
Apple IIGS

#71: DA Tips and Techniques 1 of 6

Apple II
Technical Notes

Developer Technical Support

®

Apple IIGS
#71: DA Tips and Techniques

Revised by: Dave “Mr. Tangent” Lyons May 1992
Written by: Dave Lyons November 1989

This Technical Note presents tips and techniques for writing Desk Accessories.
Changes since December 1991: Reworked discussion of NDAs and Command- keystrokes.
Marked obsolete steps in “NDAs Can Have Resource Forks.”

Classic Desk Accessory Tips and Techniques

Reading the Keyboard

For a CDA that runs only under GS/OS, the Console Driver is the best choice for reading from
the keyboard. Other CDAs have two cases to deal with: the Event Manager may or may not be
started. The Text Tools can read the keyboard in either case, but you should avoid using the
Text Tools whenever possible (see Apple IIGS Technical Note #69, The Ins and Outs of Slot
Arbitration).

You can call EMStatus to determine whether the Event Manager is started. When it is, you
can read keypresses by calling GetNextEvent. When the Event Manager is not started, you
can read keys directly from the keyboard hardware by waiting for bit 7 of location $E0C000 to
turn on. When it does, the lower seven bits represent the key pressed. Once you’ve detected a
keypress, you need to write to location $E0C010 to remove the keypress from the buffer.

Alternately, you can use IntSource (in the Miscellaneous Tools) to temporarily disable
keyboard interrupts and then read the keyboard hardware directly. Be sure to reactivate
keyboard interrupts if, and only if, they were previously enabled.

Just One Page of Stack Space

CDAs normally have only a single page of stack space available to them (256 bytes at
$00/01xx). Your CDA may or may not be able to allocate additional stack space from bank 0
during execution. The following code (written for the MPW IIGS cross-assembler) shows a safe
way to try to allocate more stack space and to switch between stacks when the space is available.

If ProDOS 8 is active, your CDA cannot allocate additional space (and there is no completely
safe way to “borrow” bank 0 space from the ProDOS 8 application).

Apple II Technical Notes

Apple IIGS

2 of 6 #71: DA Tips and Techniques

Developer Technical Support May 1992

Apple IIGS

#71: DA Tips and Techniques 3 of 6

HowMuchStack gequ $1000 ;try for 4K of stack space

start phd
 phb
 phk
 plb
 pha ;Space for result
 pha
 PushLong #HowMuchStack
 pha
 _MMStartUp
 pla
 ora #$0f00 ;OR in an arbitrary auxiliary ID
 pha
 PushWord #$C001 ;fixed, locked, use specified bank
 PushLong #0 ;(specify bank 0)
 _NewHandle
 tsc
 sta theOldStack
 bcs NoStackSpace ;still set from _NewHandle
 tcd
 lda [1]
 tcd
; clc ;carry is already clear
 adc #HowMuchStack-1
NoStackSpace pha
 ldx #$fe
keepStack lda >$000100,x
 sta stackImage,x
 dex
 dex
 bpl keepStack
 pla
 tcs
 jsl RealCDAentry ;carry is clear if large stack available
 php
 php
 pla
 sta pRegister
 sei
 ldx #$fe
restoreStack lda stackImage,x
 sta >$000100,x
 dex
 dex
 bpl restoreStack
 lda theOldStack
 tcs
 lda pRegister
 pha
 plp
 plp
 lda 1,s
 ora 3,s
 beq noDispose
 _DisposeHandle
 bra Exit
noDispose pla
 pla
Exit plb
 pld
 rtl
pRegister ds 2
theOldStack ds 2
stackImage ds.b 256

Apple II Technical Notes

Apple IIGS

4 of 6 #71: DA Tips and Techniques

When this routine calls RealCDAentry, the carry flag is set if no extra stack space is available.
If the carry is clear, the additional stack space was available and the direct-page register points to
the bottom of that space.

RealCDAentry bcs smallStack ;if c set, only 1 page of stack is
available
 ... ; put something interesting here
 rtl

smallStack _SysBeep
 rtl

Note that interrupts are disabled while the page-one stack is being restored; they are reenabled (if
they were originally enabled) only after the stack pointer is safely back in page one.

Interrupts, Event Manager, Memory, and CDAs

Whether the Event Manager is active or not, the user hits Apple-Ctrl-Esc and usually gets to the
CDA menu. It looks the same, but what happens internally is different affects what happens
when your CDA allocates memory.

When the Event Manager is active (as it normally is while the user is running a Desktop
application), hitting Apple-Ctrl-Esc posts a deskAcc event to the event queue. The CDA menu
appears only when the application calls GetNextEvent or EventAvail with the deskAcc
bit enabled in the event mask.

So with the Event Manager active, the CDA menu and individual CDAs are running in the
“foreground”—no processor interrupt is being serviced, and the foreground application is stuck
inside the GetNextEvent or EventAvail call. The Memory Manager knows that no
interrupt is in progress, so it will happily compact and purge memory if necessary to carry out a
memory allocation request from your CDA. This is just fine, since the foreground application
made a toolbox call—unlocked memory blocks are not guaranteed to stay put.

When the Event Manager is not active, hitting Apple-Ctrl-Esc either enters the CDA menu
immediately (if the system Busy Flag is zero) or calls SchAddTask so that the CDA menu
appears during a the next DECBUSYFLG call that brings the system Busy Flag down to zero. If
the CDA menu appears during a DECBUSYFLG , normal memory compaction and purging are
possible, just like when the Event Manager is active.

But if the Busy Flag was zero when the user hit Apple-Ctrl-Esc, then the CDA menu appears
inside of the interrupt, and the foreground application is at an unknown point where it may
justifiably expect that unlocked memory blocks will not move or be purged (see Apple IIGS

Toolbox Reference, Volume 1, page 12-5). (Note that the Desk Manager does a tricky dance to
allow additional interrupts to occur, even though the Apple-Ctrl-Esc interrupt will not return
until the user chooses Quit from the CDA menu. Normally interrupts cannot be nested; the Desk
Manager and AppleTalk are exceptions.)

Developer Technical Support May 1992

Apple IIGS

#71: DA Tips and Techniques 5 of 6

The Memory Manager knows an interrupt is in progress, so CompactMem takes no action and
memory allocation requests do not cause unlocked memory blocks to move and do not attempt to
purge purgeable blocks to make room. Memory allocation requests will still normally succeed,
but you will not be able to allocate a block larger than the value returned by MaxBlock.

Apple II Technical Notes

Apple IIGS

6 of 6 #71: DA Tips and Techniques

New Desk Accessory Tips and Techniques

An NDA Can Find its Menu Item ID

After the application has called FixAppleMenu, an NDA can look at its menu item template
(after the “\H” in the NDA header) to determine the menu ID corresponding to the NDA’s name
in the Apple menu. This is sometimes useful to pass to OpenNDA (if the NDA has some way to
open itself), or to pass to a Menu Manager call.

Finding the menu item ID in the NDA’s header is easy if the NDA is written in assembly. In a
high-level language it may be harder (if you don’t have direct access to your NDA’s header, you
need to find it on the fly and scan for the “\H”).

NDAs and Command- Keystrokes

To give the user a consistent way to close NDA windows, System 6.0 handles Command-W
automatically when a system window is in front. It calls CloseNDAbyWinPtr without letting
the NDA or the application see the Command-W.

However, there is a special action code (optionalCloseAction) that an NDA can accept to
handle the Close request itself. This way the NDA can offer the user a chance to cancel the
Close, which is impossible when the system calls the NDA’s main Close routine, as
CloseNDAByWinPtr does. (See the System 6.0 Toolbox documentation for details.)

There is no way for an NDA to accept some keystrokes and pass others along to applications, but
if your NDA does not want any keystroke events, turn off the corresponding eventMask bits in
the NDA header (this allows the application to receive keystrokes while your NDA window is in
front).

Calling InstallNDA From Within an NDA

It is possible to write an NDA that installs other NDAs. However, with System Software 5.0 and
later, InstallNDA returns an error when called from an NDA. When your NDA has control
because the Desk Manager called one of your NDA’s entry points, the Desk Manager’s data
structures are already in use, so InstallNDA is unable to modify them.

The solution is to use SchAddTask in the Scheduler to postpone the InstallNDA call until
the system is not busy. Remember that the Bank and Direct Page registers are not defined when
your scheduled task is executed.

Processing mouseUp Events

When an NDA’s action routine receives a mouseUp event, it is not always safe for the NDA to
draw in its window.

For example, when the user drags an NDA window, the NDA receives the mouseUp before the
window is actually moved, and before DragWindow erases the outline of the new window

Developer Technical Support May 1992

Apple IIGS

#71: DA Tips and Techniques 7 of 6

position, which may overlap the window’s content. In addition, when the user chooses a menu
item, the front NDA receives the mouseUp before the menu’s image is removed, and the image
may overlap the NDA’s window. In either case, drawing in the window makes a mess.

The solution is to avoid drawing in direct response to a mouseUp. Instead, invalidate part of the
window to force an update event to happen later.

Apple II Technical Notes

Apple IIGS

8 of 6 #71: DA Tips and Techniques

NDAs Can Have Resource Forks

Following is the recommended way for a New Desk Accessory to use its file’s resource fork.

In the NDA’s Open routine, do the following. Steps that are obsolete (and safely omitted) with
System Software 6.0 and later are marked with an asterisk (*):

1. Call GetCurResourceApp and keep the result.
2. If the NDA does not already know its Memory Manager user ID, call MMStartUp to

get it.
3. Call ResourceStartUp using the NDA’s user ID.
4. Call the Loader function LGetPathname2 with the NDA’s user ID (and a

fileNumber of $0001) to get a pointer to the NDA’s pathname. (The result is a
pointer to a class-one GS/OS string.)

*5. Use GetLevel to get the current file level, then use SetLevel to set it to zero. This
helps protect your resource fork from being closed accidentally.

6. Use GetSysPrefs to get the current OS preferences, then use SetSysPrefs to
ensure that the user is prompted, if necessary, to insert the disk containing your
resource fork. (To compute the new preferences word, take the current one, AND it
with $1FFF, and ORA it with $8000. This tells GS/OS to deal with volume-not-found
conditions by putting up a please-insert-disk dialog with an OK button and a Cancel
button.)

7. Call OpenResourceFile using the result from LGetPathname2. Save the
returned fileID—you need it when closing the file. (Be prepared to deal with an
error, such as $0045, Volume Not Found.)

8. Use SetSysPrefs to restore the OS preferences saved in step six.
*9. Use SetLevel to restore the file level to its old value (saved in step five).
10. Call SetCurResourceApp with the old value saved in step one.

In the NDA’s action routine, no special calls are necessary—the Desk Manager calls
SetCurResourceApp automatically before calling your action routine, so your NDA’s own
resource search path is already in effect.

Run queue routines and NDA installs with AddToRunQ are treated the same way—the NDA’s
resource search path is automatically in effect when the run queue routine is called.

In the NDA’s Close routine, do the following:

1. Call CloseResourceFile with the fileID that was returned when you
opened it.

2. Call ResourceShutDown with no parameters.

Developer Technical Support May 1992

Apple IIGS

#71: DA Tips and Techniques 9 of 6

NDAs Must Be Careful Handling Modal Windows

If your NDA uses its resource fork and calls TaskMaster with a restricted wmTaskMask to
produce a modal window, you must be careful not to allow TaskMaster to update the contents
of any application windows that happen to need updating.

The problem is that an application window’s wContDraw routine can reasonably assume that
the current Resource Manager search path is the application’s, but TaskMaster does not take
any special steps to set it. When the content-draw routine draws controls which were created
from resources which are not presently in the resource search path, the system may crash.

If your NDA does not start up the Resource Manager, the Desk Manager is unable to
SetCurResourceApp to your NDA, so the application’s search path is still in effect—no
problem. But if your NDA does start the Resource Manager, you have to be careful not to cause
application routines to be called.

Avoid Hard-Coding Your Pathname

If your NDA needs to know its own pathname or the pathname of the directory it’s in, call
LGetPathname or LGetPathname2 using your User ID. This is a better method than hard-
coding “*:System:Desk.Accs:MyDAName” because the user may change your DA’s file name
or use a utility to install it from some non-standard directory.

Avoid Extra GetNewID calls

Normally there is no reason for a Desk Accessory to call GetNewID. When you can, just call
MMStartUp to find your own User ID, and use that. You can freely use all the auxiliary IDs
derived from your main ID (MMStartUp +$0100, MMStartUp +$0200, ...,
MMStartUp+$0F00).

By not calling GetNewID, you conserve the limited supply of IDs (255 of in the $50xx range
for Desk Accessories), and you make life easier for people trying to debug their systems, since
all your allocated memory can be readily identified.

Open is Not Called if NDA is Already Open

Your NDA’s Open routine does not get called if the user chooses the NDA from the Apple menu
while the NDA is already open. In this case, the Desk Manager simply calls SelectWindow
on your existing window.

There is no need to include code in your Open routine to check if your window is already open,
and to call SelectWindow if it is.

Further Reference
• Apple IIGS Toolbox Reference, Volumes 1-3
• GS/OS Reference

Apple II Technical Notes

Apple IIGS

10 of 6 #71: DA Tips and Techniques

• Apple IIGS Hardware Reference
• Apple IIGS Technical Note #53, Desk Accessories and Tools
• Apple IIGS Technical Note #57, The Memory Manager and Interrupts
• Apple IIGS Technical Note #69, The Ins and Outs of Slot Arbitration

