
APPLEWORKS 5 ULTRAMACROS 4.x REFERENCE MANUAL
Version 1.0 - Includes Standard 'DOT' Commands

Copyright (C) 1996 Joe Walters - Released as Freeware

Table of Contents Page
==

Chapter 1

Chapter 1 Getting Started 1

Ultra 4 -- What's It To Ya? 1
What are these? ... 1
Now What Am I Going To Do With A MACRO? 1
Turbo-charge Your AppleWorks! 2
Ultra 4 -- An Overview 3
What's Required? What's Compatible? 3

UltraMacros Tutorial ... 4
What is This? ... 4
Main Sources For This Manual 5
Beta Testers .. 5
Installing UltraMacros 6
So What's a Macro? .. 6

IIgs One-Key Macros in AppleWorks 3 7
IIgs One-Key Macros in AppleWorks 4 and 5. 7
Recording Your Own Macros 8

Creating Custom Macros 10
Default Macros .. 10
Creating a Macro File 10
Creating your very own UltraMacro 11
Compile current WP file macro 12
Making (Recorded) Macros Permanent 14

Chapter 2

Chapter 2 Miscellaneous 17

TimeOut Applications AW 3.x, AW 4.x, AW 5.x 17
AppleWorks 3.x .. 17
AppleWorks 4.x and AW 5.x 17

UM 4.x Options ... 17
TASK FILES .. 17

Launch a Task File 18
Create a Task File 18
Save macros as default Set 19
Key click on: Yes 19
Cursor blink A ... 19
Cursor blink B ... 19
Mouse on: Yes .. 20
Mouse button delay: 2 20
Mouse horizontal: 16 20
Mouse vertical: 32 20
Screen blanker on: Yes 20
Screen blanker delay: 20 20

APPLEWORKS 5 ULTRAMACROS 4.x REFERENCE MANUAL
Version 1.0 - Includes Standard 'DOT' Commands

Copyright (C) 1996 Joe Walters - Released as Freeware

Table of Contents Page
==

UM 4.0 Compiler .. 20
C++ Style Comments .. 20
Compiler Labels ... 21

Labels must be on one line only. 21
Appleworks address labels. 22
Address Labels .. 23

Debug .. 25
Display Items ... 25
oa-D show Dot commands 26
oa-M show Macro names 26
oa-P display Peek values 27
oa-T set Trace options 28
oa-N End Macro .. 28
oa-X Extended Numeric Variables 28
oa-V View Screen .. 29
oa-B Break Options .. 29
oa-S Options .. 30
oa-W Walk Through ... 30

Variables .. 31
Numeric Variables ... 31
String Variables .. 31
Extended Numeric Variables 31
Defining Numeric variables 31
Defining String Variables 33

Testing String Relationships 36

Chapter 3

Chapter 3 UltraMacros Reference 39

First A Lot Of Background 39

The Anatomy of a Macro File 39
Optional Comments ... 39
<Labels> .. 39
Task File Name .. 39
Macro Titles .. 39
Label Definitions ... 39
<start> ... 39
<end> ... 39

The Anatomy of a Macro 39
Tokens .. 39

Token equivalents for keyboard keys 41
 Delete key 41
<esc> Escape key 41
<rtn> Return key 41
<go> Return key 41
<tab> Tab key .. 41

APPLEWORKS 5 ULTRAMACROS 4.x REFERENCE MANUAL
Version 1.0 - Includes Standard 'DOT' Commands

Copyright (C) 1996 Joe Walters - Released as Freeware

Table of Contents Page
==

<left> Left-Arrow key 41
<right> Right-Arrow key 41
<up> Up-Arrow- key 41
<down> Down-Arrow key 41
<spc> Space-Bar key 41
<oa-1> Open-Apple-1 41
<sa-B> Solid-Apple-B 41
<ba-right> Both-Apple-Right 41
<sa-Ctrl-C>Solid-Apple-Control-C 41
<ba-Ctrl-C>Both-Apple-Ctrll-C NOT supported 41

Local and Global Macro Tokens 43
<all> All applications (global) 43
<awp> AppleWorks Word Processor only 43
<aol> AppleWorks WP Outliner (AW 5) 43
<adb> AppleWorks DB 43
<asp> AppleWorks SS 43
<asr> Accessible only from other macros 43

Assigning Macro Names .. 44

Calling Other Macros ... 44

Actual Reference ... 45
Replaced UltraMacros 3.x Commands 45
Dropped UM 3.x Commands 46
Changed Commands .. 47

Reserved Macros .. 47
<Ahead> sa-. ... 47
<Back> sa-, ... 48
<Date> sa-' ... 48
<Date2> sa-" ... 48
<Time> sa-= ... 48
<Time24> sa-+ ... 48
<Find> sa-Return .. 48
<sa-esc> .. 49
<ba-esc> .. 50

Open-Apple Commands .. 50
<oa-#> .. 50
<oa-X> .. 51
<oa-0> .. 51
<oa-Ctrl-@> ... 51
<UC> .. 52
<oa-:> .. 52
<LC> .. 52
<oa-;> .. 52
<First> ... 52
<oa-,> .. 52
<oa-<> .. 52
<Last> .. 52
<oa-.> .. 52

APPLEWORKS 5 ULTRAMACROS 4.x REFERENCE MANUAL
Version 1.0 - Includes Standard 'DOT' Commands

Copyright (C) 1996 Joe Walters - Released as Freeware

Table of Contents Page
==

<Insert> .. 52
<oa-!> .. 52
<Read> .. 52
<oa-^> .. 52
<Zoom> .. 53
<oa-@> .. 53
<Disk> .. 53
<oa-&> .. 53
<Path> .. 53
<oa-*> .. 53
<Cell> .. 54
<oa--> .. 54
<Recall> .. 55
<Store> ... 55
<Bell> .. 56
<oa-Ctrl-G> ... 56
<NoSleep> ... 56
<oa-Ctrl-N> ... 56
<Debug> ... 56
<oa-Ctrl-X> ... 56

Special UltraMacros Tokens 56
<SaveScr> ... 57
<RestScr> ... 57
<Input> ... 57
<Key> ... 58
<Begin> ... 58
<Rpt> ... 59
<Exit> .. 60
<Endmacro> .. 60
<Stop> .. 61

Parameters for UltraMacros Tokens 61
Macro Parameters .. 61

MACRO .. 61
NUM (number) 61
NUM VAR (numeric variable) 61
NUM2 (number format 2) 61
NUM EXP (numeric expression) 61
STRING ... 62
STRING VAR (string variable) 62
STRING EXP (string expression) 62

UltraMacros Tokens with parameters 62
<() NUM> .. 62
<Asc STRING VAR> .. 62
<Chr$ NUM> .. 63
<Clear NUM> ... 63
<Display NUM> ... 63

<|> .. 64
<$1 = GetStr NUM> ... 64
<GoTo MACRO> .. 65
<Hilight L,T,R,B> ... 65

APPLEWORKS 5 ULTRAMACROS 4.x REFERENCE MANUAL
Version 1.0 - Includes Standard 'DOT' Commands

Copyright (C) 1996 Joe Walters - Released as Freeware

Table of Contents Page
==

<Keyto NUM> ... 66
<Left STRING VAR,NUM> 67
<Len STRING VAR> .. 67
<Mid STRING VAR,NUM1,NUM2> 67
<Msg STRING> .. 68
<Msgxy Horiz,Vert> .. 69
<Onerr OPTION> .. 69

<Onerr stop> ... 69
<Onerr endmacro> 69
<Onerr exit> ... 69
<Onerr off> .. 69
<Onerr goto> ... 70

<Posn VAR1,VAR2> .. 71
<Pr# NUM EXP> ... 72
<Print NUM,STRING,ALMOST ANYTHING> 72

Printing Literal Text 72
Printing Numeric Variables 73

<Right STRING VAR,NUM> 75
<Screen NUM EXP,NUM EXP,NUM EXP> 75
<Str$ VAR NAME> ... 75
<Val STRING VAR> .. 76
<Wait NUM EXP> .. 76
<Wake MACRO at NUM EXP:NUM EXP> 77

Macro Sets and Task Files 78
<Launch STRING VAR> 78
<Call MACRO in STRING VAR> 79
<Link MACRO in String VAR> 80
<Unlink> .. 81

If-Then-Else Logic ... 81
<If> .. 81
<Ifnot> ... 81
<And> ... 82
<Or> .. 82
<Then> .. 83
<Else> .. 83
<Endif> ... 85

For-Next LOOPS ... 85
<For VAR = NUM to NUM> 85
<Next VAR> .. 86
<Step VAR> .. 86

For Advanced UltraMacros Users Only 86
<Jsr> ... 86
<Poke> .. 87
<PokeWord> .. 87
<Peek> .. 87
<PeekWord> .. 88

APPLEWORKS 5 ULTRAMACROS 4.x REFERENCE MANUAL
Version 1.0 - Includes Standard 'DOT' Commands

Copyright (C) 1996 Joe Walters - Released as Freeware

Table of Contents Page
==

Chapter 4

Chapter 4 Dot Commands 89

External Dot Commands .. 89

Stand-alone commands ... 89

String commands .. 89

Numeric Commands ... 89

Try out the New Dot Commands 90

Dot Command Reference .. 90

Default Dot Commands ... 90
<.AskYN $1> ... 90
<$1 = .AwPath> .. 91
<.Box X,Y,W,L,T> .. 92
<.Beep Duration,Pitch> 92
<$1 = .Caps $2> ... 93
<$1 = .Case "Case String","Work String"> 93
<.CacheList FirstStr> 94
<$1 = .Choose $2,N> 94
<.DeskCount X> .. 95
<.Dropdir> .. 95
<$1 = .Embedded> .. 95
<X = .Eof> .. 96
<$1 = .FDate Format> 97
<$1 = .FDate2 Month,Day,Year,Format> 97
<.FindPO> ... 98
<$1 = .GetFpath> .. 98
<X = .ID> ... 98
<.Line Horiz,Vert,Length,Char> 99
<$1 = .Lower STRING> 99
<.Msay String> .. 99
<.NewFile "FileName",Type> 100
<.Online STRING> .. 101
<$1 = .Peekstr Address> 101
<.PeekVar Address,Start,Count,Size> 102
<.PokeStr STRING, Address> 102
<.PokeVar Address,Start,Count,Size> 103
<X = .PeekWordZP Address> 103
<.PokeWordZP Address,Value> 103
<.PokeZP Address, Value> 104
<.Pop X> .. 104
<X = .Rightmost> .. 105
<X = .Search "IsHere",Start,End> 105
<.SetCol Column,Width> 106
<.SetDisk STRING> ... 106
<.SetFpath STRING> .. 106

APPLEWORKS 5 ULTRAMACROS 4.x REFERENCE MANUAL
Version 1.0 - Includes Standard 'DOT' Commands

Copyright (C) 1996 Joe Walters - Released as Freeware

Table of Contents Page
==

<.Sort Start,End,Direction> 107
<.Speed 1000> ... 108
<$1 = .SubChar Text, First, Last, NewChar> 109
<X = .SubString $1,$2,Start> 110
<.TitleBox X,Y,W,L,T,$> 110
<X = .TOinMem> .. 111
<.UnCache $1> ... 111
<$1 = .Upper STRING> 112
<.Vline Xpos, Ypos, Len, Char> 112
<X = .WeekDay Month,Day,Year> 113
<.ZapChar "Text", Char> 113
<.ZoomIn>! .. 113

Data Base Dot Commands 114
<.GetNames Category, FirstStr, Number> 114
<.SetNames Cat, Record, FirstStr, Number> 114
<.GetRec Category, Record, FirstStr, Number> 114
<.SetRec Category, Record, FirstStr, Number> 115
<$1 = .GetCat Category, Record> 115
<.SetCat Category, Record, STRING> 115
<$1 = .CatName CategoryNum> 116

Spreadsheet Dot Commands 117
<X = .Column STRING> 117
<X = .ColWidth STRING> 117
<$1 = .GetCell Column, Row, Format> 117
<.SetCell Column,Row,STRING> 118
<$1 = .CellID> .. 118
<$1 = .LastCol> ... 119
<$1 = .LastRow> ... 119

Menu Commands .. 119
<.AddMany X, Y, FirstStr, Count, Space> 119
<.AddMenu Xpos, Ypos, $1> 120
<.Cls NUM> .. 120
<.DoMenu X> ... 120
<.FCard NUM,STRING,TYPE> 121
<.FileCard STRING, NUM> 122
<$1 = .GetInput X,Y,$2,$3,L> 122
<$1 = .GetString "Prompt","Default",MaxLen> 123
<X = .GetValue $1,L,H,D> 124
<.List X,Y,W,L,S,E,$1> 125
<.MacroNames : goto sa-A> 126
<$1 = .MenuItem> .. 127
<.OnGosub Val,"abcdDefghijk"> 127
<.LoadVar STRING, Option> 128
<.OnGoto Val,"abcdDefghijk"> 129
<.MakeMenu X, Y, Frst, Count, Spc, Begin> 130
<.MenuBar PromptString, ItemString> 132
<.MenuBar2 "Prompt","Choices",Delimiter> 133
<$90 = .Pick X,Y,W,L,Start,End,"Title"> 133
<.PopMenu> .. 135
<.Qmenu STRING, Filetype> 137

APPLEWORKS 5 ULTRAMACROS 4.x REFERENCE MANUAL
Version 1.0 - Includes Standard 'DOT' Commands

Copyright (C) 1996 Joe Walters - Released as Freeware

Table of Contents Page
==

<.SaveVar STRING> ... 138
<.Say STRING> ... 139
<.SpaceBar> ... 140
<$1 = .StripChar STRING, Char, Option> 140
<.Therm X,Y,C,M> .. 140
<.Writestr Xpos, Ypos, STRING> 142

IIgs only commands ... 142
<.ExtKB> .. 142
<C = .GetColor Y> ... 143
<.SetColor X,C> ... 143
<$1 = .TimeGS X> .. 144

MathTools .. 145
<X = .AndBits A,B> .. 145
<.GetBlock Ptr,Dest,Flag> 146
<Ptr = .GetPtr Adr> 148
<$1 = .Hex X> ... 148
<X = .HexStr "$A"> .. 148
<$1 = .HexWord X> ... 149
<X = .Mod A,B> .. 149
<.PutBlock Ptr,Adr,Size,Flag> 149
<.PutPtr Adr, Ptr> .. 150
<.RelBlock Ptr> ... 150

Debug 2.6 and Extended Variables 150
<$1 = .xCompare A> .. 151
<.xFixed 128> ... 152
<.xIntegers TruthValue> 152
<.xMath " `A = B + C * 3.25 "> 153
<$1 = .xStr A> .. 153

Command Index

General Index

Chapter 1 Getting Started Page 1 of 166

Ultra 4 -- What's It To Ya?

Well, for one thing its free :-) And hopefully you have been nursing a passion to write UltraMacros
and just didn't know where to begin. This is the place to begin; your very own Ultramacros Manual.

If you don't have a clue as to what UltraMacros is all about then this is the chapter for you! It starts
with a high level overview which is followed by the UltraMacros Tutorial which is an overview at a
somewhat lower level.

This is followed by Chapter 2 which delves into the miscellaneous details of UltraMacros and its
environment.

Chapter 3 is the reference manual for UltraMacros built in commands (tokens). For the most part
these are the (often enhanced) commands that came with UltraMacros 3.

Chapter 4 is the reference manual for "dot" commands. Dot commands are not built into UltraMacros
so they are often referred to as external commands. These commands reside in files in your
AW.INITS folder and their name always begins with "I." There can be one to many dot commands in
any init file.

Happy macro writing!

What are these?
These are macro and data files needed to generate a manual for using and writing macros in
AppleWorks for the Apple][(not the Mac or the AppleWorks GS program). It describes UltraMacros
4.x and as such can be used with AppleWorks 3.0 through AppleWorks 5.1.

This manual was written because there is no single source of documentation for UltraMacros 4.x. The
documentation that came with UltraMacros 4.0 described the changes and additions to Ultramacros
3.0. It depended on the user also having Ultramacros 3.0 and its associated documentation.

Note: The next four sections are from Will Nelken's "Ultra to the max!" manual so the "I" mentioned
is Will.

Now What Am I Going To Do With A MACRO?
"Macro" is short for "macro-instruction," meaning that a single keystroke can launch a series of
actions, thereby compressing a great deal of user activity (dozens of keystrokes, decisions, data entry,
and so on) into just one macro-instruction. Software publishers offer macro programs for use on
various computer platforms (Apple II, Amiga, IBM, Macintosh). Some simply record keystrokes
(they store your series of key presses in memory and "play them back" when you request it); some
allow you to write macros, which is more powerful, because you may include commands normally
unavailable at the keyboard. Some work in multiple programs (hiding in the background of memory
until invoked); others, by design, work only within a specific program. The latter arrangement is
limited to one program, but it usually takes advantage of the maximum possibilities within the
environment.

With the introduction of Alan Bird's AutoWorks and Randy Brandt's MacroWorks in 1986, macros
for AppleWorks became a reality. Super MacroWorks soon followed and dominated the market
because of its features, including the seeds of a genuine programming language for serious macro
writers. Meanwhile, Alan Bird devoted himself to developing the TimeOut host for AppleWorks
accessory programs, which permitted a wide variety of enhancements to run within AppleWorks,
never requiring rebooting. Today, the list of such TimeOut modules available for AppleWorks users
exceeds 80, including a thesaurus, file and disk management, graphing for spreadsheets, a drawing
program, graphic font printing of text, telecommunications, report generation, and a host of smaller,
but no less significant enhancements to the world of AppleWorks creativity.

With the release of TimeOut from Beagle Bros, Randy Brandt also released the first version of
UltraMacros. Due to the creative genius and dedicated talent of Randy Brandt, this package of macro

Chapter 1 Getting Started Page 2 of 166

tools continues to evolve in response to users' requests. In August, 1992, JEM Software, Randy
Brandt's own publishing venture, released a further upgrade to this already potent application. The
extensions and additions amazed all of us. Instead of simply defining new limits, Ultra 4 opened the
door to nearly unlimited addition of new macro commands and user development of macro programs.

Turbo-charge Your AppleWorks!
UltraMacros 4.x, once installed, immediately provides the first-time user with more speed and many
new capabilities within the AppleWorks environment. However, unlike other TimeOut applications,
UltraMacros is not limited to the original "program" design, but can be thoroughly customized by
and/or for the end user into a multiplicity of forms and functions. I personally use UltraMacros to do
the following among hundreds of other operations inside AppleWorks, each launched with a single
keystroke:

: Check grammar usage in a word processor document

: Automate printing in text or SuperFonts

: Provide word-wrapping in the spreadsheet

: Automate billing in a business

: Save/print/remove all documents on the Desktop

: Locate a "lost" file on my hard disk

: Play Hangman

: Auto-hyphenate a word processor document

: Control various printer functions from the keyboard

: Add or subtract columns of numbers onscreen

: Make a file copy of any AppleWorks screen

: Write checks and manage a general ledger

: Automate TimeOut Calendar functions

: Create an outline document

: Convert foreign text for printing with SuperFonts

: Instantly create or destroy files on the Desktop

: Print word processor documents in two or more columns

: Print two-sided word processor documents

: Print a single label from a database file

: Set an alarm clock in AppleWorks

: Create pull-down or pop-up menus

: Change the case of a word/paragraph/document

: Instantly install a page-numbering footer

Chapter 1 Getting Started Page 3 of 166

: Quickly add from/save to any drive or subdirectory

: Create a personalized dated letterhead or memo

: Enter MouseText into a word processor document

: Eliminate duplicate records in a database

Whatever your field, if you use AppleWorks regularly, you can benefit from adding UltraMacros.
Since the release of UltraMacros 4.x, many inventive macro writers have arisen, supplying more
utilities and specialized programs for AppleWorks users. And the horizon is growing still brighter.

Ultra 4 -- An Overview
For those familiar with UltraMacros -- its capabilities, commands and syntax -- Ultra 4 goes beyond
your wildest macro dreams! Here's just a glimpse of its expanded features:

: Ten times as many variables as before!

: Enhanced <find> command now searches all menus, even in the background (behind frozen
screen images)

: Improved taskfile launching permits more powerful file linking

: The four ampersand commands have been replaced with 45 new "dot commands" -- and many
more to come

: Macro names and commands can be identified by user-defined labels

: Taskfile caching permits more rapid task switching

: Annotating macro code is easier than ever

: Single-stepping can now be activated/deactivated from within a macro or with a single keystroke

: Real for-next looping permits simpler looping and nested loops

: Menu creation has been simplified and enhanced

All of these will be covered in some detail in subsequent Chapters. For now, just sit back and let your
imagination run.

What's Required? What's Compatible?
Ultra 4 is an upgrade to UltraMacros 3.x, not a new program. To benefit from it (except as a new
coaster for your mug), you must be an owner of AppleWorks 3.0 through AppleWorks 5.1 (Ultra 4
does not support earlier versions), AND UltraMacros 3.x (Note:). If you have an Apple //e, it must
be an enhanced model (65C02 CPU). You also need to have at least 192K of RAM (256K for AW
5), installed in your Apple (that means Apple //e owners must have at least 64K of auxiliary memory
added). No, it's NOT possible to expand the AppleWorks program without limits and STILL have it
fit on a 128K machine. Fortunately, Ultra 4 will take advantage of all the memory you have for your
AppleWorks Desktop (up to 2 megabytes with "slinky" type RAM cards, like the AE RamFactor, or
up to 8 megabytes of GS type memory or bank-switched cards).

Note: Randy Brandt has released UltraMacros 3 and 4 i.e., they are now freeware. To date they have
not shown up on Delphi or any other public forum. I'm sure that will change in the near future.

Beyond that, all it needs to run is a careful examination of the manual and the sample files included
on the disk, a spark of hope, a flash of inspiration, and patient persistence in learning. (Rather like
life itself, isn't it?)

Chapter 1 Getting Started Page 4 of 166

All task files must be recompiled from their source code (you DID save the source, didn't you?!) to
work with Ultra 4. If you cannot find the original code, you may be able to decompile it. To do so,
follow these steps:

1. Boot AppleWorks with UltraMacros 3.x.

2. Launch the task file. (If you can stop macro activity without restoring the default macros, then
decompiling is possible. Otherwise, see below.)

3. Create a new AWP file (via the Main Menu).

4. From the AWP, call the TimeOut Menu by pressing <oa-Esc> and select Macro Compiler.

4. Select "2. Display current macro set". The macro set will decompile into the empty AWP.

5. Save the decompiled code.

6. Quit AppleWorks and reboot with Ultra 4.

7. Load the decompiled source code that you saved. Make the necessary changes to the code. Then
recompile and create a new task file under Ultra 4.

Some commercial macro programs may not include source code or may have been "locked" by the
author to prevent alterations and piracy. These must be revised by their authors before they can be
used with Ultra 4.

NOTE: Any task files adapted with Randy Brandt's original "Macros to Menus" (which converted
task files to appear as TimeOut applications in the TimeOut Menu) will NOT work with Ultra 4. A
new version of "Macros to Menus" is included on the Ultra Extras disk; it must be used to recreate
these macro applications.

You will need to revise some of your own macros and task files to work with Ultra 4, since Ultra 4
has changed a few commands and no longer supports a few others. At the same time, revising macros
and task files to take advantage of the improved command structure and syntax of Ultra 4 will often
enhance macro operations.

In order to make room for new features, Ultra 4 has reduced the macro table size limit from 4009 to
3984 bytes. Any macro sets that exceed this new limit must be revised. However, in actual practice,
you will usually discover that updating the command structure of your macros and task files is all that
is necessary to reduce the macro table size below the new limit, because Ultra 4 offers a more
efficient syntax.

Ultra 4 is compatible with both TotalControl 2.x and DoubleData 2.x, eliminating some
incompatibilities with these programs that existed in UltraMacros 3.x.

NOTE: Beginning with AppleWorks 4 the functions of TotalControl and DoubleData are built into
AppleWorks itself so those two programs are no longer needed.

UltraMacros Tutorial

The attempt here is to give you an overview of UltraMacros that will make the UltraMacros
Reference section more understandable. Most, but not all, of the following assumes that you are in a
Word Processing file (UltraMacros can work everywhere in AppleWorks, but the Word Processor is a
good, and understandable, place to test most things.)

What is This?
This is a manual for Ultramacros 4.x as it applies specifically to AppleWorks 5.1. Much of the 5.1
material also applies to AppleWorks 3 and 4. Some effort has been made to distinguish when

Chapter 1 Getting Started Page 5 of 166

AppleWorks 5.1 differs from AppleWorks 4. Sorry if it isn't broad enough for you, but the scope of
this work was too large as defined. Adding more work would have prevented my finishing this
manual.

Main Sources For This Manual
1. TimeOut UltraMacros by Randy Brandt. This manual was for UltraMacros version 3.1. Published

by Beagle Brothers Software.

2. Ultra 4.0 by Randy Brandt. An upgrade for TimeOut UltraMacros. Published by Jem Software.

3. Ultra to the Max! by Will Nelken. Published by Marin MacroWorks.

4. An extensive collection of posts to GEnie concerning AppleWorks &/or UltraMacros by
uncounted people.

5. The /EXTRAS disk for AppleWorks 5.1. Permission to quote from it was given by Bill Carver
(wgcarver@sqc.com).

6. Saved e-mail from people worldwide.

A great big thank you is in order to:

Randy Brandt: Who said I can quote any of his stuff if I don't sell it. With this in mind, please
contain your passion to send me mega bucks for this manual.

I have quoted quite a bit of Randy's "stuff," beginning with the Ultramacros manuals, JEM 4.0 UM
Manual, help files on AppleWorks 4 and AppleWorks 5 /EXTRAS disks, and numerous posts he has
made on various GEnie AppleWorks &/or UltraMacros topics.

Will Nelken: Who said I could quote anything from his "Ultra to the Max!," manual if I kept my
quoting mania within bounds. I do believe that I've done that. His examples of a macro command
often inspired me to create a different, but (hopefully) equal example.

Gina Saikin of SQC fame: Gina was the one responsible for getting Bill Carver to agree to let me
quote the SQC UltraMacros documentation. A big help! For this reason and a multitude of other ways
she has supported the Apple][world over the years, a big thank you to Gina!

GEnie: Luckily, I managed to save much of the GEnie UM messages throughout the years. These
folks are very much represented within this manual. Names upon request upon payment of a search
fee ;-)

Delphi: I have had several meaningful inputs from Delphi folks. Unfortunately, the AppleWorks
passion of GEnie has not been reflected on Delphi.

Bev Cadieux's Mail Group: I have tried as best as I can to NOT include anything that I learned while
a member of Bev's Mail Group (MG), because she does not want me to include such information if it
is to be uploaded to Delphi (This collection of files will definitely be uploaded to Delphi at some
point).

The above said, I still recommend Bev's mail group to one and all that desire in-depth information
about AppleWorks. There is nothing available that even closely resembles what Bev provides to the
AppleWorks user. At this time you can contact her: [A2MG@AOL.COM].

Beta Testers
A heartfelt thanks to these folks. Without them this effort would have far more errors than it does.
There were two groups of beta testers, experts and novices.

Chapter 1 Getting Started Page 6 of 166

The experts in alphabetical order were: Roy Barrows, Kevin Noonan, and Bud Simrin (Special thanks
to Bud. He really put my code through a wringer and it is much better for his efforts). Many thanks
for your hard work and dozens and dozens of observations and suggestions on ways to improve this
work.

The novice testers were needed to see if the manual made the subject matter clear to a new user. In
alphabetical order they were: Mike Macchione and Gary Welsh. Again, thanks for pointing out a
number of stumbling blocks that I'd placed in the new user's way.

Any and all errors remaining in the manual are mine and I apologize in advance for not catching
them. Please do feed back so I can update the manual for other users.

Installing UltraMacros
No attempt has been made to give instructions on how to install or make backups of UltraMacros for
two reasons:

1. For AppleWorks 3 you must have TimeOut installed. If you don't, then you need to purchase it
somewhere since TimeOut is crucial to the operation of UltraMacros. TimeOut is not free or in
the public domain. In fact, I know of no source for a new copy i.e., you can only buy it on the
used market. (Sorry, I don't have a clue as to the latest version so I can't even help you in that
respect.)

2. TimeOut is built into AppleWorks 4 and 5 so installation is not an issue.

Nor is activation of UltraMacros in AppleWorks 4 or 5. For AppleWorks 4 it is covered in the
manual. For AppleWorks 5 it is covered in the Delta manual that accompanied your two disks from
Scranton Quality Computers.

So What's a Macro?
The simplistic answer is, "A macro is a single keystroke that does the work of many keystrokes."
While the above is true, UltraMacros can do many things that are not possible from the keyboard. We
will start out with examples of a single keystroke replacing many and ease into the esoteric a little
later.

The keyboard of a //e and //c has two meta keys, the first is the outline of an apple and the second is
an apple filled in i.e., black aka solid. From this the UltraMacros convention of an Open Apple Key
(oa-), Solid Apple Key (sa-), and Both Apple Keys (ba-), was derived. Though we use the
convention oa-, sa-, and ba- you do NOT press the - key on your keyboard.

An AppleWorks macro is a Solid-Apple (sa-) key command; you simply hold down the sa- key while
pressing another key and a predefined sequence of keystrokes is performed. For example, you can set
up a macro such as sa-N that types your name and address, or use a macro such as sa-I to indent a
paragraph three spaces (one keystroke instead of the usual seven). Macros save you a lot of typing
and a lot of time. Also, fewer keystrokes means fewer chances for making errors.

The sa- key on the Apple //e and //c has been renamed the OPTION key on the IIgs. If you have a
IIgs, think OPTION whenever this manual mentions sa-. (Or, ignore what is printed on the key cap
and think sa-, its your call.)

We have said that macros are invoked by pressing sa- and some other key. While that is true, there is
more to this story. In addition to the sa- commands there are Both-Apple (ba-) and
Solid-Apple-Control (sa-ctrl-) macros.

The ba- macros are invoked by holding down three keys: the Open-Apple (named the Command on
the IIgs), Solid-Apple and the wanted macro key.

Chapter 1 Getting Started Page 7 of 166

The sa-ctrl- macros are invoked by holding down three keys: the sa-, control, and the wanted macro
key.

At one time there was yet another combination: Both-Apple-Control (ba-ctrl-). Because of a great
number of programing difficulties, these macros are now reserved by UltraMacros and should not be
called or defined by users. If you do, dire things may happen to AppleWorks and your files!

IIgs One-Key Macros in AppleWorks 3
In UltraMacros 3.x, IIgs users had the ability to run sa- keypad and function key macros without
pressing the Option (sa-) key by poking a 0 into a keypad table. (Function key macros are only
available if you have an extended keyboard.)

In Ultra 4.x, keypad and function keys automatically run ba- macros. No special tables, no tricks.
Just compile ba- macros or press a keypad or function key for recording and you use the one-key
macros without having to press another key. (See Recording Macros for clarification)

Each keypad macro is predefined in UM4.0.System to print the key characters. For example, if you
press the keypad "=" key, it will run the macro <ba-=>:all>=! which prints a "=".

Having the keypad always call macros can be a hassle if you want to use the keypad to enter numbers
from various macro sets without defining ba- macros for each keypad entry.

To disable/enable one key macros:

AW 3.x Disable Enable
-------- --------

<poke $B504,$39> <poke $B504,$27>

IIgs One-Key Macros in AppleWorks 4 and 5.
In AppleWorks 4 and 5 the keypad keys do not automatically run ba- macros so the default macros do
not have macros predefined for each keypad key i.e., keypad macros default to off. (I *think* this is
a function of the version of UltraMacros 4, not the AppleWorks version. However, since the versions
of UltraMacros 4 work only with their intended versions of AppleWorks the question is moot.)

The following is an example of how to enable/disable keyboard macros for AW 4 or AW 5. For these
AW versions the memory location contains a number of other flags that must not be disturbed when
changing the keyboard macro enable/disable status.

// Multiple variables were used so you can use the debugger
// (oa-ctrl-X), to see the values at each stage of the game. See
// sa-C for a less variable intensive version of sa-A.

// sa-A enables keyboard macros. We have to assure that bit 4
// is zero first so the D = C + 16 does not generate a carry from bit
// 4 to 5, etc., etc.

//Bits in this diagram number from right to left. Bit 4 is zero

// E F
<sa-A>:<all : // 7 4 3 0
A = $EF : //$EF = binary 1110 1111
B = peek $0FFD :
C = .andbits A,B : //Assure bit 4 is zero
D = C + 16 : //Now set bit 4
poke $0FFD,D : //Write flags back
>!

Chapter 1 Getting Started Page 8 of 166

//This disables keyboard macros
<sa-B>:<all : // E F
A = $EF : //$EF = binary 1110 1111
B = peek $0FFD :
C = .andbits A,B : //Assure bit 4 = 0
poke $0FFD,C : //Write flags back
>!

//This is identical to sa-A in its effect. Uses less variables.
<sa-C>:<all :
A = peek $0FFD : //Flags with bit 4 either 1 or 0
A = .andbits A,$EF : //Assure bit 4 is 0
A = A + 16 : //Now set bit 4
poke $0FFD,A : //Write the flags back
>!

Recording Your Own Macros
This section tells you how to record your keystrokes so that they can be played back later with one
keypress. It assumes that you have already booted AppleWorks. Note that you do not have to be in a
WP, DB or SS application to start recording a macro. Anyplace in AW, even a TimeOut menu will
work.

You can record a macro for anywhere from 1 to 3984 or so keystrokes, depending on how many
macro keystrokes are already in memory from previously recorded macros and the macro set in
memory at boot time.

The only exception is macro 0 (zero). You can always enter up to 80 keystrokes, but it will
automatically stop recording at 80 keystrokes.

Any macros recorded using oa-X are lost when you exit AW or launch another task file.

Macro 0 (zero) is even more volatile. Its definition is lost each time an assignment is made to string 0
($0). Assignment to string 0 is often out of your control so never record a macro 0 for anything
except a minimal task that doesn't extend over more than a few minutes time.

1. Press oa-X. The Escape Map (at the top of the screen), will say: Review/Add/Change (if you are
in a WP document). The left side of the bottom line will say: Press macro key:. If you press a
key that is unassigned in the current macro set i.e., W, you will see: Recording W on the right
side of the bottom line.

If you do NOT see "Recording W" then that macro key is defined as part of the current macro set
and UltraMacros will ignore the request. My memory on the subject is that Mark Munz told
Randy to not redefine existing macros and Randy said, "Pshaw," and forged ahead. After a
number of problems surfaced Randy said, "I give," and modified UltraMacros such that it would
refuse to redefine macros defined in the current set (without any sort of error indication other
than the "Recording W" not showing up).

We need to make a distinction between macros defined in the current macro set and those defined
using oa-X. If W is already assigned in the current macro set then UltraMacros will ignore the
oa-X request e.g., "Recording W" will NOT appear, however, if you previously defined W
using oa-X then you will be allowed to redefine it. See step 5 for details.

2. You are now in the record mode and whatever you type (mouse moves are included - but forget
them, they are unpredictable), will be memorized. Type your name and press Return.

3. Now press oa-X to end the macro definition, (Recording W will disappear from the bottom line).

Chapter 1 Getting Started Page 9 of 166

4. You have just recorded your first macro!. To use it, hold down the sa- key and press W (sa-W)
and your name will be typed out at supersonic speed! This macro can now be used in any
AppleWorks application i.e., WP, DB, or SS.

5. Now press oa-X and press W again. The message "Replace global macro W? "Yes No" appears
on the bottom line. Ultramacros lets you decide if you want to destroy this previously recorded
macro. Use arrow keys to highlight your choice and hit return or simply type the first letter Y/N.
(Press N this time.)

6. Press oa-X to record another macro.

7. In response to the "Press macro key:" prompt, press RETURN. You will hear a beep. This is
because RETURN (Control-M), is a reserved macro name.

8. Press oa-X to record another macro.

9. Press oa-W. The Recording W message will appear with no indication that you are defining a
ba-W macro.

10. Enter: a friends's name and press oa-X to end the macro.

11. Press sa-W and your name will be typed out.

12. Press ba-W and your friend's name will appear.

All (non-reserved) keys can have both a sa- and ba- definitions. In addition many of the keys can also
have sa-ctrl- definitions. To record a sa-ctrl- macro press: oa-X, hold the control key while pressing
the wanted macro key i.e., W. You will get the Recording^W (note the carat preceding the ^W).

NOTE: See the file "Mac.AllPossible" for the final word on what is and what isn't reserved.

The sa-ctrl keys are A through Z, @, [, \,], ^, and _ with the following exceptions:

1. sa-ctrl-M (RETURN), sa-ctrl-#, and sa-ctrl-[(ESC) are reserved.

2. sa-ctrl-Y attempt results in sa-Y being recorded so in effect, sa-ctrl-Y is reserved.

3. sa-ctrl-^ attempt results in a beep as if reserved, however, the Recording^^ message appears and
stays on even though if one repeatedly hits oa-X, esc, etc., and you cannot record any other
macros. Basically, save your files and exit AppleWorks is the order of the day. Stay far away
from this one!

Macros that are reserved sa- commands, such as sa-RETURN, generally can be defined as ba-
macros. (ba-$ is reserved. See the file Mac.AllPossible.)

Any macros recorded using oa-X are lost when you exit AppleWorks.

1. Use the Ultra Options to "Save the current macros as: 1) The default set 2) A Task file. This saves
all active macros "as is". Not normally a smart thing to do. See #2 for a better approach.

2. Create a new WP file. Name it anything since it isn't going to be around all that long. Type
oa-ESC and select "Ultra Compiler" and then select #2, "Display current macro set." This will
dump all the macros for the set into your new file.

Find the new macros and copy them, with added comments, to the source file for the decompiled
macro set. Compile that set and save the result as the default, task file, or invisible task file.
Whichever is appropriate. (See, "Making Macros Permanent," for more on the three types of
macro files.)

Chapter 1 Getting Started Page 10 of 166

Creating Custom Macros
This section tells you how to create custom macros by editing a macro file, compiling the changed
macros, and then saving them on disk.

Default Macros
The default macros (called "built-in" macros in previous manuals), are those macros which are part of
SEG.UM and are available whenever you start AppleWorks. These macros can be changed at any
time to anything you wish.

Newcomers to macros should study and use these default macros before attempting to create compiled
(non-recorded) macros.

Naturally, you should never change the original source files that shipped with AppleWorks. Always
work with a (renamed) copy.

1. Boot AppleWorks and insert the /EXTRAS disk. Add the files /EXTRAS/FILES/SEG.UM.source
and /EXTRAS/FILES/SEG.AX.source to the desktop. These are the files you need to study
before continuing on to change/add your own macros. (Load another file,
"/EXTRAS/FILES/SEG.NA.source," to the desktop. Try and figure out when sa-Ctrl-Z is
entered and how. What is its stated purpose? What is its real purpose? And they are different!)

2. Notice that in seg.ax on or about line 3 there is a line with the word "labels," which is followed
on the next line by ".seg.ax". This is the name that the compiled file will be saved as in your
AppleWorks main directory. Next, notice in file seg.um, on or about line 20 there is a single
line "labels." Note that the next line is blank i.e., no name to save this file as. This is because
this is the default set and as such is automatically saved as seg.um when you tell Ultra Options to
save the current macros as the default set.

3. The reason for having two files for the default set is because UltraMacros has a limit on how large
a compiled macro set can be. To get around this limitation UltraMacros allows the set in memory
to "call" macros in one or more other macro sets. These called macro sets are known as Task
Files. Return is made to the calling macro when the called macro terminates. See the <call>
command in Chapter 3 for more details.

4. Print out both SEG.UM.source and SEG.AX.source (along with SEG.NA.source if you desire).
Examine the printout while reading this manual's description on how macros are constructed.
You can modify these (renamed) files to create your own custom macros. Modifying existing
macros is a good way to learn about writing your own macros.

Creating a Macro File
A macro file is any AppleWorks Word Processor file which contains macro definitions. You can
create a custom macro file by one of three ways:

1) Adding an existing macro file to the desktop and changing the definition of an existing macro
definition or by adding a completely new macro to the file. This is the best way to go since macro
comments are preserved in the source.

2) By using the Macro Compiler's "Display current macro set," option to list the current macros into a
WP file and then adding to or modifying an existing macro definition. This is *not* the best way
to go since the comments for all macros, except the added macros, is lost.

3) Create a completely new Word Processor file and start your own custom macro file. A good place
to start is to copy the file Try (see Note: Try) which is included as part of this package and use
oa-N to change the name to your new custom macro package. Next, you need to change the name
the compiled file will be saved as. At the top of the file you will see a line just after the

Chapter 1 Getting Started Page 11 of 166

<Labels> command you will see the line ".TryStuff" Change this to the name you choose for
your package. Note the initial period.

There's nothing magical about the macro definitions in the Word Processor. They must be "compiled"
into true macro codes to be used by UltraMacros.

Creating your very own UltraMacro
Here's a step-by-step look at creating your first custom macro definition and making it a permanent
part of AppleWorks.

1. Start up AppleWorks with UltraMacros and TimeOut installed and activated.

2. Load the "Macros Ultra" from the Extras disk (AW 4 & 5), or UltraMacros disk (AW 3), to the
desktop. Also load in the file "Try" from this manual's disk.

3. Go to the AppleWorks Main menu and make a new Word Processor file called TEST or FRED or
any name that strikes your fancy. I'm going to assume that you chose TEST. (I usually choose x
cause I know the darned thing isn't going to live to see the light of day anyway :-)

4. Press oa-Q and return to the "Macros Ultra" file.

5. Use the oa-F command to find "B:<awp". You will see the following macro definition:

B:<awp sa-% : rtn rtn>
Date:<tab date : rtn rtn rtn>
From:<tab print $96 :rtn:
ifnot $97 = "" tab tab print $97: rtn: endif :
tab tab print $98 :
rtn tab tab print $99 :
rtn rtn rtn rtn rtn>To:<tab tab>!

6. Copy this macro to the clipboard and then oa-Q to the "Try" file, oa-9 to the bottom, oa-C from
the clipboard the macro copied above.

7. oa-ESC and select Ultra Compiler. Respond to the prompts in the following way: Compile a new
set of macros, Pause each line? No, Compile from the beginning. When it completes, press
space to continue.

If unsuccessful, fix whatever problem the compiler pointed out to you and this time press ba-C
instead of all of the nonsense you had to go through in step 7. In fact, even if successful, try
ba-C in the Try file a couple of times. You will like it! See the file Try.Docs for a tutorial about
what is in Try and why you probably want to include most of it as the top part of every macro
package you write.

8. Press sa-B to see a sample "begin a memo" macro. If, at this point there is a whole lot of screen
flashing going on and TEST ends up containing pretty much garbage this means that you
sloughed off typing in your name and address information the first time you started AppleWorks.
In this case: 1) Use the file utilities to delete (if it exists), the file NAME.ADDRESS from the
AppleWorks folder. 2) Compile SEG.UM.source and save it as the default set. 3) Compile
SEG.AX.source and save it as an invisible task file. 4) Compile SEG.NA.source and save it as
an invisible task file. 5) Exit AppleWorks and boot it again. This time, answer the questions. 6)
Come back to this section when you have completed the above. (I'm not giving more detailed
instructions on how to do the above because you have proven that you don't follow instructions
when they are given ;-)

9. Well, we have not done all that much about creating your own UM macro so far. Lets give it a
try now.

Chapter 1 Getting Started Page 12 of 166

10. Enter the Mark Munz UM debugger (oa-Ctrl-X or oa-Clear).

11. Type: oa-M to see the names of the presently defined UM macros. You are shown a list of these
macros in the order that they are defined in the source file. Selecting "Alphabetical," shows a list
of defined macros in alphabetical order. Note that a tilde i.e., sa- B means sa-Ctrl-B macro.

12. Selecting "Alphabetical" we see that ba-C has not been defined so we can use it as our new
macro. (If ba-C is assigned for you, then you are not using a "out-of-the-box-" AppleWorks.
Pick an unused letter and follow along.)

13. Many macro examples you will see start: B:<all :... This works, however, it is not my
preference. My way is: <sa-B>:<all :... My way doesn't cost more or less, just more typing
on your part. You will have to decide on the format for your macros. For ba- macros, you have
to do it my way ;-) Here is my macro to compile the current file. I put this macro in all of my
UM files. You want to put it as the third macro in the file so it gets compiled and can be used
even if there are errors further down the file. For most macros you should write them in the
fashion shown so crucial steps can be commented or risk having a really cool macro become
"write only" some time in the future when you try and figure out just what it was you were
trying to do. NOTE: "Write Only," is a computer nerd joke, so laugh uproariously so folks think
you got it.

NOTE: Try The "Try" file is provided so you can copy any of the examples from this manual to the
bottom and compile and see just how the macro works. The "Try" file has the bare bones needed for
any custom macro package. In fact, it has the following <ba-C> macro already so there is no need
for you to copy this one over there.

Compile current WP file macro

Compile current wp file macro
<ba-C>:<awp :
$0 = "Ultra Comp" : //Default to AW 4/5
A = peek $1003 : //AW version byte
if A < 40 then :

$0 = "U4 Comp" : //Nope, AW 3 so change name
endif :

oa-esc :
print "1" : //Put cursor at top
Z = 0 :
find :
if Z = 0 then : //Compiler not found

msg $0 + " not found" :
bell :
stop :

endif :
rtn : //Select it
oa-rtn : //No questions, just do it!
>!

1. In the above you see where Z is set to 0: You (may) have seen a number of quotes from Randy
where you needn't worry about the value of Z if you do not use it in your macros as a general
purpose variable since all <find>'s returned a value in the "at start" range. Bzzzt! Thank you
for playing - you lose. That was the "old" rule before dot commands. Now there are a
NUMBER of macro commands that return values in Z that mess up following <find>
commands that depend on Z being in the "at start" range. So, the rule is: If you have not
set/used Z in a find within your macro, set the sucker to 200 for an exact match or 0 for a match

Chapter 1 Getting Started Page 13 of 166

from the beginning. To use 200 in this example we would have to spell out "Ultra Compiler"
exactly as it appears in the menu.

2. In the above it said mentioned that the ba-C macro should be the third macro. You probably
wondered what are the first two macros? Here they are from the AW 5.1
/EXTRAS/MACROS/SEG.UM.source file. While you are told to study these macros to gain
understanding, there are no comments for many of the crucial commands. This is the version that
ships with AW 5.1. No code changed, comments added. (Well, I did rearrange a few things,
upper cased the variables for readability, etc.)

<ba-]>:<all:
poke $11AC,0 : //Ignore user presses of Esc
$1 = screen 36,1,9 : //Line 1, col 36 for 9 characters
ifnot $1 = "MAIN MENU" then : //No idea why this needed

input :
rtn :
Rpt : //Loop until at main menu

endif :
X = PeekWord $B560 : //Zero = no Inits. Mine = $2045
if X = 0 then bell : //$EF00 is start of macro table.

poke $EF70,$1E : //No idea what $EF70 does. Mine = $DD
poke $11A2,0 : //Mark UM as not active. Normally = 1
oa-Q oa-S >5< rtn : //Init Mgr options See Note 1:
msg ' You must activate Inits and reboot to use UltraMacros ' :
stop : //Again, cannot use #Key2Stop yet.

endif :
// Get to Main Menu if auto-startup active,
// even if 5.25" drive and no clock
goto ba-[:

>!

<ba-[>:<all:
poke $11AC,0 : //Don't allow esc from this macro
F = 0 : //Init F
call ba-K in "seg.ax": //See if seg.ax online
if F = 0 sa-_ : //No it isn't. Prompt user for AW disk

Rpt : //Keep trying until it is
endif :

P(1) = peekword $A90 : //Pointer to Name.Address data
if P(1) > 0 exit endif: //Exit to <endif> behind <Rpt> below
msg ' Please Wait ' :
Begin :

$1 = .awpath : //Path AW booted from
.online $1 : //Should not fail. Just booting.
if Z = 0 sa-_ then : //Whoops, it failed.

Rpt : //Rpt will go to the Begin statement
endif:

//The following <if> is because the one above only took us to the
//<endif> after the <Rpt> so we have to ask again to get the
//<uncache> behind the next <Rpt>. Confused yet?
//See Chapter 3 exit/rpt trick

if P(1) > 0 exit endif:
$1 = $1 + "/NAME.ADDRESS" :
.loadvar $1, 190 : //Load strings $90 through $99
if Z = 0 then : //Pointer there but file gone??

Chapter 1 Getting Started Page 14 of 166

goto ba-# : //Remake the NAME.ADDRESS file
endif :

//Move Name.Address info from $96-$99 to desktop and set $A90 to
//point to it.
sa-! :
exit : //Exit/Rpt trick.
Rpt : //Never goes to the top of this macro

//Remove the file named in $95 from cache. SEG.NA uses this facility.
.uncache $95 :

sa-% : //Load NAME.ADDRESS to desktop
msg ' Default Macros Successfully Installed - Press any key ':
wait 9000 :
msg "" :
poke $11AC,$1B : //Put esc back
>!

Note 1:
Daddy, what can I do from the oa-Q (Desktop Index) menu?
Glad you asked little Billy. In addition to file selection &/or Desktop Index selection via <tab>,
here is what I've discovered. Uncle Randy has turned the Desktop Index <oa-Q> into a mini-meta
key. Not all of these can be found in the AW 4 manual. (By me at least.)

1. oa-A goes to: Main Menu, Add Files menu

2. oa-B goes to: Main Menu, Other Activities, Standard Settings, Print Buffer options.

3. oa-C goes to: Main Menu, Other Activities, Clipboard Options

4. oa-D goes to: Main Menu, Other Activities, Disk Activities. (Tab to File Activities.)

5. oa-F goes to: Main Menu, Other Activities, File Activities. (Tab to Disk Activities.)

6. oa-P goes to: Main Menu, Other Activities, Change Current Disk.

7. oa-S goes to: Main Menu, Other Activities, Standard Settings.

8. oa-V goes to: A view of the contents of all three desktops.

Making (Recorded) Macros Permanent
This could be subtitled, "What Types of Macro files are there Daddy?" The answer is three little
Billy.

1. The default set i.e., the macros that are present each time you boot AppleWorks.

2. A task file that is launched either by manual means (you, your fingers, and the keyboard or from
within another macro package.

3. An invisible task file. These can never be launched as a package since the name of the package
never appears in a list of available task files. Only individual macros within the invisible task file
can be called from within another macro package. (An individual macro within the invisible task
file can be selected by <link> which leaves the invisible task file in control after the linked to
macro completes which would allow selection of others, etc., etc. So by getting tricky, you can
<launch> an invisible task file using <link>.)

Chapter 1 Getting Started Page 15 of 166

There are two ways to make recorded macros permanent:

1. Type oa-ESC to bring up the TO menu, select "Ultra Options" and then select #4 (The default
set). This saves all active macros "as is". This is not a smart thing to do since your recorded
macro(s) will be saved without there being any source telling your what is really in your default
set. This means you have to remember what you recorded each and every time you record and
save as the default set - and you know how bad your memory is.

2. Create an empty WP file named "Junk," or some such. It isn't going to be around all that long.

3. While within "Junk" type: oa-ESC, select "Ultra Compiler," select "Display current macro set."
This will cause the current macro set to be placed in WP file Junk. There will be no comments,
etc.

4. oa-9 to the bottom of the file and the recorded macro(s) should be last in the file. Copy them to
the clipboard and oa-Q to the macro source file.

5. Go to the point in the source where you want the recorded macro(s). (Some folks go
alphabetically, others go function, etc., etc.) When at that point oa-C From the clipboard the
macro(s).

6. Add comments and whatever type of formatting you normally use.

7. Add a terse line for each new macro at the appropriate point in the beginning of the program that
describes the macros function. The lines have the form: \sa-W (tab) Change to 10 chars/inch

8. Use ba-C to compile the package, sa-Ctrl-T to save it appropriately. (If you have not copied ba-C
and/or sa-Ctrl-T from the Try file, now would be a good time to do that. Read the notes at the
sa-Ctrl-T macro for the three types of sa-Ctrl-T macros (default set, task file, or invisible task
file).

Chapter 2 Miscellaneous Page 17

TimeOut Applications AW 3.x, AW 4.x, AW 5.x

AppleWorks 3.x
There are two TimeOut applications on the Ultra 4.0 disk. UM 4.0 Options replaces Macro Options
and UM 4.0 Compiler replaces Macro Compiler. Using new names allows you to have booth versions
on your TimeOut menu, so that you can launch ULTRA.SYSTEM and run UltraMacros 3.x, or
launch UM4.O.SYSTEM to run Ultra 4.0 through 4.2 on the same AppleWorks disk.

AppleWorks 4.x and AW 5.x
For AppleWorks 4 and 5 UltraMacros version 4.3 (AW 4.x) and UltraMacros 4.4 (AW 5.x), reside
in a file named seg.um which is loaded at boot time if UltraMacros is activated. It is no longer
possible to run either UM 3.x or Ultra 4.x for AppleWorks 4 and beyond.

UM 4.x Options
The Macro Options application (TO.UM.OPTIONS on disk for pre AW 5 and TO.ULT.OPTIONS
for AW 5) contains Ultra 4.0's options. From inside of AppleWorks, press oa-Escape and select UM
4.0 options or Ultra Options to get the following menu for AW 5.

File: CH2A ULTRA OPTIONS Escape: Review/Add/Change
==

Current macro set: seg.um

1. Launch a Task file
2. Launch default macros

Save current macros as:

3. A Task file
4. The default set

UltraMacros 4.4 Copyright 1994 Randy Brandt
--
Type number, or use arrows, then press Return 4986K Avail.

The first two options on this menu deal with Task files.

TASK FILES
Task Files are compiled sets of macros that have been saved as system files. They are called "Task
Files" because they allow you to quickly and easily execute a specific task.

Task files can be launched several different ways:

1. From within AppleWorks by using the TimeOut Macro Options application. (See "Launch a Task
File" section that follows.)

2. From within AppleWorks by using the <call>, <link>, or <launch> commands.

A. <call> loads the macro set and then executes the specified macro which returns to the
calling macro when macro activity stops.

B. <link> loads the macro set and then executes the specified macro which is identical to
<call>. However, return is not made to the calling macro i.e., the linked to macro set
remains the active set when macro activity stops.

Chapter 2 Miscellaneous Page 18

C. <launch> loads the macro set and then executes the second macro. As with <link>,
return is not made to the calling macro i.e., the launched macro set remains the active set
when macro activity stops.

3. From outside AppleWorks by using a program selector such as Bird's Better Bye, the GS/OS
finder, ProSel or EasyDrive.

4. From outside of AppleWorks by typing -TASK.NAME from Basic with the AppleWorks
STARTUP disk in the current drive.

Launch a Task File
This option reads the Appleworks disk and looks for macro sets (Task files). The names are shown on
the screen. Press Escape to return to the menu, or, using the arrow keys, select the macro package to
launch. Press Return to run the macro set, or oa-Return to load the macros without running them. If
macro sets are present in memory Options will list them, along with an additional option to read the
disk for more task names.

If you press oa-Return to select this option, you will be prompted with a pathname ending in
UM4.0.SYSTEM (seg.um for AW 4 and 5). If you press Return, your default boootup macros will
be reinstalled.

You may also type in a different pathname to launch any other file. The advantage of this option is
that your Task file doesn't have to be on the AppleWorks startup disk, and Options doesn't have to
read the disk to build a list of available Task files.

NOTE: Ultra 4.x Task files are not compatible with earlier versions. Earlier task files won't appear
on the UM 4.x Options list. To convert macros, you will need to load the source and recompile.

When a task is launched from outside of AppleWorks, it first loads UM4.0.SYSTEM, which in turn
loads AppleWorks. The first macro in the set of macros i$ then executed.

The second macro should actually begin the task. This is the macro that is executed when the task is
launched from within AppleWorks.

Create a Task File
This option takes whatever macros are currently active in Ultra and saves them as a Task file on your
AppleWorks startup disk.

First you are prompted to enter a name for the new Task file. The macro set's name is provided as a
default. Enter a legal Prodos name (you know, 1 to 15 characters beginning with a letter and
containing only letters, periods or numbers).

You are then asked if you want to create a hidden task file. If you choose No a system file is created
which can be launched from program selectors. if Yes is chosen, a binary file is created and will not
show up on program selectors such as Bird's Better Bye or the AppleWorks selector. These BIN files
will show up in Finder but double clicking them will not "launch" unless you have some sort of BIN
launcher in place.

If the AppleWorks startup disk is not found, you will be prompted to insert it. Put the startup disk in
the drive and press Return, or press escape to cancel. When the macros have been updated, put the
previous disk back in the drive.

You also have the option of entering a full ProDOS pathname in order to save the Task file on a
different disk or subdirectory.

Chapter 2 Miscellaneous Page 19

Save macros as default Set
This optIon takes whatever macros are currently active in UltraMacros and saves them into the file
SEG.UM ("UM4.0.SYSTEM" AW 3), on your AppleWorks startup disk. These macros will be then
be available whenever you start AppleWorks. No compiling will be necessary to reuse them.

Before the macros are saved you are asked if you want to activate the auto startup macro. if you
choose Yes, the first macro in the macro set will be automatically run when AppleWorks is started.
Current conventions says that the first macro is always ba-] and the second is ba-[. Normally, ba-]
just calls ba-[. However, this convention does allow you to do something different on loading the
default set.

<ba-]>:<all: goto ba-[>! get to Main Menu if auto-startup active,

Here is the second macro. It can do as much or as little as needed. For example, the "call sa-K in
seg.ax" isn't needed if you have your AppleWorks disk (HD) on-line at all times. However, if you
are booting from a 3.5" disk on a single 3.5" drive system, there is a possibility that seg.ax won't be
available on disk when it is needed so it is preloaded here.

<ba-[>:<all :
// This message is displayed if auto-startup is used, or if
// these macros are used as a Task file.
poke $11AC,0 : //Do not allow ESC key to abort
F = 0 :
call sa-K in "seg.ax" : //Empty macro to get seg.ax into cache
if F = 0 sa-_ : //sa-K &/or seg.ax not found

Rpt : //Go to beginning of macro
endif :

msg 'Default macros installed.' :
poke $11AC,27 : //Put ESC back
wait 1500 : msg ''>!

<sa-_>:<asr:
.say "Place your AW STARTUP disk in a drive and press Return" :
K = peek $C000 : if K = 27 stop >!

if the SEG.UM (UM4.0.SYSTEM AW 3), file is not found, you will be asked to insert your
AppleWorks startup disk. You can press Escape to cancel, or you can insert the startup disk and press
Return. When the macros have been updated, put the previous disk back in the drive.

Key click on: Yes
NOTE: Options 4 through 12 are specific for AW 3. These option do exist for AW 4/5, however,
they are handled from the "Other Activities" menu and are covered in the AW 4 manual.

Because the AppleWorks 3.0 cursor blinks while macros are active, the speaker clicks on each
keystroke so you know that a macro is in control. To cancel the clicking, use this option.

Cursor blink A
Cursor blink B
These two options control the speed at which the AppleWorks cursor flashes (blinks). Because there
are so many hardware/software combinations, it's impossible to come up with defaults that work for
everyone. Your cursor should blink at a pace that "feels right" to you Turning the mouse on or off
greatly affects the blink rate.

Blink A is the time off for the overstrike cursor, and the time on for the insert cursor. blink 8 is the
time on for the overstrike, and the time off for the insert cursor. Sound confusing? lt is. Usually the
first number is higher than the second, and smaller numbers will make the blink faster. Experiment

Chapter 2 Miscellaneous Page 20

Mouse on: Yes
Use this option to ignore your mouse. lt is useful for //c users who don't have a mouse. //c's have
mouse cards built-in, and the cards sometimes give false readings as though a mouse was being
moved. if you occasionally experience random cursor moves on any kind of Apple][, try turning the
mouse off.

Mouse button delay: 2
Choose this option to adjust how long the mouse button delays after it's used to select menu options.
if you find yourself jumping several menu steps at a time when you press the mouse button, you
should increase the delay.

Mouse horizontal: 16
Mouse vertical: 32
These options control how far the mouse has to travel horizontally or vertically before the
AppleWorks cursor moves. Low numbers are more responsive and high numbers mean you have to
move farther

Apple IIgs users can also use the Control Panel Options to change the high speed mouse option to
"yes" or "no"

Screen blanker on: Yes
The screen blanker automatically blanks your screen if there has been no key press or mouse move for
a specified amount of time. This avoids monitor "bum-in" (i.e. scorching of the phosphor monitor
screen). On a IIgs, even the border color is changed to black.

A potential problem was noted by one of the beta testers: "With Desktop Utils (which has a screen
blanker ... and possibly Twilight II though I have not used that for years, and possibly others) if the
screen is already black then those colours are stored by the second screen blanker :) ... so when you
restore by pressing a key you restore to black."

Thre are three remedys:

1. Two quick presses on the esc key <esc : esc>, will set the world right again.

2. Set the AppleWorks Screen Blanker: Off

3. Disable the non-AppleWorks screen blanker

Screen blanker delay: 20
Choose this option to adjust how long the screen preserver waits before it blanks the screen. The
delay is related to the number of cursor blinks, so your cursor blink rate directly affects the delay
time. A higher number means a longer delay before the screen blanks.

UM 4.0 Compiler
The UM 4.0 Compiler (TO.UM.COMPILER on disk) allows you to create new macro programs by
scanning a Word Processor document containing macro definitions and converting them into form
usable by ultra 4.0. It can also display the current macro set listing the active macro definitions into a
Word Processor file.

The basic operation of the compiler hasn't changed from the description in the UltraMacros manual.
However, some new features have been added.

C++ Style Comments
C++ comments. C++ (a "real" programming language according to Mark Munz) allows you to
enter // and type comments after that. The compiler ignores everything on the line following the // so
your ending ">!" must be on another line.

Chapter 2 Miscellaneous Page 21

<sa-A>:<all :
oa-Q : esc : //get to main menu from anywhere
rtn : rtn //add files
>!

Compiler Labels
Compiler labels Ultra 4.0 offers a powerful new compiler feature called <labels>, related to the
address labels found in UltraMacros 3.x. The name is the same because both are names starting with
a "#" sign. Labels allow you define a series of commands by name and then use that name throughout
the macro file.

Labels are defined at the beginning of your macro file before the <start> token. As with <start>
and <end>, the word <labels> must start in column 1, on a line by itself, with no trailing blanks.

A macro set (task file), may be named by a period followed by a valid ProDOS file name.

labels
.TryStuff //Name of this macro set if saved to disk

Lines beginning with "\" are Macro Titles. (A "kind" of label.) They list macro names (ba-C) and the
function they perform (Compile UltraMacros). Pressing <sa-Esc> from the keyboard or calling
<.MacroNames> from a macro causes a window to display a scrollable list of the available Macro
Titles. Hitting Return while one is highlighted will cause it to run. (Esc will abort the process.)

Each Macro Title can have up to 27 characters of description +2 for overhead. There are a maximum
of 512 characters for AW 4 (UM 4.0 through 4.3). In UM 4.4 (AW 5), the total has been increased
to 768 bytes.

Using the full 29 characters per macro title would restrict you to 17 Macro Titles for AW 4 and 26
for AW 5. No indication is given if you exceed the number of characters. Your only recourse is to
compile the macro set, press sa-Esc to get the available macros menu, oa-9 takes you to the bottom
where you can see if the last macro title made it. If not, figure out how to shorten the description of
one or more macro titles and try again. (I currently have 31 defined for AW 5.1 so it pays to keep
those titles as short as possible.)

\ba-C Compile Ultramacros
\sa-F Find Text. Clr prev search
\ba-L Launch seg.um
\sa-Ctrl-T Make this file a task file

Note that there are three correct ways to specify the macro name: \sa-A (tab/spaces) Comment, \ba-A
(tab/spaces) Comment, and \sa-Ctrl-A (tab/spaces) Comment. In the scrollable list they will be
displayed as, "Comment" followed by one or two mousetext Apple symbols (the solid apple for sa-
macros and both the solid and open apple for ba- macros), a dash, a caret for the control key, and
finally the macro letter.

Labels must be on one line only.
Next we have Compiler Labels, which is what this section is titled. Labels start with "#" in column 1,
one or more tab/spaces, and equal sign (=), one or more tab/spaces, followed by the text to be
assigned to the label. As shown below, the text can be the name of a macro to call or one or more
macro tokens.

Chapter 2 Miscellaneous Page 22

#Key2Stop = ba-! //Call macro ba-!
#addfiles = oa-q : esc : rtn : rtn : //Go to add files menu
#FindMain = sa-B //Call macro sa-B

Next we have the <start> token which is followed by macro definitions.

start
//The word start must start in column 1, be on a line by itself,
//and have no trailing spaces. Everything from this point to the
//token <end> is either comments or macro definitions/tokens.

//The first two macros, by convention, are ba-], followed by ba-[.
//See "Compile current WP file macro" section in Chapter 1 for
//a detailed look at the two macros as shipped with AppleWorks

<sa-A>:<all :
#addfiles :
#findMain : //Loads file "Main"
>!

<#FindMain>:<asr : //Really sa-B
$0 = "Main" :
Z = 0 : //Match at the beginning
find :
if Z = 0 then : //If Z = 0 didn't find file Main

bell : //Wake bozo up
stop : //Stop all macro activity

endif :
rtn : //It was found & highlighted so load it
>!

end

End of macro definitions. Any type of text (macro definitions, comments, your laundry list, etc.),
can come after the <end> token and it will be ignored by Ultramacros. Like start, it must begin in
column 1, be on a line by itself and have no trailing spaces.

One way I use it is to copy a macro I'm going to be drastically changing behind the <end> token so
I have a fall back position if all else fails.

Note: A personal preference is to assign the top row shift keys (!, @, #, ..., to these label macros
because these keys are harder to press than sa-B, etc.

#Lab1 = sa-!
#Lab2 = ba-!
#Lab3 = sa-@
etc.

Warning: There are a couple of reserved macros along the way. (Oh, but you have looked at
Mac.AllPossible haven't you ;-)

Appleworks address labels.

Chapter 2 Miscellaneous Page 23

The Ultra 4.0 Compiler recognizes some AppleWorks address and special values by name. These
labels are mostly useful for use with peek, peekword, poke, and pokeword. For example, the
following displays a message with the desktop file count:

<sa-A>:<all :
msg "There are " + str$ peek #filecount + " files an the desktop." :
>!

Always follow the label with a space or ">" or the compiler won't recognize it as valid. <poke
#keypad + 7> is ok; <poke #keypad+ 7> won't work. The compiler doesn't recognize
"#keypad+" as a label

The compiler won't list the label when decompiling. The address will be given in decimal as always.

TIP: Just use decompiling for getting to your recorded macros, and then add them to your commented
source file where everything, hopefully, is clear

The compiler allows the use of literal key names to represent values in some cases. Double quotes tell
the compiler to use the OA versions of keys (hi bit on), single quotes tell the compiler to use the
normal versions of keys (hi bit off), and carets tell it to use the control equivalents.

<sa-A>:<all : //See Note 1
W = #"a" : //High bit on
$1 = "W = " + str$ W :
X = #'a' : //High bit off
$1 = $1 + " X = " + str$ X :
Y = #'A' : //High bit off
$1 = $1 + " Y = " + str$ Y :
Z = #^a^ : //Control-A
$1 = $1 + " Z = " + str$ Z :
A = #^+^ : //See Note 2
$1 = $1 + " A = " + str$ A :
msg $1 + " " + %J% + " Key " + %K% :
#Key2Stop :
>!

Note 1: After testing this macro I somehow turned the colon behind the <all> token into an upper
case ell (L). Rerunning the macros later "just to make sure" and W kept coming up with a value of
zero. Turns out UltraMacros thought I was using a variable named LW (second and subsequent letters
ignored), so it gave the value to L. Sheesh!

Note 2: There is no such thing as a Control-+ but we got an answer of 11. See the AWP file
"KeyChart" and you will see that we got the answer for Control-K. See where "+" is on the chart
and you will see what happened.

This is very handy for checking for specific keys:

<sa-A>:<all : X = key : if X = #"P" then msg "oa-P was pressed">!

Instead of using 1 and 0, you can use more descriptive labels, #true and #false, or #on and #off.

Name Value Example
============================
#true 1 <sa-A>:<all : find : if Z = #true then rtn>!
#false 0 <sa-A>:<all : if X = #true then Y = #false>!
#on 1 <sa-A>:<all : display #on>!
#off 0 <sa-A>:<all : display #off>!

Chapter 2 Miscellaneous Page 24

Address Labels
Here's a list of supported address labels that will generally yield internal AppleWorks locations: (No,
True and False are not internal locations ;-)

Since these are labels, they must be prefixed with a "#" for use in a macro.

Generally you would do: "A = peek #Label" However, there are some of these labels that point to
values that can be greater than 255. For those, you need to use: "A = PeekWord #Label"

Those that I see that require a PeekWord are DBRecs, #DBRules, DBSelrecs, and FreeMem. Might
be more, but I doubt it. (A good way to learn more about these labels is to join Bev Cadieux's Mail
Group:)

The way most folks use these labels is:

<sa-A>:<all :
A = peek #CursChar : //Get character under cursor
A = A - 128 : //Remove the high bit
$1 = chr$ A : //Put the string value into $1
>!

Copy to Try, compile and run. Look in the debugger for the address.

<sa-A>:<all :
clear 255 : //Clear all integers to 0 & strings to null
A = #day : //These tokens are used for bypassing
B = #month : //the clock and forcing
C = #year : //UltraMacros to use the
D = #dclock : //date or time of your choice
E = #tclock : //when displaying the date
F = #hour : //or time. See the file
G = #minute : //Macros Ultra for examples.
H = #ccwidth : //width of current spreadsheet cell
I = #colwidths : //width table for all columns
J = #curhor : //horizontal cursor position
K = #curschar : //character under the cursor
L = #cursver : //vertical cursor position
M = #dbfields : //total categories
N = #dbrecs : //total records
O = #dbrpts : //total reports
P = #dbrules : //are rules active?
Q = #dbselrecs : //records selected by find and /or rules
R = #dbzoom : //zoom status
S = #exitflag : //oa-Q or oa-S that caused bail from current file?
T = #false : //Constant 0
U = #filecount : //files on desktop
V = #filestatus : //status of current file
W = #findtype : //default matching for live finds. See <find>
X = #freemem : //K free on desktop
Y = #kbtype : //type of data on clipboard
Z = #key : //last key pressed
A(1) = #msgh : //msg horizontal value
B(1) = #msgv : //msg vertical line
C(1) = #off : //Constant 0
D(1) = #on : //Constant 1

Chapter 2 Miscellaneous Page 25

E(1) = #openfile: //current file's number in desktop index
F(1) = #socursor: //1 = overstrike cursor, 0 = insert cursor
G(1) = #sszoom : //zoom status
G(1) = #true : //Constant 1
H(1) = #waitkey //default for <wait>
I(1) = #workstr : //current spreadsheet cell (if string value)
J(1) = #worktype: //current spreadsheet cell id <128 means label
K(1) = #workval : //spreadsheet cell value (in SANE format)
L(1) = #wpwa : //length/cr byte for current wp line
M(1) = #wpzoom : //zoom status
N(1) = #totalfiles //Totalfiles on all three desktops
>!

Debug
This Mark Munz masterpiece is not a TimeOut application, but it seemed like a logical place to put it.
Debug is accessed by oa-Control-X (oa-clear on the IIgs) or the <debug> token from within a
macro.

Numeric variables are displayed at the top left of the screen, thirteen at a time. Use up, down, oa-up
or oa-down to scan through the variables. You may also press oa-0 though oa-9 to jump to the start of
the various arrays. Press Return on any variable you wish to modify. Values may be entered in
decimal, or in hex if you precede the number with a "$" sign. Use Tab to switch to the string
variables (and another Tab to switch back to the numeric variables).

String variables are displayed at the top right of the screen preceded by the string number and length.
Only the first 34 characters are displayed in this window. Using the same commands as with the
numeric commands to highlight a string (oa-0 through oa-9 to display a group of ten strings and up
and down arrows to select an individual string), you will see the first 79 characters of the string
displayed on the next to last line of the screen. i.e., there is no room to display the 80th character.
You can see the 80th character by using the "msg StringName," in any type of AW file or by print
StringName in a WP file.

Press Return on any string to edit it. The cursor moves to the bottom of the screen where you may
enter new text. The ruler on the line above the string shows you the length of the string. A maximum
of 79 characters can be entered. One short of a string's limit. Oh well.

Display Items
Several other items are displayed at the bottom right part of the screen.

Onerr Status indicates the current <Onerr> flag setting.

Sleep Macro displays the name of any defined sleeping macro, along with the time it is set to
activate. Macros are put to sleep by <Wait>

Name displays the name of the current macro set.

Pr# displays the <print> output slot, normally 0, which is the screen.

Defined indicates how many macros are in the current set.

Length indicates the length of the current macro set.

Chapter 2 Miscellaneous Page 26

None UltraMacros Debug v2.6 Copyright 1995 Mark Munz & Randy Brandt

A (0) : $0020, 32 | 00 : 05 :
B (0) : $0001, 1 | 01 : 09 :Not found
C (0) : $00EF, 239 | 02 : 76 :reports. But I was hoping to get m
D (0) : $0000, 0 | 03 : 10 :/DATA/TXT/
E (0) : $01DE, 478 | 04 : 00 :
F (0) : $0001, 1 | 05 : 03 :ONE
G (0) : $0046, 70 | 06 : 14 :/DATA/DOWNLOAD
H (0) : $0000, 0 | 07 : 00 :
I (0) : $0001, 1 | 08 : 00 :
J (0) : $0002, 2 | 09 : 00 :
K (0) : $0000, 0 |--
L (0) : $0002, 2 |Onerr Status: Off
M (0) : $0000, 0 | Sleep Macro: None

---------------------------|--
�-D Dot cmds �-X Xtnd nums |Trace Options | Name: seg.um
�-M Macros �-V View scrn |Numeric: No |
�-P Peek vals �-B Break opt |Strings: No | Pr# : 0
�-T Trace opt �-S Save Info | Macros: No | Defined: 50
�-N End macro �-W Walk thru | Break: Off | Length: $0976, 2422
--

oa-D show Dot commands
Use the arrow keys to see all of the installed dot commands. In the following a "#" denotes an integar
or integer variable is required and "$" a quoted string or string variable is required.

Use Tab or the Right arrow key to move through the command lists. You can use oa-Tab and the Left
arrow to move back. Press Escape to return to the main screen.

None UltraMacros Debug v2.6 Copyright 1995 Mark Munz & Randy Brandt

|
DB.AND.SS | DEFAULTS

|
.GetNames #,#,# | .Beep #,#
.SetNames #,#,# | $=.Caps $
.GetRec #,#,#,# | #=.Eof
.SetRec #,#,#,# | .FindPO

$=.GetCat #,# | $=.GetFPath
.SetCat #,#,$ | #=.ID

$=.CatName # | $=.Lower $
#=.CatNum $ | .Online $
#=.Column $ | $=.PeekStr #
#=.ColWidth # | .PokeStr $,#
$=.GetCell #,#,# | .PokeZp #,#
.SetCell #,#,$ | .SetDisk $

$=.CellID | .SetFPath $
$=.LastCol | $=.Upper $
$=.LastRow | .ZoomIn

|
| -->

oa-M show Macro names

Chapter 2 Miscellaneous Page 27

Displays the macro names currently defined in the order they are defined in the AWP macro source
file.

all:ba-] = macro is valid in all locations in AppleWorks, including TimeOut.
awp:sa-F = macro is valid only in a Word Processor file.
all:sa- D = The tilde denotes the control key = sa-Ctrl-D

In addition, you have the option of viewing the names in alphabetical order, making it easy to see if
you've defined duplicate macros, or to find an unused name. Original puts the list back in the order
they were defined in the file.

None UltraMacros Debug v2.6 Copyright 1995 Mark Munz & Randy Brandt
--
all:ba-] awp:ba-; awp:sa-T awp:sa-1
all:ba-[asr:sa-& awp:sa-U awp:sa-2
awp:ba-C awp:sa-/ all:ba-Q awp:sa-3
adb:sa-F awp:sa-J awp:sa-G awp:sa-4
all:sa-F all:ba-J awp:sa-I asr:sa-%
all:ba-L awp:sa-K awp:sa-�I asr:sa-^
awp:sa-�T awp:ba-K awp:ba-+ asr:ba-(
asr:ba-B asr:sa-# awp:ba-I
all:ba-! awp:sa-S all:sa-*
all:ba-@ all:sa-M awp:sa-P
awp:ba-A all:ba-M awp:sa-O
all:sa-! awp:sa-N awp:sa-H
all:ba-Y asr:ba-% awp:sa-R
all:ba-Z asr:ba-# awp:ba-R
asr:sa-) awp:sa-- all:ba-1
awp:sa-B awp:ba-- all:ba-2
awp:sa-D awp:sa-8 all:ba-3
all:sa-�D awp:sa-9 all:ba-4
asr:sa-(awp:sa-E all:ba-5
awp:sa-; asr:ba-E asr:ba-6

Viewing order? Alphabetical Original

NOTE: As part of this manual I generated all possible macro names using, what else, UltraMacros.
As you might guess, the number of macros more than filled the above screen. What to do? Simply hit
TAB to see the next screen. Is that Mark Munz a cool programmer or what!?! (The file to generate all
possible UM names is part of this package.)

oa-P display Peek values
Displays 20 addresses along with the data found at that address. You may define each location as a
Word (two bytes), Byte (one byte), String (length byte followed by characters) or Raw data (16
bytes). Press Return on a location to set the address and display type. See oa-S option for the way to
save these setting between sessions.

If you wish to change the display from say, byte to word, hit Return and type one existing character
followed by Return. Simply hitting Return, Return, will not give you the option to change the display
mode.

None UltraMacros Debug v2.6 Copyright 1995 Mark Munz & Randy Brandt
--
1. $0000 W:$0000 , 0 ".."
2. $0000 W:$0000 , 0 ".."
3. $0000 W:$0000 , 0 ".."
4. $0000 W:$0000 , 0 ".."
5. $0000 W:$0000 , 0 ".."

Chapter 2 Miscellaneous Page 28

6. $0000 W:$0000 , 0 ".."
7. $0000 W:$0000 , 0 ".."
8. $0000 W:$0000 , 0 ".."
9. $0000 W:$0000 , 0 ".."
10. $0000 W:$0000 , 0 ".."
11. $0000 W:$0000 , 0 ".."
12. $0000 W:$0000 , 0 ".."
13. $0000 W:$0000 , 0 ".."
14. $0000 W:$0000 , 0 ".."
15. $0000 W:$0000 , 0 ".."
16. $0000 W:$0000 , 0 ".."
17. $0000 W:$0000 , 0 ".."
18. $0000 W:$0000 , 0 ".."
19. $0000 W:$0000 , 0 ".."
20. $0000 W:$0000 , 0 ".."

oa-T set Trace options

Allows you to set trace options for numeric and string variables, or for macro
names. If macro names are being traced, Ultra 4.0 will pause each time a new macro
is called, displaying the new macro name on the bottom of the screen.

When you choose to trace variables, you have the option of displaying the variable
names and values each time a variable is set (modified) or whenever it is accessed
(get or set).

This option changes only the bottom line of the screen as follows. (The highlighted
options are from Roy Barrows' HiLight Tool Macro. Unfortunately, the hilights won't
appear in the printed manual so we have placed a comma between options.)

Change Trace Option for? Ä� ����, ô����	, ìß��
�, â��ß�áü��, é��ß
áÉ��

If you choose "Break Pts" you must also select oa-B to set break points to break on.

oa-N End Macro

If a <debug> token is encountered in a macro or you reach a designated break point,
you are put into the debugger. At that point you can simply hit ESC to return to the
macro where execution will continue or you can type oa-N followed by ESC. In this
later case the macro is aborted. There is no special screen for this option.

oa-X Extended Numeric Variables

oa-X displays the contents of the 26 extended math variables. Typing A through Z
allows you to set the value of that extended variable. See the documentation for the
dot commands (Chapter 4), that begin with an x i.e., <.xMath> for details.

None UltraMacros Debug v2.6 Copyright 1995 Mark Munz & Randy Brandt
--

Extended Variables

`A : 0.00 `N : 0.00
`B : 0.00 `O : 0.00
`C : 0.00 `P : 0.00
`D : 0.00 `Q : 0.00
`E : 0.00 `R : 0.00
`F : 0.00 `S : 0.00

Chapter 2 Miscellaneous Page 29

`G : 0.00 `T : 0.00
`H : 0.00 `U : 0.00
`I : 0.00 `V : 0.00
`J : 0.00 `W : 0.00
`K : 0.00 `X : 0.00
`L : 0.00 `Y : 0.00
`M : 0.00 `Z : 0.00

xFixed (fix decimal places at 0, 1, 2, or use 128 for appropriate): 2
xIntegers (treat Ultra variables as hundredths if 0 or integers if 1): 1

--
Type variable name to modify:

oa-V View Screen
Typing oa-V from the debugger allows you to see the text screen as it was when the debugger was
entered. Any key restores the debugger screen.

If <display 0> is active you will see only the visible screen image, not the hidden one.

Randy said, "I can't show you the text screen without admitting that Bill Gates and I can see
everything on any computer."

oa-B Break Options
Break Points tell the UltraMacros to break out of the macro to allow user interaction. A break point is
when a designated variable or string contains a predefined value/string.

None UltraMacros Debug v2.6 Copyright 1995 Mark Munz & Randy Brandt

Numeric Conditionals:

1. ============== 6. ==============
2. ============== 7. ==============
3. ============== 8. ==============
4. ============== 9. ==============
5. ============== 10. ==============

String Conditionals:

1. ==============
2. ==============
3. ==============
4. ==============
5. ==============
6. ==============
7. ==============
8. ==============
9. ==============
10. ==============

--
Type number, or use arrows, then press Return 5254K Avail.

There are 10 user defined variables and 10 user defined strings available for break point use. The user
defines what the break point value will be. When the variable or string reaches this predefined value
you will be prompted at the bottom of the screen to either continue or enter the debugger.

Chapter 2 Miscellaneous Page 30

The same variable and/or string can be defined for 10 different break points i.e., if variable A ever
contains any of these 10 values, break.

The screen is divided into two halves, variable and string, and as usual, you toggle between them by
the TAB key and navigate within the half with the arrow keys and Return to select.

Choosing a variable is a two step process:

1. Hitting return you are prompted to name the variable A-Z i.e., E.

2. Next you are asked to name which of the 10 Es you want by filling in () with 0 through 9 i.e.,
E(4).

Now you are asked to select with the arrow keys and Return one of the six relationship symbols:

<> Not equal to
>= Greater than or equal to
> Greater than
= Equal to
=< Equal to or less than
< Less than

Next you will be asked to provide the integer value.

For strings the process is somewhat easier. Here you select the position from the 10 available, provide
the string number (0 through 99), select one of the three relationships (Starts With, Contains, or
Equals). Next type in the string followed by Return.

If you wish to remove a particular break point, simply highlight it and hit oa-DEL. You will be
prompted to see if you really want to delete it. Answer appropriately.

Once all the break points are defined you have to activate the feature. This is done from the main
debugger window where you select oa-T. One of the options is: Break Points. Select it and answer
"Yes," to the question. Naturally, answering "No," deactivates break points.

NOTE: A word of caution. One beta tester reported: "Some users have found that 'Break points' are
not reliable and can cause crashes, especially in complex macros. Most Ultra users I know avoid
them. 'Trace' is also a little harder to use than it should be because it doesn't actually stop after each
macro command. It often skips several commands, leaving you to guess exactly where it is. I think
Randy once explained to me that it skips over any commands that don't cause some change on the
screen, or don't cause the screen to refresh, or something like that. It is still a very nice addition to
the macro package. Most other macro language have nothing like it."

So there you have it. A two sided coin. When break points work, they work very well. When the
don't, crashes ensue. So use break points in moderation and don't be surprised if a crash ensues.

oa-S Options
This option from the main Ultra Debug screen will save (remember), your current break point
conditionals and peek value definitions for the next time you run AppleWorks.

The information is saved in .../AW.INITS/I.DEBUG so if you want to set the break point
conditionals &/or peek values back to the default state (none), you can either manually remove them
or copy a pristine copy of I.DEBUG from one of your copies of the original disk to .../AW.INITS.

oa-W Walk Through

Chapter 2 Miscellaneous Page 31

The last option from the main Ultra Debug screen will turn on single-stepping. If you have visited
Ultra Debug in the midst of an active macro (with a <debug> token or a break point), single
stepping begins from the moment you leave the debugger.

It turns out that oa-# (Chapter 3), from the keyboard or a macro is the same thing as oa-W from the
debug menu.

There are some caveats concerning oa-W/oa-#. See oa-# command in Chapter 3. It turns out that
oa-W/oa-# isn't always what you want to use.

Variables
UltraMacros supports three types of variables:

Numeric Variables
Numeric variables contain integer values that can range from 0 to 65535.

String Variables
String variables can contain up to 80 ASCII characters. Each character can have an ASCII value of 0
through 255. (Not all ASCII values can be printed in all situations. Exceptions have been noted
throughout this manual.)

Extended Numeric Variables
Extended Numeric Variables were slightly covered earlier under the description of the <debug>
token. They are covered to much greater detail in Chapter 4 in the MathTools section.

Defining Numeric variables
UltraMacros has 260 numeric variables which are represented by the letters of the alphabet in ten
arrays from A(0) to Z(9). Variable names with no array are assumed to be in array 0, so X is the
same as X(0). Each variable can contain a value from 0 to 65535.

Here's a macro that uses variable C to print the numbers from 0 to 9

<sa-A>:<all : C = 0 (print C : spc : C = C + 1) 10>!

Variable names can also be multiple characters; there are still just 26 of them, but you can use any
alphanumeric characters after the variable name, along with _, [and] (underscore and the two
brackets). Because the compiler simply ignores the characters after the name, no space is wasted, and
listing the macros will list the actual variable name only. For example. our previous macro could be
written like this:

<sa-A>:<all : Count = 0 (print count : spc : C = C + l) 10>!

There is a danger involved in longer names since "Count" and "Constant" are the same variable, C,
which isn't immediately obvious when as you try to debug your macros. Your current editor declines
using longer names in any non-trivial e.g., a macro that calls another or doesn't fit on one screen.

Variable names may be used for the subscript of a variable, but array 0 is always assumed if no array
number is given:

<sa-A>:<all :
oa-9 : //Bottom of file
S = 8 : //Setting up index for J(8)
J(8) = 89 : //Just a number

Chapter 2 Miscellaneous Page 32

print JEM(Software) : //AKA print J(8)
>!

We suggest leaving variables U, V, W, X, Y and Z as "throw-away" variables. Assume that they can
be redefined indiscriminately by an and all macros. (Especially Z. See the <find>, <.AskYn>,
etc., commands for the reason.)

In addition to the above, you should consider I, J, and K as loop variables in deference to old Fortran
programmers ;-)

Start up AppleWorks and insert the /EXTRAS disk. Add all of the files named: "SEG.??.source" to
the desktop. Examine the variable usage by the macros in them.

Here's a chart showing the various ways to define numeric variable and use them in conditional
macros.

Not sure if I like this chart all that much, but Randy had it in two Ultra manuals so I'll have a go at
explaining it.

1. A variable can only be changed by using the "=" operator.

2. Conditional tests, <if> and <ifnot>, test the relationship between a variable and an operand.

3. The operand can be one of three things: A) An absolute decimal or hexadecimal number B)
another variable C) the output of *some* Ultra commands. Item C is somewhat slippery and I
recommend testing thoroughly to make sure you are getting the results you think you are.

Here is an example of C that works : if A > peek $10F5 then ... :

Here is one that does not even though it (and several others), were initially in the chart below. : if
A > len $1 then ... : Ultra views this statement as syntactically wrong and will not compile.
Testing this particular relationship between A and the length of the string in $1 is a two step
process : B = len $1 : if A > B then... :

4. There are three operators >, =, and < (greater than , equal to, and less than), the relationship
between a variable and the operand is very straightforward when the <if> condition is tested
i.e., : if A > B then... : when true means one thing, A is greater than B.

5. The <ifnot> condition, while straightforward, is somewhat broader than the <if> case i.e., :
ifnot A > B then... : when true means that A is either equal to or less than B.

6. From the two preceding points we can see that with <if> and <ifnot> and the three operators
you can test the relationship between the variable and the operand six different ways:

if A > B then... : //A is greater than B
else ... : //A is either equal or less than B

if A = B then... : //A is equal to B
else ... : //A is either greater or less than B

if A < B then... : //A is less than B
else ... : //A is either equal or greater than B

ifnot A > B then... //A is either equal or less than B
else ... : //A is greater than B

ifnot A = B then... //A is either greater or less than B
else ... " //A is equal to B

Chapter 2 Miscellaneous Page 33

ifnot A < B then... //A is either equal or greater than B
else ... : //A is less than B

Examining the above you see that the <else> following an <if> has the same truth values as an
<ifnot> testing the <else's> associated <if> condition. So an <else> after an <if> is
really an <ifnot> and an <else> after an <ifnot> is really an <if>. (Head hurt yet?)

7. Think of the relationship between two variables as a pie cut into three equal slices labeled in turn
>, =, and <. The <if> command selects the slice named after its operator and a companion
<else> selects both of the remaining slices. The <ifnot> rejects the one its operator names
and takes the other two while a companion <else> selects the named operator.

8. Hopefully, the above will help you with the following chart.

condition var operator operand

X variable
if A(0) > 7 decimal number
(define) thru = $10 hexadecimal number
Ifnot Z(9) < key single key keyboard input

peek value at an address
peekword value at a 2 byte address

.eof and probably scads of other dot commands

Remember those crazy mix-and-match animal cards when you were a kid? This is the same idea,
except that a variable can only be defined using the "equals" operator. Otherwise you can pick any
item out of each category and use them together in a macro (Note:).

Any number of operands can be chained together using the four basic math operators (+ - / *). No
parentheses are allowed. The equations are strictly evaluated left to right with no other precedence.
See <and> and <or> later in Chapter 3 for using multiple var-operator-operand sequences with a
single condition.

Note:
Method A: <if A > peek $10F5 then ...>
Method B: <B = peek $10F5 : if A > B then ...>

Both of the above give identical results. The Method B: costs six more bytes of UltraMacros macro
memory. Your editor believes that Method B: is somewhat clearer to future readers of your macros.
You will have to decide which method to use.

Defining String Variables
UltraMacros has 100 string variables which are represented by the numbers 0-99. Each variable can
contain up to 80 characters, usually made up of text (as opposed to control-characters).

$0 (pronounced "String Zero") is a special case. lt is the same thing as macro 0. lt can be printed at
any time by pressing sa-0 (zero). The other strings have to be printed or executed from within a
macro.

String variables may be defined in many different ways. Literal
strings may be surrounded by single or double quotation marks:

<sa-A>:<all :
$88 = "This is a literal text string" :
>!

Strings may be defined as the current date or time in these formats

Chapter 2 Miscellaneous Page 34

<sa-A>:<all :
$0 = "date " + date :
$1 = "date2 " + date2 :
$2 = "time " + time :
$3 = "time24 " + time24 :
SaveScr :
.Cls 1 :
.WriteStr 10,10,$0 :
.WriteStr 10,11,$1 :
.WriteStr 10,12,$2 :
.WriteStr 10,13,$3 :
msg 'Any key to continue' :
A = key :
RestScr :
esc : esc :
>!

Strings may be defined as the current Spreadsheet cell, Data Base category or Word Processor line:

<sa-A>:<all :
$8 = cell :
>!

A portion of the screen may be used to define a string (see the description of <screen> in Chapter
3.)

<sa-A>:<all :
$6 = screen 7,l,15 :
>!

A string may be defined by user input from the keyboard :

<sa-A>:<all :
$3 = getstr 15 :
>!

See the description of <getstr> for more information.

A string may be defined to be the same as another string. ln this example, $7 is made identical to the
current value of $2:

<sa-A>:<all :
$7 = $2 :
>!

String variables can be referenced indirectly by using a numeric variable to specify the string to use.
This is neat, so listen up!

<sa-A>:<all : //prints Z ONE
$0 = "Z" :
$1 = "ONE" :
oa-9 : //Go to the bottom
A = 0 :
print $(A) :
A = A + 1 :
print " " + $(A) :
>!

Chapter 2 Miscellaneous Page 35

A more common use of this technique is to process a series of strings in a loop of some sort. A for
loop is perfect because it gives you the name of the string if you play your cards right.

<sa-A>:<all :
// Macro code to extract and concatenate 1st 4 characters of strings
//$10 through $24 into string $0

$0 = left $10,4 : //Get first entry out of the way
for I = 11 to 24 :

$0 = $0 + "," + left $(I),4 : //process strings 11 through 24
next I :
>!

String tokens requiring one parameter can not use equations. The following macro would be illegal
because "getstr 3 + 2" should be "getstr 5" or some other single parameter.

<sa-A>:<all :
msg "< " + getstr 3 + 2 + screen 1,1,9 + " >" :
>!

Changing per the above compiles fine, but the results are less than what is wanted here. Copy the
following to Try, compile it, oa-9 to the bottom of the file and call sa-A. Type the word Hello when
prompted by the > at the bottom of the screen.

<sa-A>:<all :
msg "< " + getstr 5 + screen 1,1,9 + " >" :
>!

The above gives pretty freaky results, doesn't it? The msg line got a message of <Hello1 and the
screen at the cursor becomes: +" >":

Clearly, the "1" behind "Hello" is either the first or second "1" from the screen command while the
+" >": must come from the compiled macro because there is no space between the " >" and the
colon as there is in the source..

Here is one way to fix the problem. Another way would to leave the screen command where it is and
move the getstr 5 prior to the msg command i.e., $1 = getstr 5 : and put + $1 + prior to the screen
command. (I tried both ways and both worked.)

<sa-A>:<all :
$1 = screen 1,1,9 + " >" :
msg "< " + getstr 5 + $1:
>!

Parameters for strictly numeric tokens can be equations:

<sa-A>:<all :
A = 0 :
L = 2 :

$0 = "Keep your eye on The tab line at the top of the screen" :
hilight 9,L,len $(A) + 15,L :
msg %J% + $0 + " Key" + %K% :
A = key :
esc : esc :
>!

Chapter 2 Miscellaneous Page 36

Here's a chart showing some of the ways to define string variables and use them in conditional
macros. What this chart is trying to say is:

If you have a string variable set to some value then you can compare it to literal text, another string,
or the output of a number of commands that output a string? The answer is "yes," for the following
list of commands. Nothing is implied for the myriad of dot commands now available and perhaps
available in the future i.e., be suspicious. Check things out.

The following is my preferred way to test string variables. It costs several more bytes, but is much
more understandable by your readers. Also, it is NOT guaranteed that all present or future dot
commands that ouput a string will work properly within the syntax of:
if A > dotCommand then ...

<sa-A>:<all :
msg '' :
$1 = getstr 5 :
$2 = " B" :
$2 = right $2,1 :
if $1 > $2 :

msg '$1 is bigger' :
endif :
>!

test str operator operand
==

"text" a literal string
$2 another string variable
date October 1 1 , 1989
date2 10/11/89

If $0 > time 2:33
(define) thru = time24 14:33
Ifnot $99 < getstr keyboard input

cell db category, ss cell, wp line
screen 80-column text screen
chr$ ASCii value of a variable
str$ string equivalent of a variable
mid middle portion of a string
left left portion of a string
right right portion of a string
dots a myriad of dot commands. See Chapter 4

Any number of operands can be chained together using concatenation (+). No parentheses are
allowed. The equations are evaluated left to right with no other precedence. Any characters beyond
80 in a single string are ignored. See <and> and <or> descriptions later in Chapter 3 for using
multiple str-operator-operand sequences with a single condition.

Testing String Relationships
Testing the relationships between strings can throw you for a loop unless you understand that when
comparing two strings UltraMacros begins with the first character in each string, compares it, asks
what relationship is being tested i.e., ">" and if string's character is bigger than the operand's
character at this point in time then the condition is true and true is returned as the result for the test.

<sa-A>:<all :
$1 = "2" :
$2 = date2 : //date returned in 10/15/99 format
if $1 > $2 then :

msg '$1 is bigger' :

Chapter 2 Miscellaneous Page 37

endif :
if $1 < $2 then :

msg '$1 is smaller' :
endif :
>!

You will never see the message that $1 is smaller, no matter what month of the year, since the
comparison of the first character shows $1 is larger.

The message here is to be careful when comparing strings. Don't think in terms of numeric
superiority/inferiority. If the strings contain ASCII numbers then use <val> to extract the numbers
into numeric variables and do the comparison there.

<sa-A>:<all :
$1 = "2" :
$2 = "1000000" :
if $1 > $2 then :
msg "Comparing strings " + $1 + " is bigger than " + $2 + " Key" :
A = key :

endif :
A = val $1 :
B = val $2 :
if A < B then :
$0 = "Comparing int var " + str$ A + " is smaller than " + str$ B :
msg $0 + " Key" :
A = key :
msg '' :

endif :
>!

One final example:

<sa-A>:<all :
$1 = "Apr 18, 1999" :
$2 = "Apr 18, 2000" :
if $1 > $2 then :
msg "$1 is bigger because 1 is bigger than space" :

endif :
>!

Chapter 3 UltraMacros Reference Page 39

First A Lot Of Background

This chapter explains in excruciating detail the capabilities of UltraMacros. In fact, it's everything
you ever wanted to know about macros but were afraid to ask. (The above statement was true for
UltraMacros 3. Since then, Randy has released UltraMacros 4 with its "dot" commands so now there
is a lot more to learn as Chapter 4 will attest.)

The Anatomy of a Macro File

The macro file is a AppleWorks Word Processing file with the following sections:

Optional Comments
You can put comments in the beginning of the file. They have no formal structure i.e., you don't
have to prefix them with "//" or surround them with curly brackets i.e., { comment }. The only
restriction is that you cannot have <start> starting in column 1 and alone on the line i.e., "start your
engines," is fine.

The mechanics of comments is covered more fully a bit later in this file.

<Labels>
Domain: All Modules
This defines the beginning of the <Labels> section of the file. See Chapter 2 section titled,
"Compiler Labels" for detailed descriptions concerning the following.

Task File Name
Macro Titles
Label Definitions
<start>
Domain: All Modules
Macro definitions start here and continue until the end of the file or the optional token <end>.
<end>
Everything from here to the end of the file is ignored if the <end> token is used

The Anatomy of a Macro

Before you can start creating your own macros, you need to understand how a macro is built. The
syntax of a command is the set of rules governing the organization and usage of that command. In an
English sentence, "He here is" would be improper syntax because the "is" should precede the "here".
In a like manner, macro commands must be organized in such a way that UltraMacros can understand
what you want to have accomplished.

Tokens
Take a look at the macros in the Macros Ultra file. The macros come after the token <START> and
before the optional token <END>. Each macro is made up of a series of normal characters and
special tokens.

A token is a code word enclosed in <brackets> that represents a special keystroke or macro
command. For example, the token <rtn> represents the RETURN key, and the token <left>
represents the LEFT-ARROW key. The macro compiler converts these readable tokens into the
equivalent invisible command codes within the macro.

Here's a macro a few lines into the Macro Ultra file.

Note: Many existing examples will show the following:
f:<awp : oa-f>T<oa-y>! //Find text; clear default first

Chapter 3 UltraMacros Reference Page 40

a:<awp : a = $10c1>!

This manual will always show:
<sa-F>:<awp : oa-F>T<oa-Y>! //Find text; clear default first
<sa-A>:<awp : A = $10C1>!

In fact, the preferred style is:
<sa-F>:<awp : //Find text; clear default first
oa-F>T<oa-Y :
>!

<sa-A>:<awp :
A = $10C1 : //No idea what this does ;-)
>!

Since this style allows one to attach meaningful comments to lines.

Expanding on the preceding. We will always show:

1. ALL numeric variables in upper case: A, D(2), etc.

2. ALL macro names in upper case: sa-B, ba-R, sa-ctrl-D, etc.

3. ALL hexadecimal numbers in upper case: $10C2, $FFFF, etc.

4. ALL tokens in lower case: <rtn>, <left>, etc. Well, almost always. We have a personal bias
to show Begin/Rpt with an initial caps to aid the reader in picking out the extent of a loop. As an
added anomaly to our actions, we also like an upper-case C when the control key is involved
i.e., sa-Ctrl-D.

5. Colons between all tokens unless the token is immediately followed by a ">"

6. More on the lower case tokens. They are shown almost universally, where they are defined, with
an initial cap as an aid to the reader to understand where they belong alphabetically i.e., lc looks
suspiciously like 1c, but is really Lc. Also., from the get go most folks began using caps for
embedded words in dot commands i.e., .GetNames, .FindPO, etc., etc. Some of this usage has
crept over to the non-dot commands. In any case, token names are caseless so it doesn't matter if
you use: .GeTnAmEs, .getnames, .GETNAMES, etc., etc, except as a matter of style.

Each macro begins with "<sa-" (Solid Apple key, named Option on the IIgs), and a character that
represents the key used, "<sa-F", to activate the macro. In this example, the character "F" indicates
that this macro is executed by pressing Solid-Apple-F.

Next comes "<sa-F>:<", followed by a token that designates where the macro will work
"<sa-F>:<awp :"; this macro works only in the Word Processor.

Next come the keystrokes and tokens that actually make up the macro. In this example there are three
keystrokes: Open-Apple-F,>T< and Open-Apple-Y. The ">" tells UltraMacros that what follows
with not be a token, rather it should be considered as if the user had typed what follows (T in this
case), and that it should be sent to AppleWorks. The "<" tells UltraMacros that it should consider
what follows as UltraMacros tokens, not text to be sent to AppleWorks.

An exclamation mark (!) signals the end of the macro definition. Any text after the "!" is ignored. In
this example the words, //Find text; clear default first" describe what the macro does. They are not
considered part of the macro.

Chapter 3 UltraMacros Reference Page 41

Token equivalents for keyboard keys

 Delete key
<esc> Escape key
<rtn> Return key

<go> Return key
This executes a <rtn> and deletes the ---> marker at a numbered menu. Also, if the display is
turned off <display 0>, it turns the display back on again. Try changing the <go> in sa-A to
<rtn> and see how messy things get. Also, try to move the cursor off of the current screen page.
Will not be able to do it. Call sa-B to turn display back on. A couple of <esc> keys should set any
screen garbage right.

<sa-A>:<all :
oa-Q : //Desktop index menu
display 0 : //Turn display off
go : //Right back to the Try file
>!

<sa-B>:<all :
display 1 : //Help the poor guy out and turn display back on
>!

<tab> Tab key
<left> Left-Arrow key
<right> Right-Arrow key
<up> Up-Arrow- key
<down> Down-Arrow key
<spc> Space-Bar key

The tokens for Open-Apple, Solid-Apple, Both-Apple AND Control commands use the abbreviations
oa, sa, ba, and ctrl followed by a hyphen and the appropriate key. Here are some examples (The
hyphen is never typed):

<oa-1> Open-Apple-1
<sa-B> Solid-Apple-B
<ba-right> Both-Apple-Right
<sa-Ctrl-C>Solid-Apple-Control-C
<ba-Ctrl-C>Both-Apple-Ctrll-C NOT supported

Note: You might see examples (outside of this manual), where <ba-Ctrl-Char> macros are used.
The message from Randy Brandt is, "Do NOT define ba-ctrl-Char macros. They will get you into
deep, deep trouble when you least expect it."

UltraMacros adds a number of unchangeable Open-Apple and Solid-Apple commands to
AppleWorks.

Tokens may be entered in upper or lower case, but no spaces are allowed between the letters making
up the token. For example, <rtn>, <RTN>, and <Rtn> are all valid tokens for the RETURN
key, but <r tn> is not valid.

Chapter 3 UltraMacros Reference Page 42

Multiple consecutive tokens can be used without brackets around each individual token. Just separate
the tokens with spaces and/or colons. For example, two Up-Arrow commands followed by a
Left-Arrow can be represented as <up><up><left>, <up up left>, <up : up : left>,> or
<up>,<up left>.

To address this point a bit more. The following macro compiles correctly:

<sa-A>:<all Begin C = key msg C if C = 27 then endmacro endif Rpt>!

If you wish to clean up the screen as is done below you will have to
put in one colon i.e., msg '' : endmacro...

I maintain that the above is NOT an easy macro for a user to parse. Consider the same macro written
this way:

<sa-A>:<all :
Begin :

C = key :
msg C :
if C = 27 then :

msg '' : //Clean up screen.
endmacro :

endif :
Rpt :
>!

Both consume the same number of bytes. While both are uncommented, we maintain that the second
is much easier to understand.

It is perfectly legal (and we encourage it as an aid to clarity), to write: "if C = 27 then :"

THE OFFICIAL WORD:
The above concerning space versus colon is true in most cases. However, consider the following: Due
to the complexity of some of the new compiler features, the compiler is a bit more finicky about
syntax than older versions. To play it safe, you should end lines with a colon, not just a return.

THE UNOFFICIAL WORD:
Use colons after each token. They do NOT cost anything (compiled byte wise), and lead to better
understanding of those reading your macros.

<sa-A>:<all : $2 = "Fourscore and seven" :
$1 = left $2,4 // C++ comments are like a colon
msg $1>!

Note that C++ style optional comments allow you to leave off the end of line colon. Putting in the
colon in such a case costs nothing in macro space and shows consistency in coding style. (However,
your faithful manual writer must confess that he has left off the colon, from time to time, if it kept
the comment tabbed correctly - neatness counts too :-)

$1 = left $2,4 : // C++ comments are like a colon

Do pick a convention and stick to it for all your macros so that you and other readers can understand
your macros at a later date. (And if you are updating another's macros try and keep with that person's
style unless you deem it too ugly to live with; then you should modify their style to match yours.)

Chapter 3 UltraMacros Reference Page 43

Personal preference is to include the colon. It costs nothing in macro space and makes clear where
one token begins and ends. Easy enough to see for tokens without parameters, not always so easy
with complex tokens.

The compiler also allows you to include comments between the <brackets>. Comments are
surrounded by curly {brackets}. The previous example could include a comment like this:

<up : up : {this text gets ignored by the compiler} left>

Another (newer) comment convention is to use two slash characters (//) to end entry of tokens on that
line i.e., anything after the two slash characters to the end of the line is ignored by the compiler. The
previous example becomes:

<up : up : //this text gets ignored by the compiler
left>

The macro compiler will ignore the curly brackets and everything between them (or the // and all
characters after for that line). No macro table space is wasted by using comments. The previous
sample will compile into three bytes - two Up-Arrow codes and one Left-Arrow code.

Note: If the curly brackets are not between token brackets, they will be treated as normal text. DO
NOT!! use token brackets <> inside of the curly brackets {}.

<sa-A>:<all : {comment } stop>! //This one is OK
<sa-A>:<all : {--> } stop>! //This one isn't

You can use curly brackets in comments after two slashes:

<sa-A>:<all : $1 = chr$ 123>! //$1 contains a { character

Local and Global Macro Tokens
Each macro must be classified as either local or global. A global macro is one that works anywhere.
A local macro is one that works only within a specific application (Word Processor, Word Processor
Outliner, Data Base, Spreadsheet, or Macro Subroutine macro.)

<all> All applications (global)
<awp> AppleWorks Word Processor only
<aol> AppleWorks WP Outliner (AW 5)
<adb> AppleWorks DB
<asp> AppleWorks SS
<asr> Accessible only from other macros

You cannot have more than one global macro with the same name (the second one will never be
used), but you can give the same name to several local macros as long as they are for different
applications.

<sa-F>:<adb : oa-F : >A< oa-Y>! //find text, clear previous word
<sa-F>:<all : oa-F : rtn : oa-Y>! //find text, clear previous word

The order in which macro definitions appear in a file is important. When you select a macro,
UltraMacros starts at the beginning of the macro table and searches for the first macro with the
specified name. When a match is found, the application definition is checked.

1. If the macro is type <all>, it is executed regardless of where you are within AppleWorks or
TimeOut.

Chapter 3 UltraMacros Reference Page 44

2. If the macro is type <asr>, it is executed only if called from another macro. It can't be accessed
from the keyboard. <asr> macros are for UltraMacros 3.0 and beyond.

3. If the macro is an AppleWorks application type, UltraMacros checks to see if you are in the
specified application. If so, the macro is executed; if not, it keeps searching.

From the above you can see that if multiple macros are created with the same name, the subroutine
<asr> must be first, followed by local, followed by the global macro. See the discussion of the
oa-M option of Mark Munz's debugger for a way to quickly see the order that macros are defined.

NOTE: Both-Apple macros are not considered the same as Solid-Apple macros even if they use the
same key. A key such as "A" could be conceivably have fifteen completely different definitions; a
Both-Apple, Solid-Apple, and Solid-Apple-Ctrl command for: <awp>, <aol>, <adb>,
<asp>, and <asr>. Keep in mind that there are only 32 different control characters (@, A-Z, [, \,
], ^, and _), so all other characters can generate only ten definitions per character.)

Recorded macros (those defined using oa-X) are global by default.

You CANNOT redefine a compiled macro name so leave several key combinations "open," for later
definition i.e., sa-W.

See "Recording Your Own Macros" in Chapter 1 for the full story about recording macros.

Assigning Macro Names

When considering what character to assign to a macro keep in mind:

1. Try for a character that is a mnemonic aid to the user i.e., sa-F for Find, sa-P for Printing, etc.

2. Try to assign all user callable macros to a sa-Char macro. The implications of this is to use non
shift characters for the user and the shift characters (!,@, #, etc.) for sub macros. The
sa-Ctrl-Char macros also fall into this category.

3. If it makes sense, use ba-Char macros to extend sa-Char macros i.e., the sa-N signs your name
and address at the bottom of a letter. The ba-N macro calls the sa-N macro and then adds your
telephone number and e-mail address.

4. Sometimes you need to set up constants, etc., and then perform some function. At the conclusion
of the function the user wants to perform the same function elsewhere in the file. For these types
of situations consider using a ba-Char or sa-ctrl-Char macro to query the user to set up string and
numeric constants and then call the sa-Char macro. From that point on the user can simply call
the sa-Char macro.

5. The sa-Char and ba-Char macros can compliment one another. Consider that sa-1 through sa-8 set
markers 1 through 8 and ba-1 through ba-8 go to markers 1 through 8.

6. There are times when sa-Ctrl-Char is needed to further extend the scope of the sa- or ba- macros.

7. See the file "AllPossible," for a listing of all possible/legal macro names. As you might guess,
there are some reserved names.

Calling Other Macros

One macro can call another macro in two different ways:

Chapter 3 UltraMacros Reference Page 45

<sa-A>:<all : //Move cursor line to clipboard
sa-, : //Far left on line
oa-M>T<down : //Move To clipboard down selects all +
left : //first char next line. Left deselects
rtn : //first next line. Rtn executes
>!

<sa-9>:<awp : //Move the last line in a file
oa-9 : up : //to the clipboard
goto sa-A :
>!

In the first example, sa-A calls reserved macro sa-, to move the cursor to the left column;
UltraMacros then returns to sa-A and the current line is moved to the clipboard.

In the second example, sa-9 goes to the last line in the file and then uses the <goto> command to
send control to macro sa-A. UltraMacros never returns to sa-9 because <goto> is a "one-way"
command.

Those with BASIC programming experience can think of the first example as a GOSUB and the
second as a GOTO. Just remember that using a macro NAME will only continue the current macro
when the called macro is finished, and that using GOTO NAME means the macro will never will
come back.

"Macro nesting" occurs when a macro calls a macro which calls a macro... UltraMaCros has to
remember where to back up to when the current level is finished. The limit is 17 levels. A macro
which calls itself will execute 17 times and then stop.

<sa-A>:<all : oa-9>*<sa-A>! //Print 17 asterisks

To execute a procedure more often, use <begin> and <rpt> along with variables (they are
explained later). (It is personal preference to indent those lines between a begin/rpt couplet in order to
make the scope of the loop more easily apparent.)

<sa-A>:<all :
oa-9 : //Get below everything in the Try file
A = 120 :
Begin :

print "*" : A = A - 1 :
if A = 0 then stop : endif :

Rpt :
>! //Print 120 asterisks

CAUTION: When you're about to delete a macro from a file, make sure the macro isn't needed by
another macro in the same file. Use the oa-F command to search for references to that macro. For
example, if you plan to delete macro sa-B, search for "sa-B".

Actual Reference
This reference documents all of the commands built-in to UltraMacros. It assumes that you have some
familiarity with UltraMacros 3.x commands. If not, then now is the time to read the section in this
chapter titled, "The Anatomy of a Macro."

Replaced UltraMacros 3.x Commands
UltraMacros discarded or replaced several UltraMacros commands in order to make room for new
features. Here are the commands replaced by a similarly named dot command:

Chapter 3 UltraMacros Reference Page 46

Replaced: Old New
======= ======
cls .cls
id# .id
findpo .findpo
menu .makemenu

Dropped UM 3.x Commands
<elseoff, <&>, <rem>, <inc>, <dec>, and <ifkey>.

<elseoff> and <endif> performed the identical function so the dropping of <elseoff> lost
nothing.

<&> was dropped all together. If you used it and know what it did you can probably modify your
code and use <jsr>.

<rem> allowed the inclusion of comments in compiled code. These comments performed no useful
function. In fact, they hurt you by chewing up valuable bytes that could be used for macro code that
performed a function.

<inc> and <dec> incremented the character under the cursor. You can, with a peek of $10F5,
determine what the character is under the cursor and follow this with macro code to increment or
decrement the character. See the following macro for one approach.

//Increment the first char on the line by two i.e., A becomes C, etc.
<sa-A>:<all :
oa-, : //Assure over first char
C = peek $10F1 : //Cursor. 0 = insert, 1 = overstrike
poke $10F1,1 : //Assure overstrike
A = peek $10F5 : //Char under cursor
A = A - 126 : //Increment by 2 and remove hi-bit
print chr$ A :
oa-, : //Put to first on line for user sanity
down :
poke $10F1,C : //Put cursor back to insert/overstrike
>!

<ifkey>
Below is an implementation of <ifkey> from the Ultra.4.0 disk from file "Key Test Macro"
modified a tad so it doesn't wipe out the top line in the file with the counter that is showing you that
the macro can get your input and at the same time do other things i.e., <ifkey>.

<sa-A>:<all :
poke $11AC,0 : //Keep Esc from aborting the macro
insert : oa-e : //Overstrike cursor for our display
zoom : //Zoom out
oa-1 : //Top of file
$2 = cell : //Get the top line of Try
oa-Y : //Wipe it out
$1 = 'Press any key (Escape to stop) Last key: ' :
A = 0 : //Initialize a counter

Begin
X = peek $C000 : //peek the key location
msg ' ' + $1 + str$ x + ' ' : //Show last key pressed
ifnot X = 27 then A = A + 1 :

oa-1 : //Back to the top again.

Chapter 3 UltraMacros Reference Page 47

print A :
Rpt : //Keep going

else : //Esc isn't aborting the macro, just passing control
msg "" : bell : //Clear bottom and beep
poke $11AC,27 : //Restore Esc for stopping runaway macros
oa-, : //Left of the screen
oa-Y : //Wipe out the counter
print $2 : //Put back original line

endif : //Not needed since at end of macro
>!

Changed Commands
Two commands were changed, <call> and <clear>. See their descriptions
for details on how they work now.

Reserved Macros

UltraMacros reserves all Both-Apple-Control macros. You will see
several references throughout this manual that in many cases
ba-Ctrl-x, where x is any one of "spc" through "?", will indeed work.
However, Randy has said that you should NOT use them because there are
situations where they will get you into deep doo-doo. If you have run
out of macro names (not likely), and feel compelled to use a ba-Ctrl-x
macro, make sure it is a "simple" macro and is not called from within
a loop from another macro.

The special macros listed below cannot be recorded, changed or
deleted; You must use them "as is"

You can use these macros at any time (unless otherwise noted):
directly from the keyboard (press the appropriate key along with sa-
(Option on the IIgs), while recording a macro (press the key along
with sa), or in a macro definition (use the appropriate token).

<Ahead> sa-.
Finds the first blank space to the right of the cursor position. This
macro works wherever AppleWorks allows you to edit characters,
Including Word Processor files, Data base categories, at Find prompts,
and when AppleWorks prompts you to enter names.

I have used this command once in a written macro. I use it all the
time in keyboard macros to modify text where there is a pattern. Copy
The text below and the sa-A macro to Try. Compile Try, put the cursor
on the first of the four lines with an unwanted word at the beginning
nd end the line, and call sa-A.

UnwantedWord Text that is wanted UnwantedWord
UnwantedWord Text that is wanted UnwantedWord
UnwantedWord Text that is wanted UnwantedWord
UnwantedWord Text that is wanted UnwantedWord

//Writing a macro to do this function isn't really worth it
//since this pattern probably won't show up for a long time,
//if ever.

Chapter 3 UltraMacros Reference Page 48

<sa-A>:<all :
oa-. : //however, a keyboard macro is easy
sa-, : //Same as <back> command
oa-Y : //Delete trailing word
oa-, : //Left side of line
sa-. : //Same as <ahead>
oa-Del : //Delete the space between words
rtn : //Wanted text to next line
up : //up to line with Unwanted word
oa-D :
oa-. : //Right side of word
rtn : //Delete it
down : //Next unchanged line
>!

<Back> sa-,
Finds the first blank space to the left of the cursor position. As with <ahead>, I've found just one
use for this in a permanent macro. However, I find it invaluable in keyboard macros.

See <ahead> command for an example of its use.

<Date> sa-'
Displays the date in this approximate format: August 26, 1992 (handy for dating letters or Data base
and Spreadsheet reports). The exact format is controlled by the AppleWorks Standard Settings.

<Date2> sa-"
Displays the date in this approximate format: 08/10/87 (handy for dating transactions in the
Spreadsheet), based on the AppleWorks Standard Settings option.

<Time> sa-=
Displays the time in this format: 1:42 pm. if you don't have a clock, the time will always be 12:00
am.

<Time24> sa-+
Displays the time in this format: 13:42. ln the Data base, if a category includes the word TiME,
AppleWorks converts 24-hour times to 12 hour times. For example, 21 :406 is converted to 9 :46
PM.

<Find> sa-Return
ln the Word Processor, moves the cursor to the next carriage return marker no matter what the initial
value of Z is and Z remains unchanged. Also, UltraMacros no longer zooms the screen for this
command.

<find> is a powerful command which searches menus and lists for the text in string 0 (zero). lt can
search the oa-Q file menu and the AppleWorks Add/List/Delete files listings with the screen display
on or off. <find> also searches TimeOut menus with the display on or off, and will scan all
possible menus automatically.

<find> searches any inverse bar menu with the screen display on.

<find> can search the Spreadsheet column the cursor is in, although this should only be done
"live," since it doesn't know when to quit. If a match is not found you have to hit <esc> to stop it.

Reports say that it sometimes stops erratically on mousetext. (I had no idea how to put MouseText
into the SpreadSheet and said so. Kevin Noonan, a tester of this manual pointed out tha on can simply
copy text from a WP into a SS. It works. Now of course, you are subject to erratic stops :-)

Chapter 3 UltraMacros Reference Page 49

For two consecutive cells with the identical contents, <find> will stop at the second one. (In my
trials, it did stop at the first occurrence.) To keep searching, press the down arrow followed by
sa-Rtn. Ed: All in all, I'd lose <find> in a spreadsheet unless you "know" the data is in the
column.)

When <find> fails, Z is set to 0; if a match is found, Z equals the position where the match was
found. For example. if <find> is set to match anywhere (see table below), and you're searching for
"men", Z would be set to 6 when it reached the file "Docs.MenuTools". (Note: This is not the sixth
file, it is the sixth character in the filename.)

UltraMacros's Version 4 <find> allows much more flexibility than the old version. The setting of
variable Z determines how <find> searches for a match to the contents of string $0:

Past manuals showed a single value in Z to effect the wanted <find> behavior. In fact, there are a
range of values. None in the range are any better than the nominal; so use the nominal.

Nominal Range of
Value Values

Type of Match of Z of Z
=====================================
at start 0 0-127 Partial match at beginning
at end 150 128-159 Partial match at end of string
anywhere 160 160-191 Partial match anywhere in string
exact 200 >192 Lengths & case must be the some

If you are doing a series of "match at start" finds (most common), you would set Z = 0 prior to the
first find. Since Z always returns a result that falls into the "at start" range (0 or 1), you don't need to
pre-define Z before doing subsequent <find>s that are supposed to match at the start. Earlier
versions of Ultra required that you set Z to 0 prior to each find.

To spell this out a bit more for success returns Z will equal:

1. At Start Z will equal 1
2. At end Z will equal 1 through 15
3. Anywhere Z will equal 1 through 15
4. Exact Z will equal 1

Many dot commands (<.AskYN>, <.GetInput>, <.GetValue>, etc.), return values in excess of
127 (155, 191, 209,...), under some circumstances so be sure you understand what UM commands
are being called between finds. Initialize Z prior to the <find> if in doubt.

A "live" <find> using sa-Return always assumes a "match at start" search unLess you change the
FindType flag. For example, if you want exact matches only when using sa-Return, use this macro to
set find:

<sa-A>:<all : poke #findtype, 200>!

and from then on during this AppleWorks session, live finds will have to match string 0 exactly.
Naturally, the next time AppleWorks is booted #findtype will revert to the default "match at start."

TIP: If You're at a file list and want to find a file in a hurry, press oa-0 (zero) to define string 0 with
the file name and then press sa-Return to <find> the file. From within a macro, you can use this
command to automatically load files by name.

TIP: Use the ability to search a menu to <find> printers by name when you aren't sure what order
they'll be in.

Chapter 3 UltraMacros Reference Page 50

<sa-esc>
<ba-esc>
Each of these brings up the Available Macros window. See Labels in this chapter for some
discussion of Macro Titles Chapter 4 under <.MacroNames> for an associated dot command and
Chapter 2 under Macro Titles for a more than thorough discussion on this subject. (Sorry it got spread
around so much.)

Open-Apple Commands

The following commands can be used directly from the keyboard as well as from within macros. if
you're recording a macro, press the appropriate key along with oa-whatever to use the command in a
macro definition.

<oa-#>
Activates single-stepping, so that UltraMacros pauses and waits for a key between each command it
processes. Press Return for normal speed or any other key (except ESC, which aborts the macro) to
keep single-stepping. (The spacebar is a convenient key and is in keeping with the interface of a
>number of other applications. One user made a good case for the "clear" key. However, since that
key doesn't appear on a //e or //c I'm staying with the spacebar.)

To activate single-stepping from within a macro, use oa-#, rather than "step" because the word "step"
is used in <for-next> loops. Of course, you can always use compiler labels to define: #step = oa-#
and then use #step.

If you wish to step through an existing macro simply type oa-# from the keyboard followed by the
macro call keystrokes i.e., sa-A. Do not hit Return after oa-# since that will turn oa-# off. (Unless
you want to turn off oa-# prior to calling the macro.)

A long time ago a user asked Randy Brandt why oa-# wasn't showing him what he wanted. Here is
Randy's answer:

Chris, I believe stepping pauses each time something is passed back to
AppleWorks, since there's no way for you to see anything happening
when internal macro calculations are being made. Therefore a macro
that does nothing with AppleWorks won't pause at all. I see your point
that the macro could put up a message of its own independent of AW,
and therefore stepping could be desirable, but unfortunately that never
occurred to me at development time. Again, I've never been much a
single-step user, so I haven't supported it as well as you might like. I'm
a Debug advocate.

So, the bottom line is: Randy likes debug over oa-#. Your Mileage May Vary (YMMV).

To get a feel for oa-#, copy these two macros to the bottom of the Try file. Compile the file then call
sa-A.

The messages that prompt you are predictions about what will happen next, not about what has
happened. Please study the code and understand this point.

Initially, I had some other code in sa-B without a rtn command. When I compiled, ran sa-A, and
subsequently called ba-C to compile the Try file again, I was still in single step mode. Very confusing
until you figure it out.

<sa-A>:<all :

//Uncomment the debug call, comment out the oa-# call and compile.

Chapter 3 UltraMacros Reference Page 51

//when you enter debug type oa-W followed by oa-Q to exit debug.
//This will show you that oa-# from a macro and oa-W from the
//debug screen are identical.

//debug :
oa-# : //Will not stop here
A = 1 : //Nor here
msg 'Press space to allow oa-Q to complete' : //Nor here
oa-Q : //Stops here

A = 2 : //Will not stop here
msg 'Press space to allow esc to complete' : //Nor here
esc : //Stops here

A = 3 : //Will not stop here
sa-B : //Nor here
>!

<sa-B>:<asr :
msg 'Press space to allow 2nd oa-Q to complete' : //Not here
oa-Q : //Stops here
msg 'Press space to allow rtn to complete and shut off oa-#' :
rtn : //Stop oa-#
msg '' :
>!

<oa-X>
Begin/stop recording a macro. This command must be used from the keyboard only; it can't be used
within a macro. See the section in Chapter 1 titled: Recording Your Own Macros for details on oa-X.

<oa-0>
Note that oa-0 is a zero. Presents a ">" prompt on the bottom screen line, allowing up to 60
characters to be entered for defining macro 0 (zero). This command is used from the keyboard only.
Do not use it while recording a macro. See the description of the <getstr> token.

A trivial use of this might be a case where you wish to enter the same text a number of places in your
WP, DB, or SS.

1. Type oa-0, type the text, end with Return.

2. Move to where you want the text and type sa-0

3. Repeat step #2 as often as desired.

Another use is to copy data from one WP line, SS cell, or DB category to another.

1. Put the cursor on the line, cell, or category and type oa-- This sets macro 0 (string 0) to the
contents of that line, cell, or category. (See oa-- later in this chapter.)

2. Move the cursor to the line, cell, or category where you want to copy the data and type sa-0. You
can repeat this step as many times as you want in different lines, cells, or categories.

<oa-Ctrl-@>

Chapter 3 UltraMacros Reference Page 52

Sends a CONTROL-@ to AppleWorks. Use this while recording or defining a macro. if you just use
CONTROL-@ the macro will stop at that point. Control-@ is used only for printer and interface
definitions.

<UC>
<oa-:>
Changes the character at the cursor to upper case. No longer forces the overstrike cursor on.

<LC>
<oa-;>
Changes the character at the cursor to lower case. No longer forces the overstrike cursor on.

<First>
<oa-,>
<oa-<>
Moves the cursor to the first DB category, Spreadsheet column or Word Processor column.
<oa-<> is identical and gives an intuitive "feel" to the direction the cursor is about to take.
Originally <oa-<> was the keyboard equivalent for the now removed command <store>.

<Last>
<oa-.>
Moves the cursor to the last Data Base category, Spreadsheet column containing data, or Word
Processor column. <oa->> is identical and gives an intuitive "feel" to the direction the cursor is
about to take. Originally, <oa->> was the keyboard equivalent for the now removed command
<recall>.

<Insert>
<oa-!>
Turns on the insert cursor (the blinking underscore).

Note: oa-E is a built-in AppleWorks command, not UM, that toggles the cursor between insert and
overstrike. <insert> is a UM command that assures the insert cursor. To assure overstrike: <insert
: oa-E>

<Read>
<oa-^>
From the keyboard, oa-^ will read the character at the current cursor position into string 0 (zero) and
advance the cursor. You can also use the arrow keys to move the cursor to a new position before
reading another character. <read> no longer forces the overstrike cursor on.

When $0 reaches 79 characters oa-^ stops advancing the cursor and rings a bell for each subsequent
press of oa-^. In the following the cursor stops after 79 characters, with no bell being rung.

<sa-A>:<all : (read) 85>!

As stated, the cursor stops when 79 characters have been read via oa-^ with a bell for all subsequent
oa-^'s. The only way I have found to reset oa-^ from the keyboard is to enter the debugger
<oa-X>, and select $0 and null the string by oa-Y, Return. Next, I have to call macro 0 via sa-0.
Then and only then will oa-^ accept further keyboard input. Any clarification from readers will be
appreciated.

While recording a macro, oa-^ will read the character at the current cursor position into the macro
being recorded (the character will become text in the macro definition).

In a macro definition, <read> will read the character at the current cursor position and add it to
string 0 (zero).

Chapter 3 UltraMacros Reference Page 53

If you want each <read> to reset string 0 after you have used it, put another <read> in another
macro and call that macro.

In the ancient days (UM 3), <read> echoed back the screen character in order to advance the
cursor. The carriage return "blot" is the delete character in ASCII codes, hence with it visible, you'll
delete when it gets played back. The message here? Don't use read until you update to UM 4. (Do
you think this is a huge amount of text about a command nobody you know has ever used?)

<Zoom>
<oa-@>
Forces zoom OUT (hides printer options in the Word Processor, shows values rather than labels in the
spreadsheet, and shows multiple-record layout in the Data Base). To zoom in, use <.zoomin> (See
Chapter 4.)

<Disk>
<oa-&>
Reads the current AppleWorks disk name (pathname if a subdirectory is included) into string 0 (zero).
This command can be used at any time. A brief flash at the top left of the screen indicates that the
command was executed. To set the AppleWorks pathname use <.setdisk> (See Chapter 4).

<sa-A>:<all :
disk : //From the file
$3 = "From the Try file " + $0 :
oa-Q : //Desktop Index
disk : //Could have used oa-&
rtn : //Back to the file we were in
$1 = "From Desktop Index (oa-Q) " + $0 :
oa-Q :
oa-A : //Shortcut to Add Files menu from oa-Q
rtn :
oa-& : //Same as path
$2 = "From Add Files menu " + $0 :
.Cls 1 : //Clear the screen
.WriteStr 0,8,"Note that there is no filename from any of the above" :
.WriteStr 0,10,$1 :
.WriteStr 0,11,$2 :
.WriteStr 0,12,$3 :
msg ' Key ' :
A = key :
| : esc :
>!

<Path>
<oa-*>
Reads the current volume name or subdirectory name and the currently highlighted file name into
string 0 (zero) when the Main Menu, Add Files list of files is displayed.

If the Desktop Index menu <oa-Q>, is displayed then the currently highlighted file name is NOT
stored into string 0. In effect, <path> becomes <disk> from this menu. See the example.

A brief flash at the top left of the screen indicates that the command was executed. A real bummer is
that if you are defining a keyboard macro somebody gets lost when you type <oa-X>W<oa-Q :
oa-A : rtn : oa-* : esc : esc : oa-X>. The macro gets defined just fine, but the bottom right of the
screen will continue with "Recording W" (or whatever letter you were defining).

<sa-A>:<all :
oa-Q : //Desktop Index

Chapter 3 UltraMacros Reference Page 54

path : //Could have used oa-*
rtn : //Back to the file we were in
$1 = "From Desktop Index (oa-Q) " + $0 : //Save it
oa-Q :
oa-A :
rtn :
oa-* : //Same as path
$2 = "From Add Files menu " + $0 :
.Cls 1 : //Clear the screen
.WriteStr 0,8,"Note that there is no filename from the oa-Q menu."
.WriteStr 0,10,$1 :
.WriteStr 0,11,$2 :
msg ' Key ' :
A = key :
| : esc :
>!

<Cell>
<oa-->
Reads the contents of the current Spreadsheet cell, Data Base category or Word Processor line into
string 0 (zero). Move the cursor to the cell and use the command. When using the keyboard version
<sa--> you will see a brief flash at the top left of the screen indicates that it was executed. (See
<sa-0> for a use of the oa-- command.)

NOTE: You will not see the flash if <sa--> is part of a keyboard macro. There have been times
when <sa--> appeared to be ignored and recording of the keyboard macro aborted with no audible
or visible cue to the user.

In rechecking this moments ago, it worked fine to use <sa--> to capture a DB category's contents,
oa-Q to a WP file and dump the contents out using <sa-0>. So, I guess the official word is, it
works in keyboard macros. If it doesn't work for you I'd appreciate a note on the reproducible steps
you took to cause it to malfunction so we can update the manual.

The current layout and display settings do not affect <cell>. ln the Data Base, <cell> uses the full
category entry as shown in the single record layout. ln the Spreadsheet it uses the actual value of the
Spreadsheet cell, not just the displayed value. For example, if cell contained 3.512 but the formatting
was dollars with 2 decimal places it would appear as $3.51, but <cell> would return 3.512 so that
no precision would be lost.

<cell> //by itself sets string 0.
$1 = cell : //Sets only string 1

Dire Warning:
If you perform a <cell> on a AWP line that contains one or more tab characters and move that data
to a DB via .SetCat, you will make the DB goofy. As near as I can tell, <cell> does not pick up
any of the printer formating stuff i.e., bold, underline, etc., etc. If you think that there is a possibility
that your macro can pick up a tab then consider:

<sa-A>:<all :
// Set up code
$1 = cell :
$1 = .SubChar $1,9,9,32 : //Tabs to spaces
// Get on with your life code
>!

//The following might be the more prudent i.e., can someone come
//up with another case where cell picks up a control character?

Chapter 3 UltraMacros Reference Page 55

<sa-A>:<all :
// Set up code
$1 = cell :
$1 = .SubChar $1,0,31,32 : //All control characters to spaces
// Get on with your life code
>!

From within a macro, use <cell> as part of any string definition:

<sa-A>:<asp : //Copy a cell
$3 = cell :
down :print $3 :
>!

<sa-A>:<awp :
$0 = "$1 = cell does not change $0" :
oa-9 : //Bottom of file
print "Some text" :
$1 = cell : //Pick up the text we just wrote
msg $0 + " $1 = " + $1 :
.Spacebar :
$1 = "Note that a plain 'cell' sets $0" :
cell :
msg $0 + " $1 = " + $1 :
.SpaceBar :
msg '' :
>!

<Recall>
This command was removed for AppleWorks 5.0. See the dot commands .SaveVar and .LoadVar for
an alternate way to proceed.

Also, the keyboard <oa->> equivalent of this command has been changed to be identical with oa-.

In pre UltraMacros 4.x it sets macro 0 (zero) equal to the text stored by the <store> command. See
the <store> command for details on how to simulate this command.

<Store>
Stores the current contents of macro 0 (zero), up to 15 characters, in a special unused area of a Word
Processor (15), Data Base (13), or Spreadsheet (14). Since these locations vary depending on which
type of file you are in, you must be in the same type of file when you call <recall>.)

This command was removed for AppleWorks 5.0. See the dot commands <.SaveVar> and
<.LoadVar> for an alternate way to proceed.

Also, the keyboard <oa-<> equivalent of this command has been changed to be identical with oa-,

You can (painfully) simulate the original store command by writing three macros to save/restore the
contents of $0 to/from memory locations associated with the type of file. Displaying what was saved
at the bottom right of the screen is left as an exercise for the reader.

Note that $0 is silently truncated if too long. This is in keeping with the way store/recall worked in
pre UltraMacros 4.x. Further note that <.SaveVar>/<.LoadVar> does no truncating.

<sa-A>:<all :

Chapter 3 UltraMacros Reference Page 56

ba-A : //Do constants
if B > D :

$0 = left $0,D : //String too long. Truncate it
endif :
.PokeStr $0,C : //Save $0
.LoadVar "TempVars",255 : //Restore all variables
>!

<sa-B>:<all :
ba-A : //Do constants
$0 = .PeekStr C : //$0 restored
.LoadVar "TempVars",0 : //Restore A(0) through Z(0)
>!

<ba-A>:<asr :

//On exit:
//C = location to store/retrieve the $0 string
//D = maximum number of characters that can be store in location C

.SaveVar "TempVars" : //Save all variables on disk
A = peek $0C6B : //Get file information
A = .AndBits A,3 : //Remove all except file type info
B = len $0 : //See how much to store. Used by sa-A
if A = 1 C = $9200 : //DB

D = 13 : endmacro :
endif :
if A = 2 : C = $7D00 : //WP

D = 15 :
endmacro :

endif :
C = $7FF3 : D = 14 : //Must be a SS
>!

<Bell>
<oa-Ctrl-G>
Sounds the AppleWorks error bell once. lt's handy for getting someone's attention.

<NoSleep>
<oa-Ctrl-N>
Domain: All Modules
Cancels the currently defined "sleeping" macro, if any. See the description of <wake> for more
information and examples.

<Debug>
<oa-Ctrl-X>
Domain: All Modules
Debug replaces the old UltraMacros Clear as the "live" oa-Control-X command. See the new
<clear> command later in this file. Debug turns on the screen display and runs a debugger if one is
present. See Chapter 2 for the extensive documentation on Mark Munz's handy debugger.

IIgs users can press oa-Clear; the Clear key on the numeric keypad is the same as Control-X.

Special UltraMacros Tokens

Chapter 3 UltraMacros Reference Page 57

The following tokens are for use within macro definitions only. None of them are keyboard
commands, and they can not be recorded using the oa-X command. They require no parameters.

<SaveScr>
Domain: All Modules
Copies the current text screen into a storage area where it can be restored by <restscr>. This allows
you to put messages on the screen, draw boxes, or anything else, and then restore the screen later.

I've never found a need for <SaveScr>/<RestScr> so I asked Bud Simrin when it is needed. His
reply:

"The most common use is for a screen displaying a user menu. Suppose you want your macroset to
perform a bunch of operations, changing the screen display many times, but return to the very menu
with the same option hilighted after all is done. BAR (| : esc>, will not restore the menu. Also, it is
possible your macroset may wish to perform a certain set of operations from 2 different menus. Only
SaveScr-RestScr can restore the correct menu. "

<sa-A>:<all :
SaveScr :
.Cls 0 :
$1 = .GetString "Enter your birthdate: ","11/18/67",8:

if Z > 0 and Z < 155 then :
msg ' You came into this world on ' + $1 + ' Key ' :
else msg str$ Z + ' Key ': endif :
A = key :
RestScr :
// At this point the character under the cursor will appear to have
// become a space. It is not gone. To get it back you can do:
// | : esc : or oa-Q : rtn :
// Ignoring the fact that it is gone works cause it really isn't.
// Not using .Cls also keeps the character in place under the cursor
| : esc :
>!

<RestScr>
Domain: All Modules
Restores the text screen stored by SaveScr.

See SaveScr for what at first glance appears to be a problem, but isn't.

<Input>
Domain: All Modules
Allows you to enter text or OA commands until Return is pressed (the Return is not passed on to
AppleWorks). To exit this command without pressing Return, press Control-@. The macro will be
stopped.

Any text typed (except the ending Return), is given to AppleWorks and so is entered in the current
WP, SS, or DB. If at a menu you can move around using the arrow or numeric keys.

//Here we present the user with the Desktop Index menu and ask them
//to select a file. Not really needed cause oa-Q works pretty much
//this way anyway. But it does demo the command so don't get pushy.

<sa-A>:<all : oa-Q :
msg 'Choose a WP file from this Desktop or tab to another' :

Chapter 3 UltraMacros Reference Page 58

input :
rtn : //Needed cause the user's rtn wasn't passed to AW
>!

//Here we might use input to move the cursor about the screen
//and prompting for input on a form, etc.

<sa-A>:<all :
oa-9 : //Get below any user text
print "<TEXT>" :
rtn :
msg 'Type something and end with Return' :
input :
msg '' ://Erase message
rtn : //Line for TEND
print "<TEND>" :
>!

<Key>
Domain: All Modules
Pauses until a key is pressed. The keypress is not passed along to AppleWorks. ln an equation, key
returns the value of the key pressed. For example:

<sa-A>:<all :
msg 'Press any key. Esc to quit' :
A = key :
if A = 27 then : //esc

msg '' : //Clean up the screen
endmacro :

endif :
if A < 128 then :

msg "You typed: " + chr$ A :
else :

msg 'You pressed oa-key' :
endif :
wait 2000 :
msg '' :
goto sa-A :
>!

If the user presses Return, A will = 13, and if the user holds down oa- while pressing the key, 128
will be added to the key value. This example will only print the keystroke if oa- is not pressed.

<Begin>
Domain: All Modules
This does nothing unless used with <rpt>. lt marks the restarting point for repeating part of a macro
instead of repeating from the beginning.

ln the following macro, the begin must be used so that <rpt> does not go all the way to the start of
the macro and reset X every time:

// Funny thing happened on the way to printing. The original of
// this macro had a line: print X :
// which worked fine except the characters were mushed together giving
// 010203040506070 instead of the wanted 0 10 20 30 40 50 60 70

// Changing said line to: print X + " " : got us a syntax error for

Chapter 3 UltraMacros Reference Page 59

// our troubles. So, while you might see : "print X" : in an example
// and it would work fine, consider making it : "print str$ X" :
// just "cause."

<sa-A>:<all :
X = 0 :
Begin :

print str$ X + " " :
X = X + 10 :
if X < 80 then :

Rpt :
>!

<Rpt>
Domain: All Modules
Repeats part or all of the current macro by searching backwards from the <rpt> token until a
<Begin> is found, or until the beginning of the macro is reached.

No commands after <rpt> will be executed unless they are part of a IF-THEN-ELSE statement OR
the "exit : rpt" trick is used. A conditional command must be used to exit the macro or it will run
continuously. For example:

This would drive you crazy; Press Escape to exit. Note no Begin is present so rpt goes to the
beginning of the macro.

<sa-A>:<all : bell : rpt>!

Prints a message, then beeps like crazy. Same as above, except this one has a Begin to keep the print
statement from printing over and over.

<sa-A>:<all :
oa-9 : //To bottom of Try file
print "This part executes once" :
Begin :
bell ://Indentation shows scope of Begin/Rpt

Rpt :
>!

The Exit/Rpt trick. It is quite simple. The exit command scans downward through the macro looking
for a Rpt statement. If found, execution continues with the macro command immediately after the
Rpt. If Rpt is NOT found, then the macro exits as you would expect.

The important thing to notice here is the line:

if $0 ="" exit : endif :

A null line causes UM to scan downwards through the macro looking for a Rpt token. If found, the
next token is executed (the second A = peek $15 in this example). If none found, the macro is exited
al la <endmacro>. See Chapter 4, <.GetValue> for another example.

<sa-A>:<awp :
A = peek $15 : //Cursor vertical (line) position
if A > 2 then : //Assure at the top of the screen

oa-up :
endif :

for I = 2 to 20 : //Look for a blank line on the screen

Chapter 3 UltraMacros Reference Page 60

cell :
if $0 = "" exit : endif : //Blank line found. Goto after Rpt token
down :

next I : //Fall through if no blank line

oa-down : //Next page
oa-up : //To our expected place
endmacro : //No blank lines on the screen

Rpt : //exit : Rpt trick. Never want to Rpt

A = peek $15 : //Are we at the bottom of the screen (21)?

ifnot A = 21 then :
oa-down : //Go to bottom of page
A = A - 1 :
(down) A :
oa-up : //Top of page
endmacro :

endif :
oa-down : //Next page
oa-up : //Cursor to top of screen
>!

<Exit>
Domain: All Modules
Exits a Begin/Rpt loop or the current macro if no rpt is found.

ln the following example (taken from Ultra to the max cause its a good example and because of the
name Erika, a neat name), the macro will allow any user input until Escape is pressed. At that point
the Begin/Rpt loop is exited and the macro puts a message on the screen:

<sa-A>:<all : //Lotsa room for comments here; Hi Lester!

Begin : //restart here after rpt
X = key : //get a key for Will
If X = 27 then exit : //leave if we got Escape
else print chrs X : //print character for Erika

Rpt : //repeat the loop for Steve
msg 'The macro is over. Key ' :
#Key2Stop :
>!

No room for more of Will's friends or relatives

<Endmacro>
Domain: All Modules
ImmedIately exits the current macro no matter what follows. If the macro was called from another
i.e., <sa-X>:<all : sa-A : more stuff>! <endmacro> in sa-A will return to "more stuff" in
macro sa-X. For example:

<sa-A>:<all :
//Setup stuff...
if A = 1 : then
X = 1 :
endmacro :

endif :

Chapter 3 UltraMacros Reference Page 61

//More macro stuff...
>!

<Stop>
Domain: All Modules
Stops all macro activity immediately. Use it to stop a nested macro from returning to the calling
macro, or to get out of a <rpt> situation

<sa-A>:<all :
$0 = "Fred" : //Filename
Z = 200 : //Exact match
oa-Q : oa-1 : find : //Find the file on the desktop
if Z = 0 msg 'Cannot find the file ' + $0 + ' on the desktop. Key' :
A = key : msg '' : stop : endif :
rtn : //Accept if found
>!

Parameters for UltraMacros Tokens

The next group of tokens require parameters. Most parameters involve variables, so a description of
Ultras' variables follows.

Macro Parameters
Here are some of the possible parameters for UltraMacros tokens:

MACRO
a macro name such as sa-B or ba-D

NUM (number)
a literal decimal number from 0 to 65535
a literal hexadecimal number from $0 to $FFFF
a variable name from A to Z (the value of the variable is used)
an UltraMacros label (see Chapter 2 "Address Table" for supported labels)

NUM VAR (numeric variable)
a variable name from A(0) to Z(9) (the value of the variable is used)

NUM2 (number format 2)
a NUM (see above)
a NUM VAR (see above)
tokens: <key> , <peek>, <peekword>, <len>, <val>, <asc> token

NUM EXP (numeric expression)
a NUM (see above)

a NUM2 (see above) if the compiler gives an error, NUM2 is unavailable for this particular command
definition.

a NUM or NUM2 equation; NUM's must be connected by +, -, /, or *; equations are evaluated
from left to right only. Parenthesis are not supported to control order of evaluation.

If order of evaluation is important i.e., X = A + (B * (C - D)) then you will have to preform this
particular operation in three steps:

<sa-A>:<all :
//Evaluate A + (B * (C - D)) Best come out 162 ;-)

Chapter 3 UltraMacros Reference Page 62

A = 2 :
B = 10 :
C = 22 :
D = 6 :
E = C - D :
F = B * E :
X = A + F :
msg str$ X + " " + %J% + " Key " :
#Key2Stop :
>!

The range of values is 0 to 65535. Numbers "wrap around" if the range is exceeded. For example, 0
- 1 = 65535 and 65534 + 3 = 1. Since only integer numbers are allowed, division will return the
quotient. See Chapter 4, the .SubChar command for a really elegant use of this wrap around feature.

STRING
a literal string surrounded by quotes

STRING VAR (string variable)
a string name from $0 to $99

STRING EXP (string expression)
A STRING (see above)

Tokens: <chr$>, <str$>, <date> , <date2>, <time>, <time24>, <cell>, <screen>
<getstr> <a ton of dot commands> token

A STRING Expression: STRING EXP's must be connected by "+"; the equation is evaluated from
left to right until the maximum length of 80 characters is reached.

UltraMacros Tokens with parameters

<() NUM>
Domain: All Modules
This new repeat command executes anything in parentheses the number of times specified by NUM.

<sa-A>:<awp : //A special line in Try awaits you ;-)
oa-l : //Get to top o screen
(down) 4 : oa-Y : //Moves to 5th line and erases it
>!

<sa-A>:<all :
oa-9 : //Get to the bottom away from stuff
X = 10 : //Repetitions can be absolute or num var
(sa-Z : rtn) X : //Execute macro Z and rtn token ten times
>!

<sa-Z>:<all :
(print "-=") 30 : //Prints a 60-character line
>!

<Asc STRING VAR>
Domain: All Modules
Converts the first character of a string to its ASCII value.
Example shows how to increment an ASCII character. (Ed: No idea what a real world example
would be since I've never used this command in any of my macro packages.)

Chapter 3 UltraMacros Reference Page 63

<sa-A>:<all : //a has an ASCII value of 97
$0 = "a" : X = asc $0 :
X = X + 2 : //ASCII value of "c"
msg $0 + " becomes " + chr$ X + " " + %J% + " Key " + %K% :
#Key2Stop :
>!

<Chr$ NUM>
Domain: All Modules
Prints the ASCII value of a variable or a number. See the file KeyChart for a complete list. Both of
the following macros will print the number 1 :

<sa-A>:<all : X = 49 : print chr$ X>!

<sa-A>:<all : print chr$ 49>!

As you can see on the chart, 49 is the code for a 1. if X was equal to 177, an oa-1 command would
be executed. This is handy for sending special codes to your printer along with the <pr#> token
i.e., <pr#> selects the printer and you then send it the special codes you desire.

Here is a snippet from the included macro package "Mac.DoubleSide."

<sa-A>:<all :
//Setup stuff...
if W = 1 and T = 1 then : //If last page is odd eject it
pr# D : //Select printer
print chr$ 27 + "&l1H" : //Feed from tray (lower case L1H)
print chr$ 27 + "&l0H" : //Now eject it (Lower case L0H)
pr# 0 : //Back to AppleWorks

endif :
// More stuff
>!

<Clear NUM>
Domain: All Modules
Clears numeric variables to 0 and string variables to null strings based on the value of the numeric
(new for UltraMacros 4) option. In UltraMacros 3 <clear> was the same as <cler 255> in
UltraMacros 4. String 0 (macro 0) is not affected because it is a special case. Use <$0 = ""> to
clear it.

Option Result
================================
0-9 clear a numeric array- <clear 6> clears A(6) thru Z(6)
50 clears all 260 numeric variables A(0) through Z(9)
100-190 clear ten strings- <clear 180> clears strings $80 thru $89

(clear 100 clears strings $1 through $9, sparing $0)
200 clear strings 1 thru 99
255 clear all numeric and string variables (Except $0)

<oa-Ctrl-X> and <oa-Clear> IIgs were the same as <clear> in UltraMacros 3. Now these key
operations have been moved to the <debug> option.

<Display NUM>
Domain: All Modules
Allows you to turn the screen display off so macros don't make you blind as the screens wildly flash
by. We kind of like to see macros hard at work, but some users are intimidated by the action.

Chapter 3 UltraMacros Reference Page 64

If the numeric expression is 0, the display is turned off; if the expression is 1 the display springs to
life. if a macro runs amok after turning off the display, just press <oa-Ctrl-X> or <oa-Clear> on
the IIgs, followed by <esc> to turn the display back on.

See <go> command for another way to turn the display back on.

NOTE: While the display is off, <esc> can't be used to abort a macro. To Ignore <esc> at Other
times as well, use <poke $11AC,$1A>. To reenable it, use <poke $11AC,$lB>. Ed: The current
common way to disable Esc is: <poke $11AC,0>.

Actually, you can't disable <esc>. You can change the key that is used to esc. The <poke
$11AC,$1A> changes it from <esc> (Control-[) to Control-Z. The current <poke $11AC,0)
changes it to Control-@ which is much less likely to be hit accidentally by the user. Give the
following a go in the Try file.

<sa-A>:<all : //Change the commented out
poke $11AC,0 : //Control-@
//poke $11AC,$1A : //Control-Z
A = 0 :
(A = A + 1 : sa-B) 50 :
msg "A returned " + str$ A + ' Key ':
poke $11AC,27 : //Decimal 27 us hex $1B = Control-[
#Key2Stop :
>!

<sa-B>:<asr :
oa-Q :
rtn :
>!

<|>
Domain: All Modules
This is a strange sort of token that doesn't fit in anywhere else so because of its association with
<display>, I'm putting it here.

Its macro name is "BAR" but you cannot use <BAR> in a macro, only <|>.

Any time you see <|> it will be in the form of: <| : esc>. What these two do is update the screen
with less flicker than <esc : esc>. We will see why the <esc> is crucial in a moment. <|> is
shorthand for:

<sa-A>:<all : display #off : oa-Q : esc : display #on>!

Take the above to Try and give it a shot. You will notice that the screen looks fine, but the cursor is
at the bottom of the screen, blinking just before the word "Column." If you use the up &/or down
arrow keys an inverse menu bar will float across the middle of the screen.

The problem is that you are really at the Main Menu with the Try file's screen showing. What is
needed at this point is an <esc> to flip you back to the Try file. Now you know.

<$1 = GetStr NUM>
Domain: All Modules
Presents a ">" prompt on the bottom line of the screen, allowing up to 60 characters to be entered.
NUM sets the maximum number of characters users can enter. (oa-0 does a getstr 60 from the
keyboard so you can define macro 0 "live").

<sa-A>:<all : //Read in up to 8 characters and print

Chapter 3 UltraMacros Reference Page 65

oa-9 : //Bottom of the Try file
$1 = getstr 8 :
print $1 :
>!

<GoTo MACRO>
Domain: All Modules
Sends control to the specified macro name. The called macro will NOT return. Goto just jumps to the
named macro and keeps on going. No nesting occurs when goto is used.

IMPORTANT: The goto'd macro type can NOT be <asr>. At a minimum it has to be the same
type as the current file i.e., if in a word processing file the goto'd macro must be <awp>.
Generally, folks make them <all>. Too bad they work that way since making them something other
than <asr> opens the possibility that a user will inadvertently fumble-finger a macro they should not
call directly.

Actually, you can goto them if you know the secret. You can learn this secret if you study the default
macros that came with AW 5.x. Once you find it, you need to understand why this is not a generic
solution and needs to be expanded a bit to make sure you are not inadvertently stranding a macro.
Happy hunting ;-)

Note that sa-B returns to sa-A if something other than 4 was typed. The goto from sa-C could be
changed to a sa-D and nothing would change because sa-D executes a stop token.

<sa-A>:<all :
msg 'Type either 4 or anything else and hit return' :
$4 = getstr 1 : //Allow 1 key press
sa-B :
$0 = "You did not type 4" : goto sa-D :
>!

//If user typed 4 then sa-A is not returned to because sa-D invokes
stop
<sa-B>:<all :
if $4 = "4" then goto sa-C : endif :
>!

<sa-C>:<all :
$0 = "You typed 4" :
goto sa-D :
>!

<sa-D>:<all :
msg %J% + $0 + " Hit a key" + %K% :
A = key : //Real world would call #Key2Stop
msg '' : //which does the same thing in my packages
stop :
>!

<Hilight L,T,R,B>
Domain: All Modules
Allows you to invert (hilight), any portion of the AppleWorks screen.

L = the left column (1-80)
T = the top row (1-24)
R = the right column (1-80)
B = bottom row (1-24)

Chapter 3 UltraMacros Reference Page 66

L, T, R, and B are all numeric expressions.

This example will invert the entire screen:

<sa-A>:<all :
L = 1 :
hilight 1,L,80,24 :
>!

This example will hilight starting at column 9 on line L for the number of characters in string variable
S(A) plus 10 more, and end on line L + 6. After a key press it will then unhilight a portion of the
lines. Another keypress puts everything back to normal.

<sa-A>:<all :
A = 0 :
L = 2 :
$0 = "Keep your eye on The tab line at the top of the screen" :
hilight 9,L,len $(A) + 15,L + 6 :
msg %J% + $0 + " Key" + %K% :
A = key :

hilight 0,L + 2 ,len $(A) + 15,L + 4 :
msg 'Erasing part of the highlighted lines. Key' :
A = key :
hilight 0,L,len $(A) + 15,L + 6 :
msg '' :
>!

If the first parameter is 0, the specified rows will change to normal. The right column value is
ignored if the left column is 0.

<Keyto NUM>
Domain: All Modules
Similar to input, but allows you to specify the ending key by ASCII value. lt traps Esc and returns
variable Z set to 0 if Esc was pressed otherwise Z is set to the ASCII value of the last key. Note: You
cannot <poke $11AC,0> to turn off Esc since $1B is looked for internally to <keyto>.

: keyto 13+128 : would act just like <input> except oa-return would be needed to end it instead of
just Return

The following macro will accept input until the user denied key is pressed. if the user presses Esc the
macro will stop at that point; otherwise, it will continue by executing macro B.

<sa-A>:<all :
oa-9 : //Get to bottom so we don't clobber stuff
msg 'Give key that will stop <KeyTo>' :
A = key :
$1 = chr$ A :
msg "Type your input to <KeyTo>. End with " + %J% + $1 + %K% + " " :
keyto asc $1 :
if Z = 0 then :

msg 'Esc pressed' :
#Key2Stop :

else goto sa-B :
endif :
>!

Chapter 3 UltraMacros Reference Page 67

<sa-B>:<all : //Must be all for goto to work
msg 'Got to sa-B. Key ' :
#Key2Stop :
>!

<Left STRING VAR,NUM>
Domain: All Modules
Extracts the leftmost NUM characters from STRING. If NUM is larger than the length of the string
then the entire string is returned i.e., it doesn't cause a crash.

<sa-A>:<all : //Prints Beagle on message line
$1 = 'Beagle Bros' :
$2 = left $1,6 :
msg $2 + " " + %J% + ' Key to Continue ' :
#Key2Stop :
>!

<Len STRING VAR>
Domain: All Modules
Returns the length of the specified string as part of a variable equation. For example:

<sa-A>:<all:
$0 = "Short little thing" :
$1 = "Big" :
A = len $0 :
B = len $1 :
If A > B then :
msg $0 + "is longer than " + $1 + " " + %J% + " Key " :

else :
msg $1 + "is longer than " + $0 + " " + %J% + " Key " :

endif :
#Key2Stop :
>!

<Mid STRING VAR,NUM1,NUM2>
Domain: All Modules
Extracts any part of a string. The first numeric expression (NUM1), is the offset into the string, and
the second (NUM2), is the number of characters to extract.

//O = Offset, L = Length
<sa-A>:<all :
$3 = "UltraMacros" :
Savescr :
.Cls 0 : //Clear the screen
msgxy 1,19 :
msg "Note that at times L exceeds the number of chars from Offset" :
msgxy 1,20 :
msg "to the end of the string and yet UltraMacros does not crash." :
msgxy 0,128 :
for O = 1 to len $3 : step 3 :
for L = 2 to len $3 : step 2 :

$1 = mid $3,O,L :
msg "O = " + str$ O + " L = " + str$ L + " $1 = " + %J% + $1 + %K% +

" Key" :
A = key :

next L :
next O :

Chapter 3 UltraMacros Reference Page 68

Restscr :
#AllDone :
>!

<Msg STRING>
Domain: All Modules
Prints a message on the screen immediately below the current data window (i.e., on the dash "---" or
underline dividing line). The command syntax is identical to <print>. Messages are normal text
unless the message string starts with single quotation marks. (See %J% and %K% later for more
inverse/normal text.)

Whenever a message is displayed, the remainder of the line is filled with the second to last character
that was already on the line (usually "-" or " "). This automatically erases the remainder of any
previous message. As the example shows, a null message erases the entire line. A message expression
must always be followed by a ":" or ">".

Messages can be placed anywhere on the screen <msgxy> and can include some special codes. To
make those codes easier to use, msg strings can be specified as follows:

Normal: <msg "text"> Prints "text" in normal letters
inverse: <msg 'text'> Prints 'text' in inverse letters
MouseText: <msg &@A&> Displays open and solid apple
Control Chars: <msg %A%> Clears to end of line

For the technically minded, the MouseText characters have the high bit set.

The control characters have the three highest bits clear. Here are some control codes which can be
used, albeit with great caution:

1 Ctrl-A (%A%) Clear to end of line
2 Ctrl-8 (%B%) CLear current line
4 Ctrl-D (%D%) Clear to end of page

10 Ctrl-J (%J%) Invert text
11 Ctrl-K (%K%) Normal text

MouseText can also be included in messages by using chr$ codes from 192 ($C0) to 223 ($DF). This
is the only example for msg since there are so many embedded in this and other chapters.

<sa-A>:<all :
Clear 255 :
oa-1 : //Keep cursor out of display
for I = 64 to 95 : //Set up ASCII keys for MouseText

$1 = $1 + chr$ I + " ":
next I :
for I = 192 to 223 : //Set up the MouseText

$2 = $2 + chr$ I + " " :
next I :
Savescr :
.Cls 1 :
msgxy 0,10 : //ASCII Line
msg $1 : //Don't have to use msgxy. Mix & match
.WriteStr 0,11,$2 : //MouseText line
msgxy 0,128 : //Reset msg
msg 'Key to Continue' :
A = Key :
RestScr :
| : esc :

Chapter 3 UltraMacros Reference Page 69

>!

<Msgxy Horiz,Vert>
Domain: All Modules
Sets the Horizontal and Vertical coordinates for succeeding <msg> commands.

If the first number (Horiz), is 255, the message will be centered .

Use msgxy 0,128 to reset <msg> to normal. (Actually, anything greater than 128 through 255
works as well.)

This command is just for some UltraMacros 3.x compatibility. Use <.WriteStr> (Chapter 4) for
displaying messages anywhere on the screen.

No examples for this command since there are many examples in this reference that a quick oa-F will
find.

<Onerr OPTION>
Domain: All Modules
Allows you some control over what happens if an error occurs. An error is defined as a keystroke that
causes AppleWorks or a TimeOut application to ring the error bell. Normally a macro continues on
wIthout regard to the error (the error bell is silenced as well). There are five onerr options: stop,
endmacro, exit, off and goto . When any of the options stop, endmacro, exit and goto are executed
an <onerr off> condition is set by the macro.

The onerr status is always reset to <onerr off> when a sequence of macros is done executing.

<Onerr stop>
Domain: All Modules
Stops macros after an error This was changed in Ultra 4.0 to stop everything. To stop only the current
macro, use <onerr endmacro>.

<sa-1>:<all :
onerr stop :
>!

<Onerr endmacro>
Domain: All Modules
Stop macro after an error, If the macro was called from another macro, control returns to the calling
macro. This does not shut down all macros; only the current macro is ended.

<sa-2>:<all :
onerr endmacro :
>!

<Onerr exit>
Domain: All Modules
Exits begin/rpt loop. Can also be used with the : exit : Rpt : trick. See <rpt> for details on said
"trick."

<sa-3>:<all :
onerr exit :
>!

<Onerr off>
Domain: All Modules

Chapter 3 UltraMacros Reference Page 70

Ignore all errors Resets the onerr status to normal, so macros ignore the errors, for better or for
worse.

<sa-4>:<all :
onerr off :
>!

<Onerr goto>
Domain: All Modules
On any error, execute the named macro (sa-B in the example) and then return to the calling macro
(sa-5 in this example), one command BEYOND the command that caused the error. If the called
macro (sa-B) executes a <stop> command then all macro activity ceases.

A confusion factor here is the word "goto" which in all other Ultramacro contexts means to go to the
named macro without putting a return address on the stack. Not in this case. In this case it is exactly
like a normal call of another macro. My "guess" is that the 'goto' string allowed Randy to discern the
syntax for onerr sa-? and thus to launch the following sa- macro in the normal manner i.e., it will
come back unless the destination executes a "stop," command.

In Ultra 3.x there was no <onerr exit> option so folks had to be creative in order to get out of a
loop and allow the macro to continue. The following example is based on GEnie posts in 1992 by
Steve Beville and Randy Brandt.

<sa-5>:<all :
onerr goto sa-B : //See comments at Begin :

oa-Q :
esc>5<rtn: //Get to "Other Activities"
>2<rtn : //Now "File Activities"
rtn : //Now List files

B = 0 : //A counter for your edification

Begin:
// With the following onerr commented out we go to sa-B on the first
// error and then no more because the first error essentially
// does an <onerr off>

// Removing the comments will cause onerr to be set up each time
// through the loop and you will get a display of just what is
// going on. Note that A never changes once the error occurs.

// The way to "fix" the problem is to reorder the command thusly:

// A = B :
// B = B + 1
// down : //Still the error causer
// Rpt :

//Now we return here which is out of the loop
//>!

// Comment onerr command out and recompile and run again. Hit ESC and
// look in the debugger to see that A is now getting updated each time
// through the loop which shows you that onerr got set to off after
// the first error.

onerr goto sa-B :

Chapter 3 UltraMacros Reference Page 71

down : //Error occurs on this command
A = B : //onerr skips this command
B = B + 1 : //we increment B

Rpt : //Repeat forever
>!

<sa-B>:<all :
msg "A = " + str$ A + " B = " + str$ B + %J% + " ESC to quit " :
>!

Steve Beville had a cute bit of code if you could not rearrange the code or perhaps you were not in a
Begin/Rpt loop.

<sa-A>:<all :
Z = 0 :
oa-9 :
onerr goto sa-B :
B = 1 :
C = 2 :
oa-down : //Error occurs on this command
B = C: //onerr skips this command
C = C + 1 : //we increment C
if Z > 0 then :

msg 'We have an error Houston. Key' :
#Key2Stop :

endif :
>!

<sa-B>:<all :
Z = 1 : //Flag that error has occurred
>!

Note: The above "works" but there is some disturbing guano left in the Try file. It appears that onerr
goto does NOT cause the next instruction to be skipped. It is executed AND "A=B" is printed to the
file.

I then changed <A = B> to <rpt> since it was going to be skipped and perhaps the intent was not
to skip complex expressions, only a simple no parameter command.

This was much worse. A Control-C was inserted into the file (center text), an upper-case T was
printed, and a "Where do you want to Print this file" menu popped up.

At ths point I'd recommend that <onerr goto macro> not be used. <onerr endmacro> worked
fine.

<Posn VAR1,VAR2>
Domain: All Modules
Assigns the current cursor position to the two variables following the token. Here how it works for
each AppleWorks application:

VAR1 VAR2

Word Processor: column line
Data Base: category record
Spreadsheet: column row

Chapter 3 UltraMacros Reference Page 72

If the cursor is not in one of these three applications, both variables will be set to zero. Ed: I do not
find this to be true. I find that the variables get set to somewhat random values if I'm at the Main
Menu, Desktop Index, or Add Files menus. The values change if I enter a desktop file, exit to the
Main Menu and call a macro that contains <posn>. Entering another file and immediately to the
Main Menu where the macro is called will yield different values. Reentering/exiting the original file
will result in the same values for the two variables.

<posn> is compatible with Timeout applications that use AppleWorks applications. For example,
Timeout Graph works in the Spreadsheet, so <posn> can be used with it.

In the following, if on line 120 and column 2 in the Word Processor, X will be 2 and Y will be 120.

<sa-A>:<awp :
posn X,Y :
>!

<Pr# NUM EXP>
Domain: All Modules
Determines where the <print> command sends its information.

<pr# 0> sends all <print> characters to AppleWorks. This is the normal state of affairs.

<pr# 1> sends the characters to the first printer in your AppleWorks printer list. Because
AppleWorks 4 and 5 have a limit is 5 printers, the <pr#> limit is also 5. For AppleWorks 3 there is
a limit of 3 printers which is enforced by UltraMacros 3.x. Unfortunately, if UltraMacros 4.3 is used
with AppleWorks 3 it thinks the limit is now 5. No idea what happens if you try and send data to a
printer 4 or 5 in AppleWorks 3.

You must use <pr# 0> to reset the <print> command when you're done.

Following is from the AppleWorks 4 and 5 /EXTRAS/MACROS/MACRO.SAMPLES. Not clear to
me what the "^T to printer" comment is all about since the three chr$ codes are: Control-N, =, and
Control-M

<sa-A>:<all : //^T to printer
pr# 1 : //Text to first printer on list
// ^N = ^M = Return
print chr$ 14 + chr$ 61 + chr$ 13 :
pr# 0 : //Put it back to screen
>!

<pr#> may not work with all interface cards. lt does work with the printer and modem ports on the
IIgs. (Ed: See <chr$> for an example.>

NOTE: Don't define chr$ 0 in a string to use with the <pr#> command. Use any of the strings $1
through $99 and not $0 with chr$ 0 - 0 string 0 is actually macro 0, and will ignore any characters
past the first chr$ 0.

<Print NUM,STRING,ALMOST ANYTHING>
Domain: All Modules
Print has the most variations of any single UltraMacros command. The compiler will be happy to
point out any errors You might make, but studying this section will make you much less error prone

Printing Literal Text
<print> allows a literal text string to be printed. You may use either double or single quotes around
the text. The limit is 80 characters of text at a time.

Chapter 3 UltraMacros Reference Page 73

<sa-A>:<all : //prints "Literal text <rtn>"
oa-9 : //Bottom of Try file
print "Literal text <rtn>" :
>!

The <rtn> is not converted to an actual Return so the cursor is left at the end of the line.

<sa-A>:<all :
oa-9 : //Bottom of Try file
print '"double" quotes inside "single" quotes' :
rtn :
>!

Printing Numeric Variables
<print> can be used to display the value of any numeric variable. For example, if variable Q holds
the desktop number of a specific file, this macro sequence would return you to that file:

<sa-A>:<all :
oa-Q : //Bring up the desktop index
print Q : //Highlight the entry
rtn : //Select it
>!

When printing numeric variables, a "$" immediately after the print statement will cause the variable's
hexadecimal value to be displayed In either two or four characters.

<sa-A>:<all :
A = $FF :
B = 255 :
C = $FFF :
X = 61453 :
oa-9 : //Bottom of Try file
print$ A :
rtn :
print$ B :
rtn :
print$ A + B :
rtn :
print$ C :
rtn :
print$ X : //A little hex humor from Randy
>!

Numeric variables can also be printed as characters rather than numbers. The <chr$> token converts
the numeric value to the equivalent keyboard command. See the file KeyChart in this distribution for
a complete list. Here is a sample:

The KeyChart file shows that 185 is an oa-9 and that $41 is an upper case "A". This sample will jump
to the end of the file and then print an "A".

<sa-A>:<awp :
X = 185 : //Decimal 185 = oa-9
Y = $41 : //Hex $41 = decimal 65 = A
print chr$ X : //To the bottom of the Try file
print chr$ Y : //Print the character A
>!

Chapter 3 UltraMacros Reference Page 74

You can print more than one numeric variable with a single <print> token. You have to separate
them by a plus sign <+>. The same goes for printing a combination of numeric and string
variables.

<sa-A>:<awp :
X = 185 : //Decimal 185 = oa-9
Y = $41 : //Hex $41 = decimal 65 = A
print chr$ X + chr$ Y : //To the bottom of Try and print A
>!

The one hundred string variables can be printed by themselves, or with numeric variables &/or literal
text. You do have to separate them with a plus <+> symbol.

<sa-A>:<all :
oa-9 : //Get to the bottom of the Try file
X = 100 :
Y = 200 :
print "Numeric variable X = " + str$ X + " and Y = " + str$ Y :
rtn : //leave this out and cursor is left up a line

// Not too sensible, but this shows that string variables, literal
// text and numeric variables can all be printed by one print

$1 = "Numeric variable X = " :
$2 = "and Y = " + str$ Y :
$3 = $1 + str$ X + " " + $2 : //Or gather together in one
print $3 :
rtn :
print $1 + str$ X + " " + $2 : //Left rtn token off this one
>!

NOTE: ALL PRINT STATEMENTS MUST BE FOLLOWED BY ":" OR '>". Other tokens can be
followed by spaces and then another token, but <print> is an exception.

This does NOT print two slashes followed by a return. In fact, it will not compile because the "//" is
seen as the beginning of a comment so the tail end of the macro is lost. If you move stuff around, it
still won't compile. Just give up trying to print two slashes with the same print statement.

<sa-A>:<all : print "//" : rtn>!

This DOES print two slashes followed by a return.

<sa-A>:<all : print "/" : print "/" : rtn>!

Preceding isn't sensible, but it isn't going to get changed at this stage of the game so just live with it.

Going on a bit more, this compiles, but doesn't yield what you think it should i.e., "//," rather, you
get ":>"

<sa-A>:<all>//<rtn :
>!

Changing it a bit will give you a syntax error. Go figure.

<sa-A>:<all>//<rtn>!

Chapter 3 UltraMacros Reference Page 75

Finally, from the UM 3.x Beagle and 4.0 Jem manuals we have the following which I seem to be too
dense to see how these examples show me anything different than assigning from some string other
than $0 to $2 differs from what I see when I compile and run these macros.

I've played around with this quite a bit and I don't make the connection. Please let me know if you
do so I can clarify this for others like myself.

These strings can contain text or command keystrokes. To define a string with commands instead of
text, just define macro 0 (zero), the same as $0 and then use a macro like this: (Ed: I've tried
defining a macro 0 i.e., <sa-0>:<all : oa-1>! and compiled it with no error messages (which, it
turns out, is different than successfully compiling it). However, when I call sa-0 I get the current
contents of string $0 printed to the file I'm currently in so I don't know what the phrase "just define
macro 0 the same as $0 means.)

<sa-A>:<all : $2 = $0 : print $2>! execute macro 0 (zero)

Because macro 0 (zero) and $0 are the same thing

<sa-A>:<all : print $0>! is exactly the same as: <sa-A>:<all : sa-0>!

<Right STRING VAR,NUM>
Domain: All Modules
Extracts the rightmost NUM characters from STRING

<sa-A>:<all : //Prints 'Bros'
$l = "Beagle Bros" :
$2 = right $1,4 :
print $2 :
>!

<Screen NUM EXP,NUM EXP,NUM EXP>
Domain: All Modules
Reads any part of the AppleWorks screen into a string variable. lt is used like this:

Read current file name from top line

<sa-A>:<all :
$1 = screen 7,l,15 :
msg $1 + " Key" :
#Key2Stop :
>!

The first parameter is the left column (1-80) The second parameter is the line (1-24)The third
parameter is the length (1-80

Screen usually treats all characters as normal text, regardless of how they appear on the screen. To
get literal screen bytes, add 128 to the second parameter. The line will be in memory starting at $900.
Normal text will have the high bit set, and MouseText will range from $40 to $5F.

Ed NOTE: I've not been able to see any difference between an inverse and non inverse line at $900.
Also, I see normal text with the high bit = 0 and MouseText with it set i.e., with MouseText enabled
by ^T and pressing @ yields the solid Apple = = 192.

Randy NOTE: Don't try using <msg> with a string made this way.The bytes at $900 do not contain
standard text characters. Printing them could clobber AppleWorks.

<Str$ VAR NAME>

Chapter 3 UltraMacros Reference Page 76

Domain: All Modules
Converts numeric variable to a decimal character string. lt must be used as part of an equation. Here
are some examples:

<sa-A>:<all :
A = 4 :
$3 = " A = " + str$ A + " " :
print $3 :
>!

Prints "255" because 255 is the decimal equivalent of the hexadecimal $FF assigned to B.

<sa-A>:< all :
B = $FF :
$l = str$ B :
print $1 :
>!

<Val STRING VAR>
Domain: All Modules
<val> is the opposite of <str$>. lt converts a string variable to a numeric value and must also be
used as part of an equation. If the specified string starts with a non-numeric character, the value will
always be zero. If the first character is a number, this number (and other numbers following
immediately after it) will be converted to a numeric value. Here are some examples:

<sa-A>:<all :
oa-1 : //Get cursor away from printing
SaveScr :
.Cls 1 :
$1 = "test4" : A = val $1 : //A = 0
$2 = "48612" : B = val $2 : //B = 48612
$3 = "280ZX" : C = val $3 : //C = 280
$4 = "65535" : D = val $4 : //D = 65535
$5 = "65537" : E = val $5 : //V = 1
.WriteStr 0,10,$1 + " " + str$ A :
.WriteStr 0,11,$2 + " " + str$ B :
.WriteStr 0,12,$3 + " " + str$ C :
.WriteStr 0,13,$4 + " " + str$ D :
.WriteStr 0,14,$5 + " " + str$ E :
msg ' Key to continue ' :
K = key :
RestScr :
| : esc :
sa-F>sa-A<rtn>N!

The last value is because the maximum a variable can hold is 65535. Add 1 = 0, add another = 1,
which is the result here.

<Wait NUM EXP>
Domain: All Modules
Delays a macro for a set amount of time, or until a key is pressed . The actual delay will vary
depending on your computer. Experiment to find the approximate delay needed for a second or a
minute on your computer. Here's a macro you can use to calculate delay values. Calibrate wait by
timing bell interval.

<sa-A>:<all :
msg "Enter a delay value. ESC to exit. " :

Chapter 3 UltraMacros Reference Page 77

$0 = getstr 5 :
if $0 = "" then exit : endif :
D = val $0 :
bell :
wait D :
bell :
Rpt :
>!

ln UltraMacros, <wait> lets you set a default keystroke value. The default vale is 0 (NOTE). If the
<wait> time expires, the default is returned, but if the user presses a key, that key is returned. Poke
#waitkey with the high ASCII value. Peek it after the wait to get the result. This macro loops after
wait, unless the user presses something other than Return.

<sa-A>:<all :
msg 'Return to continue, any other key to stop' :
poke #WaitKey,141 : //Set default to Return 13+128
wait 500 :
A = peek #WaitKey :
poke #WaitKey,0 : //Put default back
ifnot A = 141 then :

msg '' :
stop : // non-Return pressed

else Rpt : endif : //User pressed Return or waited
>!

NOTE: Once the default in #WaitKey is changed it remains changed for the rest of the AppleWorks
session unless it is changed by a subsequent poke #WaitKey,0.

<Wake MACRO at NUM EXP:NUM EXP>
Domain: All Modules
Puts a macro to sleep and wakes it at a designated 24-hour time. (24 hour time is important i.e., 9:04
AM is 9:04. However, 9:04 PM is 21:04. After a <wake> command has been issued, you can
work normally using macros and any UltraMacros or AppleWorks commands. When the clock's time
matches the sleeping macro's time, it springs to life. Use it to set alarms, automatically save a file
every few minutes, or shut everything down at 5:00 PM so you can go home!

The following example will start macro "B" at noon. Then when macro "B' wakes up, it will set
macro "C ' to wake up at 5:00 pm.

<sa-A>:<all :
wake sa-B at 12:00 :
>!

<sa-B>:<all :
bell : bell :
msg "It's lunch time!" :
wake sa-C at 17:00 :
>!

<sa-C>:<all :
Bell : bell :
msg "Quitting time " + %J% + "Key" :
#Key2Stop :
>!

Chapter 3 UltraMacros Reference Page 78

Only one macro can be "sleeping ' at a time, but as shown in the previous example, each macro that
"wakes up" can put another macro to "sleep". The time must be given in 24-hour format
(0:00 to 23:59); variables may be used:

When sa-A is pressed, the hour and minute variables are set to the current time. The current file is
saved, and macro ba-A is set to wake and then save the current file every ten minutes unless the
<nosleep> command is used to deactivate it. (In this example the time has been changed to 1 minute
so you can see it work in a reasonable time frame. Ten minutes or longer is a more realistic cycle
time.)

<sa-A>:<all :
$0 = time24 : //5:22, not 05:22
$1 = right $0,2 : //Get the minutes
M = val $1 :
$1 = left $0,2 : //Might be 5:
H = val $1 : //val stops on first non digit
goto ba-A : //And don't ever come back
>!

<ba-A>:<all :
oa-S : //Save the current file
M = M + 1 : //Wait 1 minute
ifnot M < 60 then : //Check if crossed 60 minute boundary

M = 0 : //Back to zip for you my good man
H = H + l : //New hour

endif :
ifnot H < 25 then :

H = 0 : //Its midnight boys and girls!
endif :
wake ba-A at H:M :
| : esc : //Update screen time
msg str$ H + ":" + str$ M :
>!

NOTE 1: Of course, this command won't be too useful if You don't have
a clock.

NOTE 2: Suppose that you invoke wake in this fashion:

<sa-A>:<all :
wake ba-A at H:M :
Link sa-B in "TextStuff" :
>!

Further suppose that sa-B in the "TextStuff" package does not execute
an unlink before the wake times out. In that case the wake will look
for a ba-A macro in "TextStuff" and execute it if found. If not, it
just goes away.

Macro Sets and Task Files

UltraMacros' macro sets differ from UltraMacros task files in that they may be cached in desktop
memory as well as being stored on disk. Each time a task file is loaded, UltraMacros attempts to store
it on the desktop so that when any macros in it are called it is available Instantly without any disk
access.

Chapter 3 UltraMacros Reference Page 79

<Launch STRING VAR>
Domain: All Modules
Launches the specified Task file and executes the second macro in that macro set. To restore your
default macros, launch SEG.UM. Task files which are not in memory or on the AppleWorks startup
disk can be launched by specifying the complete pathname. For example, launch
"/HD/TASKS/UPDATE.CHECKS".

<sa-L>:<all : launch "UM4.0.SYSTEM">! //Restore defaults AW 4.0

<ba-L>:<all : launch "SEG.UM" >! //Restore defaults AW 5.x

Note that the standard has changed from sa-L to ba-L. It is my guess that this was chosen because
folks are less likely to fumble finger ba-L than sa-L since most folks don't write ba- keyboard
accessible macros. They use them as asr type macros.

Here is my ba-L macro from my default macro package. It is possible that there might be times when
you call this macro that it will not bring up a list of launchable task files because Z was set to a value
that caused <find> to "not see" the string in $0. See <find> for details. You can elect to slip in :
Z = 0 : just prior to the <find> and that will solve the "problem." When a <find> fails Z is set to
0 to indicate this to the caller so simply calling the macro a second time also works.

// Brings up the list of launchable task files.

<ba-L>:<all :
$0 = "Ultra Options" :
oa-ESC : //Timeout menu
find : //Find Ultra Options
if Z = 0 then endmacro : endif : //End here if not found
rtn : //Select Ultra Options
$0 = "Launch a Task" :

find : //Find it
if Z = 0 then endmacro : //No way this should fail.
endif :

rtn : //Select Launch a Task

//If one or more previously launched from disk, then all not shown
// unless you ask.
$0 = "Launch Task from disk" :

find : //Make all applications available
if Z = 0 then endmacro :
endif :

rtn : //Found. Gives user list of UM task files.
>!

====

Here is my ba-L macro from my task files:

Return to the default macros for AW 5.x
<ba-L>:<all : launch "SEG.UM">!

<Call MACRO in STRING VAR>
Domain: All Modules
Loads the macro set and then executes the specified macro instead the second one in the set. As soon
as that macro (or series of macros is done executing, UltraMacros reloads the original macro set and
continues with the calling macro. The called macro (or series of macros), may NOT <call> another
macro in yet another task file. See <link> for a mind numbing work around.

Chapter 3 UltraMacros Reference Page 80

The following macro loads a task file, calls macro M, reloads the original macros and goes to macro
sa-X.

<sa-A>:<all : call sa-M in "MENU.MACROS" : goto sa-X>!

Something you can do in the called macro package:

#BoxDraw = ba-9 //Sets up the label #BoxDraw

#BoxDraw : //Calls ba-9 in Mac.Common from
//within Mac.Common

<#BoxDraw>:<all : stuff>! //Definition of #BoxDraw (ba-9)

There are a number of ways things can be set up in the calling task file.

First Example sets up this label in the calling task file:

#BoxDraw = call ba-9 in "Mac.Common"

Later in the program a line:

Stuff:
#BoxDraw : //Makes #BoxDraw look like a local.
More Stuff :

Second example:

These show that the macro name within the calling program can be different or the same as in the
called.

<sa-A>:<all : call ba-9 in "Mac.Common">!
OR

<ba-9>:<all : call ba-9 in "Mac.Common">!

Third example:

#BoxDraw = ba-9 //Set up label

<#BoxDraw>:<all : call #BoxDraw in "Mac.Common">!

Finally, from Will Nelken's "Ultra to the max," we learn that $0 is not preserved when a CALLed
macro returns to the CALLing macro. All others are preserved. As you might have already guessed,
(based on the myriad of times you have been told), $0 is not a string variable. It is a macro. Most
times you can treat it as a string variable and all will be well. There are these few situations where it
gets clobbered that the ever alert TAPL programmer must watch for.

Some folks avoid using $0 for this uncertainty reason. I use it at the slightest provocation across
several lines of macro code since I know that no reasonable person stores long term data in it so I
don't have to worry about clobbering a calling macro's precious string.

<Link MACRO in String VAR>
Domain: All Modules
Loads the macro set and then executes the specified macro instead of the second one in the set. When
that macro (or series of macros) is done executing, UltraMacros stops, leaving the new macro set
active.

Chapter 3 UltraMacros Reference Page 81

The following macro loads a task file, calls macro M and stays in MENU.MACROS until <unlink>
is used. At that time return is made to sa-A and the "goto sa-X" is executed.

<sa-A>:<all link sa-R in "MENU.MACROS" : goto sa-X>

According to Page 5.5 in "Ultra to the max!" the "work around" to not being able to <call> a
macro from a <called> task file is to <link> to the fist macro, which then can <call> a macro in
yet another task file. (No more <linking> in that macro set though ;-)

Unfortunately, this is not true as Page 15.1 points out later:

"<Call> and <Link> both store the name of the calling task file in the same Desktop memory
location. So, <Unlink> will return to a calling macro set, even if the secondary macros set was
called with <Call>."

If they both store the return address in the same location there is no way to get back to the original
task file that did the <link> to the secondary task file that does a <call> to a tertiary task file.

As far as my experiments have shown so far, UltraMacros does not crash if more than one <call>
or <link> is made. The problem is getting back to the original task file at the point where it can
continue its job (or terminate it if complete).

To see one solution on handling multiple <Link> commands without any <Unlink> commands,
load, compile (ba-C), save as task file (sa-Ctrl-T), the three files TF1, TF2, and TF3. Launch TF1
and call sa-A. Follow the bouncing ball from that point to the end.

<Unlink>
Domain: All Modules
Returns from a <link> macro set back to the original set. This works like <call> except the return
to the original macros is triggered by a specific <unlink> command instead of by the macro ending.

If-Then-Else Logic

One of UltraMacros' best features is its true conditional capability utilIzing if-then-else logic.
UltraMacros allows a full range of conditional commands using the numeric and string variables.
Seven tokens are involved with conditional logic: if, ifnot, and, or, then, else, endif. All of these
commands work just as they did in UltraMacros 3.x.

<If>
<Ifnot>
Domain: All Modules
The key to a conditional macro: <if> and <ifnot> are always followed by a numeric or string
variable:

<sa-A>:<all : if A

which is followed by an operator (greater than >, less than <, or equals =)

<sa-A>:<all : if A operator

which is followed by the expression to be evaluated and more tokens

<sa-A>:<all : if A > 8 then A(3) = len $90>!

If the statement is true, the macro continues normally. If the statement is not true, the macro ends
(unless an <else> is present later in the macro).

Chapter 3 UltraMacros Reference Page 82

<ifnot> works the same as <if> except that the statement must be false for the macro to continue
normally.

All numeric conditionals must start with one of these six formats:

if A = or ifnot A =
if B > or ifnot D >
if C < or Ifnot C <

The equation is completed with any valid numeric expression such as:

<sa-A>:<all : if A = C + 4 then print A : else stop>!

All string conditionals must start with one of these six formats:

If $0 = or Ifnot $3 =
if $l > or Ifnot $4 >
if $2 < or Ifnot $5 <

The equation is completed with a string expression, which could another string variable name, a
literal text string, or one of the legal string definition tokens such as <date>, <time> or
<screen>):

<sa-T>:<all : ifnot $6 > time then goto sa-T>!

NOTE: There exists a really confusing "quirk" concerning <if>.
If you have the following:

<sa-A>:<all :
if Z < 1 or > 2 then :
A = 1 :

endif :
>!

The above will compile even though it is syntactically wrong. What it will do is start printing your
macro file from The "2" to the end of the file into whatever file or menu your cursor currently
resides. Naturally, it is a WP file type that really gets messed up.

Here is the corrected macro in case you didn't spot the error in the above (it took me a bit and I
initially wrote it ;-)

<sa-A>:<all :
if Z < 1 or Z > 2 then : //Simple change, dramatic effect!

A = 1 :
endif :
>!

See "Defining Numeric Variables" and "Defining String Variables" section earlier in this chapter
where use of tokens in an <if> or <ifnot> equation is beat to death.

<And>
<Or>
Domain: All Modules
Used with <if> and <ifnot> to test multiple equations. This macro prints true if both expressions
are true:

<sa-A>:<all : if X > 8 and Y = 2 then print "true">!

Chapter 3 UltraMacros Reference Page 83

This macro will print "true" if one of the expressions is true:

<sa-A>:<all : if X > 8 or Y = 2 then print "true">!

With all <or>'s, if any equation is true, the result will be true.

With all <and>'s, if any equation is false, the result will be false.

Don't forget that <ifnot> simply reverses the result.

Both <and> and <or> may be used in the same <if-then-else> sequence. The equations are
evaluated from left to right, with the cumulative result being <and>'d or <or>'d with the current
result. This means that the rightmost evaluation has priority. A final true <or> will make the result
true regardless of what precedes it, and a final false <and> will make the result false.

In this example the E = 4 makes the <if> true. If E did not contain 4 then either A or B and C and
D must be true i.e., C = 2 and D = 3 is false unless A or B is true.

<sa-A>:<all :
clear 255 : //All numeric variables = 0
E = 4 :
if A = 1 or B = 1 and C = 2 and D = 3 or E = 4 then :

msg 'Made it through the maze. Key ' :
#Key2Stop :

endif :
>!

<Then>
Domain: All Modules
Does absolutely nothing but take up one byte of space. Randy (at one time at least), thought it
useless. I, on the other, hand simply adore it. Do keep in mind who wrote UltraMacros and who
simply is writing about it when deciding on whether to use it ;-)

lt's used to make macro if-then-else logic more readable:

<sa-A>:<all : if A > 4 then C = 3>! //is clearer than:
<sa-A>:<all : if A > 4 C = 3>!

<Else>
Domain: All Modules
The <else> reverses the true-false condition of the <if-then-else> logic. If the statement is true,
then execute the first part, if the statement is false, then execute the second part which follows the
<else> token either to the end of the macro or an <endif> token, whichever occurs first.

The <else> can really bite you if you are not careful. The problem is that in UltraMacros the <if>
and <else> do not follow the rules you might have learned with other languages, such as C. The
following example should make the problem clear.

The indentation here implies that the else will only be executed when the first <if> is true and the
second false. That is not the way it turns out. If either the first or second <if> is false the <else>
is executed.

<sa-A>:<all :
oa-1 :
SaveScr :
.Cls 1 :
A = 5 :

Chapter 3 UltraMacros Reference Page 84

B = 7 :
if A = 4 then :

.WriteStr 0,10,"First if true" :
if B = 7 then :

.WriteStr 0,11,"Second if true" :
else :

.WriteStr 0,12,"First else true" :
endif :
msg 'Key to continue' :
K = key :
oa-9 :
RestScr :
| : esc :
>!

Many times the simplest thing to do is to call another macro where the 2nd <if> is performed.

Everything can be done in the same macro through a series of carefully placed <if>, <ifnot> and
<else> statements. Keep in mind that in the real world the first <if> might perform a number of
actions prior to calling sa-B.

<sa-A>:<all :
oa-1 :
SaveScr :
.Cls 1 :
A = 5 :
B = 7 :
if A = 5 then :

.WriteStr 0,11,"first if true" :
sa-B :

endif :
msg 'Key to continue' :
K = key :
oa-9 :
RestScr :
| : esc :
>!

<sa-B>:<all :
if B = 6 then :
.WriteStr 0,12,"2nd if true" :
else :

.WriteStr 0,12,"2nd if false. Did else" :
endif : //endif not needed since end of macro but

//style does count!
>!

This single macro should give the same results of the two above. I think you will find it a bit harder
to understand. Do watch those <or> and <and> tokens. They have to be in the order that makes
sense for the test you are performing.

As a test I compiled the two macro solution and the following single macro solution without any
<.WriteStr> lines. The two macro solution is 16 bytes less. Of course, there is the cost of another
macro name.

<sa-A>:<all :
oa-1 :

Chapter 3 UltraMacros Reference Page 85

SaveScr :
.Cls 1 :
A = 4 :
B = 6 :
if A = 4 then :

.WriteStr 0,10,"Do A = 4 stuff" :
endif :
if A = 4 and B = 7 then :

.WriteStr 0,11,"Do A and B are true" :
endif :
if B < 7 or B > 7 and A = 4 then :

.WriteStr 0,12,"Do A true and B false" :
endif :
msg 'Key to continue' :
K = key :
oa-9 :
RestScr :
| : esc :
>!

<Endif>
Domain: All Modules
Does nothing unless used with either an <if> or <ifnot> (see above).
its purpose is to cancel the conditional status of a macro and cause
any commands following the "endif" to be executed regardless of any
preceding <if> conditions. <elseoff> is no longer available which is
no loss since <endif> has the same meaning as <elseoff>.

<sa-A>:<all :
//Setup stuff
if A = 4 then :

sa-B :
if Q = 9 then :

sa-C :
if R = 4 then :

sa-D :
endif : //One endif closes all preceding if's
//More stuff
>!

For-Next LOOPS

One of UltraMacros's handy new features is the ability to use for-next
loops to execute commands a set number of times.

<For VAR = NUM to NUM>
Domain: All Modules
The <for> command begins a for-next loop by specifying the variable to
use as a counter, and the range of values to cycle through.

<sa-A>:<awp :
for I = l to 10 :

print 1 :
rtn :

next I :
>!

Chapter 3 UltraMacros Reference Page 86

<Next VAR>
Domain: All Modules
The <next> command indicates the end of a for-next loop. UltraMacros
updates the specified variable and checks to see if the loop is
finished, or if it should keep executing. The specific variable must
be specified, since for-next loops may be nested.

<sa-A>:<all :
oa-9 : //Get beyond last in file for print
for I = 1 to 9 :

rtn :
for J = 1 to 5 :

print I :
spc :
print J :
(spc) 6 : //So cool repeat command

next J :
next I :
>!

<Step VAR>
Domain: All Modules
The <step> command allows you to determine what happens to the counter variable when <next>
updates it. Steps may be positive or negative.

<sa-A>:<awp : //Count down
oa-9 : //Bottom of Try file
for I = 10 to 1 step - 1 :
print I :
spc :

next I :
>!

<sa-A>:<awp : //Print even numbers
oa-9 : //Bottom of Try file
for I = 0 to 8 step 2 :

print I :
spc :

next I :
>!

For Advanced UltraMacros Users Only

The following UltraMacros tokens are very specialized and shouldn't be used unless you understand
exactly what you want them to do. They were included because we thought there might still be a few
hackers out there who like to deal directly with their Apples. Besides that, we'll use them to write
some pretty powerful macros ourselves

See the file Macros Special on the UltraMacros disk for examples.

<Jsr>
Domain: All Modules
The <jsr> token is used to run machine language subroutines. <call> has been changed into a
completely different command. See <call> earlier in this chapter.

Chapter 3 UltraMacros Reference Page 87

Surprisingly, <jsr> simply does a jsr to the address specified . lt is up to you to make sure that the
address is valid and that the routine will return to the macro via the machine language instruction "rts"
with all bank switches set properly.

A good place to poke in machine language subroutines is the AppleWorks temporary work buffer
from $800 to $9FF.

CAUTION: The buffer is destroyed by AppleWorks disk access and by a few UltraMacros
commands. Be careful.

When a macro is operating, the alternate zero page is active, as well as the second bank of $D000
memory. Page 1 of the 80-column display is active. If you change any of these, they must be restored
before your routine returns control to UltraMacros. Otherwise, AppleWorks will surely die.

The <jsr> command is a bonus feature and must be used carefully by experts only. Know what you
are doing before you use it!

<Poke>
Domain: All Modules
<poke> and <pokeword> are handy, albeit dangerous, commands. Use them to build machine
language subroutines for use with <jsr> or to change special locations. <poke> stores a single
byte at the specified memory address.

<sa-A>:<all : poke $10F1,1>! force overstrike

The insert cursor continues to blink until another key is pressed, then you see that the cursor is
changed. To make it instantly change add an invalid key like this:

Ed: Did you "invalid key" fans ever wonder why and invalid key isn't a syntax error? Well, I believe
that I've figured it out. The invalid key isn't invalid to UltraMacros, it is invalid to AppleWorks.
Normally this would cause the error bell to ring, however, unless <onerr> is set the error is ignored
by UltraMacros and the error bell is suppressed. Control D,E,O, etc., are other invalid key
combination that you can use.

<sa-A>:<all : poke $10F1,1 : ctrl-x>!

<PokeWord>
Domain: All Modules
<pokeword> stores a two-byte value in two consecutive bytes starting at the specified memory
address. For example:

<sa-A>:<all :
pokeword $300,$201 : //$201 = 513 decimal
A = peek $300 :
B = peek $301 :
msg "A = " + str$ A + " B = " + str$ B + " " + %J% + "Key" :
#Key2Stop :
>!

NOTE1: A single byte can contain a number from 0 to 255, for a total of 256 possible values per
byte. To represent larger numbers, we can use two bytes. The second (high) byte is multiplied by
256, and the result is added to the first (low) byte to form a number ranging from 0 to 65535.
UltraMacros variables are two bytes, hence the 65535 upper limit. High byte (256 * 255) = 65280 +
Low byte 255 = 65535.

<Peek>

Chapter 3 UltraMacros Reference Page 88

Domain: All Modules
<peek> returns the value found at a specified address. See <PokeWord> for an example plus a
myriad of places throughout this chapter.

<PeekWord>
Domain: All Modules
<peekword> returns a two-byte value at the address. lt multiplies the second byte by 256 and then
adds the first byte to the result. See preceding NOTE1 in <PokeWord>.

This example from the Macros Ultra file uses <peek> to determine the current file number:

Leave "1" file; go to main menu

<sa-L>:<all : Q = peek #openfile : oa-Q : esc>!

Return "2" the file we left
<sa-2>:<all : oa-Q :print Q : rtn>!

The following example of peekword gets the data base record count:

<sa-A>:<all : R = peekword #dbrecs>! //R = total record

NOTE: peek will automatically use main memory if page 0 is Peeked. No tricks are needed to run
special AppleWorks zero page locations.

Chapter 4 Dot Commands Page 89

External Dot Commands

External commands are probably the most significant new feature of Ultra 4.0. Called "dot"
commands because their names all start with a period, over 500 of these commands may be added to
Ultra 4.0. There were 45 dot commands included with Ultra 4.0, with over 40 more on the Ultra
Extras disk.

Others have written a large number of dot commands which are available from several sources.

Dot commands are stored in init files and added to Ultra 4.x at bootup. Adding new commands is as
easy as adding a file to AW.INITS subdirectory.

Prior to Ultra 4.x's dot commands, UltraMacros 3.x offered a few extra ampersand "&" commands.
They were limited in that they couldn't be part of macro equations, and there weren't very many. In
any case, they have been dropped from UltraMacros 4.x

There are three different types of dot commands:

Stand-alone commands

Stand-alone commands do not return a result, so are never part of an equation. For example
<sa-A>:<all : .say "Hello">! will print the message "Hello" on the bottom line of the screen,
wait for a key press, and then restore the bottom line.

String commands

Nomenclature alert! What is a "string?" A string is a series of ASCII characters. Since a series is one
after another you can see where the word string comes from i.e., characters "strung along."

Normally we think of a string as a series of printable characters, however, it can (in theory and
reality), contain non-printable characters. Now I suppose you want to know what the heck is a
non-printable character? Here is my shot at the definition.

On an Apple][keyboard there are four meta keys, Control, Shift (Caps Lock is shift with a brick on
it), Open-Apple, and Closed-Apple. Each of these keys has the ability to redefine the meaning of the
other keys on the keyboard i.e., a-z to A-Z by shift.

The Control key treats the characters from @ to _ as having a value 64 less than their normal value
i.e., A = 65, Control-A = 1. (See file KeyChart for visual understanding).

The Open-Apple key modifies the character by adding 128 i.e, high ASCII value so A = 65 and
oa-A = 193.

We have not been told just what the Solid-Apple key, Solid-Apple-Control, Both-Apple, and
Both-Apple-Control key do to modify the UltraMacros perception of a key. Suffice to say that each
modifies the key such that it can be percieved as unique by UltraMacros.

String commands either return a string result to define strings or they require a string input. For
example, <sa-A>:<all : $50 = .peekstr $B5F : msg $50>! will define $50 as "OA-? for Help"
and display that message. ($B5F works for AW 4 or 5. The original Jem Manual specified $AF1.
That probably works with a leading space, however, try $AF2 if problems arise with AW 3.)

Numeric Commands

Chapter 4 Dot Commands Page 90

Numeric commands return numeric results so they are used to define numeric variables &/or they
require a numric input. For example, <sa-A>:<all : X = .eof>! sets X equal to the last Word
Processor line, last Data Base record, or the last Spreadsheet row containing data. By the way, "eof,"
stands for "End of File," so as you can see, these command mnemonics are not created in a vacuum
(or an ASCII blender ;-)

Try out the New Dot Commands

For AW 4 or 5 look in the /Extras/UltraMacros folder and you will see a number of files that begin
with the word, "Dot." Load them and try out the new dot commands.

Dot Command Reference

The following summary introduces the included commands. When variables are required by a
command, variable names may be used to make the description more readable. For example, instead
of:

STRING VAR = .peekstr NUM, its given as $1 = .peekstr Address. Of course you may use string
variable names other than $1. Address is a NUM so it may be a literal number or a variable.

STRING may be a literal string i.e., "Hello World" or a string variable that contains the literal string.

ProDOS uses class 0 strings, where the first byte in the string space represents the length of the string
(not including the length byte) and is followed by the ASCII-encoded bytes representing the
characters. (I believe this used to be called a P-string, a shorthand for Pascal-string.)

In the following, when an address points to a string, those strings must be a Class 0 strings e.g., on
reading the length byte will be used to determine the length of the string and on writing the first byte
will be the length of the string.

From the above it follows that the string space must be the length of the string plus one byte.

Default Dot Commands

<.AskYN $1>
Domain: All Modules
This returns consistent results no matter how a user may have patched their Yes/No order.

Useful Returns:
Z = 0 Esc pressed
Z = 1 = N
Z = 2 = Y

More (Useful?) Returns:
Z = 147 = oa-Ctrl-S
Z = 155 = oa-Esc
Z = 209 = oa-Q
Z = 211 = oa-S

No Longer Exist Returns
Z = 191 = oa-/ or oa-? pressed

<sa-A>:<all :
$1 = 'Esc = exit macro, N = No, Y = Yes, oa-Esc, oa-Q' :

Chapter 4 Dot Commands Page 91

.AskYN $1 :
if Z = 0 then :

msg 'Esc pressed. I quit. Key' :
#Key2Stop :

endif :
if Z = 1 then :

msg 'N pressed. Key' :
A = key :
msg '' :
rpt : //Rpt with no Begin goes to top of macro

endif :
if Z = 2 then :

msg 'Y pressed. Key' :
A = key :
msg '' :
rpt :

endif :
if Z = 155 then :

msg 'oa-Esc pressed. Key' :
A = key :
msg '' :
rpt :

endif :
if Z = 209 then :

msg 'I asked for Y/N and you hit oa-Q?!? Key.' :
A = key :
msg '' :
rpt :

endif :
if Z = 147 then :

msg 'I asked for Y/N and you hit oa-Ctrl-S?!? Key.' :
A = key :
msg '' :
rpt :

endif :
if Z = 211 then :

msg 'I asked for Y/N and you hit oa-S?!? Key.' :
A = key :
msg '' :
rpt :

endif :

msg 'Unknown Z ' + str$ Z + ' Key ' :
A = key :
msg '' :
rpt :
>!

<$1 = .AwPath>
Domain: All Modules
This command returns the path where AppleWorks was launched from. For AW 5.0 it returned a
slash "/" as the trailing character. This was removed for AW 5.1 i.e., 5.0 = /H1/AW/, 5.1 =
/H1/AW

<sa-A>:<all :
$1 = .awpath :
msg $1 :

Chapter 4 Dot Commands Page 92

#Key2Stop :
>!

<.Box X,Y,W,L,T>
Domain: All Modules
Draws a box at the location specified. User can then use .WriteStr to fill the box.

X = The left column number (0-77) or 255 if box is to be centered
Y = The upper line number (0-20)
W = The width in columns (1-78)
L = length in lines (1-22)
T = Type of box lines: 0 = plain text, 1 = MouseText.

A bit of realities here:

A box that begins in column 77 isn't going to contain all that much information i.e., none.

If Y = 20 then L cannot exceed 2 and T must = 0.
To draw the same minuscule box with T = 1 then Y must = 19.

An L value that causes the box to exceed column 78 will result in a null right side of the box.

<sa-A>:<all:
savescr // save the screen
.Cls 0 : //Clear the screen

.Box 255,7,40,5,0:

.WriteStr 255,10,"This is a centered plain text box" :

.SpaceBar :

.Box 255,7,40,5,1 :

.WriteStr 255,10,"This is a centered MouseText box" :

.SpaceBar :

.Box 0,0,40,5,1 :

.WriteStr 6,3,"This box is in the upper left" :

.SpaceBar :

.Box 38,15,40,5,1 :

.WriteStr 45,18,"This box is in lower right" :

.SpaceBar :

.Box 0,19,30,3,0 :

.WriteStr 5,20,"This is a tiny box" :

.SpaceBar :

.Box 0,19,30,3,1 :

.WriteStr 5,21,"MT Loses bottom line" :

.SpaceBar :
restscr // restore the original screen
>!

<.Beep Duration,Pitch>
Domain: All Modules
Duration is a number (0-255) that defines the duration of the beep. The smaller the number the
shorter the duration.

Chapter 4 Dot Commands Page 93

Pitch is a number (0-255) that defines the pitch of the beep. The smaller the number the higher the
pitch with 50 being a realistic lowest number.

<sa-A>:<all :
msg '0-255 for Duration. Esc to quit' :
$1 = getstr 3 :
if $1 = "" then :

msg 'Esc Hit. Key' :
#Key2Stop :

endif :
D = val $1 :
msg '0-255 for Pitch. Esc to quit' :
$1 = getstr 3 :
if $1 = "" then :

msg 'Esc Hit. Key' :
#Key2Stop :

endif :
P = val $1 :
.Beep D,P :
rpt : //No Begin so go to top of macro
>!

<$1 = .Caps $2>
Domain: All Modules
Capitalizes the first character of each word in $2 and places the result in $1.

<sa-A>:<all :
$1 = "this is a string with no leading caps" :
$2 = .Caps $1 :
oa-1 : //Get cursor out of the way
.Cls 1 :
.WriteStr 0,10,$1 :
.WriteStr 0,11,$2 :
msg 'Key' :
K = key :
oa-9 : //Get cursor to the bottom
| : esc :
msg '' :
>!

<$1 = .Case "Case String","Work String">
Domain: All Modules
This command lets you change the case of a Work String based on the case of a Case String. The
Case String consists of up to 26 characters. If the Nth character of the Case String is upper case then
the associated characters in the work string will be converted to upper case i.e.,
AAAAAAAAAAAAAAAAAAAAAAAAAA is the same as
ABCDEFGHIJKLMNOPQRSTUVWXYZ and aaaaaaaaaaaaaaaaaaaaaaaaaa is the same as
abcdefghijklmnopqrstuvwxyz.

If the case string defines N characters, where N is less than 26 (i.e., 16), then those characters
beyond Nth character (Q-Z), are not affected.

//Make every work string occurrence of a, b, and c upper case
<sa-A>:<all :
$2 = "AAA" : //case string
$1= .case $2, "abcdefghiJKLMNOPQRS" : //work string

Chapter 4 Dot Commands Page 94

msg $1 : //Show result
#Key2Stop :
>!

<.CacheList FirstStr>
Domain: All Modules
This command will return the names of the currently cached macro sets in the strings starting with
FirstStr. It sets Z equal to the number of currently cached files. If you set FirstStr to 0, it will just set
Z and not define any strings.

<sa-A>:<all :
//Store cached macro set names starting with $1
.CacheList 1 :
msg str$ Z + " Macro sets in the cache. Use Debugger to see names" :
#Key2Stop :
>!

<$1 = .Choose $2,N>
Domain: All Modules
Yields the Nth item from a comma separated list.

$1 = The result item

$2 = The source list. Does not have to be a string variable. It can be a "list,of,items" In either case,
the list is limited to 80 characters.

N = The offset (index) into the list to choose the item. N can range from 1 through the number of
items in the list.

Z = 0 = N is out of range
Z = 1 = N is in range.

See the .SubChar command for another keen example of .Choose usage.

<sa-A>:<all :
// Here we are setting N to 0 through 5 even though the only
// "legal" values are 1 through 3. Note that Z will tell you
// when the index is (1) or is not (0) in range
// You might think that a check of $1 for being null would
// suffice. However, note the second item in the list is null and
// yet N is still in range.

$2 = "Index 1,,Index 3" : //Three items in list, 2nd null
.Cls 1 :
.WriteStr 0,10,"The input string: " + $2 :
for N = 0 to 5 : //Check for 5 items in list

$1 = .Choose $2,N :
msg "N = " + str$ N + " Z = " + str$ Z + " $1 = " + $1 :
.SpaceBar :

next N :
msg '' : //Erase message line
| : esc :
>!

A really neat example from /extras disk.

Chapter 4 Dot Commands Page 95

<sa-A>:<all :
$1 = "Sunday,Monday,Tuesday,Wednesday,Thursday,Friday,Saturday" :
X = .weekday 0,0,0 //Today gets filled in for 0 parms
$2 = "Today is " + .Choose $1,X : //X = 1 through 7. Sunday is 1
msg $2 + " " + %J% + " Key " + %K% :
#Key2Stop :
>!

<.DeskCount X>
Domain: All Modules
The .DeskCount command sets Z equal to the number of current desktop files (active desktop only) of
the type specified. Use 1 for DB, 2 for WP, 4 for SS, or any combination of the three.

Geek Alert!

S D W
S B P

4 2 1 Binary Values
1 1 1 Binary Bits

Inspection of the two lines above shows that the three binary bits, if set to 1, have a combined total of
7. In the following example .DeskCount 3 is used which is the total for the first two binary bits. The
SS and WP would use a value of 5 (4 + 1).

<sa-A>:<all :
.DeskCount 3 :
msg "There are " + str$ Z + " DB and WP files" :
#Key2Stop :
>!

<.Dropdir>
Domain: All Modules
This command drops the last subdirectory from the current pathname.

<sa-A>:<all :
$1 = .GetFPath : //Get this file's path
.Cls 1 :
oa-Q :
msg 'Watch the upper left of your screen. Follow space instructions at
bottom' :
.setdisk "/four/three/two/one" :
.spacebar :
.dropdir :
.spacebar :
.dropdir :
.spacebar :
.dropdir :
msg 'Note that you cannot drop the last level of a pathname' :
.spacebar :
.dropdir :
msg 'See, four is still there even though we tried to drop it' :
.spacebar :
.SetDisk $1 :
rtn :
>!

Chapter 4 Dot Commands Page 96

<$1 = .Embedded>
Domain: All Modules
The <.embedded> command returns the bottom line string from the Word Processor (Line 15,
Column 12 or Boldface Begin, Line 99 Column 57, etc.) even if the screen display is off.

In the following example, if no printer options are found (by .findpo), the cursor will be on the last
line in the file.

<sa-A>:<all :
// display 0 : //See Note:
.findpo :
$1 = .embedded :
if Z = 0 then :

$1 = "Did not find a printer option. Go to Chapter 4 and try
again":
else :

$1 = "We found " + $1 :
endif :
msg $1 + " " + %J% + "Key" :
#Key2Stop :
>!

// If you uncomment the <display 0> the macro will still find the
// printr option (if one exists), however, the screen will not
// be updated. Note that your macro could look at $1 and base its
// actions on that

<sa-A>:<all :
display 0 :
.findpo :
$1 = .embedded :
if Z = 0 then :

$1 = "Did not find a printer option. Go to Chapter 4 and try
again":
else :

$1 = "We found " + $1 + " Now hand delete yadda, yadda, yadda" :
endif :
print " yadda, yadda, yadda " :
display 1 :
msg $1 + " " + %J% + "Key" :
#Key2Stop :
>!

<X = .Eof>
Domain: All Modules
Returns the end of file value: last line number (AWP), last record (DB), or last row which contains
data (ASP). Use it to check if you have reached the end.

Example shows a way to Get rid of hyphenated words when at the end of a line. The command
progresses downward from cursor.

<sa-A>:<awp :
Begin :

E = .eof : //Last line in file at this time
oa-. : posn A,B : //End of line
ifnot E > B endmacro : endif : //End of file
if A > 2 left : endif : //Any characters
A = peek #curschar : //Get last char
ifnot A = 173 down : //If not dash (hyphen)

Chapter 4 Dot Commands Page 97

Rpt :
endif :
down : up : //Show next line
msg 'Kill or Concatenate Y/N/C/Esc' :
C = key : msg '' :
if C > 96 and C < 123 then C = C - 32 : endif : //Force upper case
if C = 27 stop : endif : //ESC key
if C = 67 then right : oa-DEL : endif : //C so keep hyphen
if C = 89 then oa-DEL : oa-DEL : up : endif : //Y so nuke hyphen
down : //Next line

Rpt :
>!

<$1 = .FDate Format>
Domain: All Modules
This command returns today's date in a variety of possible formats as shown below:

Format = 1 - 09/21/92
Format = 2 - 09.21.92
Format = 3 - 09-21-92
Format = 4 - 21/09/92
Format = 5 - 21.09.92
Format = 6 - 21-09-92
Format = 7 - 92/09/21
Format = 8 - 92-09-21
Format = 9 - 92.09.21
Format = 10 - 920921
Format = 11 - Sep 21 92
Format = 12 - 21 Sep 92
Format = 13 - September 21, 1992
Format = 14 - 21 September 1992

// This macro shows all the format options for use by .fdate & .fdate2

<sa-A>:<all :
SaveScr : //Save screen
.Cls 1 : //Clear the screen
.writeStr 15,3,".FDate .FDate2"
for A = 1 to 14 //Loop thru

Y = 4 + A :
$0 = str$ A + " - "+ .FDate A :
if A < 10 then $0 = " " + $0: endif :
.writeStr 14,Y,$0:
$0 = str$ A + " - "+ .FDate2 11,18,1776,A :
if A < 10 then $0 = " " + $0 : endif :
.writeStr 44,Y,$0 :

next A:
.SpaceBar:
RestScr: //Restore screen

>!

<$1 = .FDate2 Month,Day,Year,Format>
Domain: All Modules
This command works like .fdate except that you must specify a date. Note that Year needs to be
1992, not 92. (See .FDate for examples of all 14 formats.)

This command returns today's date in a variety of possible formats as shown below:

Chapter 4 Dot Commands Page 98

Format = 1 - 09/21/92
Format = 2 - 09.21.92
Format = 3 - 09-21-92
Format = 4 - 21/09/92
Format = 5 - 21.09.92
Format = 6 - 21-09-92
Format = 7 - 92/09/21
Format = 8 - 92-09-21
Format = 9 - 92.09.21
Format = 10 - 920921
Format = 11 - Sep 21 92
Format = 12 - 21 Sep 92
Format = 13 - September 21, 1992
Format = 14 - 21 September 1992

<sa-A>:<all :
$1 = .FDate2 8,26,1960,5 :
msg "Randy was born " + $1 :
#Key2Stop :
>!

<.FindPO>
Domain: Word Processor
Moves the cursor to the next character based printer option e.g., Boldface Begin/End (),
Superscript Begin/End (), Subscript Begin/End (), Underline Begin/End (_), Print page number
(), Print Date or Time (), Enter from Keyboard (), Mail Merge (), Special Code (^),
Apple (^) (Note 2), Sticky Space () (Note 3). (The MouseText characters will print differently on all
printers except for IW II.)

<.findpo> sets Z to 0 if it fails (none found) or 1 if successful.

See <.embedded> command for an example using <.findpo>

Note 1: The screen symbol for each of the above printer options is shown in the parentheses
accompanying each character's name.

Note 2: The Apple is entered from the keyboard by typing Control-A. It looks like a carat, but is
called Apple.

Note 3: The Sticky Space is entered from the keyboard by typing OA-Spacebar.

Note 4: The OA-F (built-in AppleWorks command), has provisions for finding any of the above plus
all the other printer options that .findpo ignores.

<$1 = .GetFpath>
Domain: All Modules
Returns the pathname where the current file was loaded from (e.g., original directory).

<X = .ID>
Domain: Within a TimeOut application
Replaces the <id#> token. Returns the current TimeOut applications's ID.

The good news is that this command is handy for including variables in a message.

The bad news is, many times this particular example doesn't work because the TimeOut application
doesn't allow variable I to be set at the crucial time. (My guess.)

Chapter 4 Dot Commands Page 99

<sa-A>:<all :
oa-esc : //Bring up TO menu
>8<rtn : //8th = DB Replace in my TimeOut Menu
I = .id : //Ultra Compiler seems to work too
$1 = "TimeOut ID# " + str$ I :
esc : //Get away from TO menu
msg $1 :
>! Show id number

<.Line Horiz,Vert,Length,Char>
Domain: All Modules
The .line command draws a horizontal line at the specified coordinates, using the specified character
for the number of characters specified by Length. If you set the high bit as in the example,
MouseText will be used. You may use 255 for the Horizontal value to center the line.

Type Ctrl-T and one of the characters below to get associated MouseText
@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^ _
� � � � � � � � � � � � � � � � � � � ! " # $ % & ' () * + ,

<sa-A>:<all :
.cls 1 :
msgxy 255,20 :
msg 'Watch the top line of equal signs and the bottom of dashes' :
.SpaceBar :
.line 0,1,79,#"S" //top line
.line 0,22,79,#"S" //bottom line
.SpaceBar :
msgxy 0,128 :
oa-Q : rtn :
>!

<$1 = .Lower STRING>
Domain: All Modules
Makes each character in STRING lower case and puts the result in $1.

I couldn't come up with an example as good as Will's so I "borrowed" his. The only addition is that
I've added some code to make sure the cursor is the same (insert/overstrike), when the macro exits as
when entered.

<sa-A>:<all :
$4 = "COPYRIGHT BY WILL NELKEN" :
$1 = .Lower mid $4,11,2 : //Lower the 2nd word
oa-9 : //Bottom of Try file
C = peek $10F1 : //0 = insert, 1 = overstrike
insert : //UM command assures insert
print $4 : //Insert the all caps line
oa-E : //Toggle to overstrike cursor
(oa-left) 3 : //Back up three words
print $1 : //Overstrike BY with by
(oa-right) 3 : //Cursor back to end of line
poke $10F1,C : //Put cursor to input state
>!

<.Msay String>
Domain: All Modules

Chapter 4 Dot Commands Page 100

<.msay> is like <.say>, except that it doesn't save or restore the bottom line, making it useful
inside of loops since the screen would flicker if .say was used, since it restores the bottom line
whenever it exits. Use .say for "one-shot" messages, such as the end of a macro.

//Copy this to the Try file, compile and run it.
//Next, comment out the <.MSay line and uncomment the <.say> line
// Compile and run again.

<sa-A>:<all :
for I = 1 to 6 //Loop six times

zoom :
bell :
.msay "Notice how .msay message is solid as a rock. Any key" :

// .say "Notice how .say message flashes. Any key" :
wait 500 :

next I :
| : esc : //Clean up screen from .msay
>!

<.NewFile "FileName",Type>
Domain: All Modules
This command creates a new file, giving it the name "FileName" as specified. The type indicates
which type of file to create:

type = 1 : WP, 2 : DB, 3 : SS

Z returns the file number of the newly created file. If Z = 0, then the file could not be created
because you've already have 12 files on a desktop. You can move to another of the three desktops
that has less than 12 files and create it there.

If you try and create an illegal filename (illegal characters or null), AppleWorks will prompt you to
provide a filename from the keyboard. Unfortunately, this confuses .NewFile and the file number
returned in Z is one less than it should be. So, keep those filenames legal and non-null.

There is no warning/prompt if you create a filename of a file that is already on the desktop.

Why is this command here (Most people use a macro anyway)? Well, it handles the actions with or
without display and Expert Mode leaving AppleWorks in the same state as you left it.

With a DB file, you still need to specify category names. Your macro will have to take care of that or
you can go do it manually after the DB file is created.

<sa-A>:<all :
$1 = "New.WP.file" : X = 1 : // New WP file
ba-A :

$1 = "New.DB.file" : X = 2 : // New DB file
ba-A :

$1 = "New.SS.file" : X = 3 : // New SS file
ba-A :
msg '' : //Erase message
>!

<ba-A>:<asr :
.NewFile $1,X :
if Z = 0 msg 'Desktop full. Cannot create. Key' :

Chapter 4 Dot Commands Page 101

#Key2Stop :
endif :
$0 = "File number for '" + $1 + "' is " + str$ Z + ". Hit a
key" :
msg %J% + $0 +%K% :
X = key :
>!

<.Online STRING>
Domain: All Modules
STRING may be a filename (Randy), partial pathname (Ultra/Randy), or a full pathname
(/HD1/Ultra/Randy).

If STRING is a partial pathname or a filename the current disk is checked for the file specified. if
STRIng is a full pathname then that disk is checked for the filename.

<sa-A>:<all :
$1 = "/H2/UM.MANUAL/MANUAL/CH01" : //Change to something on your HD
.OnLine $1 : //Go look
if Z > 0 then :

$0 = "File " + $1 + " is available" :
else :

$0 = "Cannot find " + $1 :
endif :
msg $0 + " " + %J% + " Key " :
A = key :
msg '' :
>!

<$1 = .Peekstr Address>
Domain: All Modules
Returns the string stored in memory starting at Address.
Address must point to a Class 0 string. See "Dot Command Reference," at the beginning of this
chapter for the Class 0 strings story.

Delete the current file from Disk. Note that this hummer isn't my standard <sa-A>. This sucker is
dangerous so I made it almost fumble finger proof. It deletes the file from the disk! (Oh, by the way,
there is a .PeekStr on the second line of the macro ;-)

The <oa-F> on the fifth line is NOT doing a find. <oa-F> from the oa-Q menu takes you to the
"File Activities" menu. Try it by hand, you'll like it!

<sa-Ctrl-D>:<all :
$1 = .peekstr $0C56 : //Get this file's name
$6 = .getfpath : //Get the path this file loaded from
oa-Q : //Get main menu
oa-F>6<oa-rtn : up : rtn : //Select a ProDOS path
oa-Y : //Wipe out default
print $6 : rtn : //The file's path
$0 = $1 :
Z = 200 : //exact match required
find : //Find it
if Z = 0 then :

$2 = $1 + " File not found. Hit a key" :
msg %J% + $2 : //Give message
#Key2Stop :

endif :

Chapter 4 Dot Commands Page 102

oa-rtn : //Remove it. No questions with oa-rtn
$0 = $1 : //File user started from
Z = 200 : //Exact match
oa-Q :
find :
rtn :
>!

<.PeekVar Address,Start,Count,Size>
Domain: All Modules
The <.PeekVar> command is used to read Count consecutive bytes at Address starting with variable
Start. Size (0 or 1), determines if single bytes (peek) are read, or two-byte words (peekword) are
used. Unlike loops which use arrays, such as C(2), C(3), C(4) for three bytes, <.peekvar> would
use C(2), D(2), E(2). This allows up to 520 bytes to be read in one pass - 260 words from A(0) to
Z(9). (Each variable can hold two bytes.)

1. Move this text to the "Try" file and compile.

2. Press sa-A to see a word printed on the screen.

3. Are you as excited as I am?

<sa-A>:<all :
.peekvar $2234,C(2),5,1 //Read five words at $2234
oa-9 :
print chr$ C(2) :
print chr$ D(2) :
print chr$ E(2) :
print chr$ F(2) :
print chr$ G(2) :
>!

<.PokeStr STRING, Address>
Domain: All Modules
Pokes STRING into memory as a class 0 string starting at Address. See "Dot Command Reference,"
at the beginning of this chapter for the Class 0 string story. This command is very dangerous and
should not be used without through understanding of what is being poked and where.

In the following example "Mr. I count real good" put an E on the end of the string, making it a 16
character filename. One more than is legal for ProDOS. The bad news is that when I attempted to
save the file "Try," AppleWorks locked up because that extra bit had clobbered the pointer to the
desktop file's original path.

The worse news is that it changed the name of Chapter 1 (a file that was not on the desktop), made it
unreadable, and somehow lost 19 bytes of HD memory.

The good news is, ProSel 16 soon set the world right and my daily backups paid off big time cause I
have not changed Chapter 1 in some days.

So, the following now works fine and the warning above that this is a very dangerous command has
hit home with me.

<sa-A>:<all :
$1 = "A0123456789ABCD" : //15 char filename
.PokeStr $1,$0C56 : //Change this file's name
| : esc : //Let the flickers begin
msg 'Note on top line that filename has changed. Key' :

Chapter 4 Dot Commands Page 103

A = key :
.PokeStr "Try",$0C56 : //Put it back daddy
| : esc : //Let the flickers begin
msg 'Note that filename is now back to the original. Key' :
A = key :
msg '' : //Erase message line
>!

<.PokeVar Address,Start,Count,Size>
Domain: All Modules
The short story: <.PokeVar> works just like <.PeekVar>, except that it stores the variable values
in memory instead of reading memory into the variables.

The <.PokeVar> command is used to write Count consecutive bytes at Address starting with
variable Start. Size (0 or 1), determines if single bytes (peek) are written, or two-byte words
(peekword) are used. Unlike loops which use arrays, such as C(2), C(3), C(4) for three bytes,
<.peekvar> would use C(2), D(2), E(2). This allows up to 520 bytes to be read in one pass - 260
words from A(0) to Z(9). (Each variable can hold two bytes.)

This example writes H E L L O ! on the top line of the screen in between the file name and the
REVIEW/ADD/CHANGE header. The reason the message shows up with spaces between the letters
is an artifact of the way Apple text memory is displayed. To put the characters together we would
have to write one byte to bank 0 and the next to bank 1, etc. I know of no way to do this with UM
and its variant of poke.

Note that the Apple puts the low byte in memory first so HE is put into C(2) as EH. In E(2) we see
!O. Trust me, the LL in D(2) is reversed also ;-)

<sa-A>:<all :
// E H
C(2) = $C5C8 :
// L L
D(2) = $CCCC :
// ! O
E(2) = $A1CF :
.pokevar $407,C(2),3,2 :
.SpaceBar :
| : esc :
>!

<X = .PeekWordZP Address>
Domain: All Modules
This command is used to peek a pair of bytes in auxiliary zero page memory. If you don't know what
that means, ignore this command. To peek a pair of main zero page bytes, just use plain old
<peekword>.

Probably an unfortunate choice of names here since it reads from aux memory while
<.PokeWordZP> writes to main memory.

<sa-A>:<all :
X = .PeekWordZP $22 :
msg X :
>!

<.PokeWordZP Address,Value>
Domain: All Modules

Chapter 4 Dot Commands Page 104

<.PokeWordZP> works just like <.PokeZP> except that it stores two bytes in memory instead of
one. The values are stored in main memory.

// No meaningful example yet; maybe some day

<.PokeZP Address, Value>
Domain: All Modules
Pokes Value into the main memory zero page at Address. Strictly for the "techie" types. Very
dangerous if you don't understand what you are doing.

// No meaningful example yet; maybe some day

<.Pop X>
Domain: All Modules
Pops return address from the subroutine stack. In English, this means that when a macro calls another
macro (not a goto), the second macro can do a <.pop 1> to avoid returning to the caller.

X is the number of levels to pop off of the stack:
X = 0, pop nothing. Return as usual.

X = 1, through 15, pop that many return addresses off of the stack.
X = 20, Clear the entire stack.

Macro subroutines can stack up to sixteen return addresses on the stack. Each call in the following
adds another return address to the top of the stack. (Some view it as adding to the bottom of the
stack. It all has to do with whether you are a big-endian or a little-endian. Pick the view that suits
you.)

sa-A ==> sa-B ==> sa-C ==> sa-D
sa-A sa-B sa-C

sa-A sa-B
sa-A

When a macro has finished its function and control returns to the calling macro by popping the top
address off of the stack and going to that address. (One way to view this process is the plate holders
at your local buffet where each time a plate is taken, a spring pushes another up for the next person
until such time all plates have been taken.)

The example shows that sa-A calls sa-B which tells sa-C how many levels to pop. When sa-C pops 1
level the return isn't to sa-B, but to sa-A.

<sa-A>:<all :
X = 65535 : //Number of levels to pop -1
sa-B :
msg 'Back to sa-A from sa-C, jumping over sa-B' :
.SpaceBar :
msg '' :
>!

<sa-B>:<all :
sa-C :
msg 'Return from sa-C to sa-B' :
.Spacebar :
goto sa-B : //Loop forever
>!

<sa-C>:<all :
X = X + 1 : //65535 + 1 = 0 in Ultra Land

Chapter 4 Dot Commands Page 105

msg 'sa-C is about to pop ' + str$ X + ' level(s) off of stack' :
.SpaceBar :
msg '' :
.pop X :
>!

<X = .Rightmost>
Domain: Spread Sheet
1. This command returns the rightmost spreadsheet column containing data i.e. 3 means column "C"

is the rightmost column containing data while 13 means that column "M" is the rightmost column
containing data. One exception, in a completely empty SS it returns 1 rather than 0.

2. For the AWP it returns the last allowed character position on the current word processor line + 1.
In other words, it returns the last allowed cursor position. Type a single character in that column
and you will find that you are moved to column 1 in a new line.

3. For the DB it returns the last column on the screen. For the DB, a column is a "slot" which is
independent of the actual category contained in that slot. That is, you can rearrange the layout so
the category order is scrambled, but slots always start at one and count up from left to right.

Compile the example in the Try file. I find it works as advertised in AWP and ASP. It just might
work as intended in ADB, however, I fail to see what it is trying to prove. I *always* get a value of
115 from any DB file I test. YMMV. Let me know if it does.

<sa-A>:<all :
X = .Rightmost :
msg X :
.Spacebar :
msg '' :
>!

<X = .Search "IsHere",Start,End>
Domain: All Modules
This command will search up to 99 string variables ($1-$99) for "IsHere". The search is a "contains"
search, not an equal search. This is a caseless search. Start and End specify the range of string
variables to search through. If a string is found, its number is returned in X. X = 0 means failure.
You cannot search $0 using this command. If you wish to search subsequent strings you must start
after the latest match.

<sa-A>:<all :
SaveScr :
.Cls 1 :
$75 = "I'm told that case does not matter" :
$2 = "CaSe DoEs NoT MatTeR"
X = .Search $2,70,80 :
Ifnot X = 0 then :

.WriteStr 0,10,"Found: " +$(X) :

.WriteStr 0,11,"Search: " + $2 :
msg 'Match found in string ' + str$ X :

else :
msg $2 + " " + %J% +"NOT FOUND" + %K% :

endif :
.SpaceBar :
RestScr :
| : esc :
>!

Chapter 4 Dot Commands Page 106

<.SetCol Column,Width>
Domain: Spread Sheet
The <.setcol> command changes the width of the specified spreadsheet column. No flicker, no
pain. Note that a column cannot be wider than 70 columns. Further note that if you express a width
greater than 70 the .GetValue dot command will not advance until you either give it a value less than
71 or hit ESC.

An interesting "quirk" of <.SetCol> is that it does not mark the SS file as changed when you
change one or more column widths with the following macro.

<sa-A>:<asp :
C(1) = peek $10F1 : //Cursor state
poke $10F1,1 : //Force overstrike cursor
$0 = .CellID : //$0 = Col and row info i.e., C14
$0 = .SubChar $0,#'0',#'9',#'*' : //Numbers to asterisks. $0 = C**
$0 = .ZapChar $0,#'*' : //Nuke asterisks. $0 = C
$1 = .GetString 'Adjust which column? ',$0,2 :
if Z = 0 or Z > 100 then : //Client wants out

poke $10F1,C(1) : //Put back cursor state
endmacro :

endif :
C = .Column $1 :
W = .GetValue "How wide? ",1,70,9 :
poke $10F1,C(1) : //Put back cursor state
if Z = 0 or Z > 100 then : //Client wants to quit

endmacro :
endif :
.SetCol C,W :
>!

<.SetDisk STRING>
Domain: All Modules
Sets the AppleWorks data directory to the path specified by STRING i.e., after executing the
following macro the default location to load files from will be "/DATA2/FILES/AWP"

<sa-A>:<all :
.SetDisk "/DATA2/FILES/AWP" :
>!

This shows that you can use a label, string variable, and a quoted string either by themselves or in
any combination.

<sa-A>:<all :
.SetDisk #BaseDir + $9 + "/Templates" :
>!

<.SetDisk> replaces the <& path> command.

<.SetFpath STRING>
Domain: All Modules
Sets the current file's directory path. No checking is done with respects to the validity of the path. It
is simply set to the value of STRING. If the path is invalid (i.e., 1234), you will get an error only
when you try to save the file i.e., Getting errors trying to save at 1234.

As shipped, AppleWorks is configured to save a file to the current path when OA-S is typed and to
the file's original path when OA-CONTROL-S is typed. In this case location $10B1 will contain $D3
(oa-S, see KeyChart file).

Chapter 4 Dot Commands Page 107

Generally folks reverse this setting using Randy's Free Patcher (RFP) because it is more natural that
way. In this case $10B1 will contain $93 (oa-Ctrl-S, see KeyChart file).

As you might guess, location $10B1 reflects which internal key to use when oa-S is pressed (and by
implication which internal key to use when oa-Ctrl-S is pressed).

If your macro is going to be used by a number of people then consider the following code from
Randy Brandt to assure that your macro will save to the path just set by <.setfpath>. (Another
approach is to inform the user up-front that your macros always assume oa-S saves to a file's original
path and if their system doesn't support this, your macro will not run correctly.)

// Memory location $10B1 contains the key stroke that will
// cause the current file to be saved to its original path.
// AppleWorks ships with $10B1 = $93 (oa-Ctrl-S)
// Randy's Free patcher changes it to $D3 (oa-S)
// Randy said, "You can't poke $10B1, because it's just a
// reflection of what is defined in the save segment,"

// However, you can execute it to cause the file to be saved
// to its original path, irrespective of $10B1 setting

// Compile this, move to some other folder ie., /DATA and
// load a file so that it becomes the current folder.
// Next execute this macro and see that Try gets saved at
// /DATA/Try and /DATA/Txt/Try. Delete these two files
// and then oa-S Try and see that the current path is Try's
// original.

<sa-A>:<all :
$1 = .GetFpath : //Get the current path for Try
.SetFpath "/DATA/TXT" : //Change to fit your system
A = peek $10B1 : //Get the current Smart Save option

//$D3 + $93 = decimal 358. Subtracting current smart save key
//guarantees you the "save current path command in C
C = 358 - A :
print chr$ C :

//This guarantees that you save to the original path command in A
print chr$ A : //Original path or .SetFpath in this case
.SetFpath $1 : //Back to Try's real home
>!

<.Sort Start,End,Direction>
Domain: All Modules
The sort command sorts a range of strings from Start to End in ascending or descending order, as
specified by Direction. See Chapter 2 "Testing String Relationships," for examples how NOT to test
the relationship between two strings.

<sa-A>:<all :
// handy trick to build a short string series
$50 = "Randy,Joanna,Heather,Erika,Michael" :
$51 = "az,aq,aa,ay,ax" :
$52 = "10,1,15,9,2" : //Note that this one doesn't sort "right"
$53 = "10,01,15,09,02" : //This one does
$54 = "aa,AA,bb,BB,a" :
$55 = "10,1,fred,Fred,15"

Chapter 4 Dot Commands Page 108

for I = 50 to 55 :

//Move each of the five items from a $(I) to strings $1 through $5
X = 1 : ($(X) = .Choose $(I),X: X = X + 1) 5 :

//Its chronological because Randy set $50 that way. Not because of
//any macro magic.
$8 = "Chronological order: " :
ba-A : //Display $1 through $5

.sort 1,5,1 : //Sort $1 - $5 in ascending order
$8 = "Ascending sort order: " :
ba-A : //Display $1 through $5

.sort 1,5,0 : //Sort $1 - $5 in descending order
$8 = "Descending sort order: " :
ba-A : //Display $1 through $5

next I :
msg 'How much fun can one person stand ;-? Key' :
#Key2Stop :
>!

<ba-A>:<all :
X = 1 : //Build display string in $8
($8 = $8 + $(X) + " ":
X = X + 1) 5 :
msg $8 :
.spacebar :
msg '' :
>!

<.Speed 1000>
Domain: All Modules
This command, written at the request of J.S. Rowe of England, allows you to slow down Ultra 4.x.
This can be handy for demos or for debugging. It's actually a delay command, since higher numbers
make Ultra run slower. Highest number allowed is 65535 which is about a 30 second delay between
commands on a 8Mhz IIgs. You may press a key during long delays to hurry the macro along. Use 0
to return to full speed.

<sa-A>:<all :
for X = 1000 to 4000 step 1000 :

.Speed X :
oa-Q :
$0 = 'Speed ' + str$ X :
msg %J% + $0 + %K% :
esc :
msg %J% + $0 + %K% :
up :
msg %J% + $0 + %K% :
up :
rtn :
msg %J% + $0 + %K% :
esc :
msg %J% + $0 + %K% :
esc :

next X :
.Speed 0 : //Important to get that sucker back

Chapter 4 Dot Commands Page 109

>!

<$1 = .SubChar Text, First, Last, NewChar>
Domain: All Modules
The <.subchar> command replaces a range of characters (First through Last), with the specified
new character. First must have a lower ASCII value than Last. The ASCII values are used, but the
compiler can convert text characters for you so you don't have to know the number values.

The first example shows using text characters. The second shows a combination of character values
and text.

<sa-A>:<all :
$1 = "text" //Starting string
$2 = .subchar $1,#'x',#'x',#'s' //Replace x with s
msg "Replace the 'x' in " + $1 + " with 's' to get " + $2 :
>!

Many thanks to Randy Brandt for writing the following macro. I had a version that worked, however,
it wasn't nearly as elegant or fast.

More thanks to Will Nelken for writing "Ultra to the Max" Ultramacros manual. Without it I'd of
never understood what the hey Randy did here ;-)

The line that begins "$6 = right $5..." is a real killer and you might stare at it for days before
figuring it out. Instead, here are Randy's words on the subject:

"Steve Beville came up with the clever concept of using Ultra's math wrap characteristic. That is,
adding so a value exceeds 65535 ($FFFF) wraps back to 0, so to shorten a string by 3, you can add
the existing length to 65533 (65536 - 3 [which in hex is $10000 - 3]) and you'll end up 3 less than
you started with. That trick saves a couple of statements, since otherwise you'd need: Z = len $1 : Z
= Z - 3 : $1 = right $1,Z"

Belaboring the obvious, A = $FFFF + 1 = $10000. Since UM math can only deal with the four
least significant hex digits of a number, the 1 in $10000 goes into the bit bucket and the number in
variable A is $0000

<sa-A>:<awp :
$1 = " PUT FileName ;Comment"
$2 = .subchar $1,9,32,#'*' //Convert spaces and tabs to *'s
$3 = .zapchar $2,#'*' //Kill 'em all to pack the string
$4 = .subchar $3,#';',#';',#',' //Change the comment semi-colon
$5 = .choose $4,1 //Lose the comment
$6 = right $5,65533+len $5 //Lose the PUT

.cls 1 :
msgxy 0,10 : //Should be .WriteStr. Here for example
msg 'Original: ' + %K% + $1 :
msgxy 0,11 :
msg 'SubChar: ' + %K% + $2 :
msgxy 0,12 :
msg 'ZapChar: ' + %K% + $3 :
msgxy 0,13 :
msg 'SubChar: ' + %K% + $4 :
msgxy 0,14 :
msg 'Choose: ' + %K% + $5 :
msgxy 0,15 :
msg 'Right: ' + %K% + $6 :

Chapter 4 Dot Commands Page 110

.SpaceBar :
msgxy 0,128 :
| : esc :
>!

<X = .SubString $1,$2,Start>
Domain: All Modules
This command searches for "hat" in "That hat! Where is my Hat" starting at the string position
specified by Start. Case does not matter. If found, the position found will be returned in the offset
variable (X in this case). If not found the offset variable (still X), will be set to 0.

<sa-A>:<all :
F = 0 : //Flag says no matches yet
S = 1 : //Start point in string
$1 = "hat"
$2 = "That hat! Where is my hat?" :

Begin :
X = .substring $1,$2,S :
$0 = $1 + " starts " + str$ X + " chars into the string. Key" :
ifnot X = 0 then msg %J% + $0 + %K% :
S = key : //Eats key. A would have worked as well
S = X + 1 : //Point 1 beyond last occurrence
F = 1 : //Flag that at least one match

Rpt : endif :
if F = 0 msg %J% + $1 + ' Not found' :
else msg %J% + 'No more occurrences of ' + $1 :
endif :
#Key2Stop :
>!

<.TitleBox X,Y,W,L,T,$>
Domain: All Modules
Draws a box onscreen with a title bar i.e., this is pretty much MouseText .Box with a title bar.

X = The left column number (0-77) or 255 if box is to be centered
Y = The upper line number (0-21)
W = The width in columns (1-78)
L = length in lines (1-23)
T = Type of title text or box type

T = 1, Title is inverse
T = 2, Title is normal
T = 3, Box is shadow.

$ = A quoted string or string variable containing title bar text

A bit of realities here:
A box that begins in column 77 isn't going to contain all that much information i.e., none.

An L value that causes the box to exceed column 78 will result in a null right side of the box.

<sa-A>:<all:
savescr // save the screen
.Cls 0 : //Get rid of detractions. Not needed

.TitleBox 0,0,35,5,1,"This box has an inverse title" :

.WriteStr 5,4,"Stuff something in the box" :

.SpaceBar :

Chapter 4 Dot Commands Page 111

.TitleBox 40,7,35,5,2,"This box has a normal title" :

.WriteStr 45,11,"Stuff something in the box" :

.SpaceBar :

.TitleBox 0,15,35,5,3,'This is a shadow box' :

.WriteStr 5,19,"Stuff something in the box" :

.SpaceBar :

restscr // restore the original screen
>!

<X = .TOinMem>
Domain: TimeOut Menu
This command is used at the TimeOut menu. It returns a non-zero value if the highlighted application
has been loaded into memory or 0 if the application is still on disk.

<sa-A>:<all :
.cls 1 : //Clear out background stuff
oa-esc : //To the TO menu
msgxy 255,0 : //Center the message
msg 'Arrow to move, ESC to quit' :
msgxy 0,128 : //Put back the default message line
Begin :

X = .TOinMem : //X > 0 = highlighted app in memory
msg ' ' + str$ X + ' ':
A = key :
if A = 27 then msg "" :

esc :
exit :

else :
print chr$ A : //Give the key to AppleWorks

Rpt : //Loop back
>!

<.UnCache $1>
Domain: All Modules
.uncache "macroset" //uncache the named macro set
.uncache "*" //uncache all macro sets in the cache
.uncache "#" //uncache all sets EXCEPT UM4.0.SYSTEM

Ultra 4 caches macro sets whenever you use launch, call or link. This provides maximum speed for
switching, but ties up memory which may be better used for other things. The .uncache command
removes the named macro set from the cache, freeing up the memory. .uncache returns the number of
files uncached in Z.

It appears that .UnCache "*" and .UnCache "#" options work identically in AW 5.1 because the
name now is SEG.UM while the .UnCache dot command is looking for the name UM4.0.SYSTEM.

The macro examples here are somewhat more involved than others. Macro sa-A has a line that needs
to be uncommented (.UnCache "*") and another (UnCache "#"), commented.

Macro sa-B shows how to delete a named macro set. For it to work you have to first compile the Try
file, call sa-ctrl-T to save the Try macro set to disk. The first time you call sa-B no macro set will be
removed. After that, each time you call sa-B, one macro set (Try) will be removed from the cache.

<sa-A>:<all :
//.UnCache "*" : //UnCache all Macro Sets

Chapter 4 Dot Commands Page 112

.uncache "#" : //UnCache all except UM4.0.SYSTEM
sa-D : //Go display
>!

<sa-B>:<all :
.UnCache "Try" //Named Macro Set
sa-D : //Display
sa-C : //Put Try back in cache
>!

<sa-C>:<asr :
$0 = "Ultra Options"
Z = 200 : //Exact match
oa-ESC : //TO menu
find :
rtn :rtn : up : rtn : //Launch from disk
$0 = "Try" :
Z = 200 : //Exact match again
find : rtn :
>!

<sa-D>:<asr :
msg ' ' + str$ Z + " sets were removed " :
.SpaceBar :
msg '' :
>!

<$1 = .Upper STRING>
Domain: All Modules
Defines $1 as the all upper case equivalent of STRING. STRING can be a string variable or a quoted
string.

<sa-A>:<all : $1 = .Upper "LowER 4th" :
msg $1 + " Key to continue" :
#Key2Stop :
>!

<.Vline Xpos, Ypos, Len, Char>
Domain: All Modules
Draws a vertical line onscreen with any character you specify.

Xpos is the column in which to draw (0-79 or 255 to center).
Ypos is befinning row for the line (0-23)
Len is the length of the line (1-24)
Char is the ASCII value of the character to use.

Do not try to specify a character under 32. Control characters will mess your world up no end. Note
that you can specify the characters for T with either the numerical value or the #'X'. You cannot
specify (AFAIN), high bit on except by numerical means.

<sa-A>:<all :
oa-Q :
T = 32 : //Start with space
C = 0 : //Start col 0
.Cls 0 :
Begin :

.VLine C,0,23,T :

Chapter 4 Dot Commands Page 113

T = T + 1 :
if T = 255 then :

.spacebar :
| : esc :
endmacro :

endif :
C = C + 2 :
if C > 79 then :

C = 0 :
.Spacebar :
.Cls 0 :

endif :
Rpt :
>!

<X = .WeekDay Month,Day,Year>
Domain: All Modules
Returns a value (1 = Sun, 2 = Mon...7 = Sat) indicating the day of week for a specified date. Year
has to be a full year (1992), not just the last two numbers.

If ALL of Month, Day, or Year are 0 then the current date will be used. (Some documentation says
that if ANY of Month, Day, or Year is zero then the current date will be used. NOT TRUE. All
must be zero for the current date.)

<sa-A>:<all :
A = .WeekDay 11,18,1967 :
$1 = "Sunday,Monday,Tuesday,Wednesday,Thursday,Friday,Saturday" :
$2 = .Choose $1,A :
A = .WeekDay 0,0,0 :
$3 = .Choose $1,A :
msg "Mark was born on a " + $2 + " " + %J% + " Key " :
A = key :
msg "Today is " + $3 + " " + %J% + " Key " :
#Key2Stop :
>!

<.ZapChar "Text", Char>
Domain: All Modules
The .zapchar command removes the specified character from a string. This is handy for stripping
commas from numbers so the extended math commands work. See <.SubChar> for another
example.

<sa-A>:<all :
$1 = ",,1,234,567.01,," :
$2 = .ZapChar $1,#',' :
.cls 1 :

.WriteStr 0,10,'Orig ' + %K% + $1 :

.WriteStr 0,11,'Fixed ' + %K% + $2 :

.SpaceBar :
| : esc : //Restore the screen
>!

<.ZoomIn>!
Domain: All Modules
Forces zoom in status. Shows all printer options, tabs, etc. Look around in Chapter 3 and 4 if you
want an example.

Chapter 4 Dot Commands Page 114

Data Base Dot Commands

These dot commands are installed by the I.UM.AND.SS file. The commands in this section work
only when a DB file is current.

<.GetNames Category, FirstStr, Number>
Domain: Data Base
Captures the names of a defined range of categories from a DB file:

Category is the number of the first category in the range
FirstStr is the number of the first string in the range i.e., 2 not $2 is specified.
Number is the number of strings in the range.

To read all category names into strings 1-30, use:
<sa-A>:<adb : .getnames 1,1,30>!

<.getnames> stops at the last assigned name even if Number specifies a larger range.

NOTE: You can see what numbers are assigned to DB categories by typing OA-N, Return and then
the up and down arrow keys to scroll through the list if there are more categories than will fit on the
screen.

<.SetNames Cat, Record, FirstStr, Number>
Domain: Data Base
Sets the names of a defined range of categories for a DB file:

Cat is the number of the first category in the range
FirstStr is the number of the first string in the range i.e., 2 not $2 is specified.
Number is the number of strings in the range.

<.setnames> stops at the last assigned name even if Number specifies a larger range.

Consider the following extension of the <.getnames> example from above:

<sa-A>:<adb :
.getnames 1,1,30 ://Get the category names
$0 = "NewDB" :
Z = 0 :
oa-Q : find : //Find the new DB on the desktop
ifnot Z = 0 then :
rtn ://Enter the file
.setnames 1,1,30 :
>!

<.GetRec Category, Record, FirstStr, Number>
Domain: Data Base
Captures the contents of a range of categories within a specified record:

Category is the number of the first category in the range
Record is the number of the record to get the data from
FirstStr is the number of the string for the first string in the range
Number is the number of categories to capture.

The following example will store three categories in $9, $10, and $11,
starting at the current category, in the current record.

// Compile the following in Try. Load TryDb

Chapter 4 Dot Commands Page 115

// Call sa-A from various categories, including the last

<sa-A>:<adb :
clear 255 :
posn C,R :
I = 4 :
.getrec C,R,I,15 :
.Cls 1 :
for I = I to 15 :

.WriteStr 0,I," $" + str$ I + " = " + $(I) :
next I :
msg 'Key' :
A = key :
| : esc :
>!

<.SetRec Category, Record, FirstStr, Number>
Domain: Data Base
Sets the contents of a range of categories within a specified record:

Category is the number of the first category in the range
Record is the number of the record to get the data from
FirstStr is the number of the string for the first string in the range
Number is the number of categories to capture.

The following "not ready for prime time" macro copies the cursor category from the current file to
the cursor category in "NewDB."

In the real world you would want to query the user for the destination file name, move down to the
next record in both files, move to the same category name, regain the original file so another could be
copied, etc., etc.

<sa-A>:<adb :
posn C,R : //Category & Record Number
F = 3 : //Use string 3
N = 1 : //One category
.getrec C,R,F,N //Capture it
$0 = "NewDB" : //We magically know this :-)
sa-B : //Go to NewDB
posn C,R : //Category and record might differ
.setrec C,R,F,N : //Copy data over
| : esc : //Redraw screen
>!

<sa-B>:<asr :
oa-Q : oa-1 : find : //Find the new DB
if Z = 0 msg 'Cannot find ' + $0 + ' Key' :
A = key : msg '' : stop : endif :
rtn : //Accept
>!

<$1 = .GetCat Category, Record>
Domain: Data Base
Returns the contents of the specified Category from the specified Record. See <.setcat> for example
of use.

<.SetCat Category, Record, STRING>

Chapter 4 Dot Commands Page 116

Domain: Data Base
Sets the Category in Record with the contents of STRING. If the data is coming from a AWP via
<cell> then see the warning with the <cell> command concerning tabs.

Slightly more realistic example in that we have a sub-macro to handle flipping between files on the
desktop and we get back to the original file. One way to test this is to load TryDB, oa-N and change
the name to "Fred", and once again reload TryDB. Set the cursor in TryDB to the destination
category, go to Fred, type sa-A.

The details on obtaining the name of the destination file in a more realistic fashion is left as an
exercise for the reader.

<sa-A>:<adb :
$2 = .peekstr $0C56 : //This file's name
posn C,R : //Current Category & Record
$1 = .getcat C,R : //Got it.
$0 = "TryDB" : //We magically know this :-)
sa-B : //Get to TryDB
posn C,R : //Category and record might differ
.setcat C,R,$1 : //Copy data over
$0 = $2 :
sa-B : //Back to original file
>!

<sa-B>:<asr :
oa-Q : oa-1 : find : //Find the new DB
if Z = 0 msg 'Cannot find ' + $0 + ' Key' :
A = key : msg '' : stop : endif :
rtn : //Accept
>!

<$1 = .CatName CategoryNum>
Domain: Data Base
Yields the category name from the Category number.

Silly example, however, a realistic example would be quite a bit bigger.

<sa-A>:<adb :
msg 'Input category number' :
$0 = getstr 2 : //Up to two characters
C = val $0 :
$1 = .catname C : //Get its name
if $1 = "" $0 = "Invalid category number" :

sa-B : stop :
endif :
$0 = "Category number " + str$ C + " is named " + $1 :
sa-B :
>!

<sa-B>:<asr : msg %J% + $0 + " Hit a key" + %K% :
A = key : msg '' :
>!

Another example:

<sa-A>:<adb :
msg 'Input category name' :

Chapter 4 Dot Commands Page 117

$0 = getstr 30 : //Up to thirty characters
C = .catnum $0 :
if C = 0 $0 = $0 + " is an invalid category name" :

sa-B : stop :
endif :
$0 = "Category number " + str$ C + " is named " + $0 :
sa-B :
>!

<sa-B>:<asr : msg %J% + $0 + " Hit a key" + %K% :
A = key : msg '' :
>!

Spreadsheet Dot Commands
These commands are installed by the I.UM.DB.AND.SS file.

<X = .Column STRING>
Domain: Spread Sheet
Sets X to the text column number given in STRING. For example,
X = .column "A" returns 1, X = .column "AA" returns 27, and
X = .column "DP" returns 120. DP is the last possible column in a spreadsheet.

Unfortunately, this is a really "quirky" dot command. X = .column "DQ" returns 121, X = .column
"ZZ" returns 702 and X = .column "" returns 3234, etc., etc. As you can see, it is up to you to
validate the output as is done below in the <.colwidth> example.

See <.colwidth> for an example

<X = .ColWidth STRING>
Domain: Spread Sheet
Set X to the width of the column specified by STRING.

In the face of the input errors as outlined for <.column>, <.colwidth> returns a width of 9 for
columns that cannot exist so there doesn't seem to be a way to catch input errors other than checking
them yourself.

<sa-A>:<asp :
msg 'Input column name' :
$0 = getstr 2 : //Up to two characters
C = .column $0 :
W = .colwidth $0 :
if C > 120 or C = 0 then $0 = $0 + " is an invalid column name" :

sa-B :
stop :

endif :
$0 = "Column " + $0 + " is column number " + str$ C + " & width is "
+ str$ W :
sa-B :
>!

<sa-B>:<asr :
msg %J% + $0 + " Hit a key" + %K% :
#Key2Stop :
>!

<$1 = .GetCell Column, Row, Format>

Chapter 4 Dot Commands Page 118

Domain: Spread Sheet
Returns the contents of the specified Spreadsheet cell regardless of the cursor position. If Format is 0,
<.getcell> returns the literal value regardless of the screen display, and if Format is non-zero, the
exact screen format is used, including spaces, even if the screen is off. For example, if the cell holds
2.448 and if formatted for dollars, <.getcell> will return "$2.45" if Format is 1, or "2.448" if
Format is 0.

<sa-A>:<asp :
$1 = .GetCell 2,2,1 :
$2 = .GetCell 2,12,0 :
SaveScr :
.Cls 1 :
.WriteStr 0,10,$1 :
.WriteStr 0,11,$2 :
msg 'Key' :
A = key :
RestScr :
>!

<.SetCell Column,Row,STRING>
Domain: Spread Sheet
Sets the cell at the intersection of the specified Column and Row to the contents of STRING. To enter
a value, STRING is specified as a quoted string to <.setcell>. To enter a Label you have to use a
string variable: <$1 = chr$ 34 + "Label text">. You cannot create a "Repeated" label with
.setcell. See <.cellid> for one method to create a Repeated label

<sa-A>:<asp :
C = .column "D" : //C = D also works.
.SetCell C,1,"31.7"
$1 = chr$ 34 + date2 : //Enter as a label. 34 is a double quote
.SetCell C,2,$1 :
X = 34 : //Another way
$1 = chr$ X + "Still a label" :
.SetCell C,3,$1 :
| : esc : //Cause screen to be redrawn
>!

<$1 = .CellID>
Domain: Spread Sheet
Sets $1 to the text ID for the current Spreadsheet cell.

//This is a case where there are a number of ways to accomplish the
//job. Use C = peek $B0 to get the column number, and R = peekword
//$AE for the row.

//<posn C,R> does the same thing as the peeks and saves nine bytes.

//Since you are in the cell in question then the following .cellid,
//.column fills the bill since it allows cells to be of varying width.

<sa-A>:<asp :
$2 = .cellid : //$2 = Col and Row i.e, C 14

$0 = mid $2,2,1 : //2nd character of cellid
A = val $0 :
B = 1 : //Default to 1 Col character
if A = 0 then B = 2 : endif :

Chapter 4 Dot Commands Page 119

$2 = left $2,B :

//Here is an alternate (and better) way to do the previous 5 lines
//$2 = .SubChar $2,#'0',#'9',#'*' : //Numbers to asterisks. $2 = C**
//$2 = .ZapChar $2,#'*' : //Nuke asterisks. $2 = C

C = .column $2 :
W = .colwidth C : //Width of current column
$1 = chr$ 34 : //A double quote. $1 = "=" works too
($1 = $1 + "=") W : //Width of column in ='s
print $1 : rtn : //Create a Repeated label
| : esc : //Cause screen to be redrawn
>!

<$1 = .LastCol>
Domain: Spread Sheet
Sets $1 to the text ID for the last Spreadsheet column containing data i.e., A, B, AA, etc. To get the
numeric value for the last column: For AW 3 use X = peek $80FE. For AW 4 & 5 use X = peek
$80FC to get the last column. In the example below sa-A in TrySS <.LastCol> = "T" and $80FC
= 20, which is the same thing since "T" is the twentieth letter of the alphabet.

<sa-A>:<asp :
clear 255 :
$1 = .LastCol :
A = val $1 :
B = peek $80FC :
$2 = "$80FC = " + str$ B + " key" :
msg '.LastCol = ' + $1 + %K% + " " + %J% + $2 :
#Key2Stop :
>!

<$1 = .LastRow>
Domain: Spread Sheet
Sets $1 to the text ID for the last Spreadsheet row containing data i.e., 1, 2, 225, etc.

<sa-A>:<asp :
clear 255 :
$1 = .LastRow :
A = val $1 :
msg '.LastRow = ' + $1 + %K% + " " + %J% + "Key" :
#Key2Stop :
>!

Menu Commands

<.AddMany X, Y, FirstStr, Count, Space>
Domain: All Modules
Adds Count numbered items to a vertical menu starting at column (0-79) X, line (0-23) Y. Strings
starting with FirstStr are spaced according to Space (usually 1 or 2). None of the strings specified can
be null or you will get a "Dot Command Error" when the macro is called.

This menu command does nothing useful, however, hang in there until we get to <.DoMenu>.

<sa-A>:<all :
clear 255 : //Clear all variables
.Cls 1 //Clear the screen. See <.Cls> for details
$1 = "Menu Item 1" :

Chapter 4 Dot Commands Page 120

$2 = "Menu Item 2" :
$3 = "Menu Item 3" :
.addmany 10,10,1,2,2 :
.addmany 30,10,3,1,2 :
.spacebar : | : esc :
>!

<.AddMenu Xpos, Ypos, $1>
Domain: All Modules
Adds a numbered item $1 to a vertical menu at column (0-79) Xpos, line (0-23) Ypos.

<sa-A>:<all :
clear 255 : //Clear all variables
.Cls 1 : //Clear the screen. See <.Cls> for details
$1 = "Menu Item 1" :
$2 = "Menu Item 2" :
$3 = "Menu Item 3" :
$4 = "Menu Item 4" :
.addmenu 10,10,$1 : //Add menu items #1
.addmenu 10,12,$2 : //Add menu items #1
.addmenu 30,10,$3 : //Add menu item #3
.addmenu 30,12,$4 : //Add menu item #4
.spacebar : | : esc :
>!

<.Cls NUM>
Domain: All Modules
Clears the screen. NUM = 0 the entire screen will be cleared, if 1, the middle 20 lines will be
cleared, and if 2 or more, the normal work area will be cleared. The work area varies with the
application.

See the SaveScr command for a note on what can be a confusion factor if SaveScr and RestScr are
used in conjunction with .Cls.

<sa-A>:<all :
.Cls 0 :
.writestr 255,10,".Cls 0 cleared the entire screen." :
.writestr 255,11,".spacebar will put message on line 23" :
.writestr 255,12,"We didn't lie with our entire screen statement" :
.spacebar : | : esc :
.Cls 1 :
.writestr 255,10,".Cls 1 cleared the middle 20 lines" :
.spacebar : | : esc :
.Cls 2 :
.writestr 255,10,".Cls 2 cleared the work area" :
.spacebar : | : esc :
>!

<.DoMenu X>
Domain: All Modules
Activates a menu designed with <.AddMany> &/or <.AddMenu>, highlighting the item specified
by X. Z is returned with the user's choice where 0 = Abort/none, and greater than 0 is the menu
item number.

<sa-A>:<all :
clear 255 : //Clear all variables
.Cls 1 :

Chapter 4 Dot Commands Page 121

$1 = "Menu Item 1" :
$2 = "Menu Item 2" :
$3 = "Menu Item 3" :
$4 = "Menu Item 4" :
.addmany 10,10,1,2,2 : //Add menu items #1 and #2.
.addmany 30,10,3,1,2 : //Add menu item #3
.addmenu 30,12,$4 : //Add menu item #4
I = 3 : //Menu item to highlight
.domenu I : //3 in place of I works just as well
if Z = 0 : //User hit escape

.Cls 1 :

.writestr 255,10,"You hit ESC. Try one of the menu numbers." :
(.beep 100,100) 5 : //Wake user up
wait 3000 :
RPT :

endif :
.Cls 1 .writestr 255,10,'You chose #' + str$ Z:
wait 3000: esc esc :
>!

<.FCard NUM,STRING,TYPE>
Domain: All Modules
.FCard draws a stacked filecard, based on NUM (1-4), on the screen, using STRING for the title.
TYPE = 0 says to use plain text to draw the filecard. TYPE = 1 says to use MouseText to draw the
filecard.

Unlike .FileCard, there is range checking done so NUM's larger than 4 will result in a "Dot
Command Error" on line 21 of the screen.

See <.popmenu> section for technique to back out of a card to a lower numbered one.

See the file: Dot MenuTools in the UltraMacros folder on the /extras disk for AW 4 or AW 5 for
some more examples on how to use the command.

<sa-A>:<all :
A = 0 : //Type of filecard
$1 = " using normal text" :
Begin :

.Cls 1 //Clear the screen.

.FCard 1,"Filecard 1",A :

.writestr 20,12, ".FCard 1 drew this" + $1 :

.spacebar :

.FCard 2,"Filecard 2",A :

.writestr 20,12, ".FCard 2 drew this" + $1 :

.spacebar :

.FCard 3,"Filecard 3",A :

.writestr 20,12, ".FCard 3 drew this" + $1 :

.spacebar :

.FCard 4,"Filecard 4",A :

.writestr 20,12, ".FCard 4 drew this" + $1 :

.spacebar : esc :
if A > 0 then exit : endif :
A = A + 1 : //Do MouseText this time
$1 = " using MouseText" :

Rpt :
>!

Chapter 4 Dot Commands Page 122

If you wish to draw a single filecard and NUM isn't 1 then there will be a couple of ugly lines, called
sidelines, coming out of the top right and lower left of the card. I cannot find a work around for this
as in <.FileCard>.

<.FileCard STRING, NUM>
Domain: All Modules
.FileCard draws a stacked filecard, based on NUM (1-4), on the screen, using STRING for the title.
Be careful with NUM. There is no range checking done so <.FileCard STRING, 10> is attempted
with some really ugly results.

See <.popmenu> section for technique to back out of a card to a lower numbered one.

See the file: Dot MenuTools in the UltraMacros folder on the /extras disk for AW 4 or AW 5 for
some more examples on how to use the command.

See SA-B below for explanation of "orphan" cards.

<sa-A>:<all :
.Cls 1 //Clear the screen. See <.Cls> for details
.FileCard "Filecard 1", 1 :
.writestr 25,12, ".FileCard 1 drew this" :
.spacebar :
.FileCard "Filecard 2", 2 :
.writestr 25,12, ".FileCard 2 drew this" :
.spacebar :
.FileCard "Filecard 3", 3 :
.writestr 25,12, ".FileCard 3 drew this" :
.spacebar :
.FileCard "Filecard 4", 4 :
.writestr 25,12, ".FileCard 4 drew this" :
.spacebar : esc :
>!

If you wish to draw a single filecard and NUM isn't 1 then there will be a couple of ugly lines, called
sidelines, coming out of the top right and lower left of the card. The two pokes in SA-B show how to
deal with the situation.

<sa-B>:<all :
.Cls 1 :
poke $C3D,$0 //Extra sidelines off
.FileCard "Single Card",2 :
poke $C3D,$80 : //Put them back for someone later.
.spacebar : esc :
>!

<$1 = .GetInput X,Y,$2,$3,L>
Domain: All Modules
This command allows you get string input at a specific location on the screen with a given prompt and
a default string. You can also specify the maximum length of the string (1-80 char). With this
command, you can set up your own input forms if you'd like.

$1 = the result string
X = The left column number for Prompt to start in.
Y = The line number that Prompt begins in
$2 = The user prompt string
$3 = The default string defined by you (can be null).

Chapter 4 Dot Commands Page 123

The simplistic view of the return values in Z:

Z = 0 = Escape key pressed. (See Note:)
Z = 155 = oa-esc keys pressed
Z = 191 = oa-\ or oa-? pressed
Z = 209 = oa-Q was pressed
Z = 211 = oa-S was pressed

Note: If the user has entered some characters and then hits esc the entered characters are discarded
and .GetInput awaits fresh input. A second esc will cause .GetInput to abort and report 0 via Z.

The reality view of the return values in Z:

If a control character (exceptions noted below) is pressed as the first character then its value will be
reported as the number of characters typed, however, the result string ($1 in the example), will be
null.

Exceptions: Control H, U, Y, Z, \, and _ are caught internally and are not reported back. Also,
Control-T changes the typed cursor from normal to MouseText, Inverse, and back to normal. It too is
not reported back.

If a non-control character and the oa- key are pressed as the first character its high bit ASCII value is
reported as the number of characters typed but the result string is null i.e., oa-A = 193 and $1 =
null. Note that lower case a-z values are reported as if upper case A-Z had been pressed. In addition,
oa-Delete keeps its normal function of deleting the character under the cursor.

Probably a bug:

1. If Return (Ctrl-M) is typed as the first character Z will contain 2, not 13 as you would expect.
The result string is null.

2. If oa-Return (oa-Ctrl-M) is typed as the first character Z will contain 3, not 141 as you would
expect. The result string is null.

If one or more characters are typed and then all are deleted via the Delete key and then either Return
or oa-Return is typed zero is reported, which is the correct value.

Appears you are best consulting the result string. If its null, nothing typed. Non null, soemthing was.

<sa-A>:<all:
.Cls 0 :
$1 = .GetInput 1,3,"Name: ","",20:
$2 = .GetInput 1,4,"Address: ","",40 :
$3 = .GetInput 1,5,"City: ","",30 :
$4 = .GetInput 1,6,"State: ","",2 :
$5 = .GetInput 1,7,"Zip: ","",10 :
msg 'Any key to quit this madness' :
A = key :
| : esc :
>!

<$1 = .GetString "Prompt","Default",MaxLen>
Domain: All Modules
This command is a mix between <.GetInput> and the UltraMacros <GetStr> command. With it,
you can specify the Prompt for the user and the Default String as well as the maximum length. It is
always displayed on the bottom of the screen.

Chapter 4 Dot Commands Page 124

When you're in the AppleWorks Data Base, the internal <getstr> command is used to define the
contents of a category. Since .getstring, .getinput and .getvalue all use the same <getstr>, that can
cause a few problems.

Here's a macro by Jim Parker which works around that. Press Enter for a null category, and use
OA-Q to stop the macro.

<sa-A>:<adb :
msg ' Type oa-Q to quit ' :
$10 = .getstring "Enter: ","",60 //null default
if Z = 209 then : //quit on OA-Q

msg '' :
stop :

endif :
spc : //work around
esc :
oa-Y : //Wipe out current category name
print $10 :
rtn : //plug it in
goto sa-A : //Repeat
>!

<sa-A>:<all :
.Cls 0 :
$1 = .GetString "Enter your birthdate: ","11/18/67",8:
if Z > 0 and Z < 155 then :
msg ' You came into this world on ' + $1 + ' Key ' :
else msg str$ Z + ' Key ': endif :
#Key2Stop :
>!

<X = .GetValue $1,L,H,D>
Domain: All Modules
Captures user numeric input at the bottom of the screen, with prompting, a minimum, and a
maximum value limits.

X = The result value
$1 = The prompt string
L = The minimum acceptable value (0-65534)
H = The maximum acceptable value (1-65534)
D = The default value (defined by you)
Z = Command key values:

Z = 0 = esc pressed (and X is set to 65535)
Z = 155 = oa-esc was pressed
Z = 191 = oa-/ or oa-? was pressed
Z = 209 = oa-Q was pressed
else Z = the length of the response string (1-5)

The weirdness outlined for <.GetInput> is present here with regards to control characters and
oa-keys other than those given above, with the additional factor that the result is set to 65535. Thus,
it appears that .GetValue is attempting to tell the programmer that the user has hit weird keys,
however, the value of Z not being 0 tends to confuse the issue.

The stated maximum of 65534 has its problems too. If one types 65535, it is accepted and Z is set to
5. So a realistic maximum is 65533 with the knowledge that anytime 65535 is typed it will be
accepted and Z set to 5.

Chapter 4 Dot Commands Page 125

This example is the first wholesale copying of an "Ultra to the max!" example. My only additions
were to assure the cursor state was the same on exit as its state on input. In addition, I added the "or"
check to check for some of the other values Z can return.

This is a really cool example by Will Nelken in that the Begin/Rpt loop is exited the second time
without putting in an exit/Rpt trick or some such. Also, using the same code for two different things
(Slot then Drive), is neat too.

<sa-A>:<all :
$7 = "Slot: " : //Set prompt
Y = 0 : //Init
A = 6 : //Set first default
M = 7 : //Set first max

// Get state of present cursor. 0 = insert, 1 = overstrike
C = peek $10F1 :
poke $10F1,1 : //Assure overstrike cursor

Begin :
X = .GetValue $7,1,M,A :
if Z = 0 or Z > 100 then :

poke $10F1,C : //Put cursor to input state
endmacro :

endif :
if Y = 0 then :

Y = X : //Save Slot
$7 = "Drive: " : //Change prompt
A = 1 : //Change default
M = 2 : //Change max
Rpt : //Do 2nd loop

endif :

msg ' Slot ' + str$ Y + ', Drive ' + str$ X + ' ' :
.SpaceBar :
poke $10F1,C : //Cursor state on input
msg '' : //Clear msg line
>!

<sa-A>:<all : //Version easier to play around with
B = peek $10F1 :
poke $10F1,1 :
Begin :

msg '' :

X = .GetValue "Number ",9,65533,0 :
msg "X = " + str$ X + " Z = " + str$ Z + " Key" :
A = Key :
if A = 27 then exit : endif :

Rpt :
poke $10F1,B :
>!

<.List X,Y,W,L,S,E,$1>
Domain: All Modules
This command displays a scrolling list in an optional titlebox.

X = Left column number for the box (0-77)

Chapter 4 Dot Commands Page 126

Y = The upper line number for the box (0-21)
W = The Width of the box in characters
L = The Length in lines of the box
S = The Starting string number (1 - (99 - L))
E = The number of the ending storage string (1-99)
$1 = The title string or null
$1 = null means do not draw a box around the list and there is

no title for the list nor is the built-in SaveScr/RestScr
activated

Z = Command key values
Z = 0 = Esc was pressed
Z = 155 = oa-Esc was pressed
Z = 209 = oa-Q was pressed
Z = 1 through (E - S) + 1 = the item number selected.

Use Down, OA-Down, Up, OA-Up, OA-1 and OA-9 to move quickly through the list.

Limits:
You can't use $0 as part of your list.
If $1 is too wide for the defined window it will appear be blank.

<sa-A>:<all : //No title or box from .List
for I = 1 to 30 :

$(I) = "This is Item #" + str$ I :
next i :
$5 = "Howdy = #5" : //Vary the width a little
SaveScr : //Save screen
.box 40,6,22,9,1 : //Draw a box around the list
.List 41,5,20,7,1,30,"" : //null prompt means no box or savescr
RestScr : //Restore the screen

if Z = 0 or Z > 30 then msg str$ Z : else :
msg "You picked Item #" + str$ Z :
.SpaceBar :
msg '' :
>!

<ba-A>:<all : //Title and box from .List
.Cls 0 : //.List built-in SaveScr will see blank
for I = 1 to 30 :

$(I) = "This is Item #" + str$ i :
next I :

.List 41,5,20,7,1,30,"30 Item List":

if Z = 0 or Z > 30 then msg str$ Z :
else :

msg "You picked Item #" + str$ Z :
endif :
.SpaceBar :
| : esc : //Get the screen back
>!

<.MacroNames : goto sa-A>
Domain: All Modules
Displays a list of defined Macro Titles.

Chapter 4 Dot Commands Page 127

This is the "live" sa-Esc command which displays a list of Macro Titles. Choosing an entry runs that
macro. The .MacroNames command MUST be followed by a goto "some macro" command. The
macro doesn't even have to exist. The .MacroNames command will plug in the name of the macro
that the user selects i.e., the dummy macro is a place holder.

See Chapter 2 for a discussion of Labels of all shapes and sizes. Macro Titles has its own section.

<sa-A>:<all :
.MacroNames :
goto sa-A : //sa-A is a dummy macro name
>!

NOTE: If you enter the debugger <oa-Ctrl-X>, followed by <oa-D> to see dot commands, tab to
where the screen titled MENUTOOLS2 is displayed. Look at the bottom of that screen and you will
see .MacroNames displayed twice. The first is he one just discussed <sa-ESC>. The second is
<ba-ESC> and does exactly the same thing as <sa-ESC>. There appears to have been some sort
of plan to use this if MenuTools2 ever needed to be expanded.

<$1 = .MenuItem>
Domain: All Modules
This command reads the current menu item from any numbered menu list.

GOTCHA ALERT! Initially I used oa-Q to break out of the loop in this example macro. It appears
that when you call <.MenuItem> and subsequently type oa-Q (209) to get away, <.MenuItem>
reports esc (27) for some unknown (to me), reason. Esc is needed so one can back up in the menus. I
guess that the writer of <.MenuItem> didn't want to deal with the user jumping to the Desktop
Index.

To get around the oa-Q problem, the macro is changed to use oa-W to quit when you have played
around enough. If you forget oa-W then oa-Ctrl-X to get into the debugger and then oa-N to stop the
macro.

<sa-A>:<all :
oa-Q : //Get to the main menu
esc :
msg "--> Cursor through the menus; oa-W to quit <--" :
.SpaceBar :

begin
$1 = .MenuItem : //Read the highlighted menu item
msg $1 : //Echo menu item
X = key : //Get a key
if X = 215 then : //Quit if user pressed oa-W

msg '' : //Shut off the message line
stop : //Stop all macro activity

endif :
print chr$ X : //Send the character to AW

Rpt
>!

<.OnGosub Val,"abcdDefghijk">
Domain: All Modules
This command lets you call another macro based on a value. Val is an index into the string that
follows which contains a list of macro names. Lower case [a-z] represents <sa- > macros, and
upper case [A-Z] represents <ba- > macros. All other characters [0-9!@#$%[, etc.] (in my
experiments), represent <sa- > macros.

Chapter 4 Dot Commands Page 128

Considering the prototype given above, if Val = 4, then the command would call the macro
<sa-D>, if 5 <ba-D>.

In the following example I intially tried feeding .OnGosub out-of-range values i.e., Z = 0 or Z = 15
just prior to the call of .OnGosub. It did nothing i.e., didn't crash, didn't try and call a non-existent
macro, etc., etc.

I then put in the OnErr goto sa-N and sure enough, it trapped the out-of-range error. Commenting out
one of the sub macros i.e., sa-C did NOT cause an error. We can only wish it did.

<sa-A>:<all :
Clear 255 :
OnErr goto sa-N :
$20 = "6cDfghijklm" :
for I = 1 to 11 :

$(I) = "Do Job #" + str$ I :
next I :
$12 = "No macro #12" :

Begin :
.List 41,5,20,7,1,12,"Job List":
ifnot Z > 0 and Z < I then msg '' : endmacro : endif :
.OnGosub Z,$20 :

Rpt :
>!

<sa-6>:<asr : msg 'sa-6'>!
<sa-C>:<asr : msg 'sa-C'>!
<ba-D>:<asr : msg 'ba-D'>!
<sa-F>:<asr : msg 'sa-F'>!
<sa-G>:<asr : msg 'sa-G'>!
<sa-H>:<asr : msg 'sa-H'>!
<sa-I>:<asr : msg 'sa-I'>!
<sa-J>:<asr : msg 'sa-J'>!
<sa-K>:<asr : msg 'sa-K'>!
<sa-L>:<asr : msg 'sa-L'>!
<sa-M>:<asr : msg 'sa-M'>!

<sa-N>:<asr : msg ' OnErr to sa-N Key ' : #Key2stop>!

<.LoadVar STRING, Option>
Domain: All Modules
Restores variables from file named by STRING. Also, see <.SaveVar> for the way the file was
originally created.

1. If STRING is a fully-qualified pathname (starts with a "/" i.e., /H2/UMVars/filename), then the
file is loaded from that path.

2. If STRING is simply a filename then it is loaded from the AW.INITS subdirectory i.e.,
/Pgms1/APW/FIVE.0/AW.INITS/filename.

3. If STRING is a partially-qualified pathname (VARS/filename) then it is prefixed with the path to
the AW.INITS folder i.e., /Pgms1/APW/FIVE.0/AW.INITS/VARS/filename. (Naturally, you
will have to create the folder "VARS" prior to running any macro that wants to save variables
there.

Chapter 4 Dot Commands Page 129

Either 1 or 3 is the preferred method since it keeps non-INIT files from cluttering up your AW.INITS
folder.

Option determines which variables are restored, using the same values as <clear>. One difference is
that clear 100 or 200 or 255 will not clear $0, however, loadvar 100, 200, or 255 will load $0.

Option Result
------ ------
0-9 Loads a numeric array - 1 loads A(1) through Z(1), 7 loads

A(7) through Z(7), etc.
50 Loads all 260 numeric variables
100-190 Loads ten strings - 180 loads 80 through 89, 100 loads

strings 0 through 9.
200 Loads all strings 0 through 99

See <.savevar> for an example macro.

<.OnGoto Val,"abcdDefghijk">
Domain: All Modules
This command lets you goto (not call) another macro based on a value. Val is an index into the string
that follows which contains a list of macro names. Lower case represents SA macros, and upper case
indicates BA macros i.e., .OnGoto 5,"abcdDefghijk" would call ba-D while .OnGoto
4,"abcdDefghijk" would call sa-D.

Note that the sub-macros have been changed from asr to awp or all. This is because Ultra's goto will
not goto a macro marked asr.

Also, notice that they perform a goto to return to sa-A. A call of sa-A would work until a table (16
entries), fills up. Then UM would crash. Another solution would be for the sub-macros to <pop 1 :
sa-A>.

In the following example I intially tried feeding .OnGosub out-of-range values i.e., Z = 0 or Z = 15
just prior to the call of .OnGosub. It did nothing i.e., didn't crash, didn't try and call a non-existent
macro, etc., etc.

I then put in the OnErr goto sa-N and sure enough, it trapped the out-of-range error. Commenting out
one of the sub macros i.e., sa-C did NOT cause an error. We can only wish it did.

<sa-A>:<all :
OnErr goto sa-N :
$20 = "6Bcdmlg7ijk" :
for I = 1 to 11 :

$(I) = "Do Job #" + str$ I :
next I :
$12 = "Error. No #12" :

.List 41,5,20,7,1,12,"Job List":
ifnot Z > 0 and Z < I then msg '' : endmacro : endif :
.OnGoto Z,$20 :
>!

// Note that these macros cannot be asr. I made them all. Awp would
// work too (see sa-6), unless you were not in a awp file when you
// called this macro. Try calling sa-A from the main menu. Call any
// except #1. Note that the menu stays on the screen. Call #1 and
// note that the macro silently aborts.

Chapter 4 Dot Commands Page 130

<sa-6>:<awp : msg 'sa-6' : goto sa-A>!
<ba-B>:<all : msg 'ba-B' : goto sa-A>!
<sa-C>:<all : msg 'sa-C' : goto sa-A>!
<sa-D>:<all : msg 'sa-D' : goto sa-A>!
<sa-M>:<all : msg 'sa-M' : goto sa-A>!
<sa-L>:<all : msg 'sa-L' : goto sa-A>!
<sa-G>:<all : msg 'sa-G' : goto sa-A>!
<sa-7>:<all : msg 'sa-7' : goto sa-A>!
<sa-I>:<all : msg 'sa-I' : goto sa-A>!
<sa-J>:<all : msg 'sa-J' : goto sa-A>!
<sa-K>:<all : msg 'sa-K' : goto sa-A>!

<sa-N>:<all : msg ' sa-N caught an error Key ' : #Key2Stop>!

<.MakeMenu X, Y, Frst, Count, Spc, Begin>
Domain: All Modules
This do-it-all command creates a vertical menu. It sets the location, item names and activates the
menu.

X is the starting column for the menu items
Y is the starting line number for the menu items
Frst is the first storage string in a range
Count is the number of items in the menu
Spc is the spacing between menu items, normally 1 or 2
Begin is the number of the menu item to initially hilight.

Z is returned with the user's choice where 0 = Abort/none, and greater
than 0 is the menu item number selected.

<sa-A>:<all :
// Define 4 strings
for X = 1 to 4: $(X) = str$ X: next X:

poke $1BC2,9: //poke $1BC2,9: Allow Tab in menu
//poke $1BC2,191: $BF:allow OA-?
//poke $1BC2,141: $8D:allow OA-RTN

.FileCard "",1: // Fake; but necessary

.Cls 1: // optional: // Hides FC

.makemenu 10,6,1,4,2,1:

K=0: // initialize K (#key)
if Z = 0 then K = peek #key : endif :
if K = 9 : msg "Tab" : endif : // Tab was allowed & pressed
if K = 191 : msg "OA-? for help": // OA-? was allowed
endif:

ifnot K = 9 then :
msg str$ Z + " Key" : endif : // Valid key was pressed

poke $1BC2,$BF: // Restore the spare key; default OA-?

>!

The following examples are somewhat lengthy, however, menus tend to be a confusing subject so I
think the space is well worth it.

Chapter 4 Dot Commands Page 131

The Custom Menu is based on a macro that Dan Crutcher gave me many years ago. The mousetext
shading on the right and bottom is a favorite of Dan's.

It has been modified into a general purpose box drawer since it will draw the box based on input
variables as opposed to a fixed location.

<sa-A>:<all :
clear 255 : //Zap all variables
.FileCard "",1 : //Assure oa-? is enabled
.Cls 1 :
I = 10 : //Tell ba-A what string has header info
$10 = "Your Own Custom Menu Box" :
$11 = "Menu Item 1" :
$12 = "Menu Item 2" :
$13 = "Menu Item 3" :
.writestr 20,7,"Just a bare menu"
.makemenu 20,10,11,3,1,1 :
.Cls 1 :
.FileCard "In a filecard",1 :
.makemenu 20,10,11,3,1,1 :

.Cls 1 :

//StrtCol StrtLine FrstString NumItems Width Height
X = 20 : Y = 7 : F = 11 : N = 3 : W = 33 : H = 7 :

ba-A : //Draw the box

.makemenu X,Y,F,N,1,1 : //ba-A adjusted X & Y to fit inside box
esc :
>!

<ba-A>:<asr :
// Inputs:
// Header
// StrtCol StrtLine Width Height string #
// X Y W H I

// Uses:
// Vars: B, D, E
// Strings: $1, $2, $3, $4

// Save start col and line num
B = X : D = Y :
$1 = "" : $2 = "" : $3 = "" : $4 = "" :

// Set up the strings used to draw the box.
// $1 & $2 have normal text while $3 abd $4 have mousetext

($1 = $1 + "_" : $2 = $2 + " " : $3 = $3 + &L& : $4 = $4 + &S&) W :

.WriteStr X, Y, $1 :

// Down a line and back a column
Y = Y + 1 : X = X - 1 :

// Repeat for H lines
(.WriteStr X,Y, &Z& + $2 + &N& : Y = Y + 1) H :

Chapter 4 Dot Commands Page 132

// Back up a line
Y = Y - 1 :
.WriteStr X, Y, &Z& + $1 + &N& :

X = X + 2 : Y = Y + 1 :
.WriteStr X,Y,$3 :

// Compute E = start col for heading
E = len $(I) : //Length of title (25 in this case)
E = W - E / 2 : //Width - E = 33-25 = 8/2 = 4

// Back to top, over to E and down a line
X = B + E : Y = D + 1 :
.WriteStr X, Y, $(I) :

// Top and down two lines for divider line
X = B : Y = D + 2 :
.WriteStr X, Y,$4 :

// For .makemenu to start placing menu items
X = X + 1 : Y = Y + 1 :

>!

<.MenuBar PromptString, ItemString>
Domain: All Modules
Creates a horizontal menu on the bottom screen line (23), prompting the user with PromptString and
using Itemstring to designate up to eight items separated by vertical bars "|" (pipes).

The user's choice is returned in variable Z, counting from left to right in the ItemString. If Z is zero,
the user hit Escape. If Z is 155 then the user hit oa-ESC. This is usually tested for by asking if Z >
30 since that is larger than any reasonable menu size.

The user chooses items from the list by using the right and left arrow keys to hilight the wanted item
and selecting it by pressing Return.

An alternate selection process is to press the first letter of the wanted item. This only works if the
on-screen item is upper case (the user can press upper or lower case).

If two, or more, items have the same first upper case letter, the rightmost item is selected:

Pressing "A" when: Apple Amiga Atari
is displayed will select Atari.

Pressing "A" when Apple Amiga atari
is displayed will select Amiga.

<sa-A>:<all :
.Cls 1 :
$1 = "Esc for next example Choose" :
$2 = "Abc|Bcd|Cde|Def|Efg|Fgh|Ghi|Hij" :
.writestr 1,5,"You can use either the first letter of the item to
choose" :
.writestr 1,6,"or the right and left arrow keys to highlight and
Return to" :
.writestr 1,7,"chose. Try both methods." :
ba-A :
.Cls 1 :

Chapter 4 Dot Commands Page 133

$2 = "abc|bcd|cde|Def|efg|fgh|ghi|Hij" :
.writestr 1,5,"First letter selection works only if the item in the" :
.writestr 1,6,"list is UPPER case. You can type upper or lower." :
.writestr 1,7,"Only two items in this list can be chosen by typing
its" :
.writestr 1,8,"first letter." :
ba-A :
$2 = "A1|A2|A3|B1|B2|A4|b3" :
.Cls 1 :
.writestr 1,5,"When more than one item has the same first UPPER case"
:
.writestr 1,6,"letter the last one with that letter is the one chosen"
.writestr 1,8,"Note that b3 is not chosen when you type B, but A4 is
for A.":
.writestr 1,10,"Naturally, you can use the arrow keys and Return" :
.writestr 1,11,"to select any item in the list." :
$1 = "Esc to quit Choose "
ba-A :
| : esc : //Get display back.
>!

<ba-A>:<asr :
Begin :

.menubar $1,$2 :
if Z = 0 or Z > 30 then endmacro : endif :
//Vertical bars to commas for <.choose>
$3 = .subchar $2,#'|',#'|',#',' :
$3 = .choose $3,Z :
$3 = "You chose " + $3 :
$3 = $3 + " Any key to continue " :
msg %J% + $3 + %K% : A = key : msg '' :

Rpt :
>!

<.MenuBar2 "Prompt","Choices",Delimiter>
Domain: All Modules
The .menubar2 command is identical to .menubar except that you specify the delimiter character
following the two strings.

<sa-A>:<all :
.menubar2 "Pick","Arvada, Co\Somewhere else\London",#'\' :
if Z = 0 msg 'You hit ESC' :

.SpaceBar :
msg '' :
endmacro :

endif :
if Z = 155 then msg 'You hit oa-ESC' :

.SpaceBar :
msg '' :
endmacro :

endif :
msg 'You chose item ' + str$ Z :
.SpaceBar :
msg '' :
>!

<$90 = .Pick X,Y,W,L,Start,End,"Title">

Chapter 4 Dot Commands Page 134

Domain: All Modules
This command displays a scrolling list with strings specified by Start and End. X,Y,W,L specify the
X,Y position on the screen for the upper left corner, W the Width of the box (in char) and L the # of
Lines for the string display area. The "Title" is optional and if present it is drawn at the top of the
box.

Limits: You can't use $0 as part of your list.

<.Pick> returns a string which indicates which items were picked. The user picks multiple items by
a right arrow key to select (left to deselect) each item to be picked followed by Return to pick all
selected items.

To select all items oa-right does the job.

To select a single item the user can simply highlight the wanted item and press Return.

To move through the list the user can use: down, oa-down, up, oa-up, oa-1, oa-9. Note that oa-2
through oa-8 are not supported.

Each character of the string is an item number that was picked. Use the length of the string to
determine how many items were picked. The following macro demonstrates how to use this
command:

X = Left column number for the box (0-77)
Y = The upper line number for the box (0-21)
W = The Width of the box in characters
L = The Length in lines of the box
S = The Starting string number (1 - (99 - L))
E = The number of the ending storage string (1-99)
$1 = The title string or null
$1 = null means do not draw a box around the list and there is

no title for the list

Z returns:
Z = 0 = Esc
Z = 155 = OA-Esc
Z = 209 = OA-Q
Z = Number of picked items

<sa-A>:<all:
SaveScr:

for I = 1 to 30 :
$(I) = "This is Item #" + str$ I :

next I :
$90 = .Pick 41,5,20,7,1,30,"30 Item List":
RestScr : //Get rid of the .Pick list
X = len $90:
ifnot X > 0 and X < I then : //I is list length + 1 after <for>

msg str$ Z : //Show nothing picked
.SpaceBar :
msg '' :
stop :

endif :

$2 = "You picked " :

Chapter 4 Dot Commands Page 135

for I = 1 to Z :
$1 = mid $90,I,1:
X = asc $1:
$2 = $2 + str$ X + " ":

next I :

msg $2 :
.SpaceBar :
msg '' :
>!

<.PopMenu>
Domain: All Modules
This command is useful only in conjunction with the .FileCard and .FCard commands. To see what it
does compile the following example and step through it.

After you have loaded or created a file, the right side of the top line has the word
Escape: Somewhere, where Somewhere is where you will go if you press the escape key. Since it
tells you where you will be going, it is called the "Escape Map."

The center of that line tells you where you currently "are," i.e., REVIEW/ADD/CHANGE and is
called the "Title". (The left side has the name of the current file, however, that isn't relevant to this
discussion.)

You start out in AppleWorks with Main Menu as the title and nothing in the Escape Map since you
have not gone anywhere yet. If you add an AWP file (i.e., CH04), the title will become
REVIEW/ADD/CHANGE and the Escape Map becomes Main Menu. If you now start adding
filecards via the .FileCard command the title will change to the first filecard, Escape Map to CH04,
etc., etc.

This information is kept in an Escape Stack which has a pointer to the second member of the stack
(when such a member exists):

Main Menu Chapter 4 Card 1 Card 2
Main Menu Chapter 4 Card 1 <-- Pointer

Chapter 4
Main Menu

The stack gets extended in the same fashion as you add cards 3 and 4.

There are two sets of macros below. The first is to use with <.FileCard) and the second with
.FCard. IMHO .FCard with mousetext is the command of choice.

------------- Macros for use with .FileCard -----------------
<sa-A>:<all :
.Cls 1 :
ba-A : //Draw the cards
.writestr 15,12,"The Escape Map says that ESC will get you back to
Card 3." :
.writestr 15,13,"That is true only if you program it into your macro."
.writestr 15,14,"Actually it will erase all cards and put you back to
the"
.writestr 15,15,"macro source file. Hit esc to see that happen." :
sa-ctrl-A : esc : msg 'esc to go on' : sa-ctrl-A : .Cls 1 :
: ba-A : //Get the cards back
.writestr 15,12,"Hit esc to erase Card 4 without using <.popmenu>" :

Chapter 4 Dot Commands Page 136

.writestr 15,14,"You erase by displaying a card above the one(s) you"
:
.writestr 15,15,"want to erase. Adding 128 to the card number tells" :
.writestr 15,16,".FileCard to NOT add the redrawn card's name to" :
.writestr 15,17,"the Escape Stack. Helps, but not whole solution." :
sa-ctrl-A : //Get esc key from usr
.FileCard "",131 : //Display Card 3
.writestr 15,12,"What the heck! Title for card 3 now says Card 4 and"
.writestr 15,13,"the Escape Map says esc will get you to Card 3."
.writestr 15,14,"What a mess!! Lets keep going. Hit esc again to zap
3" :
sa-ctrl-A : .FileCard "",130 :
.writestr 15,12,"esc to zap 2" :
sa-ctrl-A : .FileCard "",129 : //Card code for Card 1
.writestr 15,12,"Never did get any better did it? Lets do it over" :
.writestr 15,13,"with our good friend <.popmenu> esc to go on" :
sa-ctrl-A : esc : .Cls 1 :
ba-A : //Redraw all four boxes
For C = 131 to 129 step -1 :
.writestr 15,12,"Esc to erase the last filecard" :
.writestr 15,13,"Keep your eye on the Escape Menu it will name the" :
.writestr 15,14,"card under the present. The Title and the card name"
:
.writestr 15,15,"on the filecard tab will agree" :
sa-ctrl-A :
.popmenu :
.FileCard "",C :
next C :
sa-ctrl-A : esc :
>!

<ba-A>:<asr :
.FileCard "Card 1",1 :
.FileCard "Card 2",2 :
.FileCard "Card 3",3 :
.FileCard "Card 4",4 :
>!

<sa-ctrl-A>:<asr :
Begin : A = key : ifnot A = 27 bell : rpt : endif : msg ''>!

------------- Macros for use with .FCard -----------------

<sa-A>:<all :
T = 1 : //Use mousetext
.Cls 1 :
ba-A : //Draw the cards
.writestr 15,12,"The Escape Map says that ESC will get you back to
Card 3." :
.writestr 15,13,"That is true only if you program it into your macro."
.writestr 15,14,"Actually it will erase all cards and put you back to
the"
.writestr 15,15,"Main Menu. Hit esc to see that happen." :
sa-ctrl-A : esc : msg 'esc to go on' : sa-ctrl-A : .Cls 1 :
: ba-A : //Get the cards back
.writestr 15,12,"Hit esc to erase Card 4 without using <.popmenu>" :

Chapter 4 Dot Commands Page 137

.writestr 15,14,"You erase by displaying a card above the one(s) you"
:
.writestr 15,15,"want to erase. Adding 128 to the card number tells" :
.writestr 15,16,".FCard to NOT add the redrawn card's name to" :
.writestr 15,17,"the Escape Stack. Helps, but not whole solution." :
.writestr 15,19,"Note that the card names stay correct with .FCard":
sa-ctrl-A : //Get esc key from usr
.FCard 131,"",T : //Display Card 3
.writestr 15,12,"What the heck! Tab says Card 4, Title says Card 4
and"
.writestr 15,13,"the Escape Map says esc will get you to Card 3."
.writestr 15,14,"What a mess!! Lets keep going. Hit esc again to zap
3" :
sa-ctrl-A : .FCard 130,"",T :
.writestr 15,12,"esc to zap 2" :
sa-ctrl-A : .FCard 129,"",T : //Card code for Card 1
.writestr 15,12,"Never did get any better did it? Lets do it over" :
.writestr 15,13,"with our good friend <.popmenu> esc to go on" :
sa-ctrl-A : esc : .Cls 1 :
ba-A : //Redraw all four boxes
For C = 131 to 129 step -1 :
.writestr 15,12,"Esc to erase the last filecard" :
.writestr 15,13,"Keep your eye on the Escape Menu it will name the" :
.writestr 15,14,"card under the present. The Title and the card name"
:
.writestr 15,15,"on the filecard tab will agree" :
sa-ctrl-A :
.popmenu :
.FCard C,"",T :
next C :
sa-ctrl-A : esc :
>!

<ba-A>:<all :
.FCard 1,"Card 1",T :
.FCard 2,"Card 2",T :
.FCard 3,"Card 3",T :
.FCard 4,"Card 4",T :
>!

<sa-ctrl-A>:<asr :
Begin : A = key : ifnot A = 27 bell : rpt : endif : msg ''>!

<.Qmenu STRING, Filetype>
Domain: All Modules
Displays a custom OA-Q menu with the title specified by STRING and listing the file types specified
by Filetype.

Filetype = 1 for DB files
Filetype = 2 for WP files
Filetype = 4 for SS files

Adding Filetypes together will list combinations of filetypes:

Filetype = 5 for DB and SS files
Filetype = 6 for WP and SS files

Chapter 4 Dot Commands Page 138

<sa-A>:<all :
//Load several DB, WP, and SS files on the desktop before running
//this macro
.qmenu "DB files",1 : .spacebar :
.qmenu "WP files",2 : .spacebar :
.qmenu "SS files",4 : .spacebar :
.qmenu "DB & SS files",5 : .spacebar :
.qmenu "DB, WP, & SS files",7 : .spacebar :
>!

<.SaveVar STRING>
Domain: All Modules
Saves all the numeric and string variables in a file named by STRING.

1. If STRING is a fully-qualified pathname (starts with a "/" i.e., /H2/UMVars/filename), then the
file is saved to that path.

2. If STRING is simply a filename then it is saved to the AW.INITS subdirectory i.e.,
/Pgms1/APW/FIVE.0/AW.INITS/filename.

3. If STRING is a partially-qualified pathname (VARS/filename) then it is prefixed with the path to
the AW.INITS folder i.e., /Pgms1/APW/FIVE.0/AW.INITS/VARS/filename. (Naturally, you
will have to create the folder "VARS" prior to running any macro that wants to save variables
there.

Either 1 or 3 is the preferred method since it keeps non-INIT files from cluttering up your AW.INITS
folder.

<sa-A>:<all :
.Cls 1 :
$0 = "Original Strings" : sa-ctrl-A :
$2 = .AwPath : //Path AppleWorks was booted from
$1 = $2 + "/AW.INITS/VARS/OrigSaveVars" :
.SetDisk $1 :
.DropDir : //Drop the filename off of the path
$3 = .PeekStr $0C56 : //This files name
oa-Q : esc : rtn : rtn :
$2 = screen 15,12,7 :
if $2 = "Getting" then :

$0 = $3 : //Try file's name
oa-Q :
find :
rtn :
.Cls 1 :
.WriteStr 0,10,"You do not have a 'VARS' folder in your AW.Inits

folder" :
.WriteStr 0,11,"Fix this and retry this macro" :
msg 'Key' :
A = key :
oa-Q : esc : //Fix screen
endmacro :

endif :
$0 = $3 :
oa-Q : find : rtn : //Back to original Try file
.savevar $1 : //Save everything
.Cls 1 :

Chapter 4 Dot Commands Page 139

.writestr 0,8,"Strings 10-19 set to 'Original Strings' & .SavedVar
saved them" :
ba-A : //Display strings
.spacebar :
.Cls 1 :
clear 110 :

.writestr 15,8,"Strings 10-19 Are cleared" :
ba-A :
.spacebar :
.writestr 15,8,"Strings 10-19 new contents" :
$0 = "New strings" : sa-ctrl-A : ba-A :
.spacebar :
.writestr 15,8,"Using <.LoadVar> restores Strings 10-19 'Original
contents'" :
.loadvar $1,110 :
ba-A :
.spacebar : | : esc :
>!

<ba-A>:<asr : //Display strings 10-19
I = 10 :
(

.writestr 15,I,"String # =" :
$0 = str$ I : .writestr 23,I,$0 : //The string number
.writestr 30,I,$(I) : //The string value
I = I + 1 :

) 10 :
>!

//Write contents $0 to strings 10-19
<sa-ctrl-A>:<asr : I = 10 : ($(I) = $0 : I = I + 1) 10>!

NOTE: Sometime ago I sent out a general request for aid concerning a problem I was having. A user
reported that they and others experienced difficulties after using <.SaveVar> even though that
wasn't my problem.

> There is very clearly some sort of very noxious problem with
> .savevar which I'll mention although you don't seem to use it. It was
> reported by one person and then denied. Since in my case it resulted in
> complete reworking of my whole directory system on the hard drive, I
> never had the courage to explore it in any depth. However the sequence of
> triggering it seemed to be that after a .savevar had been done,
> AppleWorks had been quit (back to GS/OS) and then at a later time
> re-launched, in some way, sometimes rather seriously files would be
> shifted around into different directories. If I cannot avoid .savevar's
> use (because it's in someone else's macro program), I try to remember to
> reboot the computer when I quit AppleWorks. I suspect this would never
> happen on a IIe, which suggests you might try running your macros on a
> IIe and see if there's something in that.

Recent discussion with author of the above we both agree that if one never boots GS/OS and then
uses the Finder to boot AppleWorks, there will not be a problem with .SaveVar. Since I don't boot
GS/OS and then boot AppleWorks (or any other 8 bit program, I've had no trouble with the
<.SaveVar> or <.LoadVar> couplets through scads of testing of the above example.

<.Say STRING>
Domain: All Modules

Chapter 4 Dot Commands Page 140

Displays STRING on the bottom line and waits for any key to proceed. There is no built in prompt
telling the user what to do so you might consider making part of the message, "Any key to continue."

<sa-A>:<all :
.say "Hello World. Hit a key or sit here forever" :
$1 = "Hello back at you. Key" :
.say $1 :
>!

<.SpaceBar>
Domain: All Modules
Displays "Press spacebar to continue," on line 23 (bottom) of screen.

Actually, it will accept any one of these keys and sets Z to indicate the key pressed: spacebar: Z =
32 ($20), Return: Z = 13 ($D), ESC: Z = 0 ($0), oa-Q: Z = 209 ($D1), oa-S: Z = 211 ($D3), or
oa-Ctrl-S: Z = 147 ($93).

In addition, you can hit oa-E to toggle the cursor from insert/overstrike, oa-H to print current screen,
or oa-T to modify the tab ruler and still have the prompt, "Press space bar to continue."

<$1 = .StripChar STRING, Char, Option>
Domain: All Modules
Strips all consecutive occurrences of Char (ASCII value) leading or trailing in STRING based on
Option:

Option = 0 = Strip both ends
Option = 1 = Strip front end
Option = 2 = Strip rear end

NOTE: Option can be specified as: 42 (ASCII value of an asterisk) or #'*'
See macro example below.

<sa-A>:<all :
.Cls 1 :
$1 = " ***Buried Text*** "
msg 'Spaces and Asterisks at both ends' + %K% + " |" + $1 + "|" :
.spacebar : msg '' :
$2 = .stripchar $1,32,0 :
msg 'Spaces gone both ends' + %K% + " |" + $2 + "|" :
$1 = $2 :.spacebar :
$2 = .stripchar $1,#'*',1 :
msg 'Front asterisks gone' + %K% + " |" + $2 + "|" :
.spacebar : msg '' :
$1 = $2 :
$2 = .stripchar $1,42,2 :
msg 'Rear asterisks gone' + %K% + " |" + $2 + "|" :
.spacebar : msg '' :
oa-Q : rtn :
>!

<.Therm X,Y,C,M>
Domain: All Modules
This command will draw a thermometer to track macro activity.

X = The left column number for the box
Y = The top line number for the box
C = The Current progress (0 to start)

Chapter 4 Dot Commands Page 141

M = The Maximum value

If C = 0, then an empty thermometer is drawn at X,Y and it is initialized with the M value. If > 0,
then the thermometer is updated to reflect the current position.

.Therm only works when the screen stays the same so the simplest way to handle this is to: <SaveScr
: .Cls 1 : .Therm stuff : RestScr> See SaveScr for a tiny problem with this approach.

<sa-A>:<all:
SaveScr : .Cls 1 : //Save and clear the screen

.TitleBox 255,9,34,2,2,"Fill er up" :

.therm 23,11,0,10 :
$15 = "Loop #" :

for I = 1 to 10 :
wait 1000 :
.therm 23,11,I,10 :
.WriteStr 36,14,$15 + str$ I :

next I :
.SpaceBar :
RestScr :
>!

This one cures the "tiny" problem with SaveScr (doesn't use it ;-)

<sa-A>:<all:
.Cls 1 : //Clear the screen

.TitleBox 255,9,34,2,2,"Fill er up" :

.therm 23,11,0,10 :
$15 = "Loop #" :

for I = 1 to 10 :
wait 1000 :
.therm 23,11,I,10 :
.WriteStr 36,14,$15 + str$ I :

next I :
.SpaceBar :
| : esc : //Get the screen back
>!

If you wish to keep the screen text in the background

<sa-Ctrl-A>:<all:
SaveScr :
.TitleBox 255,9,34,2,2,"Fill er up" :
.therm 23,11,0,10 :
$15 = "Loop #" :

for I = 1 to 10 :
display 0 : //Turn off display
wait 1000 :
display 1 :
.therm 23,11,I,10 :
.WriteStr 36,14,$15 + str$ I :

next I :

Chapter 4 Dot Commands Page 142

display 1 : //Assure display is on
.SpaceBar :
| : esc : //Get the screen back
>!

<.Writestr Xpos, Ypos, STRING>
Displays message in STRING at column Xpos (0-79) and line Ypos (0-23). If Xpos = 255 then
STRING will be centered on line Ypos.

Unlike <msg>, the quotes used for STRING have no effect on the display. See the example below
for inverse text. You do not have to put the control codes in strings: <....%J% + "Inverse Text" +
%K%> works fine. DO NOT fail to specify the closing %K% or your screen will go bonkers per a
note from Randy in several GEnie posts.

<sa-A>:<all :
.Cls 1 :
$1 = %J% + "Inverse" + %K% :
$2 = "Normal" :
$3 = " " :
For I = 3 to 19 :

.writestr 255,I,$1 + $3 + $2 :
$4 = $1 : $1 = $2 : $2 = $4 :

next I :
msg 'Key' :
A = key :
| : esc :
>!

IIgs only commands

Stay away from these if you intend that your macros run on machines other than the IIgs. The
commands in this section are contained in a init file named: I.UM.IIGS.CMDS which is NOT
automatically copied to the AW.INITS folder by the INSTALL.ULTRA program. You will have to
copy it yourself.

<.ExtKB>
Domain: All Modules
UltraMacros 4 automatically calls ba- macros when you press a key on the keypad or a function key
on the extended keyboard (unless you "disconnect" this feature by setting: Other Activities/Select
Standard Settings for AppleWorks/UltraMacros Options/Enable keypad macros to "No" A setting
your kindly editor heartily recommends :-).

By defining ba- macros with the <.ExtKB> command, you can vary the function according to
which keypress was used i.e., did the user call ba-1 by pressing Option, Command, and 1 or did they
simply press the 1 key on the keypad?

In order to test this macro you must set: Other Activities/Select Standard Settings for
AppleWorks/UltraMacros Options/Enable keypad macros to "Yes"

Your Editor recommends setting it back to "No" as soon as your are done testing.

<ba-1>:<all :

//This macro is entered when either the Option, Command, and 1 are
//pushed or simply the 1 on the IIgs keypad

.ExtKB :

Chapter 4 Dot Commands Page 143

if Z = 1 then msg 'You used the 1 on the keypad. Key ' :
#Key2Stop :

endif :

msg 'You used the Option, Command, and 1 keys on the main keyboard.
Key ' :
#Key2Stop :
>!

<C = .GetColor Y>
Domain: All Modules
The <.getcolor> command allows you to read the border, background and text colors on a IIgs.

C is the result, indicating which color is displayed. See the table in the <.SetColor> command
which follows.

Y is the area to be interrogated:

Y = 1, boarder
Y = 2, text
Y = 3, background

<sa-A>:<all :
O = .GetColor 1 //Border
T = .GetColor 2 //Text
B = .GetColor 3 //Background
msg 'Border: ' +str$ O +' T: ' + str$ T +' Background: '+ str$ B + '
Key ' :
#Key2Stop :
>!

<.SetColor X,C>
Domain: All Modules
The .setcolor command allows you to change the border, background and
text colors on a IIgs.

X is the area flag:
X = 1, border
X = 2, text
X = 3, background

C is the color

C = 0, black
C = 1, dark red
C = 2, dark blue
C = 3, purple
C = 4, dark green
C = 5, dark gray
C = 6, medium blue
C = 7, light blue
C = 8, brown
C = 9, orange
C = 10, light gray
C = 11, pink
C = 12, light green
C = 13, yellow

Chapter 4 Dot Commands Page 144

C = 14, aqua
C = 15, white

//This sample macro sets the border to 16 different colors in turn.
//Modify the "W = 1" to "W = 2" or "W = 3" to change the text or
// background colors in the sample.

<sa-A>:<all :
for W = 1 to 3 : //1:Border, 2:Text, 3:Background

S = .GetColor W : //What's the starting W color?
for C = 0 to 15 : //Try the various colors

.SetColor W,C :
sa-B : //Display just set colors.
.SpaceBar : //Display settings, wait for spacebar

next C :
.SetColor W,S : //Restore original color

next W :
msg "" :

>!

<sa-B>:<all :
O = .GetColor 1 //Border
T = .GetColor 2 //Text
B = .GetColor 3 //Background
msg 'Border: ' +str$ O +' T: ' + str$ T +' Background: '+ str$ B + '
Key ' :
>!

<$1 = .TimeGS X>
Domain: All Modules
The .TimeGS command

X = the format flag:

X = 1, time only
X = 2, AM/PM if Control Panel set for it

<sa-A>:<all :
.cls 0 : //Clear the entire screen
poke $11AC,0 : //Keep Esc from aborting the macro
.WriteStr 255,10,"Escape: Stop Macro" : //Top message

Begin
$1 = .timegs 1 : //Grab time without AM/PM
$2 = .TimeGS 2 : //Grab time with AM/PM

.WriteStr 255,0, $1 + & [& + $2 : //Display both formats
X = peek $C000 : //Peek the key location
ifnot X = 27 then : //Check for Escape

Rpt : endif :

//Clean things up
poke $11AC,27 : //Restore Esc for stopping runaway macros
| : esc : //Bring back screen
>!

Chapter 4 Dot Commands Page 145

MathTools
Mathtools contains extended math dot commands (they all begin with .x), and other dot commands
that have nothing at all to do with math. The others are here cause that is where Randy and Mark
wanted them. Do you have a problem with this? Good.

For more on extended math see the oa-X command under <debug> in Chapter 2.

This section is a combination of much of stuff from the AW 5.1 /EXTRAS/Dot.MathTools file, Will
Nelken's, "Ultra to the Max," and some slight observations/experiments by myself.

As a reminder, there are three types of dot commands:

1. "Stand Alone," commands that perform a function, but do not return any text or numeric results,
thus not needing an equation in their syntax.

2. "String Commands," that yield a text string result.

3. Numeric Commands that yield a numeric result.

The extended math commands allow 26 special Ultra 4 variables to handle numbers ranging from
negative 21 million to positive 21 million with up to two decimal places. This allows you to calculate
financial transactions without needing the spreadsheet, or to do any other math which is beyond the
range of Ultra's normal 0-65535 limits.

One limitation is that the result of a multiplication or division can not exceed 214,748.36, at least if
you want an accurate answer. Additions and subtractions work all the way up to the maximum value.
Multiplications and divisions are limited because of the need to maintain two decimal place accuracy.

Ed: Because of this "limitation" for multiplication or division I would hesitate to use these extended
math commands unless I knew for sure that there was no chance my data could exceed the limitation.
Practice safe Hex, create a spreadsheet and do the calculations there.

Here are the ranges. (The second columns have commas to make the numbers more readable, but you
can't use commas in your macros. You must write the numbers as they appear in the first columns of
each group.)

Extended Variables Normal Ultra 4
------------------ --------------

Lowest: -21474836.47 -21,474,836.47 0 0
Highest: 21474836.47 21,474,836.47 65535 65,535

Technical trivia: Ultra variables are two bytes, hence the range from 0 to $FFFF. Extended variables
are four bytes, with one bit reserved for the sign (pos or neg), hence the range is -7FFFFFFF to
7FFFFFFF.

Two commands do the majority of the extended variable work: .xMath handles the math operations,
and .xStr makes results displayable. All extended variables are identified by a preceding grave accent
"`" symbol, as in the following:

<sa-A>:<all :
.xMath "`A = -12345678.90" : //Define a very small number
>!

Chapter 4 Dot Commands Page 146

<X = .AndBits A,B>
Domain: All Modules
Returns the logical AND of the two values specified. If that doesn't make sense, you probably have
no use for this command yet. For those eager to learn, an AND compares two numbers bit by bit and
sets the corresponding bit in the result byte to true only if both comparison bits are true.

A B Result
- - ------
0 0 0 = False
0 1 0 = False
1 0 0 = False
1 1 1 = True

<sa-A>:<all :
X = .AndBits 3,18 : //The answer is 2 which probably doesn't
msg "3 AND 18 = " + str$ X : //make much sense to you. See Note below.
#Key2Stop :
>!

Note: <.AndBits> is a binary (base 2) operation and you are feeding it decimal numbers which
makes it hard to visualize just what is going on. Your best bet is if you have a calculator that can
convert between the bases. If not, you will have to do it manually. For this example we have:

7 6 5 4 3 2 1 0 Bit positions
128 64 32 16 8 4 2 1 Binary bit values by position

3 = 0 0 0 0 0 0 1 1 3 = 2 + 1
18 = 0 0 0 1 0 0 1 0 18 = 16 + 2

The only place we have a 1 in both numbers is in bit 1 which has a
value of 2 so the "answer" is 2.

A common use of this command is to detect if a bit (flag) is set or
not. This allows up to eight flags in a single byte (variable), which
is quite a saving if you are running short of variables.

Setting a flag is somewhat cumbersome because there is no .OrBits dot
command for UM. To set a flag you add up all the values for those
flags not being set i.e., to set bit 4 you would add 128 + 64 + 32 + 8
+ 4 + 2 + 1 = 239. A quicker way is to subtract 16 (value of the flag
to be set) from 255 (value of a byte if all bits = 1 i.e., 255 - 16 =
239. Such a value is commonly called a "mask."

A = 239 : //Bit 4 = 0 in mask
B = peek Memloc : //Read byte from memory
C = .AndBits A,B : //Force bit 4 to zero
C = C + 16 //Set it
poke MemLoc,C : //Store flags

Point: All references to variable C above *could* be changed to B and the result would be the same.
Different variables were used so you could copy the above to the Try file and see results at every step
of the way. Change Memloc to $800 for your practice runs.

<.GetBlock Ptr,Dest,Flag>
Domain: All Modules
This command allows you to grab the desktop memory block specified by Ptr. The block is moved to
the Dest address. Flag determines the memory banks involved. If Flag is 1, the block will be placed

Chapter 4 Dot Commands Page 147

in main memory, and if Flag is 2, the block will be placed in auxiliary memory. Ed: This was a
tough one to find an example that I understood. Thanks to Will Nelken for sending me the source to
his macro to print on two sides of the page I finally figured it out. <.GetBlock> always reads from
aux memory.

According to my friend Gary Welsh, "Stuff stored in auxmem is in a 'strange' format."

A pointer points to a "block." The block says how large the block is. The minimum block size is a
function of how much memory the compter has and the contents of the "record," which is two bytes
of info plus data. In the case of text it is the class 0 string (P-string).

So .GetBlock reads class 0 strings from aux memory to the destination which is always in main
memory. See the file Mac.DoubleSide for another example of <.GetBlock>.

Z is set to the size of the block. It's up to you, the programmer, to make sure the Ptr is valid and the
Dest is a safe place to load a block.

This macro just replicates the <cell> command, but it shows how <.GetPtr> and <.GetBlock>
can be used. Be sure to copy the line that begins, "test line for" along with sa-A to the Try file.

test line for .GetBlock example -> <- Tabs Key to continue

<sa-A>:<all :
oa-1 : //Top of file
oa-F : //Find
rtn : //Text
oa-Y : //Wipe out any previous find stuff
print "test line" : //Text to find
rtn : //Go do it

//Assume we found test line. No checking done, which isn't
//smart in the real world.
esc :

//A points to line data held elsewhere in memory
A = PeekWord $B0 //Check WP line
P = .GetPtr A //Grab memory pointer
.Cls 0 :
$1 = .HexWord A :
$2 = .HexWord P :
msgxy 0,10 : //.WriteStr better. Need msgxy examples
msg "A = $" + $1 + " P = $" + $2 :
if P > $CFFF then :

msgxy 0,128 : //Not text, maybe a carriage return
msg "Non-text line. Key" // or a printer option,
#Key2Stop : //So stop right here

endif :

// The line, with a two byte prefix code, is copied from where P
// points to $BB00. Z returns with the length of the string so
// by subtracting two and putting it into $BB01 the line is
// converted to a P-string in main memory i.e., something that
//.PeekString understands.

A = $BB00 //IO Buffer for work area
.GetBlock P,A,1 //1 means normal (to main memory) GetBlock
Z = Z - 2 //Length of text is block length minus 2

Chapter 4 Dot Commands Page 148

poke $BB01,Z //Set the string length
$1 = .PeekStr $BB01 //Grab the wp line

// Without this next line, <msg> would lock up trying to display
// the control characters which represent tabs, underlines, etc.

$2 = .subchar $1,0,31,#' ' ://replace all codes with spaces
msgxy 0,12 :
msg $2 : //display the line as a message
msgxy 0,128 : //Move the message back to default

//location
msg ' Key ' :
A = key :
| : esc :
>!

<Ptr = .GetPtr Adr>
Domain: All Modules
Use this command to set a memory pointer from an open AppleWorks file. Adr specifies an auxiliary
memory address where the pointer is stored. This command could also be called .PeekAuxWord,
since that's what it does.

See .GetBlock above for an example.

<$1 = .Hex X>
Domain: All Modules
Convert a one-byte number to a hex string:

<sa-A>:<all :
$1 = .Hex 10 :
msg " You're Canadian, " + $1 + "? Lame joke by Randy :-) Key " :
#Key2Stop :
>!

<X = .HexStr "$A">
Domain: All Modules
Convert a hex string into a variable. Works with or without the leading "$".

<sa-A>:<all :
.Cls 0 :
M = .HexStr "ABCD" :
N = .HexStr "$ABCD" :
O = .HexStr "FFFG" :
P = .HexStr "FFF0" :
Q = .HexStr "FFF F" :

$0 = %J% + 'Note that the $ character is optional' + %K% :
.WriteStr 0,8,$0 :
.WriteStr 1,10,"ABCD = " + str$ M :
.WriteStr 0,11,"$ABCD = " + str$ N :
$0 = %J% + "Out of range characters (not 0-9, A-F), are taken as zero"
+ %K% :

.WriteStr 0,13,$0 :

.WriteStr 1,15,"FFFG = " + str$ O :

.WriteStr 1,16,"FFF0 = " + str$ P :

Chapter 4 Dot Commands Page 149

$0 = %J% + 'A space ends a hex number' + %K% :
.WriteStr 1,18,%J% + 'A space ends a hex number' + %K% :
.WriteStr 1,20,"FFF F = " + str$ Q :

msg 'Key to Continue' :
A = Key :
| : esc :
>!

<$1 = .HexWord X>
Domain: All Modules
Convert a decimal number with values between 0 to 65535 to a hex string. The result is always four
characters (0000 to FFFF).

<sa-A>:<all :
$1 = .HexWord 61453 :
$2 = .HexWord 48879 :
.Cls 0 :
msg "I'd like some " + $1 + ". Preferably " + $2 + " " + %J% + "Key"
+ %K% :
#Key2Stop :
>!

<X = .Mod A,B>
Domain: All Modules
This command returns the remainder of A divided by B.

<sa-A>:<all :
oa-Up : //Cursor to top of screen
J = 3 : //Start writing at line 3
.Cls 1 :
I = 20 :
A = 4001 : //You can play around with this number
Begin :
X = .mod I,6 :
$0 = str$ I + "/6 leaves a remainder of " + str$ X :
.WriteStr 0,J,$0 :
J = J + 1 :
if J > 20 then :

msg 'Key' :
B = key :
.Cls 1 :
J = 3 :
.Cls 1 : //Reblank screen

endif :
K = I + A :
if K < I or K > 65500 then :

msg 'Key' :
B = key :
| : esc :
endmacro :

endif :
I = K :

Rpt :
>!

<.PutBlock Ptr,Adr,Size,Flag>

Chapter 4 Dot Commands Page 150

Domain: All Modules
This command allows you to store a block on the desktop using the memory pointer specified by Ptr.
Use 0 for Ptr if you want to allocate a new block. The block starts at Adr and is Size bytes long. Flag
determines the memory banks involved. If Flag is 1, the block will be stored from main memory, and
if Flag is 2, the block will be stored from auxiliary memory.

<.PutBlock> always writes to aux memory. It reads and writes class 0 strings from either main or
aux memory to the destination block which is always in aux memory.

Z is set to the new pointer value. If 0 is returned, there was insufficient desktop memory to store the
block.

Some users have complained that AppleWorks 4.0 only allows you to enter 22 characters in the
pathname to the spelling dictionary. There are two good reasons for this: (1) it's cosmetically correct
on the Standard Settings screen, and (2) locating the dictionaries in the MAIN directory of a disk
greatly increases spell-checking efficiency.

However, if you still want to use a longer pathname for the dictionaries, it is very easy to set the
dictionary path to anything you want, up to 48 characters. Simply incorporate this macro into your
UltraMacros startup. If you use the default (built-in, "player") macro set, incorporate it into BA-K in
SEG.AX so that it is <called> upon startup.

The "/" at the end of the pathname is essential. This will not save the setting to disk, but as long as
this macro runs every time you start up, the spelling dictionaries will be found at that path whenever
you spell check.

<sa-A>:<all :
$1="/ram/appleworks/dictionary/": //Long path!
P = PeekWord $0AAD : //Ptr to dict
poke $800,0 :
.pokestr $1,$801: //Temp path
.PutBlock P,$800,50,1: //Store it
msg "The dictionaries are located at " + $1 :
>!

<.PutPtr Adr, Ptr>
Domain: All Modules
Use this command to store a memory pointer in an open AppleWorks file, modifying a line, record or
row. Adr specifies the auxiliary memory address where Ptr is stored. This command could also be
called .pokeauxword.

<.RelBlock Ptr>
Domain: All Modules
This command releases a memory block back to the desktop. Death will result if Ptr is not a valid
memory pointer.

I did not find a meaningful example for this command. Since the only command I can find that
allocates aux memory (aka desktop memory), is <.PutBlock>, I assume that you need to save the Z
output from that command in order to release the memory block here.

This command requires knowledge of AppleWorks internals that are reserved for the true guru.

Debug 2.6 and Extended Variables
oa-Ctrl-X brings up the Debug main screen. On the IIgs you can also use oa-Clear.

Chapter 4 Dot Commands Page 151

Press OA-X from the Debug main screen to access extended variables. The current values are
displayed, along with the .xFixed and .xIntegers settings. You may edit the variables directly with
Debug.

The are 26 extended variables. These variables are denoted by a preceding grave accent (`A to `Z).
The extended variables can hold a negative or positive number up to 21 million with up to two
decimal places.

NOTE: There is a MAJOR GOTCHA with the multiplication and division functions. "Ultra to the
max," reported the maximum product or dividend is limited to 429,496.60 i.e., below half a million.
Not too good for a system that is supposed to support up to 21 million.

In fact, the example on the /extras disk for the <.xFixed> command does not give the correct
results for: 54321 * 240.37.
The correct answer is: 13,057,138.77
The example's answer is: 172,236.88

Bottom line here from my perspective, "Unless you know that all multiplication and division will
remain below 400,000 - don't use these commands. Bite the bullet and do the calculations in a
throw-away spreadsheet your macro creates on the fly."

<$1 = .xCompare A>
Domain: All Modules
The .xCompare command converts extended variables into strings which allow you to compare
extended numbers using <if> or <ifnot> statements and have the results work correctly even when
negative numbers and decimals are involved.

<sa-A>:<all :

//Copy the following two lines prior to the start and after
//Labels line. Remove the comment slashes
//#xA = $1
//#xB = $2

C = peek $10F1 : //Get state of cursor. Insert/Overstrike
poke $10F1,1 : //Force overstrike
Begin :
.Cls 1 : //Clear middle 20 lines
$3 = .GetString "Enter value for `A :","1", 12 : //get `A

// we allow 12 characters so even -21012345.67 can be entered
$4 = .GetString "Enter value for `B: ","2", 12 : //get `B

.xmath " `A = " + $3 //define A as extended var

.xmath " `B = " + $4 //define B

#xA = .xcompare A //get comparison string A
#xB = .xcompare B //and B

// compare the numbers and indicate their relationship
// use a label to represent the strings to make it more readable

if #xA > #xB then $0 = "`A:" + $3 + " > `B:" + $4 : endif :
if #xA < #xB then $0 = "`A:" + $3 + " < `B:" + $4 : endif :
if #xA = #xB then $0 = "`A:" + $3 + " = `B:" + $4 : endif :
.WriteStr 255,10,$0 :
msg 'Esc to quit, any other to continue' :

Chapter 4 Dot Commands Page 152

A = key :
msg '' : //Erase message
ifnot A = 27 then :

Rpt :
endif :

| : esc : //Freshen screen
poke $10F1,C : //Put cursor to input state
>!

<.xFixed 128>
Domain: All Modules
The .xFixed command sets the number of decimal places used when <.xStr> converts an extended
variable to a displayable string. Legal values are 0, 1, 2, and 128. 128 defines appropriate (no
trailing zeros). The default value is 2 until .xFixed is used.

<sa-A>:<all :
.xFixed 128 : //No trailing 0's in displayable result
X = 1000 : //Define a regular Ultra variable
.xMath "`Z = 240.37 * X" : //Multiply Ultra variable by 240.37
$1 = .xStr Z :
msg $1 + " Correct " + %J% + "Key" + %K% :
A = key :
.xFixed 2 : //Restore the default setting
$1 = .xStr Z :
msg $1 + " Correct " + %J% + "Key" + %K% :
A = key :
X = 10000 :
.xMath "`Z = 240.37 * X" : //Multiply Ultra variable by 240.37
$1 = .xStr Z :
msg $1 + " Incorrect " + %J% + "Key" + %K% :
A = key :
.xFixed 2 : //Restore the default setting
$1 = .xStr Z :
msg $1 + " Incorrect " + %J% + "Key" + %K% :
A = key :
| : esc :
>!

<.xIntegers TruthValue>
Domain: All Modules
The .xIntegers command determines how normal Ultra variables are used
by the .xMath command. The default setting for "TruthValue" is 1
(#True) which means they are treated as integers, or whole numbers. If
.xIntegers #False is used to change the setting, the Ultra variables
are treated as hundredths. To simplify understanding this, think of
integers as dollars and hundredths as pennies.

// Treat Ultra variables as integers (dollars) using .xIntegers
// default setting of #True

// Treat Ultra variables as hundredths (pennies) using .xIntegers
// non default setting of #False

// The /extras example of this had a non-extended variable of A(1)
// I've changed that to A to show that normal and extended are
// distinct even though they look alike and you have to keep
// them straight.

Chapter 4 Dot Commands Page 153

<sa-A>:<all:
A = 99 : //define good old Ultra variable
.xMath " `A = 1 + A" : //`A is now 100

//A here is really `A but cannot be specified that way. Go figure.
$1 = .xStr A :

$1 = ".xIntegers = #True when .xMath `A = 1 + A equals " + $1 :
.Cls 1 :
.WriteStr 0,9,"A = 99 :"
.WriteStr 0,10,$1 : //display the result
// treat Ultra variables as hundredths (pennies)
.xIntegers #False : //treat Ultra vars as hundredths
.xMath " `A = 1 + A" : //`A is now 1.99
$1 = .xStr A : //Really `A
$1 = ".xIntegers = #False when .xMath `A = 1 + A equals " + $1 :
.WriteStr 0,11,$1 : //display the result
.xIntegers #True : //restore default
msg 'Hit a key when done looking at the above' :
B = key :
| : esc :
>!

<.xMath " `A = B + C * 3.25 ">
Domain: All Modules
The .xMath command handles all extended variable definitions by evaluating the expression contained
in the string which follows the command. The expression must start with a definition, such as "`A=",
and then you may add, subtract, divide or multiply extended variables, regular Ultra variables, or
literal values. Only one definition may be entered for each .xMath command.

<sa-A>:<all:
C(2) = 12 : //define a regular Ultra variable
.xMath " `C = 10.3 * C(2) ": //Multiply 10.3 * 12

$1 = "10.3 * 12 = " + .xstr C :
$1 = $1 + " " + %J% + " Key " :
msg $1 :
#Key2Stop :
>!

<$1 = .xStr A>
Domain: All Modules
The .xStr command is the extended variable equivalent to the <str$> command used with normal
variables. It converts an extended variable to a string which can then be displayed with <msg> or
<print>.

The .xFixed setting determines how many decimal places, if any, are shown.

<sa-A>:<all :
.xFixed 128 : //no trailing 0's in displayable result
X = 54321 : //define a regular Ultra variable
.xMath "`Z = 2.5 * X" : //multiply Ultra variable by 2.5
$1 = "`Z = 2.5 * X = " + .xstr Z : //convert and display
.xFixed 2 : //restore default setting
msg $1 + " " + %J% + " Key " :
#Key2Stop :
>!

File Command Index Page Line #
==

CH03.TOC & ... 46 513
CH03.TOC () .. 62 1565
CH03.TOC adb 43 332
CH04.TOC .AddMany 119 1981
CH04.TOC .AddMenu 120 2004
CH03.TOC Ahead 47 598
CH03.TOC all 43 329
CH03.TOC And 82 2923
CH04.TOC .AndBits 145 3613
CH03.TOC aol 43 331
CH03.TOC Asc 62 1587
CH04.TOC .AskYN 90 128
CH03.TOC asp 43 333
CH03.TOC asr 43 334
CH03.TOC awp 43 330
CH04.TOC .AwPath 91 199
CH03.TOC ba-Ctrl-C 41 197
CH03.TOC ba-esc 50 755
CH03.TOC ba-right 41 195
CH03.TOC Back 48 638
CH04.TOC .Beep 92 267
CH03.TOC Begin 58 1321
CH03.TOC Bell 56 1185
CH04.TOC .Box 92 213
CH04.TOC .CacheList 94 339
CH03.TOC Call 79 2718
CH04.TOC .Caps 93 296
CH04.TOC .Case 93 317
CH04.TOC .CatName 116 1774
CH03.TOC Cell 54 1035
CH04.TOC .CellID 118 1908
CH04.TOC .Choose 94 355
CH03.TOC Chr$ 63 1603
CH03.TOC Clear 63 1634
CH04.TOC .Cls 120 2025
CH04.TOC .Column 117 1821
CH04.TOC .ColWidth 117 1835
CH03.TOC Date 48 645
CH03.TOC Date2 48 650
CH03.TOC Debug 56 1196
CH03.TOC dec 46 520
CH03.TOC del 41 155
CH04.TOC .DeskCount 95 409
CH03.TOC Disk 53 967
CH03.TOC Display 63 1656
CH04.TOC .DoMenu 120 2050
CH03.TOC down 41 184
CH04.TOC .Dropdir 95 438
CH03.TOC Else 83 2981
CH03.TOC elseoff 46 510
CH04.TOC .Embedded 95 466
CH03.TOC end 39 51
CH03.TOC Endif 85 3086
CH03.TOC Endmacro 60 1452
CH04.TOC .Eof 96 510
CH03.TOC esc 41 156

File Command Index Page Line #
==

CH03.TOC Exit 60 1428
CH04.TOC .ExtKB 142 3400
CH04.TOC .FCard 121 2081
CH04.TOC .FDate 97 542
CH04.TOC .FDate2 97 583
CH04.TOC .FileCard 122 2127
CH03.TOC Find 48 664
CH04.TOC .FindPO 98 614
CH03.TOC First 52 900
CH03.TOC For 85 3113
CH04.TOC .GetBlock 146 3675
CH04.TOC .GetCat 115 1733
CH04.TOC .GetCell 117 1864
CH04.TOC .GetColor 143 3436
CH04.TOC .GetFpath 98 639
CH04.TOC .GetInput 122 2173
CH04.TOC .GetNames 114 1622
CH04.TOC .GetPtr 148 3759
CH04.TOC .GetRec 114 1665
CH03.TOC GetStr 64 1720
CH04.TOC .GetString 123 2250
CH04.TOC .GetValue 124 2290
CH03.TOC go .. 41 159
CH03.TOC GoTo 65 1735
CH04.TOC .Hex 148 3767
CH04.TOC .HexStr 148 3779
CH04.TOC .HexWord 149 3813
CH03.TOC Hilight 65 1785
CH04.TOC .ID 98 644
CH03.TOC If .. 81 2844
CH03.TOC ifkey 46 540
CH03.TOC Ifnot 81 2845
CH03.TOC inc 46 520
CH03.TOC Input 57 1257
CH03.TOC Insert 52 915
CH03.TOC Jsr 86 3181
CH03.TOC Key 58 1292
CH03.TOC Keyto 66 1831
CH03.TOC Labels 39 38
CH03.TOC Last 52 908
CH04.TOC .LastCol 119 1944
CH04.TOC .LastRow 119 1964
CH03.TOC Launch 78 2660
CH03.TOC LC .. 52 895
CH03.TOC left 41 181
CH03.TOC Left 67 1866
CH03.TOC Len 67 1881
CH04.TOC .Line 99 666
CH03.TOC Link 80 2790
CH04.TOC .List 125 2373
CH04.TOC .LoadVar 128 2547
CH04.TOC .Lower 99 692
CH04.TOC .MacroNames 126 2433
CH04.TOC .MakeMenu 130 2647
CH04.TOC .MenuBar 132 2778
CH04.TOC .MenuBar2 133 2852
CH04.TOC .MenuItem 127 2460

File Command Index Page Line #
==

CH03.TOC Mid 67 1901
CH04.TOC .Mod 149 3829
CH04.TOC .Msay 99 716
CH03.TOC Msg 68 1931
CH03.TOC Msgxy 69 1997
CH04.TOC .NewFile 100 740
CH03.TOC Next 86 3125
CH03.TOC NoSleep 56 1190
CH03.TOC oa-! 52 916
CH03.TOC oa-# 50 769
CH03.TOC oa-& 53 968
CH03.TOC oa-* 53 999
CH03.TOC oa-, 52 901
CH03.TOC oa-- 54 1036
CH03.TOC oa-. 52 909
CH03.TOC oa-0 51 856
CH03.TOC oa-1 41 193
CH03.TOC oa-: 52 891
CH03.TOC oa-; 52 896
CH03.TOC oa-< 52 902
CH03.TOC oa-> 52 911
CH03.TOC oa-> 55 1119
CH03.TOC oa-@ 53 962
CH03.TOC oa-Clear 63 1652
CH03.TOC oa-Ctrl-@ 51 885
CH03.TOC oa-Ctrl-G 56 1186
CH03.TOC oa-Ctrl-N 56 1191
CH03.TOC oa-Ctrl-X 56 1197
CH03.TOC oa-X 51 850
CH03.TOC oa-^ 52 924
CH03.TOC Onerr 69 2012
CH03.TOC Onerr 69 2024
CH03.TOC Onerr 69 2035
CH03.TOC Onerr 69 2047
CH03.TOC Onerr 69 2058
CH03.TOC Onerr 70 2067
CH04.TOC .OnGosub 127 2495
CH04.TOC .OnGoto 129 2588
CH04.TOC .Online 101 793
CH03.TOC Or .. 82 2924
CH03.TOC Path 53 998
CH03.TOC Peek 87 3254
CH04.TOC .Peekstr 101 817
CH04.TOC .PeekVar 102 856
CH03.TOC PeekWord 88 3259
CH04.TOC .PeekWordZP 103 957
CH04.TOC .Pick 133 2876
CH03.TOC Poke 87 3206
CH04.TOC .PokeStr 102 885
CH04.TOC .PokeVar 103 922
CH03.TOC PokeWord 87 3232
CH04.TOC .PokeWordZP 103 971
CH04.TOC .PokeZP 104 978
CH04.TOC .Pop 104 985
CH04.TOC .PopMenu 135 2949
CH03.TOC Posn 71 2172
CH03.TOC Pr# 72 2207

File Command Index Page Line #
==

CH03.TOC Print 72 2243
CH04.TOC .PutBlock 149 3864
CH04.TOC .PutPtr 150 3907
CH04.TOC .Qmenu 137 3098
CH03.TOC Read 52 923
CH03.TOC Recall 55 1115
CH04.TOC .RelBlock 150 3914
CH03.TOC rem 46 516
CH03.TOC RestScr 57 1251
CH03.TOC right 41 182
CH03.TOC Right 75 2422
CH04.TOC .Rightmost 105 1041
CH03.TOC Rpt 59 1350
CH03.TOC rtn 41 157
CH03.TOC sa-B 41 194
CH03.TOC sa-Ctrl-C 41 196
CH03.TOC sa-esc 49 754
CH03.TOC SaveScr 57 1214
CH04.TOC .SaveVar 138 3127
CH04.TOC .Say 139 3234
CH03.TOC Screen 75 2434
CH04.TOC .Search 105 1072
CH04.TOC .SetCat 115 1738
CH04.TOC .SetCell 118 1887
CH04.TOC .SetCol 106 1101
CH04.TOC .SetColor 143 3463
CH04.TOC .SetDisk 106 1134
CH04.TOC .SetFpath 106 1156
CH04.TOC .SetNames 114 1641
CH04.TOC .SetRec 115 1696
CH04.TOC .Sort 107 1215
CH04.TOC .SpaceBar 140 3248
CH03.TOC spc 41 185
CH04.TOC .Speed 108 1264
CH03.TOC start 39 47
CH03.TOC Step 86 3147
CH03.TOC Stop 61 1469
CH03.TOC Store 55 1126
CH03.TOC Str$ 75 2466
CH04.TOC .StripChar 140 3260
CH04.TOC .SubChar 109 1295
CH04.TOC .SubString 110 1362
CH03.TOC tab 41 180
CH03.TOC Then 83 2967
CH04.TOC .Therm 140 3292
CH03.TOC Time 48 655
CH03.TOC Time24 48 659
CH04.TOC .TimeGS 144 3519
CH04.TOC .TitleBox 110 1391
CH04.TOC .TOinMem 111 1436
CH03.TOC UC .. 52 890
CH04.TOC .UnCache 111 1462
CH03.TOC Unlink 81 2829
CH03.TOC up .. 41 183
CH04.TOC .Upper 112 1518
CH03.TOC Val 76 2489
CH04.TOC .Vline 112 1530

File Command Index Page Line #
==

CH03.TOC Wait 76 2523
CH03.TOC Wake 77 2568
CH04.TOC .WeekDay 113 1568
CH04.TOC .Writestr 142 3367
CH04.TOC .xCompare 151 3955
CH04.TOC .xFixed 152 4002
CH04.TOC .xIntegers 152 4034
CH04.TOC .xMath 153 4079
CH04.TOC .xStr 153 4099
CH04.TOC .ZapChar 113 1592
CH03.TOC Zoom 53 961
CH04.TOC .ZoomIn 113 1611
CH03.TOC | ... 64 1696

File General Index Page
==

CH03.TOC <&> ... 46
CH03.TOC <() NUM> .. 62
CH03.TOC Actual Reference 45
CH03.TOC <adb> AppleWorks DB 43
CH04.TOC <.AddMany X, Y, FirstStr, Count, Space> 119
CH04.TOC <.AddMenu Xpos, Ypos, $1> 120
CH02.TOC Address Labels 23
CH02.TOC Address Labels 21
CH03.TOC <Ahead> sa-. 47
CH03.TOC <all> All applications (global) 43
CH03.TOC <And> ... 82
CH04.TOC <X = .AndBits A,B> 145
CH03.TOC <aol> AppleWorks WP Outliner (AW 5) 43
CH02.TOC AppleWorks 3.x 17
CH02.TOC AppleWorks 4.x and AW 5.x 17
CH02.TOC Appleworks address labels. 22
CH03.TOC <Asc STRING VAR> 62
CH04.TOC <.AskYN $1> ... 90
CH03.TOC <asp> AppleWorks SS 43
CH03.TOC <asr> Accessible only from other macros 43
CH03.TOC Assigning Macro Names 44
CH03.TOC Available Macros 50
CH03.TOC <awp> AppleWorks Word Processor only 43
CH04.TOC <$1 = .AwPath> 91
CH03.TOC <ba-Ctrl-C>Both-Apple-Ctrll-C NOT supported 41
CH03.TOC <ba-esc> .. 50
CH03.TOC <ba-right> Both-Apple-Right 41
CH03.TOC <Back> sa-, 48
CH04.TOC <.Beep Duration,Pitch> 92
CH03.TOC <Begin> ... 58
CH03.TOC <Bell> .. 56
CH01.TOC Beta Testers .. 5
CH01.TOC Bev Cadieux's Mail Group: 5
CH02.TOC Bev Cadieux's Mail Group: 24
CH04.TOC <.Box X,Y,W,L,T> 92
CH02.TOC C++ Style Comments 20
CH04.TOC <.CacheList FirstStr> 94
CH03.TOC <Call MACRO in STRING VAR> 79
CH03.TOC Calling Other Macros 44
CH04.TOC <$1 = .Caps $2> 93
CH04.TOC <$1 = .Case "Case String","Work String"> 93
CH04.TOC <$1 = .CatName CategoryNum> 116
CH03.TOC <Cell> .. 54
CH04.TOC <$1 = .CellID> 118
CH03.TOC Changed Commands 47
CH01.TOC Chapter 1 Getting Started 1
CH02.TOC Chapter 2 Miscellaneous 17
CH03.TOC Chapter 3 UltraMacros Reference 39
CH04.TOC Chapter 4 Dot Commands 89
CH04.TOC <$1 = .Choose $2,N> 94
CH03.TOC <Chr$ NUM> .. 63
CH04.TOC class 0 strings 90
CH04.TOC class 0 strings 101
CH04.TOC class 0 strings 147
CH04.TOC class 0 strings 150
CH03.TOC <Clear NUM> ... 63

File General Index Page
==

CH03.TOC <Clear NUM> ... 63
CH04.TOC <.Cls NUM> .. 120
CH04.TOC <X = .Column STRING> 117
CH04.TOC <X = .ColWidth STRING> 117
CH01.TOC Compile current WP file macro 12
CH02.TOC Compiler Labels 21
CH02.TOC Create a Task File 18
CH01.TOC Creating a Macro File 10
CH01.TOC Creating Custom Macros 10
CH01.TOC Creating your very own UltraMacro 11
CH02.TOC Cursor blink A 19
CH02.TOC Cursor blink B 19
CH04.TOC Data Base Dot Commands 114
CH03.TOC <Date> sa-' 48
CH03.TOC <Date2> sa-" 48
CH02.TOC Debug ... 25
CH03.TOC <Debug> ... 56
CH03.TOC <Debug> ... 63
CH04.TOC Debug 2.6 and Extended Variables 150
CH01.TOC debugger .. 11
CH02.TOC debugger .. 24
CH03.TOC <dec> ... 46
CH04.TOC Default Dot Commands 90
CH01.TOC Default Macros 10
CH01.TOC default set ... 14
CH02.TOC Defining Numeric variables 31
CH02.TOC Defining String Variables 33
CH03.TOC Delete key 41
CH04.TOC <.DeskCount X> 95
CH02.TOC Desktop Utils 20
CH03.TOC Dire Warning: 54
CH01.TOC disable/enable one key macros: 7
CH03.TOC <Disk> .. 53
CH03.TOC <Display NUM> 63
CH02.TOC Display Items 25
CH04.TOC <.DoMenu X> ... 120
CH04.TOC Dot Command Reference 90
CH03.TOC <down> Down-Arrow key 41
CH04.TOC <.Dropdir> .. 95
CH03.TOC Dropped UM 3.x Commands 46
CH03.TOC <Else> .. 83
CH03.TOC <elseoff> ... 46
CH04.TOC <$1 = .Embedded> 95
CH03.TOC <end> ... 39
CH02.TOC <end> ... 22
CH03.TOC <Endif> ... 85
CH03.TOC <Endmacro> .. 60
CH04.TOC <X = .Eof> .. 96
CH03.TOC <esc> Escape key 41
CH01.TOC Escape Map .. 8
CH03.TOC <Exit> .. 60
CH01.TOC exit/rpt trick 13
CH03.TOC exit/rpt trick 59
CH02.TOC Extended Numeric Variables 31
CH04.TOC External Dot Commands 89
CH04.TOC <.ExtKB> .. 142
CH04.TOC <.FCard NUM,STRING,TYPE> 121

File General Index Page
==

CH04.TOC <$1 = .FDate Format> 97
CH04.TOC <$1 = .FDate2 Month,Day,Year,Format> 97
CH04.TOC <.FileCard STRING, NUM> 122
CH03.TOC <Find> sa-Return 48
CH04.TOC <.FindPO> ... 98
CH03.TOC <First> ... 52
CH03.TOC First A Lot Of Background 39
CH03.TOC <For VAR = NUM to NUM> 85
CH03.TOC For Advanced UltraMacros Users Only 86
CH03.TOC For-Next LOOPS 85
CH04.TOC <.GetBlock Ptr,Dest,Flag> 146
CH04.TOC <$1 = .GetCat Category, Record> 115
CH04.TOC <$1 = .GetCell Column, Row, Format> 117
CH04.TOC <C = .GetColor Y> 143
CH04.TOC <$1 = .GetFpath> 98
CH04.TOC <$1 = .GetInput X,Y,$2,$3,L> 122
CH04.TOC <.GetNames Category, FirstStr, Number> 114
CH04.TOC <Ptr = .GetPtr Adr> 148
CH04.TOC <.GetRec Category, Record, FirstStr, Number> 114
CH03.TOC <$1 = GetStr NUM> 64
CH04.TOC <$1 = .GetString "Prompt","Default",MaxLen> 123
CH04.TOC <X = .GetValue $1,L,H,D> 124
CH03.TOC <go> Return key 41
CH03.TOC <GoTo MACRO> .. 65
CH04.TOC <$1 = .Hex X> 148
CH04.TOC <X = .HexStr "$A"> 148
CH04.TOC <$1 = .HexWord X> 149
CH03.TOC <Hilight L,T,R,B> 65
CH04.TOC <X = .ID> ... 98
CH03.TOC <If> .. 81
CH03.TOC If-Then-Else Logic 81
CH03.TOC <ifkey> ... 46
CH03.TOC <Ifnot> ... 81
CH01.TOC IIgs One-Key Macros in AppleWorks 3 7
CH01.TOC IIgs One-Key Macros in AppleWorks 4 and 5. 7
CH04.TOC IIgs only commands 142
CH03.TOC <inc> ... 46
CH03.TOC <Input> ... 57
CH03.TOC <Insert> .. 52
CH01.TOC Installing UltraMacros 6
CH01.TOC invisible task file. 14
CH03.TOC <Jsr> ... 86
CH03.TOC <Key> ... 58
CH02.TOC Key click on: Yes 19
CH03.TOC <Keyto NUM> ... 66
CH03.TOC Label Definitions 39
CH03.TOC <Labels> .. 39
CH02.TOC Labels must be on one line only. 21
CH03.TOC <Last> .. 52
CH04.TOC <$1 = .LastCol> 119
CH04.TOC <$1 = .LastRow> 119
CH03.TOC <Launch STRING VAR> 78
CH01.TOC <Launch STRING VAR> 14
CH02.TOC Launch a Task File 18
CH03.TOC <LC> .. 52
CH03.TOC <left> Left-Arrow key 41
CH03.TOC <Left STRING VAR,NUM> 67

File General Index Page
==

CH03.TOC <Len STRING VAR> 67
CH04.TOC <.Line Horiz,Vert,Length,Char> 99
CH03.TOC <Link MACRO in String VAR> 80
CH01.TOC <Link MACRO in String VAR> 14
CH04.TOC <.List X,Y,W,L,S,E,$1> 125
CH04.TOC <.LoadVar STRING, Option> 128
CH03.TOC Local and Global Macro Tokens 43
CH04.TOC <$1 = .Lower STRING> 99
CH01.TOC Mac.AllPossible 9
CH02.TOC Mac.AllPossible 22
CH03.TOC MACRO ... 61
CH03.TOC Macro Parameters 61
CH03.TOC Macro Sets and Task Files 78
CH03.TOC Macro Titles .. 39
CH02.TOC Macro Titles .. 21
CH03.TOC Macro Titles .. 50
CH04.TOC <.MacroNames : goto sa-A> 126
CH02.TOC <.MacroNames : goto sa-A> 21
CH03.TOC <.MacroNames : goto sa-A> 50
CH01.TOC Main Sources For This Manual 5
CH04.TOC <.MakeMenu X, Y, Frst, Count, Spc, Begin> 130
CH01.TOC Making (Recorded) Macros Permanent 14
CH02.TOC Mark Munz ... 27
CH04.TOC MathTools ... 145
CH04.TOC Menu Commands 119
CH04.TOC <.MenuBar PromptString, ItemString> 132
CH04.TOC <.MenuBar2 "Prompt","Choices",Delimiter> 133
CH04.TOC <$1 = .MenuItem> 127
CH03.TOC <Mid STRING VAR,NUM1,NUM2> 67
CH04.TOC <X = .Mod A,B> 149
CH02.TOC Mouse button delay: 2 20
CH02.TOC Mouse horizontal: 16 20
CH02.TOC Mouse on: Yes 20
CH02.TOC Mouse vertical: 32 20
CH04.TOC <.Msay String> 99
CH03.TOC <Msg STRING> .. 68
CH03.TOC <Msgxy Horiz,Vert> 69
CH04.TOC <.NewFile "FileName",Type> 100
CH03.TOC <Next VAR> .. 86
CH03.TOC <NoSleep> ... 56
CH01.TOC Now What Am I Going To Do With A MACRO? 1
CH03.TOC NUM (number) 61
CH03.TOC NUM EXP (numeric expression) 61
CH03.TOC NUM VAR (numeric variable) 61
CH03.TOC NUM2 (number format 2) 61
CH04.TOC Numeric Commands 89
CH02.TOC Numeric Variables 31
CH03.TOC <oa-!> .. 52
CH03.TOC <oa-#> .. 50
CH03.TOC <oa-&> .. 53
CH03.TOC <oa-*> .. 53
CH03.TOC <oa-,> .. 52
CH03.TOC <oa--> .. 54
CH03.TOC <oa-.> .. 52
CH03.TOC <oa-0> .. 51
CH03.TOC <oa-1> Open-Apple-1 41
CH03.TOC <oa-:> .. 52

File General Index Page
==

CH03.TOC <oa-;> .. 52
CH03.TOC <oa-<> .. 52
CH03.TOC <oa-<> .. 55
CH03.TOC <oa->> .. 52
CH03.TOC <oa->> .. 55
CH03.TOC <oa-@> .. 53
CH02.TOC oa-B Break Options 29
CH03.TOC <oa-Clear> IIgs 63
CH03.TOC <oa-Ctrl-@> ... 51
CH03.TOC <oa-Ctrl-G> ... 56
CH03.TOC <oa-Ctrl-N> ... 56
CH03.TOC <oa-Ctrl-X> ... 56
CH03.TOC <oa-Ctrl-X> ... 63
CH02.TOC oa-D show Dot commands 26
CH02.TOC oa-M show Macro names 26
CH02.TOC oa-N End Macro 28
CH02.TOC oa-P display Peek values 27
CH02.TOC oa-S Options .. 30
CH02.TOC oa-T set Trace options 28
CH02.TOC oa-V View Screen 29
CH02.TOC oa-W Walk Through 30
CH03.TOC <oa-X> .. 51
CH02.TOC oa-X Extended Numeric Variables 28
CH03.TOC <oa-^> .. 52
CH03.TOC <Onerr OPTION> 69
CH02.TOC <Onerr OPTION> 25
CH03.TOC <Onerr stop> .. 69
CH03.TOC <Onerr endmacro> 69
CH03.TOC <Onerr exit> .. 69
CH03.TOC <Onerr off> ... 69
CH03.TOC <Onerr goto> .. 70
CH04.TOC <.OnGosub Val,"abcdDefghijk"> 127
CH04.TOC <.OnGoto Val,"abcdDefghijk"> 129
CH04.TOC <.Online STRING> 101
CH03.TOC Open-Apple Commands 50
CH03.TOC Optional Comments 39
CH03.TOC Optional Comments 42
CH03.TOC <Or> .. 82
CH03.TOC Parameters for UltraMacros Tokens 61
CH03.TOC <Path> .. 53
CH03.TOC <Peek> .. 87
CH04.TOC <$1 = .Peekstr Address> 101
CH04.TOC <.PeekVar Address,Start,Count,Size> 102
CH03.TOC <PeekWord> .. 88
CH04.TOC <X = .PeekWordZP Address> 103
CH04.TOC <$90 = .Pick X,Y,W,L,Start,End,"Title"> 133
CH03.TOC <Poke> .. 87
CH04.TOC <.PokeStr STRING, Address> 102
CH04.TOC <.PokeVar Address,Start,Count,Size> 103
CH03.TOC <PokeWord> .. 87
CH04.TOC <.PokeWordZP Address,Value> 103
CH04.TOC <.PokeZP Address, Value> 104
CH04.TOC <.Pop X> .. 104
CH04.TOC <.PopMenu> .. 135
CH03.TOC <Posn VAR1,VAR2> 71
CH03.TOC <Pr# NUM EXP> 72
CH03.TOC <Print NUM,STRING,ALMOST ANYTHING> 72

File General Index Page
==

CH03.TOC Printing Literal Text 72
CH03.TOC Printing Numeric Variables 73
CH04.TOC <.PutBlock Ptr,Adr,Size,Flag> 149
CH04.TOC <.PutPtr Adr, Ptr> 150
CH04.TOC <.Qmenu STRING, Filetype> 137
CH01.TOC Randy Brandt .. 1
CH01.TOC Randy Brandt .. 1
CH01.TOC Randy Brandt .. 3
CH03.TOC Randy Brandt .. 41
CH03.TOC Randy Brandt .. 50
CH03.TOC Randy Brandt .. 70
CH03.TOC <Read> .. 52
CH03.TOC <Recall> .. 55
CH01.TOC Recording Your Own Macros 8
CH04.TOC <.RelBlock Ptr> 150
CH03.TOC <rem> ... 46
CH03.TOC Replaced UltraMacros 3.x Commands 45
CH03.TOC Reserved Macros 47
CH03.TOC <RestScr> ... 57
CH03.TOC <right> Right-Arrow key 41
CH03.TOC <Right STRING VAR,NUM> 75
CH04.TOC <X = .Rightmost> 105
CH03.TOC <Rpt> ... 59
CH03.TOC <rtn> Return key 41
CH03.TOC <sa-B> Solid-Apple-B 41
CH03.TOC <sa-Ctrl-C>Solid-Apple-Control-C 41
CH03.TOC <sa-esc> .. 49
CH02.TOC <sa-esc> .. 21
CH02.TOC Save macros as default Set 19
CH03.TOC <SaveScr> ... 57
CH04.TOC <.SaveVar STRING> 138
CH04.TOC <.Say STRING> 139
CH03.TOC <Screen NUM EXP,NUM EXP,NUM EXP> 75
CH02.TOC Screen blanker delay: 20 20
CH02.TOC Screen blanker on: Yes 20
CH04.TOC <X = .Search "IsHere",Start,End> 105
CH04.TOC SEG.UM .. 111
CH04.TOC <.SetCat Category, Record, STRING> 115
CH04.TOC <.SetCell Column,Row,STRING> 118
CH04.TOC <.SetCol Column,Width> 106
CH04.TOC <.SetColor X,C> 143
CH04.TOC <.SetDisk STRING> 106
CH04.TOC <.SetFpath STRING> 106
CH04.TOC <.SetNames Cat, Record, FirstStr, Number> 114
CH04.TOC <.SetRec Category, Record, FirstStr, Number> 115
CH03.TOC sleep ... 77
CH01.TOC So What's a Macro? 6
CH04.TOC <.Sort Start,End,Direction> 107
CH04.TOC <.SpaceBar> ... 140
CH03.TOC <spc> Space-Bar key 41
CH03.TOC Special UltraMacros Tokens 56
CH04.TOC <.Speed 1000> 108
CH04.TOC Spreadsheet Dot Commands 117
CH04.TOC Stand-alone commands 89
CH03.TOC <start> ... 39
CH02.TOC <start> ... 22
CH03.TOC <start> ... 39

File General Index Page
==

CH03.TOC <Step VAR> .. 86
CH03.TOC Steve Beville 70
CH03.TOC <Stop> .. 61
CH03.TOC <Store> ... 55
CH03.TOC <Str$ VAR NAME> 75
CH03.TOC STRING .. 62
CH04.TOC String commands 89
CH03.TOC STRING EXP (string expression) 62
CH03.TOC STRING VAR (string variable) 62
CH02.TOC String Variables 31
CH04.TOC <$1 = .StripChar STRING, Char, Option> 140
CH04.TOC <$1 = .SubChar Text, First, Last, NewChar> 109
CH04.TOC <X = .SubString $1,$2,Start> 110
CH03.TOC <tab> Tab key 41
CH01.TOC task file ... 14
CH03.TOC Task File Name 39
CH02.TOC TASK FILES .. 17
CH01.TOC TASK FILES .. 10
CH02.TOC Testing String Relationships 36
CH03.TOC The Anatomy of a Macro 39
CH03.TOC The Anatomy of a Macro File 39
CH03.TOC <Then> .. 83
CH04.TOC <.Therm X,Y,C,M> 140
CH03.TOC <Time> sa-= 48
CH03.TOC <Time24> sa-+ 48
CH04.TOC <$1 = .TimeGS X> 144
CH02.TOC TimeOut Applications AW 3.x, AW 4.x, AW 5.x 17
CH04.TOC <.TitleBox X,Y,W,L,T,$> 110
CH04.TOC <X = .TOinMem> 111
CH03.TOC Token equivalents for keyboard keys 41
CH03.TOC Tokens .. 39
CH01.TOC Try ... 10
CH04.TOC Try out the New Dot Commands 90
CH01.TOC Try.Docs .. 11
CH01.TOC Turbo-charge Your AppleWorks! 2
CH02.TOC Twilight II ... 20
CH01.TOC Types of Macro files 14
CH03.TOC <UC> .. 52
CH01.TOC Ultra 4 -- An Overview 3
CH01.TOC Ultra 4 -- What's It To Ya? 1
CH03.TOC UltraMacros Tokens with parameters 62
CH01.TOC UltraMacros Tutorial 4
CH02.TOC UM 4.0 Compiler 20
CH02.TOC UM 4.x Options 17
CH04.TOC UM4.0.SYSTEM. 111
CH04.TOC <.UnCache $1> 111
CH03.TOC <Unlink> .. 81
CH03.TOC <up> Up-Arrow- key 41
CH04.TOC <$1 = .Upper STRING> 112
CH03.TOC <Val STRING VAR> 76
CH02.TOC Variables ... 31
CH04.TOC <.Vline Xpos, Ypos, Len, Char> 112
CH03.TOC <Wait NUM EXP> 76
CH02.TOC <Wait NUM EXP> 25
CH03.TOC <Wake MACRO at NUM EXP:NUM EXP> 77
CH04.TOC <X = .WeekDay Month,Day,Year> 113
CH01.TOC What are these? 1

File General Index Page
==

CH01.TOC What is This? 4
CH01.TOC What's Required? What's Compatible? 3
CH04.TOC <.Writestr Xpos, Ypos, STRING> 142
CH04.TOC <$1 = .xCompare A> 151
CH04.TOC <.xFixed 128> 152
CH04.TOC <.xIntegers TruthValue> 152
CH04.TOC <.xMath " `A = B + C * 3.25 "> 153
CH04.TOC <$1 = .xStr A> 153
CH04.TOC <.ZapChar "Text", Char> 113
CH03.TOC <Zoom> .. 53
CH04.TOC <.ZoomIn>! .. 113
CH03.TOC <|> ... 64

