
Micro Software Inc.

UNLOCKED and
UNPROTECTED
Compatible with
• Apple lIe®
• Apple 11+
• Apple II

FLEX r'lPE,,~::~~
VARIABLE-WIDTH HI-RES TEXT UTILITY

by MARK SIMONSEN
VARIABLE-WIDTH TEXT RE-DEFINABLE CHARACTERS
Flex Type allows your Applesoft programs Any text character may be redrawn with
to produce normal 40-column text as well Flex Type's Apple CHARACTER EDITOR,
as Expanded and Condensed characters and stored on disk and/or in memory, giv-
ON THE SAME SCREEN, giving you a ing you full control over previously fixed-
wide range of 20- to 70-eharacters per text format letters, numbers and symbols.
line. No extra hardware is required. UPPER & LOWER CASE
ADD GRAPHICS TO TEXT. No extra hardware is required to produce
Or Text to Graphics!ln effect, you are able attractive upper and lower case on the
to Hplot hi-res lines on your text screen screen, in any width of course. Shift key
layouts or type on your hi-res draWings. modifications for non-lie's are supported.

USES NORMAL COMMANDS TWO-WAY SCROLLING
Flex Type understands normal Applesoft Hi-res pictures and text may be scrolled
commands, including Home, Inverse, Nor- smoothly in both directions, adding flexibil-
mal, Htab 1-70, and Vtab 1-24. Text win- ity to your hi-res screen displays.
dow poke-commands are also supported. EASY TO USE
Flex Type is completely compatible with Just boot Flex Type and go. Switch be-
GPLE, Double-Take and Beagle Basic. tween Apple's "normal" text screen and
FRIENDLY AND COMPATIBLE hi-res Pages 1 and 2 whenever you want.

Your existing Applesoft programs will run Free "PEEKS and POKES"
under Flex Type control. Just boot Flex 11 X 17 Wall Chart Enclosed
Type, and run your program.
(Note: Some large programs may overwrite the hi-res Apple's PEEKS, POKES, POINTERS and
screen and require extra manipulation: complete In- CALLS on one heavy-duty poster. An
structions are included in this manual.) indispensable Apple programming t001.

(70-COLUMN TEXT REQUIRES MONOCHROME MONITOR.)

INCLUDES PEEKS & POKES CHART
"APPLE" is a registered Trade Mark of Apple Computer Inc.

FLEXnPE
Copyr:lght © 1982, Mark S. Simonsen

Published by BEAGLE BROS
4315 Sierra V1Bta.

San Diego, California. 92103

TABLE OF CONTENTS
1.0 INTRODUCTION

1.1 What Flex 'IYPe Does .. 4
1.2 Advantages of Using Flex'IYPe , 4
1.3 D1Ba.dvantages of Using Flex 'IYPe 4
1.4 Features of Flex 'IYPe 4

2.0 USING FLEX TYPE
2.1 Inv1Bible Flex 'IYPe .. 5
2.2 Demonstrating Flex 'IYPe .. 5
2.3 Commands 5

2.3.1 Alternating Character Sets 6
2.3.2 Upper and Lower Gase. .. 9
2.3.3 Spec1a.l Characters 10
2.3.4 Mixed Graphics and Text. 10
2.3.5 Miscellaneous Commands 12

3.0 ADVANCED PROGRAMMING TECHNIQUES
3.1 Relocating the Code 13
3.2 Detln1ng and Using Alternate Character Sets 13
3.3 Impersonating a Flasher 14

4.0 IMPORTANT ODDS AND ENDS
4.1 Exiting and REHlntering Flex 'IYPe 16
4.2 The Window 17
4.3 More Do's and Don'ts 18
4.4 Little Known Facts 18

Appendix A:. Compatibility with Applesoft. Basic and
the Apple II System Monitor 20

Appendix B: Preserving the Hi-Res Screens 22
Appendix C: The ASCII Character Set 26
Appendix D: Command Summary .. ~ 29

Index 32

Flex 'IYPe Requirements
FLEX TYPE requires a 48K Apple with Applesoft BASIC (in ROM on
the motherboard, on a ROMcard, or loaded in the Language Card)
and a disk drive.

The Flex 'IYPe Diskette
The Flex Type Master Disk is OOS 3.3 compatible. All programs on
it however may be easily oe-muffined to IDS 3.2 format. (NOTE:
Do not modify any programs on the master disk unless you have
wade a backup copy•)

Using Flex 'IYPe in Software to be Resold
Flex Type is licensed only for your personal use. If you are
interested in marketing software that uses Flex Type please
contact Beagle Bros regarding a third party licensing agreement.

Copyright Information
No portion of Flex Type, its documentation or the accompanying
diskette may be reproduced in any form (except for your personal
use) without the express written permission of the publishers,
"Beagle Bros", and the author, "Mark S. Simonsen".

[2]

IMPORTANT
For a quick reference to Flex Type's
commands, see the COMMAND SUMMARY
on page 29 of this book

(3]

1.0INTBDDUCTION

1.1 What Flex rrype Does
Flex Type is an Assembly Language program that automatically

converts all of your input and output (I/O) into a format that
allows you to choose between 70, 56, 40 and 20 column text width.

1.2 Advantages of Using Flex rrype
Not only does Flex Type offer you four different screen

widths (actually it offers three different font widths and a
double wide mode), it also gives you access to upper and lower
case letters, all special characters, true loixed graphics and
text, and user definable character sets. However, the biggest
advantage of using Flex Type is the ability it gives you to
display 70 columns of text; almost twice that of a normal Apple!

1.3 Disadvantages of Using Flex rrype
Although not required in 20, 40, or 56 column format, it is

recommended that you use this program with a high resolution
monitor when in 70 column mode. This is because of the fact that
the picture on most televisions is not clear enough to allow you
to distinguish very @nall characters when they are placed close
together. Also, very large programs (those that nearly fill all
available memory) may not be able to use Flex Type because at
least one Hi-Res page must be preserved for display. See
Appendix B for further information.

1.4 Features of Flex 'TYPe
- Enter, list, edit and run any progr~n in up to 70 columns of
upper and lower case characters.

- Supports all Applesoft BASIC and Apple Monitor commands along
with all escape sequences, editing functions (arrow keys), and
Zero page window pokes.

- Several selectable character sets are included. User definable
character sets for custom type fonts and graphics characters are
easily generated with Apple Character Editor (A.C.E.) which is
included on the Flex Type Master Disk.

- Flex Type is stingy with memory and uses only 5% of your
available RAM (random access memory) for the main program.
(Character sets require an additional 3/4 Keach.)

- Flex Type is completely compatible with Neil Konzen's program
Line Editor (P.L.E.) and Global progr~o Line Editor (G.P.L.E.).

[4]

2.0 USING FLEX TYPE

2.1 Invisible Flex Type
Flex Type has been designed so that its operation is

transparent to you, the l~er. That means your Apple will behave
normally, the way you expect it to behave. Whatever your Apple
could do before, it can now do at least as well or better.

2.2 Demonstrating Flex Type
TO better understand your Apple's new abilities, take a

minute now to view the demonstration program on your master disk.
If you haven't already done so, boot the Flex Type Master Disk by
inserting it into disk drive #1 and turning on the power to your
Apple] [plus. Apple] [owners without the Autostart ROM will
additionally need to enter:

6 <ctrl-p> <return> (from the monitor)

or

PR#6 <return> (from BASIC)

TO see the demo, type:

RUN FLEX TYPE DEMO <return>

NOTE: A '<return>' means to press the RETURN key, just as
'<ctrl-p>' means to hold down the CTRL key and press P. This
notation will be used throughout the tutorial.

2.3 Commands
Now that you've seen the demo, you are undoubtedly anxious

to begin using Flex Type. In order to make the most of Flex
Type, you first need to know the conmands that invoke its special
features.

Flex Type is easy to use. If you know how to use an Apple,
you practically know how to use Flex Type. The only difference
you will notice right away is that your display is now 30
characters wider than before. That is because you are in 70
column mode. You will see later how to switch modes. In this
mode you can type in longer lines and when you list your programs
they are automatically displayed in a 70 column format.

Go ahead. Load a program and list it, or type something in.
It's kind of nice to have so much information on the screen at
one time isn't it? Conmands like TAB, HTAB, and SPC also work on

[5]

a 70 column basis rather than a 40 column one. For instance
wi thout Flex Type, if you were to type:

HTAB 69 : PRINT "HI" <return>

your Apple would tab over 40 columns, "realize" it had no more
room on that line, output a carriage return and tab over another
29 columns for a total of 69 and then print HI. With Flex Type
(in 70 column mode), if you type:

HTAB 69 : PRINT "HI" <return>

your Apple will tab over 69 rolumns and print HI. The upper
limit on HTAB, TAB, SPC and other similar comnands will now
depend on the text mode that you are in (e.g. 20, 40, 56, or 70).

2.3.1 Alternating Character Sets
Alternate character sets are available in imnediate mode

(with a BASIC or monitor prompt) and deferred mode (during
program execution). In imnediate mode there are several ways to
switch character sets. The first is simply typing the Toggle
Text cOlnmand (control-T) followed by the number of the desired
character set (being sure not to type any spaces or any other
characters between the control-T and the number) and a carriage
return. Type:

<ctrl-T> 2 <return>

You got a ?syntax error message and the prompt and the
cursor are slightly larger now because the character set you
selected is a 56 rolumn one. If you LIST a prograJo you will see
that it is formatted accordingly. The syntax error message came
about because neither DOS nor Applesoft recognizes 'control-T 2'
as a legitimate comnand. The second method is better. Type:

<ctrl-T> 3 <ctrl-X>

Voila! Notice the absence of the syntax error. Control-X
cancelled the input line so 'control-T 3' was never seen by rx::s
or Applesoft, but because Flex Type intercepts each character
individually the command was executed. Control-X can and should
be used with all Flex Type comnands in the imnediate mode of
execution. By the way, you should now be looking at a
standard-sized character set (40 rolumn mode). But as you will
see in the discussion on upper and lower case, it is far from
standard.

The third method of entering Flex Type corrmands is to use
the Applesoft CHR$ function. You can select the next character

[6]

set by typing:

PRINT CHR$ (20) "I" <return>

or

PRINT CHR$ (20) 1 <return>

Twenty (20) is the ASCII equivalent of control-To The fourth
method is similar to the third. Type:

PRINT u<ctrl-T>3u <return>

NoW to see double wide characters type the Wide command:

<ctrl-W> <ctrl-X>

WOW, there's a big difference between a twenty column character
set and a seventy column one! TO turn off the double wide mode
type control-W again. Wide mode is intended to be used only
with 40 column character sets but may be used with any size. You
should be aware though that regardless of the font width, Wide
mode only displays 20 columns of text per line.

The HELLO program loaded three different character sets
of three different Sizes tor you to use. Up to nine (9)
different character sets may be loaded at one time. And
naturally you may choose to have as few as one. TO change the
number of character sets to be loaded when Flex Type is booted
requires only a few changes to the HELLO program. Beginning
with line number 100 assign the character set names to the CS$
array in the order that they are to be loaded. (Start with
CS$ (1), then CS$(2), CS$(3), etc.).

NOTE: Because Flex Type supports three different font widths it
is suggested that you use the following n~ning convention for
your character sets. This should keep you from forgetting the
width of a text font. Also when editing text fonts, A.C.E. tries
to determine the size of a character set when it is loaded. If
it has been n~ned in accordance with the naming convention,
A.C.E. will recognize that fact. If not, it will assume a 40
column text width.

Font Names
1. 70 column text fonts must be suffixed by .70 (e.g. ASCII.70).

-2. 56 column text fonts must be suffixed by .56 (e.g. ASCII.56).

3. 40 column text fonts may be suffixed by either .40 or by
anything else such as .set, .Font, etc.

The character sets once loaded are selected by a number

(7]

which indicates the relative position in which they were loaded.
Numbering starts with one (1) as you may have noticed from the
earlier examples, and has a maximum of nine (9).

Because each character set requires an extra 768 bytes (3/4
K) of memory it is wise to only load those that you plan to use.
That will allow as much memory as possible for your programs.

As mentioned previously, these commands are recognized in
programs (deferred execution mode) too. Four ways to incorporate
Flex Type cOfOOlands into programs are shown below.

10 PRINT "<ctrl-T>lTHIS WILL BE IN 70 COLUMN MODE."

or

10 T56$ "<ctrl-T>" + "2"
MODE."

or

PRINT T56$"THIS WILL BE IN 56 COLUMN

10 PRINT CHR$ (20) "3THIS WILL BE IN 40 COLUMN MODE."

or

10 T70$ CHR$ (20) + "1"
MODE."

PRINT T70$"THIS WILL BE IN 70 COLUMN

The first two methods shown above are not recocrmended
because they usually cause listings (to the screen and printer)
to appear goofed up.

Changing character widths (modes) will force the cursor to
the leftmost position on the screen. However, selecting a
different character set of the same width will not affect the
cursor position.

The relative position of the cursor on the screen is also
affected by character type. For instance, HTAB 10 in 20 column
mode (double wide mode) is not the same screen location as HTAB
10 in 70 column mode. In fact, it would be HTAB 35 in 70 column
mode that equals HTAB 10 in 20 column mode. Remember this when
you want to mix character types on the ~ne line.

[8]

2.3.2 Upper and Lower Case (not applicable to Apple lIe)
Entering lower case text is easy with Flex Type. Type

control-A once to enter lower case mode. In lower case mode,
typing control-A once will shift the next character to upper case
and any subsequent characters will be lower case. Typing
control-A twice returns you to upper case shift lock. If you
have made the shift modification to your Apple, it will work in
lower case mode.

NOTE: Unlike most other Flex Type commands, control-A does not
need to be followed by a control-X.

[9]

2.3.3 Special Characters (not applicable to Apple lIe)

For access to the special characters in the ASCII set the
zap command (control-Z) is provided. The Zap command when
executed will only affect the character immediately following it.
Five of the ten special characters are available in upper case
and the other five are naturally available only from lower case.
Below is a list of the ten special characters and the keys to
type (on the keyboard) or print (from a program) to access them.

UPPER CASE

<control-Z> K
<control-Z> L
<control-Z> M
<control-Z> N
<control-Z> 0

[(left bracket)
\ (back slash)
] (right bracket)

(up arrow or caret)
(underscore)

LO.'iER CASE

<control-Z> k
<control-Z> 1
<control-Z> m
<control-z> n
<control-Z> 0

(left brace)
(vertical bar)
(right brace)
(tilde)

o (rub)

If it seems funny to use K, L, M, N & 0 to generate the
special characters, it would probably be helpful to understand
how the Zap command works. When Flex Type sees a control-Z it
sets a flag telling itself to set the sixteens bit of the next
character typed or printed. For those of you not familiar with
HEX or binary, the sixteens bit is the fifth bit from the right
in a byte. (It is actually the fourth bit because they are
numbered from a - 7, right to left.) The sixteens bit is this
one:

DJJillIIJ
7 6 5 4 3 210

Why is it called the sixteens bit? If all the bits in a
byte were zero (off) and the sixteens bit was a 1 (on) then the
decimal value of the byte would be 16 (10 in hex and 0001 0000 in
binary). For more understanding on this, refer to APPENDIX C on
the ASCII character set.

2.3.4 Mixed Graphics and Text
Another useful feature of Flex Type is the capability to

combine text and graphics on the same screen. With Flex Type you
can place text anywhere on graphics, not just the bottom four
lines of the screen.

[10]

Let's sidetrack for a moment. For flexibility Flex Type
provides you with three comnands that let you decide how the
hi-res screens should be used. They are control-A, control-B and
control-Po Control-A causes all output to go to hi-res page one.
Control-B will cause all output to be placed on hi-res page two.
And control-P causes the page currently being written on to be
displayed. Because of the way these comnands are set up, you
have a lot of freedom with the hi-res screens. This versatility
is not at first obvious. Type:

PRINT aiRS (2) "THIS WILL BE PRINTED ON PAGE 2. "aiR$ (1) <return>

Since you are looking at page 1 you don't see what was printed.
To see page 2 type:

PRINT CHR$(2) CHR$(16) <return>

You are now looking at the same page your output went to. (If
there's garbage allover the screen, type HOME to clear things
up, then return to page 1 and repeat the above steps.) The same
kind of trick can be performed from page 2. Type:

PRINT CHR$ (1) "THIS WILL BE PRINTED ON PAGE l."aiR$ (2) <return>

To return to page 1 type:

PRINT CHR$(l) CHR$(16) <return>

These three coll1llands (ctrl-A, B, and P) can be used
regardless of the contents of the two screens. They can be
filled with text, graphics or a combination of the two. Getting
back on track, combining text and graphics on the ~ne screen
with Flex Type is easier than you might suspect.

To combine text with an already existing hi-res picture,
just BLOAD the picture to the desired screen (see APPENDIX B for
addresses). After loading the picture, it should automatically
be displayed. (If not, you have either accidentally or purposely
loaded it into the other hi-res page, i.e. the one you are not
looking at.) With the picture loaded, you can put text anywhere
on the screen by using VTlili, HTlili, Tlili, SPC, PRINT, etc.

To go one step further and plot on the hi-res screens
requires that you do nothing extra. You may however execute H:iR
(for page 1) or l(;R2 (for page 2). These two cOll1llands function
exactly as they would without Flex Type (i.e. initialize graphics
and clear the screen to black) except that you can also print

[11]

text anywhere on the screen. You're not limited to only printing
on the bottom four lines of the screen. Should you desire to
limit your text to the bottom four lines, see the miscellaneous
info at the end of APPENDIX D. Now, whether you've executed one
of the H3R' s or not, you may specify the HeOLOR you want and
HPLOT, DRAW or XDRAW as normally performed on the Apple] [. (See
the Applesoft Tutorial, Applesoft] [BASIC programning Reference
Manual, and Apple] [Reference Manual for further information on
these graphics conmands.)

2.3.5 Miscellaneous Commands
Three other Flex Type conmands that are provided mostly for

your convenience are control-E, control-F, and control-No
Control-E is the same as typill3 ESC E or CALL -868. Control-F
performs the same function as ESC F and CALL -958. Both of these
conmands make clearing part of the screen as easy in a program as
it is in inmediate mode. Control-N will invert the entire screen
or any windowed portion of it. The above cannands just as with
all Flex Type cOlMlands may be used from wi thin programs (BASIC or
Assembly Lall3uage) or in inmediate mode (with either the BASIC or
monitor prompt).

Another Flex Type command is control-Q. Control-Q toggles
Overstrike mode on and off. For example, to underline a word use
one of the following methods.

HI PRINT CHR$(15) "THE" OIR$(8) CHR$(8) CHR$(8) " "OIR$(15)

or
113 WAS 12: HTAS 113: PRINT "HELLO"
213 WAH 12: HTAS 113: PRINT CHR$ (15)" " CHR$ (15)

The following commands were added to Flex Type so that it
could more easily emulate (or simulate) an 813 column board. They
also make it possible to interface Flex Type with programs like
GPLE am PLE.

control-K
control-L

control-S

control-U

control-V

control-Y

control-\
control-]
control- A

control-

[12]

Clear from cursor to end of wimow.
Move cursor to upper-left corner of window and
clear window.
Set scroll mode; followed by 13 = no scroll·,
1 = normal scrolling, and 2 = fast scrolling.
Deactivate Flex Type and return to normal text
screen.
Scroll display down one line, leaving cursor in the
current position.
Move cursor to upper-left corner of window without
clearing screen.
Move cursor one space to the right.
Clear line from cursor to right edge of window.
Scroll display up one line, leaving cursor in the
current position.
Move cursor up to next line (reverse linefeed).

3.0 ADVANCED TECHNIQUES

3.1 Relocating the Code
Included on the master disk is a binary file (B type) named

RELOCATOR. This assembly language routine, in cooperation with
the BASIC program named HELLO, performs the code relocation of
Flex Type. HELLO loads Flex Type into memory (the default
location is between DOS and its buffers), appends the character
set(s) to the end of it and then calls RELOCATOR to adjust the
addresses within Flex Type so that it will run properly at that
location. This two step process is actually quite simple.

NOTE: RELOCATOR is not a general purpose code relocator nor is
Flex Type actually a true relocatable file. It cannot be loaded
by a relocating loader and is not an R type file. By making
RELOCATOR specialized for Flex Type, initialization is made
simpler, quicker and less wasteful of memory and disk space.

To load Flex Type below hi-res page 1 at $0800 (2048) rather
than at the default location, RUN HELLO 2. (NOTE: To have HELLO
2 run when you boot, RENAME HELLO to HELLO "I, and RENAME HELLO 2
to HELLO. You will also need to change the program name in line
number 220 of HELLO 2 to HELLO.)

3.2 Alternate Character Sets
To select a different character set(s) as Flex Type's

default(s), follow the instructions in section 2.3.1. Loading a
different character set(s) after Flex Type is up and running
requires that you know the starting address of the present
character set(s). This address is usually $9400 (37888 in
decimal) unless you loaded Flex Type at $0800 in which case it's
$1000 (4096 decimal). (You may not load more character sets than
the 4uanti ty loaded when Flex Type was booted. For example, if
three different character sets were loaded by the HELLO
program then you may only replace those three. If you need to
have four or more sets available you will need to reboot. This
does not apply if Flex Type was loaded at $0800.) To determine
the starting address of the character set(s) type:

PRINT PEEK (974) + PEEK (975) * 256 + 2048

Qice the address is known BLOAD the new character set at that
address plus 768 ($300) times its position. Then POKE ADDRESS ­
10 + POSITION, with WIDTHTYPE. (See the program called OPTCHAR
on the master disk for an example.)

To define your own character sets you may use ANIMATRIX from
the Apple 005 Tool Kit, a similar program, or the supplied
character editor (A.C.E.). If you use a program like ANIMATRIX
be aware that you may only use the entire 7X8 array of pixels

[13]

(picture elements) that it provides for each character when you
are defining a 40 column character set. Because the 56 and 70
column characters in Flex Type are not that wide, restrict those
character definitions to the leftmost 5 and 4 pixels
(respectively) of each row in the character block. Below is an
illustration.

::; ~ ~;- ~ -- :;l-~ -----
){ .. . '\ 'l
-- .- - ----_. - -
x , " \ V

- -- ----
){ .~.);: \0' 'i'l

~:- .:... -_._.-

". x x , Yl
" x .:~ .; -__~~: ~~--l-=.\." };" X ., ,-_ _-- -
.:';'){ .:-..:'

: <--·_·-7!Zj->:
: <: ·_·"---56--- >:

There are a couple of things that you ought to know if you
plan on using A.C.E. First, to use it type RUN A.C.E.
second, when A.C.E. is run it will (re)load Flex Type (whether or
not it is currently in memory) with room for only two character
sets; one to be edited and one to be used for reference. When
exiting A.C.E. you will be left within Flex Type with access to
only those two character sets. (As always if you wish to restart
Flex Type without rebooting, first RUN REMJVE FLEX TYPE.) The
instructions for using A.C.E. are very simple, easy to learn and
are included in the program itself. So ...happy editing.

3.3 Impersonating a Flasher
usually on an Apple the characters are displayed in NORMAL,

INVERSE and FLASHing with hardware. As you may have noticed,
Flex Type recognizes INVERSE and NORMAL and outputs characters
accordingly (something that most other hi-res character
generators and hi-res text programs can't do). But if you've
tried FLASH you no doubt noticed that your output was only
displayed as inverse characters. That is because there is no
hardware to support flashing characters on the hi-res screens.
All is not lost however. With a special software routine it is
usually (but not always) possible to simulate FLASH. And in case
you've forgotten, just such a routine was used in part of the
Demo program. The trick is simply to print out the text string
normally, wait a specified period of time, print it again in
inverse and repeat the process. An example would be:

[14]

10 TIMES = 100 : VP = 11 : HP = 1
20 X$ = "THIS TEXT IS FLASHIN3."
30 GOSUB 1000

1000 PAUSE = 50
1010 FOR I = 1 TO TIMES
1020 TGGLE = NOT 'D8GLE : NORMAL
1030 IF (TGGLE) THEN INVERSE
1040 VTAB VP HTAB HP : PRINT X$;
1050 FOR J = 1 TO PAUSE : NEXT J
1060 NEXT I
1070 RETURN

The above method works well only if your program doesn't need to
perform any other tasks while you are simulating FLASH. What if
you want to do something else at the same time'? Well, with only
minor modificatons to the subroutine you can perform several
operations at the same time. Below is an example:

10 VP = 11 : HP = 1
20 X$ = "'!HIS FLASHES WHILE YOU 00 SO'1ETHIN3 ELSE. n

30 GOSUB 1000
40 ••• SOMETHING •••
50 GOSUB 1000
60 ••• SOMETHING •••
70 GOSUB 1000

1000 TGGLE = NOT TGGLE : NORMAL
1010 IF ('ffiGLE) THEN INVERSE
1020 VTAB VP : HTAB HP : PRINT X$;
1030 RETURN

once the parameters VP, HP and X$ are set up in the main
program they need not be redefined. All you need to do is
intersperse a few GOSUBs within your processing and the text will
flash while you perform calculations, print, etc. For an example
of FLASH simulation see the program entitled FLASHER on the
master disk.

[15]

4.0 IMPORTANT ODDS AND ENDS

4.1 Exiting and Be-entering Flex 'IYPe
A brief discussion of some ways to leave and get back into

Flex Type is given here to increase your awareness of your new
environment in the Apple.

If you ever exit Flex Type (for instance with the TEXT
command or the reset key) you may re-enter it without rebooting
the master disk or running the HELLO program by typing a n&n

and a return. Upon returning you will find yourself on the
hi-res page you last used with the last character set you used.
It isn't important to know Flex Type's entry point. It seems
appropriate here to mention that the only way to cleanly
alternate between Flex Type's hi-res text and normal text screen
text is with the TEXT and & commands. (These may also be used
from within a program.) Similarly the only way to completely
exit Flex Type and free up all memory it occupies is to RUN
REMOVE FLEX TYPE.

Suppose you accidentally hit reset and exit Flex Type
unintentionally. If you just typed in a long program, don't
worry you haven't lost it. You're just in normal text mode. To
re-enter Flex Type type:

& <return> (from Bl>SIC)

or, if you are using the & command for something else

CALL 973 <return>

or

3Crx; <return>

(from Bl>SIC)

(from the monitor)

If you have a newer Apple wi th the encoder board under the
keyboard, you may want to set the switch so accidentally hitting
reset will do nothing. And for those of you with Autostart
ROM's, defeating the reset entirely by intercepting it is
possible. (See Apple 1[Reference Manual.)

[16]

4.2 The Window
As mentioned previously, Flex Type supports Zero Page window

pokes. The screen may be windowed in any of the modes (20, 40,
56, and 70 columns). However, because of the way that Flex Type
works, it is only possible to change the top and bottom edges of
the window (WNDTOP and WNDBTM respectively). The location of
WNDTOP is 34 ($22) and WNDBTM is 35 ($23). 00 NOT, repeat 00
NOT, ever poke locations 32 ($20, WNDLFT) or 33 ($21, WNDWDTH)
while using Flex Type. Also, the warnings in the Applesoft) [
BASIC Programming Reference Manual and the Apple) [Reference
Manual are valid with Flex Type too (i.e. WNDTOP should always be
less than WNDBTM, just as WNDBTM should always be greater than
WNDTOP) •

(17)

4.3 More Do's and Don'ts
Don't use CALL -936, -958, -868, -922, or -912.
Do use HOME, ctr1 F, ctrl E, ctrl J, and VTAB 24:PRINT as
replacements respectively.

Don't use ctr1B <return> to re-enter BASIC from the monitor.
Do use ctr1 C <return>. (If you accidently use ctrl B, execute
an FP coll1l\and to prevent a crash.)

Don't use ESC ctrl-Q or ESC ctrl-L to remove GPLE.
Do use REMOVE FLEX TYPE.

Don't use PLE/GPLE' s Ed it funct ion in INVERSE rrode. (Because it
interprets inverse characters as control characters.)
Do use PLE/GPLE's Edit function in NORMAL mode.

Don't run ESCAPE C~rE, ESCAPE SAVE or ESCAPE PRINTER while GPLE
is interfaced with Flex Type.
Do run them at any other time.

Don't run REMOVE PLE while in hi-res text.
Do run REMOVE PLE in normal text screen text.

4.4 Little Known Facts
1. To use Flex Type in combination with GPLE (or PLE) do the
following:

Boot your GPLE (or PLE) disk.
Run HELLO or HELLO 2 from the Flex Type disk.
Run GPLE. 48 PATCH (or GPLE. LC PATCH, GPLE. DM PATCH or PLE

PATCH depending on which version of GPLE (or PLE) you
loaded) •

Control-V will now switch between normal and hi-res text
with full access to GPLEs features in either mode. (This command
doesn't exist in PLE).

If you have version 4.0 or later of GPLE (from Beagle Bros),
you should not use the above method. Instead, do the following:

Brun CONFIG GPLE from the GPLE disk.
Select 7 (other) when prompted for the video driver and use

FLEXTYPE.VID from the Flex Type disk.
Answer YES to the 40 column default question.
Boot your GPLE disk.
Run HELLO or HELLO 2 from the Flex Type disk.
Type TEXT <return> and then & <return>.
Control-V works as above.

[18]

2. The sample programs on the disk will only work as intended
under the default font configuration (i.e. three fonts: ASCII.7~,

ASCII.56, & l\SCII.4~).

3. Sending the "rub" character, CHR$(127), to a printer will
cause the character preceding it to be deleted. It doesn't have
any effect on the screen however and may be used for almost any
purpose.

4. Flex Type loaded below Hi-res page 1 only has sufficient room
for 5 character sets. However, if Hi-res page 1 is not used then
there is plenty of room for the maximum 9 character sets below
Hi-res page 2.

5. Flex Type doesn't write on the normal Text screen.

6. CALL -936 will clear the normal Text screen but will not
affect the Hi-res screens.

7. Flex Type uses the following Zero Page locations: $EC, $ED,
$EE, $EF, $FA, $FB, $FC, $FD, $FE, and $FF.

8. Most of page 3 in memory ($300-3FF) is available for you to
use. Flex Type uses only three bytes, $3CD-3CF, aoo DOS and the
System Monitor use $3D0-3FF.

9. You can use the character sets from Apple's DOS Tool Kit (and
other similar hi-res character programs) with Flex Type.

10. When PLE is interfaced with Flex Type, its commands are only
available in hi-res text.

11. Because GPLE/PLE will intercept some of Flex Type's commands
(e.g. ctrl-E), you may sometimes have to use PRINT CHR$(S), etc.
in immediate mode.

12. Change these GPLE Escape functions to what is printed below.
(Note: Lower case letters represent control characters.)

Esc T- TTEXT:POKE-16300,0m

Change the 8 after "POKE 104," in the ctrl-shift-N Escape
function to a 96 (or 64) if you booted with HELLO 2.

13. Only use Esc H (display control characters) in normal text
and not when using hi-res text. This does not apply if the
version of GPLE you are using is 4.0 or later (from Beagle Bros) •

[19]

APPENDIX A

Compatibility with BASIC
and Monitor Commands

All Applesoft Floating Point BASIC commands are supported,
but some have been altered slightly. A reference list and
explanations follow.

TOKEN KEYWORD TOKEN KEYWCRD 'I'OKE.'N KEYWCRD
HEX DEC HEX DEC HEX DEC

80 128 END A4 164 LOMEM: C8 200 +
81 129 FOR AS 165 ONERR C9 201 -
82 130 NEXT A6 166 RESUME CA 202 *
83 131 DATA A7 167 RECALL CB 203 /
84 132 INPUT AS 168 sroRE CC 204
85 133 DEL A9 169 SPEED= CO 205 AND
86 134 DIM AA 170 LET CE 206 OR
87 135 READ AS 171 GOTO CF 207 >

* 88 136 GR AC 172 RUN DO 208
* 89 137 TEXT AD 173 IF Dl 209 <

8A 138 PR# AE 174 RESTORE 02 210 SGN
8B 139 !Nit AF 175 & 03 211 INT
8C 140 CALL BO 176 GOSUB 04 212 ASS
80 141 PLOT Bl 177 RETURN 05 213 USR
8E 142 HUN B2 178 REM 06 214 FRE
8F 143 VLIN B3 179 s'rap * 07 215 SCRN(
90 144 I-CR2 B4 180 00 OS 216 POL

* 91 145 HGR B5 181 WAIT *09 217 POS
92 146 HCOLOR= B6 182 LOAD DA 218 SQR
93 147 HPLOT 67 183 SAVE DB 219 RND
94 148 DRAI'i B8 184 OEF OC 220 r..cx:;
95 149 XDRAW B9 185 POKE DO 221 EXP
96 150 HTAS SA 186 PRINT DE 222 COS
97 151 HOME BB 187 CONT OF 223 SIN
98 152 ROT= Be 188 LIST EO 224 TAN
99 153 SCALE= BO 189 CLEAR El 225 ATN
9A 154 SHLOAD BE 190 GET E2 226 PEEK
9B 155 'rRACE BF 191 NEW E3 227 LEN
9C 156 NOTRACE CO 192 TAB (E4 228 STR$
90 157 NORMAL Cl 193 TO E5 229 VAL
9E 158 INVERSE C2 194 FN E6 230 ASC

* 9F 159 FLASH C3 195 SPC(E7 231 CHR$
AO 160 COLOR= C4 196 THEN E8 232 LEFT$
Al 161 POP C5 197 AT E9 233 RIGHT$
A2 162 VTAS C6 198 NO'r EA 234 MID$
A3 163 IUMFJ'\: C7 199 STEP

[20]

GR - set to low resolution graphics with four lines of normal
text screen text at the bottom. Flex Type will not display
hi-res text in combination with low resolution graphics. TO
return to hi-res text execute the & command.

TEXT - reset full text window, VTAB to row 23 and return to
normal text screen text. (& returns to hi-res text.)

HGR - set to full screen high resolution graphics with ability to
include text anywhere.

F~SH - cause output to be displayed as inverse (see section 4.0
for flashing character simulation).

SCRN (- only works in normal text mode. To simulate SCRN in
hi-res text use:

ADRS
VTAB
(The
that

PEEK (974) + PEEK (975) * 256
row: HTAB column: CALL ADRS+12: A
variable A will equal the decimal
was found on the screen, e.g. the

= PEEK(234) - 128
value of the character
letter "A" is a 65).

POS - only works in normal text mode. To simulate POS in hi-res
text use:

PEEK (252)

Use of FRi and IN# should be avoided while in hi-res text.
This is because almost all peripheral interface cards send output
to the normal text screen making it impossible for Flex Type to
intercept it. It should be obvious then that PR# arrl INIt may be
used freely while in normal text mode. If you accidently or
purposely issue one of those two commands while in hi-res text
mode, execute an & command to return control to Flex Type.

To LIST in 70 columns to a printer in slot 1:

PRINT CHR$ (4) "PR#1": PRINT CHR$(9)"70N": LIST: & <return>

To RUN a program in 70 columns on a printer:

(first program line)
10 PRINT CHR$(4) "PR#1: PRINT CHR$(9)"70N"

(last program line)
10000 &: END

Flex Type also supports all monitor commands including I
and N. (See Apple] [Reference Manual for other monitor
commands.)

[21]

APPENDIXB

Preserv1ng the Hi-~s Screens
It is essential to avoid overwriting the areas of memory

that Flex Type uses for display. Assembly language programners
can easily comply with this requirement by assembling their code
to run and be loaded at addresses other than those used by Flex
Type. BASIC progranners however are in a different boat, as
Applesoft programs load from the lowest memory up and the
variables work toward the hi-res screens (see figure 1).
protecting at least one screen is necessary for Flex Type to
function properly. However, depending on your application, you
may want to protect both.

There is only 6K (lK = 1024 bytes) of memory between the end
of text page 1 and hi-res page 1 that is allotted for BASIC
programs. If you need to use hi-res page 1 and your programs are
6K or less in length, you're O.K. To determine the exact length
of a program, LOAD it and then type:

PRINT (PEEK(175) + PEEK(176) * 256) - (PEEK(103) + PEEK(104)
* 256) <return>

'FFFF -->
.ceee -->
'9Dee -->
.9Ree -->
.92ee -->
.8Bee -->

ROlf----------------------------Disk Operating Syste.----------------------------One Character Set

FLEX TYPE

DOS Buffers----------------------------
Rpplesoft strings start I
at HllfEIf and build down v

<-- 65535

<-- -19152

<-- -Ie192

<-- 39-12-1

<-- 37376
<-- 3558-1

.6eee --> ---------------------------- <-- 2-1576
High-resolution graphics,

Page 2

.-Ieee --> ---------------------------- <-- 1638-1
High-resolution graphics,

Page 1

<-- 8192

Variables start at
LOIfEIf and build up

Rpplesoft progra.

lines push LOIfEIf up

[22]

BRSIC Syste. use:

text screen, input buffer,

stack, zero page, etc.

FIGURE 1.

<-- 2'1-18

<-- eeee

If the number is smaller than 6144 the program will fit. TO
estimate how lol'YJ a program is without having to load it into
memory, take the nllllber of disk sectors it occupies, subtract 1
and divide by 4. Here's an exauple. say the program in question
occupies 19 disk sectors. Subtracting 1 (for the track sector
list sector) leaves 18. Divide that by 4 (since there are 256
bytes per sector, and it takes 4 sectors to equal lK) and you get
4.5. Your program is approximately 4.5K long. It would safely
fit, but because Applesoft variables build from the end of the
program up, it would be necessary to have the first statement in
the program set IDMEM at least above hi-res page 1. It should
look like this:

10 LOMEM: 16384

or

10 IDMEM: 24576

(sets it above hi-res page 1)

(sets it above hi-res page 2)

'fFFF --> ---------------------------- <-- 65535
ROH

"eee --} ---------------------------- <-- -19152
_9Dee -->

Disk Operating Syste.
<-- 4e192----------------------------One Character Set

_9Ree --> ---------------------------- <-- 39424
FLEX TYPE

_92ee --} ---------------------------- <-- 37376
DOS Buffers

_8Bee --} ---------------------------- <-- 35584

Rpplesoft strings start

at HIHEH and build dONn v

_6eee -->

_4eee -->

_e8ee -->

_eeee -->

High-resolution graphics.

Page 2

Variables start at

LOHEH and build up

Rpplesoft progra.

lines push LOHEH up

BRSIC Syste. use:

text screen, input buffer.

stack. zero page. etc.

FIGURE 2.

<-- 2-1576

<-- 16384

<-- 2e48

<-- eeee

[23)

This action will also prevent Applesoft strings (which build down
from HIMEM) from overwriting the graphic screens.

programs larger than 6K have several alternatives for
solutions. First, if you only need to use one screen, use hi-res
page 2. This frees up the 8K in hi-res page 1. You may now run
programs that are up to 14K (57 disk sectors) long (see figure
2) •

second, set the program start to $4000 (16384 decimal) or
$6000 (24576 decimal) depending on whether or not you need both
screens. Do this with a POKE 104,x : POKE X * 256,0 (where X =
64 or 96). See the Load Flex Type subroutine in A.C.E. that is
called in line number 20 of that program for an example. This
yields IS.75K and 10.75K (76 and 44 disk sectors respectively)
for BASIC programs. And if in combination with this you load
Flex Type below hi-res page 1 you get an extra 2.75K of memory
(see figures 3 & 4 and section 3.1 on loading Flex Type below
hi-res page 1).

ffFFF -->
.ceee -->
.9Dee -->
.96ee -->

ROlf

Disk Operating Syste.

DOS Buffers

Rpplesoft strings start

at HIIfEIf and build dONn v

Variables start at

LOIfEIf and build up

<-- 65535

<-- -19152
<-- -Ie192
<-- 38-1ee

Rpplesoft progra.

lines push LOIfEIf up

.6eee --> ---------------------------- <-- 2-1576
High-resolution graphics,

Page 2

.-Ieee --> ---------------------------- <-- 1638-1
High-resolution graphics,

Page 1

.2ee, -->
113ee -->
.1eee -->
.e8ee -->

•eeee -->

[24)

(not used>

One Character Set

FLEX TYPE

BRSIC Syste. use:

text screen, input buffer,
stack, zero page, etc •

FIGURE 3.

<-- 8192

<-- -186-1
<-- -Ie96
<-- 2e-l8

<-- eeee

.FFFF --> ---------------------------- {-- 65535
ROH

.C668 --> ---------------------------- <-- 49152

HD88 -->
Disk Operating Syste.

<-- 48192----------------------------DOS Buffers
.9666 --> ---------------------------- <-- 38486

Rpplesoft strings start I
at HIHEH and build dONn v

Variables start at

LOHEH and build up

.4666 -->

.2886 -->
H368 -->
H888 -->
.6888 -->

Rpplesoft progra.

lines push LOHEH up

High-resolution graphics,

Page 1

(not used)

One Character Set
FLEX TYPE----------------------------BRSIC Syste. use:

text screen, input buffer,

stack, zero page, etc.

FIGURE 4.

<-- 16384

<-- 8192

<-- 4864

<-- 4896

<-- 21U8

<-- 8668

1

Last but not least, if you are short on memory, you can
chain programs or break your progr~n into parts and have each
part call (RUN) the next part. See The IDS Manual.

[25]

APPENDIXC

The ASCII Character Set
The Ascii character set is given here for your reference.

It has the decimal, hex, and binary equivalents for each
character.

DEC HEX BINARY CHAR WHAT TO TYPE

GROUP 1: 0 00 00000000 NULL ctr1 @

1 01 00000001 SOH ctr1 A
2 02 00000010 STX ctr1 B
3 03 00000011 ETX ctr1 C
4 04 00000100 ET ctr1 D
5 05 00000101 ENQ ctr1 E
6 06 00000110 ACK ctrl F
7 07 00000111 BEL ctr1 G
8 08 00001000 BS ctr1 H
9 09 00001001 HT ctrl I

10 OA 00001010 LF ctr1 J
11 OB 00001011 VT ctr1 K
12 OC 00001100 FF ctr1 L
13 OD 00001101 CR ctrl M
14 OE 00001110 SO ctrl N
15 OF 00001111 SI ctr1 0
16 10 00010000 DLE ctrl P
17 11 00010001 DCl ctrl Q
18 12 00010010 DC2 ctrl R
19 13 00010011 DC3 ctrl s
20 14 00010100 DC4 ctrl T
21 15 00010101 NAK ctrl U
22 16 00010110 SYN ctrl V
23 17 00010111 ETB ctrl W
24 18 00011000 CAN ctr1 X
25 19 00011001 EM ctrl Y
26 lA 00011010 SUB ctr1 Z
27 18 00011011 ESCAPE ESC
28 lC 00011100 FS ctr1 \ (or ctrl Z, ctrl L)
29 ID 00011101 GS ctrl) (or ctrl shift M)

30 IE 00011110 RS ctrl A (or ctr1 shift N)

31 IF 00011111 US ctrl (or ctr1 Z, ctrl 0)

GROUP 2: 32 20 00100000 SPACE space
33 21 00100001 !
34 22 00100010 "
35 23 00100011 ~ ~

36 24 00100100 $ $
37 25 00100101 % %
38 26 00100110 & &

39 27 00100111
40 28 00101000 ((
41 29 00101001))
42 2A 00101010 * *
43 2B 00101011 + +
44 2C 00101100

(26]

DEC HEX BINARY CHAR WHAT TO 'I'YPE

45 20 00101101
46 2E 00101110
47 2F 00101111 / /
48 30 00110000 0 0
49 31 00110001 1 1
50 32 00110010 2 2
51 33 00110011 3 3
52 34 00110100 4 4
53 35 00110101 5 5
54 36 00110110 6 6
55 37 00110111 7 7
56 38 00111000 8 8
57 39 00111001 9 9
58 3A 00111010
59 3B 00111011 ; ;
60 3C 00111100 < <
61 3D 00111101
62 3E 00111110 > >
63 3F 00111111 ? ?

GROUP 3: 64 40 01000000 @ @

65 41 01000001 A A
66 42 01000010 B B
67 43 01000011 C C
68 44 01000100 0 0
69 45 01000101 E E
70 46 01000110 F F
71 47 01000111 G G
72 48 01001000 H H
73 49 01001001 I I
74 4A 01001010 J J
75 4B 01001011 K K
76 4C 01001100 L L
77 4D 01001101 M M
78 4E 01001110 N N
79 4F 01001111 0 0
80 50 01010000 P P
81 51 01010001 Q Q
82 52 01010010 R R
83 53 01010011 S S
84 54 01010100 T T
85 55 01010101 U U
86 56 01010110 V V
87 57 01010111 W W
88 58 01011000 X X
89 59 01011001 Y Y
90 5A 01011010 Z Z
91 5B 01011011 [[(or ctrl Z, K)

92 5C 01011100 \ \ (or ctrl Z, L)
93 50 01011101 1) (or ctrl Z, M)
94 5E 01011110 A (or ctrl Z, N)
95 5F 01011111 (or ctrl Z, 0)

[27)

1

The following characters require lower case mode to be set with
the control A cornnand.

DEC HEX BINARY CHAR WHAT TO TYPE
GROUP 4: 96 60 01100000 @

97 61 01100001 a A
98 62 01100010 b B
99 63 01100011 c C

100 64 01100100 d 0
101 65 01100101 e E
102 66 01100110 f F
103 67 01100111 9 G
104 68 01101000 h H
105 69 01101001 I
106 6A 01101010 j J
107 6B 01101011 k K
108 6C 01101100 1 L
109 60 01101101 m M

110 6E 01101110 n N
111 6F 01101111 0 0
112 70 01110000 P P
113 71 01110001 q Q
114 72 01110010 r R
115 73 01110011 s S
116 74 01110100 t T
117 75 01110101 u U
118 76 01110110 v V
119 77 01110111 w W
120 78 01111000 x X
121 79 01111001 Y Y
122 7A 01111010 z z
123 7B 01111011 { { (or ctrl Z, K)
124 7C 01111100 I

1
(or ctrl Z, L)

125 70 01111101 } (or ctrl Z, M)

126 7E 01111110 - (or ctrl Z, N)
127 7F 01111111 0 o (or ctrl Z, O)

[28]

APPENDIX D

Flex Type Command Summary
Boot the Flex Type disk or RUN HELLO to start.
(See page 18 if you are UB1ng PLE or GPLE.)

SCREEN CONTBDL
& (or CALL 973) .. Re-enter Flex Type from normal-text mode
'.rJIXT (or Reset) Enter normal-text mode from Flex Type
ctrl-A. Print on Hi-Bas P!I€e 1
ctrl-B Print on Hi-Res P!I€e 2
ctrl-P DisplBiY current print~e
ctrl-1I Normal/Inverse (entire screen) toggle
ctrl-Q Overstrike/NormaJ. toggle

TYPEWlDTH
ctrl-T 1 70-column text (or 1st font loaded)

ctrl-T a 56-column text (or 2nd font loaded)
ctrl-T 3 , .40-c0lumn text (or 3rdfont lOaded)
ctrl-W 2Q-column text (double-Wide characters)

SPECIAL CHARACTERS
ctrl-A Capital letters
ctrl-A Lower-case letters
ctrl-A Sh11t (ca.pita.l1ze next letter only)

ctrl-Z K .. Lett Bracket (()
ctrl-Z L Backslash (\)
ctrl-Z :II R1ght Bracket (])
ctrl-Z 11 Up .A:rrow C)
ctrl-Z 0 Underscore C)

ctrl-Z k Left Brace ({)
ctrl-Z I Vertical Bar (I)
ctrl-Z m.. . Right Brace (})
ctrl-Z n Tilde C)
ctrl-Z 0 Rub (0)

MISCELLANEOUS
HOllIE .. Clear screen being viewed
ctrl·B Clear text from cursor to end of line
ctrl-I' Clear text from cursor to end of screen

ALTERNATE CHARACTER SETS
TO CREATE a new character set-

R1lll A.C.lII. (the "Apple Character Editor" on the Flex Type d1Bk).

TO LOAD new character sets-
Change the HELLO program's first lines to assign
Character Set names; CSS(I), CSS(8), CSS(3)...; in the order
they are to be loaded. Then save and Run HELLO.

(29)

Here's some miscellaneous information about the hi-res
screens that may be useful.

TO load pictures to hi-res screen 1, type:

BLOAD <picture name>,A$2000 <return>

or

BLOAD <picture name>,ABl92 <return>

and to load pictures to hi-res screen 2, type:

BLOAD <picture name>,A$4000 <return>

or

BLOAD <picture name>,Al6386 <return>

TO simulate normal HGR with only 4 lines of text at the bottom of
the screen, type:

POKE 34,20 <return>

TO undo th i s use the TEXT comnand 0 r POKE 34,0.

NOTE: If you type HGR from page 2 or HGR2 from page 1 you will
not see the prompt or the cursor. TO remedy this situation use
the control A, B and P comnands. If you typed HGR from page 2,
PRINT CHR$(16) to return to page 2 or PRINT CHR$(l) CHR$(l6) to
go to page 1. If you typed HGR2 from page 1, PRINT CHR$(16) to
return to page 1 or PRINT CHR$(2) CHR$(16) to go to page 2.

[30]

1

DTDEX
AGE. '" 14
Alter.nating Character Sets " 6
Ampersand (&) 16
..AniInatrix .. 13
.ASCII Character Set 26

Ba.ckslash 10
BASIC Commands 20
BIDAD 3O

CALL973 16
Calls 12,18
Capital Ietrers " 9
Captil1zing First Ietrer 9
Caret 10
Changing Character sets " 6
Character Sets 6
OOMMAND SUMMARY 29
Commands, BASIC 20
ctrl-A .. 9, 11
ctrl-B " 11
ctr~E,ctr~F 12
ctrl-K 12
ctrl-L 12
ctrl-N 12
ctrl-D 12
ctrl-P 11
ctrl-8 12
ctrl-T , 6
ctrl-U 12
ctrl-V 12
ctrl-W " " " 7
ctrl-X 6
ctrl-Y 12
ctrl-Z 10
ctrl-\ 12
ctrl-] 12
ctrl- A ••••••••••••••••••••••••• 12
ctrl-_ " 12

Demo, Flex 'IYPEl 5
DOS Tool Ktt 13, 19
DRAWandXDRAW 12,20

Entering Flex 'IYPEl " 16
ESC Create and ESC Save " 18
Exiting Flex 'IYPEl 16

FLASH .. 14, 20
Font Names .. 7

GPLE 18,19

HOOIDR 12

HGR & HGR2 11, 20
Hi-Res Pages 11, 22
H!1{E1I 20,~25

H01lE 20
HPLOT .. 12,20
:HTAB 6,11

INVERSE/NORMAL Toggle 12

lBft Brare & Bracket 10
Lioensing Flex 'IYPEl 2
Loading Character Sets 7
ID1{E1I 20,~25

Lower Case 9

1Ionitor 4
1Ioving Flex 'IYPEl 13

NORMAI/INVERSE Toggle 12

Oversbike 12
Overwriting Hi-Res. 22

PLE 18,19
Page 1 & Page 2 11
Pixels 13
Printer Listings 21

Relocating Code 13
Remove Flex 'IYPEl. 14
Remove GPLE/PLE 18
Reset 16
Right Brare & Bracket 10
Rub 10

Sixtoons Bit 10
SPC 11,20
Special Characters 10

TAB 11,20
Text & Graphics 10
TEXT 16,20
Text Window 17
Tilde 10
TV 4

Underscore 10
Upper & Lower Case 9

Vertical Bar 10
VTAB 11,20

Width Control 6
Window 17
WNDLFT, WDI'H, TOP, BTM: 17

zero-Page. 17, 19

Warranties and Limitations of Liability
Beagle Bros Inc. warrants that this product will perform as advertised. In the
event that it does not meet this warranty or any other warranty, express or
implied, Beagle Bros will refund the purchase price of this product.

BEAGLE BROS' LIABILITY IS LIMITED TO THIS PRODUCT'S PUR­
CHASE PRICE. In no case shall Beagle Bros or the author be liable for any
incidental or consequential damages, nor for any damages in excess of the
purchase price of this product.

This disk includes software, APPLE DOS 3.3, owned by Apple Computer,
Inc. This software is used under license from Apple. Apple makes no warran­
ties, either express or implied, regarding Apple DOS, its merchantability, or its
fitness for any particular purpose.

"APPLE" is a registered Trade Mark of Apple Computer Inc.

INDOOR SPORTS

Copyright © 1982, Mark Simonsen
Published by BEAGLE BROS INC.

4315 Sierra Vista, San Diego, California 92103
619-296-6400

	Image1.jpg
	Image2.jpg
	Image3.jpg
	Image4.jpg
	Image5.jpg
	Image6.jpg
	Image7.jpg
	Image8.jpg
	Image9.jpg
	Image10.jpg
	Image11.jpg
	Image12.jpg
	Image13.jpg
	Image14.jpg
	Image15.jpg
	Image16.jpg
	Image17.jpg
	Image18.jpg
	Image19.jpg
	Image20.jpg
	Image21.jpg
	Image22.jpg
	Image23.jpg
	Image24.jpg
	Image25.jpg
	Image26.jpg
	Image27.jpg
	Image28.jpg
	Image29.jpg
	Image30.jpg
	Image31.jpg
	Image32.jpg
	Image33.jpg
	Image34.jpg

