


APPLESOFT™ II 
REFERENCE MANUAL 

Extended Precision Floating Point 
BASIC Language 

August 1978 

Reorder Apple Part No. A2L0006X 
Copyright 1978 Apple Computer Inc. 

Copyright 1977 Microsoft Inc. 



APPLESOFTTM II 
Table of Contents 

I. INTRODUCTION . . . . . . . . . . . . . . . .. 1 III. REFERENCE MATERIAL (Continued) 
C. Logical and Relational 

II. GETTING STARTED . ...... . .. . .. . .. . 1 Operators . . . . ....... . . . .... .. . 28 

A. Direct Commands .. . .. . ....... .. 1 D. Rules for Evaluating 
B. Indirect Commands ... . .. . ...... 2 Expressions .. . ..... . .... . . .... 29 

C. Number Format ....... . .. . ...... 4 E. Statements . . . .. ..... . . ... . .... 29 

D. Color Graphics Example ......... 5 F. Intrinsic Functions ... . .... . .... 34 

E. Print Format . ...... . ........... . 6 G. Strings .... .. .. . .. .... . . . . .. . .. 35 

F. Variable Names ..... . .. . ........ 8 H. String Functions .... . . .. . .. . ... 36 

G. Assigning Variable Values . . . . . . .. 9 I. Special Characters . .. .. .. . . . .. . 37 

H. IF ... THEN ... . . . . . . . . . . . . . . . . . . . 9 J . Special Controls and Features .. . 38 

I. Another Color Example .. . . . .... 11 IV. APPENDICES ..... ..... .. .. ...... .. 40 
J. FOR ... NEXT . ..... .. . . ........ . 11 A. Getting APPLESOFT 
K. Matrices. . . . . . . . . . . . . . . . . . . . . .. 14 BASIC up ...... . .... .. .. ...... . 41 

L. GOSUB ... RETURN . .. .. .. .. .... 15 B. Program Editing .. ...... ...... . 42 

M. READ ... DATA .. . RESTORE ...... 16 C. Error Messages ... ........ . .. .. 47 

N. Real, Integer and String D. Space Hints .. .... .. ...... ...... 50 
Variables ...................... 17 E. Speeding Up Your Program .. . . . 52 

O. Strings .... . ... .. ... . .. ... . . ... 18 F. Derived Functions . . .. . ... . . ... . '53 
P. Color Graphics .. . . . . . . . . . . . . .. 23 G. Converting BASIC Programs not 

written for APPLESOFT .... .. . . . 54 
III. REFERENCE MATERIAL H. ASCII Character Codes . . ... ... . 57 

A. Commands .... . ... . ..... . ..... 27 I. Memory Map .. .. . .. .. . . .. ...... 58 
B. Arithmetic Operators ...... . .. . . 28 J. Literature References .... . ...... 59 

Stock #030-0013-02 



INTRODUCTION 

APPLESOFT is a powerful, floating pOint BASIC written expressly 
for the Apple II computer. 

This BASIC is intended for use in business, scientific and 
educationally oriented applications which require extensive manip-
ulation of decimal numbers. 

This manual provides the Apple II user with a complete des -
cription of all APPLESOFT commands with examples of how they are 
used. 

It is assumed that the user already has at least a minimal 
working knowledge of the BASIC language. 

GETTING STARTED 

This section is not intended to be a detailed course in BASIC 
programming. It will, however, serve as an excellent introduction 
for those of you unfamiliar with the language. 

The text here will introduce the primary concepts and uses of 
BASIC enough to get you started writing programs. For further 
reading suggestions, see Appendix.J. 

If your Apple II does not have Floating Point BASIC loaded and 
running, follow the procedures in Appendix A. I I 

We recommend that you try eacn example in this section as it is 
presented. This will enhance your "feel" for BASIC and how it is used. 

Once your TV has displayed a " ] " prompt character, you are 
ready to use APPLESOFT/BASIC. 

NOTE: All commands to APPLESOFT BASIC should end with 
a carriage return (depressing the "RETURN" key). The 
carriage return tells BASIC that you have finished typing 
the command. If you make a typing error, type a back 
arrow ( +). Repeated use of " + II will eliminate 
previous characters. Typing a "CTRL"-X will eliminate 
the entire line that you are typing. See Appendix B for 
more details on editing. 

Direct Commands 

Now, try typing in the following: 

PRINT 10-4 (end with carriage return) 

Apple II will immediately print: 

6 

1 



The print statement you typed in was executed as soon as you 
hit the carriage return key. BASIC evaluated the formula after 
the "PRINT" and then typed out its value, in this case 6. 

Now try typing in this: 

PRINT 1/2,3*10 (11*11 means multiply, 11/" means divide) 

BASIC will print: 
.5 30 

As you can see, BASIC can do division and 
well as subtraction. Note how a 11,11 (comma) was used ln the prlnt 
command to print two values instead of just one. The divides 
the 40 character line into 3 columns, each 16 characters wlde. The 
result is that a "," causes BASIC to skip to the next 16 column field 
on the terminal, where the value 30 was printed. 

Indirect Commands 

Commands such as the IIPRINr' statements you have just typed 
in are called Direct Commands. There is another type of command 
called an Indirect Command. Every Indirect command begins with 
a Line Number. A Line Number is an integer from 0 to 63999. 

Try typing in the following lines: 

10 PRINT 2+3 
20 PRINT 2-3 

A sequence of Indirect Commands is called a "Program". Instead 
of executing indirect statements immediately, APPLESOFT BASIC saves 
Indirect Commands in the Apple's memory. When you "type in 
BASIC will execute the lowest numbered indirect statement first, then 
thp. next highest, etc. for each statement typed in. 

Suppose we type in IIRUN II now (remember to depress IIRETURN" key 
at the end of each line you type): 

RUN 

Apple will now display on your TV: 
5 

-1 

In the example above, we typed in line 10 first and line 20 
second. However, it makes no difference in what order you type in 
indirect statements. BASIC always puts them into correct numerical 
order according to the Line Number. 

2 



- If we want a listing of the complete program currently in memory, 
we type in IILIST II . Type this in: . 

LIST 

BASIC will reply with 

10 PRINT 2+3 
20 PRINT 2-3 

Sometimes it is desirable to delete a line of a program altogether. 
This is accomplished by typing the Line Number of the line we wish to 
delete, followed only by a carriage return. 

Type in the following: 

10 
LIST 

Apple will reply with: 

20 PRINT 2-3 

We have now deleted line 10 from the program. There is no way 
to get it back. To insert a new line 10, just type in 10 followed by 
the statement we want BASIC to execute. 

Type in the following: 

10 PRINT 2*3 
LIST 

Apple will reply with 

10 PRINT 2*3 
20 PRINT 2-3 

There is an easier way to replace line 10 than deleting it and 
then inserting a new line. You can do this by just typing the new 
line 10 and hitting the carriage return, BASIC automatically throws 
away the old line 10 and replaces it with the new one. 

Type in the following: 

10 PRINT 3-3 
LIST 

Apple will reply with: 

10 PRINT 3-3 
20 PRINT 2-3 

3 



Number Format 

We will digress for a moment to explain the format of numbers in 
APPLESOFT BASIC. Numbers are stored internally to over nine digits of 
accuracy. When a number is printed, only nine digits are shown. Every 
number may also have an exponent (a power of ten scaling factor). 

The largest number that may be represented in APPLESOFT BASIC. 
is 1.9*1938 , while the smallest positive number is 1.0*10-39 . 

When a number is printed, the following rules are used to determine 
the exact format: 

I} If the number is negative, a minus sign (-) is 
printed. 

2} If the absolute value of the number is an integer 
in the range to 999999999, it is printed as an integer. 

3} If the absolute value of the number is greater than 
or equal to .1 and less than or equal to 999999999, it is 
printed in fixed point notation, with no exponent. 

4} If the number does not fall under categories 2 or 3, 
scientific notation is used. 

Scientific notation is formatted as follows: SX.XXXXXXXXESTT 
(each X being an integer 0 to 9) 

The leading "S" is the sign of the number, nothing 
for a positive number and a II - II for a negative one. 
One nonzero digit is printed before the decimal point. 
This is followed by the decimal point and then the other 
eight digits of the mantissa. An "E" is then printed 
(for exponent), followed by the sign (S) of the exponent; 
then the two digits (TT) of the exponent itself. Leading 
zeroes are never printed; i . e. the digit before the 
decimal is never zero. Also, trailing zeroes are never 
printed. If there is only one digit to print after all 
trailing zeroes are suppressed, no decimal point is 
printed. The exponent sign will be II + II for positive 
and II - II for negative. Two digits of the exponent are 
always printed; that is zeroes are not suppressed in 
the exponent field. The value of any number expressed 
thus is the number to the left of the IIEII times 19 raised 
to the power of the number to the right of the "E". 

4 



It is not recommended that lines be numbered consecutively. 
It may become necessary to insert a new line between two existing 
lines. An increment of between line numbers is generally sufficient. 

If you want to erase the complete program currently stored in 
memory, type in II NEW II. If you are finished running one program and 
are about to type in a new one, be sure to type in II NEW II first. This 
should be done in order to prevent a mixture of the old and new programs. 

Type in the following: 

NEW 

Apple will reply with: 

] 

Now type in: 

LIST 

APPLE will reply with: 

] 

Color Graphics Example 

Now type in: 

GR 
This will black out the top twenty lines of text on your TV screen 

and leave only four lines of text at the bottom. Your Apple is now in 
its IIColor Graphics ll mode. 

Now type in: 

COLOR = 13 

APPLESOFT wi 11 only respond with a II] II and a fl ashing cursor 
but internally you have selected a yellow color 

Now type in: 

PLOT 20, 20 
App 1 e will respond by plotting a small yell ow*square 'i n the 

center of the screen. 

Now type in: 

HLIN AT 

*If the square is not yellow, your color TV is not tuned properly: 
adjust the tint & color controls to achieve a clear lemon yellow. 

5 



\ 

Apple will draw a horizontal line from the left edge of the 
screen to one-quarter of a screen width of the right and one-quarter 
down from the top. 

Now type in: 

COLOR = 6 

To change to a new color and then type in: 

VLIN 10,39 AT 30 

More about Color Graphics later. To get back to all text mode, 
type in: 

TEXT 

The character display on the screen is Apple's way of showing color 
information as TEXT. 

Often it is desirable to include text along with answers that are 
printed out, in order to explain the meaning of the numbers. 

Type in the following: 

PRINT 1I0NE THIRD IS EQUAL TO", 1/3 

BASIC will reply with: 

ONE THIRD IS EQUAL TO .333333333 

Print Format 

As explained earlier, including a .. , II in a print statement 
causes it to space over to the next sixteen column field before the 
value following the II , II is printed. 

If we use a II ; II instead of a comma, the value next will be 
printed immediately following the previous value. Try it. 

Try the following examples: 

A) PRINT 1,2,3 
1 2 3 

B) PRINT 1;2;3 

123 

C) PRINT -1;2;-3 

-12-3 

6 



The following are examples of various numbers and the output format 
Apple will use to print them: 

NUMBER 

+1 
-1 
6523 

lx10 20 
-12.34567896x10 10 

1000000000 
999q99999 

OUTPUT FORMAT 

1 
-1 
6523 

-23.46 
1E+20 
-1.2345679E+11 

1E-i"9 
999999999 

A number input from the keyboard or a numeric constant used in a 
BASIC program may have as many digits as desired, up to the maximum 
length of"(40 characters). However, only the first 10 digits 
are significant, and the tenth digit is rounded up. 

PRINT 1.23456784912345678 

1.23456785 

The following is an example of a program that reads a value from 
the keyboard and uses that value to calculate and print a result: 

INPUT R 
20 PRINT 3.14159*R*R 
RUN 
? 10 
314.159 

Here's what's happening. When BASIC encounters the "INPUT" statement, 
it outputs a question mark (?) and then waits for you to type in a number. 
When you do (in the above example 10 was typed), execution continues with 
the next statement in the program after the variable (R) has been set 
(in this case to 10). In the above example, line 2q would now be executed. 
When the formula after the PRINT statement is evaluated, the value is 
substituted for the variable R each time R appears in the formula. Therefore, 
the formula becomes 3.14159*10*10, or 314.159. 

If you haven't already guessed, what the program above actually does 
is to calculate the area of a circle with the radius "RI!. 

If we wanted to calculate the area of various circles, we could keep 
re-running the program for each successive circle. But, there's an easier 

way to do it simply by adding another (line 30) to the program as follows: 

30 GOTO 10 
RUN 
? 
314.159 

7 



? 3 
28.27431 

? 4.7 
69.3977231 

? 

By putting a "GOTO" statement on the end of our program, we have 
caused it t o go back to line after it prints each answer for the 
successive circles. This could have gone on indefinitely, but we decided 
to stop after calculating the area for three circles. This was accom-
plished by typing a control C and a carriage return to the input statement 
(thus a blank 1 ine). 

Variable Names 

The letter "R" in the program we just ran was termed a "variable". 
A variable name can be any alphabetic character and may be followed by 
any alphanumeric character. Any alphanumeric characters after the first 
two are ignored unless they contain a reserve word from the list below. An 
alphanumeri c character is any letter (A-Z or any number (0-9). 

Below are some examples of legal and illegal variable names: 

LEGAL 

TP 
PSTG$ 
COUNT 
N1% 

ILLEGAL 

TO (variable names cannot be reserved 
words) 

RGOTO (variable names cannot contain 
reserved words) 

The words used as BASIC statements are "reserved" for their specific 
purpose. You cannot use these words as variable names or as part of any 
variable name. For instance, "FEND" would be illegal because "END" is a 
reserved word. 

The fo llowing is a list of the reserved words in APPLESOFT BASIC: 

ABS AND ASC ATN CALL CHR$ CLEAR COLOR= CONT COS DATA DEF 
DEL DIM DRAW END EXP FLASH FN FOR FRE GET GOSUB GOTO GR 
HCOLOR= HIMEM : HGR HGR2 HLIN HOME HPLOT HTAB IF IN # INPUT INT 
INVERSE- INII LEFT$ LEN LET LIST LOAD LOMEM : LOG MID$ NEW 
NEXT NORMAL NOT NOTRACE ON ONERR OR OUT POL PEEK PLOT 
POKE POP POS PRINT PR# READ RECALL REM RESTORE RESUME RETURN 
RIGHT$ RND ROT=RETURN RUN SAVE SCALE=SCRN( SGN SHLOAD SIN SPq 
SPEED SQR STEP STORE STOP STR$ TAB( TAN TEXT THEN TO TRACE 
VAL VLIN VTAB USR WAIT 

8 



Assigning Variable Values 

Besides having values assigned to variables with an input statement, 
you can also set the value of a variable with a LET or assignment state-
ment. 

Try the following examples: 

A=5 

PRINT A,A*2 
5 10 

LET Z=7 

PRINT Z, Z-A 
7 2 

As can be seen from the examples, the IILETII is optional in an assign-
ment statement. 

BASIC IIremembersll the values that have been assigned to variables 
using this type of statement. This IIrememberingll process uses space in 
the Apple II's memory to store the data. 

The values of variables are thrown away and the space in memory 
used to store them is released when one of four things occur: 

1) A new line is typed into the program or an old 
line is deleted 

2) A CLEAR command is typed in 

3) A RUN command is typed in 

4) NEW is typed in 

Another important fact is that if a variable is encountered in a 
formula before it is assigned a value, it is automatically assigned the 
value zero. Zero is then substituted as the value of the variable in 
the particular formula. Try the example below: 

PRINT Q,Q+2,Q*2 o 2 

Another statement is the REM statement. REM is short for remark. 
This statement is used to insert comments or notes into a program. 
When BASIC encounters a REM statement the rest of the line is ignored. 
This serves mainly as an aid for the programme'r himself, and serves 
no useful function as far as the operation of the program in solving a 
particular problem. 

IF ... THEN 
Suppose we wanted to write a program to check if a number is zero 

or not. With the statements we've gone over so far this could not be 
done. What is needed is a statement which can be used to conditionally 
branch to another statement. The II IF-THEW' statement does just that. 

9 



Try typing in the following program: (remember, type NEW first) 

INPUT B 
IF THEN 
PRINT "NON-ZERO" 
GOTO 
PRINT "ZERO" 
GOTO 

When this program is typed into Apple II and run, it will ask for 
a value for B. Type in any value you wish. The Apple will then come 
to the "IF" statement. Between the "IF" and the "THEN" portion of the 
statement there are two expressions separated by a relation. 

A relation is one of the following six symbols: 

RELATION MEANING 

EQUAL TO 
GREATER THAN 
LESS THAN 
NOT EQUAL TO 

= 
> 
< 
<> 
<= 
>= 

LESS THAN OR EQUAL TO 
GREATER THAN OR EQUAL TO 

The IF statement is either true or false, depending upon whether 
the two expressions satisfy the relation or not. For example, in the 
program we just did, if 0 was typed in for B the IF statement would be 
true because0=0. In this case, since the number after the THEN is 59, 
execution of the program would skip to line 50. "ZERO" 
would be printed and then the program would jump back to line (because 
of the GOTO statement in line 

Suppose a 1 was typed in for B. Since is false, the IF state-
ment would be false and the program would continue execution with the 
next line. Therefore, "NON-ZERO" would be printed and the GOTO in line 
4a would send the program back to line 19. 

Now try the following program for comparing two numbers (remember 
to type "NEW" first to delete your last program): 

INPUT A,B 
IF A<=B THEN 

30 PRINT "A IS LARGER" 
40 GOTO 
50 IF A<B THEN 
60 PRINT "THEY ARE THE SAME" 
70 GOTO 10 
80 PRINT "B IS LARGER" 
90 GOTO 1£) 

When this program is run, line will ask for two numbers to be entered 
the keyboard. At line 20. if A is greater than B, A<=B will be false. This 
cause the next statement to be executed, printing "A is LARGER" and then 

llne 40 sends the computer back to line 10 to begin again. 

10 



At line 2W, if A has the same value as B, is true so we go to 
line At line since A has the same value as B, A<B is false; 
therefore, we go to the following statement and print "THEY ARE THE SAME". 
Then line sends us back to the beginning again. 

At line if A is smaller than B, A<=B is true so we go to line 
At line A<B will be true so we then go to line "B IS LARGER" 

is then printed and again we go back to the beginning. 

Try running the last two programs several times. It may make it 
easier to if you try writing your own program at this time 
using the IF-THEN statement. Actually trying programs of your own is 
the quickest and easiest way to understand how BASIC works. Remember, 
to stop these programs just give a Contro1-C and a carriage return to the 
input statement. 

Another Color Example 

Letls try another program. The one below uses another form of 
"If. .. THEN"; i.e. "IF" statement 1 is true "THEN" let statement 2 be 
executed otherwise go the next line number. After you type in the 
program below, "LIST" it and make sure that you have typed it in correctly. 
Now "RUN" it. 

10 GR 
20 NX = 0:NY = 0:X = 0:Y = 5:XV = 2:YV = 1 
30 T9 = 39:T0 = 0:J = l:K = 250 
40 NX = X + XV:NY = Y +YV 
50 IF NX) = T9 THEN NX =T9 
60 IF NX< = T0 THEN NX =T0 
70 IF NY> = T9 THEN NY =T9 
80 IF NYC = T0 THEN NY =T0 
90 IF NX = T9 OR NX = T0 THEN XV = -XV 
100 IF NY = T9 OR NY = T0 THEN YV = -YV 
110 COLOR = 13: PLOT NX, NY 
120 COLOR = 0: PLOT X,Y 
130 X = NX:Y = NY 
140 I = I + J: I F I < K 40 
150 TEXT: PRINT "FINISHED" 

As you have seen, Apple can do more than just use numbers. Weill return 
to color graphics again after you have learned more about APPLESOFT BASIC. 

FOR ... NEXT 

One advantage of computers is their ability to perform repetitive 
tasks. Letls take a closer look and see how this works. -

Suppose we want a table of square roots from 1 to The BASIC 
function for square root is "SQR"; the form being SQR(X), X being the 
number you wish the square root calculated from. We could write the 
program as follows: 

PRINT 1,SQR(1) 
PRINT 2,SQR(2) 
PRINT 3,SQR(3) 

11 



PRINT 4,SQR(4) 
PRINT 5,SQR(5) 

69 PRINT 6,SQR(6) 
79 PRINT 7,SQR(7) 
89 PRINT 8,SQR(8) 
99 PRINT 9,SQR(9) 
199 PRINT 

This program will do the job; however, it is terribly inefficient. 
We can improve the program tremendously by using the IF statement just 
introduced as follows: 

1.0 N=l 
2.0 PRINT N,SQR(N) 
3.0 N=N+l 
4.0 IF N<=10 THEN 20 

When this program is run, its output will look exactly like that 
of the 1.0 statement program above it. Let's look at how it works. 

At line 1.0 we have a LET statement which sets the value of the 
variable N at 1. At line 2.0 we print N and the square root of N using 
its current value. It thus becomes 2.0 PRINT I,SQR(I), and the result 
of this calculation is printed out. 

At line 3.0 we use what will appear at first to be a rather unusual 
LET statement. Mathematically, the statement N=N+l is nonsense. However, 
the important thing to remember is that in a LET statement, the symbol 
II = II does not s i gni fy equality. In thi s case .. = II means "to be 
replaced withll. All the statement does ;-s to take the current value of 
N and add 1 to it. Thus, after the f;-rst time through line N becomes 
2. At line since N now equals 2, is true so the THEN portion 
branches us back to line 2.0, with N now at a value of 2. 

The overall result is that lines 2.0 through 4.0 are repeated, each 
time adding 1 to the value of N. When N finally equals 10 at line 2.0, 
the next line will increment it to 11. This results in a false 
statement at line 4.0, and since there are no further statements in the 
program, it stops. 

This technique is referred to as IIloopingll or lIiteration li
• Since 

it is used quite extensively in progranming, there are special BASIC 
statements for using it. We can show these with the following program. 

1.0 FOR N=1 TO 
PRINT N,SQR(N) 
NEXT N 

The output of the program listed above will be exactly the same 
as the previous two programs. 

At line N is set to equal 1. Line causes the value of N 
and the square root of N to be printed. At line we see a new type 
of statement. The IINEXT N" statement causes one to be added to N, and 
then if N<=W we go back to the statement following the IIFOR II is 
exactly the same as the variable after the IINEXTII. There is nothing 
special about the N in this case. Any variable could be used, as long 
as they are the same in both the IIFOR II and the IINEXT II statements. For 
instance, IIllll could be substituted everywhere there is an IINII in the 
above program and it would function exactly the same. 

12 



Suppose we wanted to print a table of square roots from to 
only counting by two's. The following program would perform this task: 

If} N=H] 
2f} PRINT N,SQR(N) 
3f} N=N+2 
4f} IF N<=2a THEN 2a 

Note the similar structure between this program and the one listed 
on page 12 for printing square roots for the numbers 1 to This 
program can also be written using the "FOR" loop just introduced. 

1/ FOR N=10 TO STEP 2 
29 PRINT N,SQR(N) 
3() NEXT N 

Notice that the major difference between this program and the 
previous one using "FOR" loops is the addition of the STEP 

This tells BASIC to add 2 to N each time, instead of 1 as in the 
previous program. If no "STEP" is given in a "FOR" statement, BASIC 
assumes that one is to be added each time. The "STEP" can be followed 
by any expression. 

Suppose we wanted to count backwards from 10 to 1. A program for 
doing this would be as follows: 

2(;l PRINT I 
3(;l 1=1-1 
4(;l IF 1>=1 THEN 2(;l 

Notice that we are now checking to see that I is greater than or 
equal to the final value. The reason is that we are now counting by 
a negative number. In the previous examples it was the opposite, so we 
were checking for a variable less than or equal to the final value. 

The "STEP" statement previously shown can also be used with negative 
numbers to accomplish this same purpose. This can be done using the same 
format as in the other program, as follows: 

FOR TO 1 STEP -1 
PRINT I 

3(;l NEXT I 

"FOR" loops can also be "nested". An example of this procedure 
follows: 

FOR 1=1 TO 5 
2(;l FOR J=1 TO 3 

PRINT I,J 
NEXT J 

50 NEXT I 

13 



Notice that the IINEXT JII comes before the IINEXT III. This is because 
the J-loop is inside of the I-loop. The following program is incorrect; 
run it and see what happens. 

la FOR 1=1 TO 5 
2a FOR J=1 TO 3 
3a PRINT I,J 
4a NEXT I 

NEXT J 

It does not work because when the IINEXT III is encountered, all 
knowledqe of the J-loop is lost. 

Matrices 

It is often convenient to be able to select any element in a table 
of numbers. BASIC allows this to be done through the use of matrices. 

A matrix is a table of numbers. The name of this table, called the 
matrix name, is any legal variable name, IIAII for example. The matrix 
name IIAII is distinct and separate from the simple variable IIA II , and you 
could use both in the same program. 

To select an element of the table, we subscript IIA II : that is to 
select the 11th element, we enclose I in parenthesis 11(1)11 and then 
follow IIAII by this subscript. Therefore, IIA(I)II is the 11th element in 
the matrix IIAII. 

NOTE: In this section of the manual we will be concerned with 
one-dimensional matrices only. (See Reference Material) 

IIA(I)II is only one element of matrix A, and BASIC must be told how 
much space to allocate for the entire matrix. 

This is done with a IIDIM" statement, using the fonnat IIDIM A(15) ". 
In this case, we have reserved space for the matrix index 11111 to go from 
9 to 15. Matrix subscdpts always start at therefore, in the above 
example, we have allowed for 16 numbers in matrix A. 

If IIAt!)1I is used in a program before it has been dimensioned, 
BASIC reserves space for 11 elements (D through ID). 

As an example of how matrices are used, try the following program 
to sort a list of 8 numbers with you picking the numbers to be sorted. 

19 DIM A(8) 
29 FOR 1=1 TO 8 

INPUT A(I) 
50 NEXT I 
70 F=0 
80 FOR 1=1 TO 7 
90 IF A(I)<=A(I+l) THEN 

100 T=A( I) 
110 A(I)=A(I+l) 
120 A(I+l)=T 

14 



130 F=l 
140 NEXT I 
150 IF F=l THEN 70 
160 FOR 1=1 TO 8 
170 PRINT A(I) 
180 NEXT I 

When line 10 is executed, BASIC sets aside space for 9 numeric 
values, A(0) through A(8). LInes 20 through 50 get the unsorted list 
from the user. The sorting itself is done by going through the list 
of numbers and upon finding any two that are not in order, we switch 
them. II F" is used to i ndi cate if any switches were done. If any were 
done, line 150 tells BASIC to go back and check some more. 

If we did not switch any numbers, or after they are all in order, 
lines 160 through 180 will print out the sorted list. Note that a 
subscript can be any expression. 

GOSUB ... RETURN 

Another useful pair of statements are "GOSUB" and "RETURN". If 
you have a program that performs the same action in several different 
places, you could duplicate the same for the action in each 
place within the program. 

The "GOSUB"-"RETURN" statements can be used to avoid this dupli-
cation. When a "GOSUB" is encountered, BASIC branches to the line 
whose number follows the "GOSUB". However, BASIC remembers where it 
was in the program before it branched. When the "RETURN" statement 
is encountered, BASIC goes back to the first statement following the 
last "GOSUB" that was executed. Observe the following program. 

10 PRINT II WHAT IS THE FIRST NUMBER II ; 
30 GOSUB 100 
40 T=N 
50 PRINT "WHAT IS THE SECOND NUMBE'RII; 
70 GOSUB 100 
80 PRINT liTHE SUM OF THE TWO NUMBERS IS",T+N 
90 STOP 

100 INPUT N 
110 IF N = INT(N) THEN 140 
120 PRINT "SORRY, NUMBER MUST BE AN INTEGER. TRY AGAIN. II 

130 GOTO 100 
140 RETURN 

What this program does is to ask for two numbers which must be 
integers, and then prints the sum of the two. The subroutine in this 
program is lines 100 to 130. The subroutine asks for a number, and if 
it is not an integer, asks for a number again. It will continue to ask 
until an integer value is typed in. 

The main program prints "WHAT IS THE FIRST NUMBER", and then calls the 
subroutine to get the value of the number into N. When the subroutine 
returns (to line 40), the value input is saved in the variable T. This 
is done so that when the subroutine is called a second time, the value 
of the first number will not be lost. 

15 



"WHAT IS THE SECOND NUMBER" is then printed? and the second value 
is entered when the subroutine is again called. 

When the subroutine returns the second time, "THE SUM OF THE TWO 
NUMBERS IS" is printed, followed by the value of their sum. T contains 
the value of the first number that was entered and N contains the value 
of the second number. 

The next statement in the program is a "STOP" statement. Thi s 
causes the program to stop execution at 1 ine If the "STOP" state-
ment was not included in the program, we would "fall into" the sub-
routine at line This is undesirable because we would be asked to 
input another number. If we did, the subroutine would try to return; 
and since there was no "GOSUB" which called the subroutine, an error 
would occur. Each "GOSUB" executed in a program should have a matching 
"RETURN" executed later, and the opposite applies, i.e. a "RETURN" 
should be encountered only if it is part of a subroutine which has been 
called by a "GOSUB". 

Either "STOP" or "END" can be used to separate a program from its 
subroutines. "STOP" will print a message saying at what line the "STOP" 
was encountered, "END" will return to corrunand mode as indicated by a 
" ] II and a flashing cursor. 

READ ... DATA ... RESTORE 

Suppose you had to enter numbers to your program that didn't change 
each time the program was run, but you would like it to be easy to change 
them if necessary. BASIC contains special statements for this purpose, 
called the "READ" and "DATA" statements. 

Consider the following program: 

1.0 PRINT "GUESS A NUMBER"; 
2.0 INPUT G 
3f) READ 0 
4.0 IF 0=-999999 THEN 90 
5.0 IF 0<>5 THEN 
6.0 PRINT "YOU ARE CORRECT" 
7.0 END 
9.0 PRINT "BAD GUESS, TRY AGAIN. II 

95 RESTORE 
IfJfJ GOTO If1 
IlfJ DATA 
12fJ DATA 89,5,10,15,-34,-999999 

This is what happens when this program is run. 
statement is encountered, the effect is the same as 
But, instead of getting a number from the terminal, 
from the "DATA" statements. 

When the "READ" 
an INPUT statement. 
a number is read 

The first time a number is needed for a READ, the first number in 
the first DATA statement is returned. The second time one is needed, 
the second number in the first DATA statement is returned. When the · 
entire contents of the first DATA statement have been read in this 
manner, the second DATA statement will then be used. DATA is always 
read sequentially in this manner, and there may be any number of DATA 
statements in your program. 

16 



The purpose of this program is to playa little game in which you 
try to guess one of the numbers contained in the DATA statements. For 
each guess that is typed in, we read through all of the numbers in the 
DATA statements until we find one that matches the guess. 

If more values are read than there are numbers in the DATA state-
ment, an "OUT OF DATA" error occurs. That is why in line 40 \'Ie check 
to see if -999999 was read. This is not one of the numbers to be matched, 
but is used as a flag to indicate that all of the data (possible correct 
guesses) has been read. Therefore, if -999999 was read, we know that the 
guess given was incorrect. 

Before going back to line It for another guess, we need to make the 
READ begin with the first piece of data again. This is the function of 
the "RESTORE". After the RESTORE is encountered, the next piece of data 
read will be the first piece in the first DATA statement again. 

DATA statements may be placed anywhere within the program. Only 
READ statements make use of the DATA statements in a program, and any 
other time they are encountered during program execution they will be 
ignored. 

Real, Integer and String Variables 

There are three different values used in APPLESOFT BASIC. So far 
we have just used one type - real precision. Numbers in this mode are 
displayed with up to nine decimal digits of accuracy and may range up 
to to the 38th power. Apple converts your numbers from decimal to 
binary for , its internal use and then back to decimal when you ask it to 
"PRINT" the answer. Internal math routines such as square root, divide, 
exponent do not always give the exact number that you expected. 

The number of places to the right of the decimal point may be set 
by rounding off the value prior to printing it. The general formula is: 

X= INT 5) lINT (lW·'D+. 5) 

In this case, 0 is the number of decimal places. A faster way to set the 
number of decimal places is to use the formula: 

X= INT(X*D+.5)/D 

Where D=10 is one place; 0=100, 2 places; 0=1000, 3 places, etc. 
The above works for X>=l and X<999999999. A routine to limit the 
number of digits after the decimal point is given in the section 
on string functions. 

17 



The table below summarizes the three types of values used in 
APPLESOFT BASIC programming: 

DESCRIPTION SYMBOL to EXAMPLE 
to Variable Name 

Strings (0 to 255 characters) $ A$ 
ALPHA$ 

Integers (must be in range of % B% 
-32767 to +32767) Cl% 

Real Precision (exponent:-38 to none C 
+38, with 9 decimal digits) BOY 

An integer or string variable must be followed by a "%" or "$" at 
each use of that variable. For example X, X%, and X$ are each different 
variables. 

Integer variables are not allowed in "FOR" or "DEF" statements. The 
greatest advantage of integer variables is their use in matrix operations 
wherever possible to save storage space. 

All arithmetic operations are done in floating point. No matter what 
the operands to +,-,*,/, and"" are, they will be converted to floating 
point. The functions SIN, COS, ATN, TAN, SQR, LOG, EXP and RND also 
convert their arguments to floating point and give the result as such. 

The operators AND, OR, NOT force both operands to be integers between 
-32767 and +32767 before the operation occurs. 

When a number is converted to an integer, it is truncated (rounded 
down). For example: 

1%=.999 
PRINT 1%. o 

A%= -.01 
PRINT A% 
-1 

It will perform as if INT function was applied. No automatic con-
version is done between strings numbers. 

Strings 

A list of characters is referred to as a "String". BILL, APPLE, 
and THIS IS A TEST are all strings. Like numeric variables, string 
variables can be assigned specific values. String variables are disting-
uished from numeric variables by a "$" after the variable name. 

For example, try the following: 

A$= "GOOD MORNING" 

PRINT A$ 
GOOD MORNING 

In this example, we set the string variable A$ to the string value 
"GOOD MORNING". Note that we also enclosed the character string to be 
assigned to A$ in quotes. 

18 



Now that we have set A$ to a string value, we can find out what the 
length of this value is (the number of characters it contains). We do 
this as follows: 

PRINT LEN(A$),LEN("YES") 
12 3 

The "LEN" function returns an integer equal to the number of 
characters in a string. 

The number of characters in a string expression may range from 0 to 
255. A string which contains 0 characters is called a "NULL" string 
Before a string variable is set to a value in the program, it is initialized 
to the null string. Printing a null string on the terminal will cause 
no characters to be printed, and the cursor will not be advanced to the 
next column. Try the following: 

PRINT LEN(Q$);Q$;3 
03 

Another way to create the null string is: Q$="" 
Setting a string variable to the null string can be used to free up 

the string space used by a non-null string variable. 
Often it is desirable to access part of a string and manipulate 

it. Now that we have set A$ to "GOOD MORNING", we might want to print 
out only the first four characters of A$. We would do so like this: 

PRINT LEFT$(A$,4) 
GOOD 

"LEFT$" is a string function which returns a string composed of the 
leftmost N characters of its string argument. Here's another example: 

FOR N=l TO LEN(A$):PRINT LEFT$(A$,N):NEXT N 
G 
GO 
GOO 
GOOD 
GOOD 
GOOD M 
GOOD MO 
GOOD MOR 
GOOD MORN 
GOOD MORNI 
GOOD MORNIN 
GOOD MORNING 

Since A$ has 12 characters, this loop will be executed with N=1,2, 
3 ... ,J1,12. The first time through only the first character will be 
printed, the second time the first two characters will be printed, etc. 

There is another string function called "RIGHT$" which returns the 
right N characters from a string expression. Try substituting "RIGHT$" 
for "LEFT$" in the previous example and see what happens. 

19 



There is also a string function which allows us to take characters 
from the middle of a string. Try the following: 

FOR N=l TO LEN(A$):PRINT MIO$(A$,N):NEXT N 

"MIO$" returns a string starting at the Nth position of A$ to the 
end (last character) of A$. The first position of the string is position 
1 and the last possible position of a string is position 255. 

Very often it is desirable to extract only the Nth character from 
a string. This can be done by calling MIO$ with three arquments. The 
third argument specifies the number of characters to return. 

For example: 

FOR N=l TO LEN(A$):PRINT MIO$(A$,N,1),MIO$(A$,N,2):NEXT N 

G 
o 
o 
o 
M 
o 
R 
N 
I 
G 

GO 
00 
00 
o 
M 

MO 
OR 
RN 
NI 
IG 

See the Reference Material for more details on the workings of 
"LEFT$", "RIGHT$" AND "MIO$". 

Strings may also be concatenated (put or joined together) through 
the use of the "+" operator. Try the foll owi ng: 

B$=A$+" "+"BILL" 
PRINT B$ 
GOOD MORNING BILL 

Concatenation is especially useful if you wish to take a string 
apart and then put it back together with slight modifications. For 
instance: 

C$=RI GHT$ (B$, 3 )+"-"+LEFT$ (B$,4 D$ (B$, 6,7) 

PRINT C$ 
BILL-GOOO-MORNING 

Sometimes it is desirable to convert a number to its string repre-
sentation and vice-versa. "VAL" AND "STR$" perform these functions. 

Try the following: 

STRING$=1567.8" 

PRINT VAL(STRING$) 
567.8 

20 



STRING$=STR${3.1415) 

PRINT STRING$, LEFT${STRING$,5) 
3.1415 3.141 

"STR$" can be used to perform formatted input and/or output on numbers. 
You can convert a number to a string and then use LEFT$, RIGHT$, MID$ AND 
concatenation to reformat the number as desired. 

The following short program demonstrates how string functions may be 
used to format output of numeric variables: 

100 INPUT "ENTER ANY 
110 INPUT "ENTER NO. OF DIGITS TO RIGHT OF 

DECIMAL PT.";D 
120 GOSUB 1000 
130 PRINT "***" 
140 GO TO 100 

1000 X$=STR${X):FOR I = 1 TO LEN {X$)+l: 
IF MID$ (X$,I,1 ) < > "E" THEN NEXT 

UH0 FOR J=1 TO I-I: IF MID$ (X$,J,I)< > " " 
THEN NEXT 

1020 PRINT LEFT $ {X$, -(J+D)*{J+D<=I-l)-
(I-l)*{J+D>I-l))+MID${X$,I);:RETURN 

The above program uses a subroutine starting at line 1000 to print out 
a predefined variable X with 0 digits after the decimal point. Answer is 
truncated; not rounded off. The variables X%, I and J are used in the 
subroutine as local variables. Line 1000 converts variable X to string 
variable X$ and scans the string to see if an ' ''E'' is present. I is set 
to the position of the "E" or to LEN{X$)+1 if no "E" is there. Line 
1010 searches the string for a decimal point and sets J equal to its 
position. Line 1020 prints out variable X as a string with no trailing 
spaces and no carriage return. The "LEFT$" function prints out significant 
di gi ts and the 0$" functi on pri nts out exponent if it was there. The 
relational expressions inside the "LEFT$" check to see if at least 0 digits 
to the right of the decimal pOlnt are available to be printed. 

"STR$" can also be used to conveniently find out how many print 
columns a number will take. For example: 

PRINT LEN(STR${3.157) 
5 

If you have an application where a user is typing in a question such 
as "WHAT IS THE VOLUME OF A CYLINDER Of' RADIUS 5.36 FEET, OF HEIGHT 5.1 
FEET?" you can use "VAL" to extract the numeric values 5.36 and 5.1 from 
the question. For further functions "CHR$" and "ASC" see Appendix H 

21 



The following program sorts a list of string data and prints out 
the sorted list. This program is very similar to the one given earlier 
for sorti ng a numeri eli st. 

DIM A$(15) 
110 FOR 1=1 TO 15:READ A$(I):NEXT I: 
120 F=l>:I=l 
130 IF A$(I)(=A$(I+1) THEN 180 
140 T$=A$ (I + 1) 
150 A$(I+1)=A$(I) 
160 A$(I)=T$ 
170 F=l 
180 I+l: IF I (= 15 GOTO 130 

IF F THEN 120 
FOR 1=1 TO 15:PRINT A$(I):NEXT I 
DATA APPLE,DOG,CAT,RANDOM,COMPUTER,BASIC 
DATA MONDAY,II***ANSWER***","FOO: II 

240 DATA COMPUTER, FOO,ELP,MILWAUKEE,SEATTLE,ALBUQUERQUE 

22 



Color Graphics 

In two previous examples on pages 5 and 11, Apple II has 
demonstrated its ability to do color graphics as well 
as text. In color graphics mode, Apple displ ays an array of 
small squares in 16 colors on a by grid plus provides 4 lines 
of text at the bottom of the screen. The horizontal or X axis is 
standard with the left most position and 39, the right most. The 
vertical or Y axis is non-standard in that it is i nverted; i.e., 
is the !Q£ most position and 39, the bottom most. 

GR ! REM INITIALIZE COLOR GR 
APHICS;5ET 40X40 TO 
SET WINDOW T04 " LINES AT 80T 
TOi'1 

'2(1 HONE : -REN - ' CLEAR " ALL- TE::<T--AT 

.. , "c"rl!' ri t;1 = '=1. " rj -T " "" cr "rd""'" "!':; • 
., -.J " :0-'- _ .rL\..,; 1 _ .JI.tJ. r:.Lli 

GENTA -0.0 
40 LIST 30 ! - GOSUB 1000 -
50 COLOR = 1: PLOT 39.0: REM ELI] 

G0 
7J1 

HOt'lE ! L 1 SI 50! GC}SIJB - 10(1(1 
COLOR=12: -pu:n 0;39! REt'l _c· 1..1 1"_ 

-':to;COLOR= '3: r pLOT - :39"; :3'3: -REt'j - OR 
-. ' Rt-lGE SG!iJ8RE 'HT ' :'::-=:39 .. " 'l=39 --

-100 -- '-HOHE ' ! " "t:: IS'T :''90:- -GOS!JB] fHJ0 .'-" - . 
110 · cnLOR= . '12: ; PLOT:- 19.-19: -.:-:REN 

\'ELLGbJ 5C!UHRr-RT- -CENTERSCF.:E -
. . 

EH - """ ._ --- ... 
. -

-12"0 " .H()t:1E"· ": ·"1£f00 " 
- HONE : >PR INT -" PLOT vqLlR OhJH ' -

1 50 " 

" . ' : 

PRINT II REHEN8ER 

I t·l I, J ! .T " " II r- 1.1 ..... - r. .'C.} " • • : t.} .· .c .... 
tr __ u I .. I:...l t I t.F,. ,--, . I " .. • . • 

BE .'''; 

.. TO-'5TCfP;'! ' "GOT.O 

', .-l B0j.T ·BH\· KE 'l·. TO "co . . 
' t-H1i"lUE:+: :+:*II-;:: GETA$: - RETURH 

... . ' ; -:-; 

23 

-, 

- .' 
,' -0 .-; 

., . . . 



After you have typed in the example on page 23, IlLIST" it and check for 
typing errors. You may want to IISAVE" it on cassette tape for future use. 
Now IIRUN II the proCJram. 

The program uses four new commands: 

GR 

COLOR = 
PLOT 

HOME 

The command "GR" tells Apple to switch to its color graphics mode. 
It also clears the by plotting area to black, sets the text 
output to be limited to a window at the bottom of the screen of 4 
lines of characters each and sets next color to be plotted to 
black. 

COLOR = command sets the next color to be plotted to the value of 
expression following "COLOR=II. Color remains set until changed by a 
nevi "COLOR =" command. For example, the color plotted in line 160 
remains the no matter how many points are plotted. The value 
of the expression following "COLOR=II must be in the range of 0 to 
15 or an error may occur. 

Change the program by re-typing in lines 150 and 160 as 
follows: 

150 INPUT "ENTER X, Y, COLOR II ; X, Y, Z 

COLOR = Z : PLOT X, Y 

Now "RUN" the program and you will be able to select your own 
colors as well as points. We will demonstrate Apple's color range 
in a moment. 

"PLOT X, Y" command plots a small square of color defined by the last 
COLOR = command at the position specified by expressions X and Y. Remember, 
X and Y must each be a number in the range of to 39. 

24 



"HOME"is a useful function used to clear the text area 
and set the cursor to the top left of the currently defined text 
window so that the next text output will start at that position. In 
color graphics mode, this would be the beginning of line 20 since 
lines 0 through 19 are now being used for color graphics plotting 
area. 

Note: To get from color graphics back to all 
text mode, type"TEXT" and depress "RETURN" key 
if you have the ":J" prompt character. 

Type in the following program and "RUN " it to display Apple's 
range of colors ("NEW" first). 

. 

FOR I 14 STEP 
I 

I :; -I = 1 

L! r- · . .. .,- . 
i"i c... .-"·a i 

' -1-" -'" _t .·tJ ..t "_ i 

Color bars are displayed at double their normal width . The 
left most bar is black as set by COLOR c 0; the right most, white, 
is set by COLOR= 16. Depend i ng on the tint sett i nq on your TV, the 
second bar as set by COLOR = 1 will be magenta (reddish-purple) and the 
third will be blue. Adjust your TV tint control for these colors. 
In Europe, color tints may be different. 

In the last program a new command of the form VLIN Yl,Y2 AT X was 
used in line 40. This command plots a vertical line from the Y coordinate 
specified by expression Yl to expression Y2 at the horizontal position 
specified by expression X. Yl, Y2 and X must evaluate to values in the 
range of 0 to 39. In addition Y2 must be greater than or equal to Yl. 
The command HLIN Xl, X2 AT Y is similar to VLIN except that it plots a 
horizontal line. 

Note: Apple draws an entire line just as fast 
as it plots a single point! 

25 



REFERENCE 
MATERIAL 

2b 



A conrnand is usually given after BASIC has indicated that it is waiting for a conrnand with a "J" prompt character and a flashing cursor. 
They are executed inrnediate ly after the "return" key is depressed . This is called the "Conrnand Level ". CO"Inands may be used as program 
statements. Certain conrnands such as DEL , NEW and LOAD will terminate program execution when they finish. More than one conrnand may be 
given on the same line if they are separated by a colon (":"). . 

NAME 

CLEAR 

CONT 

DEL 

HIMEM: 

LIST 

LOAD 

RUN 

NEW 

SAVE 

SPEED 

CLEAR 

CONT 

DEL X, Y 

HIMEM : 163B4 
60 HIMEf1: 2400 

LIST X 

LIST or LIST - or LIST, 

LIST X- or LIST X, 

LIST -X or LIST, X 

LIST X-Y or LIST X,Y 

LOAD 

RUN 

RUN 

NEW 

SAVE 

SAVE :SAVE 

SPEED = 50 
200 SPEED=225 

PURPOSE/USE 

Zeroes all Variables and Strings 

Continues program execution after a control-C is typed or a STOP statement is 
executed. You cannot continue after any error, after modifying your program, 
or before your program has been run . One of the main purposes of CONT is 
debugging. Suppose at some point after running your program, nothing is 
printed. This may be because your program is performing some time cons uming 
calculation, but it may be because you have fallen into an "infinite loop". 
An infinite loop is a series of BASIC statements from which there is no escape. 
Computer will keep executing the series of statements over and over, until 
you intervene or until power to the computer is cut off. If you suspect your 
program is in an infinite loop, type in a control-C . The line number of the 
statement BASIC was executing will be typed out . After BASIC has typed out 
"Break In .. '' and "J", you can use PRINT to type out some of the values of 
your variables. After examining these values you may become satisfied that your 
program is functioning correctly . You should then type in CONT to continue 
executing your program where it left off, or type a direct GOTO statement to 
resume execution of the program at a different line. You could also use 
assignment (LET ) statements to set some of your variables to different values. 
Remember, if you terminate a program and expect to continue it later, 
you must not get any errors or type in any new program lines. If you do, you 
won't be able to continue and will get a "CAN'T CONTINUE" error. It is 
impossible to continue a direct conrnand. CONT always resumes execution in your 
program when control-C was typed. 

If a control-C fails to stop program execut i on, hit the "Reset" key then type 
and depress the "Return" key. This may recover your program. 

Deletes lines X to Y, inclusive, from the program. Note that both line numbers 
must be present. This statement may be used inside a program, but will stop 
program after "DEL" statement is executed . 

Sets last memory location available to BASIC program including variables. 
Used to protect area of memory for machine language routines or data . State-
ment may be used inside program. 

Lists line "X" if there is one . LIST is not allowed. 

Lists the entire program. If in process, "LIST" may be interrupted by a 
control-C. BASIC will complete LISTing the current line and will ralt with 
a "BREAK". 

Lists all lines in a program with a line number equal to or greater than "X". 

Lists all of the lines in a program with a line number less than or equal to "X". 

Lists all of the lines within a program from X to Y. 

Loads (reads) an APPLESOFT floating point BASIC program from cassette tape. First 
beep indicates that Apple has found beginning of program on tape. Second beep and 
a "J" prompt character and a flash i ng cursor on the TV scree-n indicate that the 
program has been successfully loaded without an error. If message indicates that 
error occurred while loading, re-check cassette settings and cables and try again. 
Note : Programs saved from integer BASIC ( "7" ) may not be run directly in floating 
point (")") and vice versa. 

Starts execution of the program currently in memory at the lowest numbered state-
ment. RUN deletes all variables (does a CLEAR and RESTORES DATA) . If you have 
stopped your program and wish to continue execution at some point in the program 
without clearing variables, use a direct GOTO statement to start execution of 
your program at the desired line. 

Starts RUN at the specified line number 

Deletes current program and all variables. 

Saves (stores) the current floating point program onto cassette tape. Current 
program is left unchanged. Apple does not verify that the recorder was runn;ng 
and in "record" mode or that the tape is good . "J" prompt and cursor will return 
when "SAVE" is complete. 

Saves a program twice on tape so that if there is a bad spot on the tape on the 
first one, the second may be able to be retrieved. 

Sets speed at which characters are outputted, either to TV screen er to other 
I/O devices . is slowest speed ; 255 is fastest. 

27 



Arithmetic Operators 

SAMPLE STATEMENT 

LET Z=2.S 

B=-A 

t PRINT Xt3 
(t is a shift-n) 

* X=R*(B*D) 

PRINT X/1.3 

+ Z=R+T+Q 

Logical and Relational Operators 

10 IF A=IS THEN 40 

<> IF THEN S 

30 IF B>100 THEN 8 

160 IF B<2 THEN 10 

Logical and Relational Operators (Cont.) 

SAMPLE STATEMENT 

<= ,= < IF THEN 

>=,=> IF Q=>R THEN 

AND 2 IF A<S AND B<2 THEN 7 

OR IF A<l OR B<2 THEN 2 

NOT IF NOT Q3 THEN 4 

2B 

PURPOSE/USE 

Assigns a value to a variable. 
The LET is optional . 

Negation. Note that is subtraction. while -A is 
negation . 

Exponentiation (equal to x*x*x in the sample statement). 
0'+0=1; 0 to any other power = with A negative and 
B not an integer gives an "ILLEGAL QUANTITY" error. 

Multiplication 

Division 

Addition 

Subtraction 

PURPOSE/USE 

Expression Equals Expression 

Expression Does Not Equal Expression 

Expression Greater Than Expression 

Expression Less Than Expression 

PURPOSE/USE 

Expression Less Than Dr Equal To Expression 

Expression Greater Than Or Equal To Expression 

If expression 1 (A<5) AND expression 2 (6<2) are both 
true. then branch to line 7 

If either expression 1 (A<l) OR expression 2 (B<2) is 
true. then branch to line 2 

If expression "NOT Q3" is true (because Q3 is false). 
then branch to line 4 NOTE: NOT (NOT true=false) 



Rules lor Evaluating Expreliion. 

Operations of higher precedence are performed before 
operat ions of lower precedence. This means the multi-
pl ication and divisions are performed before additions 
and subtractions. As an example . equals 4. not 
2.4. When operations of equal precedence are found in 
a formula. the left hand one is executed first : 
6-3+5=8. not -2 . 

The order in which operations are performed can always 
be specified explicitly through the use of parentheses. 
For instance. to add 5 to 3 and then divide that by 4. 
we would use (5+3)/4. which equals 2. If instead we 
had used 5+3/4. we would get 5.75 as a result (5 plus 3/4). 

The precedence of operators used in evaluating expressions 
is as follows. in order beginning with the highest pre-
cedence : (Note : Operators listed on the same l i ne 
have the same precedence . ) 

1) FORMULAS ENCLOSED IN PARENTHESIS ARE ALWAYS 
EVALUATED FIRST 

2) 

3) 

NEGATION 

NOT 

t 

* 
+ 

-x WHERE X MAY BE A FORMULA 
LOGICAL "NOT" 1s .NEGATION. "NOT" 
TAKES ONLY THE FORMULA TO ITS RIGHT AS AN ARGUMENT. 

EXPONENTATION 
MULTIPLICATION AND DIVISION 

ADDITION AND SUBRACTION 

4) 
5) 

6) 

7) RELATIONAL OPERATORS = EQUAL 
(equa 1 precedence for () NOT EQUAL 
all six) ( LESS THAN 

8) AND 

9) OR 

) GREATER THAN 
(.LESS THAN OR EQUAL TO 
)=GREATER THAN OR EQUAL TO 

LOGICAL "AND" 

LOGICAL "OR" 

Re lational Operator expressions will always have a value 
of True (+1) or a value of Fa1se ' (Il). Therefore. 
(5=4)=". (5=5)c+1 (4 ) (4<5)= -1'1. etc. 
The THEN clause of an IF statement is executed whenever 
the formula after the IF is not equal to 11. That is to 
say. IF X THEN . .. is equiva1enr-to IF X<>1l THEN ••• 

Slatement. 

NOTE : In the following descr iption of statements. an argument of V or W denotes a numeric variable. X denotes a 
numer ic expression. X$ denotes a string expression and I or J denotes an expresssion that i s truncated to an 
integer before the statement is executed. Truncation means that any fractional part of the number is lost. 
e.g. 3.9 becomes 3. becomes 4. 

An express ion is a series of variables . operators. funct i on ca l ls and constants which after the operations and 
function calls are performed using the precedence rules. evaluates to a numeric or string value. 
A constant is either a number (3 :14) or a string literal ("FOO"). 

29 



STAIDENTS (CO'(T,) 

NAME 

CALL 

COLOR' 

DATA 

DEF 

DIM 

DRAW 

END 

FOR 

EXAMPLE 

10 CALL 300 
20 CALL X'V 
30 CALL - 936 
40 CALL 64600 

COLOR'I 

DATA 

DATA "FOO,ZOO" 

OEF FNA (V)'V/8+C 

Z'FNA (3) 

113 DIM A(3), 

114 DIM R3(5,5), 0$ (2 ,2,2) 

115 DIM Ql (N ),Z(2*I) 

117 A(8):4 

140 DRAW S AT X,V 

150 DRAW S 

999 END 

FOR V=l to 9.3 
STEP .6 

PURPOSE/USE 

Causes execution of a machine level language subroutine at dec imal memo ry 
location specified. Locat ions above +32767 be speCi'11eilas a 
negative number below 65636; i .e., lines 30 and 40 are identical. 

Sets TV display color to value in expression I. Expression I must be in the 
range of to 15. Colors are assigned the values : 

- Black 8 - Brown 
1 - Magenta 9 - Orange 
2 - Dark Blue 10 - Grey 
3 - Light Greeen 11 - Pink 
4 - Dark Green 12 - Green 
5 - Grey 13 - Ve 11 ow 
6 - Medium Blue 14 - Bl ue/Green 
7 - Light Blue 15 - White 

NOTE: Color may vary on European (625 line) T.V . 

Color remains set until a new "COLOR'" command changes it or until a "GR" 
command clears screen and sets 

Specifies data, read from left to right. Information appears in data statements 
in the same order as it will be read in the program. 

Strings may be read from DATA statements. If you want the string to contain 
leading spaces (blanks), colons (:), or commas (,), you must enclose the string 
in double quotes. It is impossible to have a double quote within string data 
or a string literal; i . e . , ( .... ANYTHING .... ) is illegal. Use a single Mark 
( ') ins tead. 

The user can define functi ons like the built-in functions (SQR, SGN, ABS, etc .) 
through the use of the DEF statement. The name of the function is "FN" followed 
by any legal variable name, for example: FNX, FNJ7, FN KO , FNR2. User defined 
functions are restricted to one line. II function may bp. defined to be any 
expression, but may only have one argument. In the examp le B&C are varlables 
that are used in the program. Executing the DEF statement defines the functi on. 
User defined functions can be redefined by executing another DEF statement for 
the same function. User defined string functions are not allowed. "V" is 
called the dummy variable . 

Execution of th is stateMent following the above would cause Z to be set to 
3/B+C, but the value of V would be unchanged. 

Allocates space for matrices . All matrix elements are set to zero by the DIM 
statement. 

Matrices can have more than one dimension. Up t088 dimensions arp 
but in practice is limited by total memory available . 

Matrices can be dimensioned dynami cally during program execution. If a matrix is 
not explicitly dimensioned with a DIM statement, it is assumed to have as many 
subscripts as implied in its first use and whose subscripts may range from to 

(eleven elements) . 

If this statement was encountered be fore a DIM statement for A was found in the 
program it would be as if a DIM A (10) has been execu ted previous to the execution 
of line 117 . All subscripts start at zero (0), which means that DIM X 
really allocates 101 matrix elements. 

Draws a HIRES shape starting at the coordinates specified by expressions X and V. 
The shape drawn is specified by expres sion S whose description is in the shape 
table previously loaded using "SH LOAD" command. The color , rotation and scale 
of shape draw must have been previously specified. 

Same as above but draws a shape as specified by expressions starting at last point 
plotted by previous HPLOT, DRAW, or XDRAW command . 

Terminates program execution without printing a BREAK message. (see STOP) CONT 
after an END statement causes execution to resume at the statement after the END 
statement . END can be used anywhere in the program, and is optional . 

(see NEXT statement) V is set equal to the value of the express ion following the 
equal sign, in this case 1. This value is ca ll ed the initial value . Then the 
statements between FOR and NEXT are executed. The final value is the value of the 
expression following the TO . The step is the value of the expression following 
STEP. When the NEXT statement is encountered, the step is added to the variable . 

30 



STAlOOTS (am.) 

NAME 

FOR 

FLAsH 

GET 

GOTO 

GOSUB 

GR 

HCOLOR= 

HIMEM: 

HGR 

HGR2 

HUN 

HOME 

HPLOT 

EXAMPLE 

FOR V·1 TO 9.3 

315 FOR V=10*N TO 3.4/Q STEP SQR{R) 

FOR V=9 TO 1 STEP -1 

50 FLASH 

450 GET A 

460 GE! AS 

50 GOTO 11'0 

10 GOSUB 910 

530 GR 

550 GR:POKE -16302,0 

70 HCOLOR=I 

HIMEM : 16384 
60 HIMEM: 2400 

10 HGR 

20 HGR : POKE -16302,0 

30 HGR2 
40 HGR2: POKE -1631l1,0 

50 POKE -16304,0: 
POKE -16302,0: POKE 
-16299,0: POKE-16297 

HUN X1,X2 AT Y 

HUN 1l,19 AT 0 

HLIN 20, 39 AT 39 

70 HOME 

80 HPLOT X,Y 

90 HPLOT Xl,Yl TO 
X2,Y2 

100 HPLOT TO X2,Y2 

PURPOSE/USE 

If no STEP was specified, it is assumed to be one. If the step is positive 
and the new value of the variable is (= and final value (9.3 in example), 
or the step value is negative and the new value of the variable is => the final 
value, then the first statement following the FOR statement is executed. 
Otherwise, the statement following the NEXT statement is executed . All FOR 
loops execute the statements between the FOR and the NEXT at least once, even 
in cases like FOR V=l TO 0. 

Note that expressions (formulas) may be used for the initial. final and step 
values in a FOR loop. The values of the expressions are computed only once, 
before the body of the FOR .... NEXT loop is executed. 

When the statement after the NEXT is executed, the loop variable is not 
necessarily equal to the final value, but is equal to whatever value caused 
the FOR .... NEXT loop to terminate . The statement between the FOR and its 
corresponding NEXT in both examples above (310 & 320) would be executed 9 times. 

Sets video mode for output characters to "Flashing"; ie. alternating between, 
normal and inverse. 
Fetches a single numeric digit from the keyboard without echoing back to TV 
screen and without the need for depressing the "RETURN" key. 

Same as above but fetches a single ASCII character from keyboard . 

Branches to the statement specified. 

Branches to the specified statement (910) until a RETURN is encountered; when 
a branch is then made to the statement after the GOSUB. 

Switches TV screen display from all text mode into color graphics (40x40) with 
4 lines of text at bottom of screen 

Sets all color graphics (40x48) mode with no text at bottom. 

Sets high resolution line color to that specified by expression fo llowing 
"HCOLOR=" which must be in the range of 0 to 7; where: 

o = Black 
1 = Green 
2 = Blue 
3 = Whi te 1 
4 = B1 ack 2 
5 = (depends of TV) 
6 = (depends on TV) 
7 = White 2 

Sets last location ava ilable to BASIC program including var i ables. 
Used to protect area of memory for machine language routines or data. 
Statement may be used ins i de program. 

Sets mixed screen high resolution graphics video mode (280x160+4 lines of 
text) and displays of memory (8k-16k) and clears screen to black . 
Text screen memory 1S not affected. NOTE : This command cannot be used with 
the cassette version of APPLESOFT II because the APPLESOFT language resides 
in the same memory space as the screen refresh information in the HGR 
mode. Example 20 sets all high resolution graphics mode {280x192 with no 
text at bottom of 

Sets all screen high resolution graphics video mode (280x192) and displays 
of memory (16k-24k) and clears screen to black. Example 40 sets 

m1xed HIRES mode on and is not allowed . 
Sets all screen HIRES mode page 2 without clearing screen to black . 
(See special controls) 

If in color graphics mode, this command draws a horizontal line, of color 
as set by "COLOR=", from coordinate Xl to X2 at position Y. Numeric 
value for Xl, X2 and Y must be between Il and 39. (Y may range up to 47 
if in all color modes; i.e . , no 4 lines of text at bottom of screen.) 

Draws horizontal line along the top of the TV screen from upper-left corner 
to center of screen. 

Draws ·horizonta1 line along the bottom of the TV screen from bottom 
center to lower-right corner. 

Moves cursor to upper left screen position within scrolling window and 
clears all text within the window. See special controls and features 
section of App1esoft manual on how to set scrolling window. 

Plots a HIRES point in color specified by previous "H COLOR=" command 
at the position specified by expressions X and Y. 

Draws a HIRES line in color specified by previous "H COLOR=" command 
from coordinates-5pecified by expressions Xl and Yl TO 

the coordinate specified by expressions X2 and Y2 . 

Draws a line from last position plotted to coordinates specified by 
expressions X2 and Y2. NOTE: HCOLOR may not be changed when usinQ 
til t 5 

31 



SIAIOOIIS (CCtlT.) 

NAME 

HTAB 

IF ... GOTO 

IF . . . THEN 

INPUT 

INPUT 

INVERSE 

INN 

LET 

LOMEM: 

NEXT 

NORMAL 

NO TRACE 

ONERRGOTO 

ON . . . GOTO 

EXAMPLE 

HTAB 10 

32 IF X =Y+23 .4 GOTO 92 

15 IF X>0 THEN 5 

20 IF THEN PRINT "X LESS THAN 

25 IF X=5 THEN 50:Z=A 

26 IF THEN PRINT "ERROR X NEGATIVE" 
GOTO 350 

INPUT V,W, W2 

5 INPUT "VALUE";V 

130 INVERSE 

INN 6 
110 INN Y+2 
120 IN # 

300 LET W=X 

310 V=5.1 

150 LOMEM: 16384 

340 NEXT V 

345 NEXT 

350 NEXT V.W 

160 NORMAL 

NO TRACE 
170 NO TRACE 

10 ONERRGOTO 1000 

100 ON I GOTO 

1\15 ON SGN (X) +2 GOTO 40,50,60 

PURPOSE/USE 

Moves cursor to absolute horizontal position independent of current cursor 
postion. -- -

Equivalent to IF . . . THEN, except that IF . .. GOTO must be followed by a line 
number. while IF .. . TH EN can be foll owed by either a line number or another 
statement. 

Branches to specified statement if the relation is True . 

Executes all of the statements on the remainder of the line after the 
THEN if the relati on is True . 

WARNING . The "Z =A" will never be executed because if the relation 
if true, BASIC will branch to line 50 . If the relat ion is false BASIC 
wi ll proceed to the line after l ine 25. 

In this example, if X is less than 0, the PRINT statement will be executed 
and then the GOTO statement will branch to l ine 350 . If the X was 0 or 
positive. BASIC will proceed to execute the lines after line, 26. 

Requests data from the keyboard (to be typed in). Each value must be 
separated from the preceeding value by a conma (,). The last value typed 
should be followed by a carriage return. A "? " is typed as a prompt 
character. However, only constan t s may be typed in as a response to 
an INPUT statement , such as 4.5E- 3 or "CAT". If more data was requested 
in an INPUT statement than was typed in, a "77" is printed and the rest 
of the data should be typed in . If more data was typed in than requested, 
the extra data will be igno red and a warning "EXTRA IGNORED" will be 
printed when this ha ppen s. Strings must be input in the same format as 
they are specified in DIM statements. 

Optionally types a prompt string ("VALU E") before requesting data from 
the terminal . Typing CONT after an INPUT conmand has been interrupted 
will cause execution to resume at the INPUT statement. 

Sets vi deo mode for output characters to inve rse; i .e., black letters on 
white background. 

Transfers source of data for subsequent "I NPUT" statements to peri phera 1 
I/O slo t (1 -7) specified. Slot is not addres sable from BASIC. INN 0 
(Example 120) is used to return data source from peripheral I/O to keyboard. 
If no Apple peripheral is in slot specified, the system will hang up. 
To recover, hit "RESET" key then type "0G" and depress "RETURN" key. 

Assigns a value to a variable and i s optional. 

Sets starting memory location of first BASIC variable. Normally "LOMEM:" 
is set automati call y to the end of current program by App1esoft . This 
conmand is added to allow protection of variables from High Resolution 
Graphics in large memory size sys tems . Must be used inside program . Once 
program is modified, LOMEM: is automatical ly reset . 

Marks the end of a FOR loop. 

If no variable is given, matches the most recent FOR loop . Executes 
faster than exampl e in line 340 . 

A single NEXT may be used to match miltiple FOR statements. Equivalent 
to NEXT V:NE XT W. 

Sets video mode for output characters to normal; i.e., white letters on 
black background . 

Turns off "TRACE" debug mode described below. 

Sets a flag that causes unconditional jump (later in to program 
line number specified by expression X when an error condltlon occurs instead 
of printing error message and halting prog ram execution . 

Branches to the line indicated by the I'th number after the GOTO . That is: 

IF 1=1, THEN GOTO LINE 10 
IF 1=2, THEN GOTO LINE 20 
IF 1=3, THEN GOTO LINE 30 
IF 1=4, THEN GOTO LINE 40 

If 1<1 or I attempts to select a nonexi stent line (1 ) 4) in this case, the 
statement after the ON statement is executed . However, if I is ,255 or 
<0, an "I LLEGAL QUANTITY" error message will result. As many line numbers 
as will fit on a line can follow an ON . .. GOTO. 

This statement will branch to line 40 if the expression X i s less than 
zero, to line 50 if it equals zero, and to line 60 if it is greater than 
zero. 

32 



STAIDOOS (cafT) 

ON ... GOSUB 

PLOT 

POKE 

POP 

PRINT 

PR# 

READ 

RECALL 

REM 

RESTORE 

RESUME 

ROT = 

RETURN 

SCALE = 

ON I GOSUB 

PLOT X,Y 

PLOT 

357 POKE I,J 

POP 

360 PRINT X,Y,Z, 
370 PRINT 
380 PRINT X, Y 
390 PRINT "VALUE IS " ; A 
400 PRINT A2,B, 

PRINT MID$(AS,2) 
420 ?XY,Z 

190 PRO 

490 READ V,W 

200 RECALL A 
210 RECALL A% 

500 REM NOW SET V=0 

510 REM SET V=0: 

520 V=0: REM SET 

600 RESTORE 

1000 RESUME 

ROT = W 

RETURN 

1191 SCALE =Z 

PURPOSE/USE 

Identical to "ON .. . GOTO" , except that a subroutine call (GOSUB), is 
executed instead of a GOTO. RETURN from the GOSUB branches to the 
statement after the ON ... GOSUB. 

Plots a small square of color set by "COLOR=" at coordinates specified 
by expressions X and Y. Value of X must be between and 39 and Y 
between and 39 or and 47 . 

Plots a small square at center of screen. 

The POKE statement stores the byte specified by its second argument 
(J) into the location given by its first argument (I). The byte to 
be stored must be>: and <=255, or an "ILLEGAL QUANTITY" error wi 11 
occur. The address (I) must be =>-65535 and <=65535, or an "ILLEGAL 
QUANTITY" error wi 11 result. 

"POPS" Nested "GOSUB" return stack address by one. 

Prints the value of expressions on the If the list of values 
to be printed out does not end with a comma(,) or a semicolon (;), then 
a carriage return/line feed is executed after al l the values have been 
printed. Strings enclosed in quotes (") may also be printed. If a 
semicolon separates two expressions in the list, their values are printed 
next to each other. If a comma appears after an expression in the list, 
then spaces are outputted until the beginning of the next column field 
is reached. If there is no list of expression to be printed, then a carriage 
return is executed. String expressions may be printed. A question mark 
is the same as a "PRINT" cOlTITIand. 

Like INN, transfers output to I/O slot defined by expression after 
"PRN". PRN 0 returns output to video port and not to slot '0. 
Reads data into specified variables from a DATA statement. The first 
piece of data read will be the first piece of data listed in the first 
DATA statement of the program. The second piece of data read will be 
the second piece listed in the first DATA STATEMENT, and so on. When 
all of the data have been read from the first DATA statement, the next 
piece of data to be read will be the first piece listed in the second 
DATA statement of the program. Attempting to read more data than there 
is in all the DATA statements in a program will cause an "OUT OF DATA" 
error . The 1 i ne number gi ven in the "SYNTAX ERROR" wi 11 refer to the 1 i ne 
number where the error actually is located. 

Reads into matri x A the data from cassette tape previously saved using the 
"STORE" conmand. Array names are not stored along with thei r values so 
that an array may read back USing the "RECALL" command with a different 
matrix variable name than the one used with the "STORE" command . 
When "RECALL"ing an array, the size must be identical to the original 
array or the first index only may be For example if A(7,10) is 
stored, then one may recall A(7,10) or A(20,10) but not A(7,20). 

Allows the programmer to put comments in his program. REM statements 
are not executed, but can be branched to. A REM statement is terminated 
by end of line, but not by a" :". 

In this case the V=O will never be executed by BASIC . 

In this case will be executed . 

Allows the re-reading of DATA statements . After a RESTORE, the next 
piece of data read will be the first piece listed in the first DATA 
statement of the program. The second piece of data read will be the 
second piece listed in the first DATA statement, and so on as in a 
normal READ operation. 

Causes resumption of program at the point where an error occured. If 
"RESUME" is encountered before an error occurs, program will be k10bbered . 
If error occurs in an error handling routine, the use of "RESUME" will 
place program in infinite loop and "RESET" key must be depressed in order 
to escape. 

Sets angular rotation for shape draw to value in range of 0 to 63 as 
specified by expression W. ROT = 0 is 0 degrees, ROT =16 is gO derees, 
ROT =32 is 180 degrees, etc. For SCALE=l only 4 rotation values are 
allowed (0,16,32,48); for SCALE =2,8 rotations; etc . 

Causes a subroutine to return to the statement after the most recently 
executed GOSUB. 

Sets scale size for shape drawing to factor from 1 to 255 as specified by 
expression Z. NOTE: SCALE = 91 is maximum size and not a single point. 

33 



STAID'OOS (calf.) 

SHLOAD 

SPEED = 

STOP 

STORE 

TEXT 

TRACE 

VTAB 

INTR INS I C FUlCTHllS 

NAME 

ASS (X) 

ATN 

COS(X) 

EXP(X) 

FRE(X) 

INT(X) 

LOG(X) 

PEEK (I) 

PDL(X) 

POS(I ) 

EXAMPLE 

SHLOAD 

SPEED 
SPEED=255 

STOP 

230 STORE A 
STORE AX 
STORE A$ 

TEXT 

TRACE 
2Hl TRACE 

IF X< THEN TRACE 

VTAB 18 
VTAB Z+2 

EXAMPLE 

PRINT ABS (X) 

PRINT ATN (X) 

PRINT COS (X) 

PRINT EXP (X) 

PRINT FRE 

PRINT INT(X) 

PRINT LOG(X) 

PRINT PEEK(I) 

PRINT PDL(X) 

PRINT POS (I) 

PURPOSE/USE 

Loads a shape table from cassette tape. Table is loaded from HIMEM : down 
and HIMEM : is set to just below the shape table to protect it . If a second 
shape table is loaded, HIMEM: should be reset to avoid wasting memory. Shape 
table tapes are prepared using programs supplied on High Resolution Shapes 
cassette tape (Apple PIN A2T0005X) 

Sets speed at which characters are outputted, either to TV screen or to 
other I/O devices. is slowest speed; 255 is fastest. 

Causes a program to stop execution and to enter command mode . Prints 
BREAK IN LI NE (as per this example). CONT after a STOP branches 
to the statement following the STOP . 

Saves the data in array A onto cassette tare that is read back into memory 
with a "RECALL" command . Only floating point or integer arrays may be 
"STORE"d . Str i ng arrays (Ex may not be "STORE"d. In order to save 
string array data; it must be first converted to a numerical array using 
the "ASC" function. 

Sets TV display to all text mode from color graphics mode and resets TV 
display to 24 lines of characters each if otherwise. Returns to text 
mode from GR or HGR. Sets scrolling window to maximum. HIRES screen memory 
is not affected. 

Sets a debug mode that displays the line number of each statement as it 
is executed. 

Moves cursor to absolute verticaL postion as specified by expression 
after "VTAB" . VTAB 1 is top line. VTAB 24 is bottom line. 

PURPOSE/USE 

Gives the absolute value of the expression X. ABS returns X if X) = =0, 
-X otherwise. 

Gives the arctangent of the X. The result is returned in radians 
and ranges from -Tl/2 to TI/2. 

Gives the cosine of the expression X. X is interpreted as being in radians. 

Gives the constant "E" (2.71828) raised to the power X. (EtX) The maximum 
argument that can be passed to EXP without overflow occuring is 87 . 3365 . 

Gives the number of memory bytes currently unused by BASIC . 

Returns the largest integer less than or equal to its argument X. For 
example: INT(7)=7, INT (- .1)=-1, INT(-2)=-2, INT (1.1)=1. 
The following would round X to D decimal places : 

INT(X*10rD+.5)/INT(lO,D + . 5) 

Gives the natural (Base E) logarithm of its argumen t X. To obtain the 
Base Y logarithm of X use the formula LOG (X)/LOG(Y) . 7 = 

The PEEK function returns the contents of memory address I. The value 
returned will be =)0 and (=255. If I is>65535 or (-65535 an "ILLEGAL 
QUANTITY" error will occur. An attempt to read a non-existent memory address 
will return garbage . (see POKE statement) 

Gives number between 0 and 255 corresponding to paddle position on game 
paddle number designated by expression (X) and must be legal paddle number 
(0,1 ,2,or 3). 

Gives the current position of the cursor on screen. It is referenced to 
the left hand margin and has a value of zero if at left margin. See 
Special Control and Features section. 

34 



I NTRINS I ( FLOCTI eN) «((lIT,) 

NAME 

RN D(X) 

SCRN (X) 

SGN(X ) 

SIN(X) 

SQR(X) 

TAS( I) 

TAN(X) 

STRINGS 

EXAMPLE 

PRINT RND(X) 

PRINT SCRN( XI ,YI) 

PRINT SGN( X) 

230 PRINT SIN(X) 

24111 PRINT SQR(X) 

25111 PRINT TAS( I) 

26111 PRINT TAN(X) 

PURPOSE/USE 

Generates a random number between and 1. The argument X controls the 
generation of random numbers as follows: 

starts a new sequence of random numbers using X. Calling RNO with 
the same X starts the same random number seouence. generates a 
new random between and I . Note that V-A(*RND(L)+A will generate 
a random number between A & B. 

Gives color (number between and 15 ) of screen at horizontal locati on 
designated by expression Xl and vert i ca l location designated by expression 
Y1 Range of express Xl is to 39. Range of expression YI is to 39 if in 
standard mixed co10rgraphics di splay mode as set by GR command or to 47 
if in all co lor mode set by POKE -16304 POKE 

Gi ves 1 i f if X=11I and -1 if X<I1I . 

Gives t he sine of the expression X. X i s i nterpreted as being in radians . 
Note : COS (X ) =SIN (X+3.14159/2) and that 1 Radian =18111 n degrees= 
57.2958 degrees; so that the sine of X degrees= SIN (X/57.2958). 

Gives the square root of the argument X. An "ILLEGAL QUANTITY" 
error will occur i f X is less than zero. 

Spaces to the specified position on screen. May be used only in PRINT 
statements . It specifies the absolute position from the left hand marg in 
where i s to start and will not bac k-up curso r . See HTAS cOl1lnand. 

Gi ves the tangent of the expression X. X is interpreted as being in rad ians. 

A string may be from 0 to 255 characters in length. Al l string variables end in a dollar sign ($); for example, A$,S9$,K$, HELLO$ . 
String matr i ces may be dimensioned exactly like numeric matrices . For i nstance, DIM 1'1$ creates a string matrix of 121 elements, 
eleven rows by eleven columns (row to 1111 and columns 111 to Each string matrix element is a complete string, which can be up to 
255 characte rs in length . 

The tota l number of characters in use in strings at any t ime during program execution cannot exceed the amount of string space, or an 
"OUT OF ME MOR Y" error wi ll result . 

NAME 

DIM 

INPUT 

LET 

q 
+ 

PRINT 

READ 

EXAMPLE 

25 DIM A$ 

40 INPUT X$ 

27 LET A$="FOO"+V$ 

3111 LET Z$=R$+Q$ 

6111 PRINT X$ 
PRINT "FOO"+A$ 

50 READ X$ 

PURPOSE/USE 

Allocates space for a pointer and length for each element of a string 
matrix. No string space is allocated. 

Reads a string from the user ' s termin"al. String does not have to be quoted; 
but i f not, leading blanks will be ignored and the string will be terminated 
on a 11 .'1 or 11 : 11 character . 

Assigns the value of a string expression to a string variable. LET is optional. 

String comparison operators. Comparison is made on the basis of ASCII 
codes, a character at a time until a difference is found. If during the 
comparison of two strings, the end of one is reached, the shorter stri ng 
is cons idered smaller. Note that "A " is greater than "A" since trailing 
spaces are si gn i ficant. 

Stri ng concatenation. The resulting stri ng must be less than 256 
characters in length or a "STRING TOO LONG" error will occur. 

Prints the string expression on the screen . 

Reads a string from DATA statements within the program. Strings do 
not have to be quotes; but if they are not, they are terminated on a 
", " or ":" character or end of line and leading spaces are ignored . See 
DATA for the format of string data. 

35 



String Functions 

ASC(X$) PRINT ASC(X$) 

CHR$(I) 275 PRINT CHR$(I) 

LEFT$(X$, I) PRINT LEFT$(X$,I) 

LEN(X$) PRINT LEN(X$) 

MID$(X$,I) PRINT MID$(X$,I) 

MID$( X$ ,I,J) 34fJ PRINT MID$(X$,I ,J) 

RIGHTS(X$,I) PRINT RIGHT$(X$,I) 

STR$(X) PRINT STR$(X) 

VAL(X$) PRINT VAL(X$) 

36 

PURPOSE/USE 

Returns the ASCII numeric value of the first 
character of the string expression X$. See 
Appendix K for an ASCII/number conversion table . 
An "ILLEGAL QUANTITY" error wi 11 occur if X$ is 
the null string. 

Returns a one character string whose single 
character is the ASCII equivalent of the value 
of the argument (I) which must be and <=255. 

Gives the leftmost I characters of the string 
expression X$. If 1<=11 or >255 an ILLEGAL QUANTITY" 
error occurs. 

Gives the length of the string expression X$ in 
characters (bytes) . Non-printing characters and 
blanks are counted as part of the length . 

MID$ called with two arguments returns characters 
from the string expression X$ starting at character 
position I. If I>LEN(I$), then MID$ returns a null 
(zero length) s tri ng. I f I <'0 or >255, an "I LLEGAL 
QUANTITY" error occurs. 

MID$ called with three arguments returns a string 
expression composed of characters of the string 
expression X$ starting at the I'th character for J 
characters. If I>LEN(X$), MID$ returns a null 
string. If I or J<=0 or >255, an "ILLEGAL QUANTITY" 
error occurs . If J specifies more characters than 
are left in the string, all characters from the I'th 
on are returned. 

Gives the rightmost I characters of the string 
expression X$ . When ·1<'" or >255 an "ILLEGAL 
QUANTITY" error will occur. If I>=LEN(X$) then 
RIGHT$ returns all of X$ . 

Gives a string which is the character repre-
sentation of the numeric expression X. For 
instance, STR$(3.1)="3. 1". 

Returns the string expression X$ converted to a 
number. For instance, VAL("3.1")-3 .1. If the 
first non-space character of the string is not a 
plus (+) or minus (-) sign, a digit or a decimal 
pOint ( .. ) then zero will be returned. 



SPECIAL CW\PAClERS 
"Control" characters are indicated by a super-scrioted "C" such as GC

• They arC obtaieed by holding down the CTRL key while typ i ng 
the specified letter. Control characters are NOTdis played on the TV screen. Band C must be followed by a carriage return . Screen 
editing characters areindicated by a sub-scripted "E" such as DE . They are obtained by pressing and re leasing the ESC key teen typing 
specified letter. Edit characters send information only to display screen and does not send data to memory. For example, U moves 
to cursor to right and copies text while AE moves cursor to right but does not copy text. 

CHARACTER 

"RETURN" key 

: (Colon) 

? (Question Mark) 

"RESET" Key 

DESCRIPTION OF ACTION 

The "RETURN" key must end every l ine that is typed in 
to tell the APPLE II that you have finished the line. 

A colon may be used to separate statements or a line. 
Colons may be used in direct or indirect statements. 
The only limit to the number of statements per line 
is that the total number of characters including spaces 
may not exceed 255. 

Question marks are equivalent to "PRINT" cOl11l1and. For 
instance, 12+2 is equivalent to PRINT 2+2. Question 
marks can also be used in indirect statements . 10?X, 
when lis ted will be displayed as 10 PRINTX. 

Il11I1ediately interrupts any program execution and resets 
computer. Also sets all text mode with scrolling window 
at maximum . Control is transfered to System Monitor 
and APPLE prompts with a "*" (asterisk) and a bell. 
Hitting RESET key does NOT destroy existing BASIC or 
machine language program. From the System Monitor, user 
machine language programs may be typed in. From the 
Monitor, you may return to APPLESOFT BASIC without 
destroying current user BASIC program by typing "0G". 
ff, you change any data in the range of $O . IFF while in 
the monitor, you will have to re-load 

If in Sys tem Monitor (as indicated by a "*", prompt 
character and a fl ashing cursor), a control-B and a 
carriage return will transfer control to BASIC, scratch-
in killin APPLESOFT and an existin BASIC ro-ram. 
It wi set HIME": to ma Xlmum insta e user memo ry and 
LOME" : to 2048 . 

If in APPLESOFT BASIC, halts program and displays 
line number where stop occured. Program may be 
continued with a CONT cOl11l1and . If in System Monitor, 
(as indicated by "*") , control C and a carriage 
return will enter integer BASIC killing APPLESOFT 
BASIC and the user program. 

Sounds bell (beeps speaker) 

Backspaces cursor and deletes any overwritten characters 
from computer but not from screen. APPLE supplied key-
boards have a special "+" on the right side of the 
keyboard that provides this function without using the 
control button. 

Issues line feed only 

Compliment to HC. Forward spaces cursor and copi es 
overwritten characters. APPLE keyboards have " .. " key 
on right side which also performs this function. 

deletes current line. 

Move cursor to right; does not copy any data 

Move cursor to left; does not copy any data 

Move cursor down; does not copy any data 

Move cursor up; does not copy any data 

Clear text from cursor to end of line 

Clear text from cursor to end of page 

Home cursor to top of page, clear text to end of page. 

37 



Special Control. and Feature. 

BASIC Example 

10 

20 

30 

40 

50 POKE 32, L 

60 POKE 33, W 

70 POKE 34, T 

80 POKE 35, B 

90 CH=PEEK(36) 

100 POKE 36,CH 

110 CV=PEEK(37) 

120 POKE 37,CV 

DESCRIPTION 

Switches displ ay mode from text mode to color graphics 
without clear i ng screen to black. "GR" command 
switches to color and clears screen to black and sets 
mixed mode.) 

Switches display from color graphics to all text 
mode without resetting scrolling window . "TEXT" 
command also resets scrolling wi ndow to maximum and 
positions cursor in lower left hand corner of TV 
display. 

Sets all color graphics mode of 40x48 grid; i .e., no 
text at bottom of screen 

Sets mi xed color graphics mode ; i.e . , 40x40 grid of 
16 colors with four lines of text each 40 
at bottom of screen. (Automatically done by a "GR" 
command. ) 

Set left margin of TV display to value specified by 
L in the range of to 39 where i s left most position. 

Set the width (number of characters per line) of TV 
display to the value specified by W. W must be greater 
than zero . Wth must be less than 40; i .e., the right 
margin must be 39 or less. 

Set top margin line of TV di splay to value speci fi ed 
by T in the range of to 23 where is the first line 
on the screen . A POKE 34,4 will not allow text to be 
outputted to the first four lines on the screen. 

Set bottom marg i n line of TV display to value spec ifi ed 
by T i n t he range of to 23 . B must also be larger 
than T above; i .e., the bottom of the display cannot 
be above the top . Text will scroll up when last line 
is reached . 

Read back the current horizontal position of the cursor 
and set variable CH equal to i t. CH will be in t he 
range of to 39 and is a relat ive position referenced 
to the left hand margin as set by PO KE 32, L. Thus , if 
the margin was set by POKE 32,5, then the left margi n 
is 6 characters from the left edge of the screen and 
if PEEK (36) returned a value of 5 then the cursor was 
11 character posit i ons from the left edge of the screen 
and 6 characters from the left margin. This is identical 
to the "POS(X)" function where X is a dummy variable 
(See next example.) 

Move the cursor to a position that is CH+l character 
pos i tions from the left hand margin . (Exp : POKE 36,0 

will cause next character outputted to be at left margin) . 
If left margin was set at 6 (POKE 32,6) and you wanted 
to provide a character three positions from left edge . 
then the left margin must be changed prior to outputting . 
CH must be less than or equal to the window width as set 
by POKE 22.W and must be greater than or equal to zero . 

Read bac k the current vertical position of the cursor and 
set CV equal to it. CV is the absolute vertical position 
of the cursor and is not referenced to the top or bottom 
of page settings. Thus is top line on screen and 
CV=23 is bottom. The value of CV will be between T (top) 
and B (bottom). 

Move the cursor to the absolute pos i t ion specified by CV 
and CV is greater than or equal to T and less than or 
equal to B. is the top most line and 23 is the last 
line . 

3A 



SIHIJIL aNTIUS MID FEATUfI:S (WIT,) 
BASIC Examples 

170 CALL-958 

180 CALL-868 

190 CALL-922 

200 CALL-912 

220 X=PEEK( -16336) 

230 X=PEEK(-16384) 

240 X=PEEK(-16368.P) 

250 X=PEEK(-16287) 

260 X=PEEK(-16286) 

270 X=PEEK(-16285) 

280 POKE-16296,1 

290 POKE-16295.0 

300 POKE-16294,1 

310 POKE-16293.0 

180 CALL 11246 

190 HCOLOR= I : 
HPLOT 0.0:CALL 11250 

OESCRIPTION 

Clear inside of window from current cursor position to 
bottom margin and left margin. Characters to the left 
or above the cursor will not be affected. This is the 
same as FE (Escape F). 

Clear current line from cursor to right margin. This 
is the same as EE (Escape E). 

Issues a line feed. 

Scrolls up text one line; i.e., moves each line of 
text within the defined window up one position. Old 
top line is lost; old second line becomes line one; 
bottom line is now blank. Characters outside defined 
window are not affected. 

Toggle speaker once. 

Read keyboard; if X>127 then key was depressed and 
Xis I I value of key depressed with bit 7 set. Thi sis 
useful in long programs to have the computer check to 
see if the user wants to interrupt with new data 
without stopping program execution. 

Reset keyboard strobe so that next character may be 
read in. 

Read paddle #0 push button switch. If X>127 then 
paddle button is depressed. 

Same as above but paddle #1 

Paddle #2 pushbutton. 

Set Game I/O output #0 to TTL high (3.5 volts). 

Set Game I/O output #0 to TTL low (0.3 volts). 

Set Game I/O output #1 to TTL high (3.5 volts) . 

Set Game I/O output #1 to TTL low (0.3 volts) . 

(Cassette tape version) Clears current HIRES screen to black 

(Cassette tape version) Sets entire background to color specified 
by expression I. 

200 CALL 11719: HPOLT Oraws a line from end of last shape drawn to pOint X2.Y2 
TO X2.Y2 

210 CALL 11719: Y= Finds X and Y coordinates for the end of last shape plotted. 
PEEK (226) :X=PEEK 
(224) + PEEK (225)*256 

1010 X=PEEK (218)+ This statement sets X equal to the line number of the statement where 
PEEK (219) *256 an error occured if an ONERRGOTO statement has been executed .. 

1020 IF PEEK (216»127 If Bit 7 at memory (ERRFLG) location 222 has been set true. then an 
THEN GOTO 2000 "ONERRGOTO" statement has been encountered. 

1030 POKE 216,0 

1040 Y:PEEK (222) 

Clears ERRFLG so that nonna1 error messages will occur 

Sets variable Y to a code that described type of error that caused 
an "ONERRGOTO" jump to occur. Error types are described below: 

Y VALUE ERROR TYPE ENCOUNTERED Y VALUE ERROR TYPE ENCOUNTERED 
0 Next without for 133 Division by Zero 
16 Syntax 163 Type Mi smatch 
22 Return without Gosub 176 String too long 
42 Out of Data 191 Formula too complex 
53 ILLEGAL QUANTITY 224 Undefined Function 
69 Overflow 254 Bad response to an input 
77 Out of memory statement 
90 Undefined Statement 255 Contro1-C interrupt 
107 Bad Subscript attempted 
120 Redimens ioned Array 

39 



APPENDICES 

40 



APPENDIX A 

Getting APPLESOFT BASIC up 

Unlike APPLE integer BASIC, which is always lIinll the computer's 
permanent ROM memory, APPLESOFT BASIC must be loaded from cassette 
tape into the computer each time you wish to use it (because it 
res ides in RAM, it is lost when power is turned off) or you wi 11 
need the Applesoft ROM BASIC peripheral card (Apple Part No. A2B0009X) 
The cassette tape version of APPLESOFT BASIC occupies approximately 
10k bytes of memory, thus a computer with 16k bytes or more 
memory is required to use APPLESOFT BASIC. A 4k minimum system is 
required with the APPLESOFT ROM card. 

Cassette version of APPLESOFT BASIC is entered into the computer 
just like any BASIC program - simply type: LOAD 

start the tape 
depress the RETURN key 

After about mi nutes APPLESOFT wi 11 have loaded, and a 11)11 prompt 
character followed by a cursor will be displayed. 

Typi ng II RUN" as you always do to run a program wi 11 trans fer to 
Applesoft language. 

AN IMPORTANT NOTE: One of the functions of the prompt character, 
besides PROMPTing you for input to the computer, is to identify at 
a glance which language the computer is programmed to respond to at 
that time. For instance, up till now you have seen two prompt characters: 

11*11 for the MONITOR (when you hit RESET) 

11)11 for APPLE BASIC (the normal integer BASIC) 

and now we introduce a third: 

for APPLESOFT floating point BASIC 

By simply looking at this prompt character, you can easily tell 
(if you forget) which language the computer is in. 

ANOTHER IMPORTANT NOTE: If you accidently hit RESET and are in 
the MONITOR (as shown by the 11*11 prompt character), you may be able 
to return to APPLESOFT BASIC, with the BASIC and your program intact by 
typing and depressing the IIRETURW key. If this does not work, 
you will have to re-load APPLESOFT from cassette tape. Also, typing 
Control-C or Control-B from the monitor will transfer you to APPLE 
integer BASIC and erase APPLESOFT BASIC. 

41 



Page 1 

030-0015 
HOW TO INSTALL AND USE THE APPLESOFT II FIRMWARE CARD 

INSTALLATION 

To install the APPLESOFT card you will simply plug it into a socket inside 
the APPLE II. Care must be exercised, however, and these instructions 
should be followed exactly: 

1. Turn the APPLE II off. This is very important to prevent damage to 
the computer. 

2. Remove the cover from the APPLE II. This is done by pulling up on the 
cover at the rear edge (the edge farthest from the keyboard) until the two 
corner fasteners pop apart. Do not continue to lift the rear edge, but 
slide the cover backward until it comes free. 

3. Inside the APPLE II, across the rear of the circuit board, there is a 
row of eight long, narrow sockets called "slots". The leftmost one (looking 
at the computer from the keyboard end) is slot #0, and the rightmost one is 
slot #7. Holding the APPLESOFT card so that its switch is toward the rear 
of the computer, insert the "fingers" portion of the card into slot 110, the 
leftmost one. The "fingers" portion will enter the socket with some 
friction and will then seat firmly. The APPLESOFT card must be placed in 
slot 0. 

4. The switch on the back of the APPLESOFT card should protrude part way 
through the slot on the back of the APPLE II. 

5. Replace the cover of the APPLE II, remembering to start by sliding the 
front edge of the cover into place. Press down on the two rear corners 
until they pop into place. 

7. The APPLESOFT card is now installed, and the APPLE II may be turned on. 

41 (a) 



Page 2 

USING THE APPLESOFT CARD 

With the APPLESOFT card's switch in the downward position, the APPLE II will 
begin operating in Integer BASIC when you use {RESET}{CTRL}B. With the 
switch in the upward position, {RESET}{CTRL}B will bring up APPLESOFT BASIC 
instead of Integer BASIC. 

When using the Disk Operating System, the computer will automatically choose 
Integer BASIC, or APPLESOFT from the card, as required. It does not matter 
in which position the switch is set. 

To change from Integer BASIC to APPLESOFT, or vice-versa, without operating 
the switch, the following commands may be used: 

{RESET}C080{RETURN} 
{CTRL}B{RETURN} 
will put the computer into APPLESOFT, and 

{RESET}C081{RETURN} 
{CTRL}B{RETURN} 
will put the computer into Integer BASIC. 

41 (b) 



CORRECTING THE APPLESOFT ON CARD AND APPLESOFT 
ON DISK INCOMPATIBILITY 

Application note: 24 JULY 78 

030-0016 

If a program was generated using the version of APPLESOFT 
that is on the disk, it will no longer run once the APPLESOFT 
card has been installed. It is very easy to convert the 
program so that it will run. 

1. LOAD the program, but do not RUN it. 

2. Type the command 
CALL 54514 

3. SAVE the program. You may use the same name if the 
original file is UNLOCKed. 

If a program was generated using the version of APPLESOFT 
from the card, it will no longer run in an APPLE II that 
doesn't have the APPLESOFT card. It is possible to convert 
the program so that it will run from the version of APPLESOFT 
that resides on the disk. 

1. LOAD the program, but do not RUN it. 

2. Type the command 
CALL 3314 

3. SAVE the program. You may use the same name if the 
original file is UNLOCKed. 

41 (c) 



APPENDIX B 
Program Editing with APPLESOFT BASIC 

Most ordinary humans make mistakes occasionally •... es-
pecially when writing computer programs. To facilitate 
correcting these "oversights" Apple has incorporated a 
unique set of editing features into APPLESOFT BASIC. 

To make use of them you will first need to familiarize 
yourself with the functions of four special keys on the 
Apple II keyboard. They are: (Escape), -'1 (Right Arrow) 
E-(Left Arrow), and REPT (Repeat). 

ESC 

The escape key ("ESC") is the 1 eftmost key in the second 
row from the top. It is ALWAYS used with another key 
(such as A, B, C or 0 keys) ie. using the escape key re-
quires you to push and release "ESC" then push and release 
A etc .... alternately. 

This operation or sequence of the "ESC" key and another 
key is written as subscript E (AE) and is read "Escape-A". 
There are four escape functions used for editing: 

AE - "escape-A" moves cursor to the right 
BE - "escape-B" moves cursor to the left 
CE - "escape-C" moves cursor down 
DE - "escape-O" moves cursor up 

Using the escape key and the desired key, the cursor may 
be moved to any location on the screen without affecting 
anything that is already displayed there. 

RIGHT HAND ARROW 

The right arrow key moves the cursor to the right. 
It is the most time saving key on the keyboard because 
it not only moves the cursor, but, 

IT COPIES ALL CHARACTERS AND SYMBOLS. IT "MOVES 
ACROSS" INTO APPLE II'S MEMORY, JUST AS IF YOU 
HAD TYPED THEM IN FROM THE KEYBOARD YOURSELF! 

LEFT HAND ARROW 

The left arrow key moves the cursor to the left. It 
removes all characters and symbols it "moves across" from 
Apple II's memory but not from the TV display. It is 
similar in use to the backspace key on standard typewriters. 

42 



REPT 

The "REPT" key is used with another character key on the 
keyboard. It causes a character to be repeated as long 
as the REPT key is held down. 

Now you're ready to use these edit functions to save time 
when making changes or corrections to your program. Here 
are a few examples of how to use them. 

Example 1 Fixing typos 

Suppose you've entered a program by typing it in, and when 
you run it, the computer prihts SYNTAX ERR and stops, pre-
senting you with the "J" prompt and the flashing cursor . 

Enter the following program and "RUN" it. 
and "PREGRAM" are mis-spelled on purpose. 
will look on your TV display. 

Note that "PRIMT" 
Below is how it 

J10 PRINT :'"THIS IS 
]2(1 GiTTf) ' 1'0 
JRUH 

Now type in "LIST" as below: 
JLI5T 

10 PRINT "THIS- 1:5 H :PEEGRAN u 

20 GUTO 10 
r EJ "'.' . . ::'. ' 

CURSOR 

-.. - : . -.".,.. ..- - ':"', - . .. -.. . 

To move the cursor up to the error in line 10, type escape-
D twice and an Escape B. 

- CURSOR - .. -' " ... 

rna . PRIMT PREGRAM- ; 
2 0 GOTO : 10 " . 

] 

Now hit the right arrow 6 times to move the cursor on to 
the "M" in "PRIMT". Remember, using the right arrow copies 

43 



all characters covered into Apple's memory just as if 
you were typing them in from the keyboard. The TV dis-
play will now look like this : 

CURSOR 
JLI5T / 
] 

1 ti FF.: I[j]r II TH I:; IS R PREGRAH iI 
20 GOTO 10 

Now type the letter "N" to correct the spelling of"PRIMT", 
then copy (us i ng the key and the "REPT" key) over to 
the letter "E" in "PREGRAM". The TV screen will now look 
like this: 

JLI5T -. ... . /'. 
- y --

] 

·1 ti PR INT - H THI:; . I 5 · R PF.ij::lP.:fIN" -
2t1 GOTO 10 

CURSOR 

I f you typed too many '!o+" s by ho 1 di ng down the "REPT" key 
too 1 ong, use the key to backspace back to the "E". 
Now, type the letter "a" to correct "PREGRAM" and copy using 
the '!.:;' key to the end of 1 i ne 10. 

Type "LIST" to see your corrected program: 

JLI5T 

] 

1 
20 

PRINT . "THIS -IS 
GOTel 10 

Now "RUN" it (Use a control-C to stop the program): 

44 



JPUH 
T" T :; I 5 A PPOGF.:AN IH l. 

TH I .-::: S Ci F' I] CJ F.: A t'i - ' ... I I 

TH I ::.' I 5 A F2 i] Ci A 1'1 
TH T .-::: T ,- A P R [I G F.: At'l l. - ' .L ;:, 

TH T ,-= T 5 A PPOGf:HN l. 

TH I ,- I 5 A P F.: 0 G F.: A t'j ::.' 
TH I .-::: T =1 A F'ROGf:At'l -' .L 

TH IS I ,- R PFWGRfH'l ::,.: 

TLl T .-::: I ::.' A F: f : [I (j F.: A t'1 II .L - ' 

TH 1 .-::: 1 S A P F.: 0 G R R t'1 - ' 

TH T 5 I c · A PPOGRAt'! .L - ' 

1 " 

Example 2 - Inserting text into an existing line 

-Suppose in the previous example, you wanted to insert a "TAB(X)" 
command after the "PRINT" in line 10. Here's how. First "LIST" 
the line to be changed: 

JLI5T ilj 

IIj " PPIHT :RTH15 15 H PROGRAW' 

CURSOR 

Type escape - D until the cursor is on the line to be 
(in this case only one DE is required); then use the 
"REPT" keys to copy over to the first quotation mark. 
TV display should now look like this: 

CURSOR 
JLIST ' 1"0 

] 
.-. " - - -: -- ," -

• • 't" 

changed 
and 

Your 

Now type another escape - D to move the cursor to the line 
just above the current line and the display will look like: 

JLI5T 10 CURSOR 

r.a 
10 PRINT "TH151S A" PROGRRM" 

45 



Type in the message to be inserted which, in this case, is 
Your TV display should now look like this: 

CURSOR 
JLI S T 10 

TRB ( 10::'; 

Type an escape - C to move the cursor down one line so that 
the display looks like this: 

CURSOR 

Now backspace back to the first quotation mark using escape -
B (or the key). The TV display will now look like this: 

JLIST 1[1 

From here, copy the rest of the 1 i ne us ing the and II REPT" 
keys until the display looks like this: 

.JLIST ' 10 
TAB(10); 

i 0 F:f: I r-4T nTH IS I .S ·· .R Ii 

CURSOR 

Depress the "RETURN" key and type "LIST" to get the following: 

JL I 5T -

..i 

Remember, using the escape keys, one may copy and edit text 
that is displayed anywhere on the TV display . 

46 



APPENDIX C 

Error Messages 

After an error occurs, BASIC returns to command level 
as indicated by ":J" prompt character and a flashing 
cursor. Variable values and the program text remain 
intact, but the program can not be continued and all 
GOSUB and FOR loop counters are set to 

When an error occurs in a direct statement, no line 
number is printed. 

Format of error messages: 

Direct Statement ?XX ERR 

Indirect Statement ?XX ERR IN YY 

In both of the above examples, "XX" will be the error 
code. The "YY" will be the line number where the error 
occured for the indirect statement. Error messages for 
indirect statements wili be not output until a "-RUN" 
is executed. 
The following are the possible error codes and their 
meanings. 

ERROR MESSAGE 

CAN'T CONTINUE 

DIVISION BY ZERO 

ILLEGAL DIRECT 

ILLEGAL QUANTITY 

MEANING 

Attempt to continue a program 
when none exists, an error 
occured, or after a new line 
was typed into the program. 

Dividing by zero is an error. 

You cannot use an DEF, or DATA 
statement as a direct command. 

The parameter passed to a math or 
string function was out of range. 
"ILLEGAL QUANTITY" errors can occur 
due to: 

47 

a) 

b) 

c) 

d) 

a neqative matrix subscript 
(LET A (-1)=0 

an unreasonably large matrix 
subscript (>65535) 

LOG-negative or zero argument 

SQR-negative argument 



Error Messages (Cont.) 

ERROR MESSAGE 

ILLEGAL QUANTITY (cont) 

NEXT WITHOUT FOR 

OUT OF DATA 

OUT OF MEMORY 

OVERFLOW 

REDIM'D ARRAY 

RETURN WITHOUT GOSUB 

48 

MEANING 

e) AtB with A negative 
and B not an integer. 

f) use of MID$, LEFT$, 
RIGHT$, WAIT, PEEK, 

TAB, SPC ) ON .. 
or any of the 

graphics functions with 
an improper argument. 

The variable in a NEXT state-
ment corresponds to no pre-
viously executed FOR statement. 

A READ statement was executed 
but all of the DATA statements 
in the program have already 
been read. The program tried 
to read too much data or in-
sufficient data was included in 
the program. 

Program too large, too many 
variables, too many FOR loops, 
too many GOSUB's, too ,complicated 
an expression or any combination 
of the above. 

The result of a calculation was 
too large to be represented in 
BASIC's number format. If an 
underflow occurs, zero is given 
as the result and execution 
continues without any error 
message being printed. 

After a matrix was dimensioned, 
another dimension statement for 
the same matrix was encountered. 
This error often occurs if a 
matrix has been given the default 
dimension 10 because a statement 
like A(I)=3 is encountered and 
then later in the program a DIM 
A(100) is found. 

A RETURN statement was encountered 
without a previous GOSUB statement 
being executed. 



Error Messages (Cont.) 

ERROR MESSAGE 

STRING TOO LONG 

BAD SUBSCRIPT 

SYNTAX ERROR 

TYPE MISMATCH 

UNDEF'D STATEMENT 

UNDEF 10 FUNCTION 

MEANING 

Attempt was made by use of the 
concatenation operator to create 
a string more than 255 characters 
long. 

An attempt was made to reference 
a matrix element which is outside 
the dimensions of the matrix. 
This error can occur if the wrong 
number of dimensions are used in 
a matrix reference; for instance, 
LET A(l,l,l,)=Z when A has been 
dimensioned DIM A(2,2). 

Missing parenthesis in an ex-
pression, illegal character in 
a line, incorrect punctuation, 
etc. 

The left hand side of an assign-
ment statement was a numeric 
variable and the right hand side 
was a string, or vice versa; or a 
function which expected a string 
argument was given a numeric one 
or vice versa. 

An attempt was made to GOTO, GOSUB 
or THEN to a statement which does 
not exist. 

Reference was made to a user 
defined function which had never 
been defined. 

The line which the error occurs on will be listed after the 
error message. 

49 



APPENDIX D 

Space Hints 

In order to make your program smaller and save space, 
the following hints may be useful. 

1) Use multiple statements per line. There is a small 
amount of overhead (5 bytes) associated with each line 
in the program. Two of these five bytes contain the line 
number of the line in binary. This means that no matter 
how many digits you have in your line number (minimum 
line number is 0, maximum is 65529), it takes the same 
number of bytes. Putting as many statements as possible 
on a line will cut down on the number of bytes used by 
your program. (A single line can include up to 254 
characters. ) 

2) Use integer as opposed to real matrixes where ever 
possible. 

3) Delete all REM statements. Each REM statement uses 
at least one byte plus the number of bytes in the common 
text. For instance, the statement 130 REM THIS IS A 
COMMENT uses up 24 bytes of memory. 

In the statement 140 X=X+Y: REM UPDATE SUM, the REM 
uses 14 bytes of memory including the colon before the REM. 

4) Use variables instead of constants. Suppose you use 
the constant 3.14159 ten times in your program. If you 
insert a statement 

10 P=3.14159 
in the program, and use P instead of 3.14159 each time it 
is needed, you will save 40 bytes. This will also result in 
a speed improvement. 

5) A program need not end with an END; so, an END statement 
at the end of a program may be deleted. 

6) Re-use the same variables. If you have a variable T 
which is used to hold a temporary result in one part of 
the program and you need a temporary variable later in your 
program, use it again. Or, if you are asking the 

50 



terminal user to give a YES or NO answer to two different 
questions at two different times during the execution of 
the program, use the same temporary variable A$ to store 
the reply. 

7) Use GOSUB's to execute sections of program 
statements that perform identical actions. 

8) Use the zero elements of matrices; for instance, 

STORAGE ALLOCATION INFORMATION 

Simple real or integer (non-matrix) numeric 
variables like V use 7 bytes; 2 for the variable name, 
and 5 for the value. Simple non-matrix string variables 
also use 6 bytes; 2 for the variable name, 2 for the 
length, and 2 for a pointer. 

Real matrix variables use a minimum of 13 bytes. 
Two bytes are used for the variable name, two for the 
size of the matrix, two for the number of dimensions 
and two for each dimension along with five bytes for 
each of the matrix elements. Integer (AB% (X,Y ... )) 
matrix variables use only 2 bytes for each matrix 
element. 

String variables also use one byte of string space 
for each character in the string. This is true whether 
the string variable is a simple string variable like A$, 
or an element of a string matrix such as Q1$(5,2). 

When a new function is defined by a DEF statement, 
6 bytes are used -to store the definition. 

Reserved words such as FOR, GOTO or NOT, and the 
names or the intrinsic functions such as COS, INT and 
STR$ take up only one byte of program storage. All 
other characters in programs use one byte of program 
storage each. 

When a program is being executed, space is dynamically 
allocated on the stack as follows: 

1) Each active FOR ... NEXT loop uses 16 bytes. 

2) Each active GOSUB (one that has not returned 
yet) uses 6 bytes. 

3) Each parenthesis encountered in an expression 
uses 4 bytes and each temporary result calculated 
in an expression uses 12 bytes. 

51 



APPENDIX E 

Speeding Up Your Program 

The hints below should improve the execution time 
of your BASIC program. Note that some of these hints 
are the same as those used to decrease the space used 
by your programs. This means that in many cases you 
can increase the efficiency of both the speed and size 
of your programs at the same time. 

1) THIS IS PROBABLY THE MOST IMPORTANT SPEED HINT 
BY A FACTOR OF 10. 

Use variables instead of constants. It takes 
more time to convert a constant to its floating point 
representation that it does to fetch the value of a 
simple or matrix variable. This is especially im-
portant within FOR .•. NEXT loops or other code that is 
executed repeatedly. 

2) Variables which are encountered first during 
the execution of a BASIC program are allocated at the 
start of the variable table. This means that a state-
ment such as 5 A=0:B=A:C=A, will place A first, 
B second, and C third in the symbol table (assuming 
line 5 is the first statement executed in the program). 
Later in the program, when BASIC finds a reference to 
the variable A, it will search only one entry in the 
symbol table to find A, two entries to find B and three 
entries to find C, etc. 

3) NEXT statements without the index variable. 
NEXT is somewhat faster than NEXT I because no check 
is made to see if the variable specified in the NEXT 
is the same as the variable in the most recent FOR 
statement. 

4) During program execution, when APPLESOFT 
encounters a new line reference such as "GO TO 1000" 
it scans the entire user program starting at the lowest 
line until it finds the referenced line number 
(1000 in this example). Therefore, frequently re-
ferenced lines should be placed as early in the program 
as possible. 

52 



APPENDIX F 

Derived Functions 

The following functions, while not intrinsic to APPLESOFT 
BASIC, can be calculated using the existing BASIC functions and 
can be easily implimented by using "DEF FN" function. 

FUNCTION 

SECANT 
COSECANT 
COTANGENT 
INVERSE SINE 
INVERSE COSINE 
INVERSE SECANT 
INVERSE COSECANT 
INVERSE COTANGENT 
HYPERBOLIC SINE 
HYPERBOLIC COSINE 
HYPERBOLIC TANGENT 
HYPERBOLIC SECANT 
HYPERBOLIC COSECANT 
HYPERBOLIC COTANGENT 
INVERSE HYPERBOLIC 

SINE 
INVERSE HYPERBOLIC 

COSINE 
INVERSE HYPERBOLIC 

TANGENT 
INVERSE HYPERBOLIC 

SECANT 
INVERSE HYPERBOLIC 

COSECANT 
INVERSE HYPERBOLIC 

COTANGENT 

FUNCTION EXPRESSED IN TERMS OF BASIC FUNCTIONS 

SEC(X) = l/COS(X) 
CSC(X) = l/SIN(X) 
COT(X) = l/TAN(X) 
ARCSIN(X) = ATN(X/SOR(-X*X+l)) 
ARCCOS(X) = -ATN(X/SQR(-X*X+l))+1.5708 
ARCSEC(X) = ATN(SQR(X*X-l))+(SGN(X)-1)*1.5708 
ARCCSC(X)= ATN(1/SQR(X*X-l))+(SGN(X)-1)*1.5708 
ARCCOT(X)= -ATN(X)+1.5708 
SINH(X) = (EXP(X)-EXP(-X))/2 
COSH(X) = (EXP(X)+EXP(-X))/2 
TANH(X) = -EXP(-X)/(EXP(X)+EXP(-X))*2+1 
SECH(X) = 2/(EXP(X)+EXP(-X)) 
CSCH(X) = 2/(EXP(X)-EXP(-X)) 
COTH(X) =EXP(-X)/(EXP(X)-EXP(-X))*2+1 

ARGSINH(X) = 

ARGCOSH(X) = LOG(X+SQR(X*X-l)) 

ARGTANH(X) = LOG((1+X)/(1-X))/2 

ARGSECH(X) = LOG((SQR(-X*X+l)+l)/X) 

ARGCSCH(X) = LOG (SGN(X)*SQR(X*X+l)+l)/X 

ARGCOTH(X) = LOG((X+l)/(X-l))/2 

. 53 



APPENDIX G 

Converting BASIC Programs not written for APPLESOFT 

Though implementations of BASIC on different computers are 
in many ways similar, there are some incompatibilities which 
you should watch for if you are planning to convert some BASIC 
programs that were not written for the Apple II. 

1) Matrix subscripts. Some BASIC's use II [ II and II ] II 

to denote matrix subscripts. APPLESOH BASIC uses II ( II and 
II ) ". 

2) Strings. A number of BASIC's force you to dimension 
(declare) the length of strings before you use them. You should 
remove all dimension statements of this type from the program. 
In some of these BASIC's, a declaration of the form DIM A$(I,J) 
declares a string matrix of J elements each of which has a length I. 
Convert DIM statements of this type to equivalent ones in APPLESOFT 
BASIC: DIM A$(J). 

APPLESOFT BASIC uses II + II for string concatenation, not II , II 

or II & ". 

APPLESOFT BASIC uses LEFT$, RIGHT$ and MID$ to take substrings of 
strings. Other BASIC's use A$(I) to access the Ith character of 
the string A$, and A$(I,J) to take a substring of A$ from character 
position I to character position J. Convert as follows: 

OLD 

A$(I) 

A$(I,J) 

NEW 

MID$(A$,I,I) 

MID$(A$,I,J-I+l) 

This assumes that the reference to a substring of A$ is in an 
expression or is on the right side of an assignment. If the 
reference to A$ is on the left hand side of an assignment, and 
X$ is the string expression used to replace characters in A$, 
convert as follows: 

OLD 

A$(I)=X$ 

NEW 

A$=LEFT$(A$,I-I)+X$+MID$(A$,I+I) 

A$(I,J)=X$ A$=LEFT$(A$,I-1)+X$+MID$(A$,J+1) 

3) Multiple assignments. Some BASIC's allow statements 
of the form: 500 LET This statement would set the 
variables B & C to zero. 

In APPLESOFT BASIC this has an entirely different effect. All the 
II ='s II to the right of the first one would be interpreted as logical 
comparison operators. This would set the variable B to -1 if C 

54 



equaled 0. If C did not equal B would be set The 
easiest way to convert statements like this one is to rewrite 
them as follows: 

500 C=0:B=C. 

4) Some BASICls use II / II instead of II : II to delimit 
multiple statements per line. Change the II /IlIS to II : IllS in 
the program. 

5) Programs which use the MAT functions available in some 
BASICls will have to be re-written using FOR . . . NEXT loops to 
perform the appropriate operations. 

APPLESOFT CONVERT PROGRAM 

Programs written for APPLESOFT and saved on tape cannot be LOADed and 
RUN with APPLESOFT II. Instead of retyping these programs, you can 
use the CONVERT program, which runs in INTEGER BASIC. This program 
accepts a tape in APPLESOFT BASIC and produces a new tape in APPLESOFT 
II BASIC. 

TO USE IT : 

LOAD THE CONVERT TAPE. It will ask you if the old program (the one in 
APPLESOFT BASIC) used in OPTION 1 or OPTION 2. 

OPTION 1 was GRAPHICS COMMANDS WITHOUT LET OR REM STATEMENTS 

OPTION 2 was LET OR BUT NO GRAPHICS 

After you answer, y ou wi 11 be prompted to 
After the program has finished reading and 
you will be asked to record a second tape. 
program converted into APPLESOFT II. 

play the old program tape. 
processing your old tape, 
The second tape will be your 

If any errors are discovered, self-explanatory messages are given. 

55 



FOLLOWING IS THE LISTING OF THE CONVERTFROM APPLESOFT I TO APPLESOFT II 
PROGRAM . THIS PROGRAM IS WRITTEN ININTEGER BASIC, AND CAN BE RUN ON ANY 
SYSTEM LARGE ENOUGH TO RUN APPLESOFT 

° TEXT : CALL -936 : VTAB 3 : PR INT " APPLESOFT CONVERSION PROGRAM : " 

2 PRINT "CONVERTS OLD APPLESOFT PROGRAMS TO": PRINT "APPLESOFT J[ F 
ORMAT" 

3 PRINT "COPYRIGHT 1978 APPLE COtiPUTER, INC. " : PRINT 
4 PRINT : PRINT : PRINT: POKE 34,10 
5 PRINT "WAS PROGRAt1 WRITTEN IN OPTION lOR" : PRINT "OPTION 2?" -· 

: PRINT "OPTION 1 : GRAPHICS COMMANDS WITHOUT" 
6 PRINT" LET OR REt1 STATEMENTS" : PRINT "OPTION 2 : LET AN 

o REM STATEMENTS BUT NO GRAPHICS . " 
7 INPUT "OPTION #",0: IF 0 <>1 AND 0 <>2 THEN 7 

10 CALL -936 : PR INT "PUT APPLESOFT PROGRAt1 TAPE IN RECORDER, " : POKE 
60, Z: POKE 61, Z: POKE 62,2 : POKE 63,Z : F=1536:B=4096 

20 INPUT "PRESS THE PLAY BUTTON, THEN HIT RETURN",A$ : CALL -259 

25 IF PEEK (1)<128 THEN 30 : PRINT "TAPE READ ERROR! !II: - PRINT- -'.."TRY-- RE -
-ADJUSTING VOLUME CONTROLS ON TAPEPLAYER, THEN RE-RUN THIS PROGRA 
M" : END 

. 30 POKE 60, Z: POV,E 61.16 : E= - PEEK (Z)+ PEEK --(-1 )*256-6657-:---POKE --b2 - - -
,E MOD 256: POKE 63,E/256 : CALL -259 

35 CALL -936: PRINT : PRINT : PRINT .. " 
40 PRINT - : PRINT : PRINT -: POKE 34, 10 ------------- --- ----- ----------
50 FOR B=B+4 TO B+999 : T= PEEK (B): IF T<133 THEN 250: IF T<>135 

AND T<>142 OR 0=2 THEN 200 : C=B 
55 IF T<)142 THEN 60 : T=137 : GOTO 250 
60 C=C+1 : U= PEEK (C) : IF U=32 THEN 60 : IF U=67 OR U=71 OR U=72 OR 

U=80 OR U=86 THEN GOTO U: PRINT "BAD STATEMENT IN PROGRAM": GOTO 
--- - - - -- .250 ------- .---- ------- ---

67 T=160: GOTO 90 
71 T=136: GOTO 90 
72 T=142: -- GOTO -87 
80 T=141 : GOTO 90 
86 T=143 

---
88 0=0+1 : IF PEEK (0)<>44 AND PEEK (0)<>58 AND PEEK (D) THEN 88 

: IF PEEK (0)=44 THEN 89 : PRINT "BAD STATEMENT IN PROGRAM!" : 
- GO TO 250 --- - - -- ---- --- --- . --- --- -------.- ----. -.-.. ------ - -

89 CC=CC+l: IF CC=l THEN 88: POKE 0,197 
90 POKE C,32 : GOTO 250 

-- .- 199 -REM ... NEW ---------------------. 
200 IFT>195 THEN 250 : T=T+1+(T)134)*34+(T>139)+(T>160)+(T>177)*2 

250 POKE- B, --T:-- IF- B/500*500=B- THEN __ 
I 

251 IF T<>O THEN NEXT B:B=B+1: GOTO 40 

.. 

878 CC=Z:D=C v 

- -- 1000 CALL- ...".936 :--.p OKE- .60 •. Z : . - p OKE--b 1-. -·Z: ---P OKE - .62.-2 :---P-OKE- 63,-Z -: P-R-INT--- -
"DONE! 

II: INPUT "START RECORDING, THEN HIT 'RETURN III, A$ 
.. 1001 POKE E-2. Z : - POKE -E-l, Z: POKEE, Z -- -·---- --------- ------------ - - ------ - .-- ----.. - - --

1005 D=E-4096 : POKE Z,D MOD 256 : POKE 1,0/256: POKE 2,Z : CALL -307 

-- 1010 -POKE-· 60.Z :---POKE ·61 .-16:---·-POKE --62, E--MOD -256 ;--·POKE --b3. -E/-256:-CALL- - ----
-307 

1020 PRINT "O. K. ": PRINT "THE TAPE JUST RECORDED CAN NOW BE LOADED INT 
a APPLESOFT - J [. ":-- END --- -- - ----- - -- --------- .-- - -- -- - -- - -- ---------- -.-.-- - - -- .. - . -



APPENDIX H 

ASCII Character Codes 

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR. 

0 NULL 32 SPACE 64 @ 

1 SOH 33 ! 65 A 
2 STX 34 II 66 B 
3 ETX 35 # 67 C 
4 EOT 36 $ 68 D 
5 ENQ 37 % 69 E 
6 ACK 38 & 7'/1 F 
7 BEL 39 71 G 
8 BS 40 72 H 
9 HT 41 73 I 

111 LF 42 * 74 J 
11 VT 43 + 75 K 
12 FF 44 76 L 
13 CR 45 7J M 
14 SO 46 . 78 N 
15 SI 47 / 79 0 
16 DLE 48 P 
17 DC1 49 1 81 Q 
18 DC2 50 2 82 R 
19 DC3 51 3 83 S 
2f!1 DC4 52 4 84 T 
21 NAK 53 5 85 U 
22 SYN 54 6 86 V 
23 ETB 55 7 87 W 
24 CAN 56 8 88 X 
25 EM 57 9 89 Y 
26 SUB 58 Z 
27 ESCAPE 59 ; 91 r:: 
28 FS < 92 "-
29 GS 61 = 93 ::J 
3f!1 RS 62 94 A 

31 US 63 95 

LF=LINE FEED CR=CARRIAGE RETURN 

CHR$ is a string function which returns a one character string which 
contains the ASCII equivalent of the argument, according to the conversion 
table above. ASC takes the first character of a string and converts it to 
its ASCII decimal. 

One of the most common uses of CHR$ is to send a special character 
to the user1s terminal. The most often used of these characters is the 
BELL (ASCII 7}. Printing this character will cause a "beep". This may be 
used as a preface to an error message, as a novelty, or just to wake up the 
user if he has fallen asleep. (Example: PRINT CHR$(7);) 

57 



APPENDIX I 
Memory Map - Apple II with APPLESOFT BASIC LOADED 

MEMORY RANGE* 

0.IFF 

200.2FF 

300.3FF 

400.7FF 

800. 2FFF 

XXX 

2000.3FFF 

3000.XXX 

4000.5FFF 

C000.CFFF 

D000.DFFF 

D000.F7FF 

E000.F7FF 

F800.FFFF 

DESCRIPTION 

Program work space; not available to user. 

Keyboard character buffer. 

Available to user for short machine language 
programs. 

Screen display area for text or color graphics. 

APPLESOFT BASIC compiler. (Cassette Tape Version) 

User Program (ROM version - A2B0009X installed) where 
XXX is maximum available RAM memory 

High Resolution Graphics Display page 1. May be 
used by ROf" (A2B0009X) version of Applesoft II only. 

User program (Cassette Tape Version) and variables 
where XXX is maximum available RAM memory to be used 
by APPLESOFT. This is either total system RAM 
memory or less if the user is reserving part of 
high memory for machine language routines. 

High resolution graphics display page 2. 

Hardware I/O Addresses. 

Future ROM expansion 

App 1 esoft II ROM vers i on wi th select switch II ON" . 

Apple Integer BASIC 

Apple System Monitor 

58 



APPENDIX J 
Literature References 

Ah1, David (Editor), The Best of Creative Computing Vol I . 
Morristown, NJ: Creative Computing Press, 1977. 

___ ----".,------=---:-_' The Best Of Creative Computing Vol II. 
Morristown, NJ: Creative Computing Press, 1977. 

Albrecht, Robert, My Computer Likes Me when I speak in BASIC. 
Menlo Park, CA: Dymax, 1972. 

-------,:-;-----;c;---,' Leroy Finkel, and Jerry Brown, BASIC. 
New York: John Wiley & Sons, Inc., 1973. 

Arbib, Michael A., Brains, Machines, and Mathematics. 
New York: McGraw-Hill, 1977. 

Bergman, Samuel and Steven Bruckner, Introduction to Computers 
and Computer Programming. 
Reading, Mass: Addison-Wesley Publishing Co., 1972. 

Brand, Stewart, II Cybernetic Frontiers. 
New York, Random House, 1975. 

Brown, Jerald, R., Instant Basic. 
Menlo Park, CA: Dymax, 1977. 

Brown, R. W., Basic Software Library. 
Crofton, Md: Scientific Research Inst., 1976. 

Clarke, Sheila, liThe Remarkable Apple Computer" 
Kilobaud, 1977, 2:34,38. 

Coan, James, S., Basic Basic. 
Rochelle Park, NJ: Hayden Book Company, Inc., 1970. 

____ Advanced Basic. 
Rochelle Park, NJ: Hayden Book Company, Inc., 1977. 

Crowley, Thomas, H., understandin1 Computers. 
New York: McGraw-Hill, 977. 

59 



feldman, Phil, and Tom Rugg, "Hangmath!" Kilobaud. 
1977,4:112-115. 

Fenichel, Robert, R., and Joseph Weizenbaum (Introductions), 
Readings from Scientific American: Computers and Computation. 
San Francisco: W. H. Freeman and Company, 1971. 

Gruenberger, Fred, and George Jaffray, Problems For Computer Solution. 
New York: John Wiley & Sons, Inc., 1965. 

Hellerman, H., Digital Computer Systems Principles, 2nd Ed. 
New York: McGraw-Hill, 1973. 

Jordan, P., Condensed Computer Encyclopedia. 
New York: McGraw-Hill, 1969. 

Kemeny, John, G. and Thomas E. Kurtz, Basic Programming. 
New York: John Wiley & Sons, Inc., 1971. 

Koberg, Don, and Jim Bagnall, The Universal Traveler. 
Los Altos, CA: Eillism Kaufmann, Inc., 1976. 

Kohl, Herbert, R., Math, Writing, & Games. 
New York: Vintage Books, 1974. 

La Fave, L., G. Milbrandt, and D. Garth, Problem Solving: 
The Computer Approach. 
New York: McGraw-Hill, 1973. 

Ledgard, Henry, F., Programming Proverbs. 
Rochelle Park, NJ: Hayden Book Company, Inc., 1975. 

Lehman, John A., "A Small Business Accounting System." 
Byte, 1976, 10:8-12 

McCabe, Dwight, PCC's Reference Book. 
Menlo Park, CA: People's Computer Company, 1977. 

60 



Nilsson, N., Artificial Intelligence. 
New York: McGraw-Hill, 1971. 

Poole, Lon, and Mary Borchers, Some Common Basic Programs. 
Berkeley: Adam Osborne & Associates, Inc., 1977. 

Rugg, Tom, and Phil Feldman, "A Useful Loan Payment Program." 
Kilobaud, 1977, 2:68-69. 

, "BASIC Timing Comparisons." 
Kilobaud, 1977, 6:66-70. 

Sharpe, William, F., and Nancy L. Jacob, BASIC. 
New York: The Free Press, 1971. 

Smith, Robert, E., Discovering Basic. 
Rochelle Park, NJ: Hayden Book Company, Inc., 1970. 

Tausworthe, Robert C., Standarized Development of Computer Software. 
Englewood Cliffs, NJ: Prentice-Hall, 1977 

Technica Education Corporation, Teach Yourself Basic, Vol. I. 
Salt Lake City, 1970. 

, Teach Yourself Basic, Vol. II. 

Warren, Jim, C., (editor), The First West Coast Computer Faire 
Conference Proceedings. 
Palo Alto, CA: Computer Faire, 1977. 

Warren, Carl Denver, "Simplified Billing System" 
Kilobaud, 1977, 6:94-95. 

White, James, Your Home Computer. 
Menlo Park, CA: Dymax, 1977. 

Wilkinson, Lee, "Cure Those End-of-the Month Blues." 
Kilobaud, 1977, 2:34-35. 

Wozniak, Stephen, liThe Apple-II." 
Byte, 1977, 2(5): 34-44. 

61 



LOCATION(s) 
(in hex) 

$A-$C 

$D-$17 

$20-$4F 

$50-$61 

$62-$66 

$67-$68 

$69-$6A 

$6B-$6C 

$6D-$6E 

$6F-$70 

$71-$72 

$73-$74 

$75-$76 

$77-$78 

$79-$7A 

$7B-$7C 

$7D-$7E 

$7F-$80 

USE 

APPENDIX K 

Applesoft 
Zero Page Usage 

Jump instructions to continue in Applesoft. 
for Applesoft is equivalent to Control-C 

for integer Basic) 

Location for USR() function jump instruction. 
See USR() function description. 

General purpose counters/flags for Applesoft . 

Apple II system monitor reserved locations. 

General purpose pointers for Applesoft. 

Result of last multiply/divide. 

Pointer to beginning of program. Normally set 
to for ROM version, or for RAM 
(cassette tape) version. 

Pointer to start of simple variable space. Also 
points to the end of the program plus 5, unless 
manually changed with the LOMEM: statement. 

Pointer to beginning of Array space. 

Pointer to end of numeric storage in use. 

Pointer to start of string storage. Strings 
are stored from here to the end of memory. 

General pointer. 

Highest location in memory available to Applesoft 
plus one. Upon initial entry to Applesoft, is 
set to the end of memory available. 

Current line number of line being executed. 

'Old line number'. Set up by a control-C, STOP 
or END statement. Gives line number that 
execution was interrupted at. 

'Old text pointer'. Points to location in 
memory forstatement to be executed next. 

Current line number where DATA is being read 
from. 

Points to absolute location in memory where DATA 
is being read from. 

Pointer to where input is com ing from currently. 
Is set to during an INPUT statement, or 

62 



LOCATION(S) USE 

$81-$82 

$83-$84 

$85-$9C 

$9D-$A3 

$A4 

$A5-$AB 

$B1-$C8 

$B8-$B9 

$C9-$CD 

$D8-$DF 

$E4 

$E5-$E7 

$E8-$E9 

$EA 

$f4-$F8 

during a READ statement is set to the DATA in 
the program it is READing from. 

Holds the last used variable name. 

Pointer to the last used variable's value. 

General usage. 

Main floating point accumulator. 

General use in floating point math routines. 

Secondary floating point accumulator. 

General usage flags/pointers. 

CHRGET routine. App1esoft calls here every time 
it wants another character. 

Pointer to last character obtained through the 
CHRGET routine. 

Random number. 

High resolution graphics scratch pointers. 

ONERR pointers/scratch. 

High-resolution graphics X and Y coordinates. 

High-resolution graphics color byte. 

General use for high resolution graphics. 

Pointer to beginning of shape table. 

Collision counter for high-resolution graphics. 

General use flags. 

ONERR pointers. 

63 




	BB 00
	BB 01
	BB 02
	BB 03
	BB 04
	BB 05
	BB 06
	BB 07
	BB 08
	BB 09
	BB 10
	BB 11
	BB 12
	BB 13
	BB 14
	BB 15
	BB 16
	BB 17
	BB 18
	BB 19
	BB 20
	BB 21
	BB 22
	BB 23
	BB 24
	BB 25
	BB 26
	BB 27
	BB 28
	BB 28b
	BB 29
	BB 30
	BB 31
	BB 32
	BB 33
	BB 34
	BB 35
	BB 36
	BB 37
	BB 38
	BB 39
	BB 40
	BB 41
	BB 42
	BB 43
	BB 44
	BB 45
	BB 46
	BB 47
	BB 48
	BB 49
	BB 50
	BB 51
	BB 52
	BB 53
	BB 54
	BB 55
	BB 56
	BB 57
	BB 58
	BB 59
	BB 60
	BB 61
	BB 62
	BB 63
	BB 64
	BB 65
	BB 66
	BB 67
	BB 68

