left | center | right | surround | | |
4 channel | | | | | | |
 |__________|__________|__________|__________|__________|__________|
 | left | left | center | right | right | surround |
6 channel | | center | | | center | |
 |__________|__________|__________|__________|__________|__________|

 Figure 4-Sample Frame Conventions for Multichannel Sound

Note: Portions of Figure 4 do not follow the Apple IIGS standard of
 right on even channels and left on odd channels. The portions
 that do follow this convention usually use channel two for right
 instead of channel zero as most Apple IIGS standards. Be prepared
 to interpret data accordingly.

Sample frames are stored contiguously in order of increasing time. The sample
points within a sample frame are packed together; there are no unused bytes
between them. Likewise, the sample frames are packed together with no pad
bytes.

The Sound Data Chunk

The Sound Data Chunk contains the actual sample frames.

ckID 4 Bytes The ID for this chunk. These four bytes must be
 "SSND."
ckSize Rev. Long The length of this chunk, excluding ckSize and
 cdID.
offset Determines where the first sample
Rev. Unsigned Long frame in the soundData starts, in bytes.
 Most applications will not use offset and
 should set it zero. Use for a non-zero
 offset is explained below.
blockSize Used in conjunction with offset
Rev. Unsigned Long for block-aligning sound data. It
 contains the size in bytes of the blocks
 to which soundData is aligned. As with
 offset, most applications will not use
 blockSize and should set it to zero. More
 information on blockSize is given below.
soundData Bytes Contains the actual sample frames that make up
 the sound. The number of sample frames in
 the soundData is determined by the
 numSampleFrames parameter in the Common
 Chunk.

The Sound Data Chunk is required unless the numSampleFrames field in the
Common Chunk is zero. A maximum of one Sound Data Chunk may appear in a FORM
AIFF.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 158 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Block-Aligning Sound Data

There may be some applications that, to ensure real time recording and
playback of audio, wish to align sampled sound data with fixed-size blocks.
This alignment can be accomplished with the offset and blockSize parameters of
the Sound Data Chunk, as shown in Figure 5.

 ____________ __________________________________ ____________
 |\\ unused \\| sample frames |\\ unused \\|
 |____________|__________________________________|____________|
 <-- offset --><- numSampleFrames sample frames ->

 | blockSize | | | |
 |<- bytes ->| | | |
 |_______________|_______________|_______________|_______________|
 block N-1 block N block N+1 block N+2

 Figure 5-Block-Aligned Sound Data

In Figure 5, the first sample frame starts at the beginning of block N. This
is accomplished by skipping the first offset bytes of the soundData. Note
too, that the soundData bytes can extend beyond valid sample frames, allowing
the soundData bytes to end on a block boundary as well.

The blockSize specifies the size in bytes of the block to which you would
align the sound data. A blockSize of zero indicates that the sound data does
not need to be block-aligned. Applications that don't care about block
alignment should set the blockSize and offset to zero when creating Audio IFF
files. Applications that write block-aligned sound data should set blockSize
to the appropriate block size. Applications that modify an existing Audio IFF
file should try to preserve alignment of the sound data, although this is not
required. If an application does not preserve alignment, it should set the
blockSize and offset to zero. If an application needs to realign sound data
to a different sized block, it should update blockSize and offset accordingly.

The Marker Chunk

The Marker Chunk contains markers that point to positions in the sound data.
Markers can be used for whatever purposes an application desires. The
Instrument Chunk, defined later in this Note, uses markers to mark loop
beginning and end points.

ckID 4 Bytes The ID for this chunk. These four bytes must be
 "MARK."
ckSize Rev. Long The length of this chunk, excluding ckSize and
 cdID.
numMarkers The number of markers (defined
Rev. Unsigned Word below) in the Marker Chunk. If non-zero,
 this is followed by the markers
 themselves. Because all fields in a
 marker are an even number of bytes, the
 length of any marker will always be even.
 Thus, markers are packed together with no
 unused bytes between them, although the
 markers themselves need not be ordered in
 any particular manner.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 159 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Marker Markers Defined below.

A marker has the following format:

MarkerID Rev. Word The ID for this marker. This is a number
 that uniquely identifies the marker within
 a FORM AIFF. The number can be any
 positive, non-zero integer, as long as no
 other marker within the same FORM AIFF has
 the same ID.

position Determines the marker's position
Rev. Unsigned Long in the sound data. Markers conceptually
 fall between two sample frames. A marker
 that falls before the first sample frame
 in the sound data is at position zero,
 while a marker that falls between the
 first and second sample frame in the sound
 data is at position one. Units for
 position are sample frames, not bytes nor
 sample points.
markerName Pascal-type string containing the name of the
String mark.

 Sample Frames
 ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___
 | | | | | | | | | | | | |
 |___|___|___|___|___|___|___|___|___|___|___|___|
 ^ ^ ^
 position 0 position 5 position 12

 Figure 6-Sample Frame Marker Positions

Note: Some "EA IFF 85" files store strings as C-style strings (null
 terminated). Audio IFF uses Pascal-style (length byte) strings
 because they are easier to skip over when scanning a file or a
 chunk.

The Marker Chunk is optional. No more than one Marker Chunk can appear in a
FORM AIFF.

The Instrument Chunk

The Instrument Chunk defines basic parameters that an instrument, such as a
sample, could use to play the sound data.

ckID 4 Bytes The ID for this chunk. These four bytes must be
 "INST."
ckSize Rev. Long The length of this chunk, excluding ckSize and
 cdID. For the Instrument Chunk, this
 field is always 20.
baseNote Byte The note at which the instrument plays the sound
 data without pitch modification. Units
 are MIDI (Musical Instrument Digital
 Interface) note numbers, and are in the
 range 0 through 127. Middle C is 60.
detune Byte Determines how much the instrument should alter the

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 160 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 pitch of the sound when it is played .
 Units are cents (1/100 of a semitone), and
 range from -50 to +50. Negative numbers
 mean that the pitch of the sound should be
 lowered, while positive numbers mean that
 it should be raised.
lowNote Byte Suggested lowest note on a keyboard for playback of
 the sound data. The sound data should be
 played if the instrument is requested to
 play a note between the lowNote and
 highNote, inclusive. The base note does
 not have to be within this range. Units
 for lowNote and highNote are MIDI note
 values.
highNote Byte Suggested highest note on a keyboard for playback
 of the sound data. See the description of
 lowNote above.
lowVelocity Byte The low end of the suggested range of
 velocities for playback of the sound data.
 The sound data should be played if the
 note-on velocity is between lowVelocity
 and highVelocity, inclusive. Units are
 MIDI velocity values, 1 (lowest velocity)
 through 127 (highest velocity).
highVelocity Byte The high end of the suggested range of
 velocities for playback of the sound data.
 See the description of lowVelocity above.
gain Rev. Word The amount by which to change the gain of the
 sound when it is played. Units are
 decibels. For example, 0 dB means no
 change, 6 dB means double the value of
 each sample point, while -6 dB means halve
 the value of each sample point.
sustainLoop Loop A loop that is to be played when an instrument
 is sustaining a sound. The format of
 loops is described below.
releaseLoop Loop A loop that is to be played when an instrument
 is in the release phase of playing back a
 sound. The release phase usually occurs
 after a key on an instrument is released.
 The format of loops is described below.

Loops

Sound data can be looped, allowing a portion of the sound to be repeated to
lengthen the sound. A loop is marked with two points, a begin position and an
end position. There are two ways to play a loop, forward looping and
forward/backward looping. In the case of forward looping, playback begins at
the beginning of the sound, continues past the begin position and continues to
the end position, at which point playback starts again at the begin position.
The segment between the begin and end positions, called the loop segment, is
played repeatedly until interrupted by a user action, such as the release of a
key on a sampling instrument.

 ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___
 sample frames | | | |<--- loop segment ---->| | | |
 |___|___|___|___|___|___|___|___|___|___|___|___|

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 161 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 ^ ^
 begin position end position

 Figure 7-Sample Frame Looping

With forward/backward looping, the loop segment is first played from the begin
position to the end position, and then played backwards from the end position
to the begin position. This flip-flop pattern is repeated over and over again
until interrupted.

The following structure describes a loop:

playMode Rev. Word The type of looping to be performed.
 0 = no looping
 1 = Forward looping
 2 = Forward/Backward looping
 If 0 is specified, the loop points are
 ignored during playback.
beginLoop Rev. Word A Marker ID of the marker to the begin
 position.
endLoop Rev. Word A Marker ID of the marker to the end
 position. The begin position must be less
 than the end position. If this is not the
 case, the loop segment has zero or
 negative length and no looping occurs.

The Instrument Chunk is optional. No more than one Instrument Chunk can
appear in a FORM AIFF.

ASIF Note: The Apple IIGS Sampled Instrument Format also defines a
 chunk with ID of "INST," which is not the same as the Audio
 IFF Instrument Chunk. A good way to tell the two chunks
 apart in generic IFF-style readers is by the ckSize fields.
 The Audio IFF Instrument Chunk's ckSize field is always 20,
 whereas the Apple IIGS Sampled Instrument Format Instrument
 Chunk's ckSize field, for structural reasons, can never be
 20.

The MIDI Data Chunk

The MIDI Data Chunk can be used to store MIDI data. Please refer to Musical
Instrument Digital Interface Specification 1.0, available from the
International MIDI Association, for more details on MIDI.

The primary purpose of this chunk is to store MIDI System Exclusive messages,
although other types of MIDI data can be stored in the block as well. As more
instruments come to market, they will likely have parameters that have not
been included in the Audio IFF specification. The MIDI System Exclusive
messages for these instruments may contain many parameters that are not
included in the Instrument Chunk. For example, a new sampling instrument may
have more than the two loops defined in the Instrument Chunk. These loops
will likely be represented in the MIDI System Exclusive message for the new
machine. This MIDI System Exclusive message can be stored in the MIDI Data
Chunk.

ckID 4 Bytes The ID for this chunk. These four bytes must be
 "MIDI."

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 162 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

ckSize Rev. Long The length of this chunk, excluding ckSize and
 cdID.
MIDIdata A stream of MIDI Data.
Unsigned Bytes

The MIDI Data Chunk is optional. Any number of MIDI Data Chunks may exist in
a FORM AIFF. If MIDI System Exclusive messages for several instruments are to
be stored in a FORM AIFF, it is better to use one MIDI Data Chunk per
instrument than one big MIDI Data Chunk for all of the instruments.

The Audio Recording Chunk

The Audio Recording Chunk contains information pertinent to audio recording
devices.

ckID 4 Bytes The ID for this chunk. These four bytes must be
 "AESD."
ckSize Rev. Long The length of this chunk, excluding ckSize and
 cdID. For the Audio Recording Chunk, this
 value is always 24.
AESChannelStatusData These 24 bytes are specified in
24 Bytes the AES Recommended Practice for Digital
 Audio Engineering--Serial Transmission
 Format for Linearly Represented Digital
 Audio Data, section 7.1, Channel Status
 Data. This document describes a format
 for real-time digital transmission of
 digital audio between audio devices. This
 information is duplicated in the Audio
 Recording Chunk for convenience. Bits 2,
 3, and 4 of byte zero are of general
 interest as they describe recording
 emphasis.

The Audio Recording Chunk is optional. No more than one Audio Recording Chunk
may appear in a FORM AIFF.

The Application Specific Chunk

The Application Specific Chunk can be used for any purposes whatsoever by
developers and application authors. For example, an application that edits
sounds might want to use this chunk to store editor state parameters such as
magnification levels, last cursor position, etc.

ckID 4 Bytes The ID for this chunk. These four bytes must be
 "APPL."
ckSize Rev. Long The length of this chunk, excluding ckSize and
 cdID. For the Audio Recording Chunk, this
 value is always 24.
OSType 4 Bytes Identifies a particular application. For Apple
 II applications, these four bytes should
 always be 'pdos' ($70 $64 $6F $73). In
 this case, the beginning of the data area
 is defined to be a Pascal string
 containing the name of the application.
 For Macintosh applications, this is simply

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 163 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 the four-character signature as registered
 with Developer Technical Support.
AppSignature String Pascal string identifying the application.
data Bytes Data specific to the application.

Note: AppSignature does not exist unless OSType is "pdos." In all
 other cases, the data area starts immediately following the OSType
 field.

The Application Specific Chunk is optional. Any number of Application
Specific Chunks may exist in a single FORM AIFF.

The Comments Chunk

The Comments Chunk is used to store comments in the FORM AIFF. "EA IFF 85"
has an Annotation Chunk (used in ASIF) that can be used for comments, but the
Comments Chunk has two features not found in the "EA IFF 85" chunk. They are
a time-stamp for the comment and a link to a marker.

ckID 4 Bytes The ID for this chunk. These four bytes must be
 "COMT."
ckSize Rev. Long The length of this chunk, excluding ckSize and
 cdID.
numComments The number of comments in the
Rev. Unsigned Word Comments Chunk. This is followed by the
 comments themselves. Comments are always
 an even number of bytes in length, so
 there is no padding between comments in
 the Comments Chunk.
Comment Comment The comments. There are numComments of them.

The format of a comment is described below:

timeStamp Rev. Unsigned Long Indicates when the comment was
 created. Units are the number of seconds
 since 12:00 a.m. (midnight), January 1,
 1904. This is the standard Macintosh time
 format. Macintosh routines to manipulate
 this time stamp may be found in Inside
 Macintosh, Volume II.

Note: The routine to convert timeStamp into a standard GS/OS date,
 as described in the Audio IFF 1.3 specification, is not available
 at this time.

marker Rev. Word A Marker ID. If this comment is linked to a
 marker (to store a long description of a
 marker as a comment, for example), this is
 the ID of that marker. Otherwise marker
 is zero, indicating there is no such link.
count Rev. Word Count of the number of characters in the
 following text. By using a word instead
 of a byte, much larger comments may be
 created.
text Bytes The comment itself. If the text is an odd
 number of bytes in length, it must be padded
 with a zero byte to ensure that it is an even

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 164 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 number of bytes in length. If the pad
 byte is present, it is not included in
 count.

The Comments Chunk is optional. No more than one Comments Chunk may appear in
a single FORM AIFF.

The Text Chunks

These four chunks are included in the definition of every "EA IFF 85" file.
All are text chunks; their data portion consists solely of text. Each of
these chunks is optional.

The Name Chunk

This chunk names the sampled sound.

ckID 4 Bytes The ID for this chunk. These four bytes must be
 "NAME."
ckSize Rev. Long The length of this chunk, excluding ckSize and
 cdID.
Name Bytes ASCII characters ($20-$7F) representing the name.
 There should be ckSize characters.

No more than one Name Chunk may exist within a FORM AIFF.

The Author Chunk

This chunk can be used to identify the creator of a sampled sound.

ckID 4 Bytes The ID for this chunk. These four bytes must be
 "AUTH."
ckSize Rev. Long The length of this chunk, excluding ckSize and
 cdID.
author Bytes ASCII characters ($20-$7F) representing the name of
 the author of the sampled sound. There
 should be ckSize characters.

No more than one Author Chunk may exist within a FORM AIFF.

The Copyright Chunk

The Copyright Chunk contains a copyright notice for the sound. The copyright
contains a date followed by the copyright owner. The chunk ID "(c) " serves
as the copyright character ((C)). For example, a Copyright Chunk containing
the text "1989 Apple Computer, Inc." means "(C) 1989 Apple Computer, Inc."

ckID 4 Bytes The ID for this chunk. These four bytes must be
 "(c) ."
ckSize Rev. Long The length of this chunk, excluding ckSize and
 cdID. You may think of this value as the
 offset to the end of the chunk.
notice Bytes ASCII characters ($20-$7F) representing a copyright
 notice for the voice or collection of
 voices. There should be ckSize
 characters.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 165 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

No more than one Copyright Chunk may exist within a FORM AIFF.

The Annotation Chunk

Use of this comment is discouraged within FORM AIFF. The more powerful
Comments Chunk should be used instead.

ckID 4 Bytes The ID for this chunk. These four bytes must be
"ANNO."
ckSize Rev. Long The length of this chunk, excluding ckSize and
 cdID. You may think of this value as the
 offset to the end of the chunk. Note that
 this is a Reverse Long; the bytes are
 stored high byte first.
author Bytes ASCII characters ($20-$7F) representing the name of
 the author of the voices or collection of
 voices. There should be ckSize
 characters.

Many Annotation Chunks may exist within a FORM AIFF.

Chunk Precedence

Several of the local chunks for FORM AIFF may contain duplicate information.
For example, the Instrument Chunk defines loop points and MIDI System
Exclusive data in the MIDI Data Chunk may also define loop points. What
happens if these loop points are different? How is an application supposed to
loop the sound? Such conflicts are resolved by defining a precedence for
chunks. This precedence is illustrated in Figure 8.

 Common Chunk Highest Precedence
 |
 Sound Data Chunk
 |
 Marker Chunk
 |
 Instrument Chunk
 |
 Comment Chunk
 |
 Name Chunk
 |
 Author Chunk
 |
 Copyright Chunk
 |
 Annotation Chunk
 |
 Audio Recording Chunk
 |
 MIDI Data Chunk
 |
 Application Specific Chunk Lowest Precedence

 Figure 8-Chunk Precedence

The Common Chunk has the highest precedence, while the Application Specific

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 166 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Chunk has the lowest. Information in the Common Chunk always takes precedence
over conflicting information in any other chunk. The Application Specific
Chunk always loses in conflicts with other chunks. By looking at the chunk
hierarchy, for example, one sees that the loop points in the Instrument Chunk
take precedence over conflicting loop points found in the MIDI Data Chunk.

It is the responsibility of applications that write data into the lower
precedence chunks to make sure that the higher precedence chunks are updated
accordingly.

Figure 9 (on the following page) illustrates an example of a FORM AIFF. An
Audio IFF file is simple a file containing a single FORM AIFF. The FORM AIFF
is stored in the data fork of file systems that can handle resource forks.

Further Reference

 o Inside Macintosh, Volume II
 o Apple Numerics Manual, Second Edition
 o File Type Note File Type $D8, Auxiliary Type $0002, Apple IIGS Sampled
 Instrument Format
 o Audio Interchange File Format v1.3 (APDA)
 o AES Recommended Practice for Digital Audio Engineering--Serial
 Transmission Format for Linearly Represented Digital Audio Data, Audio
 Engineering Society, 60 East 42nd Street, New York, NY 10165
 o MIDI: Musical Instrument Digital Interface, Specification 1.0, the
 International MIDI Association.
 o "EA IFF 85" Standard for Interchange Format Files (Electronic Arts)
 o "8SVX" IFF 8-bit Sampled Voice (Electronic Arts)

 | FORM AIFF |
 | _____________ |
 | ckID |_ 'FORM' ____| | | | | | | | | | | | |
 | ckSize |_ 176516 ____| |
 | _____________ formType |_ 'AIFF' ____| __________________________ |
 | | Common ckID |_ 'COMM' ____| | |
 | | Chunk ckSize |_ 18 ________| | |
 | | numChannels |_ 2 ___|_____ | |
 | | numSampleFrames |_ 88200 _____| | |
 | | sampleSize |_ 16 __|_______________________________ | |
 | |___________ sampleRate |_ 44100.00 ____________________________| | |
 | | Marker ckID |_ 'MARK' _____| | |
 | | Chunk ckSize |_ 34 _________| | |
 | | numMarkers |_ 2 ___| | |
 | | id |_ 1 ___|_______ | |
 | | position |_ 44100 ___ ___|___ ___ ___ ___ ___ ___ | |
 | | markerName | 8 |'b'|'e'|'g'|' '|'l'|'o'|'o'|'p'| 0 | | |
 | | id |_ 2 ___|_______ | |
 | | position |_ 88200 _______|___ ___ ___ ___ ___ ___ | |
 | |___________ markerName | 8 |'e'|'n'|'d'|' '|'l'|'o'|'o'|'p'| 0 | | |
 | | Instrument ckID |_ 'INST' ______| | |
 | | Chunk ckSize |_ 20 __________| | |
 | | baseNote | 60| | |
 | | detune | -3| | |
 | | lowNote | 57| | |
 | | highNote | 63| | |

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 167 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 | | lowVelocity | 1 | | | | | | |
 | | highVelocity |127|__ | |
 | | gain |_ 6 __| | |
 | | sustainLoop.playMode |_ 1 __| | |
 | | sustainLoop.beginLoop |_ 1 __| | |
 | | sustainLoop.endLoop |_ 2 __| | |
 | | releaseLoop.playMode |_ 0 __| | |
 | | releaseLoop.beginLoop |_ - __| | |
 | |__ releaseLoop.endLoop |_ - __|__________________________________| |
 | | Sound ckID |_ 'SSND' ______| | |
 | | Data ckSize |_ 176408 ______| | |
 | | Chunk offset |_ 0 ___________| | |
 | | blockSize |_ 0 ___________| _______ _______ | |
 | | soundData |_ch 1 _|_ch 2 _| . . . |_ch 1 _|_ch 2 _| | |
 | | first sample frame 88200th sample frame | |
 | |___| |
 |___|

 Figure 9-Sample FORM AIFF

END OF FILE FTN.D8.0000

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 168 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.D8.0002
###

Apple II
File Type Notes

 Developer Technical Support
File Type: $D8 (216)
Auxiliary Type: $0002

Full Name: Apple IIGS Sampled Instrument File
Short Name: ASIF File

Written by: John Worthington & Matt Deatherage March 1989

Files of this type and auxiliary type contain instruments in the Apple IIGS
Sampled Instrument Format (ASIF).

The Apple IIGS Sampled Instrument Format (ASIF) is the standard format used
for storing Apple IIGS Sampled Instruments on disk. All sampled instruments
supplied by Apple for the Apple IIGS Note Synthesizer will use this format.
Likewise, all utilities supporting Note Synthesizer sampled instruments will
also use this format.

ASIF is designed around the needs of the current Apple IIGS Note Synthesizer
and Apple IIGS sound hardware. While the format of ASIF (especially INST
chunks) is greatly influenced by the Note Synthesizer, the information may be
sufficient for other sampled sound synthesizers to accurately render the
sound.

Most instrument files for the Apple IIGS have a ProDOS file type of $D6. ASIF
files are instead identified as file type $D8, auxiliary type $0002 because of
their sampled nature. All other instruments for the the Apple IIGS will be
identified by file type $D6.

Note: Earlier ASIF documentation, not widely circulated, defined
 ASIF files as file type $CA, auxiliary type $8000. As documented
 in this Note, ASIF has been reassigned to file type $D8 and
 auxiliary type $0002. Applications which read files based on the
 old file type and auxiliary type should not perform adversely,
 since no other application should be creating files with that
 combination. However, we strongly urge developers to create ASIF
 files with file type $D8 and auxiliary type $0002 only. We
 further encourage developers to revise existing programs to use
 this new assignment at their earliest convenience.

ASIF files conform to the "EA IFF 85" Standard for Interchange Format Files
developed by Electronic Arts. Electronic Arts additionally has some public
domain code available for reading and writing IFF files.

ASIF is provided more for compatibility than for interchange. It is a highly
Apple IIGS specific file format. Those wishing the highest level of sampled
sound compatibility across programs and CPUs should use Audio Interchange File
Format (Audio IFF). Audio IFF is documented in Apple II File Type Note for
file type $D8, auxiliary type $0000.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 169 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

This Note defines the required chunks INST and WAVE, as well as the optional
("NAME"), copyright ("(c) "), author ("AUTH"), and annotation ("ANNO") chunks.
These are all "standard" chunks. Additional chunks for private or future
needs may be added later. Figure 1, located at the end of this Note,
illustrates the ASIF format in a box diagram.

Required Data Chunks

An ASIF file consists of a single FORM ASIF, which contains one and only one
WAVE chunk and one or more INST chunks. Each ASIF file defines at least one
instrument.

INST chunks contain all of the Note Synthesizer specific information needed to
define an instrument, exclusive of the actual wave form. The information in
the INST chunk defines the characteristics of an instrument such as the
envelope, pitch range, and maximum pitch bend. There must be at least one
INST chunk for each instrument in the ASIF file.

WAVE chunks contain the waveforms for a given instrument. A WAVE chunk may
contain waveforms used by more than one instrument. In most cases, the
waveforms used by an application will be merged into a single 64K block that
is loaded into DOC RAM when the application is launched. In this case, there
would be several INST chunks referring to that single WAVE chunk. Most music
applications will probably store instruments one to a file, which is the
preferred way of distributing ASIF instruments.

Note: The length of any chunk must be even. If a chunk has an odd
 length, a pad byte of $00 must be added to the end of the chunk.
 The pad byte, if present, should never have a value other than
 $00.

The FORM Chunk

ckID 4 Bytes The ID for this chunk. These four bytes must be
 "FORM."
ckSize Rev. Long The length of this chunk, excluding ckSize and
 cdID. You may think of this value as the
 offset to the end of the chunk. Note that
 this is a Reverse Long; the bytes are
 stored high byte first.
ckType 4 Types The type of chunk. These four bytes must be
(chunks...) "ASIF."

Immediately following the 12-byte FORM chunk header are the data chunks of the
ASIF file. There most be one and only one WAVE chunk, and at least one INST
chunk. Optionally there may be name ("NAME"), copyright ("(c) "), author
("AUTH"), or annotation ("ANNO") chunks. All data chunks are part of the
larger FORM chunk, referred to as the FORM ASIF because of the ID and Type of
this chunk.

The INST Chunk

ckID 4 Bytes The ID for this chunk. These four bytes must be
 "INST."

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 170 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

ckSize Rev. Long The length of this chunk, excluding ckSize and
 cdID. You may think of this value as the
 offset to the end of the chunk. Note that
 this is a Reverse Long; the bytes are
 stored high byte first.
InstName String A Pascal String containing the name of the
 instrument referred to by this INST block.
 This string should be used as the display
 name of the instrument.

Note: The length byte of InstName is also referred to as INameLength.

SampleNum Word The number of the sample in the WAVE chunk to
 which this instrument refers.
Envelope 8 InstSegs Eight linear InstSegs defining the
 instrument's envelope.

The InstSeg is a three-byte linear segment that describes a level and a
slope. The level is called the breakpoint and represents the linear
amplitude of the sound. The slope is described by an increment added or
subtracted from the current level at the update rate. Regardless of the
increment, the breakpoint will never be exceeded. All ASIF instruments
assume an update rate of 200 Hz. The increment is a two-byte fixed
pointer; that is, the lower eight bits represent a fraction. Thus when
the increment is one, it represents 1/256. In this case, the increment
would have to be added 256 times (1.28 seconds) to cause the level to go
up by 1. At a 200 Hz update rate each increment takes 5 milliseconds.
If an application wishes to use an update rate other than 200 Hz, the
envelope must be scaled as necessary. If the envelope is not scaled,
the instrument will not sound correct.

The breakpoint is a byte between 0 and 127 ($00 and $7F). It should
represent sound level in a logarithmic scale: every 16 steps change the
amplitude by 6 dB.

Therefore the envelope is composed of eight InstSegs:

stage1 Byte Breakpoint 1
 2 Bytes Increment 1
stage2 Byte Breakpoint 2
 2 Bytes Increment 2
stage3 Byte Breakpoint 3
 2 Bytes Increment 3
stage4 Byte Breakpoint 4
 2 Bytes Increment 4
stage5 Byte Breakpoint 5
 2 Bytes Increment 5
stage6 Byte Breakpoint 6
 2 Bytes Increment 6
stage7 Byte Breakpoint 7
 2 Bytes Increment 7
stage8 Byte Breakpoint 8
 2 Bytes Increment 8

Increment 1 is used to go from the initial level of 0 up to the level of
breakpoint 1. Increment 2 is used to go from breakpoint 1 to breakpoint
2, and so on. The sustain level of the envelope, if there is one, is
created by setting the increment to zero, causing the envelope to get

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 171 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

stuck on that level. The last segment used for release should always
have a breakpoint of zero, so the sound eventually reaches silence.
Unused segments should have a zero breakpoint and a non-zero increment.

ReleaseSegment Byte Specifies the release segment of the
 envelope. This must be a number from 1 to
 7. The release may take several segments
 to get to zero. The last segment should
 always be zero.
PriorityIncrement Byte A number that will be subtracted from the
 generator priority when the envelope
 reaches the sustain segment. The sustain
 segment is the first segment with a zero
 increment. When the release segment is
 reached, the priority is cut in half. The
 priority of each generator is also
 decremented by one each time a new
 generator is allocated. This causes older
 notes to be preferred for stealing.
PitchBendRange Byte The number of semitones that the pitch will
 be raised when the pitchwheel reaches 127
 (the center value is 64). The legal
 values for PitchBendRange are 1, 2, and 4.
VibratoDepth Byte The initial fixed depth of vibrato, ranging
 from 0 to 127. Vibrato is a triangular-
 shaped Low Frequency Oscillator (LFO)
 modulating the pitch of both oscillators
 in a generator. A VibratoDepth of zero
 turns the vibrator mechanism off, which
 saves some CPU time (since vibrato is
 implemented in software).
VibratoSpeed Byte Controls the rate of the vibrato LFO. It can
 be any byte value, although the range from
 5 to 20 is most useful. The frequency
 range is linear, in 0.2 Hz steps.
UpdateRate Byte Unused; set to zero. Previous versions of ASIF
 listed this byte as the update rate in .4
 Hz, but a one-byte field is not large
 enough to provide suitable resolution (102
 Hz is the maximum allowed), much less the
 standard Note Synthesizer value of 200 Hz
 (the byte would have to hold the value
 500; not an easy task for a byte). All
 ASIF instruments are assumed to have an
 update rate of 200 Hz.
AWaveCount Byte The number of waves in the following AWaveList.
 There can be up to 255 waves in the
 AWaveList.
BWaveCount Byte The number of waves in the following BWaveList.
 There can be up to 255 waves in the
 BWaveList.
AWaveList AWaveCount Waves.
BWaveList BWaveCount Waves.

The WaveList structure is a variable-length array where each entry is
six bytes long. The information is particular to the DOC, and the
developer should refer to the DOC information in the Apple IIGS Hardware
Reference and the Apple IIGS Toolbox Reference Update when creating

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 172 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

instruments. Each six-byte entry represents a waveform and contains
information about the allowable pitch range of the waveform. This means
that the waves can be "multi-sampled" across an imaginary keyboard.
When a note is played, WaveListA and WaveListB will be examined, and one
waveform will be picked and assigned to each oscillator.

Each wave in a WaveList has the following 6-byte format:

TopKey Byte The highest MIDI semitone this waveform will play.
 The Note Synthesizer will examine the
 TopKey field of each waveform until it
 finds one greater than or equal to the
 note it is trying to play. The items in
 the WaveList should be in order of
 increasing TopKey values. The last wave
 should have a TopKey value of 127. The
 TopKey value is the split point between
 the waveforms.

The next three bytes will be stuffed into the DOC registers:

WaveAddress Byte The high byte of the waveform address. Note
 that the value selected for WaveAddress
 should assume that the waveform starts in
 page zero. When the waveform is actually
 placed in DOC RAM, the values must be
 adjusted as appropriate. As an example,
 for a waveform starting at $8000 in DOC
 RAM, this value would be $80.
WaveSize Byte Sets both the size of the wavetable and the
 frequency resolution.
DOCMode Byte Placed in the DOCs Mode register. The interrupt-
 enable should always be zero.

 Some ways this may be used are:
 Synthesizer ($00), where both oscillators
 (A and B) run in free run mode
 Sample, no loop: Oscillator A in swap
 mode ($06) and oscillator B in one-shot
 halted mode ($03). Oscillator A will play
 its wave once and start Oscillator B,
 which will play its wave to the end once
 and stop.
 Sampled with loop: Oscillator A in swap
 mode ($06), and Oscillator B in free-run
 halted mode ($01). Oscillator A will play
 its wave once and then start Oscillator B,
 which will play continuously until the
 note ends.

 The high nibble of the DOCMode is the channel
 number. This must be set correctly for stereo
 output. While all of the currently available
 stereo cards will map even-numbered channels to
 the right and odd-numbered channels to the
 left, software should use channel 0 for
 right and channel 1 for left. This will
 ensure compatibility with cards that

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 173 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 provide more than two channels of output.
 If you are not designing stereo
 instruments, always set the channel to
 zero.
RelPitch Word Used to tune the waveform. This will compensate
 for different sample rates and waveform
 sizes. The high byte is in semitones, but
 can be a signed number. The low byte is
 in 1/256 semitone increments. Note that
 the low byte is first in memory; this is a
 regular 65816 Word. A setting of zero is
 the default for sounds that gave one cycle
 per page of waveform memory.

The WaveList structure is designed to give greater flexibility in
creating realistic instrumental timbres. It allows "multi-sampling"
with different samples of sounds on different ranges of pitch. It
allows mixing of various sized wave forms, with different tuning on each
semitone, to allow separate tuning of each note. This is one way to
duplicate special tuning systems like "just temperament." The wave
pointers need not be different in this case, just the RelPitch fields.

Tuning is accurate to 1/128 of a semitone in the Note Synthesizer,
subject to the resolution setting of the DOC. For accurate tuning on
lower notes, it may be necessary to use higher settings in the DOC
resolution register.

Note: The Audio Interchange File Format (Audio IFF) also has a
 chunk named "INST" which will appear to a standard IFF reader the
 same as the ASIF "INST" chunk. To tell the two apart, check the
 ckSize field. The Audio IFF "INST" chunk will always have ckSize
 of 20 bytes, and the ASIF "INST" chunk will never have a chunk
 size of 20 bytes.

The WAVE chunk

ckID 4 Bytes The ID for this chunk. These four bytes must be
 "WAVE."
ckSize Rev. Long The length of this chunk, excluding ckSize and
 cdID. You may think of this value as the
 offset to the end of the chunk. Note that
 this is a Reverse Long; the bytes are
 stored high byte first.
WaveName String A Pascal String containing the name of the
 waveform referred to by this WAVE block.

Note: The length byte of WaveName is also referred to as WaveNameLen.

WaveSize Word The size of the waveform WaveData, in bytes.
 WaveSize may be any value from $0000 to
 $FFFF. This is a zero-based counter;
 WaveData that is one byte long would
 result in a WaveSize of $0000. This
 allows full 64K WaveData entries.
NumSamples Word The number of different sounds in this WAVE
 chunk. NumSamples describes the number of
 entries in SampleTable. Note that this is

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 174 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 not necessarily the number of instruments.
 Although not required, there should be a
 WaveList entry in an INST chunk for each
 entry in the SampleTable.
SampleTable NumSamples Samples.

SampleTable is a table of the waveforms corresponding to different
"samples". Each entry in SampleTable is 12 bytes long. Each sample
entry is defined as follows:

Location Word The byte offset to the waveform from the beginning
 of the WAVE chunk.
Size Word The size of the waveform in 256-byte pages. Size is
 specified in pages since the sample size
 passed to the DOC must be in pages.
OrigFreq Fixed The original frequency that was sampled, in
 hertz. For example, if A440 was sampled,
 the value of this field would be 440.00.
 A value of zero in this field means that
 the original frequency of the sample is
 unknown.
SampRate Fixed The sample rate used to generate this sample, in
 hertz. A value of zero in this field
 means that the original sample rate is
 unknown.

There are NumSamples of these sample entries in the SampleTable.

WaveData WaveSize Bytes The actual waveform. The DOC uses
 samples in an eight-bit linear format. A
 value of $80 is considered to be a zero
 crossing. Positive values are greater
 than $80; negative values are less than
 $80. Although WaveData may contain zeros
 as oscillator control values, it should
 never contain a zero value as a sample
 value since this halts the oscillator.

Optional Data Chunks

There are currently three types of optional data chunks. These chunks may be
included in an ASIF file if desired. They are considered part of the set of
"standard" chunks in the Electronic Arts "EA IFF 85" definition.

The NAME Chunk

This chunk names the instrument of collection of instruments defined in the
ASIF file. This chunk may be used to supply a display name for a collection
of instruments. This can be useful since IFF programs know about the NAME
chunk, but may not know about the name field in INST or WAVE chunks.

ckID 4 Bytes The ID for this chunk. These four bytes must be
 "NAME."
ckSize Rev. Long The length of this chunk, excluding ckSize and
 cdID.
Name Bytes ASCII characters ($20-$7F) representing the name.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 175 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 There should be ckSize characters.

The AUTH Chunk

ckID 4 Bytes The ID for this chunk. These four bytes must be
 "AUTH."
ckSize Rev. Long The length of this chunk, excluding ckSize and
 cdID.
author Bytes ASCII characters ($20-$7F) representing the name of
 the author of the voices or collection of
 voices. There should be ckSize
 characters.

The "(c) " Chunk

ckID 4 Bytes The ID for this chunk. These four bytes must be
 "(c) ."
ckSize Rev. Long The length of this chunk, excluding ckSize and
 cdID. You may think of this value as the
 offset to the end of the chunk.
notice Bytes ASCII characters ($20-$7F) representing a copyright
 notice for the voice or collection of
 voices. There should be ckSize
 characters.

The ANNO Chunk

ckID 4 Bytes The ID for this chunk. These four bytes must be
 "ANNO."
ckSize Rev. Long The length of this chunk, excluding ckSize and
 cdID. You may think of this value as the
 offset to the end of the chunk. Note that
 this is a Reverse Long; the bytes are
 stored high byte first.
author Bytes ASCII characters ($20-$7F) representing the name of
 the author of the voices or collection of
 voices. There should be ckSize
 characters.

Other Chunk Types

There are many types of IFF chunks other than those described in this
document. New chunks may be added to ASIF files in the future. If an
application encounters a chunk it doesn't recognize when reading an ASIF file,
it should ignore it. Note that all chunks should be preserved when copying an
IFF file.

Figure 1 illustrates a sample ASIF file as a box diagram.

 --
 | 'FORM' 76112 |
 | |
 | -------------------------------------- |
 | | 'ASIF' | |
 | | | |
 | | -------------------------------- | |
 | | | 'NAME' 9 | | |

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 176 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 | | | "Jazz Band" | | |
 | | -------------------------------- | |
 | | -------------------------------- | |
 | | | 'INST' 50 | | |
 | | | 3"Sax"0 ... | | |
 | | -------------------------------- | |
 | | -------------------------------- | |
 | | | 'INST' 82 | | |
 | | | 5"Drums"1 ... | | |
 | | -------------------------------- | |
 | | -------------------------------- | |
 | | | 'INST' 51 | | |
 | | | 4"Bass"2 ... | | |
 | | -------------------------------- | |
 | | -------------------------------- | |
 | | | 'INST' 112 | | |
 | | | 5"Piano"3 ... | | |
 | | -------------------------------- | |
 | | -------------------------------- | |
 | | | 'INST' 65656 | | |
 | | | 10"Jazz Stuff" 65535 4 ... | | |
 | | -------------------------------- | |
 | -------------------------------------- |
 --

 Figure 1-Sample ASIF File

Further Reference

 o Apple IIGS Toolbox Reference Update
 o Advanced Sampler's Guide (Ensoniq Corporation)
 o "Programming the Ensoniq Mirage," Keyboard Magazine, November 1986
 o "EA IFF 85" Standard for Interchange Format Files, Electronic Arts,
 Inc. Describes the underlying conventions for all IFF files.

END OF FILE FTN.D8.0002

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 177 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.D8.0003
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $D8 (216)
Auxiliary Type: $0003

Full Name: Sampled Sound Resource
Short Name: Sound resource file

Written by : Matt Deatherage May 1992

Files of this type and auxiliary type contain sound resources.

Files of this type and auxiliary type contain one or more named sound
resources. The format for sound resources (type $8024, rSoundSample) is
documented in Apple IIgs Technical Note #76, Miscellaneous Resource Formats.

These files are convenient containers for files that contain sound resources,
since sound resources are invisible to users who don't have resource editors
or resource development tools. Since they are containers, Apple recommends
that each sound resource file's name accurately reflect the contents of the
file. If the file name implies a specific sound, that sound resource file
should contain only that sound. If the file contains a family of sounds, such
as one person pronouncing several phrases, the file name should clearly
indicate the sound family is present.

Remember that users will, for the most part, only be able to move sounds by
file and not by individual resources. If you have a file named "Kitten" that
has two sound resources--a kitten mewing and a puppy barking--users will most
likely be confused if they remove the "Kitten" file and the "Puppy" sound goes
away also.

The Sound Control Panel in Apple IIgs System Software 6.0 and later
(admittedly, one of the primary users of sound resources) will use sound
resources in files of any type and auxiliary type, but we recommend this file
type and auxiliary type for files that contain only sound resources.

Further Reference

 o Apple IIgs Technical Note #76, Miscellaneous Resource Formats

END OF FILE FTN.D8.0003

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 178 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.D8.8001
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $D8 (216)
Auxiliary Type: $8001

Full Name: HyperStudio Sampled Sound File
Short Name: HyperStudio sound

Written by: Matt Deatherage May 1990

Files of this type and auxiliary type contain sampled sounds used by the
HyperStudio(TM) multimedia package.

HyperStudio is a complete hypermedia authoring system, including sound
hardware, sound and graphics tools that lets you create your own hypermedia
applications.

For more information on HyperStudio, contact:

 Roger Wagner Publishing, Inc.
 1050 Pioneer Way, Suite P
 El Cajon, CA 92020
 Attention: HyperStudio Technical Support
 Telephone: (619) 442-0522

File Structure

HyperStudio sound files contain sampled sound data prefaced by a special
HyperStudio header. The header contains information about the file and the
sound, including sampling and compression information and version numbers.

The File Format

Each HyperStudio file begins with this header information.

HFileID (+000) 4 Bytes The ASCII characters "SSHS"
 ($53 $53 $48 $53). This identifies
 the file as a HyperStudio sound.
HDataOffset (+004) Long Offset to the sound data from this
 field. For this version of the
 HyperStudio sound format, this value
 is always 56 ($38).
HVersID (+008) 4 Bytes The version of HyperStudio that
 created this file. The current
 version is represented by the
 four ASCII characters "RWP "
 ($52 $57 $50 $20).

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 179 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

HDataID (+012) 4 Bytes The ASCII characters "SSDK"
 ($53 $53 $44 $4B), identifying the
 creator of the data. Other
 applications wishing distinct
 creator IDs should contact Roger
 Wagner Publishing.
HLength2 (+016) Word Sound sample length of channel
 one in 256-byte pages.
HPbRate2 (+018) Word Playback rate for channel one. The
 value (HPbRate2+40) is the
 freqOffset for the FFStartSound
 toolbox call.
 (HPbRate2+40) * 51.40625 is the
 sample's frequency in Hertz.
HVolume2 (+020) Word Volume for channel one (0-15).
HEcho2 (+022) Word Echo value for channel one (0-127).
HLength (+024) Word Sound sample length of channel zero
 in 256-byte pages. All other
 channels should have the same
 length.
HAce (+026) Word Bits 0 - 13 of this word contain
 the ACE nBlks parameter (the
 number of 512-byte blocks to
 compress or expand). Bits 14 and 15
 indicate the type of ACE compression
 used:
 %00xxxxxxxxxxxxxxxx - no compression
 %01xxxxxxxxxxxxxxxx - ACE method 1
 (2:1)
 %10xxxxxxxxxxxxxxxx - ACE method 2
 (8:3)
 %11xxxxxxxxxxxxxxxx - reserved
HPbRate (+028) Word Playback rate for channel zero.
 The value (HPbRate+40) is the
 freqOffset for the FFStartSound
 toolbox call.
 (HPbRate+40) * 51.40625 is the
 sample's frequency in Hertz.
HVolume (+030) Word Volume for channel zero (0-15).
HStereo (+032) Word Number of channels for this sound
 file (0 = monophonic, 1 = stereo).
HEcho (+034) Word Echo value for channel zero (0-127).
HReserved (+036) Word Reserved for future use; set to zero.
HRepeat (+038) Word Repeat count for both channels.
 The maximum value is 20, which
 indicates the sound is to repeat
 continuously.
HOffset1 (+040) Long Offset to the sampled data for
 channel zero. This should be the
 value (64+(HLength*256)).
HExtra (+044) Long Reserved for future use, set to zero.
HFileName (+048) String If the name of this file is 16
 characters or less, you may
 optionally place it here as a String.
 If you do not place the file name
 here, fill these 16 bytes with zeroes.
Data (+064) Bytes The start of the sampled sound data.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 180 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Further Reference

 o Apple IIgs Toolbox Reference, Volumes 2 & 3

HyperStudio(TM) is a trademark of Roger Wagner Publishing, Inc.

END OF FILE FTN.D8.8001

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 181 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.D8.xxxx
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $D8 (216)
Auxiliary Type: All

Full Name: Sampled Sound file
Short Name: Sampled Sound

Written by: Matt Deatherage January 1990

Files of this type and auxiliary type contain sampled sound data.

Files of type $D8 should contain sampled or digitized sound data. The data is
intended to be fed to sound hardware to reproduce a sound that was recorded
"live." The converse to "sampled" sound is "synthesized" sound, where a
computer creates wave forms and feeds them to sound hardware.

Sampled sound data can be stored in many formats. The data is traditionally
sampled in discrete intervals, with a given number of bits used to record the
intensity of the sound at the sampling point. In addition to the samples
themselves, this requires that the file contain the sampling interval (or
rate) and perhaps the number of bits used in sampling. Other information may
be needed by applications, such as the duration of the sound, comment or
copyright information, compression information or parameters, or "markers"
which denote specific points within the sampled sound.

Apple Computer, Inc. presents a standard for such files, the Audio Interchange
File Format (Audio IFF), described in another File Type Note. While Audio IFF
is suitable for many needs, it cannot hope to cover all. Apple assigns
auxiliary types in this file type for such purposes.

Note: Apple does not recognize a standard in which the sampling
 rate is contained in a file's auxiliary type. Doing so is not
 possible within the realm of file type and auxiliary type
 assignment.

The following auxiliary type assignments are current for this file type as of
the publication date of this Note:

 Auxiliary Type Short Name Developer

 $0000 Audio IFF Apple
 $0002 ASIF instrument Apple

 $0003 Sampled Sound Resource Apple
 $8001 HyperStudio sound Roger Wagner Publishing

 Table 1-Auxiliary Type Assignments

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 182 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

The auxiliary types for this file type are reserved; any not listed in this
Note or About File Type Notes must be assigned by Apple Computer, Inc. Using
any file type or auxiliary type not assigned may result in conflicting
identification of files by totally unrelated programs. To obtain an auxiliary
type assignment in this file type, see About File Type Notes.

Further Reference

 o Apple IIGS Technical Note #76, Miscellaneous Resource Formats
 o File Type Note for file type $D8, auxiliary type $0000, Audio IFF File
 o File Type Note for file type $D8, auxiliary type $0002, ASIF File

END OF FILE FTN.D8.xxxx

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 183 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.E0.0001
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $E0 (224)
Auxiliary Type: $0001

Full Name: AppleSingle File
Short Name: AppleSingle File

Revised by: Matt Deatherage January 1991
Written by: Matt Deatherage March 1989

Files of this type and auxiliary type contain a file in AppleSingle format.
Changes since March 1990: Added information about AppleSingle version 2.0.

AppleSingle is one of two standards (the other is AppleDouble) put forth by
Apple Computer, Inc. for representing files on foreign file systems while
preserving all attributes of the file's home system on file systems that do
not support the same attributes.

Experience indicated that a single format would be inadequate to cover all
cases. Two closely related formats, however, can serve most needs. Although
the primary impetus for developing these formats is storing extended files
(files with both resource and data forks) on file systems that do not support
the notion of two forks, the proposed formats are general enough that theycan be
used to represent a file from any file system on any other file system.

AppleSingle keeps all attributes and the contents of both forks in a single file
in the foreign file system, and this Note describes this file format.
AppleDouble keeps the data fork as a separate file from the file attributes and
the resource fork, and is described in the File Type Notes for File Type $E0,
Auxiliary Types $0002 and $0003.

AppleSingle is intended to be used primarily as a storage format, especially for
cases where you must store an extended file on a foreign file system and later
reconstruct the extended file. AppleDouble is more appropriate for applications
where the users of the foreign file system might want to modify the contents of
the file. Since most applications keep file data in the data fork, AppleDouble
format saves the contents of the data fork in one file.All other file
attributes, including the resource fork, are kept in a separate file.

Reasons for Using AppleSingle

There are several reasons for supporting an interchange format between file
systems. Perhaps the most germane is one of the least obvious: handling
extended files on foreign file systems which do not support extended files.

For example, the ProDOS FST in GS/OS can create an extended file on a ProDOS
disk. However, ProDOS 8 is unable to operate on the file, since it sees itas

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 184 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

having an unsupported storage type. If a telecommunications program or other
utility capable of transferring files is operating under ProDOS 8 andattempts to
receive an extended file, it is unable to create the file.

At this point, the application could use READ_BLOCK and WRITE_BLOCK commands,
along with a knowledge of the ProDOS file system, to create the file on its own.
However, this is strongly discouraged. The ProDOS file system format for
extended files is not documented and could change in the future. In addition,
the program could be running on a eight-bit system. If the disk is only used on
an eight-bit system, the extended files would not only be unwanted, but also
unremovable without using the disk on an Apple IIGS or later system running
GS/OS.

However, if the application is aware of the AppleSingle format, it canquickly
store an extended file in AppleSingle, leaving the conversion back to the
extended file to GS/OS, or another operating system. This is the recommended
way for ProDOS 8 applications to create and handle extended files. Useeither
AppleSingle or AppleDouble.

AppleSingle Format

An AppleSingle file contains a header followed by data. The header consists of
several fixed fields and a list of entry descriptors, each pointing to an entry.
Apple defines the following standard entries: Data Fork, Resource Fork, Real
Name (name in the home file system), Comment, Icon and File Info. Each entry is
optional, so it may not appear in the file.

Note: All numeric entries, including entries representing ProDOS data
 structures (such as file type and auxiliary type) are Reverse
 ordered. This is provided so any host CPU can attempt to
 interpret entries in the header without having to know the
 standard byte-ordering of the home file system. Therefore, in
 this Note you see descriptive entries like "Rev. 4 Bytes." This
 serves as a reminder that all header fields are stored high byte
 first, even though the notation Bytes does not imply any specific
 ordering in other File Type Notes.

Also note that ASCII strings are not stored in reverse order, just non-ASCII
constants.

The Header:

Magic Number Rev. Long The Magic Number field is modeled after
 the feature in UNIX. It is intended to be
 used in whatever way the foreign file
 system distinguishes a file as AppleSingle
 format. See the section "Identifying
 AppleSingle Files." The Magic Number for
 AppleSingle format is $00051600, which is
 stored reverse as $00 $05 $16 $00 (reverse
 of normal 65816/6502 order).
Version Number Rev. Long The version of AppleSingle format, in case
 the format evolves (more fields may be
 added to the header). The version
 described here is $00010000, stored
 (reverse) as $00 $01 $00 $00.
Home File System 16 Bytes A fixed-length, 16-byte ASCII string not

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 185 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 preceded by a length byte, but possibly
 padded with blanks. Apple has defined
 these values:
 ProDOS $50726F444F5320202020202020202020
 Macintosh $4D6163696E746F736820202020202020
 MS-DOS $4D532D444F5320202020202020202020
 Unix $556E9878202020202020202020202020
 VAX VMS $56415820564D53202020202020202020
 Apple welcomes suggestions for other file
 systems that should be included in this
 list.
Number of entries Rev. Word Tells how many different entries are
 included in the file. This unsigned
 reverse word may be zero. If it is non-
 zero, then that number of entry
 descriptors immediately follows this
 field.

For Each Entry:

Entry ID Rev. Long Identifies the entry. Apple has defined
 the following Entry IDs and their values:
 1 = Data Fork
 2 = Resource Fork
 3 = Real Name (The file's name in the home
 file system)
 4 = Comment* (standard Macintosh comment)
 5 = Icon, B&W* (standard Macintosh black
 and white icon)
 6 = Icon, Color* (reserved for Macintosh
 color icon)
 7 = File Info (file attributes,dates, etc.)
 9 = Finder Info* (standard Macintosh
 Finder Info)
 Entry IDs marked with asterisks (*) are
 not used for most files created under
 ProDOS or GS/OS. Furthermore, icon
 entries probably do not appear in most
 files since they are typically stored as a
 bundle in the application file's resource
 fork on the Macintosh. Apple reserves the
 range of Entry IDs from $0 to $7FFFFFFF
 for future use. The rest of the range is
 available for other systems to define
 their own entries. Apple does not
 arbitrate the use of the rest of the
 range.
 Descriptions of the standard entries are
 given below.
Offset Rev. Long An unsigned reverse long which indicates
 the byte offset from the start of the file
 to the start of the entry.
Entry Length Rev. Long An unsigned reverse long which indicates
 the length of the entry in bytes. The
 length may be zero.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 186 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Standard Entries:

The Real Name Entry:

The Real Name entry indicates the file's original filename in the host file
system. This is not a Pascal or C string; it is just ASCII data. The length is
indicated by the Entry Length field for the Real Name entry.

The File Info Entry:

The File Info entry (Entry ID = 7) is different for each home file system. For
ProDOS files, the entry is 16 bytes long and consists of the creationdate and
time and the modification date and time in ProDOS 8 (ProDOS 16/class zero GS/OS)
form, the access word, a two-byte file type and four-byte auxiliary type. This
is detailed in standard format below, along with defined FileInfo entries for
some other file systems.

ProDOS:

Create Date Rev. 2 Bytes Creation date packed into standard
 ProDOS 8 format.
Create Time Rev. 2 Bytes Creation time packed into standard
 ProDOS 8 format.
Modification Date Rev. 2 Bytes Modification date packed into
 standard ProDOS 8 format.
Modification Time Rev. 2 Bytes Modification time packed into
 standard ProDOS 8 format.
Access Rev. Word The file's access. This may be used
 directly in ProDOS 16 or GS/OS calls; only
 the low byte is significant to ProDOS 8.
File Type Rev. Word The file type of the original file. Only
 the low byte is significant to ProDOS 8.
Auxiliary Type Rev. Long The auxiliary type of the original file.
 Only the low word is significant to ProDOS
 8.

Note: Although the ProDOS Access field, File Type and Auxiliary Type are
 the same length as found in ProDOS 16 and GS/OS structures, the
 Create and Modification Dates and Times are stored in two-byte
 (albeit byte-reversed) ProDOS 8 format, not eight-byte Apple IIGS
 format.

Macintosh:

Create Date Rev. Long Unsigned number of seconds between
 January 1, 1904, and the creation time of
 this file.
Modification Date Rev. Long Unsigned number of seconds between
 January 1, 1904, and the last modification
 of this file.
Last Backup Date Rev. Long Unsigned number of seconds between
 January 1, 1904, and the last backup time
 of this file.
Attributes Rev. Long 32 boolean flags. Once the bytes are
 unreversed, bit zero is the locked bit and
 bit one is the protected bit.

MS-DOS:

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 187 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Modification Date Rev. 4 Bytes MS-DOS format modification date.
Attributes Rev. 2 Bytes MS-DOS attributes.

Unix:

Create Date/Time Rev. 4 Bytes Unix creation date and time.
Last Use Date/Time Rev. 4 Bytes Unix time for the last
 time this file was used.
Last Mod. Date/Time Rev. 4 Bytes Unix time for the last
 time this file was modified.

The Finder Info Entry:

The Finder Info entry (Entry ID = 9) is for files where the host file system is
Macintosh. It consists of 16 bytes of Finder Info followed by 16 bytes of
Extended Finder Info. These are the fields ioFlFndrInfo followed by
ioFlXFndrInfo, as described in Inside Macintosh, Volume IV-183. Newlycreated
files have zeroes in all Finder Info subfields. If you are creating an
AppleSingle file whose home system is Macintosh, you may zero all unknown
fields, but you may want to set the fdType and fdCreator subfields.

The Entries:

The entries themselves follow the header field and the entry descriptors.The
actual data representing each entry must be in a single, contiguous block. The
offset field in that entry's descriptor points to it. The entries could appear
in any order, but since the data fork is the entry that is most commonly
extended, Apple strongly recommends that the data fork always bekept last in the
file to facilitate its extension. Apple also recommends that those entries that
are most often read, such as Real Name, File Info (and Finder Info if present)
be kept as close as possible to the header tomaximize the probability that a
read of the first few blocks of the file retrieves these entries.

It is possible to have holes in the file (unused space between entries). To
find the holes, you must take the list of entry descriptors and sort theminto
increasing offset order. If the offset field of an entry is greater than the
offset plus the length of the previous entry (sorted), then a hole exists
between the entries. You can make use of such holes; for example, if afile's
comment is ten bytes long, you could create a hole of 190 bytes after the
comment field to easily allow for the comment to later expand to its maximum
length of 200 bytes. Because an AppleSingle file may contain holes, you must
find each entry by getting its offset from its entry descriptor, not by assuming
that it begins after the previous entry.

Byte ordering in file header fields follows 68000 convention, and each header
field has been so noted by the Reverse operator.

Identifying AppleSingle files

As this is an interchange format, from a ProDOS directory entry there is no way
to guarantee which files are AppleSingle files. Apple has allocated File Type
$E0, Auxiliary Type $0001 for files which are AppleSingle files. We strongly
encourage ProDOS 8 and GS/OS applications to use this file type and auxiliary
type assignment when creating AppleSingle files.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 188 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

AppleSingle files which do not have file type $E0 and auxiliary type $0001can
most easily be identified by opening them and attempting to interpret them. If
they are not AppleSingle files, the Magic Number is not contained in the first
four bytes of the file. The chances that the file would begin with those four
bytes and not be an AppleSingle file, on a purely random basis,are 4,294,967,295
to 1. The chances that both the Magic Number and the Version bytes would be the
same in a non-AppleSingle file are roughly 1.8 x 10^19 to 1.

About AppleSingle 2.0

AppleSingle 2.0 is a revision to the original AppleSingle specification
described in this Note. AppleSingle 2.0 comes closer to the ideal of an
interchange format by allowing file information for multiple file systems in the
same AppleSingle file.

AppleSingle 2.0 basically replaces the File Info entry (ID = 7) with a File
Dates entry (ID = 8) and one or more host file system entries, such as a
Macintosh File Info entry (ID = 10), a ProDOS File Info entry (ID = 11), or an
MS-DOS File Info entry (ID = 12). Information on these entries and AppleSingle
2.0 can be found in the AppleSingle/AppleDouble Formats for Foreign Files
Developer's Note, available from APDA, AppleLink, and the Developer CD series.

Further Reference

 o Inside Macintosh, Volume IV
 o ProDOS 8 Technical Reference Manual
 o GS/OS Reference
 o AppleSingle/AppleDouble Formats for Foreign Files Developer's Note

END OF FILE FTN.E0.0001

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 189 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.E0.0002.3
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $E0 (224)
Auxiliary Types: $0002 & $0003

Full Name: AppleDouble Header File (Auxiliary Type $0002)
 AppleDouble Data File (Auxiliary Type $0003)
Short Name: AppleDouble Header (Auxiliary Type $0002)
 AppleDouble Data (Auxiliary Type $0003)

Revised by: Matt Deatherage November 1990
Written by: Matt Deatherage March 1989

Files of these types and auxiliary types contain file data in AppleDouble
format.
Changes since March 1990: Added information about AppleDouble 2.0.

AppleDouble is one of two standards (the other is AppleSingle) put forth by
Apple Computer, Inc. for representing files on foreign file systems while
preserving all attributes of the file's home system on file systems that do not
support the same attributes.

Experience indicated that a single format would be inadequate to cover all
cases. Two closely related formats, however, can serve most needs. Although
the primary impetus for developing these formats is storing extended files
(files with both resource and data forks) on file systems that do not support
the notion of two forks, the proposed formats are general enough that theycan be
used to represent a file from any file system on any other file system.

AppleDouble keeps the data fork as a separate file from the file attributes and
the resource fork, and this Note describes this file format. AppleSingle keeps
all attributes and the contents of both forks in a single file in the foreign
file system, and is described in the File Type Note for File Type$E0, Auxiliary
Type $0001.

AppleSingle is intended to be used primarily as a storage format, especially for
cases where you must store an extended file on a foreign file system and later
reconstruct the extended file. AppleDouble is more appropriate for applications
where the users of the foreign file system might want to modify the contents of
the file. Since most applications keep file data in the data fork, AppleDouble
format saves the contents of the data fork in one file.All other file
attributes, including the resource fork, are kept in a separate file.

Reasons for Using AppleDouble

There are several reasons for supporting an interchange format between file
systems. Perhaps the most germane is one of the least obvious: handling
extended files on foreign file systems which do not support extended files.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 190 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

For example, the ProDOS FST in GS/OS can create an extended file on a ProDOS
disk. However, ProDOS 8 is unable to operate on the file, since it sees itas
having an unsupported storage type. If a telecommunications program or other
utility capable of transferring files is operating under ProDOS 8 andattempts to
receive an extended file, it is unable to create the file.

At this point, the application could use READ_BLOCK and WRITE_BLOCK commands,
along with a knowledge of the ProDOS file system, to create the file on its own.
However, this is strongly discouraged. The ProDOS file system format for
extended files is not documented and could change in the future. In addition,
the program could be running on a eight-bit system. If the disk is only used on
an eight-bit system, the extended files would not only be unwanted, but also
unremovable without using the disk on an Apple IIGS or later system running
GS/OS.

However, if the application is aware of the AppleDouble format, it canquickly
store an extended file in AppleDouble, leaving the conversion back to the
extended file to GS/OS, or another operating system. This is the recommended
way for ProDOS 8 applications to create and handle extended files. Useeither
AppleSingle or AppleDouble.

AppleDouble Format

AppleDouble consists of two files, an AppleDouble Header File and an AppleDouble
Data File. The AppleDouble Header file contains a headerfollowed by data. The
header consists of several fixed fields and a list of entry descriptors, each
pointing to an entry. Apple defines these standardentries: Resource Fork, Real
Name (name in the home file system), Comment, Icon and File Info. Each entry is
optional, so it may not appear in the file. Wealso define the new entry Data
Pathname, pointing to the pathname of the AppleDouble Data File. The Header
File has exactly the same format as an AppleSingle file, except it has no data
fork entry. The AppleDouble DataFile consists of just the data fork of the
file, with no extra header at all.

Note: All numeric entries, including entries representing ProDOS data
 structures (such as file type and auxiliary type) are Reverse
 ordered. This is provided so any host CPU can attempt to
 interpret entries in the header without having to know the
 standard byte-ordering of the home file system. Therefore, in
 this Note you see descriptive entries like "Rev. 4 Bytes." This
 serves as a reminder that all header fields are stored high byte
 first, even though the notation Bytes does not imply any specific
 ordering in other File Type Notes.

Also note that ASCII strings are not stored in reverse order, just non-ASCII
constants.

The Header in the Header File:

Magic Number Rev. Long The Magic Number field is modeled after
 the feature in UNIX. It is intended to be
 used in whatever way the foreign file
 system distinguishes a file as AppleDouble
 format. See the section "Identifying
 AppleDouble Files." The Magic Number for
 AppleDouble format is $00051607, which is

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 191 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 stored reverse as $00 $05 $16 $07 (reverse
 of normal 65816/6502 order).
Version Number Rev. Long The version of AppleDouble format, in case
 the format evolves (more fields may be
 added to the header). The version
 described here is $00010000, stored
 (reverse) as $00 $01 $00 $00.

Home File System 16 Bytes A fixed-length, 16-byte ASCII string not
 preceded by a length byte, but possibly
 padded with blanks. Apple has defined
 these values:
 ProDOS $50726F444F5320202020202020202020
 Macintosh $4D6163696E746F736820202020202020
 MS-DOS $4D532D444F5320202020202020202020
 Unix $556E9878202020202020202020202020
 VAX VMS $56415820564D53202020202020202020
 Apple welcomes suggestions for other file
 systems that should be included in this
 list.
Number of entries Rev. Word Tells how many different entries are
 included in the file. This unsigned
 reverse word may be zero. If it is non-
 zero, then that number of entry
 descriptors immediately follows this
 field.

For Each Entry:

Entry ID Rev. Long Identifies the entry. Apple has defined
 the following Entry IDs and their values:
 1 = Data Fork
 2 = Resource Fork
 3 = Real Name (The file's name in the home
 file system)
 4 = Comment* (standard Macintosh comment)
 5 = Icon, B&W* (standard Macintosh black
 and white icon)
 6 = Icon, Color* (reserved for Macintosh
 color icon)
 7 = File Info (file attributes,dates, etc.)
 9 = Finder Info* (standard Macintosh
 Finder Info)
 Entry IDs marked with asterisks (*) are
 not used for most files created under
 ProDOS or GS/OS. Furthermore, icon
 entries probably do not appear in most
 files since they are typically stored as a
 bundle in the application file's resource
 fork on the Macintosh. Apple reserves the
 range of Entry IDs from $0 to $7FFFFFFF
 for future use. The rest of the range is
 available for other systems to define
 their own entries. Apple does not
 arbitrate the use of the rest of the
 range.
 Descriptions of the standard entries are

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 192 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 given below.
Offset Rev. Long An unsigned reverse long which indicates
 the byte offset from the start of the file
 to the start of the entry.
Entry Length Rev. Long An unsigned reverse long which indicates
 the length of the entry in bytes. The
 length may be zero.

Standard Entries:

The Real Name Entry:

The Real Name entry indicates the file's original filename in the host file
system. This is not a Pascal or C string; it is just ASCII data. The length is
indicated by the Entry Length field for the Real Name entry.

The File Info Entry:

The File Info entry (Entry ID = 7) is different for each home file system. For
ProDOS files, the entry is 16 bytes long and consists of the creationdate and
time and the modification date and time in ProDOS 8 (ProDOS 16/class zero GS/OS)
form, the access word, a two-byte file type and four-byte auxiliary type. This
is detailed in standard format below, along with defined FileInfo entries for
some other file systems.

ProDOS:

Create Date Rev. 2 Bytes Creation date packed into standard
 ProDOS 8 format.
Create Time Rev. 2 Bytes Creation time packed into standard
 ProDOS 8 format.
Modification Date Rev. 2 Bytes Modification date packed into
 standard ProDOS 8 format.
Modification Time Rev. 2 Bytes Modification time packed into
 standard ProDOS 8 format.
Access Rev. Word The file's access. This may be used
 directly in ProDOS 16 or GS/OS calls; only
 the low byte is significant to ProDOS 8.
File Type Rev. Word The file type of the original file. Only
 the low byte is significant to ProDOS 8.
Auxiliary Type Rev. Long The auxiliary type of the original file.
 Only the low word is significant to ProDOS
 8.

Note: Although the ProDOS Access field, File Type and Auxiliary Type are
 the same length as found in ProDOS 16 and GS/OS structures, the
 Create and Modification Dates and Times are stored in two-byte
 (albeit byte-reversed) ProDOS 8 format, not eight-byte Apple IIGS
 format.

Macintosh:

Create Date Rev. Long Unsigned number of seconds between
 January 1, 1904, and the creation time of
 this file.
Modification Date Rev. Long Unsigned number of seconds between
 January 1, 1904, and the last modification

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 193 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 of this file.
Last Backup Date Rev. Long Unsigned number of seconds between
 January 1, 1904, and the last backup time
 of this file.
Attributes Rev. Long 32 boolean flags. Once the bytes are
 unreversed, bit zero is the locked bit and
 bit one is the protected bit.

MS-DOS:

Modification Date Rev. 4 Bytes MS-DOS format modification date.
Attributes Rev. 2 Bytes MS-DOS attributes.

Unix:

Create Date/Time Rev. 4 Bytes Unix creation date and time.
Last Use Date/Time Rev. 4 Bytes Unix time for the last
 time this file was used.
Last Mod. Date/Time Rev. 4 Bytes Unix time for the last
 time this file was modified.

The Finder Info Entry:

The Finder Info entry (Entry ID = 9) is for files where the host file system is
Macintosh. It consists of 16 bytes of Finder Info followed by 16 bytes of
Extended Finder Info. These are the fields ioFlFndrInfo followed by
ioFlXFndrInfo, as described in Inside Macintosh, Volume IV-183. Newlycreated
files have zeroes in all Finder Info subfields. If you are creating an
AppleDouble file whose home system is Macintosh, you may zero all unknown
fields, but you may want to set the fdType and fdCreator subfields.

The Data Pathname Entry:

The Data Pathname entry (Entry ID = 100) is defined for the first time inthis
Note. It consists of a class one GS/OS input string noting the pathname of the
AppleDouble Data File as originally created:

Path Length Rev. Word The length of the pathname.
Pathname Bytes ASCII pathname of the AppleDouble Data File
when created.

 For strategies on using this segment (or not using it) to find theAppleDouble
Data File, see the section "Finding the AppleDouble Data File."

The Entries in the Header File:

The entries themselves follow the header field and the entry descriptors.The
actual data representing each entry must be in a single, contiguous block. The
offset field in that entry's descriptor points to it. The entries could appear
in any order, but since the data fork is the entry that is most commonly
extended, Apple strongly recommends that the data fork always bekept last in the
file to facilitate its extension. Apple also recommends that those entries that
are most often read, such as Real Name, File Info (and Finder Info if present)
be kept as close as possible to the header tomaximize the probability that a
read of the first few blocks of the file retrieves these entries.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 194 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

It is possible to have holes in the file (unused space between entries). To
find the holes, you must take the list of entry descriptors and sort theminto
increasing offset order. If the offset field of an entry is greater than the
offset plus the length of the previous entry (sorted), then a hole exists
between the entries. You can make use of such holes; for example, if afile's
comment is ten bytes long, you could create a hole of 190 bytes after the
comment field to easily allow for the comment to later expand to its maximum
length of 200 bytes. Because an AppleDouble file may contain holes, you must
find each entry by getting its offset from its entry descriptor, not by assuming
that it begins after the previous entry.

Byte ordering in file header fields follows 68000 convention, and each header
field has been so noted by the Reverse operator.

The AppleDouble Data File

The AppleDouble Data File is simply the data fork of the original file contained
in a file of its own. You may create it with a File Type and Auxiliary Type
assignment best suited to it, if desired. For example, if the program creating
the AppleDouble Data File knows that the data fork contains strictly ASCII text,
it could create the file with File Type $04 (Text File) so that other
applications can deal with it accordingly.

If the creating program wishes to make no assumptions about the content ofthe
data fork, it is encouraged to create the AppleDouble Data File with filetype
$E0 and auxiliary type $0003. This identifies the file as an AppleDoubleData
File.

Identifying AppleDouble Files

As this is an interchange format, from a ProDOS directory entry there is no way
to guarantee which files are AppleDouble files. Apple has allocated File Type
$E0, Auxiliary Type $0002 for files which are AppleDouble Header Files, and File
Type $E0, Auxiliary Type $0003 for files which are AppleDouble Data Files. We
strongly encourage ProDOS 8 and GS/OS applications to use these file type and
auxiliary type assignments when creating AppleDouble files.

AppleDouble files which do not have file type $E0 and auxiliary type $0002 or
$0003 can most easily be identified by opening them and attempting to interpret
them. If it is not an AppleDouble Header File, the Magic Number is not
contained in the first four bytes of the file. The chances that the file would
begin with those four bytes and not be an AppleDouble Header File, on a purely
random basis, are 4,294,967,295 to 1. The chances that both the Magic Number
and the Version bytes would be the same in a non-AppleSingle file are roughly
1.8 x 10^19 to 1.

Finding the AppleDouble Data File

Since the AppleDouble Data File can be stored anywhere, with any file typeand
auxiliary type, a program may have to make an effort to find it. Werecommend
the following steps:

1. If the Data Pathname segment exists, use that pathname. If the
 path specified in the segment does not exist, extract the file

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 195 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 name from the end of the pathname and look in the current
 directory for that file name.
2. If Step 1 does not find the file (or if the Data Pathname segment
 does not exist), perform the appropriate Home File System
 algorithm (described below) to generate the name of the
 AppleDouble Data File from the AppleDouble Header File.
3. If none of the file names generated in Step 2 are found, ask the
 user where the AppleDouble Data File is located.

Filename Conventions:

Apple proposes the following standard for identifying AppleDouble Header File
names and AppleDouble Data File names from the file's real name.

ProDOS:

To generate the AppleDouble Data File name, use character substitution or
deletion to remove illegal characters, and use truncation if necessary to
reduce the length of the name to two characters less than the maximum file
name length. This would be a maximum of 13, since the maximum file name
length is 15.

To generate the AppleDouble Header File name, prefix the AppleDouble DataFile
name with the characters "R." (uppercase R period).

For example, the file name "This is a Foo File" could translate to an
AppleDouble Data File Name of "THIS.IS.A.FOO." The AppleDouble Header File
name would then be "R.THIS.IS.A.FOO."

Unix:

To generate the AppleDouble Data File name, use character substitution to
replace any illegal characters with an underscore (_). Since different Unix
systems have different requirements on maximum file name length, do not
explicitly truncate the name to a specific length. Rather, allow the
truncation to be done by the Unix functions create(), open(), etc.

To generate the AppleDouble Header File name, A/UX (Apple's implementation of
Unix for Macintosh computers) prefixes a percent sign (%) to the AppleDouble
Data File name. If necessary, truncate the last character to keep the file name
within the legal length range. Other Unix systems may prefix adirectory name
(e.g., ".AppleDouble/") to the AppleDouble Data File name to create the name of
the AppleDouble Header File. In this scheme, all AppleDouble Header Files
corresponding to AppleDouble Data files are kept together in a single
subdirectory.

MS-DOS:

To generate the AppleDouble Data File name, use character substitution or
deletion to remove illegal characters, and use truncation if necessary to
reduce the length of the name to eight characters. Then add the MS-DOS
extension that is most appropriate to the file (such as "TXT" for a pure text
file).

To generate the AppleDouble Header File name, add the extension ".ADF" to the
eight-character file name.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 196 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

In any instance, most programs probably wish to display the names being used
for both AppleDouble files, so that the user may keep track of them on disk.

AppleDouble name derivations will be defined for all other file systems of
interest. This allows applications running on the foreign file system (and
users as well) to see easily which files are AppleDouble pairs.Knowledgeable
users, if they know the derivation, could rename or move the files so as to
preserve the connection between the two. However, there is no guaranteed way to
prevent one file of the pair from being inconsistently renamed, moved, or
deleted.

About AppleDouble 2.0

AppleDouble 2.0 is a revision to the original AppleDouble specification
described in this Note. AppleDouble 2.0 comes closer to the ideal of an
interchange format by allowing file information for multiple file systems in the
same AppleDouble file.

AppleDouble 2.0 basically replaces the File Info entry (ID = 7) with a File
Dates entry (ID = 8) and one or more host file system entries, such as a
Macintosh File Info entry (ID = 10), a ProDOS File Info entry (ID = 11), or an
MS-DOS File Info entry (ID = 12). Information on these entries and AppleDouble
2.0 can be found in the AppleSingle/AppleDouble Formats for Foreign Files
Developer's Note, available from APDA, AppleLink, and the Developer CD series.

Further Reference

 o Inside Macintosh, Volume IV
 o ProDOS 8 Technical Reference Manual
 o GS/OS Reference
 o AppleSingle/AppleDouble Formats for Foreign Files Developer's Note

END OF FILE FTN.E0.0002.3

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 197 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.E0.0005
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $E0 (224)
Auxiliary Type: $0005

Full Name: DiskCopy disk image
Short Name: DiskCopy disk image

Written by: Matt Deatherage, Dave Lyons & Steve Christensen May 1992

Files of this type and auxiliary type contain disk images from Apple's
DiskCopy program on the Macintosh.

DiskCopy is a program written by Steve Christensen of Apple Computer, Inc.,
for internal use in duplicating and distributing 3.5" floppy disks. Because
of its utility in distributing disk images on the Macintosh, DiskCopy is used
in several Apple developer products even though DiskCopy is not an official
Apple product and is not supported as such.

Since the monthly Developer CD Series discs contain many DiskCopy disk images,
and since the AppleShare and HFS FSTs in System Software 6.0 and later
automatically translate DiskCopy files (HFS file type dImg and creator dCpy)
to Apple II file type $E0 and auxiliary type $0005, the format is provided
here for your utility use only. Apple does not guarantee that files not
generated by DiskCopy will work with DiskCopy.

DEFINITIONS

DiskCopy uses a simple checksum algorithm to help insure data integrity for
archived disk images. The algorithm for generating the 32-bit checksum is as
follows:

 Initialize checksum to zero
 For each data REVERSE WORD:
 Add the data REVERSE WORD to the checksum
 Rotate the 32-bit checksum right one bit (wrapping bit 0 to bit 31)

The following 65816 assembly language routine calculates a DiskCopy checksum.
It's not a speedy operation--it takes about 12 seconds to calculate the
checksum on an 800K disk image. Anyone finding an assembly routine that can
perform this task in under 5 seconds may apply for their IIgs Certificate of
Deityship, as documented in the File Type Note for file type $B6.

(Oh, by the way, any entries have to be under 1K in size--the following
routine is 88 bytes. So don't think unwinding loops is your ticket to fame
and fortune.)

**

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 198 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

*
* Compute checksum for DiskCopy data
*
* v1.2 by David A. Lyons, 18-May-92
*
* MPW IIgs assembly format
*
* Inputs on stack:
* Push pointer to data (long)
* Push size of data (long) (Must be even!)
* JSL CalcChecksum
* STA TheChecksum+2
* STX TheChecksum
*
* Output:
* Checksum in A and X (bytes +0 and +1 in X, bytes +2 and +3 in A)
* (The inputs have been removed from the stack)
*
**
CalcChecksum PROC
 phd ;save caller's direct page reg
 lda #0
 pha
 pha ;push initial checksum value (zero)
 tsc
 tcd

checksum equ 1
oldD equ checksum+4
theRTL equ oldD+2
dataSize equ theRTL+3
dataPtr equ dataSize+4

*** Set dataSize to -(dataSize/2)-1 so we can count up by one
*** (instead of down by two) to see when we're done
 lda <dataSize+2
 lsr a
 eor #$ffff
 sta <dataSize+2
 lda <dataSize
 ror a
 eor #$ffff
 sta <dataSize

 ldy #0
nextWord inc <dataSize
 bne moreData
 inc <dataSize+2
 beq noMoreData
moreData

*** Get next 16-bit word from the data buffer
 lda [<dataPtr],y
 xba ;swap to 65816 byte order

*** Add the data word to the checksum
 clc
 adc <checksum

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 199 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 sta <checksum
 bcc noCksumRoll
 inc <checksum+2
noCksumRoll
*** Rotate the 32-bit checksum right one bit, wrapping bit 0 into bit 31
 lda <checksum+2
 lsr a
 ror <checksum
 bcc bit0was0
 ora #$8000 ;if we rotated a 1 out of bit 0,
bit0was0 sta <checksum+2 ; then set bit 31

*** Advance to the next word and go back for more
 iny
 iny
 bne nextWord ;go back for more data
 inc <dataPtr+2
 bra nextWord ;go back for next bank of data

noMoreData pla
 xba
 tay
 pla
 xba
 tax ;pull checksum into YX (put in 68000
order)

 pld ;restore caller's direct page reg

 lda 2,s
 sta 2+8,s
 lda 1,s
 sta 1+8,s
 pla
 pla
 pla
 pla ;discard input values

 tya
 rtl

 EndP

 END

The following definition is used in this document in addition to those defined
for all Apple II file types:

Checksum A 32-byte quantity calculated using the previously-defined
 algorithm. When these are contained in the file, they are in
 REVERSE order.

FILE STRUCTURE

All of the information for a DiskCopy disk image is in the data fork. The
resource fork usually contains Macintosh resources (in Macintosh resource fork
format), including vers resources listing the checksums. This allows

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 200 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Macintosh users to use the Macintosh Finder's "Get Info..." function to
quickly examine the checksums.
The File Format

Because this is a native Macintosh file format, all the multi-byte constants
are stored in Reverse order.

diskName (+000) 64 Bytes A Pascal String containing the name of the
 disk. This field takes 64 bytes
 regardless of the length of the String.
dataSize (+064) Rev. Long The number of bytes (not blocks) of user
 data. User data is the 512 bytes of each
 block that a normal block-reading command
 returns.
tagSize (+068) Rev. Long The number of bytes of tag data. Tag data
 is the extra 12 bytes of "scavenger"
 information present on 400K and 800K
 Macintosh disks. Apple II operating
 systems always leave these bytes zeroed,
 and they're not present on 720K or 1440K
 disks. If there are no tag bytes, this
 field will be zero.
dataChecksum (+072) Checksum Checksum of all the user data on the disk.
 The checksum algorithm is called for the
 entire disk, not on a block-by-block or
 sector-by-sector basis. This is in
 Reverse order (most significant byte
 first).
tagChecksum (+076) Checksum Checksum of all the tag data on the disk.
 If there is no tag data, this should be
 zero. This is in Reverse order (most
 significant byte first).
diskFormat (+080) Byte 0 = 400K
 1 = 800K
 2 = 720K
 3 = 1440K (all other values are reserved)
formatByte (+081) Byte $12 = 400K
 $22 = >400K Macintosh (DiskCopy uses this
 value for all Apple II disks not
 800K in size, and even for some of
 those)
 $24 = 800K Apple II disk
private (+082) Rev. Word Must be $0100. If this field is not
 $0100, the file may be in a different
 format.
userData (+084) dataSize Bytes
 The data blocks for the disk. These are
 in order from block zero through the end
 of the disk.
tagData (+xxx) tagSize Bytes The tag data for this disk, starting with
 the tag data for the first block and
 proceeding in order. This field is not
 present for 720K and 1440K disks, but it
 is present for all other formats even if
 all the data is zeroes.
Further Reference

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 201 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 o GS/OS Reference

END OF FILE FTN.E0.0005

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 202 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.E0.8000
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $E0 (224)
Auxiliary Type: $8000

Full Name: Binary II File
Short Name: Binary II File

Written by: Matt Deatherage July 1989

Files of this type and auxiliary type contain other files with their
attributes encoded in Binary II format.

Binary II is a widely used and accepted standard for keeping file attributes
with files as they are transferred, usually by modem or other form of
telecommunication. Files that are known Binary II files should be written to
disk with file type $E0 and auxiliary type $8000 as a clear indication to
other programs that the file contains files with Binary II specifications.

Binary II was developed by Gary B. Little, author of the Point-To-Point
communication's product and author of several Apple II reference books. He is
also Apple's Product Manager for third-party Development Tools and Languages.
Gary welcomes your comments and suggestions on the Binary II standard at the
following address:

 Gary B. Little
 3304 Plateau Drive
 Belmont, CA 94002

 AppleLink: LITTLE
 AppleLink--Personal Edition: GaryLittle
 CompuServe: 70135,1007
 GEnie: GARY.LITTLE

Why Binary II?

Transferring Apple II files in binary form to commercial information services
and bulletin boards (referred to in this Note as "hosts") can be, to put it
mildly, a frustrating exercise. Although most hosts are able to receive a
file's data in binary form (using protocols such as XMODEM), they don't
receive the file's all-important attribute bytes. All the common Apple II
file system, notably the ProDOS file system, store the attributes inside the
disk directory, not inside the file itself.

The ProDOS attributes are the access code, file type code, auxiliary type
code, storage type code, date of creation and last modification, time of
creation and last modification, the file size, and the name of the file

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 203 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

itself. Under GS/OS, the same parameters exist for other file systems as well
as file system-specific information and two-forked file information. It is
usually not possible to use a ProDOS file's data without knowing the file's
attributes (particularly the file type, auxiliary type, and size). Therefore,
ProDOS files uploaded in binary format to a host are useless to those who
download them. The same is true for DOS 3.3 and Pascal files.

Many Apple II communication programs use special protocols for transferring
file attributes during a binary file transfer, but none of these protocols
have been implemented by hosts. These programs are only useful for exchanging
files with another Apple II running the same program.

Without a standard like Binary II, the only acceptable way to transfer an
Apple II file to a host is to convert it into ASCII text before sending it.
Such a text file would contain a listing of an AppleSoft program, or a series
of Apple II monitor commands (e.g., 300:A4 32). Someone downloading a file
can convert it to binary form using the AppleSoft EXEC command.

The main disadvantage of this technique is that the text version of the file
is over three times the size of the original binary file, making it expensive
(in terms of time and money) to upload and download. It is also awkward, and
sometimes impossible, to perform the binary-to-text or text-to-binary
conversion.

The solution to the problem is to upload an encoded binary file which contains
not just the file's data, but the file's attributes as well. Someone
downloading such a file can then use a conversion program to strip the
attributes from the file and create a file with the required attributes.

This Note describes such a format: Binary II. The description of the format
is detailed for the purpose of allowing software developers to implement it in
Apple II communication programs.

What Binary II is Not

Binary II is not an archival or compression standard. It is designed to be a
simple method to keep the attributes normally in a disk file's directory entry
with the file as it is transferred. Although multiple files may be placed
together with Binary II, this is a matter of convenience for telecommunication
programs.

A true archival standard must be designed as such, with the capability to
manipulate files within the archive as well as linking them together
(compressed or uncompressed) for transfer. NuFX (documented in Apple II File
Type Note for File Type $E0, Auxiliary Type $8002) is a good example of a
robust, full-featured Apple II archival standard.

Binary II is primarily designed to be added to and subtracted from files "on-
the-fly" by telecommunication programs. Binary II files should only be found
on disks when they are transferred by a telecommunication program that does
not have Binary II capabilities, in which case a separate utility (such as
Binary Library Utility by Floyd Zink, Jr.) must be used to extract the files.
Telecommunication programs should be able to transfer files without Binary II
processing, however, they should support Binary II processing as a default.

The Binary II File Format

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 204 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

The Binary II form of a standard file consists of a 128-byte file information
header followed by the file's data. The data portion of the file is padded
with nulls ($00 bytes), if necessary, to ensure the data length is an even
multiple of 128 bytes.

The file information header contains four ID bytes, the attributes of the file
(in ProDOS 8 form), and some control information.

The structure of the header is as follows:

+000 ID Bytes 3 Bytes These three bytes are always $0A $47 $4C
 for identification purposes, so programs
 may recognize Binary II files as they are
 received.
+003 Access Code Byte ProDOS 8 access byte.
+004 File Type Byte ProDOS 8 file type.
+005 Aux Type Word ProDOS 8 auxiliary type.
+007 Storage Type Byte ProDOS 8 storage type value.
+008 File Size Word The size of the file in 512-byte blocks.
+010 Mod. Date 2 Bytes Date of modification, in ProDOS 8
 compressed format.
+012 Mod. Time 2 Bytes Time of modification, in ProDOS 8
 compressed format.
+014 Create Date 2 Bytes Date of creation, in ProDOS 8
 compressed format.
+016 Create Time 2 Bytes Time of creation, in ProDOS 8
 compressed format.
+018 ID Byte Byte A fourth ID byte. This must always be
 $02.
+019 Reserved Byte Reserved, must be set to zero.
+020 EOF 3 Bytes The end-of-file value for the file (low
 byte first).
+023 File Name String Pascal string containing the ASCII
 filename or partial pathname of this file
 in ProDOS 8 format. The string cannot be
 longer than 64 characters.

If the File Name String is a filename and not a partial pathname, then the
following optional parameter may be supplied:

+039 Native Name String Pascal string containing the
 ASCII value of the native filename. This
 string may not be longer than 48
 characters, and will not be present if the
 length byte of File Name (+023) is larger
 than 15 ($0F). If this field is
 specified, the File Name field must
 contain a filename, not a partial
 pathname.

+088 Reserved 21 Bytes Reserved. These bytes must be set to zero
 for future compatibility.

+109 GAux Type Word The high word of the file's GS/OS
 auxiliary type.
+111 GAccess Byte The high byte of the file's GS/OS access
 word.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 205 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

+112 GFile Type Byte The high byte of the file's GS/OS
 file type.
+113 GStorage Byte The high byte of the file's GS/OS storage
 type.
+114 GFile Size Word The high word of the GS/OS file's
 size in 512-byte blocks.
+116 GEOF Byte The high byte of the file's GS/OS EOF
 value.
+117 Disk Space Long The number of 512-byte disk blocks
 the files inside the Binary II file will
 occupy after they've been removed from the
 Binary II file. (The format of a Binary
 II file containing multiple files is
 described later in this Note.) If the
 number is zero, the creator of the Binary
 II file didn't bother to calculate the
 space needed. This value must be placed
 in the file information header for the
 first file inside the Binary II file; it
 can be set to zero in subsequent headers.
 A downloading program can inspect Disk
 Space and abort the transfer immediately
 if there isn't enough free space on the
 disk.
+121 OS Type Byte This value indicates the native operating
 system of the file:
 $00 ProDOS or SOS
 $01 DOS 3.3
 $02 Reserved
 $03 DOS 3.2 or DOS 3.1
 $04 Apple II Pascal
 $05 Macintosh MFS
 $06 Macintosh HFS
 $07 Lisa Filing System
 $08 Apple CP/M
 $09 Reserved (returned by the GS/OS
 Character FST)
 $0A MS-DOS
 $0B High Sierra (CD-ROM)
 $0C ISO 9660 (CD-ROM)
 $0D AppleShare
 Note this list is slightly different (in
 the first three entries) from the standard
 GS/OS file system ID list. A GS/OS
 communication program should not place a
 zero in this field unless the file's
 native file system truly is ProDOS. The
 file's native file system is returned in
 the file_sys_id parameter from the
 GetDirEntry call.
+122 Native File Type
 Word This has meaning only if OS Type is non-
 zero. If so, it is set to the actual file
 type code assigned to the file by it's
 native operating system. (Some operating
 systems, such as MS-DOS and CP/M, do not
 use file type codes, however.) Contrast
 this with the File Type at +004, which is

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 206 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 the closest equivalent ProDOS file type.
 The Native File Type is needed to
 distinguish files which have the same
 ProDOS file type, but which may have
 different file types in their native
 operating system. Note that if the file
 type code is only one byte long (the usual
 case), the high-order byte of Native File
 Type is set to zero.
+124 Phantom File Flag
 Byte This byte indicates whether a receiver of
 the Binary II file should save the file
 which follows (flag is zero) or ignore it
 (flag is non-zero). It is anticipated
 that some communication programs will use
 phantom files to pass non-essential
 explanatory notes or encoded information
 which would be understood only by a
 receiver using the same communication
 program. Such programs must not rely on
 receiving a phantom file, however, since
 this would mean they couldn't handle
 Binary II files created by other
 communication programs. Phantom Files may
 also be used to pass extended file
 attributes when available.

 The first two bytes in a phantom file must
 contain an ID code unique to the
 communication program, or a universal
 identifier concerning the contents of the
 phantom file. Developers must obtain ID
 codes from Gary Little to ensure
 uniqueness (see the beginning of this Note
 for his address). Here is a current list
 of approved ID codes for phantom files
 used by Apple II communication programs:
 $00 $00 ASCII text terminated with a
 zero byte.
 $00 $01 Point-to-Point
 $00 $02 Tele-Master Communications
 System
 $00 $03 ProTERM
 $00 $04 Modem MGR
 $00 $05 CommWorks
 $00 $06 MouseTalk
 $01 $00 Option_list data (see later in
 this Note).
 The ID bytes are the first two bytes of
 the phantom file.
+125 Data Flags Bit 7: 1 = file is compressed
 Flag Byte Bit 6: 1 = file is encrypted
 Bits 5-1: Reserved
 Bit 0: 1 = file is sparse
 A Binary II downloading program can
 examine this byte and warn the user that
 the file must be expanded, decrypted or
 unpacked. The person uploading a Binary

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 207 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 II file may use any convenient method for
 compressing, encrypting, or packing the
 file but is responsible for providing
 instructions on how to restore the file to
 its original state.
+126 Version Byte This release of Binary II has a version
 number of $01.
+127 Number of Files to Follow
 Byte An appealing feature of Binary II is that
 a single Binary II file can hold multiple
 disk files, making it easy to keep a group
 of related files "glued" together when
 they're sent to a host. This byte
 contains the number of files in this
 Binary II file that are behind it. If
 this is the first file in a Binary II file
 containing three disk files, this byte
 would be $02. The second disk file in the
 same Binary II file would have a value of
 $01 in this parameter, and the last would
 have value $00. This count tells the
 Binary II downloading program how many
 files are remaining. If any phantom files
 are included, they must be included in
 this count.

Filenames and Partial Pathnames

You can put a standard ProDOS filename or a partial pathname in the file
information header (but never a complete pathname). Don't use a partial
pathname unless you've included, earlier in the Binary II file, file
information headers for each of the directories referred to in the partial
pathname. Such a header must have its "end of file position" bytes set to
zero, and no data blocks for the subdirectory file must follow it.

For example, if you want to send a file whose partial pathname is
HELP/GS/READ.ME, first send a file information header defining the HELP/
subdirectory, then one defining the HELP/GS/ subdirectory. If you don't,
someone downloading the Binary II file won't be able to convert it because the
necessary subdirectories will not exist.

Note: GS/OS communication programs must use the slash (/) as the
 pathname's separator in any partial pathname it puts in the
 header. Since GS/OS's standard separator is the colon (:), a
 conversion may be necessary.

Filename Convention

Whenever a file is sent to a host, the host asks the sender to provide a name
for it. If it's a file in Binary II form, the name provided should end in
.BNY so its special form will be apparent to anyone viewing a list of
filenames. If the file is compacted (using the public-domain Squeeze
algorithm) before being converted to Binary II form, use a .BQY suffix
instead. If the file is a NuFX archive, use the suffix .BXY.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 208 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Identifying Binary II Files

You can determine, while transferring, if a file is in Binary II form by
examining the ID bytes at offsets +000, +001, +002 and +018 from the beginning
of the file. They must be $0A, $47, $4C and $02, respectively.

Once Binary II files are identified, you can use the data in the file
information header to create and open a ProDOS file with the correct name and
attributes, transfer the file data in the Binary II file to the ProDOS file,
set the ProDOS file size, then close the ProDOS file. You would repeat this
for each file contained inside the Binary II file.

Note: The number of 128-byte blocks following the file information
 header must be derived from the EOF attribute for the file.
 Calculate the number by dividing the EOF by 128 and adding one to
 the result if EOF is not 0 or an exact multiple of 128. However,
 if the file information header defines a subdirectory (the file
 type is $0F), simple create the subdirectory file. Do not open it
 and do not try to set its size.

Ideally, all this conversion work will be done automatically by a
communication program during file transfer. If not, a separate conversion
program (such as the previously mentioned Binary Library Utility, or BLU) must
be used to do this for you.

Option_List Phantom Files

GS/OS will return, when asked, an option_list for files on many file calls.
The option_list consists of a Word buffer length (which must be at least $2E),
followed by a Word number of bytes GS/OS put in the buffer, a Word GS/OS file
system identification, and the given number of bytes of FST-specific
information (minus two; the count GS/OS returns includes the file system
identifier).

Option_list values are FST specific and contain values important to the native
file system but not important to GS/OS. For AppleShare, the option_list
contains Finder Information, parent directory identification, and access
privileges. This information should be transferred with files.

Binary II uses a phantom file with identifier $01 $00 to indicate an
option_list. When this phantom file is seen, the contents should be used as
the option_list for the file that immediately follows this file in the
Binary II file. The other attributes of the phantom file must be set to the
same values as those for the file immediately following (the file for which
the phantom file contains the option_list). The EOF for the phantom file must
be the size of the option_list + 2, and the file size must be adjusted
accordingly to account for the phantom file ID bytes.

When receiving a Binary II file, the contents of this phantom file should be
used as option_list input on a GS/OS SetFileInfo call.

If the GS/OS option_list returns a total of two bytes (just the file_sys_ID),
there is no FST-specific information, and the option_list phantom file may
safely be omitted.

The format of the option_list phantom file is as follows:

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 209 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

+000 Phantom ID 2 Bytes The identifying bytes $01 $00.
+002 List Size Word The length of the bytes in the
 option_list, starting with the file system
 ID (the next word).
+004 FileSysID Word A GS/OS (not Binary II) file_sys_ID for
 the volume on which the file was stored.
+006 List Bytes Bytes The bytes of the option list.
 There should be (List Size) of them,
 counting the previous word (FileSysID).

Extended File Considerations

Extended files contain two logical segments: a data fork and a resource fork.
These files can be created and manipulated by GS/OS, but not by ProDOS 8 or
any other Apple II operating system.

When a GS/OS-based communication program sends an extended file, it must send
it in the AppleSingle file format, preceded by a Binary II file information
header. (Such a program could easily convert an extended file to AppleSingle
format on the fly.) The Binary II header must contain the attributes of the
AppleSingle file (including a file type of $E0 and an auxiliary type of $0001)
and the "storage type code" field must be $01. (The EOF positions for the
data fork and resource fork of the extended file appear in an entry in the
AppleSingle file header, not in the Binary II header.)

The AppleSingle format is described in Apple II File Type Note for File Type
$E0, Auxiliary Type $0001.

A GS/OS-based communication program that receives an AppleSingle file can
easily convert it on the fly to the extended file it defines. ProDOS 8-based
communication programs can only save the AppleSingle file to disk because it's
not possible (nor is it encouraged to attempt) to create extended files with
ProDOS 8 (without using block-level calls); a GS/OS based utility program is
needed to convert the AppleSingle file to its extended form.

DOS 3.3 Considerations

With a little extra effort, you can also convert DOS 3.3 files to Binary II
form. This involves translating the DOS 3.3 file attributes to the
corresponding ProDOS attributes so that you can build a proper file
information header.

 o Set the name to one that adheres to the stricter ProDOS naming
 rules and put its length at +023 and the name itself at +024 to
 +038. Note that the name must be a simple filename and not a
 pathname. The actual DOS 3.3 filename must be placed at +039
 (length) and +040 to +087 (name). (DOS 3.3 actually restricts
 filenames to 30 characters.)

 o Set the ProDOS file type, auxiliary type and access to values
 which correspond to the DOS 3.3 file type:

 DOS 3.3 ProDOS ProDOS ProDOS
 File Type File Type Auxiliary Type Access
 __
 $00 (T) $04 $0000 $E3

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 210 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 $80 (*T) $04 $0000 $21
 $01 (I) $FA $0C00 $E3
 $81 (*I) $FA $0C00 $21
 $02 (A) $FC * $E3
 $82 (*A) $FC * $21
 $04 (B) $06 ** $E3
 $84 (*B) $06 ** $21
 $08 (S) $06 $0000 $E3
 $88 (*S) $06 $0000 $21
 $10 (R) $FE $0000 $E3
 $90 (*R) $FE $0000 $21
 $20 (A) $06 $0000 $E3
 $A0 (*A) $06 $0000 $E3
 $40 (B) $06 $0000 $E3
 $C0 (*B) $06 $0000 $21
 __

 * Set the auxiliary type for an A file to the
 memory address from which the program was saved.
 This is usually $0801.
 ** Set the auxiliary type for a B file to the
 value stored in the first two bytes of the the
 file (this is the default load address).

 o Set the storage type code to $01.
 o Set the size of file in blocks, date of creation, date of
 modification, time of creation and time of modification all to
 $0000.
 o Set the end-of-file position to the length of the DOS 3.3 file, in
 bytes. For a B file (code $04 or $84), this number is stored in
 the third and fourth bytes of the file. For an I file (code $01
 or $81) or an A file (code $02 or $82), this number is stored in
 the first and second bytes of the file.
 o Set the operating system type to $01.
 o Set the native file type code to the value of the DOS 3.3 file
 type code.

Attribute bytes inside a DOS 3.3 file (if any) must not be included in the
data portion of the Binary II file. This includes the first four bytes of a B
(Binary) file, and the first two bytes of an A (AppleSoft) or I (Integer
BASIC) file.

Further Reference

 o GS/OS Reference
 o ProDOS 8 Technical Reference Manual
 o Apple II File Type Note, File Type $E0, Auxiliary Type $0001
 o Apple II File Type Note, File Type $E0, Auxiliary Type $8002
 o Apple II Miscellaneous Technical Note #14, Guidelines for
 Telecommunication Programs

END OF FILE FTN.E0.8000

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 211 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.E0.8002
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $E0 (224)
Auxiliary Type: $8002

Full Name: NuFile Exchange Archival Library
Short Name: ShrinkIt (NuFX) document

Revised by: Andy Nicholas and Matt Deatherage July 1990
Written by: Matt Deatherage July 1989

Files of this type and auxiliary type contain NuFX Archival Libraries.
Changes since July 1989: Rewrote major portions to reflect Master Version
$0002 of the NuFX standard.

Introduction

NuFX is a robust, full-featured archival standard for the Apple II family.
The standard, as presented in this Note, allows for full archival of ProDOS
and GS/OS files while keeping all file attributes with each file, as well as
providing necessary archival functions such as multiple compression schemes
and multiple archival implementations of the same standard. NuFX is
implemented in the application ShrinkIt, a free archival utility program for
enhanced IIe, IIc and IIgs computers. (Versions for earlier Apple II models
are also available.)

The NuFX standard was developed by Andrew Nicholas for Paper Bag Productions.
Comments or suggestions on the NuFX standard, or comments and suggestions on
ShrinkIt are welcome at:

 Paper Bag Productions
 8415 Thornberry Drive East
 Upper Marlboro, MD 20772
 Attn: NuFX Technical Support
 America Online: ShrinkIt
 GEnie: ShrinkIt
 CompuServe: 70771,2615

History

The Apple II community has always lacked a well-defined method for archiving
files. NuFX is an attempt to rectify the situation by providing a flexible,
consistent standard for archiving files, disks, and other computer media.
Although many files are archived using the Binary II standard (see Apple II
File Type Note, File Type $E0, Auxiliary Type $8000), it was not designed as
an archival standard and its continued use as such creates problems. More
people are using Binary II as an archival standard than as a way to keep
attributes with a file when transferred, and this use is causing the original

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 212 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

intent of Binary II to become lost and unused.

NuFX, developed as an archival standard for the days of GS/OS, allows:

 o Filenames longer than 64 characters (GS/OS can create 8,000-
 character filenames).
 o A convenient way to add to, remove from, and work on an archive.
 o Including GS/OS files which contain resource forks.
 o Including entire disk images.
 o Including comments with a file.
 o A convenient way to represent a file compressed or encrypted by a
 specific application.
 o A true archive standard. Binary IIs original intent was to make
 transfer of Apple II files from local machines to large
 information services possible; otherwise, a file's attribute
 information would be lost. Use of Binary II to archive files
 rather than simply maintain their attributes stretches it beyond
 its original intent.

Adding all of these features to the existing Binary II standard would be
nearly impossible without violating the existing standard and causing a great
deal of confusion. Although Binary II is flexible, it is simply unable to
address all of these concerns without alienating existing Binary II extraction
programs.

To provide some differentiation between standards and provide a better
functioning format, this Note presents a new standard called NuFX (NuFile
eXchange for the Apple II; pronounced new-F-X). NuFX fixes the problems that
Apple IIgs users would soon be experiencing as other filing systems become
available for GS/OS. NuFX attempts to stem a set of problems before they have
a chance to develop. NuFX provides all of the features of Binary II, but goes
further to allow the user the ultimate in flexibility, usefulness and
performance.

Additional Date/Time Data type:

Date/Time (8 Bytes):

+000 second Byte The second, 0 through 59.
+001 minute Byte The minute, 0 through 59.
+002 hour Byte The hour, 0 through 23.
+003 year Byte The current year minus 1900.
+004 day Byte The day, 0 through 30.
+005 month Byte The month, 0 through 11 (0 = January).
+006 filler Byte Reserved, must be zero.
+007 weekDay Byte The day of the week, 1 through 7 (1 = Sunday).

The format of the Date/Time field is identical to that described for the
ReadTimeHex call in the Apple IIgs Toolbox Reference Manual.

Implementation

Figure 1 illustrates the basic structure of a NuFX archive.

 | First Record | Next Record |
 _______________|_______________________|_______________________|

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 213 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 | Master Header | Header | Data | Header | Data |
 |_______________|________|______________|________|______________|

 Figure 1-NuFX Archive Structure

A single master header block contains values which describe the entire archive
(those with knowledge of structured programming may consider them archive
globals). Each of the succeeding header blocks contains only information
about the record it precedes (consider each an archive local).

Each header block is followed by a list of threads, which is followed by the
actual threads. The data for each thread may be a data fork, resource fork,
message, control sequence for a NuFX utility program, or almost any kind of
sequential data.

Possible Block Combinations:

The blocks must occur in the following fashion:

 Master Header Block containing N entries

 Header Block
 Threads list:
 filename_thread (16 bytes)
 message_thread (16 bytes)
 data thread (16 bytes)
 .
 .
 .
 filename_thread's data (filename_thread's comp_thread_eof # of bytes)
 message_thread's data (message_thread's comp_thread_eof # of bytes)
 data_thread's data (data_thread's comp_thread_eof # of bytes)
 .
 .
 .
 Next Header Block (notice no second Master Header block)
 Threads list (message, control, data or resource)
 .
 .
 .
 Nth Header Block
 Threads list (message, control, data or resource)

Master Header Block Contents

+000 nufile_id 6 Bytes These six bytes spell the word "NuFile" in
 alternating ASCII (low, then high) for
 uniqueness. The six bytes are $4E $F5 $46
 $E9 $6C $E5.
+006 master_crc Word A 16-bit cyclic redundancy check
 (CRC) of the remaining fields in this
 block (bytes +008 through +047). Any
 programs which modify the master header
 block must recalculate the CRC for the
 master header. (see the section "A Sample
 CRC Algorithm") The initial value of this
 CRC is $0000.
+008 total_records Long The total number of records in this

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 214 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 archive file. It is possible to chain
 multiple records (files or disks)
 together, as it is possible to chain
 different types of records together (mixed
 files and disks).
+012 archive_create_when
 Date/Time The date and time on which this archive
 was initially created. This field should
 never be changed once initially written.
 If the date is not known, or is unable to
 be calculated, this field should be set to
 zero. If the weekday is not known, or is
 unable to be calculated, this field should
 be set to null.
+020 archive_mod_when
 Date/Time The date of the last modification to this
 archive. This field should be changed
 every time a change is made to any of the
 records in the archive. If the date is
 not known, or is unable to be calculated,
 this field should be set to zero. If the
 weekday is not known, or is unable to be
 calculated, this field should be set to
 null.
+028 master_version
 Word The master version number of the NuFX
 archive. This Note describes
 master_version $0002, for which the next
 eight bytes are zeroed.
+030 reserved 8 Bytes Must be null ($00000000).
+038 master_eof Long The length of the NuFX archive, in
 bytes. Any programs which modify the
 length of an archive, either increasing it
 or decreasing it in size, must change this
 field in the master header to reflect the
 new size.

Header Block Contents:

Following the Master Header block is a regular Header Block, which precedes
each record within the NuFX archive. A cyclic redundancy check (CRC) has been
provided to detect archives which have possibly been corrupted. The only time
the CRC should be included in a block is for the Master Header and for each of
the regular Header Blocks. The CRC ensures reliability and data integrity.

+000 nufx_id 4 Bytes These four bytes spell the word "NuFX" in
 alternating ASCII (low, then high) for
 uniqueness. The four bytes are $4E $F5
 $46 $D8.
+004 header_crc Word The 16-bit CRC of the remaining
 fields of this block (bytes +006 through
 the end of the header block and any
 threads following it). This field is used
 to verify the integrity of the rest of the
 block. Programs which create NuFX
 archives must include this in every
 header. It is up to the discretion of the
 extracting program to check the validity

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 215 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 of this CRC. Any programs which might
 modify the header of a particular record
 must recalculate the CRC for the header
 block. The initial value for this CRC is
 zero ($0000).
+006 attrib_count Word This field describes the length of
 the attribute section of each record in
 bytes. This count measures the distance
 in bytes from the first field (offset
 +000) up to and including the
 filename_length field. By convention, the
 filename_length field will always be the
 last 2 bytes of the attribute section
 regardless of what has preceded it.
+008 version_number
 Word Version of this record. If version_number
 is $0000, no option_list fields are
 present. If the version_number is $0001
 option_list fields may be present. If the
 version_number is $0002 then option_list
 fields may be present and a valid CRC-16
 exists for the compressed data in the data
 threads of this record. If the
 version_number is $0003 then option_list
 fields may be present and a valid CRC-16
 exists for the uncompressed data in the
 data threads of this record. The current
 version number is $0003 and should always
 be used when making archives.
+010 total_threads Long The number of thread subrecords
 which should be expected immediately
 following the filename or pathname at the
 end of this header block. This field is
 extremely important as it contains the
 information about the length of the last
 third of the header.
+014 file_sys_id Word The native file system identifier:
 $0000 reserved
 $0001 ProDOS/SOS
 $0002 DOS 3.3
 $0003 DOS 3.2
 $0004 Apple II Pascal
 $0005 Macintosh HFS
 $0006 Macintosh MFS
 $0007 Lisa File System
 $0008 Apple CP/M
 $0009 reserved, do not use (The
 GS/OS Character FST returns
 this value)
 $000A MS-DOS
 $000B High Sierra
 $000C ISO 9660
 $000D AppleShare
 $000E-$FFFF Reserved, do not use
 If the file system of a disk being
 archived is not known, it should be set to
 zero.
+016 file_sys_info Word Information about the current filing

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 216 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 system. The low byte of this word (offset
 +016) is the native file system separator.
 For ProDOS, this is the slash (/ or $2F).
 For HFS and GS/OS, the colon (: or $3F) is
 used, and for MS-DOS, the separator is the
 backslash (\ or $5C). This separator is
 provided so archival utilities may know
 how to parse a valid file or pathname from
 the filename field for the receiving file.
 GS/OS archival utilities should not
 attempt to parse pathnames, as it is not
 possible to build in syntax rules for file
 systems not currently defined. Instead,
 pass the pathname directory to GS/OS and
 attempt translation (asking the user for
 suggestions) only if GS/OS returns an
 "Invalid Path Name Syntax" error. The
 high byte of this word is reserved and
 should remain zero.
+018 access Flag Long Bits 31-8 reserved, must be zero
 Bit 7 (D) 1 = destroy enabled
 Bit 6 (R) 1 = rename enabled
 Bit 5 (B) 1 = file needs to be
 backed up
 Bits 4-3 reserved, must be zero
 Bit 2 (I) 1 = file is invisible
 Bit 1 (W) 1 = write enabled
 Bit 0 (R) 1 = read enabled
+022 file_type Long The file type of the file being archived.
 For ProDOS 8 or GS/OS, this field should
 always be what the operating system
 returns when asked. For disks being
 archived, this field should be zero.
+026 extra_type Long The auxiliary type of the file being
 archived. For ProDOS 8 or GS/OS, this
 field should always be what the operating
 system returns when asked. For disks
 being archived, this field should be the
 total number of blocks on the disk.
+030 storage_type Word For Files: The storage type of the
 file. Types $1 through $3 are standard
 (one-forked) files, type $5 is an extended
 (two-forked) file, and type $D is a
 subdirectory.
 file_sys_block_size
 Word For Disks: The block size used by the
 device should be placed in this field.
 For example, under ProDOS, this field will
 be 512, while for HFS it might be 524.
 The GS/OS Volume call will return this
 information if asked.
+032 create_when Date/Time The date and time on which
 this record was initially created. If the
 creation date and time are available from
 a disk device, this information should be
 included. If the date is not known, or is
 unable to be calculated, this field should
 be set to zero. If the weekday is not

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 217 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 known, or is unable to be calculated, this
 field should be set to zero.
+040 mod_when Date/Time The date and time on which this record was
 last modified. If the modification date
 and time are available from a disk device,
 this information should be included. If
 the date is not known, or is unable to be
 calculated, this field should be set to
 zero. If the weekday is not known, or is
 unable to be calculated, this field should
 be set to zero.
+048 archive_when Date/Time The date and time on which
 this record was placed in this archive.
 If the date is not known, or is unable to
 be calculated, this field should be set to
 zero. If the weekday is not known, or is
 unable to be calculated, this field should
 be set to zero.

The following option_list information is only present if the NuFX version
number for this record is $0001 or greater.

+056 option_size Word The length of the FST-specific
 portion of a GS/OS option_list returned by
 GS/OS. This field may be $0000,
 indicating the absence of a valid
 option_list.

A GS/OS option_list is formatted as follows:

 +000 buffer_size
 Word Size of the buffer for GS/OS to
 place the option_list in, including
 this count word. This must be at
 least $2E.
 +002 list_size
 Word The number of bytes of information
 returned by GS/OS.
 +004 file_sys_ID
 Word A file system ID word (see list
 above) identifying the FST owning
 the file in question.
 +006 option_bytes
 Bytes The bytes returned by the FST.
 There are (buffer_size - 6) of them.

The option_list contains information specific to native file systems that
GS/OS doesn't normally use (such as true creator_type, file_type, and access
privileges for AppleShare). Other FSTs released in the future will follow
similar conventions to return native file system specific parameters in the
option_list. Information in the option_list should always be copied from file
to file.

The value option_size in the NuFX header is the value of list_size minus two.
Immediately following the option_size count word are (list_size - 2) bytes.
To pass these values back to the destination file system, construct an
option_list with a suitably large buffer_size, a list_size of the NuFX
option_size + 2, the file_sys_id of the source file, and the FST-returned

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 218 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

option_bytes.

+058 list_bytes Bytes FST-specific bytes returned in an
 option_list. These are the bytes in the
 GS/OS option_list not including the FST ID
 word. There are option_size of them. If
 option_size is an odd number, one zero
 byte of padding is added to keep the block
 size an even number.

Because the attributes section does not have a fixed size, the next field must
be found by looking two bytes before the offset indicated by attrib_count
(+006).

+attrib_count - 2
 filename_length
 Word Obsolete, should be set to zero. In
 previous versions of NuFX, this field was
 the length of a file name or pathname
 immediately following this field.

 To allow the inclusion of future
 additional parameters in the attributes
 section, NuFX utility programs should rely
 on the attribs_count field to find the
 filename_length field.

 Current convention is to zero this field
 when building an archive and put the file
 or pathname into a filename thread so the
 record can be renamed in the archive.
 Archival programs should recognize both
 methods to find a valid file name or
 pathname.
+attrib_count
 filename Bytes Filename or partial pathname if
 applicable. If this is a disk being
 archived, then the volume_name should be
 included in this field. If a volume name
 is included in this field, a separator
 should not be included in, or precede the
 name. If a volume name is not available,
 then this field should be zeros.

 If a partial pathname is specified, the
 directories to which the current pathname
 refers need not have preceded this
 particular record. The extraction program
 must test each referenced directory
 individually. If the directory in
 question does not exist, the extracting
 program should create it.

 Any utility which extracts file from a
 NuFX archive must not assume that this
 field will be in a format it is able to
 handle. In particular, extraction
 programs should check for syntax

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 219 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 unacceptable to the operating system under
 which they run and perform whatever
 conversions are necessary to parse a legal
 filename or pathname. In general, assume
 nothing. (GS/OS programs should pass the
 filename or pathname directly to GS/OS,
 and only attempt to convert the name if
 GS/OS returns an "invalid pathname syntax"
 error.)

 Both high and low ASCII values are valid
 but may not mean the same to each file
 system (for example, all eight bits are
 significant in AppleShare pathnames while
 only seven are significant in ProDOS
 pathnames).

Threads

Thread Records are 16-byte records which immediately follow the Header Block
(composed of the attributes and file name of the current record) and describe
the types of data structures which are included with a given record. The
number of Thread Records is described in the attribute section by a Word,
total_threads.

Each Thread Record should be checked for the type of information that a given
utility program can extract. If a utility is incapable of extracting a
particular thread, that thread should be skipped (with the exception of
extended files under ProDOS 8, which should be dearchived into AppleSingle
format, or both threads should be skipped). If a utility finds a redundancy
in a Thread Record, it must decide whether to skip the record or to do
something with that particular thread (i.e., if a utility finds two
message_thread threads it can either ignore the second one or display it.
Likewise, if a utility finds two data_thread threads for the same file, it
should inspect the thread_kind of each. If they match, it can either
overwrite the first thread extracted, or warn the user and skip the second
thread).

Thread records can be represented as follows:

+000 thread_class Word The classification of the thread:
 $0000 message_thread
 $0001 control_thread
 $0002 data_thread
 $0003 filename_thread
+002 thread_format Word The format of the data within the thread:
 $0000 Uncompressed
 $0001 Huffman Squeeze
 $0002 Dynamic LZW/1 (ShrinkIt
 specific)
 $0003 Dynamic LZW/2 (ShrinkIt
 specific)
 $0004 Unix 12-bit Compress
 $0005 Unix 16-bit Compress
+004 thread_kind Word Describes the kind of data within
 the thread.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 220 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

thread_kind must be interpreted on the basis of thread_class. See the table
below for the currently defined thread_kind interpretations:

 class $0000 class $0001 class $0002 class $0003
 ----------- ---------------- --------------------- -----------
kind $0000 ASCII text create directory data fork of file filename
kind $0001 see below undefined disk image undefined
kind $0002 see below undefined resource fork of file undefined

+006 thread_crc Word For version_number $0003, this field
 is the CRC of the original data before it
 was compressed or otherwise transformed.
 The CRC-16's initial value is set to $FFFF.
+008 thread_eof Long The length of the thread when uncompressed.
+012 comp_thread_eof
 Long The length of the thread when compressed.

Class $0000 with kind $0000 is obsolete and should not be used.

Class $0000 with kind $0001 has a predefined comp_thread_eof and a thread_eof
whose length may change. This way, a certain amount of space may be allocated
when a record is created and edited later.

Class $0000 with kind $0002 is a standard Apple IIgs icon. comp_thread_eof is
the length of the icon image; thread_eof is ignored.

Class $0003 with kind $0000 has a predefined comp_thread_eof and a thread_eof
whose length may change. After this record is placed into the archive, the
thread_eof can be changed if the name is changed, but the length of the name
may not extend beyond the space allocated for it, comp_thread_eof.

A thread_format of $0001 indicates Huffman Squeeze. NuFX's Huffman is the
same Huffman used by ARC v5.x, SQ and USQ, the source of which is publicly
available and was originally written by Richard Greenlaw. The first word of
the thread data is the number of nodes followed by the Huffman tree and the
actual data. This is also the same algorithm decoded by the Apple II version
of USQ written by Don Elton. The C source to this is widely available.

A thread_format of $0002 indicates a special variant of LZW (LZW/1) used by
ShrinkIt. The first two bytes of this thread are a CRC-16 of the uncompressed
data within the thread. This CRC-16 is initialized to zero ($0000). The third
byte is the low-level volume number used by the eight-bit version of ShrinkIt
to format 5.25" disks. The fourth byte is the run-length character used to
decode the rest of the thread. The data which comprises the compressed file
or disk immediately follows the RLE character.

When ShrinkIt compresses a file, it reads 4096-byte chunks of the file until
it reaches the file's EOF. The last 4096-byte chunk is padded with zeroes if
the file's length is not an exact multiple of 4096. Compressing a disk is
also done by reading sequential blocks of 4096-bytes.

Each 4K chunk is first compressed with RLE compression. The RLE character is
determined by reading the fourth byte of the thread. The RLE character which
is used by most current versions of ShrinkIt is $DB. A run of characters is
represented by three bytes, consisting of the run character, the number of
characters in the run and the character in the run. If the 4K chunk expands
after being compressed with RLE then the uncompressed 4K chunk is passed to
the LZW compressor. If the 4K chunk shrinks after being compressed with RLE

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 221 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

then the RLE-compressed image of the 4K chunk is passed to the LZW compressor.

ShrinkIt's LZW compressor individually compresses each 4K chunk passed to it
by using variable length (9 to 12 bits) codes. The way that ShrinkIt's LZW
compressor functions is almost identical to the algorithm used in the public
domain utility Compress. The first code is $0101. The LZW string table is
cleared before compressing each 4K chunk. If the compressed chunk increases
in size, then the previous 4K chunk (which may be run-length-encoded or just
uncompressed data) is written to the file.

The first word of every 4K chunk is aligned to a byte boundary within the file
and is the length which resulted from the attempt at compressing the chunk
with RLE. If the value of this word is 4096, then RLE was not successful at
compressing the chunk. A single byte follows the word and indicates whether
or not LZW was performed on this chunk. A value of zero indicates that LZW
was not used, while a value of one indicates that LZW was used and that the
chunk must first be decompressed with LZW before doing any further processing.

To decompress a file, each 4K chunk must first be expanded if it was
compressed by LZW. If the 4K chunk wasn't compressed with LZW, then the word
which appears at the beginning of each chunk must be used to determine if the
data for the current chunk needs to be processed by the run-length decoder.
If the value of the word is 4096, then run-length decoding does not need to
occur because the data is uncompressed.

If the word indicates that the length of the chunk after being decompressed by
LZW is 4096-bytes long, then no run-length decoding needs to take place. If
value of the word is less than 4096 then the chunk must be run-length decoded
to 4096 bytes.

There are four varying degrees of compression which can occur with a chunk: it
can be uncompressed data. It can be run-length-encoded data without LZW
compression. It can also be uncompressed data on which RLE was attempted (but
failed) and then was subsequently compressed with LZW. Or, finally, the chunk
can be compressed with RLE and then also compressed with LZW.

A thread_format of $0003 indicates a special variant of LZW (LZW/2) used by
ShrinkIt. The first byte is the low-level volume number used by the eight-bit
version of ShrinkIt to format 5.25" disks. The second byte is the run-length
character used to decode the rest of the thread. The data which comprises the
compressed file or disk immediately follows the second byte of the thread.

The format of LZW/2 is almost the same as LZW/1 with a few exceptions. Unlike
LZW/1, where the LZW string table is automatically cleared before each 4K
chunk is processed, the LZW string table used by LZW/2 is only cleared when
the table becomes full, indicating a change in the redundancy of the source
text. Not clearing the string table almost always yields improved compression
ratios because the compressor's dictionary is not being depleted every 4K and
larger strings are allowed to accumulate. The clear code used by ShrinkIt is
$100. Whenever the decompressor sees a $100 code, it must clear the string
table.

The string table is also cleared when the compressor has to "back track"
because a 4K chunk became larger. Whenever a chunk that is not compressed by
LZW is seen by the decompressor, the LZW string table must be cleared. Bits
0-12 of the first word of each chunk in a LZW/2 thread indicate the size of
the chunk after being compressed with RLE. The high bit (bit 15) indicates
whether or not LZW was used on the chunk. If LZW was not used (bit 15 = 0),

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 222 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

the data for the chunk immediately follows the first word. If LZW was used
(bit 15 = 1), a second word which is a count of the total number of bytes used
by the current chunk follows the first word. The mark of the next chunk can
be found by taking the mark at the beginning of the current chunk and adding
the second word to it, using that as an offset for a ProDOS 8 or GS/OS SetMark
call. This is not normally necessary because the next chunk is processed
immediately after the current chunk.

This second word is an improvement over LZW/1 because if a chunk becomes
corrupted, but the second word is valid, the next chunk can be found and most
of the file recovered. The second word is not needed (and not present) when
LZW is not used on the chunk because the first word is also a count of the
number of bytes which follow that word.

A thread_format of $0004 indicates that a maximum of 12 bits per LZW code by
Compress was used to build this thread. The actual thread data contains
Compress's usual three-byte signature, the third byte of which contains the
actual number of bits per LZW code that was actually used. The number of bits
may be less than or equal to 12. Optimally, this requires (at 12 bits) a 16K
hash table to decode and should be used only for transferring to machines with
limited amounts of memory. The C source to Compress is in the public domain
and is widely available.

A thread_format of $0005 indicates that a maximum of 16 bits per LZW code by
Compress was used to build this thread. The actual thread data contains
Compress's usual three-byte signature, the third byte of which contains the
actual number of bits per LZW code that was actually used. The number of bits
may be less than or equal to 16. Optimally, this requires (at 16 bits) a 256K
hash table to decode. The C source to Compress is in the public domain and is
widely available.

If a control_thread indicates that a directory should be created on the
destination device, the path to be created must take the form of a ProDOS
partial pathname. That is, the path must not be preceded with a volume name.
For example, /Stuff/SubDir is an invalid path for this control_thread, while
SubDir/AnotherSubDir is valid.

If a control_thread indicates that a path is to be created, all subdirectories
that are contained in the pathname must be created.

control_thread threads will eventually be used to control the execution of
utility programs by allowing them to create, rename, and delete directories
and files and to move and modify files. A form of scripting language will
eventually be able to allow utility programs to perform these actions
automatically. control_thread threads will allow extraction programs to
perform operations similar to those of the Apple IIgs Installer, allowing
updates to program sets dependent on such things as creation or modification
dates and version numbers.

Extra Information

If the file system of a particular disk is not known, the file_sys_id field
should be set to zero, the volume name should also be zeroed, and all the
other fields pertaining only to files should be set to zero.

If the file system of a particular disk is known, as many of the fields as
possible should be filled with the correct information. Fields which do not

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 223 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

pertain to an archived disk should remain set to zero.

If an entire disk is added to the archive without some form of compression
(i.e., record_format = uncompressed), then the blocks which comprise the disk
image must be added sequentially from the first through the last block. Since
there will be no character included in the data stream to mark the end or
beginning of a block, extraction programs should rely on the
file_sys_block_size field to determine how many bytes to read from the record
to properly fill a block.

Some Useful Thread Algorithms:

The beginning of the thread records can be found with the following algorithm:

 Threads := (mark at beginning of header) + (attrib_count) +
 (filename_length)

The end of the thread records can be found with the following algorithm:

 endOfThreads := Threads + (16 * total_threads)

The beginning of a data_thread can be found with the following formula:

 Data Mark := endOfThreads + (comp_thread_eof of all threads in the thread
 list which are not data prior to finding a data_thread)

The beginning of a resource_thread may be found with the following algorithm:

 Resource Mark := endOfThreads + (comp_thread_eof of all threads in the
 thread list which are not data prior to finding a
 resource_thread)

The next record can be found using the following algorithm:

 Next Mark := endOfThreads + (comp_thread_eof of each thread)

The file name and its length can be found with the following algorithm:

 if (filename_length > 0)
 then
 length of filename is filename_length;
 filename is found at attrib_count;
 else
 look through list of threads for a filename_thread;
 if you find one, then length of filename is thread_eof;
 if you don't find one, then you don't have a filename.

Directories

Directories are handled almost the same way that normal files are handled with
the exception that there will be no data in the thread which follows the
entry. A Thread Record must exist to inform a utility that a directory is to
be created through the use of the proper control_thread value.

Directories do not necessarily have to precede a record which references a
directory. For example, if a record contains Stuff/MyStuff, the directory
Stuff need not exist for the extracting program to properly extract the

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 224 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

record. The extracting program must check to see if each of the directories
referenced exist, and if one does not exist, create it. While this method
places a great burden on the abilities of the extraction program, it avoids
the anomalies associated with the deletion of directories within an archive.

A Sample CRC Algorithm

Paper Bag Productions provides the source code to a very fast routine which
does the CRC calculation as needed for NuFX archives. The routine makeLookup
needs to be called only once. After the first call, the routine doByte should
be called repeatedly with each new byte in succession to generate the
cumulative CRC for the block. The CRC word should be reset to null ($0000)
before beginning each new CRC.

This is the same CRC calculation which is done for CRC/Xmodem and Ymodem. The
code is easily portable to a 16-bit environment like the Apple IIgs. The only
detrimental factor with this routine is that it requires 512 bytes of main
memory to operate. If you can spare the space, this is one of the fastest
routines Paper Bag Productions knows to generate a CRC-16 on a 6502-type
machine.

The CRC word should be reset to $0000 for normal CRC-16 and to $FFFF before
generating the CRC on the unpacked data for each data thread.

*-------------------------------
* fast crc routine based on table lookups by
* Andy Nicholas - 03/30/88 - 65C02 - easily portable to nmos 6502 also.
* easily portable into orca/m format, just snip and save.
* Modified for generic EDAsm type assemblers - MD 6/19/89

 X6502 turn 65c02 opcodes on

*-------------------------------
* routine to make the lookup tables
*-------------------------------

makeLookup
 LDX #0 zero first page
zeroLoop STZ crclo,x zero crc lo bytes
 STZ crchi,x zero crc hi bytes
 INX
 BNE zeroLoop

*-------------------------------
* the following is the normal bitwise computation
* tweeked a little to work in the table-maker

docrc
 LDX #0 number to do crc for

fetch TXA
 EOR crchi,x add byte into high
 STA crchi,x of crc

 LDY #8 do 8 bits
loop ASL crclo,x shift current crc-16 left

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 225 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 ROL crchi,x
 BCC loop1

* if previous high bit wasn't set, then don't add crc
* polynomial ($1021) into the cumulative crc. else add it.

 LDA crchi,x add hi part of crc poly into
 EOR #$10 cumulative crc hi
 STA crchi,x

 LDA crclo,x add lo part of crc poly into
 EOR #$21 cumulative crc lo
 STA crclo,x
loop1 DEY do next bit
 BNE loop done? nope, loop

 INX do next number in series (0-255)
 BNE fetch didn't roll over, so fetch more
 RTS done

crclo ds 256 space for low byte of crc table
crchi ds 256 space for high bytes of crc table

*-------------------------------
* do a crc on 1 byte/fast
* on initial entry, CRC should be initialized to 0000
* on entry, A = byte to be included in CRC
* on exit, CRC = new CRC
*-------------------------------

doByte
 EOR crc+1 add byte into crc hi byte
 TAX to make offset into tables

 LDA crc get previous lo byte back
 EOR crchi,x add it to the proper table entry
 STA crc+1 save it

 LDA crclo,x get new lo byte
 STA crc save it back

 RTS all done

crc dw 0000 cumulative crc for all data

The following CRC check is written in APW assembler format for an Apple IIgs
with 16-bit memory and registers on entry.

crcByte start

crc equ $0
crca equ $2
crcx equ $4
crctemp equ $6

 sta crca 4
 stx crcx 4

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 226 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 eor crc+1 on entry, number to add to CRC 4
 and #$00ff is in (A) 3
 asl a 2
 tax 2
 lda crc16Table,x 5
 and #$00ff 3
 sta crcTemp 4

 lda crc-1 4
 eor crc16Table,x 5
 and #$ff00 3
 ora crcTemp 4
 sta crc 4

 lda crca 4
 ldx crcx 4
 rts cycles = 59

;
; CRC-16 Polynomial = $1021
;
crc16table anop
 dc i'$0000, $1021, $2042, $3063, $4084, $50a5, $60c6, $70e7'
 dc i'$8108, $9129, $a14a, $b16b, $c18c, $d1ad, $e1ce, $f1ef'
 dc i'$1231, $0210, $3273, $2252, $52b5, $4294, $72f7, $62d6'
 dc i'$9339, $8318, $b37b, $a35a, $d3bd, $c39c, $f3ff, $e3de'
 dc i'$2462, $3443, $0420, $1401, $64e6, $74c7, $44a4, $5485'
 dc i'$a56a, $b54b, $8528, $9509, $e5ee, $f5cf, $c5ac, $d58d'
 dc i'$3653, $2672, $1611, $0630, $76d7, $66f6, $5695, $46b4'
 dc i'$b75b, $a77a, $9719, $8738, $f7df, $e7fe, $d79d, $c7bc'
 dc i'$48c4, $58e5, $6886, $78a7, $0840, $1861, $2802, $3823'
 dc i'$c9cc, $d9ed, $e98e, $f9af, $8948, $9969, $a90a, $b92b'
 dc i'$5af5, $4ad4, $7ab7, $6a96, $1a71, $0a50, $3a33, $2a12'
 dc i'$dbfd, $cbdc, $fbbf, $eb9e, $9b79, $8b58, $bb3b, $ab1a'
 dc i'$6ca6, $7c87, $4ce4, $5cc5, $2c22, $3c03, $0c60, $1c41'
 dc i'$edae, $fd8f, $cdec, $ddcd, $ad2a, $bd0b, $8d68, $9d49'
 dc i'$7e97, $6eb6, $5ed5, $4ef4, $3e13, $2e32, $1e51, $0e70'
 dc i'$ff9f, $efbe, $dfdd, $cffc, $bf1b, $af3a, $9f59, $8f78'
 dc i'$9188, $81a9, $b1ca, $a1eb, $d10c, $c12d, $f14e, $e16f'
 dc i'$1080, $00a1, $30c2, $20e3, $5004, $4025, $7046, $6067'
 dc i'$83b9, $9398, $a3fb, $b3da, $c33d, $d31c, $e37f, $f35e'
 dc i'$02b1, $1290, $22f3, $32d2, $4235, $5214, $6277, $7256'
 dc i'$b5ea, $a5cb, $95a8, $8589, $f56e, $e54f, $d52c, $c50d'
 dc i'$34e2, $24c3, $14a0, $0481, $7466, $6447, $5424, $4405'
 dc i'$a7db, $b7fa, $8799, $97b8, $e75f, $f77e, $c71d, $d73c'
 dc i'$26d3, $36f2, $0691, $16b0, $6657, $7676, $4615, $5634'
 dc i'$d94c, $c96d, $f90e, $e92f, $99c8, $89e9, $b98a, $a9ab'
 dc i'$5844, $4865, $7806, $6827, $18c0, $08e1, $3882, $28a3'
 dc i'$cb7d, $db5c, $eb3f, $fb1e, $8bf9, $9bd8, $abbb, $bb9a'
 dc i'$4a75, $5a54, $6a37, $7a16, $0af1, $1ad0, $2ab3, $3a92'
 dc i'$fd2e, $ed0f, $dd6c, $cd4d, $bdaa, $ad8b, $9de8, $8dc9'
 dc i'$7c26, $6c07, $5c64, $4c45, $3ca2, $2c83, $1ce0, $0cc1'
 dc i'$ef1f, $ff3e, $cf5d, $df7c, $af9b, $bfba, $8fd9, $9ff8'
 dc i'$6e17, $7e36, $4e55, $5e74, $2e93, $3eb2, $0ed1, $1ef0'
 end

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 227 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Further Reference

 o ProDOS 8 Technical Reference Manual
 o GS/OS Reference
 o Apple IIgs Toolbox Reference Manual
 o Apple II File Type Note, File Type $E0, Auxiliary Type $8000
 o Apple II Miscellaneous Technical Note #14, Guidelines for
 Telecommunication Programs
 o "A Technique for High-Performance Data Compression," T. Welch,
 IEEE Computer, Vol. 17, No.6, June 1984, pp. 8-19.

END OF FILE FTN.E0.8002

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 228 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.E0.8004
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $E0 (224)
Auxiliary Type: $8004

Full Name: Davex archived volume
Short Name: Davex archived volume

Written by: Dave Lyons May 1990

Files of this type and auxiliary type contain an archived image of a ProDOS
volume.

Davex is a ProDOS 8 command-line shell and program launcher compatible with
all Apple II computers that can run ProDOS 8. It supports stuff like
wildcards, command history, print spooling, sorted directory listings, and
operations on whole directory structures. You can add your own assembly-
language commands, too. Davex also allows (coincidentally) saving an image of
any ProDOS volume into a file and restoring it later.

For more information on Davex, contact:

 DAL Systems
 P.O. Box 875
 Cupertino, CA 95014
 Attention: Davex Technical Support

File Structure

The first 512 bytes of a Davex archived volume are a header, described under
"File Format" in this Note. After the header comes 512 bytes for each block
on the saved volume, from zero on up. For blocks that are unused, you can
just set the file mark ahead 512 bytes instead of writing 512 zero bytes--this
way the unused blocks do not take up disk space, so the resulting file is only
a few blocks larger than the number of used blocks on the original volume.

If you run out of room while you are creating an archived volume file, close
the file and start another one with the same name on a new disk. The
fileNumber field in the header is one in the first file, two in the second
file, and so on.

This file format is suitable for ProDOS, but it is less useful on a file
system (such as AppleShare) that does not allow for sparse files. A Davex
archived volume file on an AppleShare server always takes up more blocks than
the original volume contains.

File Format

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 229 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

identityCheck (+000) 16 Bytes These 16 bytes are
 required for historical reasons
 (there didn't used to be a special
 file type and auxiliary type to
 identify these files). The required
 value is $60 followed by "VSTORE
 [Davex]" and a $00. The characters
 have their high bits off.
fileFormat (+016) Byte Must be $00. A nonzero value
 means the file format has changed in
 a way that isn't compatible with the
 current definition.
vstoreVers (+017) Byte Version of Davex vstore
 command used to create this file
 (others use $00).
vrestoreVers (+018) Byte Minimum version of the Davex
 vrestore command needed to read this
 file. Use $10 (version 1.0).
reserved (+019) 13 Bytes Reserved for future use.
deviceNum (+032) Byte ProDOS 8 device number of the
 device that this file is a volume
 image from. Informational only.
totalBlocks (+033) Long Number of blocks on the saved
 volume.
usedBlocks (+037) Long Number of used blocks on the
 saved volume.
volumeName (+041) String Name of the saved
 volume, with a leading length byte.
 This field is 16 bytes long. If the
 name is shorter than 15 characters,
 the remaining bytes are unused and
 should be zero.
reserved (+057) 7 Bytes Reserved for future use.
fileNumber (+064) Byte This field contains one for
 the first file of an archive, n in
 the nth file (see above).
startingBlock (+065) Long Block number corresponding to
 the data starting at offset (+512)
 in this file.
reserved (+069) 443 Bytes Reserved for future use.
theBlocks (+512) 512*n Bytes 512 bytes of data for
 each block of the saved volume
 recorded in this file where n is the
 number of blocks.

Further Reference

 o ProDOS 8 Technical Reference

END OF FILE FTN.E0.8004

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 230 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.E0.8006
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $E0 (224)
Auxiliary Type: $8006

Full Name: EZ Backup Saveset document
Short Name: EZ Backup Saveset document

Written by: Peter Easdown and Matt Deatherage September 1990

Files of this type and auxiliary type contain savesets as produced by
EZBackup.

EZ Backup is a backup utility that runs under GS/OS. It provides the ability
to backup to either a removable block device or to files under any available
file system.

For more information on EZ Backup, contact:

 EZ-Soft Pty. Ltd.
 G.P.O. Box 880
 Sydney, N.S.W., 2001
 Australia
 Telephone: 011.61.2.365.1271
 AppleLink: AUST0367

The EZ Backup file format is copyrighted (C) 1990 by EZ-Soft Pty. Ltd. and is
printed here with permission.

Definitions

The following definition is used in this document in addition to those defined
for all Apple II file types:

Date/Time An eight-byte date/time record as used by GS/OS and the
 Miscellaneous Tools.

The File Format

EZ Backup savesets are divided into three major segments: the header, the
file list and the data.

The Header

The header contains information relating to the saveset as a whole. It is a
fixed length of 1,024 ($400) bytes and is defined as follows:

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 231 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 backupDateTime (+000) Date/Time
 The date and time on
 which the backup took place.
 fileCount (+008) Word The number of files stored in
 the saveset.
 rootDirectory (+010) 512 Bytes
 A GS/OS input string containing
 the full pathname of the
 top-level directory of the
 saveset. Note that normally
 this is the volume name of the
 volume that was backed up.
 fileList (+522) Long A pointer used at run-time to
 point to the first entry of
 the file list. This field
 need not be zeroed when writing
 to disk.
 majRelease (+526) Word The major release component of
 the version number of EZ Backup
 used to create the saveset, as
 a two-byte integer.
 minRelease (+528) Word The minor release component of
 the version number of EZ Backup
 used to create the saveset, as
 a two-byte integer.
 fileSysID (+530) Word The file system ID of the
 volume that was backed up.
 backupType (+532) Boolean Word
 A flag that indicates whether
 the backup was a full backup or
 an incremental (changes only)
 backup. A value of TRUE means
 the backup is incremental.
 selected (+534) Boolean Word
 A run-time flag used to
 indicate that all files in the
 directory tree are selected.
 A value of TRUE indicates that
 all files are selected.
 devIcon (+536) Long A number indicating which icon
 to display for the root level
 when restoring. This is
 supplied in case the
 configuration of the machine
 doing the restore differs from
 that of the machine that made
 the backup. Following are the
 icon numbers and device types
 they represent:

 File Server $FFF5
 CD-ROM $FFF8
 5.25" Drive $FFF9
 RAM Disk $FFFA
 3.5" Disk $FFFB
 5.25" Disk $FFFC
 Hard Disk $FFFD

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 232 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 fileListLen (+540) Long The length in bytes of the
 file list (defined later).
 totalDisks (+544) Long The number of disks required
 by the saveset (excluding the
 disk containing the file list).
 Note that this is not relevant
 to a file-based backup since a
 saveset file cannot be larger
 than the disk on which it
 resides.
 reserved (+548) Word Reserved for future use.
 backupLen (+550) Long The total size in bytes of the
 backup, including the header,
 the file list and the data.
 reserved (+554) 470 Bytes Reserved for future use.

The File List

The file list contains a variable number of 128-byte records, the number of
which is given by the fileCount field in the header. Each file list entry is
defined as follows:

 nextFile (+000) Long A pointer that is used at run-
 time to point to the next file
 in the file list. Although
 only used a run-time, this
 field is useful in
 reconstructing the directory
 hierarchy when restoring
 savesets.
 fileInfo (+004) 62 Bytes A GS/OS GetDirEntry parameter
 block that describes this file.
 dataOffset (+066) Long An offset in bytes from the
 beginning of the file that
 points to the location within
 the saveset at which the data
 fork (if any) is stored. This
 field is zero if there is no
 data fork.
 resOffset (+070) Long An offset in bytes from the
 beginning of the file that
 points to the location within
 the saveset at which the
 resource fork (if any) is
 stored. This field is zero if
 there is no resource fork.
 optionListOffset (+074) Long An offset in bytes from the
 beginning of the file that
 points to the location within
 the saveset at which the GS/OS
 option_list (if any) was
 stored. This field is zero if
 there is no option_list.
 Note that EZ Backup does not
 currently store the option_list
 for any ProDOS files.
 optionListLen (+078) Word The length in bytes of the
 option_list (if any).

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 233 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 parentFile (+080) Long A pointer that contains the
 run-time address of the file
 list record of the directory
 that is a parent to the file
 described by this record.
 Although only used a run-time,
 this field is useful in
 reconstructing the directory
 hierarchy when restoring
 savesets.
 currentDir (+084) Long If the file described by this
 record is a directory, this
 field is a pointer to itself.
 This is supplied primarily for
 the restore operation so that
 the directory hierarchy may
 be rebuilt.
 selected (+088) Word Used at run-time to indicate a
 file record selection mode.
 If this field is zero, then
 some error occurred during the
 backup that prevented the file
 from being backed up. A
 non-zero value indicates that
 the file was correctly included
 in the saveset; only attempt to
 restore files that have a
 non-zero selection mode.
 created (+090) Boolean Word
 A flag used at restore time to
 indicate whether the file was
 created successfully. A value
 of TRUE means yes while FALSE
 means no.
 fileName (+092) 36 Bytes A GS/OS output string
 containing the name of the file.

The Data

The data component of the file contains the contents of all of the files
described in the file list in a contiguous stream of bytes. Each file begins
at a 512-byte boundary. Each file list record takes 128 bytes, and any
remaining bytes in the last 512-byte block of the file list are unused.
Similarly, all stored data forks, resource forks, and option_lists start on
512-byte boundaries, and any remaining bytes in their last 512-byte blocks are
unused.

Further Reference

 o GS/OS Reference

END OF FILE FTN.E0.8006

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 234 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.E0.800A
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $E0 (224)
Auxiliary Type: $800A

Full Name: Replicator document
Short Name: Replicator document

Written by: Josef W. Wankerl & Matt Deatherage May 1992

Files of this type and auxiliary type contain images for the disk duplicating
application Replicator.

Replicator is a commerical, desktop-based disk duplicating application
available from GS+ Magazine.

For more information on Replicator or GS+ Magazine, contact:

 GS+ Magazine
 P.O. Box 15366
 Chattanooga, TN 37415-0366
 Attention: Replicator Technical Support
 (615) 843-3988

 America Online: GSPlusDiz
 Delphi: GSPlusDiz
 GEnie: JWANKERL
 Internet: jwankerl@pro-gonzo.cts.com

FILE FORMAT

A Replicator file is an extended file with an empty data fork. The resource
fork should contain the following resources:

Res Type Resource ID Contents Description

 $0001 $00000001 Bytes The disk image, as read with a DRead
 GS/OS call.
 $0002 $00000001 Long The block count of the disk, as
 returned by a GS/OS Volume call.
 $0003 $00000001 Word The block size of the disk, as
 returned by a GS/OS Volume call.
 $0004 $00000001 Word Corresponds to the state of the
 Replicator disk window's "Number of
 copies" radio buttons. If this word
 is zero, the "Mass copy" radio button
 is selected; otherwise, the "Number of
 Copies" radio button is selected.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 235 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 $8006 $00000001 String Name of the disk volume as returned by
 rPString a GS/OS Volume call, with spaces on
 both sides of the name, as Replicator
 uses this string in a window title.
 $8006 $00000002 String Name of the file system the disk was
 rPString formatted with. You can use the
 fileSysID GS/OS returns to match the
 name of the file system to those
 returned by GetFSTInfo.
 $8006 $00000003 String Textual representation of the block
 rPString count.
 $8006 $00000004 String Textual representation of the block
 rPString size.
 $8016 $00000001 Bytes The number of copies to make.
 rText Replicator inserts this text into the
 "number of copies" Line Edit control
 in the disk window.
 $8029 $00000001 Bytes The minimum version of Replicator
 rVersion necessary to read this document. The
 only defined version is 1.0. The
 non-version fields of the rVersion
 resource should be set so the Finder
 displays "Requires Replicator
 <version>".
 $802A $00000001 Bytes Any comments to place in the
 rComment "Comments" TextEdit box in the disk
 window, and also shown by the Finder
 in "Icon Info." This resource is
 optional.

As an example, a Replicator document of a 128K ProDOS RAM disk named ":RAM5",
set to make five copies with "Mass copy" turned off and containing no comments
would contain the following resources:

 Res Type Resource ID Content Description

 $0001 $00000001 $00020000 (131072) bytes of disk image data.
 $0002 $00000001 $00000100 (256 blocks)
 $0003 $00000001 $0200 (512 bytes per block)
 $0004 $00000001 $0001 (Mass copy turned off)
 $8006 (rPString) $00000001 " :RAM5 "
 $8006 (rPString) $00000002 "ProDOS"
 $8006 (rPString) $00000003 "256"
 $8006 (rPString) $00000004 "512"
 $8016 (rText) $00000001 "5"
 $8029 (rVersion) $00000001 1.0 (release)

Further Reference

 o GS/OS Reference
 o Apple IIgs Technical Note #76, Miscellaneous Resource Formats

END OF FILE FTN.E0.800A

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 236 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: FTN.E2.FFFF
###

Apple II
File Type Notes

 Developer Technical Support

File Type: $E2 (226)
Auxiliary Type: $FFFF

Full Name: EasyMount document
Short Name: EasyMount document

Written by: Dave Lyons May 1992

Files of this type and auxiliary type contain EasyMount documents used by the
System 6.0 EasyMount Finder extension.

The EasyMount Finder extension in System 6.0 creates EasyMount documents and
uses them to let the user quickly connect to shared disks.

THE FILE FORMAT

An EasyMount document has the following format. In future versions, more data
may be added to the end.

serverName (+000) String Name of server to connect to.
entityName (+xxx) String Always "AFPServer". Immediately follows
 serverName.
zoneName (+xxx) String Name of zone containing server. Immediately
 follows entityName.
volumeName (+097) 28 Bytes Name String of specific volume to use on the
 server. This field takes 28 bytes regardless
 of the length of the String.
userName (+125) 32 Bytes User name String to connect with. This field
 takes 32 bytes regardless of the length of
 the String.
serverPassword (+157) 8 Bytes Password to connect with (padded with
 trailing zero bytes; all zeros to connect as
 Guest).
volumePassword (+165) 8 Bytes Volume password (padded with trailing zero
 bytes). Most servers do not use volume
 passwords, and EasyMount always fills this
 field with zeros.

Note that the userName field is big enough for a 31-character user name (with
length byte). Although 32-character user names are valid under AppleShare,
EasyMount can't deal with them (for historical reasons).

Passwords are stored UNENCRYPTED in EasyMount documents; finding one with a
saved password is the same as finding that user's password to the server.
Please take appropriate security precautions if you save passwords in
EasyMount documents.

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 237 of 36

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Further Reference

 o System 6.0 Documentation

END OF FILE FTN.E2.FFFF

F I N I S

Apple][Computer Family Technical Documentation
Human Interface Notes -- Developer CD March 1993 -- 238 of 36

