- T T T - TmAETTER—— =

Apple I[

Reference
Manual

January 1978 |

. (
M B |
A\ L] 1
\ i ﬁ
= 1
\ N ‘
N & e A
. .~
) P ’ j
“p . !
. k
N e N e N RN

1
{
e)

Reference Manual

"\ VR

B S

APPLE I
Reference Manual

January 1978

Apple Part No. 030-0004-00

APPLE Computer Inc.
10260 Bandley Dr.
Cupertino, CA
95014

APPLE I Reference Manual
TABLE OF CONTENTS

A. GETTING STARTED WITH YOUR

APPLE Icoiii i, 1
1. Unpackingcoovvivenenn., 1
2. Warranty Registration Card 1
3. Check for Shipping Damage 2
4 Power Upccvviiiiiininennnnn, 2
5. APPLE Il Speaks Several Languages. 3
6. APPLE IntegerBASIC 3
7. Running Your First
and Second Programs 3
8. Running 16K Startrek 3
9. Loading a Program Tape 4
10. Breakout and Color Demos Tapes .. 6
11. Breakout and Color
Demos Program Listings 12
12. How to Play Startrek 14
13. Loading HIRES Demo Tape 15
B. APPLE Il INTEGER BASIC........... 17
1. BASIC Commands 18
2. BASIC Operators 19
3. BASIC Functions 22
4. BASIC Statements 23
5. Special Control and Editing 28
6. Table A — Graphics Colors 29
7. Special Controls and Features..... 30
8. BASIC Error Messages............. 32
9. Simplified Memory Map 33
10. Data Read/Save Subroutines 34
11. Simple Tone Subroutines 43
12. High Resolution Graphics

Subroutines and Listings 46

13. Additional BASIC Program
Examplescoiiiiiiin.,

a. Rod’s Color Pattern 4K).......
Pong 4K)covvninvnn...
Color Sketch 4K)
Mastermind 8K)
Biorhythm 4K)................
Dragon Maze (4K).............

-~ ® a o U

C. APPLE Il FIRMWARE

1. System Monitor Commands
2. Control and Editing Characters....
3. Special Controls and Features.....
4

. Annotated Monitor and
Dis-assembler Listing

5. Binary Floating Point Package.....
6. Sweet 16 Interpreter Listing
7.65020pCodes

. APPLE Il HARDWARE

1. Getting Started with Your
APPLE Il Board..................

APPLE Il Switching Power Supply .
Interfacing with the Home TV
Simple Serial Qutput.............

Interfacing the APPLE —
Signals, Loading, Pin
Connections...........c.counn.

6. Memory —
Options, Expansion, Map,
Addressccvieiiiiiiaen.

7. System Timing
8. Schematics......................

o~ DD

GETTING STARTED WITH YOUR APPLE II

Unpacking

Don't throw away the packing material. Save it for the unlikely
event that you may need to return your Apple II for warrantee repair.
If you bought an Apple II Board only, see hardware section in this
manual on how to get started. You should have received the following:

1. Apple II system including mother printed circuit board
with specified amount of RAM memory and 8K of ROM memory,
switching power supply, keyboard, and case assembly.

2. Accessories Box including the following:

a. This manual including warranty card.
b. Pair of Game Paddles
c. A.C. Power Cord
d. Cassette tape with "Breakout"on one side
and "Color Demos" on the other side.
e. Cassette recorder interface cable (miniature

phone jack type)

3. If you purchased a 16K or larger system, your accessory
box should also contain:
a. 16K Startrek game cassette with High Resolution
Graphics Demo ("HIRES") on the flipside.
b. Applesoft Floating Point Basic Language Cassette
with an example program on the other side.
c. Applesoft reference manual

4. 1In addition other items such as a vinyl carrying case
or hobby board peripherial may have been included if
specifically ordered as "extras".

Notify your dealer or Apple Computer, Inc. immediately if you are
missing any items.

Warranty Registration Card

Fi11 this card out immediately and completely and mail to Apple in
order to register for one year warranty and to be placed on

owners club mailing 1ist. Your Apple II's serial number is Tocated
on the bottom near the rear edge. You model number is:

A2SPHOMMX
MM is the amount of memory you purchased. For Example:

A2S0008X
is an 8K Byte Apple II system.

Check for Damage

Inspect the outside case of your Apple for shipping damage. Gently
1ift up on the top rear of the 1id of the case to release the 1id
snaps and remove the 1id. Inspect the inside. Nothing should be
loose and rattling around. Gently press down on each integrated
circuit to make sure that each is still firmly seated in its
socket. Plug in your game paddles into the Apple II board at the
socket marked "GAME I/0" at location J14. See hardware section of
this manual for additional detail. The white dot on the connector
should be face forward. Be careful as this connector is fragile.
Replace the 1id and press on the back top of it to re-snap it into
place.

Power Up

First, make sure that the power ON/OFF switch on the rear power
supply panel on your Apple II is in the "OFF" position. Connect
the A.C. power cord to the Apple and to a 3 wire 120 volt A.C.
outlet. Make sure that you connect the third wire to ground if
you have only a two conductor house wiring system. This ground
is for your safety if there is an internal failure in the Apple
power supply, minimizes the chance of static damage to the Apple,
and minimizes RFI problems.

Connect a cable from the video output jack on the back of the Apple
to a TV set with a direct video input jack. This type of set is
commonly called a "Monitor". If your set does not have a direct
video input, it is possible to modify your existing set. Write for
Apple's Application note on this. Optionally you may connect the
Apple to the antenna terminals of your TV if you use a modulator.
See additional details in the hardware section of this manual under
"Interfacing with the Home TV".

Now turn on the power switch on the back of the Apple. The indicator
Tight (it's not a switch) on the keyboard should now be ON. If

not, check A.C. connections. Press and release the "Reset" button

on the keyboard. The following should happen: the Apple's internal
speaker should beep, an asterisk ("*") prompt character should appear
at the lower left hand corner of your TV, and a flashing white square
should appear just to the right of the asterisk. The rest of the

TV screen will be made up of radom text characters (typically question marks).

If the Apple beeps and garbage appears but you cannot see an "*" and the
cursor, the horizontal or vertical height settings on the TV need to be
adjusted. Now depress and release the "ESC" key, then hold down the
"SHIFT" key while depressing and releasing the P key. This should

clear your TV screen to all black. Now depress and release the "RESET"
key again. The "*" prompt character and the cursor should return to

the lower left of your TV screen.

Apple Speaks Several Languages

The prompt character indicates which Tanguage your Apple is currently
in. The current prompt character, an asterisk ("*"), indicates that
you are in the "Monitor" language, a powerful machine level language
for advanced programmers. Details of this language are in the
"Firmware" section of this manual.

Apple Integer BASIC

Apple also contains a high level English oriented language called
Integer BASIC, permanently in its ROM memory. To switch to this
language hold down the "CTRL" key while depressing and releasing the
"B" key. This is called a control-B function and is similiar to

the use of the shift key in that it indicates a different function
to the Apple. Control key functions are not displayed on your

TV screen but the Apple still gets the message. Now depress and
release the "RETURN" key to tell Apple that you have finished typing
a line on the keyboard. A right facing arrow (">") called a caret
will now appear as the prompt character to indicate that Apple is
now in its Interger BASIC language mode.

Running Your First and Second Program

Read through the next three sections that include:

1. Loading a BASIC program Tape
2. Breakout Game Tape
3. Color Demo Tape

Then Toad and run each program tape. Additional information on
Apple II's interger BASIC is in the next section of this manual.

Running 16K Startrek

If you have 16K Bytes or larger memory in your Apple, you will also
receive a "STARTREK" game tape. Load this program just as you did
the previous two, but before you "RUN" it, type in "HIMEM: 16384"
to set exactly where in memory this program is to run.

LOADING A PROGRAM TAPE

INTRODUCTION

This section describes a procedure for loading BASIC programs
successfully into the Apple II. The process of loading a program is divided
into three section; System Checkout, Loading a Tape and What to do when
you have Loading Problems. They are discussed below.

when loading a tape, the Apple II needs a signal of about 2 1/2 to 5
volts peak-to-peak. Commonly, this signal is obtained from the "Monitor"
or "earphone" output jack on the tape recorder. Inside most tape recorders,
this signal is derived from the tape recorder's speaker. One can take
advantage of this fact when setting the volume levels. Using an Apple
Computer pre-recorded tape, and with all cables disconnected, play the tape
and adjust the volume to a Toud but un-distorted level. You will find that
this volume setting will be quite close to the optimum setting.

Some tape recorders (mostly those intended for use with hi-fi sets)
do not have an "earphone" or high-level "monitor" output. These machines
have outputs labeled "1ine output" for connection to the power amplifier.
The signal levels at these outputs are too low for the Apple II in most cases.

Cassette tape recorders in the $49 - $50 range generally have ALC
(Automatic Level Control) for recording from the microphone input. This feature
is useful since the user doesn't have to set any volume controls to obtain
a good recording. If you are using a recorder which must be adjusted, it
will have a level meter or a little light to warn of excessive recording levels.
Set the recording level to just below the level meter's maximum, or to just a
dim indication on the level lamp. Listen to the recorded tape after you've
saved a program to ensure that the recording is "loud and clear”.

Apple Computer has found that an occasional tape recorder will not function
properly when both Input and Output cables are plugged in at the same time.
This problem has been traced to a ground loop in the tape recorder itself which
prevents making a good recording when saving a program. The easiest solution
is to unplug the "monitor" output when recording. This ground loop does not
influence the system when loading a pre-recorded tape.

Tape recorder head alignment is the most common source of tape recorder
problems. If the playback head is skewed, then high frequency information
on pre-recorded tapes is lost and all sorts of errors will result. To confirm
that head alignment is the problem, write a short program in BASIC. >10 END
is sufficient. Then save this program. And then rewind and load the program.
If you can accomplish this easily but cannot load pre-recorded tapes, then
head alignment problems are indicated.

Apple Computer pre-recorded tapes are made on the highest quality professional
duplicating machines, and these tapes may be used by the service technician to
align the tape recorder's heads. The frequency response of the tape recorder
should be fairly good; the 6 KHz tone should be not more than 3 db down from
a 1 KHz tone, and a 9 KHz tone should be no more than 9 db down. Note that
recordings you have made yourself with mis-aligned heads may not not play
properly with the heads properly aligned. If you made a recording with a
skewed record head, then the tiny magnetic fields on the tape will be skewed as
well, thus playing back properly only when the skew on the tape exactly matches
the skew of the tape recorder's heads. If you have saved valuable programs with
a skewed tape recorder, then borrow another tape recorder, load the programs with
the old tape recorder into the Apple, then save them on the borrowed machine.
Then have your tape recorder properly aligned.

Listening to the tape can help solve other problems as well. Flaws in the
tape, excessive speed variations, and distortion can be detected this way.
Saving a program several times in a row is good insurance against tape flaws.
One thing to listen for is a good clean tone lasting for at least 3 1/2 seconds
is needed by the computer to "set up" for proper loading. The Apple puts out
this tone for anout 1¥ seconds when saving a program, SO you normally have
6 1/2 seconds of leeway. If the playback volume is too high, you may pick up tape
noise before getting to the set-up tone. Try a lower playback volume.

SYSTEM CHECKOUT

A quick check of the Apple II computer system will help you spot any
problems that might be due to improperly placed or missing connections between
the Apple II, the cassette interface, the Video display, and the game
paddles. This checkout procedure takes just a few seconds to perform and
is a good way of insuring that everything is properly connected before the
power is turned on.

POWER TO APPLE - check that the AC power cord is plugged
into an appropriate wall socket, which includes a "true"
ground and is connected to the Apple II.

CASSETTE INTERFACE - check that at least one cassette
cable double ended with miniature phone tip jacks is
connected between the Apple II cassette Input port and
the tape recorder's MONITOR plug socket.

VIDEO DISPLAY INTERFACE -

a) for a video monitor - check that a cable connects
the monitor to the Apple's video output port.
b) for a standard television - check that an adapter

(RF modulator) is plugged into the Apple II (either
in the video output (K 14) or the video auxillary
socket (J148), and that a cable runs between the
television and the Adapter's output socket.

GAME PADDLE INTERFACE - if paddles are to be used, check
that they are connected into the Game I/0 connector (J14)
on the right-hand side of the Apple II mainboard.

POWER ON - flip on the power switch in back of fhe Apple II,
the "power" indicator on the keyboard will Tight. Also
make sure the video monitor (or TV set) is turned on.

After the Apple II system has been powered up and the video display

presents

a random matrix of question marks or other text characters the

following procedure can be followed to load a BASIC program tape:

1.

Hit the RESET key.

An asterick, "*",should appear on the lefthand side

of the screen below the random text pattern. A flashing
white cursor will appear to the right of the asterick.

Hold down the CTRL key, depress and release the B key,
then depress the "RETURN" key and release the "CTRL" key.
A right facing arrow should appear on the lefthand side
of the screen with a flashing cursor next to it. If it
doesn't, repeat steps 1 and 2.

Type in the word "LOAD" on the keyboard. You should see
the word in between the right facing arrow and the
flashing cursor. Do not depress the "RETURN" key yet.

Insert the program cassette into the tape recorder and
rewind it.

If not already set, adjust the Volume control to 5@-70%
maximum. If present, adjust the Tone control to 8p-100%
maximum.

6. Start the tape recorder in "PLAY" mode and now depress
the "RETURN" key on the Apple II.

7. The cursor will disappear and Apple II will beep in a
few seconds when it finds the beginning of the program.
If an error message is flashed on the screen, proceed
through the steps listed in the Tape Problem section
of this paper.

8. A second beep will sound and the flashing cursor will
reappear after the program has been successfully loaded
into the computer.

9. Stop the tape recorder. You may want to rewind the program
tape at this time.

10. Type in the word "RUN" and depress the "RETURN" key.

The steps in loading a program have been completed and if everying has
gone satisfactorily the program will be operating now.

LOADING PROBLEMS

Occasionally, while attempting to load a BASIC program Apple II
beeps and a memory full error is written on the screen. At this time
you might wonder what is wrong with the computer, with the program tape,
or with the cassette recorder. Stop. This is the time when you need
to take a moment and checkout the system rather than haphazardly attempt-
ing to resolve the loading problem. Thoughtful action taken here will
speed in a program's entry. If you were able to successfully turn on the
computer, reset it, and place it into BASIC then the Apple II is probably
operating correctly. Before describing a procedure for resolving this
loading problem, a discussion of what a memory full error is in order.

The memory full error displayed upon loading a program indicates that
not enough (RAM) memory workspace is available to contain the incoming data.
How does the computer know this? Information contained in the beginning of
the program tape declares the record length of the program. The computer
reads this data first and checks it with the amount of free memory. If
adequate workspace is available program loading continues. If not, the
computer beeps to indicate a problem, displays a memory full error statement,
stops the loading procedure, and returns command of the system to the key-
board. Several reasons emerge as the cause of this problem.

Memory Size too Small

Attempting to load a 16K program into a 4K Apple II will generate this
kind of error message. It is called loading too large of a program. The
solution is straight forward: only load appropriately sized programs into
suitably sized systems.

Another possible reason for an error message is that the memory pointers
which indicate the bounds of available memory have been preset to a smaller
capacity. This could have happened through previous usage of the "HIMEN :"
and "LOMEN :" statements. The solution is to reset the pointers by 8C (CTRL B)
command. Hold the CTRL key down, depress and release the B key, then depress
the RETURN key and release the CTRL key. This will reset the system to max-

jmum capacitv.

Cassette Recorder Inadjustment

If the Volume and Tone controls on the cassette recorder are not
properly set a memory full error can occur. The solution is to adjust
the Volume to 5@-79% maximum and the Tone (if it exists) to 80-100%
max imum.*

A second common recorder problem is skewed head azimuth. When
the tape head is not exactly perpendicular to the edges of the magnetic
tape some of the high frequency data on tape can be skipped. This causes
missing bits in the data sent to the computer. Since the first data read
is record length an error here could cause a memory full error to be
generated because the length of the record is inaccurate. The solution:
adjust tape head azimuth. It is recommended that a competent technician
at a local stereo shop perform this operation. ‘
Often times new cassette recorders will not need this adjustment.

*Apple Computer Inc. has tested many types of cassette recorders and so far
the Panasonic RQ-399 DS (less than $40.0@) has an excellent track record
for program loading.

Tape Problems
A memory full error can result from unintentional noise existing in

a program tape. This can be the result of a program tape starting on its
header which sometimes causes a glitch going from a nonmagnetic to magnetic
recording surface and is interpreted by the computer as the record length.
Or, the program tape can be defective due to false erasure, imperfections

in the tape, or physical damage. The solution is to take a moment and

listen to the tape. If any imperfections are heard then replacement of the
tape is called for. Listening to the tape assures that you know what a
"good" program tape sounds like. If you have any questions about this please
contact your Tocal dealer or Apple for assistance.

If noise or a glitch is heard at the beginning of a tape advance the
tape to the start of the program and re-Load the tape.

Dealing with the Loading Problem

With the understanding of what a memory full error is an efficient way
of dealing with program tape loading problems is to perform the following
procedure:

1. Check the program tape for its memory requirements.
Be sure that you have a large enough system.

2. Before loading a program reset the memory pointers
with the B. (control B) command.

3. In special cases have the tape head azimuth
checked and adjusted.

4. Check the program tape by listening to it.
a) Replace it if it is defective, or
b) start it at the beginning of the program.
5. Then re-LOAD the program tape into the Apple II.
In most cases if the preceeding is followed a good tape load will resuilt.

UNSOLVED PROBLEMS

If you are having any unsolved loading problems, contact your
nearest local dealer or Apple Computer Inc.

BREAKOUT GAME TAPE

PROGRAM DESCRIPTION

Breakout is a color graphics game for the Apple Il computer. The object of
the game is to "knock-out' all 16f colored bricks from the playing field by
hitting them with the bouncing ball. You direct the ball by hitting it with
a paddle on the left side of the screen. You control the paddie with one of
the Apple's Game Paddle controllers. But watch out: you can only miss the
ball five times.

There are eight columns of bricks. As you penetrate through the wall the
point value of the bricks increases. A perfect game is 720 points; after
five balls have been played the computer will display your score and a
rating such as "Very Good". "Terrible!", etc. After ten hits of the ball,
its speed with double, making the game more difficult. If you break through
to the back wall, the ball will rebound back and forth, racking up points.

Breakout is a challenging game that tests your concentration, dexterity,
and skiltl.

REQUIREMENTS

This program will fit into a 4K or greater system.
BASIC is the programming language used.

PLAYING BREAKOUT

1. Load Breakout game following instructions in the "Loading
a BASIC Program from Tape" section of this manual.

2. Enter your name and depress RETURN key.

3 If you want standard BREAKOUT colors type in Y or Yes

and hit RETURN. The game will then begin.

4, If the answer to the previous questions was N or No
then the available colors will be displayed. The
player will be asked to choose colors, represented by a
number from @ to 15, for background, even bricks, odd
bricks, paddle and ball colors. After these have been
chosen the game will begin.

10

5. At the end of the game you will be asked if they
want to play again. A Y or Yes response will start
another game. A N or No will exit from the program.

NOTE: A game paddle (158k ohm potentiometer) must be connected
to PDL (@) of the Game I/0 connector for this game.

COLOR DEMO TAPE

PROGRAM DESCRIPTION

COLOR DEMO demonstrates some of the Apple II video graphics
capabilities. In it are ten examples: Lines, Cross, Weaving,
Tunnel, Circle, Spiral, Tones, Spring, Hyperbola, and Color Bars.
These examples produce various combinations of visual patterns
in fifteen colors on a monitor or television screen. For example,
Spiral combines colorgraphics with tones to produce some amusing
patterns. Tones illustrates various sounds that you can produce
with the two inch Apple speaker. These examples also demonstrate
how the paddle inputs (PDL(X)) can be used to control the audio
and visual displays. Ideas from this program can be incorporated
into other programs with a little modification.

REQUIREMENTS

4K or greater Apple II system, color monitor or television,
and paddles are needed to use this program. BASIC is the pro-
gramming language used.

11

BREAKOUT GAME
PRCGRAM LISTING

1 LIS

Al

PROG?.

wa
v

12

COLOR DEMO PROGRAM

L]

[}

N

LISTI

NG

sl

PRCGRAM LISTI

13

—yme=sme T e T e T T e T e T AFPPLE I1 STARTREK VERSTION PP R S Rl R R

THIS 1S A SHORT DESCRIFPTION OF HOW TO FPLAY STARTREK ON THE
APPLE COMPUTER.

THE UNIVERSE IS MADE UF OF 64 QUADRANTS IN AN 8 RY 8 MATRIX.
THE QUADRANT IN WHICH YOU *THE ENTERFRISE * AREs IS IN WHITE,
ANI* A ELOW UP OF THAT QUADRANT IS FOUND' IN THE LOWER LEFT
CORNER . YOUR SFACE SHIF STATUS 1S FOUNDr IN A TARLE 70

THE RIGHT SIDE OF THE QUADIRANT BLOW UF.

THIS 1S5 A SEARCH AND DESTROY MISSION. THE ORJECT 1S TO LONG-RANGE
GENSE FOR INFORMATION AS TO WHERE KLINGONS (K) AREy MOVE TO THAT QUADRANT,
AND' DESTROY .

NUMBERS DISFLAYED FOR EACH QUADRANT DENOTE?
OF STARS IN THE ONES FLACE
&+ OF EASES IN THE TENS FLACE
OF KLINGONS IN THE HUNDREDRS FLACE

AT ANY TIME DBURING THE GAHMEs FOR INSTANCE REFORE ONE TOTALLY
RUNS OUT OF ENERGYs OK NEEDS TO REGENERATE ALL SYSTEMS, ONE MOVES TO0 A
QUADRANT WHICH INCLULES A BASEy I1IONS NEXT TO THAT KASE (R) AT WHICH TIME
THE BASE SELF-DESTRUCTS ANDI THE ENTERPRISE (E) HAS ALL SYSTEMS *GO*"

AGAIN.
T0 FLAY?
1. THE COMMANDS CAN EE ORTAINED BY TYFING A *0* (ZERO) AND RETURN.
THEY ARE:

1. FROFPULSION 2, REGENERATE

3. LONG RANGE SENSORS 4, FHASERS

5. PHOTON TORFEDOES 6. GALAXY RECORD
7. COMFUTER 8. FRORE

9, SHIELD ENERGY 10.0AMAGE REFORT

11.L0ADI FHOTON TORFEDOES
2. THE COMANDS ARE INVOKER BY TYFING THE NUMRER REFERING TO THEM

FOLLOWED RBY A °RETURN®.

a. IF RESFONSE IS 1 THE COMFUTER WILL ASK WARF OR ION AND
EXFECTS "W*® IF ONE WANTS TO TRAVEL IN THE GALAXY
BETWEEN QUADRANTS AND AN *I* 1IF ONE WANTS ONLY
INTERNAL QUADNRANT TRAVEL.
DUXATION OF WARF FACTUR 1S THE NUMRER OF SFACES Ok
QUADRANTS THE ENTERPRISE WILL MOVE.
COURSE IS CDMFASS REAINING IN DEGREES FOR THE DESI-
RED DESTINATION.

K. A 2 REGENERATES THE ENERGY AT THE EXFENSE OF TIME.

C. A 3 GIVES THE CONTENTS OF THE IMMEDIATE ADJACENT QUADRANTS .
THE GALAXY 1S WRAF-AROUND 1N ALL DIRECTIONS.

. 4 FIRES FHASERS AT THE EXFENSE OF AVAILAELE ENERGY.

E. 5 INITIATES A SET OF QUESTIONS FOR TORPEDO FIRING.
THEY CAN BE FIRED AUTOMATICALLY IF THEY HAVE
BEEN LOCKED DN TARGET WHILE IN THE COMPUTER
MODEs OR MAY BE FIKEL MANUALLY IF THE TRAGECTORY ANGLE
IS KNOWN.]
F. 6 8 AND 10 ALL GIVE INFORMATION AEOUT THE STATUS OF THE SHIF
AND ITS ENVIRONMENT.
G. 9 SETS THE SHIELD ENERGY/AVAILABLE ENERGY RATIO.
H. 11 ASKS FOR INFORMATION ON LOADING AND UNLOALING OF
PHOTON TORPEDOES AT THE ESPENSE OF AVAILABLE ENERGY.
THE ANSWER SHOULL RE A SIGNED NUMBER. FOR EXAMFLE

+5 OR -2.
I. 7 ENTERS A COMPUTER WHICH WILL RESFOND TO THE FOLLOWING
INSTRUCTIONS:
1. COMPUTE COURSE 2, LOCK FHASERS
3. LOCK FHOTON TORPEDOES
4., LOCK COURSE 5, COMPUTE TREJECTORY
6. STATUS 7. RETURN TO COMAND MODE

IN THE FIRST FIVE ONE WILL HAVE TO GIVE COORIINATES.
COORDINATES ARE GIVEN IN MATHMATICAL NOTATION WITH
THE EXCEFPTION THAT THE °Y*® VALUE IS GIVEN FIRST.

AN EXAMPLE WOULD BE °Y!X*

COURSE OR TRAJECTORY:

<

|

i

[}

1

|
L]

|
1
|
t
|
i

|
0
<

270———mm—mmm =

[
Q = - -
(=)

------ THIS EXPLANATION WAS WRITTEN BY ELWOOD —e—e=oe=eme"e=e" e~
NOT RESPONSIBLE FOR
ERRORS

14

LOADING THE HI-RES DEMO TAPE

PROCEDURE

1.

Power up system - turn the AC power switch in the back
of the Apple II on. You should see a random matrix of
question marks and other text characters. If you don't,
consult the operator's manual for system checkout pro-
cedures.

Hit the RESET key. On the left hand side of the screen
you should see an asterisk and a flashing cursor next to
it below the text matrix.

Insert the HI-RES demo tape into the cassette and rewind
it. Check Volume (5@-70%) and Tone (80-100%) settings.

Type in "C@P.FFFR" on the Apple II keyboard. This is the
address range of the high resolution machine language sub-
program. It extends from $C@P to $FFF. The R tells the
computer to read in the data. Do not depress the "RETURN"
key yet. T

Start the tape recorder in playback mode and depress the
"RETURN" key. The flashing cursor disappears.

A beep will sound after the program has been read in.
STOP the tape recorder. Do not rewind the program tape yet.

Hold down the "CTRL" key, depress and release the B key,
then depress the "RETURN" key and release the "CTRL" key.
You should see a right facing arrow and a flashing cursor.
The BC command places the Apple into BASIC initializing
the memory pointers.

Type in "LOAD", restart the tape recorder in playback mode
and hit the "RETURN" key. The flashing cursor disappears.
This begins the loading of the BASIC subprogram of the
HI-RES demo tape.

A beep will sound to indicate the program is being loaded.

15

10. A second beep will sound, and the right facing arrow
will reappear with the flashing cursor. STOP the
tape recorder. Rewind the tape.

11. Type in "HIMEM:8192" and hit the "RETURN" key. This
sets up memory for high resolution graphics.

12. Type in "RUN" and hit the "RETURN" key. The screen

should clear and momentarily a HI-RES demo menu table
should appear. The loading sequence is now completed.

SUMMARY OF HI-RES DEMO TAPE LOADING

1. RESET
Type in CP@.FFFR
Start tape recorder, hit RETURN

oW N

Asterick or flashing cursor reappear
BC (CTRL B) into BASIC

o

Type in "LOAD", hit RETURN

6. BASIC prompt (7) and flashing cursor
reappear. Type in "HIMEN:8192", hit
RETURN

7. Type in "RUN", hit RETURN

8. STOP tape recorder, rewind tape.

16

APPLE Il INTEGER BASIC

N T Y
W N =

©COX®NOOO AN

BASIC Commands

BASIC Operators

BASIC Functions

BASIC Statements

Special Control and Editing
Table A — Graphics Colors
Special Controls and Features
BASIC Error Messages
Simplified Memory Map

Data Read/Save Subroutines

. Simple Tone Subroutines
. High Resolution Graphics
. Additional BASIC Program Examples

BASIC COMMANDS

Commands are executed immediately; they do not require line numbers.Most Statements
(see Basic Statements Section) may also be used as commands. Remember to press
Return key after each command so that Apple knows that you have finished that

line. Multiple commands (as opposed to statements) on same line separated by

a " : " are NOT allowed.

COMMAND NAME

AUTO »num

AUTO numl, num2

CLR

CON

DEL numi

DEL nwml, numa

%P var

HIMEM: expr

GOTO expr

LIST wumi

LIST numl, num?2

Sets automatic line numbering mode. Starts at line
number nwn and increments 1ine numbers by 10. To
exit AUTO mode, type a control X*, then type the
letters "MAN" and press the return key.

Same as above execpt increments line numbers by
number »nums.

Clears current BASIC variables; undimensions arrays.
Program is unchanged.

Continues program execution after a stop from a
control C*. Does not change variables.

Deletes line number »numl.

Deletes program from line numberxuml through 1line
number numéa.

Sets debug mode that will display variable var every-
time that it is changed along with the 1ine number
that caused the change. (NOTE: RUN command clears
DSP mode so that DSP command is effective only if
program is continued by a CON or GOTO command.)

Sets highest memory location for use by BASIC at
location specified by expression exprin decimal.

HIMEM: may not be increased without destroying program.
HIMEM: s automatically set at maximum RAM memory when
BASIC is entered by a control B*.

Causes immediate jump to line number specified by
expression expr.

Sets mixed color graphics display mode. Clears screen

to black. Resets scrolling window. Displays 40x40
squares in 15 colors on top of screen and 4 Tines of text
at bottom.

Lists entire program on screen.

Lists program line number numi.

Lists program line numberwuml through 1ine number
numé.

18

LOAD expr.
LOMEM: expr
MAN

NEW

NO DSP war
NO TRACE
RUN

RUN expr
SAVE

TEXT

TRACE

Reads (Loads) a BASIC program from cassette tape.

Start tape recorder before hitting return key. Two
beeps and a ">" indicate a good load. "ERR" or “"MEM"
FULL ERR" message indicates a bad tape or poor recorder
performance.

Similar to HIMEM: except sets lowest memory location
available to BASIC. Automatically set at 2@48 when
BASIC is entered with a control B*. Moving LOMEM:
destroys current variable values.

Clears AUTO line numbering mode to all manual line
numbering after a control C* or control X*.

Clears (Scratches) current BASIC program.
Clears DSP mode for variable var.
Clears TRACE mode.

Clears variables to zero, undimensions all arrays and
executes program starting at Towest statement line
number.

Clears variables and executes program starting at line
number specified by expression expr.

Stores (saves) a BASIC program on a cassette tape.
Start tape recorder in record mode prior to hitting
return key.

Sets all text mode. Screen is formated to display
alpha-numeric characters on 24 lines of 40 characters
each. TEXT resets scrolling window to maximum.

Sets debug mode that displays line number of each
statement as it is executed.

Control characters such as control X or control C are
typed by holding down the CTRL key while typing the
specified letter. This is similiar to how one holds

down the shift key to type capital letters. Control
characters are NOT displayed on the screen but are
accepted by the computer. For example, type several
control G's. We will also use a superscript C to indicate
a control character as in XC.

19 .

BASIC Operators

Symbol Samplie Statement
Prefix Operators
() 10 X= 4*%(5 + X)
+ 20 X= 1+4%5
- 30 ALPHA =
-(BETA +2)

4@ IF A NOT B THEN
209

NOT

Arithmetic Operators

A 60 Y = X43
* 70 LET DOTS$=A*B*N2
/ 80 PRINT GAMMA/S
MOD 90 X = 12 MOD 7
100 X = X MOD(Y+2)
+ 1MgP=L+6
- 12¢ XY4 = H-D

= 13@ HEIGHT=15
146 LET SIZE=7%*5
150 A(8) = 2
155 ALPHA$ = "PLEASE"

20

Explanation

Expressions within parenthesis ()
are always evaluated first.

Optional; +1 times following expression.
Negation of following expression.
Logical Negation of following expression;

P if expression is true (non-zero), 1
if expression is false (zero).

Exponentiate as in X3.

shifted letter N.

NOTE: 4 1is

Multiplication. NOTE: Implied multi-
plication such as (2 + 3)(4) is not
allowed thus N2 in example is a variable
not N * 2.

Divide

Modulo: Remainder after division of
first expression by second expression.

Add
Substract

Assignment operator; assigns a value to
a variable. LET 1is optional

Relational and Logical Operators

The numeric values used in logical evaluation are "true" if non-zero,
"false" if zero.

Symbol Sample Statement Explanation
= 16 IF D=E Expression "equals" expression.
THEN 500
= 17¢ IF A$(1,1)= String variable "equals' string variable.
"Y" THEN 500
or < > 180 IF ALPHA #X*Y Expression "does not equal" expression.
THEN 509
190 IF A$ # "NO" String variable "does not equal" string
THEN 500 variable. NOTE: If strings are not
the same length, they are considered
un-equal. < > not allowed with strings.
> 200 IF A>B Expression "is greater than" expression.
THEN GO TO 5¢
< 219 IF A+1<B-5 Expression "is less than" expression.
THEN 100
>= 228 IF A>=B Expression "is greater than or equal to"
THEN 100 expression.
<= 230 IF A+1<=B-6 Expression "is less than or equal to"
THEN 20¢ expression.
AND 240 IF A>B AND Expression 1 "and" expression 2 must
C<D THEN 20¢ both be "true" for statements to be true.
OR 250 IF - ALPHA OR If either expression 1 or expression 2
BETA+1 THEN 20¢4@ is "true", statement is "true".
/
e

21

BASIC FUNCTIONS

Functions return a numeric result. They may be used as expressions or as part
of expressions. PRINT is used for examples only, other statements may

be used. Expressions following function name must be enclosed between two
parenthesis sians.

FUNCTION NAME

ABS (expr) 30 PRINT ABS(X) Gives absolute value of the expressionexpr.

ASC (str$) 310/ PRINT ASC("BACK") Gives decimal ASCII value of designated
320 PRINT ASC(B$) string variable str$. If more than one
33P0 PRINT ASC(BS$(4,4)) character is in designated string or
335 PRINT ASC(B$(Y)) sub-string, it gives decimal ASCII

value of first character.

LEN (strs) 340 PRINT LEN(B$) Gives current length of designated
string variable str$;i.e., number of
characters.

PDL (expr) 35@ PRINT PDL(X) Gives number between @ and 255 corres-

ponding to paddle position on game paddle
number designated by expression gxpr and must
be legal paddie (f,1,2,0r 3) or else 255 is
returned.

PEEK (expr) 360 PRINT PEEK(X) Gives the decimal value of number stored
of decimal memory location specified by
expression expr. For MEMORY locations
above 32676, use negative number; i.e.,
HEX Tocation FFF@ is -16

RND (expr) 37@¢ PRINT RND(X) Gives random number between (and
(expression expr -1) if expression expr
is positive; if minus, it gives random
number between @ and (expression expr +1).

SCRN(exprz, 380 PRINT SCRN (X1,Y1) Gives color (number between @ and 15) of
expra) screen at horizontal location designated
by expression exprl and vertical
location designated by expression expr2
Range of expression expri is § to 39. Range
of expression expr2 is @ to.39 if in standard
mixed colorgraphics display mode as set by
GR command or 0 to 47 if in all color mode
set by POKE -163p4 ,p: POKE - 16302,0.

SGN (expr) 390 PRINT SGN(X) _Gives sian (not sine) of expression expr

i.e., -1 1if expressionexpr is negative, zero if
zero and +1 ifexpr is positive.

29

BASIC STATEMENTS

Each BASIC statement must have a Tine number between @ and 32767. Variable
names must start with an alpha character and may be any number of alpha-

numeric characters up to 1p2.
of the following words: AND, AT, MOD, OR, STEP, or THEN.
not begin with the letters END, LET, or REM.
with a § (dollar sign).
if separated by a :

Variable names may not contain buried any

Variable names may
String variables names must end

Multiple statements may appear under the same 1ine number
(colon) as long as the total number of characters in the line

(including spaces) is less than approximately 150 characters

Most statements may also be used as commands.

by RUN or GOTO commands.

NAME
CALL expr
COLOR=expr

DIM varl (exrri)
str$ (expr2)
var2 (expr3)

DSPvar

1§ CALL-936

3§ COLOR=12

50 DIM A(29),B(1p)

60 DIM B$(3p)

70 DIM C (2)
I1leqal:

80 DIM A(3p)
Leqgal:

85 DIM C(1p09)

Leqal:
90 DSP AX: DSP L
I1leqal:
109 DSP AX,B
102 DSP ABS
104 DSP A(5)
Legal:

195 A=A(5): DSP A

23

BASIC statements are executed

Causes execution of a machine Tevel
language subroutine at decimal memory
Tocation specified by expression expr
Locations above 32767 are specified using
negative numbers; i.e., location in
example 1@ is hexidecimal number $FC53

In standard resolution color (GR)

graphics mode, this command sets screen

TV color to value in expression expr

in the range @ to 15 as described in

Table A. Actually expressionexpr may be

in the range @ to 255 without error message
since it is implemented as if it were
expressionexpr MOD 16.

The DIM statement causes APPLE II to
reserve memory for the specified variables.
For number arrays APPLE reserves
approximately 2 times exprbytes of memory
limited by available memory. For string
arrays - str$- (expr) must be in the range of
1 to 255. Last defined variable may be
redimensioned at any time; thus, example

in line is illegal but 85 is allowed.

Sets debug mode that DSP variable var each

time it changes and the line number where the

change occured.

NAME

END

FOR var=

’

exv.sl T0exprs
S%Epexprsxp

GOSUS expr

GOTO expr

HLIN expri,
expr2ATexpr3

Note:

EXAMPLE

119 END

119 FOR L=p to 39
129 FOR X=Y1 TO Y3
13p FOR I=39 70 1

150 GOSUB 199 *J2

149 GOSUB 509

169 GOTO 2¢9

179 GOTO ALPHA+1pp

189 GR
199 GR: POKE -16302,0

20P HLIN P,39 AT 2P
219 HLIN Z,7+6 AT I

DESCRIPTION

Stops program execution. Sends carriage
return and "> " BASIC prompt) to screen.

Begins FOR...NEXT loop, initializes

variable var to value of expression expri

then increments it by amount in expression
expr 3each time the corresponding "NEXT"
statement is encountered, until value of
expression expr 2is reached. If STEP expr3

is omitted, a STEP of +1 is assumed. Negative
numbers are allowed.

Causes branch to BASIC subroutine starting
at legal Tine number specified by expression
expr Subroutines may be nested up to

16 Tevels.

Causes immediate jump to legal line
number specified by expression expr.

Sets mixed standard resolution color
graphics mode. Initializes COLOR =
(Black) for top 4Px4P of screen and sets
scrolling window to lines 21 through 24
by 4P characters for four lines of text
at bottom of screen. Example 190 sets
all color mode (4Px48 field) with no text
at bottom of screen.

In standard resolution color graphics mode,
this command draws a horizontal 1line of a
predefined color (set by COLOR=) starting

at horizontal position defined by expression
exprl and ending at position exprg at
vertical position defined by expression
expr3 .exprl andexpr2 must be in the range
of @ to 39 and expri < = exprg . expr3

be in the range of @ to 39 (or @ to 47 if not
in mixed mode).

HLIN @, 19 AT @ is a horizontal line at the top of the screen
extending from left corner to center of screen and HLIN 20,39 AT
39 is a horizontal Tine at the bottom of the screen extending from
center to right corner.

24

IF expression 220 IF A> B THEN
THEN statement PRINT A
23p IF X=p THEN C=1
249 IF A#1@ THEN
GOSUB 209
25p IF A$(1,1)# "y»
THEN 109
ITlegal:

260 IF L>5 THEN 5¢:

ELSE 60
Legal:
279 IF L>5 THEN 59
GO TO 6

INPUT vari, 280 INPUT X,Y,Z(3)
var2, stré 29(INPUT "AMT",
DLLR

309 INPUT "Y or N?", AS

IN# expr 319 IN# 6
320 IN# Y+2
330 IN# O

LET 349 LET X=5
LIST numi, 359 IF X >6 THEN
numd LIST 5¢

NEXT vari, 360 NEXT I
var?d 378 NEXT J,K

NO DSP var 38@ NO DSP I
NO TRACE 399 NO TRACE

25

If expression is true (non-zero) then
execute statement if false do not
execute statement, I1f statement

is an expression, then a GOTO expr

type of statement is assumed to be implied.
The "ELSE" in example 26@ is illegal but
may be implemented as shown in example 27p.

|

Enters data into memory from I/0

device. If number input is expected,
APPLE wil output "?"; if string inout is
expected no "?" will be outputed. Multiple
numeric inputs to same statement may be
separated by a comma or a carriage return.
String inputs must be separated by a
carriage return only. One pair of " " may
be used immediately after INPUT to output
prompting text enclosed within the quotation
marks to the screen.

Transfers source of data for subsequent
INPUT statements to peripheral I/0 slot
(1-7) as specified as by expression expr.
Slot @ is not addressable from BASIC.
IN#@ (Example 330) is used to return data
source from peripherial 1/0 to keyboard
connector.

Assignment operator. "LET" is optional
Causes program from line number #wnl
through Tine number nwm2 to be displayed
on screen.

Increments corresponding "FOR" variable

and loops back to statement following
"FOR" until variable exceeds limit.

Turns-off DSP debug mode for variable

Turns-off TRACE debug mode

PLOT A expri, expr? 400 PLOT 15, 25 In standard resolution color

' 49 PLT XV,YV graphics, this command plots a small
square of a predefined color (set
by COLOR=) at horizontal location
specified by expression expri in
range @ to 39 and vertical location
specified by expressionexpr2 1in range
P to 39 (or @ to 47 if in all graphics
mode) NOTE: PLOT @ @ is upper left
and PLOT 39, 39 (or PLOT 39, 47) is
Tower right corner.

POKE expri, expr? 42 POKE 2@, 49 Stores decimal number defined by
430 POKE 7*256, expression exprZ in range of
XM0D255 255 at decimal memory location

specified by expression expri
Locations above 32767 are specified
by negative numbers.

PoP 449 POP "POPS" nested GOSUB return stack

address by one.

PRINT wvari, var, str$ 45@ PRINT L1 Outputs data specified by variable
46Q PRINT L1, X2 var or string variable stréstarting
47¢ PRINT "AMT=";DX at current cursor location. If there
48p PRINT A$;BS; is not trailing "," or “;" (Ex 450@)
499 PRINT a carriage return will be generated.

492 PRINT "HELLO" Commas (Ex. 46@) outputs data in 5

494 PRINT 2+3 left justified columns. Semi-colon
(Ex. 47@) inhibits print of any spaces.
Text imbedded in " " will be printed
and may appear multiple times.

PR# expr 500 PR# 7 Like IN#, transfers output to I/0
slot defined by expression expr PR#
P is video output not I/0 slot P.

REM 510 REM REMARK No action. A1l characters after REM
are treated as a remark until terminated

by a carriage return.

RETURN 52@ RETURN Causes branch to statement following
530 IFX= 5 THEN last GOSUB; i.e., RETURN ends a
RETURN subroutine. Do not confuse "RETURN"

statement with Return key on keyboard.

26

TAB expr

TEXT

TRACE

VLIN expri, expr?
AT expr3

VTAB expr

530 TAB 24

540 TAB I+24

550 IF A#B THEN
TAB 29

550 TEXT
560 TEXT: CALL-936

570 TRACE
580 IFN > 32000
THEN TRACE

590 VLIN @, 39AT15
609 VLIN Z,Z+6ATY

619 VTAB 18
620 VTAB Z+2

27

Moves cursor to absolute horizontal
position specified by expression

expr in the range of 1 to 4p. Position
is left to right

Sets all text mode. Resets

scrolling window to 24 lines by 4¢
characters. Example 56@ also clears
screen and homes cursor to upper left
corner

Sets debug mode that displays each
Tine number as it is executed.

Similar to HLIN except draws vertical
line starting at expri and ending at
expr2 at horizontal position expr3.

Similar to TAB. Moves cursor to
absolute vertical position specified
by expressionexpr in the range 1 to
24. VTAB 1 is top 1ine on screen;
VTAB24 is bottom.

SPECIAL CONTROL AND EDITING CHARACTERS

"Control" characters are indicated by a super-scripted "C" such as GC. They
are obtained by holding down the CTRL key while typing thg specigied letter.
Control characters are NOT displaved on the TV screen. B~ and C~ must be
followed by a carriage return. Screen editing characters are indicated by a
sub-scripted "E" such as Dp. They are obtained by pressing and releasing the
ESC key then typing specified letter. Edit characters send information only
to display screen and does not send data to memory. For example, UC moves to
cursor to right and copjes text while Ap moves cursor to right but does not
copy text.

CHARACTER DESCRIPTION OF ACTION

RESET key Immediately interrupts any program execution and resets
computer. Also sets all text mode with scrolling window
at maximum. Control is transfered to System Monitor and
Apple prompts with a "*" (asterisk) and a bell. Hitting
RESET key does NOT destroy existing BASIC or machine
language program.

Control B If in System Monitor (as indicated by a "*"), a control
B and a carriage return will transfer control to BASIC,
scratching (killing) any existing BASIC program and set
HIMEM: to maximum installed user memory and LOMEM:
to 2048.

Control C If in BASIC, halts program and displays 1ine number
where stop occurred*. Program may be continued with a
CON command. If in System Monitor, (as indicated by "*"),
control C and a carraige return will enter BASIC without
killing current program.

Control G Sounds bell (beeps speaker)

Control H Backspaces cursor and deletes any overwritten characters
from computer but not from screen. Apply supplied
keyboards have special key "<" on right side of keyboard
that provides this functions without using control button.

Control J Issues line feed only

Control V Compliment to HC. Forward spaces cursor and copies over
written characters. Apple keyboards have "»>" key on

right side which also performs this function.
Control X Immediately deletes current Tline.

* [f BASIC program is expecting keyboard input, you will have
to hit carriage return key after typing control C.

28

CHARACTER DESCRIPTION OF ACTION

AE Move cursor to right

BE Move cursor to left

CE Move cursor down

DE Move cursor up

EE Clear text from cursor to end of line

FE Clear text from cursor to end of page

@E Home cursor to top of page, clear text to end

of page.

Table A: APPLE II COLORS AS SET BY COLOR =

Note: Colors may vary depending on TV tint (hue) setting and may also
be changed by adjusting trimmer capacitor C3 on APPLE II P.C. Board.
@ = Black 8 = Brown
1 - Magenta 9 = Orange
2 = Dark Blue 10 = Grey
3 = Light Purple 11 = Pink
4 = Dark Green 12 = Green
5 = Grey 13 = Yellow
6 = Medium Blue 14 = Blue/Green
7 = Light Blue 15 = White

29

Special Controls and Features

Hex

BASIC Example

Display Mode Controls

CP50
€51
CP52
C@53
CP54

CP55

CP56
Cps57

TEXT

19 POKE
20 POKE
39 POKE
49 POKE
50 POKE
60 POKE
79 POKE
80 POKE

Mode Controls

po2p

pp21

pp22

p023

pp24

pP25

PR32

FC58
FC42

99 POKE 3

190 POKE

119 POKE

120 POKE

130 CH=PE
149 POKE
150 TAB(C

169 CV=PE
179 POKE
189 VTAB(

199 POKE
209 POKE

219 CALL
220 CALL

-16304,9
-16303,9
-16302 .,
-16301,9
-16300,9

-16299,0

162989
162979

2,L1

33,W1

34,71

35,81

EK(36)
36,CH
H+1)

EK(37)
37,CV
CV+1)

50,127
50,255

-936
-958

30

Description

Set color graphics mode

Set text mode

Clear mixed graphics

Set mixed graphics (4 Tines text)

Clear display Page 2 (BASIC commands
use Page 1 only)

Set display to Page 2 (alternate)

Clear HIRES graphics mode

Set HIRES graphics mode

Set left side of scrolling window
to location specified by L1 in
range of § to 39.

Set window width to amount specified
by W1. LI+W1<4p. WI1>P

Set window top to 1line specified
by T1 in range of § to 23

Set window bottom to 1ine specified
by Bl in the range of @ to 23. B1>TI

Read/set cusor horizontal position

in the range of P to 39. If using

TAB, you must add "1" to cusor position
read value; Ex. 140 and 150 perform
identical function.

Similar to above. Read/set cusor
vertical position in the range @ to
23.

Set inverse flag if 127 (Ex. 198)
Set normal flag if 255(Ex. 209)

(@p) Home cusor, clear screen

(Fg) Clear from cusor to end of page

Hex
FCoC
FC66
FC70

BASIC Example

23p CALL -868
249 CALL -922
250 CALL -912

Miscellaneous

CP3p

Copp

Cp1p

Cp61

CP62
Cpe63
CP58
CP59
CPA5A
CP58
Cos5C
CP5D
CP5E
CA5F

36Q X=PEEK(-16336)
365 POKE -16336,0

37p X=PEEK(-16384)
380 POKE -16368,p
399 X=PEEK(16287)

4PP X=PEEK(-16286)
419 X=PEEK(-16285)
429 POKE -16296,0
43p POKE -16295,0
449 POKE -16294,9
450 POKE -16293,0
46p POKE -16292,0
470 POKE -16291,9
48p POKE -16290,0
490 POKE -16289,9

31

Descrigtion

(EE) Clear from cusor to end of line
(JC) Line feed

Scroll up text one line

Toggle speaker
Read keyboard; if X>127 then key was
pressed.

Clear keyboard strobe - always after
reading keyboard.

Read PDL(@) push button switch. If
X>127 then switch is "on".

Read PDL(1) push button switch.
Read PDL(2) push button switch.
Clear Game I/0 ANP output

Set Game I/0 ANP output

Clear Game I/0 AN1 output

Set Game I/0 AMT output

Clear Game I/0 AN2 output

Set Game I/0 AN2 output

Clear Game I/0 AN3 output

Set Game I/0 AN3 output

APPLE II BASIC ERROR MESSAGES

%% SYNTAX ERR Results from a syntactic or typing error.

**%% > 32767 ERR A value entered or calculated was less than
-32767 or greater than 32767.

**% > 255 ERR A value restricted to the range @ to 255 was
outside that range.

*** BAD BRANCH ERR Results from an attempt to branch to a non-
existant line number.

**% BAD RETURN ERR Results from an attempt to execute more RETURNs
than previously executed GOSUBs.

*** BAD NEXT ERR Results from an attempt to execute a NEXT state-
. ment for which there was not a corresponding
FOR statement.

*** 16 GOSUBS ERR Results from more than 16 nested GOSUBs.

**% 16 FORS ERR Results from more than 16 nested FOR loops.
*** NO END ERR The last statement executed was not an END.
*** MEM FULL ERR The memory needed for the program has exceeded

the memory size allotted.

k%% TOO LONG ERR Results from more than 12 nested parentheses or
more than 128 characters in input line.

*** DIM ERR Results from an attempt to DIMension a string
array which has been previously dimensioned.

*%% RANGE ERR An array was larger than the DIMensioned
value or smaller than 1 or HLIN,VLIN,
PLOT, TAB, or VTAB arguments are out of
range.

*** STR OVFL ERR The number of characters assigned to a string
exceeded the DIMensioned value for that string.

**% STRING ERR Results from an attempt to execute an illegal
string operation.

RETYPE LINE Results from illegal data being typed in response

to an INPUT statement. This message also requests
that the illegal item be retyped.

32

Simplified Memory Map

FFFF jmemeeeeee Monitor and BASIC Routines in ROM

EQOQ |-~-------4 56K Future enhancement or user supplied
; PROMS
52K
48K:::::=’

DARR | ----=---~-- Peripheral 1/0
COBP | --=---~----

) XX — — — User specified RAM memory size

(HIMEM:)
\\\i:::>> User Workspace
(LOMEM:)
AR EEEEEEEEES 2K.::::::;;’ Screen Memory
400 {--vmemm--d 1K
)] J __________ |] ::::::::a Internal Workspace

33

READ/SAVE DATA SUBROUTINE

INTRODUCTION

Valuable data can be generated on the Apple II computer and sometimes
it is useful to have a software routine that will allow making a permanent
record of this information. This paper discusses a simple subroutine that
serves this purpose.

Before discussing the Read/Save routines a rudimentary knowledge of
how variables are mapped into memory is needed.

Numeric variables are mapped into memory with four attributes. Appearing
in order sequentually are the Variable Name, the Display Byte, the Next Variable
Address, and the Data of the Variable. Diagramatically this is represented as:

VN DSP NVA DATA(Q) DATA(1) DATA(N)

VARIABLE NAME - up to 100 characters
represented in memory as ASCII equi-
valents with the high order bit set.

DSP (DISPLAY) BYTE - set to @1 when
DSP set in BASIC initiates a process
that displays this variable with the
1ine number every time it is changed
within a program.

NVA (NEXT VARIABLE ADDRESS) - two
bytes (first low order, the second
high order) indicating the memory
location of the next variable.

DATA - hexadecimal equivalent of
numeric information, represented
in pairs of bytes, low order byte
first.

34

String variables are formatted a bit differently than numeric ones.
These variables have one extra attribute - a string terminator which desig-
nates the end of a string. A string variable is formatted as follows:

VN DSP NVA DATA(() DATA(1) ... DATA(n) ST
1 hy hy Myt

VARIABLE NAME - up to 18@ characters
represented in memory as ASCII equi-
valents with the high order bit set.

DSP (DISPLAY) BYTE - set to @1 when
DSP set in BASIC, initiates a process
that displays this variable with the
1ine number every time it is changed
within a program.

NVA (NEXT VARIABLE ADDRESS) - two

bytes (first low order, the second
high order) indicating the memory

location of the next variable.

DATA - ASCII equivalents with high
order bit set.

STRING TERMINATOR (ST) - none high

order bit set character indicating

END of string.

There are two parts of any BASIC program represented in memory. One is

the Tocation of the variables used for the program, and the other is the actual
BASIC program statements. As it turns out, the mapping of these within memory
is a straightforward process. Program statements are placed into memory starting
at the top of RAM memory* unless manually shifted by the "HIMEM:" command, and
are pushed down as each new (numerically larger) line numbered statement is
entered into the system. Figure la illustrates this process diagramatically.
Variables on the other hand are mapped into memory starting at the Towest position
of RAM memory - hex $80@ (2p48) unless manually shifted by the "LOMEM :" command.
They are laid down from there (see Figure 1b) and continue until all the variables
have been mapped into memory or until they collide with the program statements.
In the event of the latter case a memory full error will be generated

*Top of RAM memory is a function of the amount of memory. —
16384 will be the value of "HIMEM:" for a 16K system.

35

The computer keeps track of the amount of memory used for the variable
table and program statements. By placing the end memory location of each into
$CC-CD(2p4-205) and $CA-CB(2@3-204), respectively. These are the BASIC
memory program pointers and their values can be found by using the statements
in Figure 2. CM defined in Figure 1 as the location of the end of the variable
tape is equal to the number resulting from statement a of Figure 2. PP, the
program pointer, is equal to the value resulting from statement 2b. These
statements (Figure 2) can then be used on any Apple II computer to find the
limits of the program and variable table.

FINDING THE VARIABLE TABLE FROM BASIC

First, power up the Apple II, reset it, and use the CTRL B (control B)
command to place the system into BASIC initializing the memory pointers. Using
the statements from Figure 2 it is found that for a 16K Apple II CM is equal to
2048 and PP is equal to 16384. These also happen to be the values of LOMEN and
HIMEN: But this is expected because upon using the B¢ command both memory
pointers are initialized indicating no program statements and no variables.

To illustrate what a variable table looks like in Apple II memory suppose
we want to assign the numeric variable A ($C1 is the ASCII equivalent of a with
the high order bit set) the value of -1 (FF FF in hex) and then examine the
memory contents. The steps in this process are outlined in example I. Variable A
is defined as equal to -1 (step 1). Then for convenience another variable - B -
is defined as equal to @ (step 2). Now that the variable table has been defined
use of statement 2a indicates that CM is equal to 2@6@ (step 3). LOMEN has not
been readjusted so it is equal to 2@48. Therefore the variable table resides in
memory from 2048 ($80% hex) to 2p6@ ($8pC). Depressing the "RESET" key places
the Apple II into the monitor mode (step 4).

We are now ready to examine the memory contents of the variable table.
Since the variable table resides from $8P@ hex to $8@C hex typing in "8@@.8pC"
and then depressing the "RETURN" key (step 5) will T1ist the memory contents of
this range. Figure 3 lists the contents with each memory Tocation labelled.
Examining these contents we see that C1 is equal to the variable name and is the
memory equivalent of "A" and that FF FF is the equivalent of -1. From this, since
the variable name is at the beginning of the table and the data is at the end, the
variable table representation of A extends from $8@@ to $805. We have then found

36

the memory range of where the variable A is mapped into memory. The reason for
this will become clear in the next section.

READ/SAVE ROUTINE

The READ/SAVE subroutine has three parts. The first section (1lines §-10)
defines variable A and transfers control to the main program. Lines 20 through
26 represents the Write data to tape routine and lines 3@-38 represent the Read
data from tape subroutine. Both READ and SAVE routines are executable by the
BASIC "GOSUB X" (where X is 20 for write and 30 is for read) command. And as
listed these routines can be directly incorporated into almost any BASIC program
for read and saving a variable table. The Tlimitation of these routines is that
the whole part of a variable table is processed so it is necessary to maintain
exactly the dimension statements for the variables used.

The variables used in this subroutine are defined as follows:

A= record length, must be the first variable defined

CM= the value obtained from statement a of figure 2

LM= is equal to the value of "LOMEM:"

Nominally 2048

SAVING A DATA TABLE

The first step in a hard copy routine is to place the desired data onto
tape. This is accomplished by determining the length of the variable table and
setting A equal to it. Next within the main program when it is time to write the
data a GOSUB2@ statement will execute the write to tape process. Record length,
variable A, is written to tape first (Tine 22) followed by the desired data
(1ine 24). When this process is completed control is returned to the main program.

READING A DATA TABLE

The second step is to read the data from tape. When it is time a GOSUB3@
statement will initiate the read process. First, the record length is read in
and checked to see if enough memory is available (line 32-34). If exactly the
same dimension statements are used it is almost guaranteed that there will be
enough memory available. After this the variable table is read in (1ine 34) and
control is then returned to the main program (line 36). If not enough memory
is available then an error is generated and control is returned to the main pro-
gram (line 38)

37

EXAMPLE OF READ/SAVE USAGE

The Read/Save routines may be incorporated directly into a main program.
To illustrate this a test program is listed in example 2. This program dimensions
a variable array of twenty by one, fills the array with numbers, writes the data
table to tape, and then reads the data from tape listing the data on the video
display. To get a feeling for how to use these routines enter this program and
explore how the Read/Save routines work.

CONCLUSION

Reading and Saving data in the format of a variable table is a relatively
straight forward process with the Read/Save subroutine listed in figure 4. This
routine will increase the flexibility of the Apple II by providing a permanent
record of the data generated within a program. This program can be reprocessed.
The Read/Save routines are a valuable addition to any data processing program.

38

Unused
Var] ’ VaY‘z '''''' Varn MemOl“y P] P2 P3 A Pn_2 Pn_] Pn]
TLOMEN: CM End of WLP beginning HIMEM
$809 Variable of Max System
Table Program Size .
b a
Variable Data BASIC Program
Figure 1
a) PRINT PEEK(2@4) + PEEK(2p5)*256 = PP
b) PRINT PEEK(2@2) + PEEK(2@3)*256 ~ CM

Figure 2

809 8p1 8p2 8p3 8P4 8p5 8@6
Ccl 9 @6 @8 FF FF C2
L

H L H
VAR DSP NVA DATA VAR
NAM T NAM
S 1
Figure 3

$800.80C rewritten wi

39

897 8p8 8p9 8PA 8pB 8@C
o ﬂE ﬂﬁ o 00 0P

DSP NVA

|

DATA

t

th Tabelling

[
P

READ/SAVE PROGRAM

10

20

22

24

26

30

32

34

36

38

A=p

GOTO 199

PRINT "REWIND TAPE THEN
START TAPE RECORDER":
IgPUT "THEN HIT RETURN",
B

A=CM-LM: POKE 60,4:
POKE 61,8: POKE 62,5:
POKE 63,8: CALL -3p7

POKE 60,LM MOD 256:
POKE 61, LM/256:
POKE 62, CM MOD 256:
POKE 63, CM/256:
CALL -3p7

PRINT "DATA TABLE SAVED":
RETURN

PRINT "REWIND THE TAPE
THEN START TAPE RECORDER":
INPUT "AND HIT RETURN",

B$

POKE 6Q,4: POKE 61,8:
POKE 62,5: POKE 63,8:
CALL -259

IF A<@ THEN 38: P=LM+A:
IF P>HM THEN 38: CM=P:
POKE 6@, LM MOD 256:

POKE 61, LM/256: POKE 62,

CM MOD 256: POKE 63, CM/256:

CALL -259

PRINT "DATA READ IN":
RETURN

PRINT "#***TQ0 MUCH DATA
BASE***": RETURN

FIGURE 4b

COMMENTS

This must be the first statement in the
program. It is initially @, but if data
is to be saved, it will equal the length
of the data base.

This statement moves command to the main
program.

Lines 20-26 are the write data to tape
subroutine.

Writing data table to tape

Returning control to main program.

Lines 30-38 are the READ data from tape
subroutine.

Checking the record length (A) for memory
requirements if everything is satisfactory
the data is READ in.

Returning control to main program.

NOTE: CM, LM and A must be defined within the main program.

40

1 >A=1
>

2 >B=@
>

3 >PRINT PEEK (204) + PEEK

(205) * 256
computer responds with=
2060
4 >
*
5 *8pp.80C

Computer responds with:
p8@p- C1 9P 86 @8 FF FF C2 @9
pegs @C 98 PP 0P 0P

41

Define variable A=-1, then hit RETURN

Define variable B=@, then hit RETURN

Use statement 2a to find the end of
the VARIABLE TABLE

Hit the RESET key, Apple moves into
Monitor mode.

Type in VARIABLE TABLE RANGE and HIT
the RETURN KEY.

Example 1

Example 2

42

A SIMPLE TONE SUBROUTINE

INTRODUCTION

Computers can perform marvelous feats of mathematical computation
at well beyond the speed capable of most human minds. They are fast,
cold and accurate; man on the other hand is slower, has emotion, and makes
errors. These differences create problems when the two interact with one
another. So to reduce this problem humanizing of the computer is needed.
Humanizing means incorporating within the computer procedures that aid in
a program's usage. One such technique is the addition of a tone subroutine.
This paper discusses the incorporation and usage of a tone subroutine within
the Apple II computer.

Tone Generation
To generate tones in a computer three things are needed: a speaker,
a circuit to drive the speaker, and a means of triggering the circuit. As it
happens the Apple II computer was designed with a two-inch speaker and an
efficient speaker driving circuit. Control of the speaker is accomplished
through software. \
Toggling the speaker is a simple process, a mere PEEK - 16336 ($C@3p)
in BASIC statement will perform this operation. This does not, however{
produce tones, it only emits clicks. Generation of tones is the goal, 50
describing frequency and duration is needed. This is accomplished by toggling
the speaker at regular intervals for a fixed period of time. Figure 1 lists
a machine language routine that satisfies these requirements.

Machine Language Program

This machine language program resides in page @ of memory from $@2 (2)
to $14 (20). 9$PP (@P) is used to store the relative period (P) between -
toggling of the speaker and $01 (@1) is used as the memory location for the
value of relative duration (D). Both P and D can range in value from $¢ﬂ/(¢)
to $FF (255). After the values for frequency and duration are placed into
memory a CALL2 statement from BASIC will activate this routine. The speaker
is toggled with the machine Tanguage statement residing at $82 and then a

43

delay in time equal to the value in $@P@ occurs. This process is repeated until
the tone has lasted a relative period of time equal to the duration (value in $91)
and then this program is exited (statement $14).

Basic Program

The purpose of the machine language routine is to generate tones controllable
from BASIC as the program dictates. Figure 2 lists the appropriate statement that
will deposit the machine language routine into memory. They are in the form of
a subroutine and can be activated by a GOSUB 32@@@ statement. It is only necessary
to use this statement once at the beginning of a program. After that the machine
language program will remain in memory unless a later part of the main program
modifies the first 2@ locations of page §.

After the GOSUB 32@@P has placed the machine language program into memory
it may be activated by the statement in Figure 3. This statement is also in the
form of a GOSUB because it can be used repetitively in a program. Once the fre-
quency and duration have been defined by setting P and D equal to a value between
@ and 255 a GOSUB 25 statement is used to initiate the generation of a tone. The
values of P and D are placed into $#@ and $@1 and the CALL2 command activates the
machine language program that toggles the speaker. After the tone has ended
control is returned to the main program.

The statements in Figures 2 and 3 can be directly incorporated into BASIC
programs to provide for the generation of tones. Once added to a program an
infinite variety of tone combinations can be produced. For example, tones can
be used to prompt, indicate an error in entering or answering questions, and
supplement video displays on the Apple II computer system.

Since the computer operates at a faster rate than man does, prompting can
be used to indicate when the computer expects data to be entered. Tones can be
generated at just about any time for any reason in a program. The programmer's
imagination can guide the placement of these tones.

CONCLUSION
The incorporation of tones through the routines discussed in this paper

will aid in the humanizing of software used in the Apple computer. These routines
can also help in transforming a dull program into a lively one. They are relatively
easy to use and are a valuable addition to any program.

44

X

"
e |
..‘: 3

1
[AE
x]
w1
=
101

FIGURE 1. Machine Language Program
adapted from a program by P. Lutas.

FIGURE 2. BASIC "POKES"

FIGURE 3. GOSUB

45

High-Resolution Operating Subroutines

These subroutines were created to make programming for
High-Resolution Graphics easier, for both BASIC and machine:
language programs. These subroutines occupy 757 bytes of memory
and are available on either cassette tape or Read-Only Memory

(ROM). This note describes use and care of these subroutines,

There are seven subroutines in this package. With these,
a programmer can initialize High-Resolution mode, clear the screen,
plot a point, draw a line, or draw and animate a predefined shape.
on the screen. There are also some other general-purpose

subroutines to shorten and simplify programming,

BASIC programs¥aan acceéss these subroutines by use of ,the
CALL statement, and can pass information by using the POKE state-
ment, There are special entry points for most of the subroutines
that will perform the same functions as the original subroutines
without modiffing any BASIC pointers or registers, For machine
language programming, a JSR to the appropriate subroutine address

will perform the same function as a BASIC CALL,

In the following subroutine descriptions, all addresses
given will be in decimal. The hexadecimal substitutes will
be preceded by a dollar sign (§). Allr-entry points given are
for the cassette tape subroutines, which .1oad into addresses
C#p to FFF (hex). Equivalent addresses for the ROM subroutines

will be in italic type face.
46

High-Resolution Operating Subroutines

INIT 1Initializes High-Resolution Graphics mode,

From BASIC: CALL 3872 (or CALL -12288)

From machine language: JSR $CPP (or JSR $pggg)

This subroutine sets High-Resolution Graphics mode with a
289 x 167 matrix of dots in the top portion of the screen and
four lines of text in the bottom portion of the screen., INIT

also clears the screen,

CLEAR Clears the screen.

From BASIC: CALL 3886 (or CALL -12274)

From machine language: JSR $C@E (or JSR $DPYE)

This subroutine clears the High-Resdlution screen without

resetting the High-Resdlution Graphics mode.

PLOT Plots a point on the screen.
From BASIC: CALL 378¢ (or CALL -11588)
From machine language: JSR $C7C (or JSR $Dg7C)
/
This subroutine plots a single point on the screen. The
X and Y coodinates of the point are passed in locationmns 894,
891, and 882 from BASIC, or in the A, X, and Y registers from

machine language. The Y (vertical) coordinate can be from []
47

High-Resloution Operating Subroutines

PLOT (continued)

(top of screen) to 159 (bottom of screen) and is passed in

location 882 or the A-register; but the X (horizontal) coordinate
can range from § (left side of screen) to 279 (right side of screen)
and must be split between locations 8¢p (X MOD 256) and 8f1
(Xx/256).0r, from machine language, between registers X (X LO)

and Y (X HI). The color of the point to be plotted must be set

in location 812 ($32C). Four colors are possible: P is BLACK,

85 ($55) is GREEN, 178 ($AA) is VIOLET, and 255 ($FF) is WHITE.

POSN Positions a point on the screen.
From BASIC: CALL 3761 (or CALL -11599]

From machine language: JSR $C26 (or JSR 8pg2e)

This subroutine does all calculations for a PLOT, but does
not plot a point (it leaves the screen unchanged). This is useful
when used in conjumction with LINE or SHAPE (described later).

To use this subroutine, set up the X and Y coordinates just the =

same as for PLOT. The color in location 812 ($32€) is ignored.

LINE Draw a line on the screen.

48

High-Resolution Operating Routines

LINE Draws a line on the screen.
From BASIC: CALL 3786 (or CALL -11574)

From machine language: JSR $C95 (or JSR 8Dgs9s)

This subroutine draws a line from the last point PLOTted
or POSN'ed to the point specified. One endpoint is the last point
PLOTted or POSN'ed; the other endpoint is passed in the same manner
as for a PLOT or POSN. The color of the line is set in location
812 ($32C). After the line is drawn, the new endpoint becomes the

base endpoint for the next line drawn,

SHAPE Draws a predefined shape on the screen.
From BASIC: CALL 38§5 (or CALL ~11558)

From machine language: JSR $DBC (or JSR $D1BC) .

This subroutine draws a predefined shape on the screen at
the point previously PLOTted or POSN'ed. The shape is defined
by a table.of veciors in memory. (How to create a vector table
will be described later). The starting address of this table
should be passed in location;\804 and 805 from BASIC .or in“the
Y and X registers from machine language. The color of the shape

should be passed in location 28 ($1C).

There are two special variables that are used only with shapes:

the scaling factor and the rotation factor. The scaling factor

deternines the relative size of- the shape. A scaling factor of

49

High-Resolution Operating Subroutines

SHAPE (continued)

1 will cause the shape to be drawn true size, while a scaling
factor of 2 will draw the shape double size, etc., The scaling
factor is passed in location 86 from BASIC or $32F from machine
language. The rotation factor specifies one of 64 possible angles
of rotation for the shape. A rotation factor of § will cause the
shape to be drawn right-side up, where a rotation factor if 16
will draw the shape rotated 90° clockwise, etc. The rotation
factor is passed in location 8p7 foom BASIC of in the A-Tegister

from machine language,

The table of vectors which defines the shape to be drawn is
a series of bytes stored in memorTy. Each byte is divided into
three sections, and each section specifies whether or not to plot
a point and also a direction to move (up, down, left, or right).
The SHAPE subroutine steps through the vector table byte by byte,\
and then through each byte section by section. When it reaches

a pp byte, it is finished.

The three sections are arranged in a byte like this:
op=z ¢ & Move T

T i 6 S ‘4 {3 2| v '@ e

) K I @ >

0 () PJ o N (1) ® . . 3

Ww—_—/ ' 2 . *.
Sechen 3 Scchen 1 Sectioa |

Each bit pair DD specifies a direction to move, and the two bits
P specify whether or not to plot a point before moving. Notice
that the last section (most significant bits) does not have a P

field, so it can only be a move without plotting. The SHAPE

50

High-Resolution Operating Subroutines

SHAPE (continued)

subroutine processes the sections from right to left (least
significant bit to most significant bit). IF THE REMAINING SECTIONS
OF THE BYTE ARE ZERO, THEN THEY ARE IGNORED. Thus, the byte

cannot end with sections of §p (move up without plotting).

Here is an example of how to create a vector table:

o o 9

Suppose we want to draw a shape like this:)

o

o [
L4 [
L e @ @

First, draw it on graph paper, one dot per square. Then decide
where to start drawing the shape. Let's start this one in the center.

Next, we must draw a path through each point in the shape, using

o=0ros

only 90o angles on the turns:

e Y oi] b
b

Next, re-draw the shape as a series of vectors, each one moving

one place up, down, left, or right, and q&;;inguish the vectors that

SleAey
plot a point before moving: ;
21 IV .
NI T -
O o~

Now "unwrap" those vectors and write them in a straight line,
P ' g

\u,{oé-fr/t'r/r.—-?o-?r)*)xb&&s.é-éo

Now draw a table like the one in Figure 1. For each vector in -the
line, figure the bit code and place it in the next available section
in the table, If it will not fit or is a @gp at_.the end of a byte,

then skip that section and go on to the next, When you have finished
51

High-Resolution Operating Subroutines

SHAPE (continued)

coding all vectors, check your work to make sure it is accurate.
Then make another table (as in figure 2) and re-copy the coded
vectors from the first table. Then decode the vector information
into a series of hexadecimal bytes, using the hexidecimal code
table in figure 3. This series of hexidecimal bytes is your shape
definition table, which you can now put into the Apple I1's memory

and use to draw that shape on the screem.

52

RS 2 W S ST RS A A

vectors

.S\‘\qpe

G- 6 -
Odlll

Qe Q=8O -

_
WWee-- ©8--
ol O veg ===
Y

| et Tﬁ&&

M

i
i v
<>l ealToay

WP e TIDY

o T

-00—~—~00~0

Q=0 re L=

8-00~00~00°

B\‘OOO‘-\O\OO

tT"\\s vector can no¥ be

- [°)
0)

Jp ()

a plotr veeckvor
ofr a Mpve,

1.

F\aj\)’c

OwopdtmrgnwrerdTououwl

ORGSR

O~ O\O\O‘O\O\Olb'
00-=-99~-=0q--00~~
0gg0~"~""=090 00~ =-
L 000090000~ ~uwew=--

&Q‘h&‘g\ﬁs\ Co&()

£ Enohy;
denoctes eald
ol vectror I~ble

Nescandulr g

“00--=00-—0
>0 00Q0==-—0 «~
Q= 0 = === ()
B-p00~-p0—-00
- 00Q w==0 ©
Q== =0=040
T&OIoooooo
Q00000 0o 090 O

A

c{ ¢ |

F|3d((

TenNNMo-NNY NDO v

53

L
Ll

Vot

T

S5A

ROD'S COLOR PATTERN

PROGRAM DESCRIPTION

ROD'S COLOR PATTERN is a simple but eloquent program. It generates a
continuous flow of colored mosaic-like patterns in a 4@ high by 40 wide
block matrix. Many of the patterns generated by this program are pleasing
to the eye and will dazzle the mind for minutes at a time.

REQUIREMENTS
4K or greater Apple II system with a color video display.
BASIC is the programming language used.

PROGRAM LISTING

55

PONG

PROGRAM LISTING

foboas
e

e
R

56

COLOR SKETCH

PROGRAM DESCRIPTION

Color Sketch is a 1ittle program that transforms the Apple II into an
artist's easel, the screen into a sketch pad. The user as an artist

has a 4@ high by 4@ wide (1609 blocks) sketching pad to fill with a
rainbow of fifteen colors. Placement of colors is determined by
controlling paddle inputs; one for the horizontal and the other for

the vertical. Colors are selected by depressing a letter from A through
P on the keyboard.

An enormous number of distinct pictures can be drawn on the sketch pad
and this program will provide many hours of visual entertainment.

REQUIREMENTS
This program will fit into a 4K system in the BASIC mode.

57

SKETCH

COLOR

PROGRAM LISTING:

58

MASTERMIND PROGRAM

PROGRAM DESCRIPTION

MASTERMIND is a game of strategy that matches your wits against Apple's.

The object of the game is to choose correctly which 5 colored bars have

been secretly chosen by the computer. Eight different colors are possible
for each bar - Red (R), Yellow (Y), Violet (V), Orange (0), White (W), and
Black (B). A color may be used more than once. Guesses for a turn are

made by selecting a color for each of the five hidden bars. After hitting
the RETURN key Apple will indicate the correctness of the turn. Each white
square to the right of your turn indicates a correctly colored and positioned
bar. Each grey square acknowledges a correctly colored but improperly posi-
tioned bar. No squares indicate you're way off.

Test your skill and challenge the Apple II to a game of MASTERMIND.

REQUIREMENTS
8K or greater Apple II computer system.
BASIC is the programming language.

59

MASTERMIND

PROGRAM LISTING:

ii

i
L

H

LIFUFLF BREE

60

BIORHYTHM PROGRAM

PROGRAM DESCRIPTION

This program plots three Biorhythm functions: Physical (P), Emotional (E),
and Mental (M) or intellectual. A1l three functions are plotted in the
color graphics display mode.

Biorhythm theory states that aspects of the mind run in cycles. A brief
description of the three cycles follows:

Physical

The Physical Biorhythm takes 23 days to complete and is an indirect indicator
of the physical state of the individual. It covers physical well-being, basic
bodily functions, strength, coordination, and resistance to disease.

Emotional
The Emotional Biorhythm takes 28 days to complete. It indirectly indicates
the Tevel of sensitivity, mental health, mood, and creativity.

Mental

The mental cycle takes 33 days to complete and indirectly indicates the Tevel
of alertness, logic and analytic functions of the individual, and mental recep-
tivity.

Biorhythms

Biorhythms are thought to affect behavior. When they cross a "baseline" the
functions change phase - become unstable - and this causes Critical Days. These
days are, according to the theory, our weakest and most vulnerable times. Acci-
dents, catching colds, and bodily harm may occur on physically critical days.
Depression, quarrels, and frustration are most likely on emotionally critical
days. Finally, slowness of the mind, resistance to new situations and unclear’
thinking are Tikely on mentally critical days.

REQUIREMENTS
This program fits into a 4K or greater system.
BASIC is the programming language used.

61

BIORHYTHM

PROGRAM LISTING

e

Salles

Lty

69

DRAGON MAZE PROGRAM

PROGRAM DESCRIPTION

DRAGON MAZE is a game that will test your skill and memory. A maze is
constructed on the video screen. You watch carefully as it is completed.
After it is finished the maze is hidden as if the 1lights were turned out.
The object of the game is to get out of the maze before the dragon eats
you. A reddish-brown square indicates your position and a purple square
represents the dragon'sf' You move by hitting a letter on the keyboard;

U for up, D for down, R for right, and L for left. As you advance so
does the dragon. The scent of humans drives the dragon crazy; when he is
enraged he breaks through walls to get at you. DRAGON MAZE is not a game
for the weak at heart. Try it if you dare to attempt out-smarting the
dragon. ’

REQUIREMENTS

8K or greater Apple II computer system.
BASIC is the programming language.

* Color tints may vary depending upon video monitor or television adjustments.

63

DRAGON MAZE

PROGRAM LISTING

ol

olled
ity

<t

el

)

oD

64

cont.

DRAGON MAZE

65

DRAGON MAZE cont.

66

NOoO O~

APPLE Il FIRMWARE

System Monitor Commands

Control and Editing Characters

Special Controls and Features

Annotated Monitor and Dis-assembler Listing
Binary Floating Point Package

Sweet 16 Interpreter Listing

6502 Op Codes

67

System Monitor Commands

Apple II contains a powerful machine level monitor for use by the advanced

programmer.
CALL-151 (Hex FF65) from Basic.
prompt character on the TV display.

program which may be re-entered by a

cC (control C).

To enter the monitor either press RESET button on keyboard or
Apple II will respond with an "*" (asterisk)
This action will not ki1l current BASIC

NOTE: “adrs" is a

four digit hexidecimal number and "data" is a two digit hexidecimal number.
Remember to press "return" button at the end of each Tine.

Command Format Example
Examine Memory

adrs *C@F2
adrs1.adrs2 *1024.1048
(return) * (return)
.adrs2 * 4096

Change Memory

adrs:data *A256:EF 20 43
data data

:data data *:Fg A2 12
data

Move Memory

adrsl<adrs?2.
adrs3m

*100<BJ10.B41gM

Verify Memory

adrsl<adrs2. *10P<BP19.B41QV

adrs3V

68

Description

Examines (displays) single memory
Jocation of (adrs)

Examines (displays) range of memory
from (adrs1) thru (adrs2)

Examines (displays) next 8 memory
locations.

Examines (displays) memory from current

location through location (adrs2)

Deposits data into memory starting at
location (adrs).

Deposits data into memory starting
after (adrs) last used for deposits.

Copy the data now in the memory range
from (adrs2) to (adrs3) into memory
locations starting at (adrs1).

Verify that block of data in memory
range from (adrs2) to (adrs3) exactly
matches data block starting at memory
location (adrsl) and displays
differences if any.

Command Format

Example

Cassette I/0

adrsl.adrs2R

adrs]1.adrs2W

Display

Dis-assembler

adrsL

Mini-assembler

(Turn-on)

$(monitor
command)

adrs: (6502
MNEMONIC
instruction)

*308.4FFR

*80@.9FFW

*1

*N

*C8ddL

x|

*F666G

' $C8poL

'CQ1g:STA 23FF

69

Description

Reads cassette data into specified
memory (adrs) range. Record length
must be same as memory range oOr an
error will occur.

Writes onto cassette data from speci-
fied memory (adrs) range.

Set inverse video mode. (Black characters
on white background?
Set normal video mode. (White characters
on black background)

Decodes 2@ instructions starting at
memory (adrs) into 6502 assembly
nmenonic code.

Decodes next 20 instructions starting
at current memory address.

Turns-on mini-assembler. Prompt
character is now a "!" (exclamation
point).

Executes any monitor command from mini-
assembler then returns control to mini-
assembler. Note that many monitor
commands change current memory address
reference so that it is good practice
to retype desired address reference
upon return to mini-assembler.

Assembles a mnemonic 6592 instruction
into machine codes. If error, machine
will refuse instruction, sound bell,
and reprint 1ine with up arrow under
error.

Command Format Example

(space) (6502 ! STA PIFF
mnemonic
instruction)

(TURN-OFF) ! (Reset Button)

Monitor Program Execution and Debugging

adrsG *300G
adrsT *300T
adrsS *C@5@S
(Control E) *gC
(Control Y) #yC

Description

Assembles instruction into next
available memory Tocation. (Note
space between "!" and instruction)

Exits mini-assembler and returns
to system monitor.

Runs machine level program starting
at memory (adrs).

Traces a program starting at memory
location (adrs) and continues trace
until hitting a breakpoint. Break
occurs on instruction @@ (BRK), and
returns control to system monitor.
Opens 65@2 status registers (see note 1).

Single steps through program beginning
at memory location (adrs). Type a
letter S for each additional step

that you want displayed. Opens 6502
status registers (see Note 1).

Displays 65@2 status registers and
opens them for modification (see Note 1).

Executes user specified machine
language subroutine starting at
memory location (3F8).

Note 1:
6502 status registers are open if they are last line displayed on screen.
To change them type ":" then "data" for each register.
Example: A=3C X=FF Y=08 P=32 S=F2
*: FF Changes A register only
*:FF 00 33 Changes A, X, and Y registers

To change S register, you must first retype data for A, X, Y and P.

Hexidecimal Arithmetic

datal+data2 *78+34

datal-data2 *AE-34

70

Performs hexidecimal sum of datal
plus data2.

Performs hexidecimal difference of
datal minus dataZ2.

Command Format Example Description

Set Input/Qutput Ports

(X) (Control P) *5pC Sets printer output to I/0 slot
number (X). (see Note 2 below)

(X) (Control K) *2KC Sets keyboard input to I/0 slot
number (X). (see Note 2 below)

Note 2:

Only slots 1 through 7 are addressable in this mode. Address @ (Ex: gpC

or QKC) resets ports to internal video display and keyboard. These commands
will not work unless Apple II interfaces are plugged into specificed 1/0
slot.

Multiple Commands

*10QL 40@G AFFT Multiple monitor commands may be
given on same line if separated by
a "space".

*LLLL Single letter commands may be

repeated without spaces.

71

SPECIAL CONTROL AND EDITING CHARACTERS

"Control" characters are indicated by a super-scripted "C" such as GC. They
are obtained by holding down the CTRL key while typing thg specigied letter.
Control characters are NOT displaved on the TV screen. B~ and C~ must be
followed by a carriage return. Screen editing characters are indicated by a
sub-scripted "E" such as Dg. They are obtained by pressing and releasing the
ESC key then typing specified letter. Edit characters send information only
to display screen and does not send data to memory. For example, UC moves to
curso: to right and copies text while Ap moves cursor to right but does not
copy text.

CHARACTER DESCRIPTION OF ACTION

RESET key Immediately interrupts any program execution and resets
computer. Also sets all text mode with scrolling window
at maximum. Control is transfered to System Monitor and
Apple prompts with a "*" (asterisk) and a bell. Hitting
RESET key does NOT destroy existing BASIC or machine
language program.

Control B If in System Monitor (as indicated by a "*"), a control
B and a carriage return will transfer control to BASIC,
scratching (killing) any existing BASIC program and set
HIMEM: to maximum installed user memory and LOMEM:
to 2048.

Control C If in BASIC, halts program and displays 1line number
where stop occurred*. Program may be continued with a
CON command. If in System Monitor, (as indicated by k),
control C and a carraige return will enter BASIC without
killing current program.

Control G Sounds bell (beeps speaker)
Control H Backspaces cursor and deletes any overwritten characters
from computer but not from screen. Apply supplied

keyboards have special key "<" on right side of keyboard
that provides this functions without using control button.

Control J Issues 1ine feed only

Control V Compliment to HC. Forward spaces cursor and copies over
written characters. Apple keyboards have "+" key on
right side which also performs this function.

Control X Immediately deletes current line.

* If BASIC program is expecting keyboard input, you will have
to hit carriage return key after typing control C.

72

SPECIAL CONTROL AND EDITING CHARACTERS

(continued)

CHARACTER DESCRIPTION OF ACTION

AE Move cursor to right

BE Move cursor to left

CE Move cursor down

DE Move cursor up

EE Clear text from cursor to end of line

FE Clear text from cursor to end of page

@E Home cursor to top of page, clear text to end

of page.

73

Special Controls and Features

Hex

Display Mode Controls

BASIC Example

CP50
Cp51
€52
Cp53
Cps54

C@55

C@56
c@s57

TEXT

1P
2f
30
49
50

60
70
8¢

POKE
POKE
POKE
POKE
POKE

POKE
POKE
POKE

Mode Controls

pp2p

pp21

pp22

pp23

pp24

pp25

pp32

FC58
FC42

16304 ,p
-16303,9
-16302,9
-16391,9
-163p0,9

-16299,9
162989
-16297 .9

99 POKE 32,L1

199 POKE 33,W1

119 POKE 34,T1

12p POKE 35,Bl1

13p CH=PEEK(36)
149 POKE 36,CH
150 TAB(CH+1)

169 CV=PEEK(37)
179 POKE 37,CV
189 VTAB(CV+1)

190 POKE
2p9 POKE

219 CALL
229 CALL

59,127
59,255

-936
-958

Description

Set color graphics mode

Set text mode

Clear mixed graphics

Set mixed graphics (4 lines text)

Clear display Page 2 (BASIC commands
use Page 1 only)

Set display to Page 2 (alternate)

Clear HIRES graphics mode

Set HIRES graphics mode

Set left side of scrolling window
to location specified by L1 in
range of § to 39.

Set window width to amount specified
by W1. L1+W1<4p. WI>P

Set window top to 1line specified
by T1 in range of @ to 23

Set window bottom to 1line specified
by B1 in the range of § to 23. B1>T1

Read/set cusor horizontal position

in the range of @ to 39. If using

TAB, you must add "1" to cusor position
read value; Ex. 140 and 150 perform
jdentical function.

Similar to above. Read/set cusor
vertical position in the range @ to
23.

Set: inverse flag if 127 (Ex. 199)
Set normal flag if 255(Ex. 20P)

(@) Home cusor, clear screen

(Fg) Clear from cusor to end of page

74

Hex

BASIC Example

FC9C 23p CALL -868

FC66 249 CALL -922

FC79 259 CALL -912
Miscellaneous
Cp3p 36p X=PEEK(-16336)

365 POKE -16336,9

Cpop 37P X=PEEK(-16384
co1p 380 POKE -16368,9
cp61 390 X=PEEK(16287)
Cp62 4pp X=PEEK(-16286)
Cp63 419 X=PEEK(-16285
CP58 429 POKE -16296,0
Cp59 43p POKE -16295,0
CA5A 449 POKE -16294,0
CPsSB 45¢ POKE -16293,9
CpsC 46p POKE -16292,9
CP5D 47p POKE -16291,0
CP5E 480 POKE -16290,0
CP5F 499 POKE -16289,9

75

Description

(Eg) Clear from cusor to end of line
(0%) Line feed

Scroll up text one line

Toggle speaker
Read keyboard; if X>127 then key was
pressed.

Clear keyboard strobe - always after
reading keyboard.

Read PDL(@) push button switch. If
X>127 then switch is "on".

Read PDL(1) push button switch.
Read PDL(2) push button switch.
Clear Game I/0 AN output

Set Game I1/0 AN@ output

Clear Game 1/0 AN1 output

Set Game I/0 AN1 output

Clear Game I/0 AN2 output

Set Game I/0 AN2 output

Clear Game I/0 AN3 output

Set Game I/0 AN3 output

***ﬁi*ti**t*t**t’**tt*t*ti*

* *
* APPLE II *
* SYSTEM MONITOR *
* *
* COPYRIGHT 1977 BY *
* APPLE COMPUTER, INC. *
* *
* aLL RIGHTS RESERVED *
* *
* S. WOZNIAK *
* A. BAUM *
* *
*i**i****t***ti*******tt**ﬁ
TITLE AAPPLE II SYSTEM MONITGR®
LOCO EPZ SO0
LOC1 gpz $01
WNDLFT EPZ $20
WNDWDTH EPZ S21
WNDTOP EPZ S22
WNDRTM EPZ §$23
ol EPz 24
cv EPZ $25
GBASL EPZ $26
GBASH EPZ §27
BASL £PZ S28
BASH £EPZ $29
BAS2L EPZ S2A
BAS2H EPZ §2B
2 EPZ $2C
LMNEM EPZ $2C
RTNL EPZ $2C
v2 EPZ $20
RMNEM EPZ $2D
RTNH EPZ S2D
MASK EPZ S$2F
CHKSUM EPZ S2F
FORMAT EPZ §2E
LASTIN EPZ $2F
LENGTH EPZ S2F
SIGN EPZ $2F
COLOR EPZ $30
MODE EPz $31

INVFLG EPZ $32
PROMPT EPZ $33

YSAV EPZ $34
YSAV1 EPZ $35
CSWL EPZ $36
CSWH EPZ $37
KSWL EPZ $38
KSWH EPZ $39
PCL EPZ $3A
PCH EPZ $3B
XQT EPZ $3C
AlL EP? $3C
AlH EPZ $3D
AZL EPZ S3E
A2H EPZ S$3F
A3L EPZ S40
A3H EPZ $41
A4L FEpPz $42
A4H EPZ $43
ASL EPZ S$44
ASH EPZ S45

76

ACC EFZ $45

XPEG EPZ Sd6
YREG EPZ S47
STATUS EPZ S48
SPNT L A $49
RNDL EP7 <4r
RNDH EDZ S4F
ACL EPZ S50
ACH FEZ <£51
XTNDL EPZ S52
XTI EPZ $53
A0XT EE7 $54
AUXH EP7 S55
DICK £EPZ 595
IN EQU s(0200
USHADR ©CU SO3F¢
MM T ENU S03FR
IFDNLOC EQU SU3FE
ICADR EQL SCCOO0
Xap EQU S$CO00

KRDSTRR EQU $CO10
TAPEOUT ECU sC020

SPKR EQU $C030
TXTCLR EQU $COS0
TATSET EGU $C051
MIXCLR EQU $C052
MIXSET EQU $C053
LOWSCR EQU 3C054
HISCR E0U $C055
LORES EOU $C056
HIRES EQU $CO57
TAPEIN EGU $C060
PADDIL0 EQU $C064
PTRIG EQU $CO070
BASIC FOU S$SE00O
BASIC2 EQU $E003
ORG S$F8N0 ROM START ANDRESS
F800: 4A PLOT LSR A Y~-COORD/2
F801: 08 PHP SAVE LSB IN CARRY
F802: 20 47 F§ JSR GBASCALC CALC BASE ADR IN GBASL,H
F805: 28 PLP RESTORE LSB FROM CARRY
F806: A9 OF LDA #SOF MASK SOF IF EVEN
F808: 90 02 BCC RTMASK
F80A: .69 EO ADC #SEO MASK SFO IF ODD
F80C: 85 28 RTHMASY 3TA MASK
FBOE: Bl 26 PLOT1 LDA (GBASL),7 DATA
F810: 45 30 EOR COLOR XOR COLOR
F812: 25 2E AND HASK AND MASK
F8l4: 51 26 EOR (GRASL),Y XOR DATA
F816: 91 26 STA (GRASL),Y TO DATA
F818: 60 RTS
F819: 20 00 F8 HLINE JSR PLOT PLOT SOUARE
F81C: C4 2C HLINE1 CPY H2 DONE?
F81E: BO 11 BCS RTS1 YES, RETURN
F820: C8 INY WO, INCR INDEX (X-COORD)
F821: 20 OE F§ J3R PLOT1 PLOT NEXT SOUARE
F824: 90 F6 8CC HLINF1l ALWAYS TAKEN
F826: 69 01 VLINEZ ADC #3801 NEXT Y-COORD
F828: 48 VLINE PHA SLVE ON STACK
F829: 20 CO F8 JSR PLOT PLOT SOUARE
F82C: 68 PLA
F82D: C5 2D CHP V2 DONE ?
F82F: 90 F5 BCC VLINEZ 8O, LOOP.
F831: 60 RS RTS
F832: A0 2F CLBSCF LDY #S2F MAX Y, FULL SCRN CLR
F834: DO 02 PNE CLRSCZ ALWAYS TAKEN
F836: A0 27 CLRTOP LDY #$27 NAX Y, TOP SCRW CLR
F838: 84 2D CLESC2 3TY V2 3TORE AS ROTTO™ COCRD
* FOR VLINE CALLS
F83A: A0 27 LOY #$27 RIGHTMOST ¥=COORD (COLUMN)
F83C: A9 00 CLRSC3 LDA #S0 TOP CUGOPD FOR VLINE CALLS
F83E: 85 30 STA COLOR CLEAR COLOR (BLACK)
F840: 20 28 F& JSR VLINE PRAY VLINY
F843: 88 DEY NEXT LEFTMOST ¥-COORD
F644: 10 F6 4PL CLRSC3 LOOP USTIL NONE.
F846: 60 RTS
F847: 48 GBASCALC PHA FOR INPUT 000NEFGH
F848: 4A ISR A
F849: 29 03 AND #8023
F848: 09 04 OPA 4504 GEIERATE GBASH=00CCOLFG
784D: 85 27 STA GOASH
F84F: 68 PLA AND GPASL=HDEDFU00
F850: 29 18 AND 518
F852: 90 02 2CC CaCALC
F854: 69 7F ADC ESTF
F856: 85 26 GBCALC STA GAASL

77

F858:
F859:
F85A:
F85C:
F85E:
F85F:
FE61:
F862:
F8604:
F866:
F&68:
F869:
F86A:
F86B:
F86C:
F8EE:
F870:
F871:
F872:
F873:
F876:
£878:
F879
F87t
F87
r37
F87
F87
F8el:
F&B2:
F884:
FE86:
F889:
FEEC:
FBEE:
F88F:
FBYG:
F#92:
F593:
£6895:
v8Y7:
F899:
F893:
F&9C:
F&9D:
F8AQ0:
F8A3:
Fga5:
FRAT:
F8aY:
F8AA:
F8AD:
FQAF:

Ci

oo

F8B1:
Fab3:
F834:
F8B6:
F887:
F8BE&:
F8BA:
F8BC:
F8BE:
F8BF:
F8C1:
F8C2s
F8C3:
F8C5:
F8C6:
F8C8:
F8C9:
F8CA:
F8CC:
F8CD:
F8DO0:
F8D3:
F8D4:
F8D6:
F8D9:
F8DB:
F8DE:
FBEO:
FBEl:
F8E3:
FB8ES:

oA
0A
05
85
60
AS
13
69
29
85
OA

0A
0A
05
85
60
43
08
20
Bl
28
30
43
4
4A
43
29
60
a4
A4
20
20
Al
A8
43

(R
30

29

A2
20
C4
cs8
90
A2
co

26
26

30

03
OF
30

30
30

-

26

04

0%

10
A2
oC

b i/
oz
04
80
00

Ab
2E
03

2F
8F
03
8A
o8

08

20

FA

F2

FF
82

3A
DA
01
4A
2F

Fl

03
04

F&

Fi:
Fo

Fo
F&

FF
F8

FD

F9

NXTCOL

SETCOL

SCEN

SCRN2

RITWSRE

IMN5DS]

MNNDX1

MNNDX 2

MNNDX3

INSTDSP

PRNTOP

PRNTBL

ASL
AST
ORA
STA
RTS
LDA
CLC
ARC
AN
STA
ASL
ASL
ASL
ASL
ORA
STA
RTS
LSR
PHP
JSR
LDA
PLP
RCC
LSR
LS®
LSR
LR
AND
RTS
LDX
LDY
JSP
J3R
LCA
TAY
LER
RCC
ROR
8Cs
CMP
FRO
ANE
Lew
TAX
LDA
JSR
RNE
LY
LDA
TAX
LLA
STA
AND

STA
TYA
AND
TAX
TYA
LDY
CPX
BEQ
LSR
BCC
LSR
LSR
ORA
DEY
BNE
INY
DEY
BNE
RTS
DFB
JSR
PHA
LDA
JSR
LDX
JSR
CPY
INY
BCC
LDX
CPY

A
A
GBASL

CRASL
COLOR INCPEIENT COLOR RY 3

4803
2807
COLGK
A POTH HALF PYTRES OF COLOR EQUAL
A

A

A

COIOR

COLOR

COLOR=17*A MOD 1lé

i
32
il

1y

A READ SCREEN Y-COORD/2
SAVE LSB (CAFRY)
GEASCALC CALC BASF ANDRESS
(GEASL) ,Y GET RYTE
RESTORE LSF FROM CARRY
RYSKZ IF EVEN, U3E LO H

A
3

A SHIFT HIGHY HALF BYTE DOWN
LY

£SOF MASK 4-3IDS

PCL PRINT PCL, I

BCH

PRYX?2

PRALMK FOLLOWED 2Y A PLANK
(ECL.,2) C®ET OF conn

A FVIV/OND TEAT
IRVEY

A 21T 1 PEST

SPpp A¥XXNX11 IUVALID CGF

feny

AER OPCODE S5% INVALID

£S57 TASK RITS

A LSRR INTG CARFY FOR L/p 'TRST
FoTL, X CET FORMAT INREX RYTE

SCRNZ P/L H=DY!I'E O8N CARPY

GETFIT

4950 SURSTITUTR S$&0 FOR INVALID OPS
480 SFT PRINT FOPV¥AT INDEX TO 0

FUT2,X INDEX INTO PRINT FORMAT TARLE
FORMAT SAVE FOR ADR FIELD FCRMATTING
£$03 MASK FOR 2-2IT LENGTH

(P=1 RYTE, 1=2 RYTE, 2=3 2YTE)

LENGTH

CPCOLE

$#S8F MASX FOPR 1XXX1010 TEST
SAVF IT
OPCODE TC A AGAIN

4503

#S8A

MNNOX3

A

HNNDX3 FORM INDEX INTO MNEMONIC TABLE
A

A 1) 1XXX1010=>00101XXX

#$20 2) XXXYYY01=>00111XXX
3) XXXYYY10=>00110XXX

MNNDX2 4) XXXYY100=>00100XXX

5) XXXXX000=>000XXXXX

MNNDX1

SFF,SFF,$FF
INSDS1 GEN FMT, LEN BYTES
SAVE MNEMONIC TARBLE INDEX
(PCL),Y
PRBYTFE
#5011 PRINT 2 BLANKS
PRBL2
LENGTH PRINT INST (1-3 BYTES)
IN A 12 CHR FIELD
PRNTOP
#203 CHAR COUNT FOR MNEMONIC PRINT
#504

78

FB8E7: 90 F2 BCC PRNTEL

FBE9: 68 PLA RECOVER MNEMONIC INDEX

FB8EA: A8 TAY

F8EB: B9 CO F9 LDA MNEML,Y

FBEE: 85 2C STA LMNEM FETCH 3-CHAR MNEMONIC

F8F0: B9 00 FA LDA MNEMR,Y (PACKED IN 2-BYTES)

F8F3: 85 2D STA RMNEHM

F8F5: A9 00 PRMN1 LDA #S$00

F8F7: A0 05 LDY #S05

F8F9: 06 2D PRMN?2 ASL. RMNEM SHIFT 5 BITS OF

F8FB: 26 2C ROL LMNEM CHARACTER INTO A

F8FD: 2A ROL A {CLEARS CARRY)

F8FE: 88 DEY

F8FF: DO F8 BNE PRMN2

F90l: 69 BF ADC #S$BF ADD "?" OFFSET

F903: 20 ED FD JSR COUT OUTPUT A CHAR OF MNEM

F906: CA DEX

F907: DO EC BNE PRMN1

F909: 20 48 F9 JSR PRBLNK OUTPUT 3 BLANKS

F90C: A4 2F LDY LENGTH

FO90E: A2 06 LDX #S06 CNT FOR 6 FORMAT BITS

F910: EO 03 PRADR1 CPX #S03

F912: FO 1C BEQ PRADRS IF X=3 THEN ADDR.

F914: 06 2E PRADR2 ASL FORMAT

F916: 90 OE BCC PRADR3

F918: BD B3 F9 LDA CHARL1-1,X

F91B: 20 ED FD JSR COUT

F91E: BD B9 F9 LDA CHAR2-1,X

F921: FO 03 BEQ PRADR3

F923: 20 ED FD JSR CcouT

F926: CA PRADR3 DEX

F927: DO E7 BNE PRADRI1

F929: 60 RTS

F92A: 88 PRADR4 DEY

F92B: 30 E7 BMI PRADR2

F92D: 20 DA FD JSR PRRYTE

F930: A5 2E PRADRS LDA FORMAT

F932: C9 E8 CMP #SES8 HANDLE REL ADR MODE

F934: Bl 3A LDA (PCL),Y SPECIAL (PRINT TARGET,

F936: 90 F2 BCC PRADR4 NOT OFFSET)

F938: 20 56 F9 RELADR JSR PCADJ3

F93B: AA TAX PCL,PCH+OFFSET+1 70 A,Y

F93C: EB8 INX

F93D: DO 01 BNE PRNTYX +1 TO Y,X

F93F: C8 INY

F940: 98 PRNTYX TYA

F941: 20 DA FD PRNTAX JSR PRBYTE OUTFPUT TARGET ADR

F944: 8A PRNTX TXA OF BRANCH AND RETURN

F945: 4C DA FD JMP PRBYTE

F948: A2 03 PRBLNK LDX #$03 BLANK COUNT

F94A: A9 A0 PRBL2 LDA #$A0 LOAD A SPACE

F94C: 20 ED FD PRBL3 JSR COUT JUTPUT A BLANK

F94F: CA DEX

F950: DO F8 BNE PRBL2 LOOP UNTIL COUNT=0

F952: 60 RTS

F953: 38 PCADJ SEC 0=1-3YTE, 1=2-BYTE,

F954: AS 2F PCADJ2 LDA LENGTH 2=3-BYTE

F956: A4 3B PCADJ3 LDY PCH

F958: AA TAX TEST DISPLACEMENT SIGN

F959: 10 01 BFL PCADJ4 (FOR REL BRANCH)

F958: 88 DEY EXTEND NEG BY DECR PCH

F95C: 65 3A PCADJ4 ADC PCL

F95E: 90 01 BCC RTS2 PCL+LENGTH(OR DISPL)+1 TO A

F960: C8 INY CARRY INTO Y (PCH)

F961l: 60 RTS2 RTS
* FMT1 BYTES: XXXXXXY0 INSTRS
* IF Y=0 THEN LEFT HALF BYTE
* IF Y=1 THEN RIGHT HALF BYTE
* (X=INDEX)

F962: 04 20 54

F965: 30 OD FMT1 DFB $04,5$20,$54,$30,S0D

F967: 80 04 90

F96A: 03 22 DFB $80,5$04,590,503,822

F96C: 54 33 0D

F96F: 80 04 DFB $54,$33,$0D,$80,504

F971: 90 04 20

F974: 54 33 DFR $90,5$04,520,$54,8$33

F976: OD 80 04

F979: 90 04 DFR $0D,$80,$"4,5$90,504

F97B: 20 54 3B .

F97E: 0D 80 DFB $20,5$54,$3B,$00,580

F980: 04 90 00

F983: 22 44 ~DFB $04,$90,$00,522,544

F985: 33 0D C8

F988: 44 00 DFB $33,SOD.$C8,$44,$00

79

F98A: 11 22 44

F98D: 33 OD DFB $11,522,$44,$33,$0D
F98F: C8 44 A9
F992: 01 22 DFB $C8,5$44,$A9,501,522
F994: 44 33 0D
F997: 80 04 DFB $44,5$33,$%0D,580,504
F999: 90 01 22 _
F99C: 44 33 DFB $90,$01,$22,$44,833
F99E: OD 80 04
F9Al: 90 DFB $0D,$80,$04,5$90
F9A2: 26 31 87
F9AS: 9A DFB $26,531,387,$9A Z2XXXY0l INSTR'S
F9A6: 00 FMT2 DFB $00 ERR
F9A7: 21 DFBE $21 IMM
F9A8: 81 DFE $81 7-PAGE
F9A9: 82 DFR $82 ABS
F9AA: 00 DFB $00 IMPLIED
F9AB: 00 DFB $00 ACCUMULATOR
F9AC: 59 DFB $59 (ZPAG,X)
F9AD: 4D DFB $4D (ZPAG) ,Y
F9AE: 91 DFE §91 ZPAG,X
F9AF: 92 DFB $92 ABS,X
F9BO: 8¢ DFR $86 ABS,Y
F9Bl: 4A DFB S$4A (ABS)
F9B2: 85 DFR $85 72PAG,Y
F9B3: 9D DFE $9D RELATIVE
F9B4: AC A9 AC
A3 AB A4

CHARL ASC ",),4(s"
F9BA: D9 00 D8
F9BD: A4 A4 00 CHAR2 DFE $D9,$00,$D8,SA4,SA4,500

*CHAR2: “¥“,0,"X$S",0

* MNEML IS OF FORM:

* (A) XXXXX000

* (B) XXXYY100

* (C) 1XXX1010

* (D) XXXYYY1Q

* (E) XXXYYYO1

* (X=INDEX)
F9C0: 1C 8A 1C
F9C3: 23 5D 8B MNEML DFB $1C,$8a,81C,$23,$5D,$88
F9C6: 1B Al 9D
F9C9: B8A 1D 23 DFR S1B,S$Al,$9D,S$8A,$1D,523
F9CC: 9D 8B 1D
F9CF: Al 00 29 DFB $9D,$88,$1D,S$Al1,$00,829
F9D2: 19 AE 69
F9D5: A8 19 23 DFB $19,SAE,$69,$A8,$19,$23
F9D8: 24 53 1B
F9DB: 23 24 53 DFB $24,$53,5$1B,$23,524,$53
FYDE: 19 Al DFR $19,$A1 (A) FORMAT ABOVE
F9EO: 00 1A 5B :
F9E3: 5B AS 69 DFE $00,$1A,S$5B,$5B,$A5,569
F9E6: 24 24 DFE $24,$24 (B) FORMAT
F9E8: AE AE A8
F9EB: AD 29 00 DFR SAE,SAE,SAB,SAD,$29,500
F9EE: 7C 00 DFB $7C,$00 (C) FORMAT
F9F0: 15 9C 6D
F9F3: 9C A5 69 DFB $15,%9C,$6D,$9C,$A5,$69
F9F6: 29 53 DFE $29,$53 (D) FORMAT
F9F8: 84 13 34
F9FB: 11 A5 69 DFB $84,%13,$34,$11,8A5,869
F9FE: 23 A0 DFB $23,$A0 (E) FORMAT
FAOO: D8 62 5A
FA03: 48 26 62 MNEMR DFB SD8,5$62,$5A,$48,$26,$62
FAO6: 94 88 54
FAG9: 44 C8 54 DFR $94,588,554,544,$C8,$54
FAOC: 68 44 EB8
FAOF: 94 00 B4 DFR $68,544,SE®,$94,$00,584
FAl12: 08 84 74
FAl5: B4 28 6E DFB $08,$84,$74,$B4,$28,3$6E
FAl8: 74 F4 CC
FAl1B: 4A 72 F2 DFR $74,$F4,$SCC,$4A,$72,$F2
FAlE: A4 8A DFB $A4,$8A (A) FORMAT
FA20: 00 AA A2
FA23: A2 74 74 DFB $00,SAA,SA2,$A2,$74,574
FA26: 74 72 DFB $74,$72 (B) FORMAT
FA28: 44 68 B2
FA2B: 32 B2 00 DFB $44,568,$R2,$32,$82,S00
FA2E: 22 00 DF8 $22,500 (C) FORMAT
FA30: 1A 1A 26
FA33: 26 72 72 DFE S1A,S1A,3276,$26,$72,$72
FA36: 88 C8 DFR $88,3C8 (D) FORMAT
FA38: C4 CA 26
FA3B: 48 44 44 DFE $C4,3CA,$26,546,544,544
FA3E: A2 C8 DFB S$A2,3C8 (E) FORMAT

80

FA40:
FA43:
FA46:
FA47:
FA49:
FA4A:
FAA4C:
FA4E:
FAS51:
FAS53:
FAS4:
rAS56:
FAS58:
FASA:
FASCG:
FASE:
FA60:
FA62:
FA64:
FA66:
FA68:
FAGA:
FA6C:
FAGE:
FA70:
FA72:
FA74:
FA76:
FA78:
FA7A:
FA7D:
FA7E:
FA80:
FA83:
FAB86:
FA88:
FAB9:
FA8A:
FA8B:
FABC:
FA8D:
FABF:
FA92:
FA93:
FA96:
FA97:
FA99:
FA9A:
FA9C:
FA9F:
FAA2:
FAAS:
FAA6:
FAA7:
FAA9:
FAAA:
FAAC:
FAAD:
FAAF:
FABl:
FAB4:
FABG:
FAB7:
FAB9:
FARBRA:
FABD:
FABE:
FABF:
FACO:
FAC1:
FAC2:
FAC4:
FACS:
FAC7:
FACS8:
FACY:
FACB:
FACD:
FACF:
FADL:
FAD3:
FAD4:
FADG6:
FAD7:
FADA:
FADC:

FF
20
68
85
68
85
A2
BD
95
ca
DO
Al
FO
A4
Ccg
FO
Cc9
FO
c9
FO
C9
FO
(o]
FO
29
49
c9
FO
Bl
99
88
10
20
4C
85
68
48
0A
0A
OA
30
6C
28
20
68
85
68
85
20
20
aC
18
68
85
68
85
68
85
A5
20
84
18
90
18
20
AR
98
48
8A
48
AQ
18
Bl
AA
88
Bl
86
85
BO
A5
48
AS
48
20
A9
85

FF FF
DO F8 STEP

2C

2D
08
10
3C

F8
3a
42
2F
20
59
60
45
4C
5C
6C
59
40
35
1F
14
04
02
3A
3C

F8
3F
3C
45

03
FE

4C
3A
3B
82

DA
65

48
3A
3B
2F
56
3B
14

54

02

3A

3A
3B
3A
F3
2D

2C

8E
45
40

FB XCINIT

00

FF
00

03
FF

F8
FA
FF

F9

F9

FD

X0l
XQ2

IRQ

BREAK

XBRK

XRTI

XRTS

PCINC2

PCINC3

XJSR

XJMp
XJIMPAT

NEWPCL

RTNJYP

REGDSP
RGDSP1

DER
JSR
PLA
STA
PLA
STA
LDX
LDA
STA
DEX
BNE
LDA
BEQ
LDY
chp
REQ
cMp
BEQ
cMP
SEQ
CMP
BEQ
cMp
3EQ
AND
EOR
cMp
BEQ
LDA
STA
DEY
BPL
JSR
JMP
STA
PLA
PHA
ASL
ASL
ASL
BMI
JMP
PLP
JSR
PLA
STA
PLA
STA
JSR
JSR
Jmp
CLC
PLA
3TA
PLA
STA
PLA
3TA
LDA
JSR
STY
CLC
8CC
CLC
JSR
TAX
TYA
PHA

TXA
PHA

LDY
CLC

LDA

TAX

DEY
LDA

STX

STA

BCS

LDA

PHA

LDA
PHA

JSR

LDA

STA

SFF,SFF,SFF

INSTDSP
RTNL

RTNH
4508

DISASSEMBLE ONE INST
AT (PCL,H)
ADJUST TO USER
STACK. SAVE

RT* ADR.

INITSL-1,X INIT XEOQ AREA

XQT,X

XQOINIT
(PCL,X)
XBRK
LENGTH
4520
XJSR
4560
XRTS
454C
XJ9p
#56C
XJIMFAT
#S40
XRTI
4S1F
4514
£S04
XQ2
(PCL) , Y
XQTNZ,Y

X01
RESTORE
XQTNZ
ACC

A
A
A
BREAK

USER OPCODE BYTE
SPECIAL IF RRFAK
LEN FROM DISASSEMBLY

HANDLE JSR, PTS, JMP,
JMP (), RTI SPECIAL

COPY USER INST TO XEO AREA
WITH TRAILING NOPS
CHANGE REL BRANCH
DISP TO 4 FOR
JMP TO BRANCH OR
NBRANCH FROM XEQ.
RESTORE USER REG CONTENTS.
XEQ USER OP FROM RAM
(RETURN TO NBRANCH)

**JRQ HANDLER

TEST FOR BREAK

(IRNLOC) USER ROUTINE VECTOR IN RAM

SAV1
PCL

PCH
INSDS1
RGDSP1
MON

“ STATUS

PCL

PCH
LENGTH

PCADJ3
PCH

NEWPCL

PCADJ2

#502

(PCL),Y

(PCL),Y
PCH

PCL
XJMP
RTNH

RTNL

CROUT
#ACC
A3L

81

SAVE REG'S ON BREAK
INCLUDING PC

PRINT USER PC.
AND REG'S
GO TO MONITOR

SIMULATE RTI BY EXPECTING
STATUS FROM STACK, THEN RTS
RTS SIMULATION
EXTRACT PC FROM STACK
AND UPDATE PC BY 1 (LEN=0)

UPDATE PC BY LEN

UPDATE PC AND PUSH
ONTO STACK FOR
JSR SIMULATE

LOAD PC FOR JMP,
(J4P) SIMULATE.

DISPLAY USER REG
CONTENTS WITH
LABELS

FADE:
FAEO:
FAE2:
FAE4:
FAEG6:
FAE9:
FAEC:
FAEF:
FAF1l:
FAF4:
FAF6:
FAF9:
FAFA:
FAFC:
FAFD:
FAFE:
FBOO:
FBO2:
FBO5:
FBO7:
FB08:
FBO9:
FBOB:
FBOE:
FBOF:
FB1ll:
FBl12:
FB13:
FB16:
FB19:
FB1A:
FB1B:
FB1C:
FB1D:
FB1E:
FB21:
FB23:
FB24:
FB25:
FB28:
FB2A:
FB2B:
FB2D:
FB2E:
FB2F:
FB31:
FB33:
FB36:
FB39:
FB3C:
FB3E:
FB40:
FB43:
FB46:
FB49:
FB4B:
FB4D:
FBA4F:
FB51:
FB53:
FB55:
FB57:
FB59:
FBS5B:
FB5D:
FB60:
FB63:
FB65:
FB67:
FB68:
FB6A:
FB6B:
FB6D:
FB6F:
FB71:
FB73:
FB74:
FBR76:
FBR78:
FB79:
FR7A:
FR7B:
FB7D:
FB7E:
FBEO:

A9
85
A2
A9
20
BD
20
A9
20
B5
20
E8
30
60
18
AQ
Bl
20
85
98
38
BO
20
38
BO
EA
EA
4C
4C
Cl
D8
D9
Do
D3
AD
AQ
EA
EA
BD
10
Cc8
Do
88
60
A9
85
AD
AD
aAD
A9
Fo
aD
AD
20
A9
85
A9
85
A9
85
A9
85
A9
85
4C
20
A0
A5
4a
90
18
A2
B5
75
95
E8
Do
A2
50
CA
10
88
Do
60

00
41
FB
A0
ED
1E
ED
BD
ED
4A
DA

E8

01
3A
56
3A

A2
4A

9E

0B
FD

-
i

00

64
04

F8

00
48
56
54
51
00
0B
50
53
36
14
22
00
20
28
21
18
23
17
25
22
a4
10
50

0C
FE
54
56
54

F7

FE

ES

FA
FD

FD

FD

F9

FF

FB
FA

co

co

co
co
Cco

co
Cco
F8

FC

RDSP1

BRANCH

NBRNCH

INITEL

RTBL

PREAD

PREAD2

RTS2D
INIT

SETTXT

SETGR

SETWND

TABV
MULP#

MUL
MUL2

WUL3

MUL4
MULS5

LDA
STA
LDX
LDA

$ACC/256
A3H

#SFB
$$a0
couT
RTBL-SFB,X
couT
#$8D
CcouT
ACC+5,X
PRBYTE

RDSP1

BRANCH TAKEN,
#501 ADD LEN+2 TO PC
(PCL) , Y
PCADJ3
PCL

PCINC2

SAVE NORMAL RETURN AFTER
XEQ USER OF

PCINC3 GC UPDATE PC

DUMMY FILL FOR
MBRNCH XED AREA
BRANCH
$C1
S8
$D9
$DO
$D3
PTPIG TRIGGER PADDLES
#s00 INIT COUNT
COMPENSATE FOR 1ST COUNT

PADDLO,X COUNT Y-REG EVERY

RTS2D 12 USEC

PREAD?2 EXIT AT 255 MAX
4#$00 CLR STATUS FOR DERUG
STATUS SOFTWARE

LORES

LOWSCR INIT VIDEO MODE
TYXTSET SET FOR TEXT MODE

4500 FULL SCREEN WINDOW
SETWND
TXTCLR SET FOR GRAPHICS MODE
MIXSET LOWER 4 LINES AS
CLRTOP TEXT WINDOW
$#514
ANDTOP SET FOR 40 COL WINDOW
#500 TOP IN A-REG,
WNDLFT BTTM AT LINE 24
$$28
WNDWOTH
#5168
WNDRTHM VTAR TO ROW 23
$#$17
cv VTARS TO ROW IN A-REG
VTAD
MD1 A3S VAL OF AC AUX
$$10 INDEX FOR 16 RITS
ACL ACX = AUX + XTND
A TO AC, XTND
MUL4 IF NO CARRY,

N0 PARTIAL PPROD.
#SFE

XTNDL+2,X ADR MPLCND (AUX)
AUXL+2,X 'TO PARTIAL PROD
XTHDL+2,X {(XTND) .

“UL3
#303
#5876
#$50
MUOLS

MUL2

82

FR81:
FB84:
FB&6:
FB88:
FBBA:
FB8C:
FB8E:
FBEF:
FB91:
FB93:
FB94:
FB96:
FB98:
FB9A:
F39C:
FBYE:
FBAO:
fFBAL:
FBA3:
FBA4:
FBAG6:
FBAS:
FBAA:
FBAD:
FBAF:
FBB1l:
FBB3:
FBB4:
FBB5:
FBB7:
FBB9:
FBBA:
FBBC:
FBBE:
FBCO:
FBC1:
FBC2:
FBC3:
FBCS:
FBC7:
FBC9:
FBCA:
FBCC:
FBCE:
FBDO:
FBD2:
FBD3:
FBD4:
FBD6:
FBD8:
FBD9:
FBDB:
FBDD:
FBDF:
FBEZ2:
FRE4:
FBEG6:
FBE9:
FBEC:
FBED:
FBEF:
FBFO:
FRF2:
FBF4:
FBF6:
FBF8:
FBFA:
FBFC:
FBFD:
FBFF:
FCOl:
FCO02:
FCO04:
FCO06:
FC08:
FCOA:
FCOC:
FCOE:
FC10:
FC12:
FCl4:
FCl6:
FC18:
FC1lA:
FC1C:

20
Al
06
26
26
26
38
A5
£S5
AA
A5
ES
90
86
85
E6
88
Do
60
AQ
84
A2
20
A2
B5
10
38
98
F5
95
98
F5
95
E6
60
48
4
29
09
85
68
29
90
69
85
0A
A
05
85
60
Cc9
Do
AS
20
AD
A9
20
AD
88
Do
60
A4
91
Eé
A5
C5
BO
60
C9
BO
AB
10
c9
FO
Cc9
FO
co
DO
Ccé
10
A5
85
Cé
AS
C5

A4
10
50
51
52
53

52
54

53
55
06
52
53
50

E3

00
2F
54
AF
50
01
0D

00
00

01

0l
2F

03
04
29

18
02
7F
28

28
28

87
12
40
A8
co
ocC
Al
30

F5

24
28
24
24
21
66

aQ
EF

EC
8D
5A
8A
5A
88
Cc9
24
E8
21
24
24
22
25

FB

FB

FC

£C
co

DIVPH
oIV
DIV2

2IV3

MD1

MD2

MD3

MDRTS
BASCALC

3SCLC2

BELL1

BELL2

RTS2?
STOATW

ADVANCE

PTS3
VIDOUT

UP

JSR
LCY
ASL
ROL
RCL
ROL
SEC
LDa
sec
TAX
Lea
SBC
BCC
STX
STA
INC
DEY
ENE
RTS
LDY
STY
LDX
JSR
LDX
LDA
BPL
SEC
TYA
SBC
STA
TYA
SBC
STA
INC
RTS
PHA
LSR
AND
ORA
STA
PLA
AND
BCC
ADC
STA
ASL
ASL
ORA
STA
RTS
CcHP
BNE
LDA
J3R
LRy
LDA
JSR
LDA
DEY
5NE
RTS
LDY
STA
NG
LDA
chMp
BECS
RTS
CHMP
BCS
TAY
3PL
cMp
BEQ
Cvp
BED
CMP
BNE
DEC
BPL
LDA
STA
DEC
LDA
CMP

M1 aRS VAL OF AC, AUX.
$#S10 INDEYX FOR 16 BITS
AL
ACH
XTNDL YTHD/AUX
XTNDH TO AC.
XTNDL
AUXL MOD TO XTND.
X1HMDH
AUXH
DIV3
XTNDL
XTHRH
ACL
DIV2Z
#500 FPRS VAL OF AC, AUX
SIGN WITH RESULT SIGN
$AUXL IN LSB OF SIGN.
MD2
#ACL
LOC1,X X SPECIFIES AC OR AUX
MDRTS
LOCO, X COMPL SPECIFIED REG
LOCO,X IF NEG.
LOC1,X
LOC1,X
SIGN
CALC BASE ACR IN BASL,H
A FOR GIVEN LINE NO.
4#S03 0<=LINE NO.<=$17
#504 ARG=000ABCDE, GENERATE
BASH BASH=000001CD
AND
#$18 BASL=EARAR0OO
BSCLC2
#STF
BASL
A
A
BASL
BASL
£S87 BFLI CHAR? (CNTRL=-G)
RTS2B NG, RETURN
#540 GDELAY .01 SECONDS
WAIT
#SCO
4#S0C TOGGLE SPEAKER AT
WAIT 1 KHZ FOR .1 SEC.
SPKR
PELL2
cd CURSER H INDEX TO Y-REG
(BASL),Y STOR CHAR IN LINE
CH INCREMENT CURSER H INDEX
c (MOVE RIGHET)
WNDWDTH BEYOND WINDOW WIDTH?
CR YES P TO NFXT LINE
NO,RETURN
#SA0 CONTROL CHAR?
STOADV NO,OUTPUT IT.
INVERSE VIDEO?
3TOADV YES, OQUTPUT IT.
#S8D CR?
CR YES.
#S8A LINE FEED?
LF IF SO, DO IT.
£S88 BACK SPACE? (CNTRL=-H)
BELL1 MO, CHECK FOR RELL.
cH DECREMENT CURSER H INDEX
RTS3 IF POS, OX. ELSE MOVE UP
WNDWDTH SFT CH TO WNDWDTH-1
CH
CH (RIGHTMOST SCREEN POS)
WNDTOP CURSER V INDEX
cv

83

FClE:
FC20:
FC22:
FC24:
FC27:
FC29:
FC2B:
FC2C:
FC2E:
FC30:
FC32:
FC34:
FC36:
FC38:
FC3A:
FC3C:
FC3E:
FC40:
FC42:
FC44:
FC46:
FC47:
FC4A:
FCAD:
FCAF:
FC50:
FC52:
FC54:
FC56:
FC58:
FC5A:
FC5C:
FCSE:
FC60:
FC62:
FC64:
FC66:
FC68:
FC6A:
FCéC:
FC6E:

FC70:
FC72:
FC73:
FC76:
FC78:
FC7A:
FC7C:
FC7E:
FCB80:
FC81:
FC82:
FC84:
FC86:
FC88:
FC89:
FC8C:
FCBE:
FC90:
FC91:
FC93:
FC95:
FC97:
FC9A:
FC9C:
FC9E:
FCAOQ:
FCAZ2:
FCA3:
FCAS:
FCA7:
FCAB:
FCA9:
FCAA:
FCAC:
FCAE:
FCAF:
FCB1:
FCB3:
FCB4:
FCB6:
FCB8:
FCBA:
FCBC:
FCBE:

BO
Cé
A5
20
65
85
60
49
FO
69
90
FO
69
90
FO
69
90
DO
A4

A5

48
20
20
AQ
68
69
C5
90
BO
AS
85
AQ
84
FO
A9
85
E6
AS
Cc5
90
Ceé
AS
48
20
AS
85
A5
85
A4
88
68
69
Cc5
BO
48
20
Bl
91
88
10
30
AQ
20
BO
A4
A9
91
c8
c4
90
60
38
48
E9
DO
68
E9
Do
60
E6
DO
E6
AS
C5
aAS

0B
25
25
Cl
20
28

co
28
FD
co
DA
FD
2C
DE
FD
5C
E9
24
25

24
9E
00

00
23
FO
CA
22
25
00
24
E4
00
24
25
25
23
B6
25
22

24
28
2A
29
2B
21

0l
23
oD

24
28
2A

F9
El
00
9E
86
24
AQ
28

21
F9

01
FC

01
Fé

42
02
43
3C
3E
3D

FB

FC
FC

FC

FC

FC

VTAE
VTARBZ

RTS4
ESCl

CLREOP

CLEOP1

JOHE

CR

LF

3SCROLL

SCRL1

SCRL2

SCRL3

CLREOL
CLEOLZ
CLEOL2

RAIT
WATIT2
WAIL3

NXTA4

NXTAL

BCS
DEC
LDA
JSR
ADC
STA
RTS
EOR
REO
ADC
BCC
BEC
ADC
2CC
BENQ
ADC
BCC
BNE
LDY
LDA
PHA
JSR
JSR
LDY
PLA
aADpC
cme
8CC
2CS
LDA
STA
LDY
STY
BEO
LDRA
5TA
INC
Lna
CMP
BCC
DEC
LDA
PHA
JSR
LDA
STA
LDA
STA
LDY
DFY
PLA
ADC
cHp
BCS
PHA
Jse
LDA
STA
DEY
BPL
BMI
LDY
JSR
3CS
LDY
LDA
STA
INY
CPY
RCC
RTS
SEC
PHA
s8C
BNE
PLA
SBC
BNE
RTS
INC
BNE
I&C
LDA
CcvP
LDA

RTS4

Cv

cv
PASCALC
WHNDLFT
BASL

#SCUO
AONME
#SFD
ADVANCF
RS
$§SFD
LF

Up
#SFD
CLREOL
RTS 4
CH

cv

VTAB7Z
CLEOL?
#$00

#S00
WNDBRTH
CLEOP1
VTAR
UNDTOP
cv

cv
NNDRTM
VTaR?Z
cv
WNDTOP

VTARZ
BASL
BASZ2L
BASH
BAS2H
WNDWDTH

#$01
WNDRT™
SCRL3

VTABZ

IF TOP LINE THEN PETURN
DFCR CURSER V-INDEX

GET CURSER V=-INDEX
CENERATE BASE ADDR

ADD WINDOW LEFT INMDEX
TO RASL

ESC?

IF SO, DO HOME AND CLEAPR

ESC-A OR B CHECK
A, ADVANCE
B, BACKSPACE

ESC-C OR D CHECK
C,COwWN
D, GO UP

ESC-E OF F CHECK
FE, CLFAR TO END OF LINE
MOT F, RETURN

CURSOR H TO Y INDEX

CURSOR V TO A-REGISTER

SAVE CURRENT LINE ON STK

CALC RASE ADDRESS

CLFAR TO EOL, SET CARRY

CLEAR F™%M H IKDEX=0 FOR REST

INCRETNT CURRENT LINE

(CARRY IS SET)

DONE TO RBOTTOM OF WINDOW?
NG, KEEP CLEAPING LINES
YES, TAR TO CURRENT LINE

INIT CURSOR V
AND H-INDICES

IHEN CLEAR TO END OF PAGE

CURSOR TO LEFT OF INDFX
(PET CURSOR H=0)
INCR CURSOPR V(DCWN 1 LINE)

OFF SCREFN?

NC, SET BASE ADDR
DECP CURSOR V(BACK TO 3BOTTOM LINR)
START AT TOP OF SCRL WNDW

GENERATE BASE ADDRESS
COPY BASL,H
TO BAS2L,H

INIT Y TO RIGHTMOST INDEX
OF SCROLLING WINDOW

INCR LINE NUMRER
DONE?
YES, FINISH

FORM BASL,H (BASE ADDR)

(RASL),Y MOVE A CHR UP ON LINE
(RAS2L) ,Y

SCRL2
SCRL1
4500
CLEOL?Z
VTAR

CH

#SAQ
(RASL) , Y

WNDIDTH
CLEOL2

#s01
WATIT3

4#S01
WAIT2

A4L
NXTAl
A4H
AlL
A2L
AlH

NEXT CHAR OF LINE

NEXT LINE

CLEAR BOTTOM LINE

CE'P RASE ADNDR FOR ROTTOM LINE
CARRY IS SET

CURSOR H INDEX

STORE RLANKS FROM 'HERE'
10 ENDR CF LINES (WNDWDTH)

1.0204 USEC .
(1342712*A+512*%A*A)

INCR 2-PYTE A4
AND Al

INCP 2-BYTF Al.

AND COVMPARE TO A2

FCCO:
FCC2:
FCC4:
FCC6:
FCC8:
FCC9:
FCCR:
FCCE:
FCDO:
FCD2:
FCD4:
FCD6:
FCD9:
FCDA:
FCDB:
FCDC:
FCDE:
FCEQ:
FCE2:
FCE3:
FCES:
FCEB8:
FCEA:
FCEB:
FCEC:
FCEE:
FCEF:
FCF2:
FCF3:
FCF4:
FCF6:
FCF7:
FCF9:
FCFA:
FCFD:
FCFE:
FDO1:
FDO3:
FDOS:
FDO7:
FDO9:
FDOB:
FDOC:
FDOE:
FD10:
FD11:
FD13:
FD15:
FD17:
FD18:
FD1R:
FD1D:
FD1F:
FD21:
FD24:
FD26:
FD28:
FD2B:
FDZE:
FD2F:
FD32:
FD35:
FD38:
FD3A:
FD3C:
FD3D:
FD3F:
FD40:
FD42:
FD44:
FD47:
FD4A:
FD4B:
FD4D:
FD50:
FD52:
FD54:
FD56:
FD58:
FD5A:
FD5C:
FD5F:
FD60:
FD62:
FD64:

ES
E6
DO
E6
60
A0
20
DO
69
O
AQ
20
c8
cs
88
DO
90
A0
88
DO
ac
a0
ca
60
A2
48
20
68
23
a0
cA
DO
60
20
88
AD
45
10
45
85
o
60
A4
B1
48
29
09
91
68
6C
E6
DO
E6
2
16
91
AD
2
60
20
20
20
c9
FO
60
A5
48
a9
85
BD
20
68
85
BD
co
FO
c9
FO
EO
90
20
ES8
Do
A9
20

3F
3C
02

3D

43
o))
F9
FE
F5
21
DB

FD
05
32

FD
20
2C

08

FA

3Aa
F5
FD

60
2F
F8
2F
2F
80

24
28

3F
40
28

38
4E
02
4F
00
F5
28
00
10

0oC
2C

93
F3

32

FF
32
00
ED

32
00
88
1p
98
0A
F8
03
3A

13
DC
ED

FC

FC

Co.

FC

FC

co

00

co

co

FD
FC
FD

02
FD

02

FF

FD

BTS4R
HEADK

WRBIT

ZEPDLY

ONEDLY

WRTAPE

RDBYTE
RDBYT?2

RD2BIT
RDPIT

RDKEY

KEYIN

KEYINZ

ESC

PDCHAR

NOTCR

NOTCR1

CANCEL

38C
InNC
BNE
INC
RTS
LY
JSR
INE
ADC
acs
LDY
JSR
INY
INY
DEY
3NE
RCC
LDY
DEY
BNE
LDY
LDY
DEX
RTS
LDX
PHA
J5P
PLA
ROL
LDY
DEX
BNE
RTS
JSR
DEY
LDA
EOR
2PL
EOR
STA
CPY
RTS
LDY
LDA
PHA
AND
ORA
STA
PLA
Jup
INC
BNE
INC
3I7T
EPL
STA
Lea
BIT
RTS
JSR
JSR
JSP
Cinp
2EQ
RTS
LDA
PHA
LDA
STA
LDA
JSR
PLA
STA
LDA
CMP
BEC
CMP
BEQ
CPX
BCC
JSR
INX
BNE
LDA
JSR

A2h
AL (CARPY SET IF >=)
RT34R
AlH
£san VRITE A*256 'LONG 1°
ZERDLY HALF CYCLES
HEADP (650 USEC EACH)
¥SFE
JEADR. THEN A 'SPORT 0
4521 (400 USEC)
ZERDLY WRITE TWO HALF CYCLES
OF 250 USEC ('0"')
OR 500 USEC ('0')
ZERDLY
WRTAPE Y IS COUNT FOR
$#$32 TIMING LOOP
ONEDLY
TAPEOQUT
#S2C
4508 8 BITS TO READ
READ TWO TRANSITIONS
RD2RIT (FIND EDGE)
A NEXT 8IT
£53A COUNT FOR SAMPLES
RDBRYT 2
RD2I'T
DECR Y UNTIL
TAPEIN TAPF TRANSITION
LASTIN
RDBIT
LASTIN
LASTIN
§S80 SET CARRY ON Y-REG.
CH
(PASL) ,Y SET SCREEN TO FLASH
#S3F
#S40
(EASL), Y
(KSwL) GO TO USER KEY-IN
ENDL
KEYIN2 INCR RND NUMBER
RNDH
KRD KEY DOWN?
KEYIM LOOP
(3ASL) ,Y REPLACY FLASHING SCRREN
K2D CET KEYCODE
KPDSTPR CLR KFY STRORE
PDKEY GET XFYCOD®
ESC1 HANDLE ESC FUNC.
ROKEY READ KFY
#5973 ESC?
£3C YES, DON'T RETURWY
INVFLG
$SFF
INVFLG ECHO USER LINE
IN,X NON INVERSE
COUT
INVFLG
IN, X
4568 CHECK FOR EDIT KEYS
BCKS3PC RS, CTRL-X.
#$9¢
CANCEL
4SF8 MARGIN?
NOTCR1
RELL YES, SOUND PELL
ADVANCE INPUT INDEX
NXTCHAR
#$DC EACKSLASH AFTFR CANCELLED LINE
couT

85

FD67: 20 8E FD GETLNZ JSR CROUT ouTPUT CFR

FD6A: AS 33 GETLN LDA PROMPT

FD6C: 20 ED FD JSR COUT OUTPUT PROMPT CHAF
FD6F: A2 01 LDX #S01 INIT iNPUT INDEX
FD71: 8A BCK3PC TXA WILL RACKASPACE TO 0O
FD72: FO F3 REQ GRTLUZ

FD74: CA DEX

FD75: 20 35 FD NXTCUAFR J5R PRDCHAR

FD78: C9 95 CMP #PICK USF SCREEN CHAR

FD7A: DO 02 BNE CAPTST FOR CTRL-U

FD7C: Bl 28 LDA (BASL),Y

FD7E: C9 EO CAPTST CMP #SEOQ

FD80: 90 02 BCC ADDINP CONVERT TO CAPS

FD82: 29 DF AND #S$DF

FDB4: 9D 00 02 ADDINP STA IN,X ADD TO INPUT BUF
FD87: C9 8D CMP #$8D

F089: DO B2 BNE NOTCR

FD8B: 20 9C FC JSR CLREOL CLR TO FOL IF CR
FD8E: A9 8D CROUT LDA #S8D

FD90: DO 5B gNE COUT

FD92: A4 3D PRAL LDY AlH PRINT CR,Al IN HEX
FD94: A6 3C LDY AlL

FD96: 20 8E FD PEKYX2 JSR CROUT

FD99: 20 40 FS JSR PRITYX

FD9C: A0 00 LDY #500

FDY9E: A9 AD LDA #$An PRIUT '='

FDAQ: 4C ED FD Jup COOT

FDA3: A5 3C XAMB LDA AlL

FDAS: 09 07 CRA #S07 SET TO FINISH AT
FDA7: &5 3E STA A2L MOD 0=7

FDA9: A5 3D LDA AlH

FDAB: 85 3F STA A2R

FDAD: A5 3C MOCRCHK LbA AlL

FDAF: 29 07 AND #8507

FDBl: DO 03 BNL DATAOQOUT

FDB3: 20 92 FD XAM JSR PRAL

FDB6: A9 AQ DATAOQUT LCA #3530

FDB8: 20 ED FD JSR COUT QUTPUT BLANK

FD8B: Bl 3C LDA (AlL),Y

FDBD: 20 DA FD JSR PRRYTE OUTPUT RYTE IN HEX
FDCO: 20 BA FC JSR NXTAl

FDC3: 90 E8 BCC MODRCHK CHECK IF TIME TO,
FDC5: 60 RTSAC RTS PRINT ADDR

FDC6: 4A KAMPH ISR A DETERMINE IF MON
FDC7: 90 EA 8CC XAM MODE IS XAM

FDCY9: 4A LSR A ADD, OR SUB

FDCA: 4A LSR A

FDCB: AS 3E LDA A2L

FDCD: 90 02 BCC aDD

FDCF: 49 FF EQR 4SFF SUR: FORM 2'S COMPLEMENT
FDDl: 65 3C ADD ADC AlL

FDD3: 48 PHA

FDD4: A9 BD LDA #S$8D

FDD6: 20 ED FD JSR COUT PRINT ‘=', THFN RESULT
FDD9: 68 PLA

FDDA: 48 PRBYTE PHA TRINT BYTE AS 2 HEX
FDDB: 4A LSR A DIGITS, DESTROYS A-REG
FDDC: 4A LSR A

FDDD: 4A LSP A

FDDE: 4A LSR 3

FDDF: 20 E5 FD JSK PRHEXZ

FDE2: 68 PLA

FDE3: 29 OF PRHEX AND #SOF PRINT HEX DIG IN A-REG
FDE5: 09 BO PRHEXZ ORA #SRO LS8'S

FDE7: C9 BA CMP #S$BA

FDE9: 90 02 BCC COUT

FDEB: 69 06 ADC #3506

FDED: 6C 36 00 COUT JuP (CS¥L) VECTOR TO USER OUTPUT ROUTINE
FDFO: C9 AQ courl CMP #SAC

FDF2: 90 02 BCC COUTZ DON'T OUTPUT CTRL'S INVERSE
FDF4: 25 32 AND INVFLG MASK WITH INVERSE FLAG
FDF6: 84 35 CcouT?Z STY YSAV] SAV Y-REG

FDF8: 48 PHA SAV A-FEG

FDF9: 20 FD FB JSR VIDOUT OUTPUT A-REG AS ASCII
FDFC: 68 PLA RESTORE A-REG

FDFD: A4 35 LDY YSAV1 AND Y-REG

FDFF: 60 RIS THEN RETURN

FEQO: C6 34 BL1 DEC YSAV

FEQ2: FO0 9F BEQ XAMS8

FEQ4: CA BLANK DEX RLANK TO MON

FE05: DO 16 BNE SETMDZ AFTER BLANK

FE07: C9 BA CMP #SBA DATA STORE MODE?
FEC9: DO BB BNE XAMPM NO, XAM, ADD OR SUB
FEOB: 85 31 STOR STA MODE KEEP IN STORE MODE
FEOD: AS 3E LDA A2L

86

FEOF: 91 40 STA (A3L),Y STORE AS LOW BYTE AS (A3)

FE1ll: E6 40 INC A3L

FE13: DO 02 BNE RTSS INCR A3, RETURN
FE15: E6 41 INC A3H

FE17: 60 RTS5 RTS

FE18: A4 34 SETMODRE LDY YSAV SAVE CONVERTED ':', '4',
FElA: B9 FF 01 LCA IN-1,Y ‘-t, '.,' AS MODE,
FE1D: 85 31 SETMDZ STA YOODF

FE1F: 60 RTS

FE20: A2 01 Ll LDX #s01

FE22: BS 3E LT2 LDA A2L,X COPY A2 (2 BYTES) TO
FE24: 95 42 STA A4L,X 34 AND AS

FE26: 95 44 STA ASL,X

FE28: CA DEX

FE29: 10 F7 RPL LT2

FE28: 60 RTS

FE2C: Bl 3C MOVE LDA (AlL),Y MOVE (Al TO A2) TO
FE2E: 91 42 STA (A4L),Y TYS)

FE30: 20 B4 FC JSR NXTA4

FE33: 90 F7 RCC MOVE

FE35: 60 RTS

FE36: Bl 3C VFY LDA2 (AlL),Y VERIFY (Al TO A2) WITH
FE38: Dl 42 CMP (A4L),Y (A4)

FE3A: FO 1C REQ VFPYCK

FE3C: 20 92 FD JSk PRAL

FE3F: Bl 3C LDA (AlL),Y

FE41: 20 DA FD J3R FRIAYTE

FE44: A9 AQ LDA $SAQ

FE46: 20 ED FD JSR COUT

FE49: A9 AS LDA #SA8

FE4B: 20 ED FD JSR COoUT

FE4E: Bl 42 LDA (A4L),Y

FE50: 20 DA FD J3F PRBYTE

FES3: A9 A9 LDA 4SA9

FES55: 20 ED FD J3R coor

FE58: 20 B4 FC VFYDK JSR NXTA4

FESB: 90 D9 3CC VUFY

FE50: 60 RTS

FES5E: 20 75 FE LISsT JSF AlPC '"VE Al (2 BYTES) TO
FE61: A9 14 LA 514 PC IF SPEC'D ANMD
FE63: 48 LISTZ PHA DISSEMNPLE 20 INSTRS
FE64: 20 DO F8 JSR INSTDSP

FE67: 20 53 F9 J5F PCACJ ADJUST PC EACH INSTR
FE6A: 85 3A STA PCL

FE6C: 84 38 STY PCH

FE6E: 68 PLA

FE6F: 38 SEC

FE70: E9 01 SBC #s01 NEXT OF 20 INSTRS
FE72: DO EF BNE LIST2

FE74: 60 RTS

FE75: 8A Al1PC TXA IF USER SFEC'D ADR
FE76: FO 07 PEQ Al1PCRTS COPY FROM Al TO PC
FE78: BS 3C AlPCLP LbA AlL,X

FE7A: 95 3A STA PCL,X

FE7C: CA DEX

FL7D: 10 F9 FPL AlPCLP

FE7F: 60 A1PCRTS RTS

FEB80: AQ 3F SETINV LDY #S3F SET FOR INVERSE VID
FE82: DO 02 BNE SETIFLG VIiA COUT1

FE84: AQ FF SETNORM LDY #SFF SET FOR NORMAL VID
FE86: 84 32 SETIFLG STY INVFLG

FE88: 60 RTS

FE89: A9 00 SETKRD LbA #5500 SIMULATE PORT #0 INPUT
FE8B: 85 3E INPORT STA A2L SPECIFIED (KEYIN ROUTINE)
FE8D: A2 38 INPRT LDX #KSWL

FE8F: A0 1B LDY #KEYIW

FE91: DO 08 BNE IOPRT

FE93: A9 00 SETVID LDA #S00 SIVULATE PORT #0 OUTPUT
FE95: 85 3E QUTPCRT 3TA A2L SPECIFIED (COUT1 ROUTINFE)
FE97: A2 36 OUTPRT LDX #CS¥L .

FE99: A0 FO LDY #COUT1

FE9B: A5 3E IOPRT LDA AZ2L SET PAM IN/OUT VECTORS
FE9D: 29 0OF AND #SOF

FE9F: FO 06 EECQC IOPRTI1

FEAl: 09 CO ORA #IOADR/256

FEA3: A0 00 LDY #S00

FEA5: FO 02 PEQ ICPRT2

FEA7: A9 FD IOPRT1 LDA #COUT1/256

FEA9: 94 00 IOPRT2 STY LOCO,X

FEAB: 95 01 STA LOC1,X

FEAD: 60 PTS

FEAE: EA NOF

FEAF: EA NOP

FEBO: 4C 00 £0 XBRASIC J"1P RASIC TO RASIC WITH S3CRATCH

FEB3: 4C 03 EU BASCONY JMP BASIC2 CONTINUE BASIC

87

FEB6:
FEB9:
FEBC:
FEBF:
FEC2:
FEC4:
FEC7:
FECA:
FECD:
FECF:
FED2:
FED4:
FEDG6:
FEDS8:
FED9:
FEDB:
FEDE:
FEEl:
FEE3:
FEE4:
FEEG6:
FEESB:
FEEB:
FEED:
FEEF:
FEFQO:
FEF3:
FEF5:
FEF6:
FEF9:
FEFA:
FEFB:
FEFD:
FF00:
FFO02:
FF05:
FFO7:
FFOA:
FFOC:
FFOF:
FFll:
FFl4:
FFlé:
FF19:
FF1B:
FF1D:
FF1F:
FF22:
FF24:
FF26:
FF29:
FF28B:
FF2D:
FF2F:
FF32:
FF34:
FF37:
FF3A:
FF3C:
FF3F:
FF41:
FF42:
FF44:
FF46:
FF48:
FF49:
FF4A:
FF4C:
PF4E:
FF50:
FF51:
FF52:
FF54:
FF55:
FFS57:
FF58:
FF59:
FF5C:
FF5F:
FF62:
FF65:
FF66:
FF69:
FF6B:
FF6D:

20
20
6C
4C
Cé
20
4C
4C
A9
20
AQ
A2
41
48
Al
20
20
A0
68
90
AQ
20
FO
A2
0A
20

60
20
68
68
DO
20
A9
20

20
A0
20
BO
20
A0
20
81

85
20
AQ
90
20
Cc5
FO
a9
20
A9
20
20
A9
4C
A5
48
AS
A6
Ad
28
60
85
86
84
08
68
85
BA
86
D8
60
20
20
20
20
D8
20
A9
85
20

75
3F
3A
D7
34

43
F8
40
c9
27
00
3C

3C

BA
1D

CE

ED
40
10

D6
FA

00

6C
FA
16
Cc9
2E
FA
24
FD
F9
FD
3B
EC
3C
2E
2E
3A
35
FO
EC
2E
0D
C5

ED ¢

D2
ED
ED
87
ED
48

45
46
47

45

46
47

48

49

44
2F
93
89

3A
AA
33
67

FE
FF
00
FA
FE
03

FC

FE
FC

FE

FC

FE

FC
FC
FC
FC
FC
FC

FD
FD

FD

FE
FB
FE
FE

FF

FD

GO

RTG2Z
TPACE
STEPZ

Usp
WRITE

WR1

WRBYTE
WRBYT2

CRMON

READ

RD2

RD3

RELL

RESTORE

RESTR1

SAVE
SAV1

FESET

MON

MONZ

JSR
JSR
JMP
Jvp
DEC
JSPR
JHP
JuP
Loa
JSR
LDY
LeX
EOP
PHA
LDA
JSR
J3R
LDY
PLA
egce
Loy
J3R
BEC
LDX
ASL
JSR
BNE
RTS
JSR
PLA
PLA
BNE
JSR
LDA
JSR
STA
JSR
LDY
JSR
BCS
JSR
LDY
JSR
STA
EOR
STA
JSR
LDY
BCC
J3R
cMP
3EQ
LDA
J3R
Lpa
JSe
JSR
LDA
JAP
LDA
PUA
LDA
LDX
LDY
PLP
RTS
STA
STX
STY
pHP
PLA
STA
TSX
STX
cLo
RIS
J3R
JSR
JSR
JSR
CLD
JSR
LDA
STA
JSR

AlPC
RESTORE
(PCL)
REGDSP
YSAV
AlPC
STEP
USEADR
#5440
HEADR
#5827
%500
(AlL,X)

(A1L,X)
WRRYTE
NXTAL
#S1D

Wil
#$22
WREYTE
fELL
#510

A
WRBIT
WR2YT?2

3L1

MON?Z
RD2BIT
$516
HEADR
CHKSUM
RC2BIT
#$24
RDBIT
RD2
ROBIT
4S38
RCBYTE
(AlL,X)
CHLESUM
CHKSUM™
NXTAL
#$35
RD3
RODYTE
CHKSUM
SELL
#SC5
cour
$SD2
cout
cour
£S57
cuuT
STATUS

ACC
XRESG
YREG

ACC
XREG
YREG

STATUS

SPNT

SETNORHM
INIT
SETVID
SETKBD

BELL
#SAA
PROMPT
GETLNZ

88

ADR TO PC IF SPEC'D
RESTORE META REGS
GO TO USER 3UBR

TC REG NISPLAY

ADR TO PC IF SPEC'D
TAKE ONE STEP
TO USR SUBR AT USRADR

#RITE 10-SFC HEADER

HANDLE CR AS BLANK
THEN POP STACK
AND RTN TO MON

FIND TAPEIN EDGE

pHIAY 3.5 SECONDS
INIT CHKSUM=SFF
FIMD TAPEIN EDGE
LOOK FCR SYNC PIT
(SHORT 0)
LOOP UNTIL FOUND
SKIP SECOND SYNC H-CYCLE
INDEX FOR 0/1 TEST
READ A BYTE
STORE AT (Al)

UPDATE RURNNING CHKSUM

INCR Al, COMPARE TC A2
COMPENSATE 0/1 INDEX

LOOP URTIL DONE

READ CHXSUY 3YTE

GOCD, SOUND BELL AND RETURW

PRINT “ERFR", THEN BELL

OUTPUT RELL AND RETUSN

RESTORE 6502 PEG CONTENTS
UStD 2Y DERUG SOFTWAPE

SAVE 6502 REG COMTENTS

SPU ACREEN 1ODE
AND INIT KBD/SCREEN
AS I/O DEV'S

MUST SET HEX MODE!

*#1 PROMPT FOR MON

READ A LINE

FF70:
FF73:
FF76:
FF78:
FF7A:
FF7B:
FF7D:
FFB0:
FF82:
FF85:
FF87:
FF8A:
FF8C:
FF8D:
FF8E:
FFBF:
FF90:
FF9l:
FF93:
FF95:
FF96:
FF98:
FF9A:
FF9C:
FF9E:
FFAOQ:
FFA2:
FFPA3:
FFAS:
FFA7:
FFA9:
FFAB:
FFAD:
FF30:
FFBL:
FFB3:
FFB5:
FFR7:
FFB9:
FEB3:
FFBD:
FFEE:
FFCO:
FFCl:
FFC4:
FFC5:
FFC7:
FFCY:
FFCB:
FFCC:
FFCD:
FFCE:
FFCF:
FEFDO:
FFD1:
FFD2:
FFD3:
FFC4:
FFD5:
FFDO6:
FFD7:
FFD&:
FFNY:
FFDA:
FFDB:
FEDC:
FFDD:
FFDE
FFDF:
FFEO:
FFEl:
FFE2:
FFE3:
FFE4:
FFES:
FFEG6:
FFE7:
FFEB:
FFE9:
FFFA:
FFER
FFrEC:
FFED:
FFEE:
FFEF:

20
20
84
AQ
88
30
D9
Do
20
a4
4C
A2
0A
0A
0A
0A
oA
26
26
CA
10
A5
Do
B5
95
95
E8
FO
Do
A2
86
56
B9
cs
49
Cc9
90
69
C9
B0
60
A9
48
B9
48
AS
Al
d4
60
BC
R2
BE
ED
EF
Cc4
EC
a9
B
Ab
A4
Ue
95
07
02
05
FO
00
EB
93
AT
Cé
99
B2
c9
BE
Ci
35
8C
C3
96
AF
17
17
23
1F

O I |

W PN

E8
cC
F8
BE
34
73
03

3E
3F

F8
31
06
3F
3D
41

F3
ué
00

3E
3F
00

B30
0a
D3
88
Fa
Cob

FE
E3
31

00
31

FF
FF

FF

FF

02

NXTITM

CHRSKCH

DIG

NXTBIT

NXTEAS

NXIRS2

GEIUY

NXTCHP

rosyn

ZNONDE

CHRTRAL

SURTEL

Z40DE
GETNUM
YSAV
4817

MON
CHRTEL, Y
CHRSRCH
TO5083
YSAV:
WXTITM
#5803

P> o>

A2L
A2H

NXTRIT
MODE

NXTES2
A28,X
A1H,X
A3HL, K

NXTAAS
NXTCRR
#S0C
AZL
A2K
Iv,Y

#8830
450A
LIG
LSHE
#5FA
DIC

#C0/256
SURTHL,Y

MORE
SN0
“GDE

$3¢C
SR2
33E
SEN
SEF
$C4
SKC
$AY
S
5AH
SAL
S0o
$95
07
$02
$05
SFO
$00
SEB
$93
SA7T
sCe
§99

#BASCONT=-

#(SR=-1
EREGZ=1
#TRACE-1
#VFY-1
#INPET=-1
ESTEPZ=-1
#OUTPRT~1
¢XPASIC-1

#5ETMODE~
#SETMODE -~

$MOVE-1
#LT-1

89

CLEAR MON MODE, SCAN IDX
GET ITEM, NON-HEX

CHAR IN A-REG

X-REG=0 IF NO HEX INPUT

NOT FOUND, GO TO MON
FIND CMND CHAR IN TEL

FOUND,

CALL CORRESPONDING

SUBROUTINE

GOT HEX DIC,
SHIFT INTD A2

LEAVE X=S$FF IF DIG

IF MODF IS Z7=RO
THEN COPY A2 TO
Al ANT A3

CLEAR A2

IF HEX DIG, THEN

PUSH dIGH=ORRER
SURR ADRR 01 STK

PC39 1.0

i ORDER

SUb. ADR OW STK

CLP “O0OF, CLD MODE
TO A-REC

20 TO SURR VIA RTS

F(*CTRL-C*)

F("CTRL~-Y")

F("CTRL=-F")

F(*r")
F("y")

F("CTRL-K")

F("3")

F("CTRL=P")
F("CTRL=-D")

F(=")
F(4")
B (i)

.
F("CRr")

(F=EX~0P SRB0+$8&9)

F(BLANK)

1

1
1

FFFO:
FFF1:
FFF2:
FFF3:
FFF4:
FFES:
FFFE:
FFF7e
FFré:
FFF3:
FEFA:
FFFB:
FEFC:
FrrD:
FFFE:
FEEF:

83
7r
5D
ccC
[Se)
FC
17
17
F3
03
F3
03
59
FE
86

5

£A

o>

)

£l

#SETRCORM~-1

4SETINV=-1
$LIST-1
$RITE-1

#GO-1

4READ-]

$3ETMODE~-1
#SEFTMOPE-1

#CRMON=-1
#BLANK~1

ENM

#NMI/256
#RESET

I

NMI VECTOR

RESET VECTOR

#RESET/256

#IR

#IRC/ 256

§3C

C

90

IR0 Vi(TOR

F500:
F502:
F503:
F505:
F507:
F509:
F508:
F50C:
F50D:
FS0E:
F50F:
F511:
F513:
F515:
F516:

EY
4a
DO
A4
A6
DO
88
ca
8A
18
ES
85
10
cs8
98

g1

14
3F

3k
01

3A
3E
01

FhkhhkhkhkhkRr kAR kA hkkhhkhn

APPLE-II
MINI=-ASSEMBLER

COPYRIGHT 1977 PY
APPLE COMPUTER INC,

ALL RIGHTS RESEPVED

S. WOZNIAK
A, 3BAUM

LA
LA A R R N S,

KRR AKRNRANR AR R R AR A AR A Ak *

TITLE "APPLE-II MINI-ASSEMBLER"

FORMAT EPZ §2F
LEIIGTH EPZ S2F
MODE EPZ §31
PROW BT EPZ $33
YSAV EPZ $31
L EPZ $35
PCL EPZ $3A
PCH’ EP2 $32
LS EPZ $3D
azL TPz $3%
A2i EPZ S3F
A4L EPZ S42
a4 EPZ $43
FYT EPZ S44
I EQU $200
INSDS 2 EQU SFGER
INSTDSF EOU SFEDC
PRAL2 EDU SP94A
PCARJ EQU S$F953
CHAR] ENU SFeR4
EQU SF9:2A
HN LI ENU SF9CO
MAE AP EQU SFAQO
cursyp ZQU SFCIA
GETLNZ EQU $FD6T
COUT ECU SFDED
3L1 EOU SFEOD
ALPCLP FOU SFETS
FELL EOU SFF3a
GETNU EQU SFFAT
TOSUZ EN0 SFFeF
ZONE EOU SFFCT
CHRTSL EOG SFECC
ORC $F50Q
REL 3RC #sel
TSP A
BIE LFR3
LY A2
LoY A2L
BNE REL2
DFY
REL?2 DEX
TXA
CLC
SBC PCL
STA A2L
BPL PEL3
INY
REL3 TYA

91

Is PeT COMPATIELE
ITH RELATIVE 'ODE?
40,

DOURLE DFCRE-T T

FORM ADDR-PC=-2

F517:
F519:
F51B:
F51D:
F520:
F522:
F523:
F525:
F528:
F528B:
F52E:
F531:
F533:
F535:
F538:
F53B:
F53D:
F540:
F542:
F544:
F545:
F547:
F54A:
F54C:
FS4E:
F550:
F552:
F554:
F556:
F559:
F55C:
F55E:
F561:
F562:
F565:
F567:
F569:
F56C:
FS56E:
F570:
F572:
F574:
F576:
F578:
F57A:
F57C:
FS57E:
F580:
F582:
F584:
F586:
F588:
F589:
FS58A:
F58D:
F58F:
F592:
F595:
F597:
F599:
F59C:
FS59F:
FS5A2:
F5A4:
F5A6:
F5A7:
F5A9:
FS5AB:
F5AC:
F5AF:
F5B1:
F5B3:
F5B4:
F5B6:
F5B9:
F5BB:
F5BD:
F5CO0:
FS5Cl:
F5C3:
F5C5:
F5C7:
F5C8:
F5C9:
F5CB:

ES
Do
A4
B9
91
88
10
20
20
20
20
84
85
4C
20
A4
20
84
AQ
88
30
D9
Do
co
DO
A5
AQ
ceé
20
4C
AS
20
AA
BD
C5
DO
BD
C5
Do
A5
A4

FO
C5
FO
cé
Do
E6
Cé
FO

98

20
A9
20
20

85
20
20
AD
C9
FO
cs8
C9
FO
88
20
C9
DO
8A
FO
20
A9
85
20
0A
E9
Cc9
90
0A
0A
A2
0A

33
6B
2F
3D
3A

F8
1A
1A
DO
53
3B
3A
95

34
A7
34
17

4B
ccC
F8
15
E8
31
00
34
00
95
3D
8E

00
42
13
co
43

44
2E

88
2E
9F
3D
oC
44
35
Dé6
34

4A
DE
ED
3A
Al
33
67
(o)

00

AQ
13

A4
92

A7
93

D5

D2
78
03
3D
34

BE

C1

04

00

FC

FC
F8

F9
F5
FF

FF

FF

FE

F8
FA

F9

F9
FD
FF

FD
FF

02

FF

FE

Fé

ERR3
FINDOP
FNDOP2

FAKEMON3

FAKEMON

FAKEMON2

TRYNEXT

NREL

NEXTOP

ERR
ERR2

RESET?Z
NXTLINE

ERR4

SPACE

NXTMN
NXTM

NXTM2

SBC
BNE
LDY
LDA
STA
DEY
BPL
JSR
JSR
JSR
JSR
STY
STA
JVP
JSR
LDY
JSR
STY
LDY
DEY
BMI
CMP
BNE
CpY
BNE
LDA
LDY
DEC
JSR
Jmp
LDA
JSR
TAX
LDa
CMP
BNE
LbA
CMP
BNE
LDA
LDY
CPY
BEQ
CMP
BEQ
DEC
BNE
INC
DEC
BEQ
LDY
TYA
TAX
JSR
LDA
JSR
JSR
Lpa
STA
JSR
JSR
LDA
CcMP
8EQ
INY
CMP
BEQ
DEY
JSR
cMp
BNT
TXA
BEQ
JSR
LDA
STA
JSR
ASL
SBC
CMP
BCC
ASL
ASL
LDX
ASL

pCH

ERR
LENGTH
AlH,Y
(PCL) ,Y

FNDOP2
CURSUP

CURSUP
INSTDSP
PCADJ
PCH

PCL
NXTLINE
TOSUB
YSAV
GETNUM
YSAV
#$17

RESETZ

CHRTBL,Y

FAXEMOHN?2
$15

FAKEMON3

MODE

450

YSAV

BL1

NXTLINE

AlH

INSDS2

MNEMR, X
A4L
NEXTOP
MNEML, X
A4H
NEXTOP
FMT
FORMAT
#$9D
REL
FORMAT
FINDOP
AlH
TRYNEXT
FMT

L
TRYNEXT
YSAV

PRBL2
#SDE
couT
BELL
$5al
PROMPT
GETLNZ
ZMODE
IN

#SA0
SPACE

#SA4
FAKEMON

GETNUM
£S93
ZRR2

ERR2
A1PCLP
483
alH
GETNSP
A

4#SBE
#3C2
ERR2

A

A

#54

A

92

ERROR IF >1-BYTE BRANCH

MOVE INST TO (PC)

RESTORE CURSOR
TYPE FORMATTED LINE

UPDATE PC

GET NEXT LINE

GO TO DELIM HANDLER
RESTORE Y-INDEX
READ PARAM

SAVE Y-INDEX
INIT DELIMITER INDEX

CHECK NEXT DELIM

ERR IF UNRECOGNIZED DELIM
COMPARE WITH DELIM TABLE
NO MATCH

MATCH, IS IT CR?

NO, HANDLE IT IN MONITOR

HANDLE CR OUTSIDE MONITOR

GET TRIAL OPCODE
GET FMT+LENGTH FOR OPCODE

GET LOWER MNEMONIC BYTE
MATCH?

NO, TRY NEXT OPCODE

GET UPPER MNEMONIC BYTE
MATCH?

NO, TRY NEXT OPCODE.

GET TRIAL FORMAT

TRIAL FORMAT RELATIVE?
YES.

SAME FORMAT?

YES.

NO, TRY NEXT OPCODE

NO MORE, TRY WITH LEN=2
WAS L=2 ALREADY?

NO.

YES, UNRECOGNIZED INST.

PRINT "~ UNDER LAST READ
CHAR TO INDICATE ERROR

POSITION.

l!l

INITIALIZE PROMPT
GET LINE.

INIT SCREEN STUFF
GET CHAR

ASCII BLANK?
YES

ASCII '$' IN COL 1?
YES, SIMULATE MONITOR
NO, BACKUP A CHAR

GET A NUMRER

':' TERMINATOR?

NO, ERR.

NO ADR PRECEDING COLON.
MOVE ADR TO PCL, PCH.
COUNT OF CHARS IN MNEMONIC

CET FIRST MNEM CHAR,
SUBTRACT OFFSET
LEGAL CHAR?

NO.
COMPRESS-LEFT JUSTIFY

DO 5 TRIPLE WORD SHIFTS

F5CC:
F5CE:
F5D0:
F5D1:
F5D3:
F5D5:
F5D7:
F5D9:
F5DB:
FSDE:
F5EOQ:
F5E3:
FS5E5:
FS5E8 ¢
FSEE:
F5ED:
F5F0:
F5F2:
F5F4:
F5F63
F5F8:
F5F9:
FSFA:
FSFC:
FSFE:
F600:
F603:
F605:
F607:
F608:
F60A:
F60C:
F60D:
F60F:
F6l10:
F612:
F614:
F615:
F616:
F618:
F6lA:
F61C:
F61E:
F620:
F622:
F624:
F626:
F629:
F62B:
F62D:
F62F:
F631:
F634:
F637:
F638:
F63A:
F63C:

F666:

42
43

F8
3D
F4

E4

05
34

34

13
34
oD
BA

A4
03
34

44
03
0D

3F
01

35
03

3D

c9
44

35
20
06
35
02
80
44
34
00
BB

8D
80
5C
00

AQ
F8

92

Fé6

F9

Fé6
F9

F9

sl
-

02

F5
02

F5

FORM1
FORM2

FO&M 3
FOEM4
FORHAS

FORM6

FORST

FORMS

FORMO
GETNSP

MINASH

ROL
ROL
DEX
3PL
DEC
BEQ
PPL
LDX
JSR
STY
cMp
RNE
JSR
cup
BFEN
LDA
2ED
cHp
BEO
LCY
CLC
DEY
ROL
2
BNE
ISR
LDA
BEQ
INX
STX
LDX
DEY
STX
DEX
3PL
LDA
ASL
ASL
ORA
cMP
BCS
LDX
BEQ
ORA
STA
STY
LDA
CMP
BEQ
cup
BNE
JMP
LDA
INY
cMp
BEO
RTS
ORG
JuP

AdL
A4Y

NXTM2
AlH
NXTM2
NXTMN
S5
CETNSP
YSay
CHARL,X
FORN3
GETNSP
CHARZ,X
FORMS
CdaAR2, X
FORI4
#SA4
FOPMA
YSAV

For
#S3
FORMT
GETNUM
A28
FORi6

L
#S3

Alu

FOR#2
FMT

A

A

L
¥#$20
FORM8
L

FORMS
#5860
FMT
YSAV
IN,Y
#SB3
FORM9
#58D
ERF4
TRYNEXT
IN,Y

#SA0
GETNSP

$F666
RESET2

93

DONF WITH 3 CHARS?
YES, RUT DO 1 MORE SHIFT
~NO

5 CHAPS IN ADDR WODE

GPT FIRST CHAR OF ADDR

FIRST CHAR MATCH PATTERN?
NO

YES, GET SECOND CHAR
SATCHES SECOND HALF?

YES

NO, IS SECCML HALF 2ERQ?
YES,

NG,SFCOMD HALF OPTIOWAL?
YES.

CLEAR 2IT-NO MATCH

RACK UP 1 CHAR

FORM FOCFMAT BYTE

TIME TO CHECK FOR ADDR.
NO

YES

HIGH-ORDER BYTE ZERO
NO, INCR FOR 2-BYTE
STORF LENGTH

RELOAD FORMAT INDEX
PACKUP A CHAR

SAVE INDEX

DONE WITH FORMAT CHECK?
NO.

Y¥S, PUT LENGTH

IN LOW BITS

ADD '$' IF NOWZERO LENGTH
AND DOR'T ALREADY HAVE IT

GET NEXT NONBLANK

';' START OF COMMENT?
YES

CARRIAGE RETURN?

NO, ERR.

GET NEXT NON BLANK CHAR

IZZE222Z2 322222222280 g

*
* APPLE-I1 FLOATIMG
* POINT ROUTINES
*
*
*

COPYRIGHT 1977 BY
APPLE COMPUTER INC.

* ALL RIGHTS RESERVED

* S. WOINIAK

* F % % % H X % * ¥ #

KkkRKRKRRIRR KA KA RK Ak d kK
TITLE “FLOATING PCINT ROUTINES*®

SIGN EPZ SF3

X2 EPZ SF4

M2 BEPZ S$F5

X1 FPZ SFR

M1 EPZ $F9

e EPZ SFC

GVLOC EOU $3F5

ORG $F425

F425: 18 ADD CLC CLEAR CARRY.
F426: A2 02 LDX #52 INDEX FOR 3-BYTE ADD.
F428: BS F9 ADU1 oA sl,X
F42a: 75 F5 ADC 12,X ADD A SYTE OF MANT2 TO MANTI.
F42C: 95 F9 STA M1,X
F42E: CA oEY INNEX TO WEXT MORE SIGNIF. BYTE.
F42F: 10 F7 BPL ARDL LOOP UNTIL DONE.
F431: 60 RTS RETURN
F432: 06 F3 MD1 ASL SIGN CLEAR LSB OF SIGN.
F434: 20 37 F4 JSR AR3IAF AR5 VAL OF M1, THREN SWAP WITH M2
F437: 24 F9 AESWAP BRIT 1l MANT1 NEGATIVE?
F439: 10 05 BGPL AR3WAPL NO, SuiAP ¢iITH MANTZ AND RETURN,
F43B: 20 A4 F4 JSR FCCwPL, YFS, COMPLEMENT IT.
F43E: E6 F3 INC SIGW 18C* 5IGN, COMPLEMENTING LSE.
F440: 36 ABS;APl SEC SET CARPY FOR RETURN TO MUL/DIV.
Fa4l: A2 04 SYAP LDX 4S4 INDEX FOR 4-RYTE SWAP,
F443: 94 FB s9AP] STY F-1,X
F445: RS F7 LDA X1-1,X SWAP A BYTF CF EXP/MANT1 WITH
F447: B4 F3 LDY X2-1,X EXP/MANT2 AND LEAVE A COPY OF
F449: 94 F7 STY ¥1-1,X ®@ANTl IN £ (3 3YTES). FE+3 USED
F448: 95 F3 STA x2-1,X
F44D: CA DEX ADVANCE INDEX TO NZXT BYTE.
F44E: DO F3 RVE S$WAPL LOOP UNTIL DONE.
F450: 60 RTS PETURH
F451: A9 &% FLOAT LDA #8PE INIT ©XPl TO 14,
F453: 85 F6 STA Y1 THEN NORMALIZE TO FLOAT.
F455: A5 F9 HOPM1 LoA M1 BIGH-GRDER MANT1 BYTE.
F457: C9 CO C#P #5C0 UPPER TWO EITS UNEOUAL?
£459: 30 0C BMI RIS1 YES, RETURN »ITH MANT1 NORMALIZED
F453: C6 F3 DEC X1 DECREMENT EXP1,
F45D: 06 FR ASL 1142
F458: 26 Fo RCL M1+l SHIFT MANT1 (3 RYTES) LEFT.
F461: 26 F9 ROL M1
F463: A5 F8 NORM LpA X1 EXP1 ZERO?
F465: DO EE BNE WOR¥1 NO, CONTINUE NORMALIZING.
F467: 60 RTS1 PTS RETURN.
F468: 20 A4 F4 FSUB JSR FCOMPL CMPL MANT1,CLEARS CARRY UNLESS 0
F46B: 20 7B F4 SWEALGN JSR ALGNSKP RIGHT SHIFT MANTL OR SWAP WITH
F46E: AS F4 FACD LDA X2
F470: C5 F8 cvp o X7 COMPARE FXPl WITH EXP2.
F472: DO F7 SNE SHWPALGN IF #,5#AP ADDENDS OP ALIGN MANTS.
F474: 20 25 FA4 JSR AND ADC ALIGWED MANTISSAS.
F477: 50 EA ADDEND BVC NORM NO OVERFLOW, NORMALIZE RESULT.
F479: 70 05 BVS RTLOG OV: SHIFT #1 RIGHT, CARRY INTO SIGK

94

F47B:

F47D:
F47F:
F480:
F482:
F484:
F486:
Fa488:
F483:
F488:
F48C:
F48F:
F491:
F494:
F495:
F498:
F49A:
F49D:
F49E:
F4AQ:
F4A2:
F4A4:
F4A5:
F4A7:
F4A9:
F4AB:
F4AD:
F4AE:
F4BO:
F4B82:
F485:
F487:
F4BA:
F4BB:
F4BD:
F43F:
F4Cl:
F4C2:
F4C3:
FACS:
F4C7:
F4C8:
F4CA:
F4CC:
F4CD:
F4CF:
F4Dl:
F4D3:
F4D5:
F4D7:
F4D9:
F4DB:
F4DD:
F4DE:
F4ED:
F4E2:
F4E4:
F4E6:
F4ES8:
F4EA:
F4EC:
F4ED:
F4EE:
F4FO0:
F4F2:
F4F4:
FAF6:
F4F7:
F4F9:

F63D:
F640:

F642:

F644:
F646:
F648:
F64A:
F64C:
F64E:
F650:
F652:
F654:
F656:
F657:
F659:
F658:
F65D:

90

A5
0A
E6
FO
A2
76
E8
DO
60
20
65
20
18
20
90
20
88
10
46
g0
38
A2
A9
F5
95
cA
Do
FO
20
ES
20
38
A2
BS
F5
48
CA
10
A2
68
90
95
E8
Do
26
26

06
26
26
BO
88
Do
FO
86
86
86
BO
30
68
68

49
85
AQ
60
10
4C

20
A5
10
c9
oo
24
10
A5
FO
E6
DO
E6
60
A9
85
85
60

C4
F9

F8
75

FA
FF

-]

Fe
FD

02
F8

F8
FB
FA
F9
F7
Fé
F5
1C

DA
BE
FB
FA
F9
oD
04

B2
80
F8
17

F?

FS

F8
13
8E
F5
F9
[11:)
FB
06
FA

F9

00
F9
FA

F4

F4q

F4

F4

03

Fa

ALGNSWP
*

RTAR
RTLOC

RILOGL
ROR1

FMUL

MUL1

MUL2
MBEND
NOPYX
FCOMPL

CO4PL1

FDIV

DIV1

DIV2

DIV3

DIV4

MD2

OVCHK
OVFL

FIX1
FIX

FIXRTS
UNDFL

BCC SwAP
LDa ¥1
ASL A

INC ¥l
REC QVFL
LDX 4SFA
ROR E+3,¥
INX

BNE ROR1
RTS

JSR Mp1
ADC X1
ISk ¥n2
CLC

JSR RTLOGL
3CC 1ygLZz
J3r aDD
CEY

opPL MUL1
LSR 3SICGN
PCC AJCRY
SEC

LDX #$3
LDA #S0
SBC X1,X
STA X1,X
DEX.

BNE COmMPL1
BEQ ADDEND
J3R MDI1
SRC X1
JSR MD2
SEC

LDY 4S2
LbA M2,X
SBC E,X
PHA

DEX

BPL NIV2
LDX 4SFD
PLA

BCC DIV4
STA M243,X%
INX

BNE DIV3
ROL M1+2
ROL M1+l
ROL M1
ASL M2+2
ROL M2+1
ROL M2
BCS OVFL
DEY

BNE DIV1
BEQ MDFND
STX M1+2
STX M1+1
STX M1
8CS OVCHK
BMI MD3
PLA

PLA

BCC WORMX
ECR #SE0
SrtA X1
LDY #S$17
RTS

BPL D3
J¥4P QVLOC
ORG S$F63D
JSR RTAR
LDA X1
8PL UMDFL
CMP #SBE
N FIX1
31T M1
BPL FPIXRIS
LDA M¥1+2
BEQ FIXRTS
INC M1+l
BNE FIXRTS
INC WM1
RTS

LDA #S0
STA w1
STA M1+l
RTS

95

SWAP IF CARRY CLEAR,

FLSE SHIFT RIGHT ARITH.

SICN OF MANT1 INTO CARRY FOR
RIGHT ARITH SHIFT.

INCR X1 TO ADJUST FOR RICHT SHIFT
EXP1 OUT OF RANGE.

INDEX FOR 6:RYTE RIGHT SHIFT.

MEXT RYTE OF SHIFT.

LOOP UNTIL DONFE.

RETURN,

ABS VAL OF MANT1, MANT2.

ADD FXPl TO EXP2 FOR PRODUCT EXP
CHECK PROD. EXP AND PREP. FOR MUL
CLEAR CARRY FOR FIRST BIT.

t11 AND E RIGHT (PROD AND MPLIEP)
IF CARRY CLEAR, SKXIP PARTIAL PROD
ADE HULTIPLICAND TO PRODUCT.
NEXT “DI ITERATION,

LOOP UNTIL DONE.

TEST SIGN LS8.

IF EVEN,NORMALIZE PROD,ELSE COMP
SCT CARRY FOR SUBTRACT.

INDEX FOR 3~BRYTE SURTRACT.

CLEAP A,

SUBTRACT PYTE OF EXPl.

RESTORF IT.

HEXT JMORE SIGNIFICANT BYTE.

LOOP UNTIL DONE,

NORMALIZE (OR SHIFT RT IF OVFL).
TAKE ABS VAL OF MANT1, MANT2.
SURTRACT EXPl FROM FXP2.

SAVE AS QUOTIENT EXP.

SET CARRY FOR SUBTRACT.

INDEX FOR 3-PYTE SUBTRACTION.

SURTRACT A BYTE OF E FROM MANT2.
SAVE ON STACK.
NEXT MORF SIGNIFICANT BYTE.

LOOP UNTIL DONE.
INDBEX FOR 3-BYTE CONDITIONAL MOVE

PULL BYTF OF DIFFERENCE OFF STACK
IF M2<E THEN DON'T RESTORE M2.

NEXT LESS SIGNIFICANT RYTE.
LOOP UNTIL DONE.

ROLL OUOTIENT LEFT,CARRY INTO LSB

SHIFT DIVIDEND LEFT.

OVFL IS DUE TO UNNORMED DIVISOR
NEXT DIVIDE ITERATION.

LOOP UNTIL DONE 23 ITERATIONS.
NORM, QUOTIENT AND CORRECT SIGN.

CLEAR MANT1 (3 BYTES) FOR MUL/DIV.

IF CALC. SET CARRY,CHECK FOR OVFL
IF NEG THEM NO UNDERFLOW.
POP ONE RETURN LEVEL.

CLFAR X1 AND RETURN.

COMPLEMENT SIGN SIT OF EXPONEWT.
STORE IT.

COUNT 24 MUL/23 BRIV ITERATIONS
RETURM.

IF POSITIVE EXF THEN MO OVFL.

F689:
F68C:
F68D:
F68F:
F£690:
F692:
F695:
F698:
F69A:
F69C:
F69E:
F6A0:
F6Al:
F6A3:
F6AS:
F6AT7:
F6A6:
F6A9:
F6AA:
F6AC:
FO6AE:
F6BO:
F6Bl:
F6B2:
F6B83:
F684:
F6B7:
F6BS8:
F6R9:
F6BP:
F63D:
FOBF:
F6C2:
F6C3:
F6CS5:
F6Co:
F6CT:
F6C8:
F6C9:
F6CC:
F6CF:

20
68
85
68
85
20
4C
E6
Do
£6
A9
48
AQ

29
oA
AA
4A
51
Fo
&6
4A
4A
4A
A8
B9
48
60
E6
DO
E6
LD
48
A5
44
60
68
68
20
6C
Bl

4A
1E

1F
98
92
1E
62

1F
F7
60

1E
oF

0B
1D

20

1E

1F
F4

1D

3F
1E
1F

FF

Fé6
Fé

rFe

FF
00

khkkhkhkhkhkkhkkkkkkaxhhhhhkk

* X H * ¥ % % A * ¥ %

APPLE~-II PSEULO
MACHINE INTERPRETER

COPYRIGRHYT 1977
APPLE COMPUTER INC

ALL RIGHTS RESERVED

S, WOZNIAX

* % % k% % % * ¥ %

*

RRKRRARRRRKRRRR R AR KRR AR Rk
TITLE "SWEET16 INTERPRETER"

ROL EPZ
RO EPZ
Rl4d LP2
R1SL EPZ
R15H EPZ
S16PAG EQU
SAVE EQU
RESTORE 200
ORG
Sulé J3K
PLA
STA
PLA
STA
Swleg JSP
Jvp
swlec nc
BHE
INC
Ss16D LDA
PHA
Loy
LDA
AND
ASL
TAX
LSk
EQR
3EQ
STX
LSR
LSR
LSR
ray
LDA
PHZ
PTS
TC3R INC
RN E
InC
TCaR2 Loy
EHA
LDA
LSF
B1S
RTHZ PLA
ELA
JSR
M
SETZ LDA

50
s1
$1n
S1E
C1F
SF7
SFF4a
SFF3F
SF6E9
SAVE

R1S5L

F15%
su116C
svlee
R15L
518160
R154
¥S16PAG

50
(R15L) ,Y
#SF

A

A
(R15L),Y

TOER
R14%

A

A

A

PRESERVE 6502 REG CONTENTS

INIT SWEET16 PC
FROM RETURN
ADDRESS
INTERPRET AND EXECUTE
OWE 5WEET16 INETR,

INCP $9FTTl6 PC FOR FETCH

PUSH CN STACK FOR RTS

FETCH INSTR

MASK RFG SPECIFICATION
COUBLE FOR 2~-RYTE REGISTERS
TO X~-REG FOR INDEXING

NOY HAVE CPCODRE

IF 25RO THEN NON-REG OP
INDICATE'PRIOP PESULT REG'®
OPCOPE*2 TC LSP'S

TO Y=-NEC FOPR INDEXING

CPT®L-2,Y LOW-ORDFR ADR RYTE

*15L
[ORre2
R15
arpef,, X

R1eH
|

RESTORE
(R151)
(R15L),Y

96

ONTC STACK
GOTO REG=0P FOUTINE

INCR PC

LOW-ORDFR ADP EYTE

ONT(Q STACK FOR KON-RFG OP
'PRIOR RESHOLT PEG' INDEX
PREZPAPE CARRY FOR RC, BNC.
GCTO NON=-REG OP ROUTINE
EQP RETURW ADPRESS

RESTORFE 6502 REG COWTENTS
RETURN TC 6502 CCDE VIA PC
HIGH-ORDER BYTE OF CONSTAUT

95 01 STA ROH,X

88 DEY
Bl 1E LDA (Rr15L) ,Y LOV=-0ORNER RYTE OF CONSTANT
95 00 3TA ROL,X
98 TYA Y-REG CONTAINS 1
38 SEC
65 1E ADC £15L ann 2 TO ®PC
35 1E STA RIS
90 02 BCC SET2
E6 1F INC R159
60 SFET2 RTS
02 OPTRL pFE 3£T-1 (1X)
F9 RRTRL DFLE RIN=-1 (0)
04 nFr LD-1 (2X)
*1b} DFPE cRr-1 (1)
0D DFP ST=-1 (3%)
9€ DFB RNC=-1 (2)
25 DEFR LDAT-1 (4X)
AF nFg 8C-1 (3)
16 DFR STAT-1 (5X)
B2 DFB BP-1 (4)
47 DFR LDDAT-1 (6X)
BRI DFE RBM~1 {5)
51 DFR STDAT-1 (7X)
Co DFE R7Z-1 (6)
2F DFR POP-1 (8X)
c9 DFB 3NZ-1 (7
5R DFR STPAT-1 (9X)
D2 DFE BMl-l (8)
85 nFB ADD-1 (AX)
ola) DFR Buml-1 (9)
6E DFR SU3-1 (BX)
05 DFE RX-1 (A)
33 DFE PCPD=-1 (CX)
E8 DFR FRS-1 (e)
70 DF3 CPR-1 (DX)
93 DFB 3S-1 (C)
1E DFR INR=1 (EX)
E7 DFR NUL-1 (D)
65 DFB DCR-1 (FX)
E7 DFR NUL-1 (E)
E7 pFB NUL-1 (UNUSED)
E7 DFP NUL-1 (F)
10 CA SET BPL SETZ ALWAYS TAKEN
B5 00 LD LDA ROL,X
BK EQU *~1
85 00 STA ROL
B5 01 Loa ROH,X MOVE RX TO RO
85 01 STA ROH
60 RTS
AS 00 ST LDA ROL
95 00 sSTA ROL,X MOVE RO TO RX
aAs 01 LDA ROH
95 01 STA ROH,X
60 RTS
A5 00 STAT LDA ROL
gl 00 STATZ STA (ROL, X) STORE RYTE INDIRECT
A0 00 LDY #$0
84 1D STAT3 STY R14H INDICATE RO IS RESULT REG
F6 00 INR INC ROL,X
D0 02 3NE INR2 INCR RX
F6 01 INC ROH,X
60 INR2 RTS
Al 00 LDAT LDA (ROL,X) LOAD INDIRECT (RX)
85 00 STA ROL 10 RO
a0 00 LDY 450
84 01 STY ROH 7ERQ HIGH-ORDER RO BYTE
FO ED 3EN STAT3 ALWAYS TAKEN
A0 00 POP LDY #50 AIGH ORDER BYTF = 0
F0 06 BEQ POP2 ALWAYS TAKEN
20 66 F7 POPD JSR DCR DECR RX
al 00 L.CA (ROL,X) pOoP HICH-ORDER BYTE @ARX
A8 TAY SAVE IN Y-REG
20 66 F7 POP2 JSR DCP DECE RX
al 00 LDA (ROL,X) LOW-ORDE®R BYTFE
85 00 sSTA ROL T0 RO
84 01 STY RO
AQ 00 pPCP3 Loy #$0 INDICATE RO AS LAST RSLT REG
84 1D STY R14H
60 RTS
20 26 F7 LDODAT JSR LDAT LOW=-0ORDER BYTE TO RO, INCR RX
Al 00 LDA (ROL,X) HIGH-ORNER BYTE TO RO
85 01 stTa ROY
4C 1F F7 JMP INR INCR RX
20 17 F7 STDAT JSR STAT STORE INDIRECT LOW-ORDER

97

A5
81
4C
20
A5
81
4C
B5
DO
D6
D6
60
AQ
38
AS
F5
99
AS
FS

98
69

60
A5
75
85
AS
75
Al
FO
A5
20
AS
20
18
BO
Bl
10
88
65
85
98
65
85
60
BO
60
0A
AA
BS
10
60
0a
aA
BS5
30
60
0A
AR
BS5
15
FO
60
oA
AR
B5
15
DO
60
0A
AA
B5
35
49
FO
60
0a
AA
BS
35
49
Do
60
A2

01l

00
1F

66

00
43
00
02
01
00

00

00
00
00
01
01
01

00
1D

00
00
00
01
01
00
E9
1E
19
1F
19

OE
1E
01

1E
1E

1F
1F

EC

01
E8

01
Bl

00
0l
n8

oo

01
CF

0o
01
FF
C4

00
01
FF
B9

18

00

00

F7

F7

NCR2

su7
CPR

5082

ADD

BS

BR
BNC
3R1

BR2

/NC2
8C

3P

311

BZ

PaY,

BM1

BNM1

NUL
RS

LbA
STA
JMp
J3R
LDA
STa
Jup
LDA
PNE
DEC
DEC
RTS
LDY
SEC
LDa
SBC
STA
LDA
SBC
STA
TYA
ADC
STA
RTS
LDA
ADC
STA
LDA
ADC
LDY
BEQ
LDA
JSR
LDA
JSR
CLC
BCS
LDA
3PL
DEY
ADC
STA
TYA
ADC
STA
RTS
BCS
RTS
ASL
TAX
LDA
BPL
RTS
ASL
TAX
LDA
BMI
RTS
ASL
TAY
LoA
OR4
REQ
PT3
AST
TAX
1.DA
ORA
BNE
RTS
ASL
TAX
LDA
AND
EOR
BEQ
RTS
ASL
TAX
LDA
AND
EOR
BNE
RTS
LOX

RON
(ROL,X)
INR
NCE

ROL
(ROL,X)
POP3
ROL, X
DCR2
ROA, X
ROL, X

#540

ROL
ROL,X
ROL,Y
ROH

ROH, X
ROH,Y

$#50
R14H4

ROL
ROL, X
ROL
ROHE
ROH, X
#50
SUR2
R15L
STAT2
215d
STAT2
aHC2
(R151) ,Y
nR2

R15L
R15L

R15H
R15H

3R
A

RO, X
epl

RO, X
mpy

ROL, X
ROH, %
aE1

A
RO, , %

ROH,X
BR1

RYTF AND INCP RX. THEN
QTORE HIGH-CORDER BYTE.
INCR RY ANMD RETURN

DECR FX

STORF FO LOW RYLE @RX

1NDICATE RO 3S LAST RSLT REG

NDECR PX

rESULT TO RO
NOTF Y-REG = 13*2 FOR CPR

RO-RX TO RY

LAST RESULT REG*2
CARRY TO LSB

RO+RX TO RO

RO FOR RESULT

FINISH ADD

NOTE X-REG IS 12*2!

PUSE LOW PC BYTE VIA R12
PU3SH HBIGH-ORDER PC BYTE
NO CAPRY TEST
DISPLACRMENT BYTE

ADD TO PC

LOULLE RESULT-PEG INDEX
1O X-REG FOR INDEXING
TEST FOR PLUS

RRANCH IF SO

DOJRLF RESOLT-EREC INDEX

TEST FOR MINUS

DOURLE PESULT-REG INDEX
TVST FOR ZERO

(BOTH PYIES)

PRANCH IF SO

DOURLE RESULT-REC INDEX
TEST FOR NOWZFRO

(BOTH BYTES)

BRANCH IF SO

DOUBLE RESULT-REG INDEX

CHECK ROTH BYTES
FOR S$FF (MINUS 1)

BRANCH IF 50

DOUBLE RESULT-REG INDEX

CHECK BOTH BYTES FOR NO SFF

RRANCH IF NOT MINUS 1

12*2 FOR R12 AS STK POINTER

20
Al
85
20
al
85
60
4C

66 F7
00
1F
66 F7
00
1E

C7 F6 RTW

JSR
LDA
STA
JSPR
Lba
STA
RTS
JvPp

DCR DECR STACK POINTER
(ROL,X) POP HIGH RETURN ADR TO PC

R15H

DCR SAME FOR LOW-ORDER BYTE
{(ROL,X)

R15L

RTNZ

99

6502 MICROPROCESSOR INSTRUCTIONS

ADC

AND
ASL

BCC
BCS
BEQ
BIT

BMI

BNE
BPL
BRK
BVC
BVS

CLC
CLD
[]
CLv
CMP
CPX
CPY
DEC
DEX
DEY

EOR

INC
INX
INY

JMP
JSR

Add Memory to Accumulator with
Carry

“AND" Memory with Accumulator
Shift Left One Bit (Memory or
Accumulator)

Branch on Carry Clear
Branch on Carry Set
Branch on Result Zero
Test Bits in Memory with
Accumulator

Branch on Result Minus
Branch on Resuit not Zero
Branch on Result Plus
Force Break

Branch on Overflow Clear
Branch on Overflow Set

Clear Carry Flag

Clear Decimal Mode

Clear interrupt Disable Bit

Ciear Overflow Flag

Compare Memory and Accumulator
Compare Memory and Index X
Compare Memory and index Y
Decrement Memory by One
Decrement Index X by One
Decrement Index Y by One

“Exclusive-Or" Memory with
Accumulator

Increment Memory by One
Increment Index X by One
increment index Y by One

Jump to New Location

Jump to New Location Saving
Return Address

100

LDA
LDX
LDY
LSR

NOP
ORA
PHA
PHP
PLA
PLP

ROL

ROR

RTI
RTS

sBC

SEC
SED
SEl

STA
STX
STY

TAX
TAY
TSX
TXA
TXS
TYA

Load Accumulator with Memory
Load index X with Memory
Load Index Y with Memory
Shift Right one Bit (Memory or
Accumutator)

No Operation
“OR" Memory with Accumuiator

Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack
Puil Processor Status from Stack

Rotate One Bit Left (Memory or
Accumulator)

Rotate One Bit Right (Memory or
Accumulator)

Return from iInterrupt

Return from Subroutine

Subtract Memory from Accumulator
with Borrow

Set Carry Flag

Set Decimat Mode

Set interrupt Disable Status

Store Accumulator in Memory
Store Index X in Memory

Store index Y in Memory

Transter Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer
Transter index Y to Accumulator

8<' ‘<->{n>+ | «“®»VDOIZT x>

THE FOLLOWING NOTATION
APPLIES TO THIS SUMMARY:

Accumulator

Index Registers
Memory

Borrow

Processor Status Register
Stack Pointer

Change

No Change

Add

Logicat AND

Subtract

Logical Exclusive Or
Transfer From Stack
Transfer To Stack
Transfer To

Transfer To

Logical OR

Program Counter
Program Counter High
Program Counter Low
Operand

Iimmediate Addressing Mode

FIGURE 1. ASL-SHIFT LEFT ONE BIT OPERATION
e sl o 2] o 7]

FIGURE 2. ROTATE ONE BIT LEFT (MEMORY

onnonnnEa.
In¥ononnnnn

FIGURE 3.
NOTE 1: BIT — TEST BITS

Bit 6 and 7 are transterred to the status register. If the
result of A A M is zero then Z=1, otherwise Z=0.

PROGRAMMING MODEL

ACCUMULATOR

INDEX REGISTER Y

INDEX REGISTER X

PCH

PCL

PROGRAM COUNTER

s_JO L.Jo L_Jo ;JO L_Jo

STACK POINTER

7

0

[v]v]e]o] 1]z]c]

PROCESSOR STATUS REGISTER, "P”

CARRY

ZERO

INTERRUPT DISABLE
DECIMAL MOCE
BREAK COMMAND

OVERFLOW

NEGATIVE

101

§ DU AQ DIASBUL 3Q IOUUET PURWWOD WHE ¥ Z 310N

SN A Y 10 4S31 dul il 1151021 SOINS 3UL 01 PRI

0 - Z a8, | W2 uaul

LpuR s M L ION

S3A0O NOILONYLSNI

_1 e 4 oS 13dQ JA8 3ANEIAY | 0=A UO YOURJG | JEB|D MO|LIIA0 UO youeig
JNE
$d42+0d
1dnusa)
—— ! 00 Syg paydwj padiog Jeaig 33104
hLL]
awoAkg | | - 2 oL iado 148 aaneiay | 0=N uo youelg snyd ynsai uo youeig
——— N 8 e A3Q paidw| AL —A A X3pul juawaidag 144
L1 I I R 4 i1} 13dQ ING 3ANEI3Y | 0=7 UO YoUBJG | 0J9Z JOU J|NSaJ UO youeig
auo AqQ
Y YN L v X3a paydwy X1 — X X Xapui Juawa1ag . ELL
xw| | T F4 0t 13dQ NG anieIay | L=N U0 yauelg SNUILW J|NSal Uo Ydouelig
€ 30 X'13d0 930 X'ainosqy Iwe
€ 30 Jad0 930 ayn|osqy g . € xR 18d0 .19 anjosqy A=W JjojejnwAdde yiim
4 9a x'1adp 230 | X'efied 04a7 auo Aq W-———/ N 2z 74 1ad0 L118 abed 0197 |'N= N WVVY Klowaw ul SUQ 1S3}
AN b4 %) 18dg 930 abed 0137 N-—1—W AlOWaW JUswWaLRQ L8
£iE 11 [p— b4 04 1adg p3g aaleiay | 1=Z uo youesg 049Z }|NS9J UO Youeiq
€ 22 19dg AdD anjosqy omm
l (4] JELG R abed 037 A xapui
—— AN F4 09 13d0# AdD ajeIpawiw] W—A pue Ajowaw ajedwo)y | | —————— F 08 1300 S78 aAne|ayY { =0 U0 youeig 18$ A11B9 U Youesg
Ad) $34
€ 73 19dQ Xdd amosgy | 1 T 4 06 12dg 994 aAnelay | 0=0 uo yaueig seald Au1ed uo youelg
e |£] 18d0 XdJ abeg 0197 X xaput
e AN 4 03 19d0# XdD ajepawwy W—X pue Asowaw asedwo) 208
XdJ € 3 X'1ad0 1SV X 9Injosqy
€ 30 Jadg SV Injosqy
l 1a A'(13dQ) dWO A(108utpu)) 4 9k x'1edg 1SV | X'abed 0137
I3 19 | (X'1900) dWJ (X'108.11puy) 2 90 jadQ 1SV abed 0197 (J01EnWA20Y 10 KIOWIW)
€ 60 A'J380 dWD A'8In|0sqy ———=ANN 3 Vo v ISV | sotemnwnady | (1 31614 993) g 3uo 3| HIUS
€ aa X'13d0 dIND X'ainjosqy sy
€ @ J12d0 dWD ajnjosqy
4 sa x‘iadg dWD | X ‘abeq 0197 4 e A'(13d0) ONY A (10311puY)
b4 4] 1840 dWD afieq 0197 10je(nwnade 2 (¥4 (x'1900) QNV (X'128J1pUY)
S 4 %) 13do# dND ajeIpawwW| N—Y pue Arowaw 3Jedwo) € &€ Aledg ONY A'91p10SqY
dWI € ae X'1200 QNY X nosqy
€ a 1dg ONV anjosay
xxxxx 0 L 88 AT pandwi A0 Bety mo|ji3A0 JB31] FA SE x‘iadg QNV | X3bed 0iaZ
A 4 > 12dp ANV albieq 0197 Jjojejpwnade
- N 4 62 18dg# NV aeipaww v WVY yum Asowdw (ONV.
——0-—-- ! 8 no paiiduw) -0 ONv
nJ 4 93 A'(sadg) 0av A'(10821pU1)
———=0- L 8a 12 paiduw a0 apouw (ew13ap 1e31) 2 19 (x'1adg) Qv (x"12341put}
a1 € 6L A'Jadp 00V A‘an|osqy
€ al X'13dg 0V X' niosqy
-—0-— 3 8l URH] pandw) I=0 Geyy A1sea sea() € a9 jadg 00V AN0sqyY
119 4 GL x'iadp 0Qy | Xefeq 0137
- 4 59 1360 oQV abed 0197 A31BD ylIM 10JB|INWNIIR
\\\\\\ b4 oL 1dQ SAD aAne(ay | L=A U0 ydueig 135 MO}{JaA0 U0 youeig Y 4 69 13dgs QY ajeipaww] | V- J-WN-V 01 AJowaw ppy
| SAd a0v
AGIOZIN saiAg | 9pog w104 IPOW uopdiaasaq OAGIDIN |saiAg | ape] w4 oW uopdpiassg
fay smeis .d..| ON 40 abenfuey fujssaippy uojiesadQ sweN | -Boy smmg .d. | ON Fi] efienbuey Ouissaippy uoyjesedg weN
XK Alquassy ' ! Ajquassy

102

€ 3L X'18dQ HOY X'3Injosqy

[19 13dQ HOY anjosqy

I 9L X'JadQ Yoy | x'9beyg 0187
F4 99 Jado 4oy |, abeq 03z (J01|NWNJIE 10 Arowaw)
R TATA 1 v9 Vv HoH | 101e|nwnaay | (g 3inbiy aag) wbu 1q auo ajejoy
404

€ 3 X'JadQ 04 X'aInjosqy

£ 3 1adg 104 anjosqy

Z 9¢ X'13d0 104 | X'abed o1a7
2 [:74 13d0 104 abed 0197 (101e|nWnIde 10 Alowaw)
e AAN 1 v2 v 104 | J0ieinwnady | (g ainbiy 23g) 13| 11q 3uo 3jejoy
104
%IB1S Wolj
3oBIS Woi4 L 8z dd patjdw) td snjels 105s3201d [jnd
did
yoels woy
S AN 1 29 vid paydw| v jolejnwnade |ing
Vid
%28}s ue
llllll t 80 dHd paydwy $d snjejs 0s53204d ysng
dHd
¥Je)s uo
|||||| I\ o YHd paijdw bty Jojejnuwnoge ysnyg
VHd

e 13 A'(43d0) vHO A'(103xpu))

2 10 (x'12d0) vHO (x"10a.11pup)

€ 61 A'led0 wHO A'ainjosqy

€ ar X'18d0 w40 X'anjosqy

€ a0 13d0 vHO ANjosqy

I Gl X‘12d) w40 | Xx'abed oiaz
2 [*1] J3d0 WHO abeq 0Jaz Jojejnwnaoe
—=M 2| 60 1ado# VHO ajelpaww| V—WNAY yim Alowaw 4o
LY
|||||| N v3 dON pandwy | uonesadp oN ‘uonesado oN
dON

€ 35 X'13d0 4$1 X'3In|0sqy

€ k14 13d0 S Anjosqy

4 95 X'13dQ HS1 | X'afeq 0137
2 o 13d0 HS1 abey 0197 (101B)nWNIJR JO Alowaw)
S ATAL I vy v HS1 | 101jnwnaoy | () anbyy aag) G 8uo Jyb1s yiys
s

AOIJZN |sahg| spo) wied o vopdysosag
‘Ooy smers .d.. | ‘ON do afenbue) Oussa.ippy uogjesadg ey
XM Alquassy

€ 08 x'13d0 AQ1 | Xxanjosqy
€ v $d0 AGT anjosqy
4 ¥8 X'12dg AQ1 | X'8bed 0i87
2 v 1dg AQ abeq 0197 Klowaw yum
———N 4 ov sdos AT ajepauruy AW A Xapu1 peol
AQ
€ 38 A2do XO1 A'aInosqy
€ v IELH I (1)) ainjosqy
4 9 A'13dg Xa1 | Aefied 0137
2 9y J3dg X1 abey 0137 Alowaw yum
———— N Z v 1ado# XQ1 Aelpawwy XN X xapui peo
X0
4 §:] A't19d0) v@1 A'(1031puy)
Z v (x'13d0} va1 (X" 1311pup)
€ | 68 A1RdQ ¥Q1 | A9INIOSQY
€| a8 X'1edg v@1 X' aniosqy
€ | av 13dg VOl aNjosqy
2 | s8 x'1ed0 vQ1 | Xx'abed 0s07
4 (4] J2do val abeq 0137 Ajowaw yim
———pA z 6v 13do# V@1 ajelpawuw| V- N 10je|NWNIe Peo’
vai
HOd= (¢+3d)
19d=~ (1+9d) $S91pPE UINds Buiaes
|||||| £ [i"4 13dQ HSP anjosqy ‘§2+0d uoI}230| Mau 0} dwnp
usr
€ 29 (13dQ) dI 12811pu] | HOd = (2+0d)
111111 € o 1300 dWF anjosay | 19d= (1+3d) u011e30| M3y 0} dwnp
dWr
———= N 3 82 ANI pandwy A= L + A| 3u0 AQ A X3pul Juawaiou|
ANI
———=/N 3 83 XNI panduwy X § + X | 3u0 Ag X xapul Juawaiou|
XNI
€ | 34 X'1edQ ONi | X'@Injosqy
€ 33 1adQ NI ajnosqy
2 94 x'JadQ ONI | x'abed 0137 auo Aq
———A 2 93 13dQ ONI abeq 0137 N-1+*W Alowsw Juawsiou|
INI
4 \S A't13d0) 403 A'(10anpu))
2 1y (x'12dQ) 403 (X'19341puy)
: € 65 A'13dg W03 A‘9Injosqy
! € | @ X'1adg 403 | Xx'anjosay
' € ay Jad0 403 ain|osqy
; I ss x'1adg Y03 | Xx'ofied 0197 |
i 2 Gp 1300 HO3 abed 0137 | 10)R|NWNJJE UM
— 2 ({2 12d0# 403 jetpawuwi) v—NAY Alowaw _10-3AISNIOX],,
403
© AD1JZN |smAg| epod wio4 spoy | uojid)iasag
Boy smieiS 4. | ON do efienfiumy Suissesppy i uojjeiadg swey
X3H Aquassy

S3A0D NOILONYLSNI

103

X xaput 0}

1o1g|nwndde 0}

PN 3 86 VAL paydw) VA A Xapui i3jsuel]
VAL
1uod yoels
llll 1 vé SX1 pandwi S=X O} X X3P J3jsuel]
SX1
- 101B|NUIN3JE 0}
=N I v8 vxi pandu V=X X Xapui J3jsuel]
X1

AQ1IZN |sakg) 9po] pON vopd)3seg

‘Oey smielg 4. N 40 Bujssaippy uopesadg swey
X3H Alquassy

S3A00 NOILONYLSNI

RN, N ' ve XS1 pajduw| X=§ Jaju10d ¥OB}S Jajsues)
XS1
A Xapul 0}
N, i 8vY AVL pandwy A=Y 10}BjNWNDJR J3JSUBLY
AVi
X Xapti 0}
e AN ! vy XYL paiduw) Xy loje|Nwndde J3jsues)
XVl
£] 12d0 ALS ainjosay
4 v6 x'19d0 ALS | x'efed 0187
|||||| 2z 8 13dg ALS abeq 0197 W= A | Asowaw ui A x3pul 31015
AlLS
€| 8 13dQ X1S ajnjosqy
F4 9% A'13dQ X1S | A'ebed 0197
|||||| 2 o8 19do X1S abeq 0137 W~ X | Asowaw ul X xapul 301§
X1$
? 16 A'Ged) vIS | A'G0a11pUY
4 18 (x'10d0) VIS | (x10211pul)
€l 66 Adadg vis [A'ainiosay
€ 06 x'1adg vis | X'anjosay
€ ae 13dg V1S a|njosqy
b4 6 x'sadg y1S | X'abed 0137 Kiowaw uy
llllll FA o8 1240 ViS abeq 0197 W=V 101R(NWNJJE 3I0IS
V1S
smelis
- 8 8L 13 paiduwj I=-1 ajqesip ydniaiu 13§
138
—f——— 3 83 a3s panduwi a1 apow {ewdap 13s
038
———i 9 8t 73S payduj -1 Beyy A3 19S
338
I t4 A'(s9d0) 08S A’(102.41pul)
2 13 | (¢sedp) 0gs | (x1anpul)
€ 64 A'18d0 06S A'aIn|osqy
€| a4 x'iadg 08S | Xx'awiosay
¢ | a3 1d0 08S ainjosqy
4 S4 x1adg 08S | Xx'afed 0197
z 63 sadg 08S abed 0137 MO0JI0Q YUIM 101B|NWNIIE
S AN 3 63 1ado# 08S aepaww) | Y= 9-W-V¥ wolj Alowaw 13engng
288
|||||| 1 Siy paydwy {3d=— 1+3d '$d aunNoIqNs wouy uIMay
SiY
%IRIG Wol4 3 oy It] panduwt $0dtd 1dN113JUL WOJ} WINKY
114
AG19ZN |smAg| 9pod wio4 00N uoydjiateq
‘Soy sme1s .d..| ON 40 abenbue) Bujstaippy uonesedg weN
X3IH Ajquiassy

104

dON — 34
X '3njosqy — ONI — 34
X ‘@njosqy — 5gs — Q4

dON — 04
dON — 83
dON — v4
A ‘anjosqy — 0gs — 64
Q3s — 84
dON — /4

X ‘abed 0137 — ON| — 94
X ‘abed 0187 — 089S ~ ¢4

dON — vd4
dON — ¢4
dON — 24
A ‘d0a1pu)) — 08S — 4
038 — o4
dON — 43

QInosqy — ONI — 33
Nosqy — 0gs — a3
3MosqQy — XdJ — 03

dON — 83
dON — v3
|leipdww| — 0gs — 63
XNI — 83
dON ~— /3

abeg 0107 — ONI — 93
abed asez — ngg — [*E]
abed 0197 — xdD — p3
dON — £3

dON — g3

X W8npu) — 0gs — i3
AepawwW) — X4 — 03
dON — 4a

X ‘ainlosqy — 53Qg — 39
X 'anosgy — gwo — qq
dON— DQ

40N — 8Q

dON— va
A 'aIMosqy — 4W0 — 6Q
a10 —8a
dON — 20

X ‘abed 0187 — 030 — 9
X ‘abed 0197 — WO — sQ

dON — ¥a
dON — €@
dON —2a
A ‘(0a1IpUl) — dND — 1A
3Ng — 04
dON — 40

ainesqy — 93g — 30
aNosSQY — WO — Qo
aNosqy — AdD— 20

dON— 80
X3a—v0
NBIPAIWW] — WD — 6D
ANl — 80
dON — 10

abed o197 — 030 — 90
abed 0197 — gD — 5O
96Bd 0187 — AdD — $D
dON — €D

dON — 20

(X 1081puh) — gD — 1D
Qm_ﬁws_.t_ — AdD — 00
dON — 48

A '@Injosqy — xQ1 — 39
X ‘anjosay — vg1— ag
X '8n10sqQy — AQ1— 29

dON — 88
XSL— v8
A ‘anosay — yQ1 — 689
A0 — 88
dON — /8

A '8bed 0137 — xq7 — 9g
X ‘abed 0197 — vQ1 ~ s8
X ‘9bed 0137 — AQ7 — vg

dON — €8
dON — 28
A '193J1puy) — val —i8
§08 — 08
dON — 4v

8Injosqy — xQ1 — 3v
anjosqy — Qv
an|osqy — AQ7— OV

dON — gv
XVi— vy
sepaww) — yql — 6v
AVL —gv
dON — v

abeqg 0187 — xQ1 — 9v
abed 0187 — vay — v
abeq 0187 — AQ — pv
dON — gV

fepaww) — xg1 — gy
X 1031pU)) — va — Ly
deIpaWwwl — AQ7 — oV

dON — 46
dON — 36
X 'ayosay — vis — ge
dON — 06
dON — 86
SX1 — V6
A @INOSqQy — vIS — 66
VAL — 86
dON — L6

A ‘9bed 0187 — x1S — 96
X ‘9bed 01867 — y15 — gp
X ‘abeq 0187 — ALS — v6

dON — €6
dON — 26
A‘@oaspupy — v1S — 1§
208 — 06
dON — 48

aANnjosqy — x1S — 38
aNosay — vis — ag

S3Ad0D NOILYHIdO X3H

ANosqY — ALS — 08

dON — g8
¥XL — V8
dON — 68
A3Q — 88
dON — 48

abey 0187 — XIS — 98
abeq 0197 — V1S — g8
abed 0197 — ALS— 8

dON — €8
dON — 28
(X "1aIpuUy) — v1IS — 18
dON — 08
dON — 3¢

dON X '9injosay — 4oy — 32
dON X '8injosqy — OQv — Qz

dON — 0L

dON — 9.

dON — VL

A '8INjosqy — OQV — 6L
138 — 8L

dON — 42

X ‘abed 0187 — YOH — 9¢
X ‘abed 0187 — OQv — S/

dON — ¥
dON — €2
dON — 2.
A ‘G93Jpup — 0QVY — 1L
SA8 — 0L
dON — 49

eIn|osqy — HOY — 39
amosqy — Oav — Q9
19941pU) — GNF — D9

dON — 89

JO1BINWNIdY — HOY — v9
alelpaww — OQv — 69
vid — 89

dON — /9

abeg 0197 — HOY — 99
abed 0197 — OQV — 59

dON — #9
dON — €9
dON — 29
(X '122341puh — 0QY - 19
Sid — 09
dON — 4§

X '3In0sqy — ¥s1 — 3§

X ‘einjosqy — O3 — as

dON — 0§

dON — 8%

dON — v§

A ‘dInjosqy — HO3 — 69
N0 —8g

dON — LS

X ‘abed 0187 — WS — 95
X ‘abed 0187 — HO3 — §§

dON — ¥§
dON — €5
dON — 2§
A ‘(08puUl) HOZ — LS
OA8 — 0§
dON — 4t

anjosay — ¥Ysy — 3Ip
aIniosqy — HO3 — ay
|Njosay — dWr — O
dON — 8¢

J0)e|INWNIoY — HS — Vv
sjelpaww] — YOI — 6v
VHd — 8¢

dON — b

abed 0187 — YsS1 — 9¥
abed 0J07 — HO3 — Gp

dON — ¥

dON — €v

dON — 2v

(X 1981pu) — HOF — ip
_ w4 —oy

dON — 3¢

X ‘2Injosqy — 104 — 3¢
X '9Iniosqy — ANV — ae

dON — O¢
dON — 8¢
dON — ve
A ‘aNjosqy — ANV — 66
038 — 8¢
dON — (&

X 'abeq 0182 — 1OH — 9¢
X ‘ebed 0197 — ONV — GE

dON — pg
dON — €€
dON —2¢
A '3%aspul — GNY — i€
INg — 0
dON — 32

alnjosay — 104 — 32
eInjosqy — ANV — Q2
eInjosqy — Lig — 02
dON — 82

JORINWNIJY — 10Y — Ye
8)BIpaWW| — ANV — 62
dld — 82

dON — 12

abeq o187 — 104 — 92
ebed 0102 — ONV — G2
ebeg 0187 — 119 — v2

dON — €2
dON —22
(X 'Wespu) — NV — 12
Hsr — oe
dON — 41

X ‘@injosqy — 1Sy — 31
X ‘'8Iniosqy — vHO — at

dON — 01
dON — 81
dON — Vi
A ‘@Injosqy — vHO — 61
0710 — 8t
dON — 1

X ‘ebvd 0107 — ISV — 91
X ‘eBed 0107 — vHO — g1

dON — #1L
dON — €1
dON — 21t
A ‘(30811pU)) — YHO ~— LL
Id8 — 0L
dON — 40

anosqy — 1Sy — 30
aniosqy — vyHO — Q0
dON — 00

dON — 80

10)8|INWNJDY — ISV — Y0
epauwiw| — yHO — 60
dHd — 80

dON — 20

abed 0J07 — (Y — 90
abed 0187 — wHO — S0

dON — 0
dON — €0
dON — 20
(X ‘Ianpul) — yHO — 10
48 — 00

105

o M~

APPLE 1| HARDWARE

Getting Started with Your APPLE |l Board
APPLE |l Switching Power Supply
Interfacing with the Home TV

Simple Serial Output

Interfacing the APPLE —
Signals, Loading, Pin Connections

Memory —
Options, Expansion, Map, Address

System Timing
Schematics

106

GETTING STARTED WITH YOUR APPLE II BOARD

INTRODUCTION

\

ITEMS YOU WILL NEED:

Your APPLE II board comes completely assembled and thoroughly tested.
You should have received the following:

a. 1 ea. APPLE II P.C. Board complete with
specified RAM memory.

b. 1 ea. d.c. power connector with cable.

c. 1 ea. 2" speaker with cable.

d. 1 ea. Preliminary Manual

e. lea. Demonstration cassette tapes. (For 4K: 1 cassette (2 programs):
16K or greater: 3 cassettes.

f. 2 ea. 16 pin headers plugged into locations A7
and J14.

In addition you will need:
g. A color TV set (or B & W) equipped with a direct
video input connector for best performance or a com- tm
mercially available RF modulator such as a "Pixi-verter"™
Higher channel (7-13) modulators generally provide
?ettir system performance than Tower channel modulators
2-6).

h. The following power supplies (NOTE: current ratings
do not include any capacity for peripheral boards.):

1. +12 Volts with the following current capacity:
a. For 4K or 16K systems - 350mA.
b. For 8K, 2@K or 32K - 550mA.
c. For 12K, 24K, 36K or 48K - 850mA.

2. +5 Volts at 1.6 amps

3. -5 Volts at 1gmA.

4. OPTIONAL: If -12 Volts is required by your keyboard.
(If using an APPLE II supplied keyboard, you will
need -12V at 50mA.)

107

An audio cassette recorder such as a Panasonic model
RN-309 DS which is used to load and save programs.

An ASCII encoded keyboard equipped with a "reset"
switch.

Cable for the following:

1. Keyboard to APPLE IT P.C.B.

2. Video out 75 ohm cable to TV or modulator
3. Cassette to APPLE II P.C.B. (1 or 2)

Ontionally you may desire:

1.

m

Game paddles or pots with cables to APPLE I1 Game 1/0
connector. (Several demo programs use PDL(0) and
"Pong" also uses PDL(1).

Case to hold all the above

Final Assembly Steps

1.

Using detailed information on pin functions in hardware
section of manual, connect power supplies to d.c. cable
assembly. Use both ground wires to miminize resistance.
With cable assembly disconnected from APPLE II mother
board, turn on power supplies and verify voltages on
connector pins. Improper supply connections such as re-
verse polarity can severely damage your APPLE II.

Connect keyboard to APPLE II by unplugging leader in
location A7 and wiring keyboard cable to it, then plug
back into APPLE II P.C.B.

Plug in speaker cable.

Optionally connect one or two game paddles using leader
supplied in socket located at J14.

Connect video cable.

Connect cable from cassette monitor output to APPLE II
cassette input.

Check to see that APPLE II board is not contacting any
conducting surface.

With power supplies turned off, plug in power connector
to mother board then recheck all cableing.

108

POYER UP

1. Turn power-on. If power supplies overload, immediately turn off
and recheck power cable wiring. Verify operating supply voltages
are within +3% of nominal value.

2. You should now have random video display. If not check video
level pot on mother board, full clockwise is maximum video out-
put. Also check video cables for opens and shorts. Check
modulator if you are usina one.

3. Press reset button. Speaker should beep and a "*" prompt
character with a blinking cursor should appear in lower
left on screen.

4. Press "esc" button, release and type a "@" (shift-P) to
clear screen.. You may now try "Monitor" commands if you
wish. See details in "Monitor" software section.

RUNNING BASIC

1. Turn power on; press reset button; type "control B" and press
return button. A ">" prompt character should appear on screen
indicating that you are now in BASIC.

2. Load one of the supplied demonstration cassettes into recorder.
Set recorder level to approximately 5 and start recorder. Type
"LOAD" and return. First beep indicates that APPLE I1 has found
beginning of program; second indicates end of program followed
by “>" character on screen. If error occurs on loading, try a
different demo tape or try changing cassette volume level.

3. Type RUN and carriage return to execute demonstraticr program.

Listings of these are included in the last sectior: of this
manual.

109

THE APPLE II SWITCHING POWER SUPPLY

Switching power supplies generally have both advantages and peculiarities
not generally found in conventional power supplies. The Apple II user
is urged to review this section.

Your Apple II is equipped with an AC line
voltage filter and a three wire AC line cord.
It is important to make sure that the third
wire is returned to earth ground. Use a con-
tinuity checker or ohmmeter to ensure that
the third wire is actually returned to earth.
Continuity should be checked for between the
power supply case and an available water pipe
for example. The line filter, which is of a
type approved by domestic (U.L. CSA) and
international (VDE) agencies must be returned
to earth to function properly and to avoid
potential shock hazards.

The APPLE II power supply is of the "flyback" switching type. 1In
this system, the AC Tine is rectified directly, "chopped up" by a high
frequency oscillator and coupled through a small transformer to the
diodes, filters, etc., and results in four low voltage DC supplies to
run APPLE II. The transformer isolates the DC supplies from the line
and is provided with several shields to prevent "hash" from being
coupled into the Togic or peripherals. In the "flyback" system, the
energy transferred through from the AC line side to DC supply side is
stored in the transformer's inductance on one-half of the operating
cycle, then transferred to the output filter capacitors on the second
half of the operating cycle. Similar systems are used in TV sets to
provide horizontal deflection and the high voltages to run the CRT.

Regulation of the DC voltages is accomplished by controlling the
frequency at which the converter operates; the greater the output power
needed, the Tower the frequency of the converter. If the converter is
overloaded, the operating frequency will drop into the audible range
with squeels and squawks warning the user that something is wrong.

A11 DC outputs are regulated at the same time and one of the four
outputs (the +5 volt supply) is compared to a reference voltage with
the difference error fed to a feedback Toop to assist the oscillator
in running at the needed frequency. Since all DC outputs are regulated
together, their voltages will reflect to some extent unequal loadings.

110

For example; if the +5 supply is loaded very heavily, then all
other supply voltages will increase in voltage slightly; conversely,
very light loading on the +5 supply and heavy loading on the +12
supply will cause both it and the others to sag lightly. If precision
reference voltages are needed for peripheral applications, they should
be provided for in the peripheral design.

In general, the APPLE II design is conservative with respect to
component ratings and operating termperatures. An over-voltage crowbar
shutdown system and an auxilliary control feedback 1oop are provided
to ensure that even very unlikely failure modes will not cause damage to
the APPLE II computer system. The over-voltage protection references to
the DC output voltages only. The AC line voltage input must be within
the specified Timits, i.e., 107V to 132V.

Under no circumstances, should more
than 140 VAC be applied to the input
of the power supply. Permanent damage
will result.

Since the output voltages are controlled by changing the operating
frequency of the converter, and since that frequency has an upper limit
determined by the switching speed of power transistors, there then must
be a minimum load on the supply; the Apple II board with minimum memory
(4K) is well above that minimum load. However, with the board discon-
nected, there is no load on the supply, and the internal over-voltage
protection circuitry causes the supply to turn off. A 9 watt load
distributed roughly 50-50 between the +5 and +12 supply is the nominal
minimum load.

Nominal load current ratios are: The +12V supply load is % that of the +5V.
The - 5V supply load is 1/10 that of the +5V.
The -12V supply load is 1/19 that of the +5V.

The supply voltages are +5.9 + .15 volts, +11.8 + 0.5 volts, -12.p + 1V,
-5.2 + 0.5 volts. The tolerances are greatly reduced when the loads are
close to nominal.

The Apple II power supply will power the Apple II board and all present
and forthcoming plug-in cards, we recommend the use of low power TTL, CMOS,
etc. so that the total power drawn is within the thermal limits of the entire
system. In particular, the user should keep the total power drawn by any
one card to less than 1.5 watts, and the total current drawn by all the cards
together within the following Timits:

+ 12V - use no more than 250 mA
+ 5V - use no more than 500 mA
- 5V - use no more than 200 mA
- 12V - use no more than 209 mA

The power supply is allowed to run indefinetly under short circuit
or open circuit conditions.

CAUTION: There are dangerous high
voltages inside the power supply
case. Much of the internal circuitry
is NOT isolated from the power line,
and special equipment is needed for
service. NO REPAIR BY THE USER IS
ALLOWED.

111

NOTES ON INTERFACING WITH THE HOME TV

Accessories are available to aid the user in connecting the Apple II
system to a home color TV with a minimum of trouble. These units are called
"RF Modulators" and they generate a radio frequency signal corresponding to
the carrier of one or two of the lower VHF television bands; 61.25 Miz
(channel 3) or 67.25 MHz (channel 4). This RF signal is then modulated with
the composite video signal generated by the Apple II.

Users report success with the following RF modulators:

the "PixieVerter" (a kit)
ATV Research

13th and Broadway

Dakota City, Nebraska 68731

the "TV-1" (a kit)
UHF Associates

6037 Haviland Ave.
Whittier, CA 90601

the "Sup-r-Mod" by (assembled & tested)
M&R Enterprises

P.0. Box 1011

Sunnyvale, CA 94088

the RF Modulator (a P.C. board)
Electronics Systems

P.0. Box 212°

Burlingame, CA 94010

Most of the above are available through local computer stores.

The Apple II owner who wishes to use one of these RF Modulators should
read the following notes carefully.

A11 these modulators have a free running transistor oscillator. The
M&R Enterprises unit is pre-tuned to Channel 4. The PixieVerter and the
TV-1 have tuning by means of a jumper on the P.C. board and a small trimmer
capacitor. A1l these units have a residual FM which may cause trouble if
the TV set in use has a IF pass band with excessive ripple. The unit from
M&R has the least residual FM.

A1l the units except the M&R unit are kits to be built and tuned by
the ~ustomer. A1l the kits are incomplete to some extent. The unit from
Electronics Systems is just a printed circuit board with assembly instructions.
The kits from UHF Associates and ATV do not have an RF cable or a shielded
box or a balun transformer, or an antenna switch. The M&R unit is complete.

Some cautions are in order. The Apple II, by virtue of its color graphics
capability, operates the TV set in a linear mode rather than the 108% contrast
mode satisfactory for displaying text. For this reason, radio frequency inter-
ference (RFI) generated by a computer (or peripherals) will beat with the

112

carrier of the RF modulator to produce faint spurious background patterns
(called "worms") This RFI "trash" must be of quite a Tow level if worms

are to be prevented. In fact, these spurious beats must be 4@ to 5@db
below the signal level to reduce worms to an acceptable level. When it is
remembered that only 2 to 6 mV (across 309Q) is presented to the VHF input
of the TV set, then stray RFI getting into the TV must be less than 50uV

to obtain a clean picture. Therefore we recommend that a good, co-ax

cable be used to carry the signal from any modulator to the TV set, such

as RG/59u (with copper shield), Belden #8241 or an equivalent miniature

type such as Belden #8218. We also recommend that the RF modulator be
enclosed in a tight metal box (an unpainted die cast aluminum box such as
Pomona #2428). Even with these precautions, some trouble may be encountered
with worms, and can be greatly helped by threading the coax cable conn-
ecting the modulator to the TV set repeatedly through a Ferrite toroid core.
Apple Computer supplies these cores in a kit, along with a 4 circuit
connector/cable assembly to match the auxilliary video connector found on
the Apple II board. This kit has order number A2MP1PX. The M&R "Sup-r-Mod"
is supplied with a coax cable and toroids.

Any computer containing fast switching logic and high frequency clocks
will radiate some radio frequency energy. Apple II is equipped with a
good Tine filter and many other precautions have been taken to minimize
radiated energy. The user is urged not to connect "antennas" to this
computer; wires strung about carrying clocks and/data will act as antennas,
and subsequent radiated energy may prove to be a nuisance.

Another caution concerns possible long term effects on the TV picture
tube. Most home TV sets have "Brightness" and "Contrast" controls with a
very wide ranage of adjustment. When an un-changing picture is displayed
with high brightness for a long period ,a faint discoloration of the
TV CRT may occur as an inverse pattern observable with the TV set
turned off. This condition may be avoided by keeping the "Brightness"
turned down slightly and "Contrast" moderate.

113

A SIMPLE SERIAL OUTPUT

The Apple II is equipped with a 16 pin DIP socket most frequently
used to connect potentiometers, switches, etc. to the computer for
paddle control and other game applications. This socket, Tocated at
J-14, has outputs available as well. With an appropriate machine
language program, these output lines may be used to serialize data in
a format suitable for a teletype. A suitable interface circuit must
be built since the outputs are merely LSTTL and won't run a teletype
without help. Several interface circuits are discussed below and the
user may pick the one best suited to his needs.

The ASR - 33 Teletype

The ASR - 33 Teletype of recent vintage has a transistor circuit
to drive its solenoids. This circuit is quite easy to interface to,
since it is provided with its own power supply. (Figure la) It can
be set up for a 20mA current loop and interfaced as follows (whether
or not the teletype is strapped for full duplex or half duplex oper-
ation):

a) The yellow wire and purple wire should both go to
terminal 9 of Terminal Strip X. If the purple wire
is going to terminal 8, then remove it and relocate
it at terminal 9. This is necessary to change from
the 60mA current loop to the 20mA current loop.

b) Above Terminal Strip X is a connector socket identi-
fied as "2". Pin 8 is the input line + or high; Pin
7 is the input Tine - or low. This connector mates
with a Molex receptacle model 1375 #(33-09-2151 or
#03-09-2153. Recommended terminals are Molex #@2-09-
2136. An alternate connection method is via spade lugs
to Terminal Strip X, terminal 7 (the + input Tine) and
6 (the - input line).

c) The following circuit can be built on a 16 pin DIP
component carrier and then plugged into the Apple's
16 pin socket found at J-14: (The junction of the
3.3k resistor and the transistor base lead is float-
ing). Pins 16 and 9 are used as tie points as they
are unconnected on the Apple board. (Figure 1a).

114

The "RS - 232 Interface"

For this interface to be legitimate, it is necessary to twice invert
the signal appearing at J-14 pin 15 and have it swing more than 5 volts
both above and below ground. The following circuit does that but requires
that both +12 and -12 supplies be used. (Figure 2) Snipping off pins
on the DIP-component carrier will allow the spare terminals to be used for
tie points. The output ground connects to pin 7 of the DB-25 connector.
The signal output connects to pin 3 of the DB-25 connector. The "protective"
ground wire normally found on pin 1 of the DB-25 connector may be connected
to the Apple's base plate if desired. Placing a #4 lug under one of the
four power supply mounting screws is perhaps the simplest method. The +12
volt supply is easily found on the auxiliary Video connector (see Figure S-11
or Figure 7 of the manual). The -12 volt supply may be found at pin 33 of
the peripheral connectors (see Figure 4) or at the power supply connector
(see Figure 5 of the manual).

A Serial Out Machine Center Language Program

Once the appropriate circuit has been selected and constructed a machine
language program is needed to drive the circuit. Figure 3 Tists such a tele-
type output machine language routine. It can be used in conjunction with an
Integer BASIC program that doesn't require page $3@@ hex of memory. This
program resides in memory from $370 to $3E9. Columns three and four of the
1isting show the op-code used. To enter this program into the Apple II the
following procedure is followed:

Entering Machine Language Program

1. Power up Apple II

2. Depress and release the "RESET" key. An asterick
and flashing cursor should appear on the left hand
side of the screen below the random text matrix.

3. Now type in the data from columns one, two and three
for each 1ine from $37@ to @3E9. For example, type in
“370: A9 82" and then depress and release the "RETURN"
key. Then repeat this procedure for the data at $372
and on until you complete entering the program.

Executing this Program
1. From BASIC a CALL 88@ ($379) will start the execution of

this program. It will use the teletype or suitable 8§
column printer as the primary output device.

115

2. PR#P will inactivate the printer transfering control
' back to the Video monitor as the primary output device.

3. In Monitor mode $370G activates the printer and hitting
the "RESET" key exits the program.

Saving the Machine Language Program

After the machine language program has been entered and checked for
accuracy it should, for convenience, be saved on tape - that is unless
you prefer to enter it by keyboard every time you want to use it.

The way it is saved is as follows:

1. Insert a blank program cassette into the tape
recorder and rewind it.

2. Hit the "RESET" key. The system should move
into Monitor mode. An asterick "*" and flash-
ing cursor should appear on the Teft-hand side
of the screen.

3. Type in "370.P3E9W 370 .03EM".

4. Start the tape recorder in record mode and depress
the "RETURN" key.

5. When the program has been written to tape, the asterick
and flashing cursor will reappear.

The Program

After entering, checking and saving the program perform the following
procedure to get a feeling of how the program is used:
1. BC (control B) into BASIC

2. Turn the teletype (printer on)

3. Type in the following

10 CALL 88¢

15 PRINT "ABCD...XYZ@1123456789"
20 PR#(

25 END

4. Type in RUN and hit the "RETURN" key. The
text in line 15 should be printed on the
teletype and control is returned to the key-
board and Video monitor.

116

Line 1@ activates the teletype machine routine and all "PRINT" state-
ments following it will be printed to the teletype until a PR#) statement is
encountered. Then the text in line 15 will appear on the teletype's output.
Line 2@ deactivates the printer and the program ends on line 25.

Conclusion

With the circuits and machine Tanguage program described in this paper
the user may develop a relatively simple serial output interface to an ASR-33
or RS-232 compatible printers. This circuit can be activated through BASIC
or monitor modes. And is a valuable addition to any users program library.

117

EBC|
|
2N3906 (OR EQUIV) 1]
I dl]
1500 Ol il
M = Rl
OUTPUT TO TELETYPE NN D
- 0 0

FIGURE 1 ASR-33

+12 (JUMPERED TO +12 SUPPLY)

2N3906

470N

2N3904 OUTPUT (+)

OUTPUT ()

(PIN1I15)

J-14

J-14
~12 (JUMPERED TO —-i2 SUPPLY)

FIGURE 2 RS-232

118

3:42 P.M..,

1171871977

*x*WARNING ¢

0370:
0372:
0374:
0376:
0378
037A:
037C:
037E s
0381:
0382:
0383:
0384:
0387:
0389:
038A:
038C:
038D:
038F:
0392:
0394:
0397:
039A:
0393:
039C:
Q39Lk:
03A0:
03Al:

A9
B85
A9
85
A9
85
AS
8D
60
48
48
AD
Cc5
68
BO
48
A9
2C
FO
EE
20
68
48
50
49
0A
DO

g2
36
03
37
48
21
24
F8

Fg
24

03

AO
Co
D3
Fg
C!

E6
0D

10)))

07

07

03

07
03

TELETYPE DRIVER ROUTINES

119

1 TITLE °*TELETYPE

2 kkkok kK kkkkok kR kKRR Rk KKk

3 * *

4 * TTYDRIVJVZR: *

5 * TELETYPZ OQJTPUT *

6 * ROJTINE FOR 72 *

7 * COLUMN PRINT WITH *

g * 8ASIC LIST *

9 * *

10 * COPYRIGHT 1977 BY: *

11 * APPLE COMPUTER INC. *

12 * 11718777 *

13 * *

14 * R. WIGGINTON *

15 * S. WOZNIAK *

16 * *

17 sk 3k ok ok A o ok ok ok ok ok ok o ok 3k ok ok ok ok %k ok ok ok K

18 WNDWDTH EQU $21

19 CH EQU 324

20 CSWL EQU 836

21 YSAVE EQY 3778

22 COLCNT EQU 37F8

23 MARK EQU $CO058

24 SPACE EQJ $CO059

25 WAIT EQU 3FCAS8

26 ORG $370
OPERAND OVERFLOW IN LINZ 27

27 TTINIT: LbaA #TTOUT

28 STA CSWL

29 LDA #TTOUT/256

30 STA CSWL+!

31 LDA #72

32 STA WNDWDTH

33 LDA CH

34 STA COLCNT

35 RTS

36 TTOUT: PHA

37 PHA

38 TTOUT2: LDA COLCNT

39 cMp CH

40 PLA

41 BCS TESTCTRL

42 PHA

43 LDA #3A0

44 TESTCTRL: 3IT RTSI

45 BEQ PRNTIT

46 INC COLCNT

a7 PRNTIT: JSR DOCHAR

48 PLA

49 PHA

50 3CC TTOUTZ2

51 EOR #30D

52 ASL A

53 BNE FINISH

FIGURE 3a

rAGZ: |

DRIVER ROJTINES®

3FOR APPLE-11
s;CURSOR HORIZ.
sCHAR. 0YJT SWITCH

3COLUMN COUNT LOC.

3POINT TO TTY ROUTINES
sJHIGH BYTE

3SET WINDOW WIDTH

3TO NUMBER COLUMNS ONY
;WHERE WE AXE NOW.
3SAVE TVWICE

3ON STACK.

;CHECK FOR A TA3.

3RESTORE OQUTPUT CHAR.
s1F C SET, NO TA3

3PRINT A SPACE.

sTRICK TO DETERMINZ
3IF CONTROL CHAR.

s1F NOT, ADD ONE TO CB
3PRINT THE CHAR ON TTY
3RESTORE CHAR

sAND PUT BACK ON STACK
;DO MORE SPACZS FOR Ta
3CHECK FOR CAR RET.
3ELIM PARITY

51F NOT CR, DONE.

3:42 P.M.os

03A3:
03A5:
03A8:
03AB:
03AD:
03B0:
03B3:
0385
03B7:
0389
0383:
03BD:
0383F:
03C0:

03C1:
03C4:
03C5:
03C7:
03C8:
03C9:
03C3:
03CE:
03D0:
03D3:
03D5:
03D6¢
03D8:
03D9:
03D3:
Q03DC:
03DE:
03EOQ:
031
03E2:
03E3:
03ES:
03ES8:
03E9:

8D
A9
20
A9
20
ap
FO
ES
E9
90
69
85
68
60

8C
08
AQ
18
48
BO
AD
90
AD
A9
48
A9
4A
90
68
E9

DO F

68
6A
88
DO
AC
28
60

1171871977

F8 07
8A
cl1 03
58
A8 FC
F8 07
08
21
F7
o4
IF
24

78 07
08
05
59 CO
03
58 CO
D7
20

FD

£3
78 07

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73

74
75
76
77
78
79
80
g1
82
83
84
85
36
37
88
29
90
91
92

TELETYPE DRIVER ROUTINES

kkkkkxkkSUCCESSFUL ASSEZMBLY:

STA COLCNT
LDA #38A
JSR DOCHAR
LDA #5583
JSR WAIT
FINISH: LDA COLCNT
BEQ SETCH
SBC WNDWDTH
SBC #5F7
3CC RETURN
ADC #31F
SETCH: STA CH
RETURN: PLA
RTS1: RTS
* HERE IS THzZ TELETYPE PRINT
DOCHAR: STY YSAvz
PHP
LDY #303
CLC
TTOUT3: PHA
3CS MARXOUT
LbA SPAC=
3CC TTOUT4
MARKOUT: LDA MARK
TTOUTA4: LDA #3%D7
DLY1l: PHA
LDA #3320
DLY2: LSRR A
BCC DLY?2
PLA
S3C #3011
3NE DLY1
PLA
ROR A
DEY
BNE TTOUT3
LDY YSAvVzZ
PLP
RTS
ERRORS
FIGURE 3b
120

PAGZ: 2
sCLEAR COLUMN COUNT
3NOW DO LINE FEED

3200MSEC DEZLAY FOR LIB
5CHECK IF IN MARGIN
3FOR CR, RESET CH

31F SO0, CARR]Y S=zT.

3ADJYUST CH

3RETURN TO CALLER
A CHARACTER ROUTINZ:

SAVE STATUS,

1t 3ITS (1 START, 3 R
$3EGIN WITH SPACE (STR
3SAVE A REG AND S:IT FOR

.
2
(3
»

3SIND A SPACE

3 SEND A MARK
3DELAY 9.091 MSZC FOR
3110 BAUD

SNEXT BIT (STOP BITS R
LOOP 1l 3ITS.

JRESTORE Y-REG.
3JRESTORE STATUS

JRETIIRN

CROSS-REFERNCE: TELETYPE DRIVER ROUTINES

CH 0024 0033 0039 0065
COLCNT 07F8 0034 0038 0046 0054 0059
CSWL 0036 0028 0030
DLY1 03D5 0085
DLYZ2 03D8 0082
DOCHAR 03C1 0047 0056
FINISH 0380 0053
MARK cos58 0077
MARKOUT 03D0 0074
PRNTIT 0397 0045
RETURN 03BF 0063
RTS1 03CO 0044
SETCH 038D 0060
SPACE Co59 0075
TESTCTRL O038F 004l
TTINIT 0370
TTOUT 0382 0027 0029
TTOUT2 0384 0050
TTOUT3 03C8 0089
TTOUT4 03D3 0076
WAIT FCAS8 0058
WNDWDTH 0021 0032 0061
YSAVE 0778 0069 0090
ILE:

FIGURE 3c

121

INTERFACING THE APPLE

This section defines the connections by which external devices are
attached to the APPLE II board. Included are pin diagrams, signal
descriptions, loading constraints and other useful information.

TABLE OF CONTENTS

1. CONNECTOR LOCATION DIAGRAM

2. CASSETTE DATA JACKS (2 EACH)

3. GAME I/0 CONNECTOR

4. KEYBOARD CONNECTOR

5. PERIPHERAL CONNECTORS (8 EACH)
6. POWER CONNECTOR

7. SPEAKER CONNECTOR

8. VIDEO OUTPUT JACK

9. AUXILIARY VIDEO OUTPUT CONNECTOR

122

Figure 1A APPLE II Board-Complete View

ey

SN A AL I 20

i

T,

L 1

1100 5

lalg

i
\ Wi

i
I

Y
A

3

_-"ﬂ.‘v";“»ﬂ' oy

-~ !
o —
I hegmanmme

prevegedEl’y

T

|

o S

-
i
e e -
ot -
==
SR
-—e e -

1

N M

Figure 1B Connector Location Detail APPLE Il PC BOARD
TOP VIEW . CASSETTE DATA IN

CASSETTE DATA OUT
PERIPHERALS _
-

e N VIDEO OUTPUT
0 1 2 3 4 5 6 7
(o] (o] (e} (o) (o] O (o] (o] ’
K12 K13 1,
002%%%% AUXILIARY
[E==3<—— VIDEO OUTPUT
J14B CONNECTOR
v of
<
[}
[44]
g
Ny
M GAME I/0
m CONNECTOR
S .
(o] (o] (e}
S o o o o o —
. J2 m J5 J6 J8 J9 J1 J12 &
|
_ "
8 ;
0 SPEAKER
CONNECTOR
A7 B14A _
KEYBOARD 35
CONNECTOR o3
A w o
=2 O
. .huM-P
1 2 3 4 85 6 7 8 9 10 _1__12 13 14 =

Front Edge of PC Board
CONNECTOR LOCATIONS

124

CASSETTE JACKS

A convenient means for interfacing an inexpensive audio cassette
tape recorder to the APPLE II is provided by these two standard
(3.5mm) miniature phone jacks located at the back of the APPLE II
board.

CASSETTE DATA IN JACK: Designed for connection to the "EARPHONE"
or "MONITOR™ output found on most audio cassette tape recorders.
VinN=1Vpp (nominal), ZIN=12K Ohms. Located at K12 as illustrated in
Figure 1.

/

CASSETTE DATA OUT JACK: Designed for connection to the "MIC" or
"MICROPHONE" input found on most audio cassette tape recorders.
=25 mV into 10Q Ohms, Z.,~=10@ Ohms. Located at K13 as illustrated

)
igupigure 1. out

GAME I1/0 CONNECTOR

The Game 1/0 Connector provides a means for connecting paddle controls,
1ights and switches to the APPLE II for use in controlling video games,
etc. It is a 16 pin IC socket located at J14 and is illustrated in
Figure 1 and 2.

Figure 2 GAME 1I/0 CONNECTOR

TOP Vi :
(Front Eé%e J?NPC Board

+5V 1]°® 16 N.C.

SwWo 2 15 ANO

Swi1 3 14 AN1

Sw2 4 13 AN2

C040STB 5 72 AN3
PDLO 6 11 PDL3
PDL2 7 10 PDL1

GND 8 9 NC.

LOCATION J14

125

SIGNAL DESCRIPTIONS FOR GAME I/0

AN(Q-AN3: 8 addresses (C@P58-CQ5F) are assigned to selectively
"SET" or "CLEAR" these four "ANNUNCIATOR" outputs.
Envisioned to control indicator 1ights, each is a
74LSxx series TTL output and must be buffered if used

to drive lamps.

CP4Q STB: A utility strobe output. Will go low durirng 2, of a
read or write cycle to addresses CQ4Q-CQAF. This is

a 74LSxx series TTL output.

GND: ~ System circuit ground. 0 Volt line from power supply.

NC: No connection.

——

. . _ .able

PDLP-PDL3: Paddle control innuts. Requires a §-15PK ohm varia
g resistance and +5Y for each paddle. Internal 199 ohm
resistors are provided in series with external pot to
prevent excess current if pot goes comnletely to zero

ohms.

SWO-SW2: Switch inputs. Testable by reading from addresses
CP61-CP63 (or CP69-CP6B). These are uncommitted
74LSxx series inputs.

+5V: Positive 5-Volt supply. To avoid burning out the connector
pin, current drain MUST be less than 100mA.

KEYBOARD CONNECTOR

This connector provides the means for connecting as ASCII keyboard
to the APPLE II board. It is a 16 pin IC socket located at A7 and is
illustrated in Figures 1 and 3.

Figure 3 KEYBOARD CONNECTOR

TOP VIEW
(Front Edge of PC Board)
+5V 7 [® 16 N.C.
STROBE 2 15 —12v
RESET 3 14 N.C.
NC. 4 13 B2
B6 5 12 Bt
B5 6 11 B4
B7 7 10 B3
GND 8 9 NC
LOCATION A7

126

SIGNAL DESCRIPTION FOR KEYBOARD INTERFACE

B1-B7: 7 bit ASCII data from keyboard, positive logic (high level=
"1"), TTL Togic levels expected.

GND: System circuit ground. @ Volt line from power supply.
NC: No connection.
RESET: System reset input. Requires switch closure to ground.

STROBE: Strobe output from keyboard. The APPLE II recognizes the
positive going edge of the incoming strobe.

+5V: Positive 5-Volt supply. To avoid burning out the connector
pin, current drain MUST be less than 1p0mA.

-12V: Negative 12-Volt supply. Keyboard should draw less than
50mA.

PERIPHERAL CONNECTORS

The eight Peripheral Connectors mounted near the back edge of the
APPLE II board provide a convenient means of connecting expansion
hardware and peripheral devices to the APPLE II I/0 Bus. These are
Winchester #2HW25C@-111 (or equivalent) 59 pin card edge connectors
with pins on .19" centers. Location and pin outs are illustrated in
Figures 1 and 4.

SIGNAL DESCRIPTION FOR PERIPHERAL 1/0

AG-A15: 16 bit system address bus. Addresses are set up by the

6502 within 30@nS after the beginning of @,. These lines
will drive up to a total of 16 standard TTL loads.

PEVICE SELECT: Sixteen addresses are set aside for each peripheral
connector. A read or write to such an address will
send pin 41 on the selected connector low during QZ
(509nS). Each will drive 4 standard TTL loads.

Dg-D7: 8 bit system data bus. During a write cycle data is
set up by the 6592 less than 3pPnS after the beginning
of #,. During a read cycle the 6502 expects data to
be rgady no less than 19PnS before the end of §,.
These Tines will drive up to a total of 8 total™low
power schottky TTL Tloads.

127

DMA .

DMA IN:

DMA OUT:

[}
=
o

| 2

INT IN:

INT OUT:

1/0 SELECT:

1/0 STROBE:

Direct Memory Access control output. This Tine has a
3K Ohm puliup to +5V and should be driven with an
open collector output.

Direct Memory Access daisy chain input from higher
priority peripheral devices. Will present no more
than 4 standard TTL loads to the driving device.

Direct Memory Access daisy chain output to Tower
priority peripheral devices. This Tine will drive
4 standard TTL loads.
System circuit ground. @ Volt 1ine from power supply.
Inhibit Line. When a device pulls this line low, all
ROM's on board are disabled (Hex addressed DPPP through

FFFF). This line has a 3K Ohm pullup to +5V and
should be driven with an open collector output.

Interrupt daisy chain input from higher priority peri-
pheral devices. Will present no more than 4 standard
TTL loads to the driving device.

Interrupt daisy chain output to Tower priority peri-
pheral devices. This Tine will drive 4 standard TTL
loads.

256 addresses are set aside for each peripheral connector
(see address map in "MEMORY" section). A read or write
of such an address will send pin 1 on the selected
connector low during ﬂz (500nS). This line will drive

4 standard TTL loads.

Pin 20 on all peripheral connectors will go Tow during
g, of a read or write to any address C8@P-CFFF. This
1?ne will drive a total of 4 standard TTL loads.

Interrupt request line to the 65 2. This line has a
3K Ohm pullup to +5V and should be driven with an open
collector output. It is active Tow.

No connection.

Non Maskable Interrupt request Tine to the 6502. This
1ine has a 3K Ohm pullup to +5V and should be driven with
an open collector output. It is active low.

A TMHz (nonsymmetrical) general purpose timing signal. Will
drive up to a total of 16 standard TTL loads.

"Reqdy" line to the 65@2. This line should change only
during ﬂ], and when low will halt the microprocessor at

the next READ cycle. This line has a 3K Ohm pullup to

+5V and should be driven with an open collector output.

Reset Tine from "RESET" key on keyboard. Active low.

. Will
drive 2 MOS Tloads per Peripheral Connector.

128

|

USER 1:

READ/WRITE 1line from 6502. When high indicates that a read
cycle is in progress, and when low that a write cycle is

in progress. This line will drive up to a total of 16
standard TTL loads.

The function of this line will be described in a later
document.

Microprocessor phase @/ clock. Will drive up to a total of
16 standard TTL loads.

Phase 1 clock, complement of ﬂo. Will drive up to a total
of 16 standard TTL Toads.

Seven MHz high frequency clock. Will drive up to a total
of 16 standard TTL loads.

Positive 12-Volt supply.
Possitive 5-Volt supply
Negative 5-Volt supply.
Negative 12-Volt supply.

POWER CONNECTOR

The four voltages required by the APPLE II are supp!ied viq thjs
AMP #9-35Q28-1?6 pin connector. See location and pin out in Figures

1 and 5.

PIN DESCRIPTION

GND:

(2 pins) system circuit ground. @ Volt Tline from power
supply.

Positive 12-Volt line from power supply.
Positive 5-Voit line from power supply.
Negative 5-Volt line from power supply.

Negative 5-Volt line from power supply.

129

Figure 4

TOP VIEW

PINOUT (Back Edge of PC Board)

&1
USER 1

®0
DEVICE SELECT
D7

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

42
43
44
45
46
47
48
49
50

Na00000Annnnnnnannnnnn

é]ﬂﬂ

o]

ilig

UUiouuuooouooooooooouoy

“~Nohoo N

|

25
24
23

21
20
19
18
17
16
15
14
13
12
11

-~
Q)‘Oo

+5V
DMA

PERIPHERAL CONNECTORS
(EIGHT OF EACH)

out

INT OUT

DMA
RDY

I/0 STROBE

N.C.
R/wW
A15
A4
A13
A12
A1
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
AQ

1/Q SELECT

(Toward Front Edge of PC Board)
LOCATIONS J2 TO J12

Figure 5

PINOUT

(BLUE/WHITE WIRE) —12v

——/

(ORANGE WIRE) +5V

Ow Own

(BLACK WIRE) GND

)
©®© -

en Ox o

POWER CONNECTOR

TOP VIEW
(Toward Right Side of PC Board)

LOCATION K1

130

-5V (BLUE WIRE)
+12V (ORANGE/WHITE WIRE)

GND (BLACK WIRE)

SPEAKER CONNECTOR

This is a MOLEX KK 18P series connector with two .25" square pins on
.19" centers. See location and pin out in Figures 1 and 6.

SIGNAL DESCRIPTION FOR SPEAKER

+5V: System +5 Volts
SPKR: Output 1ine to speaker. Will deliver about .5 watt into
8 Ohms.
Figure 6
SPEAKER CONNECTOR
PINOUT
<
5 2 5
QL
s Ea
s
1o}
+ O
[la}
o
| S]
o by

Right Edge of PC Board

LOCATION B14A

VIDEO OUTPUT JACK

This standard RCA phono jack located at the back edge of the APPLE II
P.C. board will supply NTSC compatible, EIA standard, positive composite
video to an external video monitor.

A video level control near the connector allows the output level to be
adjusted from @ to 1 Volt (peak) into an external 75 OHM load.

Additional tint (hue) range is provided by an adjustable trimmer capacitor.

See locations illustrated in Figure 1.

131

AUXILIARY VIDEO OUTPUT CONNECTOR

This is a MOLEX KK 1P series connector with four .25" square pins
on .19" centers. It provides composite video and two power supply
voltages. Video out on this connector is not adjustable by the on
board 200 Ohm trim pot. See Figures 1 and 7.

SIGNAL DESCRIPTION

GND: System circuit ground. @ Volt line from power supply.

VIDEO: NTSC compatible positive composite VIDEO. DC coupled
emitter follower output (not short circuit protected).
SYNC TIP is P Volts, black level is about .75 Volts, and
white level is about 2.@ Volts into 479 Ohms. Output level
is non-adjustable.

+12V: +12 Volt line from power supply.

-5V: -5 Volt line from power supply.

Figure 7 AUXILIARY VIDEO OUTPUT CONNECTOR

PINOUT

+12V
-5V
VIDEO
GND

0Oy |g} |o} |0

Back Edge of PC Board

LL

Right Edge of PC Board

LOCATION J14B

132

INSTALLING YOUR OWN RAM

THE POSSIBILITIES

The APPLE II computer is designed to use dynamic RAM chips organized
as 4096 x 1 bit, or 16384 x 1 bit called "4K" and "16K" RAMs
respectively. These must be used in sets of 8 to match the system
data bus (which is 8 bits wide) and are organized into rows of 8.
Thus, each row may contain either 4096 (4K) or 16384 (16K) locations
of Random Access Memory depending upon whether 4K or 16K chips are
used. If all three rows on the APPLE II board are filled with 4K
RAM chips, then 12288 (12K) memory locations will be available for
storing programs or data, and if all three rows contain 16K RAM
chips then 49152 (commonly called 48K) locations of RAM memory will
exjst on board!

RESTRICTIONS

It is quite possible to have the three rows of RAM sockets filled with
any combination of 4K RAMs, 16K RAMs or empty as long as certain rules
are followed:

1. A1l sockets in a row must have the same type (4K or 16K)
RAMs.

2. There MUST be RAM assigned to the zero block of addresses.

ASSIGNING RAM

The APPLE II has 48K addresses available for assignment of RAM memory.
Since RAM can be installed in increments as small as 4K, a means of
selecting which address range each row of memory chips will respond
to has been provided by the inclusion of three MEMORY SELECT sockets

on board.

Figure 8

MEMORY SELECT SOCKETS

TOP VIEW

PINOUT
(0000-0FFF) 4K “0" BLOCK 1 [® 74 RAMROWC
(1000-1FFF) 4K “1” BLOCK 2 73 RAMROW D
(2000-2FFF) 4K “2” BLOCK 3 12 RAMROWE
(3000-3FFF) 4K “3” BLOCK 4 11 N.C.
(4000-4FFF) 4K “4” BLOCK 5 70 16K “0” BLOCK (0000-3FFF)
(5000-5FFF) 4K “5” BLOCK 6 9 16K “4" BLOCK (4000-7FFF)
(8000-SFFF) 4K “8” BLOCK 7 8 16K “8” BLOCK (8000-BFFF)

LOCATIONS D1, E1, F1

133

MEMORY

TABLE OF CONTENTS

1. INTRODUCTION

2. INSTALLING YOUR OWN RAM

3. MEMORY SELECT SOCKETS

4. MEMORY MAP BY 4K BLOCKS

5. DETAILED MAP OF ASSIGNED ADDRESSES

INTRODUCTION

APPLE II is supplied completely tested with the specified amount of
RAM memory and correct memory select jumpers. There are five different
sets of standard memory jumper blocks:

4K 4K 4K BASIC
4K 4K 4K HIRES
16K 4K 4K

16K 16K 4K

16K 16K 16K

TV W~
e s e+ s e

A set of three each of one of the above is supplied with the board.
Type 1 is supplied with 4K or 8K systems. Both type 1 and 2 are
supplied with 12K systems. Type 1 is a contiguous memory range for
maximum BASIC program size. Type 2 is non-contiguous and allows 8K
dedicated to HIRES screen memory with approximately 2K of user BASIC
space. Type 3 is supplied with 16K, 2pK and 24K systems. Type 4
with 30K and 36K systems and type 5 with 48K systems.

Additional memory may easily be added just by plugging into sockets
along with correct memory Jjumper blocks.

The 6502 microprocessor generates a 16 bit address, which allows

65536 (commonly called 65K) different memory Jocations to be specified.
For convenience we represent each 16 bit (binary) address as a 4-digit
hexadecimal number. llexadecimal notation (hex) is explained in the
Monitor section of this manual.

In the APPLE II, certain address ranges have been assigned to RAM
memory, ROM memory, the I/0 bus, and hardware functions. The memory
and address maps give the details.

134

MEMORY SELECT SOCKETS

The location and pin out for memory select sockets are illustrated
in Figures 1 and 8.

HOW TO USE

There are three MEMORY SELECT sockets, located at D1, E1 and F1l
respectively. RAM memory is assigned to various address ranges by
inserting jumper wires as described below. A1l three MEMORY SELECT
sockets MUST be jumpered identically. The easiest way to do this
is to use Apple supplied memory blocks.

Let us learmby example:

If you have plugged 16K RAMs into row "C" (the sockets located at
C3-C1P on the board), and you want them to occupy the first 16K of
addresses starting at @#p@9, jumper pin 14 to pin 10 on all three
MEMORY SELECT sockets (thereby assigning row "C" to the PPP@-3FFF
range of memory).

If in addition you have inserted 4K RAMs into rows "D" and "E", and

you want them each to occupy the first 4K addresses starting at 4090
and 5009 respectively, jumper pin 13 to pin 5 (thereby assigning row
"D" to the 4PPP-4FFF range of memory), and jumper pin 12 to pin 6
(thereby assigning row "E" to the 5@PP-5FFF range of memory). Remember
to jumper all three MEMORY SELECT sockets the same.

Now you have a large contiguous range of addresses filled with RAM
memory. This is the 24K addresses from Q@p@-5FFF.

By following the above examples you should be able to assign each
row of RAM to any address range allowed on the MEMORY SELECT sockets.
Remember that to do this properly you must know three things:

1. Which rows have RAM installed?

2. Which address ranges do you want them to
occupy?

3. Jumper all three MEMORY SELECT sockets the
same!

If you are not sure think carefully, essentially all the necessary
information is given above.

135

Memory Address Allocations in 4K Bytes
0000 text and color graphics 8000
display pages, 6502 stack,
pointers, etc.
1000 2000
2000 high res graphics display 4000
primary page
”
"
3000 “ BOOO
"
"
"
€000 addresses dedicated to
4000 high res. graphics display
gecondary page hlrdwuﬁo functions
"
"n
"
5000 " D000 ROM loﬁkot DO: spare
"
" RON socket D8: spare
"
"
8000 EO00 ROM lo&kot EQ: BASIC
ROM socket E8: BASIC
1"
7000 F000 ROM msocket FO: BASIC
utility
ROM socket F8: monitor
Memory Map Pages @ to BFF
HEX USED
ADDRESS(ES) | BY USED FOR COMMENTS
PAGE ZERO
0000-001F UTILITY register area for "*sweet 16"
16 bit firmware processor.
0020-004D MONITOR
O04E-004F MONITOR | holds a 16 bit number that
is randomized with each key
entry.
0050-0055 UTILITY integer multiply and divide
work space.
0055-00FF BASIC
OOFO- OOFF UTILITY floating point work space.
PAGE ONE
0100-01FF 6502 subroutine return stack.
PAGE_TWO
0200-02FF character imput buffer.
PAGE THREE
O3F8 MONITOR Yc (control Y) will cause
aCJSR to this location.
03FB NMI's are vectored to this
location.
O3FE-0O3FF IRQ's are vectored to the
address pointed to by these
locations.
0400-07FF DISPLAY text or color graphics
primary page.
0800-O0BFF DISPLAY | text or color graphics BASIC initializes

secondary page.

LOMEM to location
0800.

136

1/0 and ROM Address Detail

HEX

ADDRESS ASSIGNED FUNCTION COMMENTS

CO0X Keyboard input. Keyboard strobe appears in bit
7. ASCII data from keyboard
appears in the 7 lower bits.

C01X Clear keyboard strobe.

Cco2X Toggle cassette output.

C03X Toggle speaker output.

C04X "C040 STB" Output strobe to Game I/O
connector.

C050 Set graphics mode

C0o51 " text "

C052 Set bottom 4 lines graphics

CO53 1" AR} 1" rt text

C054 Display primary page

C055 " secondary page

C056 Set high res. graphics

C057 "' color "

C058 Clear "ANO" Annunciator 0 output to
Game I/0 connector.

C059 Set "

COb5A Clear "AN1" Annunciator 1 output to
Game I/0 connector.

C05B Set "

C05C Clear "AN2" Annunciator 2 output to
Game I/0 connector.

C0O5D Set "

COSE Clear "AN3" Annunciator 3 output to
Game I/0 connector.

COSF Set "

137

HEX

ADDRESS ASSIGNED FUNCTION COMMENTS

C060/8 Cassette input State of "Cassette Data In"
appears in bit 7.

input on

Cco61/9 "Swi State of Switch 1 A\ Game
1/0 connector appears in bit 7.

C062/A "Swa State of Switch 2 input on
Game I/0O connector appears
in bit 7.

C063/B "SW3" State of Switch 3 input on
Game I/0O connector appears
in bit 7.

coe4/C Paddle O timer output State of timer output for
Paddle O appears in bit 7.

C065/D " 1 " " State of timer output for
Paddle 1 appears in bit 7.

CO66/E " 2 " " State of timer output for
Paddle 2 appears in bit 7.

C067/F " 3 " " State of timer output for
Paddle 3 appears in bit 7.

COo7X "PDL STBY Triggers paddle timers
during ¢2.

C08X DEVICE SELECT O Pin 41 on the selected
Peripheral Connector goes

C0o9X " 1 low during ¢2.

COAX " 2

COBX " 3

CoCX " 4

CODX " 5

COEX " 6

COFX " 7

C10X " 8 Expansion connectors,

C11X " 9 "

Cl12X " A "

138

HEX

ADDRESS ASSIGNED FUNCTION COMMENTS
C13X DEVICE SELECT B "
C14X " C "
C15X " D "
CleX " E "
C17X " F "
C1XX I/0 SELECT 1 Pin 1 on the selected
Peripheral Connector goes
C2XX " 2 low during ¢2.
C3XX " 3 NOTES:
1. Peripheral Connector
C4XxX " 4 0 does not get this
signal.
CoXX "’ 5 2. T/O SELECT 1 uses the
e Same figresses s
C7XX " 7
C8XX " 8, I/0 STROBE | Expansion connectors.
C9xXX " 9, "
CAXX " A, "
CBXX " B, "
CCXX " C, "
CDXX " D, "
CEXX " E, "
CFXX " F, "
DOOO-D7FF | ROM socket DO Spare.
D800O-DFFF " " D8 Spare.
EOOO-E7FF " " EO BASIC.
E800-EFFF " " E8 BASIC.
FOOO-F7FF " " FO 1K of BASIC, 1K of utility.
F800-FFFF " " F8 Monitor,

139

SYSTEM TIMING

SIGNAL DESCRIPTIONS

14M: Master oscillator output, 14.318 MHz +/- 35 ppm. A1l other
timing signals are derived from this one.

M: Intermediate timing signal, 7.159 MHz.

COLOR REF: Color reference frequency used by video circuitry, 3.580 MHz.

Do Phase @ clock to microprocessor, 1.023 MHz nominal.

Py: Microprocessor phase 1 clock, complement of @, 1.023 iz
nominal.

P Same as P,. Included here because the 65p2 hardware and

programming manuals use the designation P, instead of fo.

Q3: A general purpose timing signal which occurs at the same
rate as the microprocessor clocks but is nonsymmetrical.

MICROPROCESSOR OPERATIONS

ADDRESS: The address from the microprocessor changes during 01,
and is stable about 300nS after the start of 0,.

DATA WRITE: During a write cycle, data from the microprocessor
appears on the data bus during @, and is stable about
3¢0nS after the start of Pa.

DATA READ: During a read cycle, the microprocessor will expect

data to appear on the data bus no less than 100nS prior
to the end of 0.

SYSTEM TIMING DIAGRAM

TIMING CIRCUITRY

BLOCK DIAGRAM TIMING RELATIONSHIPS
OILIA Mmmmumm
OSCILLATOR —Qam)

TIMING ""‘""<:::> _f—l_J_'l_J'1__f_1__f'1__f—]__f—1__F_l_J'_L_J"l_J'_L_J_W__T_l_J__L__
ORI | ey L L L L L LT

1 T | I

1 l I I

w2 I | e
140

REFERENCE SYNC — —1 vVIDEO
OSCILLATOR COUNTER N NC OUT BUS GENERATOR [GomPOSITE VIDEG OUT
AND
SYSTEM — — — —
TIMING HPE
FIG. S-3 FIG. S4 — # AUXILIARY VIDEO OUT
FIG. S-11
TIMING BUS — —~ TIMING BUS
A T ITTTIIL1
4 <~ DATABUS —
(T TTIT [
| 4 ADDRESS BUS —»
~
MPU g T T
Sﬁg [— :’_’ 51,
- — i ROM O s) +
. 1 memory 2 g g TO ALL SECTIONS | * 12
—] BAsIC a| |3l |o SV
Js 1 VerEm I 0 ey
-~ ADDRESS BUS — Sl |2
INDA[; g MONITOR E 5
? . FIG. S5
8
m
z }
5| ||
4K/ 16K 8 DECODED
° ———— RAM — PERIPHERAL
)5 SELECT PERIPHERAL CONNECTORS
@ ~ 170 M
-— 5] -
N = =
[FIG. 56) — —\
™
‘ RAM t FIG. S-9
| | row t
SELECT w } "
=l |18 ot
o] |Q [@
. S 8| | :
. < 2
DATA N MEMORY =S 2 o 3
— I — o} (& < 2 |
FIG. S-2 NS [z 8 &
—— I Q <
= ol 18] 12
@ FIG. S-8 2l 15
9 el I3 }
f S RAM 3
= ADDRESS ON-BOARD
a = 1 4R0Ess o| (4 — o 4 GAME 1O
@ = \ —
< 2 ” | 4 CASSETTE IN
3 w AODRESS f—o | 1
[a]
§ ; MUX — . » CAssIETlTE ouT
¢ —_—
] 7 4 KEYBOARD
\ — -— ADDRESS DECODE — 1
FIG. §-7 FIG. 510 § SPEAKER
\)i
K ~— DATA OUT J
_ ~— DMA BUS

FIGURE S-1 APPLE Il SYSTEM DIAGRAM

141

+5V

8T97 T
- (PINS 1 & 15 TRISTATE) 8
11412 9 Voo =14 ==
2 (ADO A0 0] RQ » 30
<:—\—/ H5 ﬁ:] RAO1
5 10
: @ ”4f A ol K 33K NMI D 29 gggmHERAL 1/10's
7 6
+ (AD2) = ' a2] RAD1 SEE FIG. -9
1 3K
s (AD3Y Hj: : ° 21 a3 AoY |2 22 (RDY) 21
RAO1
6 AD4 A4 ..
D ng , aEs Lo 3.3K @ 2 géF?M KEYBOARD AND
; 14 Yoy IPHERAL 1/O’s
7 CAD5) Hs}’* AS]—"‘N\r—" SEE FIG. 5-9 & S-11
17 4712 15 33 3_433K A
s (AD6 A6 00 49
D Hiﬁ; - H11 @
2
9 (AD7) = A7
SYSTEM 5 a4 17 32 3 A4
ADDRESS { 10 ADB » = A8 D1 vrs —BAT) 48
BUS
312 18 2
" :ADQ H3 ﬁ A mpu 3 a2
9 10 19 6502 pp |37 ! 47
12 {AD10) H“?L‘I A10 H10 @
1 12 20 14
13 {AD11) e A11
3)42 22 03 30 13 12
14 (AD12)- mﬁ A12 e COASD 4 | raigTaTE
) 14 SYSTEM
15 (AD13— H: E‘r =R DATA
29 6 7 BUS
16 {AD14)- H,: 14 241 ars D4 TP DA4) 45
13} 14 25 2
17 (AD15 e N A15
28] 7
D5 DA5 » 44
g - 5 @
+5V 2
2 27 9
FROM PERIPHERAL 1/O's c1i RAO1 D6 10 —(DAB) 43
SEE FIG 5-9 %2 3.3K H10
11
22 {DMA 1
37 26
0 (T 2 3 3 0 o7 {DA7) 42J
FROM REFERENCE R
OSCILLATOR AND TIMING S0 Vss Vss
SEE FIG. S-3 28 21 1 PINS 7 & 15 TRISTATE)
10 c14 8 =
i 9
N ('
= (D
37 -.:E’
AVAILABLE ON SYSTEM TIMING
38 50 PIN PERIPHERAL <
/0 CONNECTOR (LD194)
39 (USER 1)
20 {1/0 SEL NOT AVAILABLE ON G
50 PIN PERIPHERAL
18 y 1/0 CONNECTOR | (COLOR REF

FIGURE S-2 MPU AND SYSTEM BUS

142

434 HO102

se Cy——t——
9

ONIWIL W3LSAS ANV HOLVTIIOSO 3ON3H343H £-S IHNDIL

alTlm@m

AAA _.||I

0l

AS+

2D 8SevNe LD

AclL+

ot
O

98 L INL)

Z

1)
98S¥L 4 vg =

<

Gl

14

4

08 {0 »—
(WL D>

ZHA BLE VL

AS+

Il]

GND 10 90p

O34 do

. ZHN ¥1
O'N = = =
:ﬂf g8 M_n NH
20 OND aND v3
20 B 171 % 0s b
Yo} o /1) Qg P
d0 1SIvL
. I3 o1 3130 i
= 1
0o 2
1a
[7AR 72
10
t0o 19
0D il Y
10 20A
@ .2@
G 1408 AS+

el

2d
2

S61SY.
Omwn
10 \d

00 €d

o
€0 m&
€0 rls
O&@
1 4
s
Ml—

mwc

27
02sbL

4

(2L-€10) 3dH
¥-S 'Old
INNOD ONAS
Wou4

143

e CLOCK IN
SYSTEM (LDPS
TIME
FIG. $-3

SOFTS +5V
N
T1s SYNC OuT
V,
1 cer oo = (D12-14) HO
19} cer 13
7 D14 [o]] D14-13) H1
CLR 12
3 PO Q2 {D14-12) H2
2 . a3 P>——(014-11) H3
7405161
5 po 4L.S516
81p3 .
= 2la PE
TC GND
15_|3
SOFT5 +5V B
F _
Trs 10 l7
1{ Vcc CETCEP | 9
CLR Pe [
5 12
P2 D13 Q2 {D13-12) HRPE
3 po oo £ D13-14) H4
< Trasier },
P1 a H5
= as 2 D13-11) VA
e pa |
TC GND
15_|_8
+5V =
T1s 10 |7
14
3] pecc CET CEL | D12-14) VB
s P2 pt2 Qi 13 D12-13) VC
A P a2 2 D12-12) VO
SOFTS 4 74LS161 11
«—ctr a3 V1
—1"
L 9
2l PE b
TC GND
15_E
+~5V =
Trs 10 l7
3] Vcc CETCEP § 9
Po e fom———tp
1oy D11 1C %Dog—»—v
21 P2 qo p v2
SOFT5 4 74LS161 13
«—— CLR Qt D11-13) V3
_[___5_p3 az 2 D11-12) V4
bty as F—ne.
GND

L

144

FIGURE S-4 SYNC COUNTER

9

e
-

-
-~

n
-

©
~

N
-

@©
-

(=
-

AHOW3W WNOH S-S 3HNOH

¢id WOH4

.ﬂ _ .ﬂIA SLO313S dIHD
43 B4 Y4

v13Aa LNONId WOoH

aNo €S0 1S0
280 76
.0
o |=r—0LaY) & xee
9a 6v 73
——<Eav)
sa 8y = gAYV) 01 ASt
v [—<av) s !
va oy
ez Y) 6
gq WOH SY ||‘m sav) ¢
A9ES 5—<aY) o
aw —Gaw
oq
opn ¥ ——<0av) ¢
v&

AG+

/1)
80S1¥2

A

9

€Lav) s

{2Lav) »

«——11aV) €1

b) se
So *ro

m‘] € NN< N_< . 2 65 'OI4
GNo - €3 v 3 13 XN O/1 143d
0z p—>—(S1-214) ZIHOL
8€1SIVL rA¥|
(74 €z vZ 174 9z
€l ci L [1]3 6 V4
.. .
]
|
1zoe| 1z] oz} 1z|oe| izjoz| iz|oe| t2] oz m
]
oatlsaljoal|ea o4] | 84 |
m
. - - > 5 i A ICEEES
0 0 0 0 0 0 *—SN8 WILSAS
< ES 2 2 g g '
m
]
td| edf|ed] fod] |4 |¢ea m
]
H
AvHHY AHOW3IW WOY m
)
|| J

145

193713S WVH M9L/XY 9-S JHNOIA

9 mod Wy (113) ————— - 5]
AGt
oM f———¥1av) o

Hlon _ aol al———CEav) o
73S 30HN0S Wvd el s Vil 1AV 51
€

SO &>
J — _
SYD M9t J 7
8 aND e3
8]Nl 0S fp @
v ﬂ 1S Z < < 0b) op
6
— ez} < St
o onid |S — &2 4 S1dv
H3dnnr - o) egl «~—ziav) n
o b 19714 ’ E51STWL £ 213 40 47vH H3H10 HO4 £-S D14 33S »
s o3 | 3 MOY Wvd (21-1d o] 19 M5 = = =
SVO 4 0 MOH Wvd (€1-14 &l 4 ER N I m_| .&H
O MoY wWvd (p1-14 p - a1 aNo 3
AS+ i
:_.o.z - _ Z1°2 ¢ PO 9-€10) 18H
SO Mv/9v M9t m_, SH £528wL y
) aNo a3
- : T '3 o .24
v < oz PH m €i-21Q) OA
S
. 5 A 0 ” v ﬂ s S ——((5118) S3uH
onld |$ 8 r v eh
s o 3 modwvd (13 = : %4 ffe ol s
0 1Q vl
S2 | amod wvd (ei-13 5 13 | T 0 oop 2] ano 3 qol
<! aufg——=<Sav) «
tH
ﬂ g
g

8 GND 43 e3 74 (S IITI@ or
— e 5]
8 ‘ y ot 182S7WL
v o1 m 001
6
—1 -—Of a9 (74
. 9N1d S ct €t 2 vot
- . 0
Toanas o] w3dawnr 5 Fe s D
30HNOS V1Va O/ Gltheld S are 1% 80S L
QuYOR-NO T] 2P \E] e i
Si-28 99 0L Zalot o 1a =] .Im.O v E 5 ez
9-¢v evls 8
135 Avy 9 s zZt vl B 9 aop Y Iz 204

[ea]
4

ﬂ_ 1 9‘— c@
ON AS+ AS+

L —(sl-€1d4) Q

{MH) 8t

146

~

Z—(E137D) A2

F—ED) A5

o\ (&7 as

+5V
40 -—'——I
14 |2 Tve
" S0 St vcc
“D" SOURCES ARE HO (D14-14 I
FROM SYNC COUNT CIZNE) N
FIG. 54 2 (ADO >———2{ 13a E13
H1 (D14-13 12} 126 2a
13
6| = 7aLs1s3
10a
7 ia zb
i 10 10b
11
Ea Eb GND
+5V 1 15)8
T16 =
- Vee @ >
H3 (1411 21 a1 s2 p2 o (30 +?v
14 {2 16
H4 (D13-14 N EV4 s
SCREEN 14] as oEY LU H2 (Di4-12 | 1oa
ADDRESS) v3 o 7415283 + GAD2) 3} 1o
F:Sﬁ’?‘l’g 2 B2 <o 4 12 12b E12 za
COUNT | v4 5 (AD3 p— Lkl
FIG. 54 B 74LS
' 1 6 153
5C11 s 15 83 b 108
kHs [>0 12 A4 6 - 5‘118 2
SOFT 5 «—8] &+ cali—ne. v2 (D11-14 104 1ob
GND 11
f Ea Eb GND
= 1 15 |8
o G 3
14 12 16
4 S0 81 Vcge
+5V Vo (D12-12 12a
Tve s B2 E4q
FIG. sE151 . 10 224 13
Cc12
vA (D13-11 3 na 2a 14 6] 745153
FIG. S-4 74L8257
e gB i oz 12 ‘ a 20,
. S-4
T 5{ 0o 2 | 194 100
L2 NITY
PAGE 2 N502—2] 106 13 RID—> 12 o
FIG 810 741504 E___GND T 915 18
(1/6) 15 8

*SEE FIG. S-6 FOR OT!|

FIGURE S-7 RAM ADDRESS MUX

HER HALF OF C12

1

»

7

&) w0

——ETD |

il
]

TO

RAM
ADDRESS
LINES

FiG. S-8

DATA
IN

FROM
RAM
ADDRESS
MUX

FIG. §-7

FROM 4K/16K SELECT

FIG. S-6
——N
r Y
ROWC ROWC ROWD ROWD ROWE ROWE
CAS Cs/ms CAS CS/As CAS CS/r6
G G E E3 Gz G2
e 15 13 15 13 15 13
49 (BAQ 4 c3 b3 4 e
RAM RAM RAM 21 P
14 14 14 BS
5 15 13|) [15 131 , |15 13[a3 H2 w
48 {(DA1
C4 mam D4 pam E4 pam 13] 0a 2
14 14 14 Q4 DL1
|75 73‘ l75 73] 15 131 7405174
7 QA2 H cs 4 os A es ar
RAM RAM RAM 44 o0
14 14 14
7
- (55 ’ 15 val) 115 13 R 15 13 Q2
C8 pam] P8 ram E6 Ram 1P
14 14 14 CLOCK
115 13 15 13 {15 13 B
45 (DA4 2 c7 2 D7 2 E7
RAM RAM RAM 1] 5a
14 14 14 B8
10
g , 115 13 , l15 13 , 115 13 as
C8 Ram D8 pam E8 pam 3] o4 2
l 14 l l 14 I 14 Q4 DLS
s (5R5 ’ 15 13) 15 13) 15 13 7418174
C9 Ram D9 Ram E9 Ram o1 o
14 14 14
. 15 13)]15 13| , 115 13 a2 I T
@ QA7 C10 pam D10 Ram E10 pam 6]o g
L= 4 ";’””__ﬂ*‘ % cLock
9
RAM _
- oo TO ALL RAS
RAMS RAM PINOUT DETAIL
EzD——
A2 12
GED, - - _sveves ano P2
ED . o FROM E.}(S'lé%hé—z— ol &5 H5~ DECODED BY ROW
- A _
ED— . 2w 0o~ TOLATCHES
L EnD . —4laxs CS! |2 pecopepBY ROW
+12V — 5 4K/ 16K 12
9 ——— A5 A2
A =& e RAM i -
GND 16 . 10
- — A3 AQ
“5V e 8 S
18 m 13 RAM 3 +12V «—{ VoD Vee +5V
28 n T RAW
AAS 4
.——‘—-——

FIGURE S-8

1

48

4K TO 48K RAM MEMORY WITH DATA LATCH

LATCHED
RAM
DATA
ouTt

¢lH NOY4

3189VYN3 O/ >—

i

-

<

1918

(=]
-

a

i
:

o

N

e

~N
-

I
e

?

g

1N0O ASiva
LdNYY3INI

1NOASIVAVYND)~~

AS+ =

JID07 TOHLINOD ANV LNONId HOLO3INNOD O/1 TVIHIHdIHAd 6-S 3HNDIA

3

g
-

[X4

€z

14

X
-

y

o3

4}
A

98

X
=

Odd
g¥N3 A3a

ZHWNL

|

S
wo
v

or

6€

e L ZHL
<0 zHWe
o< NL) ZHNL
= ON
e
> A2t~

45

[

QD

(43

NI ASIVa
8z _LdNYY3ILNI

Ve NI ASIvad vnad

)
5z ONO

M3IA dOL

VL3A HOLO3INNOD 0/i

3SN O1 MOH NO 31ON ‘ddV 335

H3adnnr
IAVNOILJO
—Q O re3sn
e oLav
o oLavy
6Qav)
AG+ Qv
- 55 'Ol
= < S1-¢td) 300030 WoYH
8 9 £ z 1 mﬂw b nw WOH4
aNo €3 eV 2v v 23 13 01S 14
0z - -
8E1S 02 ZiH Oﬂv.| Gi-2tH) S-€14 01
379¥N3 O/ 20p
- ~ 9t
1z 9z sz %4 £z bz4 1z _
) 6 o1 T 2l €l w1 AG
[eiataiaintadl ti e ftientteied iindedeiedeieing Relebebeiedededed Sededebaledababet Eeb Bl bt bl B R ettt 1
NIVHO ASIVQ m
1dNHEAINE { L 1 ! ! 1 L _ :
m |
| ON | 8z 82 82 82 82 82
m £z €2 €C £z €z €2 €z
: 2'S 'o1d 33
“ y 0 s ’ g ¢ y SNY WILSAS
' on O/t O/t o/ Oorn (07]] orn
]
LON 22 /2 /2 12 12 22
s e ve ¥z e e e
! r48) Lir er 8r ar sr e
] _
NIVHD >m._<o IS i T2 it IS I v
<_§O
2 6 o1 L 21 e vl SLo
T | 2z 9z sz vz €z P74 1z 0z
_ < v,
g] INO 378YyN3 A3Q £l
8E1STHL tH 2
3 e
20A 1y eV £V €3
9t [z 3 m_
< VAe)J
AS + <9qav)
{(5av)
yav

149

sn8g
viva
WILSAS
JLVISIHL

0/ advOo8-NO 01-S 3HNOId

voig H T T [__] s
wovr 410 €1VSdN 2 o
UDIVIS 10 o Yo D o MH—|@
H3NV3IAS o 3 S
B — @
WHO 8-.%2 2 » ev F——EIav) s
s2H - wev agv [[T] eeiswz
wou\] " o b
A . — zd
o —ol
. = o o oz w <Ay e
St
. M_. m_ mw_.v 5 S-S 'Did Wv430 335
aNo a0 1D
001 ea
€4 qy [vLSWL . o
N0 Viva © e Wm £} ANV ER
3113SSVD N A 15 —
i T — v Qg o
W ol
mmxwuﬂ_%: NI viva aav (| 1 BEISTWL
o ayiassvo © t3d |] o |—<EaD
—Cf CiH
- - Hm oz - {sav) o
= £=3 Si
m._. w; M_n Sw 6-S 'Oid Wv13a 33
1
w0 @D | Wi o oAV
gt oo 8 Jfa € L 23 € {o®) or
2 LV 1 B e § (570) 6] 0 3 [)
sseswe 1° mEm rszsTve | Qv ¢ : aq” 2 J|am
o@Dl M 7% o _ a]? ol —<eavyse
eufs—(51a 20 2l : 59 02 €
v0 (Y@t Pz P =1 se oN o VIH M _. ~J .Nmn_w#&m Méu
& (Wa) oz) e €A N Xel-ivd #§ 3 : = 9z v éu
3 201 - va v 1NOINVD Slw st 9 4|/ : A Z 14 I
S_JH oNb— sifvi ei] et 4399141 1ad : ¢
[m_nw 6 - ms R
9-2v ONp— \ sz A f—> AG+
! w;_v 138 Wvd ' 19t 6] 8 41 = vl €1 ¢ m 04 Sh
S0 — 1 wmm%uqh. oor |MsImsoms ! 3 _
S o 7 AW cgg B8|s H rl= aNO 1
atl 9 % m Lo ey M ENV 21 ! w-Q 4 00A > AG+
or '8 1% €0l ea 20 F—> AS+ 2e00 T NV o 9z 9t
L52SWL 4 o 4 9 004 £t ! i jo— S 140S
9T NNOJ o sz St
2 GVA>——r] ez en f—(2a) 3 0= goy 21900, "NV I : o o~—<Eav) ¢
4 - ia aap b—s 2t = HINLL - opg0 T ony o} ¥Z £
vi £ Si avno 001 IAVO Gi [3 6S2SWL @ y
o QVO——1 #2 P f—(000) v o Tzl egg 2T e iad 145 913 300W SFHIH (ZrID—~] ez 8 |;—<av»
. : — oa W Nwmuh ey on fo £39s 013 z30vd Oz v~ e
o Q1 = u é T d ok oo vir ' 48 o [3q0n xiW (Grid<ofiz Y4
ans A o1 13538 ano{ T £ = T] 0104 N3O 03aIA XaL (eors < oz a |.|‘E (oav) ¢
S o §<m«‘@%_ : 7 - ot | oo Nl oL | 3Q0W 1xaL 5
ASt (3HOUVT = 8 t !
HOLD3NNOD H 43002340 SS3yaav
e G2 GHVOBAT Sk ! :

+5V

18 7418502
7 vy FROM) 74511
Qqam) cL2 SYSTEM LS
stsBrgm 36 (T) 8 e JIME B12
TIME 5 F6. 83 (Hz 2 coLon
FIG. $3 &> -y | 1B I) S BURST
124 A3 .
from | VA QIEIDar Voo o lf—He Hs (GT513) 74LS51
syNC ¢ vB (Biza)—H a2 PPy CR—E P Ci38) TOC12-14
COUNT | o 16 AS s 10 H4 4K/ 16K
FiG. 54 *3 o € Letes From | M8 @141D SELECT
r ‘17 7 11
DLo Ad 04 F SYNC < | g, 74LS51 FIG. -6
1 ;
o R L o)
19 GEN ' L]
. Gy e 1
20 2 11
(OL3) A7 A
FROM . o 22,82 Vi (BIET)2 N 73
LATCHED A8 1)] >H
RAM @ 221 Ag N V3
DATA CE GNO H B GND 745‘86 va (ored)
(14
FIG. 5-8 741508 1 I _ll‘ Lk \ 741508 74.832
- = (1/4)
/4y 1 [:32] B13
DL6 o]) HOR BLANKING
. @z g 4
74LS02
13
! -
>
=
o RS-1K
2 .
sV 1
12K 33M 0.1pF " g c3fc Su
Trs 5:50 | 47oF £ 27
FROM vC 5108 Vee = PC 2 =
oM -—GBB” A8
COUNT | HO 100
FIG. 54 : 10] e 74L5257
1{S
EGNDZA 2C 0A 1A 118 10D 2D 2B 6 |s
15 8 |4 9 2 |3 |6 {13 |7 12
FROM ADD es -?--,L L:l_ K 28 02 ol
DECODER F14 = 4 —
FROM AR g
SYSTEM Q o] _ 7418104
TIME {iD194) — L)
FIG. §-3
- cP 11{9 7T16 10 0 sbo Qt Q2
310 SO0SL S lu 15113 e
5 o1 Ba 11 1087 +sv Re 2.
L1 15 1 —a B sThE —T wr -5V -5V si2v
0274Ls194 s y vee [Re-20
Q2 Ds Wy
FROM GND ' A9 AUXILIARY
LATCHED r} G.L] P D3 R7-1.5K VIDEO
AAM cp l I lo 02 < JACK
DATA 3 51], 3] 5, 748151 L 4148
FIG. 5-8 . ost 71 P 4 PIN MOLEX
OLs o1 B9 15 , | 22-03-2041
k] Qo Hos 5 2 5
OLs s o274Ls194 11 ., w © o At | Aw composiTe
03 C GND 200 2
\. oL7 Vce GND = 74L874 POT 27 ouTt
6 18 9] 2 = T K14
= 3 c =
ey RCA TYPE
B11 PHONE JACK
FROM 813 hd
ADDRRESS | MODE :21 T o000 colz—4fos aske2lo0 oo Lf_\s [579) HIRES
DECODERF14 MiX vy TO H1, C12
FIG. 5-10 | MODE 740502 BS B8 B8 74,508 .
v2 @)= 6 74LS 74LS 74LS 0 4K/16K
FROM SYNC) 174 174 174 SELECT
COUNT Va4 crid o cu e FIG. -6
FIG. 54 e T T5 Ts
FROM SYSTEM TIME <RAS>
FIG. §-3
FIGURE S-11 VIDEO GENERATOR

151

.qpple computar Inc.

10260 BANDLEY DRIVE
CUPERTINO, CALIFORNIA 95014 U.S.A.
. TELEPHONE (408) 996-1010

