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Preface

The purpose in writing this book is to introduce you to the signals
within the Apple®* II computer and to show you how these signals
can be used to control external devices under the control of BASIC-
language programs. A general-purpose computer interface bread-
board has been developed to speed your circuit design and testing
so that you can easily perform the many interesting experiments that
are included in the book. By using a design system such as the one
described in this book, you will spend your time concentrating on
the -principles involved, rather than troubleshooting your circuits.
However, you will have the opportunity to build and test many digi-
tal circuits, as well as circuits that use digital-to-analog and analog-
to-digital converters.

We have chosen to use the Apple II computer with 16K of read/
write memory, and the Applesoft™+ BASIC interpreter program.
This software provides a great deal of flexibility and it is worth hav-
ing it available when you are using external interface circuits. The
Applesoft BASIC interpreter has two general-purpose commands
that can be used to transfer information to and from the computer.
These instructions are easily mastered, without requiring a detailed
understanding of the 6502 microprocessor integrated circuit (IC)
that is used as the “heart” of the Apple.

First we will introduce you to the control signals that are available
from the Apple computer for interfacing, and we will show you how
they are used. Some of the signals will not be described, since they
are generally not used in interface circuits, and are meant to be used
by special interface devices that are manufactured commercially.

Our next step is to show you how the Apple can identity or address
external devices through the use of two general-purpose instructions,
PEEK and POKE. These commands are central to the control of ex-
ternal devices; we spend some time covering their operation and the
use of a variety of circuits that can be used to identify specific input/
output, or I/O devices. You will also see how the Apple can transfer
information to and from external devices over the bidirectional data

*Apple and Apple II are registered trademarks of Apple Computer, Inc.
t Applesoft is a trademark of Apple Computer, Inc.



bus; the basic circuits used for input ports and output ports are de-
scribed in detail. Real circuits are provided, so that you can quickly
use the many examples in designing your own interface devices.

You will also see the power of BASIC-language programs—as the
data is processed within the computer to provide meaningful results.
Simple control programs are provided to show you how BASIC-lan-
guage programs and I/O devices can interact. You will be able to
write simple control and data processing programs to go along with
your I/O ports and devices.

Since the computer is not always synchronized to external devices,
there must be some interaction between the computer and the vari-
ous I/O devices so that each knows when the other is ready for some
appropriate action. This leads us to the topic of flags—those signals
that are used by the computer and by external I/O devices to allow
information to be transferred in an orderly fashion. Since flags are
important, we spend some time on them and on the corresponding
circuits that are actually used in external devices. Software is covered
too, since the flag circuits are useless unless they can be sensed by a
control program.

We have assumed that you have a fairly good understanding of the
commands in Applesoft BASIC. If you are just getting started with
the Apple computer, we hope that you will take some time to review
the simple commands, such as FOR, GOTO, IF . .. THEN, PRINT,
and INPUT. Other commands will be introduced in the text and ex-
periments, and we will provide the details of their operation. At the
end of this book, the use of these and other commands should be
second-nature.

In Chapter 6, we have provided 16 detailed, step-by-step experi-
ments that you can perform to reinforce the many interfacing prin-
ciples that have been developed in the text. You will also see the
power of BASIC-language programs for interface control and for
actually processing the information that is involved in transfers to
and from 1/O devices. We have made an effort to cover a broad spec-
trum of interesting interface applications. Throughout the experi-
ments, you will see that the same basic principles apply to all of the
interface circuits, from the simplest to the most complex.

We realize that it is difficult to write a book like this for an audi-
ence that has a wide range of backgrounds, from the beginner to the
advanced user. Thus, we have chosen to start at some middle point.
We have chosen to skip basic binary numbering, decimal-to-binary
conversions, basic digital electronics, and breadboarding. These top-
ics are covered in detail in other books, and the reader who is in the
middle of our assumed spectrum of readers probably has a good
understanding of these topics. In some places, a paragraph or two of
review material have been provided, just to serve as a refresher. We




make no attempt to provide much detail here, simply enough to get
you started.

We have assumed some familiarity with SN7400-family digital in-
tegrated circuits, or chips, such as the SN7402 quad Nor gate and the
SN7475 quad latch chip. Other complex chips will be introduced and
explained in sufficient detail so that you can use them as shown in
_ the text or experiments. If you wish to use these devices in other
" applications, we suggest that you obtain the necessary data sheets
from the manufacturers. The data sheets will provide the necessary
information for a wide variety of uses, and they will also reflect any
basic changes or modifications that may have been made to an “up-
dated” device, or one that has been “enhanced” with some special
feature.

The Apple II computer has eight general-purpose 50-conductor
interface connectors in its case. The basic bus signals used in the ex-
- periments are derived from the signals at these connectors, so if you
decide to design and build some of your own interface circuits that
will be plugged into one of these “slots,” you will find the same sig-
nals are readily available at the edge connectors. However, there are
also some special-purpose signals that are generated by the Apple to
make the interfacing task somewhat easier. These signals and their
uses are described in detail in Chapter 7. Since the signals are not
general purpose, but are specific to the Apple, and in many cases,
specific to a particular connector, they are described last. To show
you how these signals are used, a simple asynchronous-serial com-
munication interface circuit is described, and software to control it
is listed. This type of interface can be used to communicate with
other computers, serial printers, modems, and other interface devices
that use the asynchronous-serial data format.

We have not described assembly-language programming, since
this is a specialized topic and requires a great deal of background.
However, we have provided one simple assembly-language subrou-
tine for you to use in several of the experiments. There is a good
reason for including this subroutine; the equivalent function is not
readily available in Applesoft. The function required is the logical
Anping of 8-bit bytes. The logical anp in Applesoft is simply a true-
or-false AND operation, and it cannot be easily used for bit anping.
The assembly-language subroutine also provides you with an intro-
duction to how such routines can be accessed by a BASIC-language
program. We-have chosen to use the more complicated USR(X)
command, rather than the CALL command, since we think that
more will be learned.

We found that there were some limitations to the Apple. For ex-
ample, there is no simple “rounding” command that can be used to
round a number to a specific number of decimal digits, for example




4.1986 to 4.20. Likewise, the absence of a bit-by-bit ANping command
was a limitation that was overcome with an assembly-language rou-
tine. We also found that the potentially useful WAIT command that
is used to test individual bits will “hang up” the computer if the con-
dition is not found. The computer continues to wait if the condition
is not met, and you must reset the computer to get your program
going again. A color display and nice graphics are available, al-
though we used a black/white monitor in our system.

Most of the special purpose chips, such as the analog converters,
have been chosen because of their simplicity, low cost, and avail-
ability. This is not meant to be an endorsement of these products. As
your interfacing sophistication increases, you will find other special-
purpose devices that can serve the same function, but perhaps with
added features, more resolution, different power supplies, etc. Our
aim is to get you started, and not to provide you with a sourcebook
of every possible interface to the Apple computer system. An impos-
sible task in any case.

If you are interested in some additional reading about more ad-
vanced topics, we recommend:

6502 Software Design (21656).
Programming & Interfacing the 6502, With Experiments (21651).

Microcomputer-Analog Converter Software and Hardware Inter-
facing (21540).

We also recommend TRS-80 Interfacing, Book 2. While written
around the TRS-80 computer, this book details more advanced inter-
tacing topics such as driving high-current/high-voltage loads, serial
communications, remote control, analog converters, filtering and
data processing, and other interesting topics. You will quickly see
that the similarities between the TRS-80 and Apple are much greater
than their differences. Control signals and BASIC commands are al-
most identical. All of the books noted above are available from
Howard W. Sams & Co., Inc., 4300 West 62nd Street, Indianapolis,
IN 46268.

The pin configuration figures used in most of the figures, unless
otherwise noted, are provided through the courtesy of Texas Instru-
ments, Incorporated. The names Apple and Applesoft are trade-
marks of Apple Computer, Inc., Cupertino, CA. The name TRS-80
is a registered trademark of Radio Shack.

We hope that you enjoy this book, and that it leads you to design
and build some interface circuits of your own.

JoNATHAN A. TiTUs, CHRISTOPHER A. TrTUs and Davip G. LARSEN
“The Blacksburg Group”
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CHAPTER 1

6502 Processor

The Apple II® (Apple®) computer system by Apple Computer,
Inc., uses the 6502-type of microprocessor integrated circuit. This
“chip” forms the heart of the central processing unit (CPU) of the
computer, the place where the actual mathematical, logical, decision-
making, and other operations take place. The 6502-type microproces-
sor chip is manufactured by MOS Technology (Norristown, PA
19401 ), Rockwell International ( Anaheim, CA 92803) and Synertek
Corporation (Santa Clara, CA 95051 ).

The 6502 is an 8-bit processor. Thus, all of the mathematical, logi-
cal, data transfer, input and output operations operate on eight
binary bits at a time. Each bit, of course, can be either a logic one
or a logic zero. The 6502 uses an 8-bit data bus to transfer informa-
tion between itself and various memory locations and input/output
(I/0) devices such as a keyboard, printer, etc. In cases where the
value of the information exceeds the limit of eight bits, multiples of
8-bit data words are used. Each 8-bit data word is generally referred
to as a byte.

You should realize that the maximum value that can be expressed
with eight bits is 11111111, or 255,,. If larger values are to be oper-
ated on in an 8-bit computer system, then multibyte operations are
required. Generally, this means that corresponding data bytes in two
data words are operated on, followed by the operation being per-
formed on the next corresponding set of bytes in the large data
words. In this way large values, beyond the value of 255, may be
readily processed. It is important to remember, though, that the

Apple and Apple II are registered trademarks of Apple Computer, Inc.



Apple CPU can only process and transfer eight bits or one byte at a
~ time.

The 6502 uses a single set of eight pins to make the connection
with the data bus in the computer. This data bus is used to transfer
information both to and from the computer. This type of a bus is
called bidirectional, since it allows information to flow in two dif-
ferent directions. This is much like a highway that is used to allow
vehicles to drive one way in the morning and to allow vehicles to
travel in the opposite direction in the evening.

The 6502 generates control signals on the integrated circuit that
are used both internally and externally to supervise and manage the
flow of information on the bus, in one direction at a time. We will
explore the generation and use of these signals later in this book.

MEMORY

All computer systems have some memory associated with them. In
general, the memory is used to store both a program that will control
the operation of the computer, as well as the information that is to
be processed. In the 6502 computer, each memory location can be
used to store eight bits of information, or one byte of data. Most
memories consist of multiples of these one-byte storage locations,
generally in multiples of 1024, abbreviated 1K.

The memory locations must be addressed in some way so that the
computer knows exactly where it is to store data or obtain program
step information. The 6502 microprocessor chip has 16 address out-
puts allowing it to specify any one of 21¢ or 65,536 memory locations,
each of which can contain one byte. This is often shortened to 64K,
indicating that 64K bytes of information can be addressed. In almost
all microcomputer memory systems, each memory location is
uniquely addressed with a 16-bit address.

The address bus lines are labeled AQ through Al5, corresponding
to the least-significant bit (LSB) through the most-significant bit
(MSB), respectively. The LSB and MSB can both be either a logic
one or a logic zero, but their position gives the LSB a value of zero
or one and the MSB a value of zero or 32,768. Since the 6502 is an
8-bit processor, the address lines are frequently split into two groups
of eight lines each, A7-A0 and A15-A8. The lines A7-A0 are referred
to as the low or LO address, while lines A15-A8 are referred to as the
high or HI address. In many 6502-based computers, the HI address
is also called the page address, since the memory may be arbitrarily
divided into 256 pages, with 256 bytes per page. The uses of the ad-
dress bus will be explored further when software instructions are dis-
cussed and when interface circuits are developed. Unlike the data
bus, the address bus is unidirectional, the address information flows

10
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Fig. 1-1. 6502 Microprocessor chip Al 10 31 D2
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in only one direction, from the CPU to the memory and to external
devices.

The pin configuration of the 6502 is shown in Fig. 1-1. Although
most of the other signals may be meaningless to you now, you should
be able to identify the 8 data bus input/output pins and the 16
address output pins.

Since the memory section is being discussed, there are two basic
types of memory devices used in microcomputer systems. They are:

1. Read/Write—Read/Write (R/W) memory is used for the stor-
age of data that will be changed or updated. The computer
must be able to place the information in a memory location and
then be able to read it back. Programs that will change are also
stored in R/W memory for the same reason. The lowest cost
Apple computer contains 16,384 or 16K bytes of R/W memory.

2. Read-Only—Read-only memory (ROM) is used when data val-
ues and program steps will not be altered. The BASIC inter-
preter program in your Apple system is contained in read-only

memory chips. The Apple BASIC interpreter is stored in 12K
of ROM.

There are various sub-classes of these types of memory devices.
The R/W memories may be either static or dynamic. Static memory
chips will maintain the values stored in them until they are changed.
Dynamic memories require refreshing by external hardware every
few milliseconds or they will “forget” or lose the data stored in
them. The R/W memories in the Apple are dynamic, with the neces-

11



sary refreshing circuitry contained on the computer printed-circuit
board. | |

There are many types of read-only memories. The various types
are generally all static, the differences occurring in the means of stor-
ing the 8-bit values in the memory locations. The two most important
types are mask-programmed and field-programmed. The mask-pro-
~ grammed devices have data values, program steps, etc., stored in
them during the various manufacturing steps. They are generally re-
ferred to as ROMs. The field-programmable devices require some
kind of special programming circuitry to store the logic ones and
zeros in the various locations. Some of the field programmable
ROMs, or PROMs, as they are generally called, can be erased under
high-intensity ultraviolet light. They can then be reprogrammed.
This is very useful when programs are being developed that will be
stored in read-only memory. It does not require the development of
masks and chips—an expensive process—each time a program bug is
found or a change is made.

A few final words are required about semiconductor memory de-
vices. The read-write devices are volatile, since data (your program
and values) will “evaporate” or disappear when power is removed
from the system. The read-only memories, on the other hand, are
considered to be nonvolatile, since they will maintain the data or
program steps (the BASIC interpreter) when the power has been
removed.

Most memory integrated-circuit packages or chips do not have all
16 of the address lines connected to them. They have only enough
address connections to uniquely address the memory locations within
the individual chip. Thus, a 64-byte chip, small by standards of to-
day, would only have 6 address line inputs while a 1024 (1K) byte
memory chip would have 10 address line inputs. Memory chips such
as these have an additional control or chip-enable input that allows
banks or groups of the chips to be selected, one set at a time. Various
decoding and selecting circuits may be used, thus allowing a 32K
block of memory to be constructed from 64-byte or 1K byte chips,
or even combinations of the two. The main point here is that the
memory chips do not require all 16 address lines to be connected
directly to them, although some combination of all 16 address bits
will be used to uniquely select one byte. You should not be confused
when you are confronted with a 1K X 4 bit memory that only has
10 address inputs and a chip enable input. This concept will be de-
veloped further as you study input/output data transfers.

One control signal is generated by the 6502 processor chip to con-
trol the flow of information on the data bus. This signal is noted as
READ/WRITE, or more simply, R/W. Whenever a read, or a write,
operation is to take place, the 6502 must specify a 16-bit address to

12



locate the memory “cell” that is to be involved in the transfer. In this
case, the cell is an 8-bit word or byte.

The “bar” over part of the signal notation indicates that when the
signal is a logic zero, a write operation is taking place; and when in
the logic one state, a read operation is taking place. Thus, a single
line controls all of the memory functions. In some 6502-based com-
puter systems and peripherals, you may see the signal “split,” to pro-
vide two memory control signals, memory read (MEE%{ or MR),
and memory write (MEMW or MW ). This takes some additional
gating, so in most cases, the R/W signal is used by itself. It is avail-
able at pin 34 on the 6502 microprocessor chip.

You may also see the notation RAM used to incorrectly signify
read/write memory. The acronym RAM stands for random-access
memory. In fact, all of the modern, easy-to-use memory devices are
random access, since one may address one location and then any
other, without having to sequence through all of the locations be-
tween the two addresses.

Pin configurations for typical memory chips have been provided
in Fig. 1-2.
For additional information about memory devices, we refer you to

® Intel Memory Design Handbook, Intel Corporation, Santa
Clara, CA 95051, 1975.

PIN CONFIGURATION
PIN CONFIGURATION LOGIC SYMBOL
Az Ve
A A Ag 1 18 = Vg
As ag!l) E 2 17 A
3 16 = Ag
A T Mcd 4 2114 154 :j— wo,—
A CS/WE A 5 14 =100, A
A 7 12 21105 A
Aq PROGRAM & ¢ 11 =110, H.; 10 —
{LSB) Ag o7y mse)r GNDH 9 10 = WE Mwe cs
O Osg
Oz 04
Ve 03 PIN NAMES
ARy ADDRESS INPUTS Vee POWER (+5V)
PIN NAMES "aiE WRITE ENABLE GND GROUND
Ao As | ADDRESS INPUTS S CHIP SELECT
0y0g | DATA OUTPUTS/INPUTS
TEWE | CHIP SELECT/WRITE ENABLE INPUT 1/0,-1/04 DATA INPUT/OUTPUT

Fig. 1-2. Pin configuration for 2708 1K X 8 PROM and 2114 1K X
4 R/W memory.
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® The 8080A/9080A MOS Microprocessor Handbook, Advanced
Micro Devices, Inc., Sunnyvale, CA 94086, 1977.

® Mostek Memory Products Catalog, Mostek Corporation, Car-
rollton, TX 75006, 1977.

® Bipolar and CMOS Memory Data Book, Harris Semiconductor
Prod. Div., Melbourne, FL, 32901, 1978.

INPUT/OUTPUT (I/O) DEVICES

Most microcomputer-based systems are worthless without some
attached I/O devices. These devices may be standard peripherals,
such as card readers, printers, displays, or they may be sensors, con-
trollers, and other devices that most people do not normally associate
with computers. The Apple is no exception. It already has several
I/O devices associated with it: a television display, a cassette re-
corder, and a keyboard.

Other I/0 devices can be added to your computer. These devices
may be of your own design or they may be standard, commercially
available devices that are compatible with the Apple. These I/O
devices are much like the individual memory locations that were dis-
cussed in the previous section. The I/O devices are attached to the
data bus, since data is transferred to them and from them, and they
are also connected to the address bus so that they may be uniquely
addressed by the 6502 microprocessor chip.

A control signal, READ/WRITE or R/W, is used to synchronize
the flow of data to and from the I/O devices. This signal is also used
in 6502-based computer systems to control the flow of information
to and from the memory chips. Thus, there is no differentiation be-
tween memory addresses and I/O device addresses in 6502-based
computers. In computers that are based upon the 8085- or Z-80-type
microprocessor chips, there are different techniques that are used to
address memory and I/O devices independently. Since only one syn-
chronizing signal is used to control memory and I/O devices, the
Apple’s 6502 processor will be either reading or writing at all times.
When the R/W signal is a logic one, the 6502 is reading information
from the data bus. When the R/W signal is a logic zero, the 6502 is
writing data fo an external I/O device, or o a memory location. The
“bar” over the W simply means that the write operation takes place
when the R/W signal is a logic zero. You may see other signals with
such bars over their names. This simply means that the signals are
active in the logic zero state.

Since we will be concentrating on the use of I/O devices with the

Apple, we have left a great deal of the specific discussion to the re-
maining sections.
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Review

At this point, you should understand that the 6502 transfers and
operates on eight bits of data at a time. Complex calculations and
operations often require multiple groups of eight bits or bytes. The
bytes are transferred to and from the 6502 CPU on an 8-bit bus.

Table 1-1. Control Signals Used for Interfacing

Data Bus | D7-DO An 8-bit bidirectional set of lines for transfer of

information between the CPU and 1/O devices.

A15-A0 A 16-bit unidirectional address bus used to ad-
dress both memory and 1/O devices.
Al15-A8 Hl address bus, most-significant eight address

Address Bus

bits.
A7-A0D LO address bus, least-significant eight address
bits.
Control Signal R/W Read/write control signal.
NOTES: The "“bar” notation, i.e., W, indicates a logic zero is the “active’’ state, the state that

causes the corresponding action to take place.

In each case in which a signal is enumerated, the numbers increase as the significance of the
bits increases, i.e., A15 = most-significant address bit (MSB).

The 6502 uses a 16-bit address bus to address individual memory
location and I/O devices. The address bus is frequently broken into
a HI and LO address bus, of eight bits each. The single control sig-
nal, R/W, controls the flow of information to and from the 6502 CPU.
The signals and their designations are noted in Table 1-1.

SOFTWARE 1/O CONTROL INSTRUCTIONS
/O Commands

The Apple computer has a number of instructions that are used to
control I/O devices. For the most part, though, these instructions are
used to control specific I/O devices or to perform specific functions.
Without realizing it, you are already familiar with some, if not all,
of these I/O instructions.

Here are some specific examples of these I/O control instructions,
to refresh your memory.

The INPUT and PRINT commands are probably familiar to you.
The INPUT command causes a BASIC program to stop and wait for
an input trom the keyboard. The PRINT command causes an answer
or string of characters to be “printed” on the tv screen.

Example 1-1. A Simple 1/O Program

10 INPUT “VALUE OF X 15”; X
20 PRINT “ INPUT VALUE WAS"; X

15



If you executed the program in Example 1-1, the value associated
with the variable, X, would have to be entered into the computer
before the program passed control to statement 20. These two types
of I/O statements are frequently used to allow an operator to enter
a value and to see it displayed. There are many variations of both the
INPUT and PRINT commands, but these two examples serve to il-
lustrate the point; you have already been using 1/O operations in
BASIC-language programs without difficulty.

You may have already discovered that there are also graphic dis-
play 1/O commands in BASIC, too. These are commands such:as
HOME, PLOT XY and SCRN (X,Y). The HOME command clears
the screen, and places the blinking cursor at the “home” position in
the upper left-hand corner of the tv screen. The PLOT and SCRN
commands require the use of “coordinates” to indicate where an
operation is to take place.

The program in Example 1-2 shows how some simple graphic dis-
play commands are used in a short program. This program generates
a display of randomly changing colored dots on the tv screen. If you
are using a black-and-white (b/w) tv, you will see the dots in vary-
ing shades of gray.

Example 1-2. A Random Color Pattern Generator Using 1/O Commands

10 GR

20 X=INT(40%RND(1)) + 1

30 Y=INT(40kRND(1)) + 1

40 COLOR=INT(15:kRND(1)) + 1
50 PLOT XY

60 GOTO 20

There are two other commands that you may not have considered
to be I/O commands. These are the LOAD and SAVE commands
that are used to read and store programs on cassette tapes. Each
command causes a preset series of operations to take place, control-
ling the cassette recorder. The use of these commands is fairly obvi-
ous, so we will not provide an example.

Other I/O commands are the IN#X and PR#X operations that are
associated with special I/O devices that can be substituted for the
keyboard and tv display. It is important that you realize that these
I/O instructions are specific to the Apple computer and its BASIC-
language interpreter program. These instructions would be mean-
ingless to other 6502-based computer systems, unless they used the
Apple BASIC program. The instructions are also specific to one I/O
device, i.e., the HOME command will not have an effect on the cas-
sette recorder, or any other I/O device. Likewise, the INPUT com-
mand controls the input of values only from the keyboard on the
console.
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General-Purpose 1/O Commands

Although there are some general-purpose I/O commands in the
INTEGER BASIC interpreter program for the Apple computer, for
this book we have chosen to use what we consider to be the more
flexible APPLESOFT BASIC interpreter program. If you wish to
convert your Apple computer to this program, a local Apple com-
puter dealer can assist you.

The two I/O device commands are PEEK and POKE. They are
used. to transfer data to an external device from the computer
(POKE), and to the computer from an external device ( PEEK).
There is a specific format for these instructions that must be used if
the instructions are to operate properly.

Input and output devices will be referred to as ports. Thus, an out-
put device will be an output port and an input device will be an in-
put port. This is standard nomenclature used throughout the micro-
computer industry.

The output instruction, POKE, must specify the address of the
I/0O device that is to be involved in the transfer of data and also the
value that is to be transferred to the addressed device. The actual
format for the POKE instruction is POKE, x,y, where the x value
represents the decimal address of the output device that is to receive
the data value, y. The data, y, must also be a decimal number. Since
the 6502 microprocessor chip can address 65536 memory locations,
the address must be within the range of 0 to 65535, inclusive. The
data value must be within the range of 0 to 255, inclusive, since the
computer uses an 8-bit data bus for all data transfers, and the largest
number that can be transferred on such a bus is 255.

The value 215 is sent to output port 12684 in the following state-
ment: POKE 12684,215.

The input instruction, PEEK, is similar to the POKE instruction,
except that no data value is incorporated into the command. We are
interested in determining the value present at the specific input de-
vice, so only the decimal address of the input device is specified;
PEEK (x), where x is the decimal address of the input device.

It does little good to input a value without doing something with
it, so the input command is always incorporated in a complete state-
ment, rather than being a statement by itself. An example of this is
Q=PEEK(34579).

In this case, the variable, Q, is assigned the decimal value that has
been input from device 34579. It is important that you remember to
enclose the address of the input device in parentheses.

Whenever a PEEK command is used, the value that is input will be
between 0 and 255, inclusive. Again, this is due to the limitation of
8-bit transfers.
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Table 1-2. Valid Input (PEEK) and Ovutput (POKE) Command Structures

POKE 45124,98 L = PEEK (23109)
POKE N,120 L = PEEK (Q)
POKE 45124,X

POKE XM

The input and output commands may have variables specified
within them, rather than specific values for port addresses, and in the
case of the POKE command, data values. Thus, all of the PEEK and
POKE commands shown in Table 1-2 are valid. We have assumed,
of course, that the values for the variables, N, M, X and Q have been
specified somewhere in the program prior to the use of the instruc-
tions shown in Table 1-2.

Input and output commands in which the address values exceed
65535 will generate an ILLEGAL QUANTITY ERROR in the Apple
computer. An attempt to output a numerical data value that exceeds
255 will also generate an ILLEGAL QUANTITY ERROR.

We have provided some examples that show the use of the POKE
and PEEK commands. While the programs shown in Example 1-3
can be executed, they will not do anything useful, since you do not
have any external I/O ports connected to your computer, at present.

Example 1-3. Simple 1/O Programs for PEEK and POKE Commands

10 INPUT “OUTPUT PORT # =";P
20 INPUT “VALUE FOR OUTPUT"; V

30 POKE P,V

40 GOTO 10

10 INPUT “INPUT PORT # = “; M

20 PRINT “VALUE AT PORT ='‘; PEEK (M)
30 GOTO 10

Since 6502-based computers cannot distinguish between memory
locations that are used for the temporary storage of programs and
data, and those that are being used for I/O ports, the PEEK and
POKE instructions are frequently used to examine and alter the con-
tents of various memory locations within the Apple. If you POKE
information into read/write memory in an indiscriminate fashion,
you may “write over” important parts of your program, or informa-
tion that has been temporarily stored by the BASIC interpreter. The
net eftect is a “crash” of the computer system, in which your program
and data will be lost or significantly altered. It is probably not a good
idea to randomly POKE information into various addresses, until
some specific guidelines are provided. Of course, you can use the
PEEK command to examine the contents of a memory location
whenever you wish, since this-command will not alter the contents
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of an examined memory location. From the previous discussion of
memory devices, you should realize that the POKE operation will
have no effect on the read-only memory devices in the Apple.

Memory Maps

At this point it is a good idea to take a look at the “maps” of the
memory addresses that are used by the Apple. A cumplete 64K mem-
ory map is shown in Fig. 1-3. For the sake of convenience, the mem-
ory addresses are provided in both decimal (base-10) and hexadem-
mal (base-16) notation. The hexadecimal numbers have a suffix of
“H” to distinguish them from the decimal numbers.

The memory space for the Apple computer has been divided into
four 16K blocks. Three of the blocks have been assigned for R/W
memory, and most Apple computers have the R/W #1 block “filled”
with read/write memory chips. The remaining R/W blocks may be
used for future expansion of R/W memory, if this is required for par-
ticular apphcatmns In most cases, we have found that 16K of R/W
memory is sufficient. Add-on memory chip kits are available from
many suppliers, and most Apple users can probably add the addi-
tional memory chips to their system without much difficulty.

The remaining 16K block of memory has been set aside for both
ROM and I/O port addressing. The system ROMs for the Apple,
which include the BASIC interpreter and the monitor programs, take
up 12K of this space. The remaining 4K space is divided into two 2K
spaces for I/O addressing and future expansion of the Apple. The
I/O block with addresses CO00H to C7TFFH, inclusive, is the one
of major importance for interfacing, since it has been specifically set
aside for this purpose and it will never be used in Apple computer
systems for any other purpose. Some of the addresses within this 2K
block have been used by the Apple for controlling things such as the
speaker, the keyboard, and the cassette recorder. The actual address

49152  COOOH

21199  CJFFH
2K 110 #1 /51200 C800H

ZK 110 #2 | 03247 CFFFH
53248 DOOOH

12K SYSTEM ROMS

0 0000H

16383  3FFFH
16384  4000H

32767  7FFFH
32768  8000H

l.—6553 FFFFH

49151 BFFFH
49152 COOOH

EXPANDED VIEW OF UPPER 16K

65535 FFFFH
Fig. 1-3. 64K Memory map for the Apple computer.
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assignments are shown in Table 1-3. We refer you to Basic Program-
ming Reference Manual, and Apple II Reference Manual, for details
on the actual use of these I/O addresses. These manuals are provided
with the Apple II computer, and are also available from Apple Com-
puter, Inc., 10260 Bandley Dr., Cupertino, CA 95014.

The remaining 2K block of memory, C800H-CFFFH, has been set
aside for future expansion. You may use this space for additional
read-only memory, if you have long programs that you wish to have
readily available.

Table 1-3. Apple 1/0 Addresses and Their Uses

—

Address
Function Decimal* Hexadecimal
|' Keyboard data 49152 Co00
Clear-keyboard strobe 49168 Co10
Speaker 49200 C030
Cassette Qutput 49184 Co20
Cassette Input 49256 C060
Flag Inputs 49249-4925] C061-C063
Analog Inputs 49252-49255 C064—-C067
Analog Clear 49264 C070
Utility Strobe 49216 C040

*Only positive addresses given, To calculate negative addresses, just add —65536 to the deci-
mal addresses provided,

In later sections of this book, the actual use of the I/O addresses
will be described in detail. At this point, it is sufficient that you un-
derstand that a specific set of memory addresses has been set aside
for your particular applications. You should also realize that the
memory map shown in Fig. 1-3 is particular to the Apple computer.
Other 6502-based computers will probably have different memory
maps, with R/W memory, read-only memory, and I/O device ad-
dresses located in different areas of the map.

Software Commands and Interface Circuits

As you are probably aware by now, the PEEK and POKE instruc-
tions each cause some actions to take place, either at 1/O devices or
at memory locations, as a direct result of the use of the instruction.
Instructions such as A=1.359 will cause some values to be stored in
memory, but we do not know what memory locations the Apple has
assigned to the variable “A” and we do not know how the value 1.359
has been stored. The PEEK and POKE instructions each cause a
definite, known sequence of operations to take place, transferring
data bytes, generating control signals, and transferring address in-
formation on the address-bus lines. These definite and reproducible
actions allow us to use these commands to control 1/0O devices. We
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will now explore the actions that each of these software commands
causes to take place.

The PEEK and POKE instructions operate in a very similar man-
ner. In each, an address is specified, requiring 16 bits of informa-
tion. During the execution of either instruction, the address informa-
tion contained within the command is transferred to external devices
on the address-bus lines, A15-A0. In this way, the 1/O device address
- is available to all of the devices and circuits that are connected to
these address lines, both memory and I/O devices.

When a POKE instruction is used in a program, the data value is
also output by the 6502 chip, but on the data-bus lines, D7-D0. Once
the data bits and the address bits are “stable” or present on their re-
spective buses in useable form, the 6502 asserts the READ/WRITE
signal on the control bus. This synchronizes the acquisition of the
data by the I/O device that was addressed. Of course, external cir-
cuitry is required to “capture” the data, as well as to identify the se-
lected I/O device and synchronize it with the 6502-based system. A
timing diagram for these signals, as they appear on the 6502 system,
in this case the Apple, is shown in Fig. 1-4. Of course, the POKE
command involves many assembly-language instructions, and the
timing diagram shows what happens only during the time of the
actual data transfer. At this point, we are only concerned with what
the 6502 does during a POKE operation.

When a PEEK instruction is executed, the data is not contained in

the instruction, but is acquired from an external I/O device. Only
the address is specified. The 16-bit address is placed on the address-
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Fig. 1-4. Write operation signal relationships. (See Appendix C.)
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bus lines when the PEEK instruction is executed. When the address
information is present, the corresponding I/O device must place its
data on the data bus so that it may be accepted by the 6502 proces-
sor. During a read operation, the R/W signal from the 6502 is a logic
one. Additional circuitry is required here, too, to select the I/O de-

vice and to gate its data onto the data bus. A typical timing diagram
for the PEEK command is shown in Fig. 1-5.

Teve

p1 / \ (APPLE 01) 4
@2
\ / (APPLE 90) \ |

—— Trws —1
RIW A’
ADDRESS —
FROM MPU -

r TP.DS"_'_ I
DATA FROM
MEMORY

Tace F—Tpsy—TH

Fig. 1-5. Read operation signal relationships. (See Appendix C.)

We will describe shortly some of the circuits that are used for in-
put and output ports. You have probably realized that while we have
described an I/O port as one that can either receive data that is out-
put by the microcomputer or transmit data that is input by the micro-
computer, some I/O devices may actually contain a number of indi-
vidual I/O ports. Industrial controllers, data storage devices (disks,
cassettes ), analog converters, and other I/O devices may have a
number of I/O ports, since they may require more than eight bits of
information from the computer and they may also need to transfer
more than eight bits of information to the computer. In any case,
transters of data that contain more than eight bits always involve
the transfer of multiple bytes to and from the computer and the in-
dividual 8-bit I/O ports. This is important to remember: information
is always transferred eight bits at a time.

Software Command—Data Transfer and Control

In most cases, the PEEK and POKE commands will be used to
transfer 8-bit data values between the I/O devices or memory loca-
tions and the 6502 computer. As we noted previously, some data
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transfers will require more than eight bits of information, so multi-
ple bytes are transferred, one byte at a time.

There are also cases in which the actual value of the data trans-
ferred is meaningless. The bits may be used to represent individual
two-state conditions that are unrelated to the positional values of
the bits. For example, a number of sensors could be connected to the
Apple indicating conditions such as tank empty-or-full, heater on-or-
off, value open-or-closed, and so on. A PEEK command could be
used to input the status of these indicator bits, through an 8-bit input
port. Thus, the value read from this input port might be 100, but the
port is sensing eight individual on or off (logic one or logic zero)
states, so the value of 100,, is meaningless. The individual binary
bits each represent the state of an individual sensor. In this case:

100, = 01100100,

This indicates that three of the sensors are in the logic one state and
five are in the logic zero state.

The POKE and PEEK commands can also be used in a similar
manner to turn a device on or to turn a device off, based upon the
state of the individual bits that have been sensed elsewhere in a con-
trol program. In fact, many of the I/O addresses used by the Apple
are assigned to simple on/off devices such as the speaker. Thus, a
simple command:

A = PEEK(49200)

will generate a “blip” on the speaker in the Apple. You should under-
stand that the variable, A, is a “dummy,” and its final value is not im-
portant, since the net effect of the simple BASIC statement is to
pulse the speaker once. The speaker control command may be used

in a loop to generate a low buzz from the speaker. This is shown in
Example 1-4.

Example 1-4. A Simple Speaker Control Program

10 A = PEEK(49200)
20 GOTO 10

The important point to remember here is that the PEEK and
POKE instructions are not limited simply to controlling the transfer
of information on the data bus. They may also be used for specific
control functions, such as pulsing a counter, turning on a pump, or
tilting a solar collector.

Assembly Language and BASIC

The BASIC-language programs that you write on your Apple com-
puter bear very little relationship to the actual instructions that the
6502 microprocessor chip can actually execute. Each of your BASIC
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statements and commands is interpreted by the BASIC interpreter
resident within the Apple computer. A programming manual for the
6502 chip, itself, would bear little relationship to the Apple software
manual. The commands are very different.

The 6502 does not have a PRINT command, so it would not per-
form the following operation:

PRINT “THIS LOOKS LIKE FUN"

The BASIC interpreter determines that a PRINT operation is to take
place and it then executes a series of assembly language program in-
structions that actually place the codes for the alphabetical charac-
ters in the display memory to spell out, “THIS LOOKS LIKE FUN.”
The assembly language steps consist of logic ones and zeros that
cause the necessary internal and external 6502 operations to take
place to transfer the message portion of the PRINT command to the
display memory.

While we will not use assembly language programming to any ex-
tent in this book, you should be aware that it is the “base” computer
language that causes the Apple to operate the way that it does.

The PEEK and POKE commands each cause many, many assem-
bly language commands to be executed to produce the overall effect
of data transfer. Since these BASIC language instructions must be
interpreted, even when used one right after another, or in a loop, the
interpretation software process can be slow. Two programs are
shown in Example 1-5, both of which control the speaker in the
Apple. Each series of program steps does the same thing; generating
a tone on the speaker. Simply by listening to the differences in the
two tones produced, you will be able to appreciate the difference in
the speeds of execution of these programs.

Example 1-5. Comparison of Assembly Language and BASIC Programs for Speaker Control

Basic Program Assembly Language
10 A = PEEK(49200) GO LDY F#$CO
20 GOTC 10 LOOP LDA #3$0C
JSR WAIT
LDA SPKR
DEY
BNE LOOP
JMP GO

The assembly language program generates a pleasing, even tone,
while the BASIC program generates a low rumble. The assembly lan-
guage program is similar to the one used by the Apple Monitor pro-
gram where the internal WAIT subroutine has been used to generate
a delay.

In some cases, assembly language programs have a five-hundred
to one advantage over BASIC programs, although the BASIC pro-
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grams are probably easier to write and debug. Assembly language
programming is generally not recommended for the novice.

We will be mentioning assembly language programming very lit-
tle, concentrating on the use of BASIC language programming in-
stead. For further information on 6502 assembly language program-
ming, we recommend 6502 Software Design and Programming and
Interfacing the 6502, With Experiments (Howard W. Sams & Co.,
Inc., Indianapolis, IN 46268).

Binary and Decimal Numbering

The Apple computer system acquires, processes, and prints deci-
mal (base-10) numbers. This makes it compatible with the number-
ing used by most people today. It would be difficult for us to readily
understand and convert data values that were printed in a nondeci-
mal format. The data and address lines are directly connected to the
6502 microprocessor chip, so they are binary, having only two states—
a logic one or a logic zero. Thus, when we specify an I/O port ad-
dress in a PEEK or POKE command, we must realize that the ad-
dress (0-65535) will appear in its binary form on the address bus
( 0000000000000000-1111111111111111). You should be able to make
the conversion between decimal and binary, in either direction.

Likewise, the data values transferred to and from the computer
by the PEEK and POKE commands are also specified or acquired as
8-bit binary values, since the data bus is only eight bits “wide.” The
8-bit data bus is a function of the data processing capability within
the 6502 chip. It is not a function of the Apple. Thus, we are limited
to 8-bit data transfers. Is this a great limitation? Generally not. In
spite of it, the Apple can process a great deal of information, and, as
you will see later, it is easy to interface to I/O devices.

One final note on addresses is necessary before leaving this chap-
ter. The BASIC interpreter in the Apple computer has been set up
to handle both negative and positive addresses. This does not mean
that there are actually negative addresses in the computer. Can you
imagine negative street numbers? The negative numbers are simple
due to the way in which the binary equivalents of the addresses are
stored in the Apple. Thus, the address for the speaker, 49200, is
equivalent to —16336. To avoid confusion, we strongly recommend
the use of the positive addresses. You can easily convert between
negative and positive addresses simply by (a) adding 65536 to a
negative address to yield the positive equivalent, or (b) by subtract-
ing 65536 trom the positive address to yield the negative equivalent.
Both addresses, 49200 and —16336, generate the same 16-bit address,
but we think that you will agree that negative addresses can seem a
bit abstract and confusing.
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CHAPTER 2

Apple Interfacing

At this point, you are probably wondering:

® How does the Apple actually transfer information to I/O de-
vices?

® How are the I/O devices actually synchronized to the operation
of the computer?

® How are individual I/O devices selected or identified?

® How do I/O devices place their data on the data bus and how
do they actually receive it from the data bus?

These are important questions, since the answers to them will pro-
vide the basis for your understanding of microcomputer interfacing.
We will be answering these questions in this and other chapters. We
will also provide some experiments that will reinforce the concepts
through hands-on experience.

A tew examples of digital circuits will be provided in this chapter.
We have assumed that you can “read” and interpret a logic circuit
diagram, and that you are familiar with the more common SN7400-
series transistor-transistor logic (TTL) circuits

I/O DEVICE ADDRESS DECODING

Before we can discuss the actual transfer of information between
I/0 devices and the computer, we must first understand the circuitry
and the signals that are used to identify or address the individual
I/O devices. There are many schemes that may be used and we will
examine several of them. It is impossible to show every possible
scheme for addressing I/O devices, since modifications will be made
to suit special needs.
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When the Apple computer is programmed to perform a data trans-
fer using either of the general-purpose I/O commands, PEEK or
POKE, certain signals are generated by the 6502 processor to syn-
chronize the flow of data. At this point, our main concern is the use
of the address bus lines. These are the 16 lines that address individ-
ual memory locations and I/O devices. You should recall that the
PEEK and POKE instructions each contain decimal address infor-
mation that is used to identify the addressed memory location or I/O
device. Of course, the Apple computer has no way of distinguishing
between a memory location and an I/O port.

DEVICE ADDRESSING

Each I/O device that is to be used with the computer must be able
to recognize its own device address. Since the PEEK and POKE
commands use 16-bit addresses, each I/O device must monitor these
16 address lines, A15-A0, for the occurrence of its address. There are
three basic schemes that may be used by I/O device circuits to ac-
complish the monitoring for a specific address. These are:

® Gating-detecting a specific combination of logic signals.

® Decoding—a more flexible gating scheme in which many ad-
dresses may be detected.

® Comparing—comparing a preset or known address with the ad-
dress-bus signals until a match occurs.

Combinations of these three techniques are possible and there are
probably many variations that are possible. We will describe exam-
ples of each of the three basic address decoding schemes.

Using Gates for Address Decoding

In the scheme for decoding device addresses in which individual
gates are used, the address must be known so that the gates can be
properly configured. In this example, we will use the device address
1010100011110111; or 43255,,. Since the binary notation is long, and
somewhat cumbersome, you might feel more comfortable with the
hexadecimal equivalent, ASF7H. Since NAND/AND gates are the pre-
dominant type of gating logic available, we will use these types of
circuits in our logic.

To refresh your memory, the pin configurations for several types
of AND/NAND gates are shown in Fig. 2-1, with the generalized truth
table for a two-input AND gate and an equivalent NanD gate shown
in Table 2-1. Since inverters such as the SN7404 are often found in
device addressing circuits, a pin configuration for this chip has been
included in Fig. 2-1. The truth tables in Table 2-1 also show the func-
tion of an inverter. In all cases, the logic one state is the higher volt-
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Fig. 2-1. Inverter and various AND/NAND gate pin configurations.

age (+2.8 to +5 volts) and the logic zero state is the lower voltage
(0.0 to 0.8 volt). The NnanD gate functions are available with 2,3 4,
8, and 13 inputs, while the anp gates are available with 2, 3, or 4
inputs.

Since the unique output state, logic one for an anp gate and logic
zero for a NAND gate, occurs only when all of the inputs to an AND or
a NAND gate are all logic ones, we will have to configure the binary
address 1010100011110111, so that it generated 16 logic ones at the
input to the anp or NaAND gate, when it is present on the 16-bit ad-
dress bus. You have probably realized that there are no 16-input AND
Or NAND gates available commercially, so some other configuration
must be used instead. It is very easy to use a separate 8-input NAND
gate to detect a pattern of binary address bits on the high-address
bus (Al5-A8), and another 8-input NaxD gate to detect a pattern of
binary bits on the low-address bus (A7-A0). Simple inverter func-
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Table 2-1. Truth Tables for a Two<Input AND Gate,
NAND Gate and an Inverter

AND Gate NAND Gate L Inverter I
B Inputs _r Output Inputs Output Input Output
A B Q A B Q A Q
0 0 0 0O 1 H 1
0 0 0o 1 1 1 0
1 0 1 O 1
1 1 1 1 0

tions are used to invert the logic zero address bits so that they apply
logic ones to their corresponding gate inputs, as shown in Fig. 2-2.
In this circuit, two inverters and a NAND gate have been used to com-
bine the output from each of the 8-input NanD gates, so that the out-
put of the circuit will be a logic zero only when the complete pattern

of 16 bits, 1010100011110111., is detected on the 16-bit address bus.
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>0

INVERTERS = SN74L504
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Fig. 2-2. Gating circuit used to decode address 43255 or ABF7H.

One of the disadvantages of this circuit is that some of the address
signals must go through four gates before reaching the decoded ad-
dress output from the 2-input NAND gate. Since each gate delays the
signal slightly, this might cause some timing problems in the circuit.
Actually, the time delays are fairly minor, and we will ignore them
for now. The delay can be reduced somewhat by using a NOR or OR
gate in the circuit to combine the outputs from the two 8-input NAND
gates. This is good design practice. Nor and or gates are readily
available and are used quite extensively in computer interfacing. A
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typical Nor and or gate are shown in Fig. 2-3, with the correspond-
ing truth tables provided in Table 2-2.

While the gating scheme shown in Fig. 2-2 is effective in decoding
a single address, and relatively inexpensive, it is inflexible. A more
flexible approach is shown in Fig. 2-4. This circuit illustrates the use
of a gating scheme in which inverters may be used to invert individ-
ual address bits, as required. The bits may also be used without in-
version. The jumpers allow the device address to be preset, as illus-
trated in Fig. 2-5. In this circuit, only the low-address bus gating has
been shown, for clarity. A duplicate gating circuit is required for the
high-address bus lines. In this type of a gating circuit, any one of the
65536 possible addresses may be selected, but only one at a time.

The programmable gating circuit provides broad flexibility, in
that addresses are easily changed to meet specific requirements for
an interface, but such a circuit can select only a single address, and
this is a severe limitation. When several 1/O devices are located on
the same circuit board, each will require its own address gating cir-
cuit. This limitation can be overcome with other addressing schemes.

Unfortunately, the gating schemes that we have shown are not all
that is required to uniquely address and control an I/O device. You
should recall from the discussion of the READ/WRITE (R/W)
signal in the previous chapter, that the R/W signal is used to synchro-
nize the flow of information to and from the computer. The I/O de-
vices must also use this control signal, if they are to use the data bus
properly. In many interfaces that are designed for 6502-based com-

Table 2-2. Truth Tables for a Two-Input NOR Gate and OR Gate

NOR Gate OR Gate
Inputs Output Inputs Output
A B Q A B Q
0 0 1 0 0 0
0 1 0 0 1 1
1 ] 0 1 0 1
1 1 0 1 1 ]
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Fig. 2-4. A simple 4-input gate that can be programmed for 1's and 0’s.

puter systems, the R/W line is used to provide the logic-zero write
pulse, with the R/W signal being inverted to generate a separate
read pulse. The two resulting control signals, WRITE (WH) and
READ (RD), are easy to use in interface circuits, since they are ac-
tive in the logic zero state. The use of these signals is shown in Fig.
9-6. In this circuit, the output from the 16-bit gating circuit is com-
bined with RD and WR to provide two signals for 1/O port control.
These two control signals are a combination of the decoded address
and the WRITE pulse, and a combination of the decoded address
and the READ pulse. The resulting pulse from each gate is called an
address select pulse, or a device select pulse. More generally, a de-
coded address is gated with a function pulse (RD or WR) to gener-
ate a device select pulse. In the circuit diagram shown in Fig. 2-6, the
RD 49280 pulse could be used to control an input port, while the
WR 49280 pulse could be used to control an output port. Note that
the notation for the WR 49280 pulse does not have a “bar” over it.

FROM HIGH-ADDRESS GATE
0 A7 e + -
> DECODED
Lopee -—{:)o—o ha— :Z>7 OUTPUT
1 A5 e—y - - SN741532
—i
0 Ade- -
‘ TI > \—D_
1 A3
— o—o SN74LS30
—p &
[>o—
1 Al o——p .,

Fig. 2-5. Programmable gate used for device address decoding. (High address

section is equivalent.)
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Fig. 2-6. Using RD and WR signals to generate device select pulses for
device synchronization.

This means that the pulse is active in the logic one state, while the
RD 49280 pulse is active in the logic zero state. In this example, it is
quite proper to note the address on the I/O ports by using a hexa-
decimal value, for example, RD C080H. ,

Before going further, you should be sure that you understand that
a reading operation involves reading information into the computer
from an input port, while a writing operation involves the transfer of
information from the computer to an external device. It is also quite
proper and useful to use one address to control an input port and an
output port. Since the RD and WR pulses cannot be coincident,
there is no conflict between an input port and an output port that
have been assigned the same address. You cannot assign two input
ports the same address, and you should not assign two output ports
the same address. In fact, you may find that even though an input
port and an output port have been assigned the same address, they
may be unrelated as to their function, and may be used on separate
interface circuits.

The concepts and the basic circuits that have been developed in
this section are very important and they will be carried forward to
other sections and chapters. It is important that you understand the
use of the signals that have been discussed to select devices. We have
not yet discussed what these input and output devices are, or how
they work, but we shall discuss this in the next chapter.




Using Decoders

In many cases, it is easier to use decoder circuits in place of the
gate address detecting circuits, and, in some cases, in place of the
vor-gate device select circuits, too. Why are decoders so useful?
Perhaps it is best to take a look at several types of decoders to see
what they look like and how they operate. As you examine the de-
coder circuits, keep in mind that they are simply collections of gates
that have been “integrated” into an easy-to-use decoder circuit.

Decoder circuits are generally specified as x-line to y-line decod-
ers, where x represents the number of binary inputs, say four inputs,
and where y represents the number of possible outputs, or the num-
ber of different binary states present on the x inputs. Thus, for the
four inputs, there would be 16 possible outputs, creating a 4-line to
16-line decoder or a 4- to 16-line decoder. This is, in fact, a real de-
coder circuit, as you will see.

Each of the binary inputs has two states, a logic one and a logic
zero. These inputs are independent of one another. The outputs are
also binary, in the sense that they have two possible values, but they
are not independent. There will only be one unique output from the
decoder, representing the value or “weight” present at the binary in-
puts. In most cases, the unique output state is a logic zero, with the
other outputs in their logic one state.

A typical decoder integrated circuit is the SN74L.S139. This inte-
grated circuit actually contains two independent two-line to four-
line decoders, as shown in Fig. 2-7.

The truth table for the SN74L.S139 is shown in Table 2-3.

Of course, the truth table applies to both of the decoders within
the SN74L.S139 integrated-circuit package, or “chip.” Most decoder
circuits incorporate an enabling input, so that the decoder may be
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Fig. 2-7. SN74L5139 decoder chip schematic diagram and pin configuration.



Table 2-3. Truth Table for an SN74L5139 Decoder

Inputs Ovutputs
Enable Select
G B A YO b4 Y2 Y3
H X X H H H H
L L L L H H H
L L H H L H H
L H L H H L H
L H H H H H | L
H = high level L = low level X = irrelevant (don't care)

turned on or turned off by one logic input. This is the function of the
ENABLE or “G” input on each of the decoders in the SN74LS139.
Note that when the “G” input is a logic one, all of the outputs are
forced into the logic one state, regardless of the states of the A and
B inputs. This allows the decoder to be gated on or off. In the off
state, the power is not removed, but the outputs are all forced into
the logic one state.

Let us now examine a simple, rather trivial, example of the use of
a two-line to four-line decoder for device address decoding. We will
assume that we only have a few I/O devices, so that the decoders in
the SN741.S139 decoder package can handle our needs. A typical
decoder circuit is shown in Fig. 2-8. In this circuit, only two address
bits have been decoded, the rest have been ignored. Note that the
enable input has been grounded so that the outputs of the decoder
will operate properly. The added nor and or gates generate the
actual device select pulses.

The device select signals have been noted as RD X, RD Y, and WR
Y, since there is no specific address that will actuate each. Addresses
01010101 00000010, 00011101 11110110 and 00000000 11111110 will
all cause the RD X device select pulse to be generated, if they are

DECODER —1
Al B 3 _
AD A2 p— D— RDY
!
6 0 !

2 3
=

Fig. 2-8. 2-Line-to-4-line decoder used for device addressing.
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used in PEEK commands, for example A=PEEK(21762). This non-
absolute device addressing results because address bits A15-A2 have
not been used in the decoding scheme. Nonabsolute addressing
means that there are several addresses that will actuate the selected
device. The circuit shown in Fig. 2-8 will decode four addresses and
thus eight individual devices may be selected, four input devices
and four output devices; additional NorR gates or or gates are re-
quired, though. In a small system, this may be adequate, although
the decoding scheme does not provide a great deal of flexibility in
allowing the addition of new I/O devices beyond the original eight.
Although this scheme is not very flexible, let’s take a closer look at
it, since it allows us to develop two other concepts that can be ap-
plied to other decoder schemes.

In Fig. 2-8, the enable input, “G,” of the decoder is simply
grounded, to always enable the decoding action. This input can allow
the decoder to be used for absolute decoding. A gating circuit can be
used to supply an enabling signal to the decoder only when a preset
pattern of address bits, on address lines A15-A2, is present. You have
already seen the use of multiple-input gating circuits; the circuit in
Fig. 2-5 is a good example. This circuit can be readily adapted to
provide the enable input for a simple decoder. Since the Al and A0
inputs are being used as inputs to the decoder, they are not used as
inputs to the gating circuit that provides the decoder-enabling sig-
nal. A simple example of this is shown in Fig, 2-9. In this circuit, the
ADDRESS ENABLE signal is generated by a gating circuit (Fig.
2-5). In this case, the jumpers associated with the Al and A0 address
inputs are simply disconnected.

If we assume that the high-address gating circuit has been preset
for an address bit pattern of 11110000, and that the Al and A0 inputs
to the circuit have been disconnected (see Fig. 2-5), then the de-
- coder shown in Fig, 2-9 will only be enabled for addresses 11110000
01101100 through 11110000 01101111. Thus, in this circuit, the de-

ADDRESS ENABLE INPUT

DECODER

AI_.;T_
2——
Al B I
A0 |" o _D— WR 61548

Fig. 2-9. Decoder used for absolute address selection.
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Fig. 2-10. Decoder enable inputs used with WR and RD to generate device
select signals.

O = RS L

coder outputs of 0, 1, 2, and 3 correspond to device addresses 61,548
through 61,551, or FO6CH through FOSFH. Only the WR 61548 de-
vice select pulse has been generated in this example. Again, an or
gate or a NOR gate is required for each device select pulse that is to
be generated.
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Fig. 2-11. SN74LS138 decoder.



An alternate approach is to use both of the decoder circuits in the
SN741.S139 chip, using the RD and WR function pulses to enable the
decoders. In this way, the address selection is again nonabsolute, but
the device select gating is performed within the chip. This is shown
in Fig. 2-10. The Nor and oR gates are no longer required for each
device select pulse to be generated. While this circuit may not be
immediately useful, it does illustrate the use of the enable input of
the decoder to generate the device select pulse. The decoder gating
or enabling input may be used for device select pulse generation, or
for absolute decoding. In some cases, it may be used for both.

Large Decoders

There are additional decoder circuits that will be useful to you in
interfacing your Apple computer to external devices. These decod-

functional block diagram and schematics of inputs and outputs
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Fig. 2-12. SN74154 decoder.
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ers, depending on the type you choose, may have additional inputs,
enable lines, and outputs. Examples are shown in Fig. 2-11 for the
SN74LS138 decoder and in Fig. 2-12 for the SN74154 decoder. The
SN75155 decoder has also been included ( Fig. 2-13) since it has two

:.—.—r.—uﬂg

® I Irrx|®
XN I r I x®|®»
-~ I
X X I T m I
IITIIFIZI
I T FITITTI
X F I I I X

{+5  sn74154
2
17
15 +LI. 1
A3 201 14 H8
21 13 2
ADDRESS | AZ ¢ 12 14
BUS | m ——% 8 1 p3
A0 23] 3 [10
9 —
S8 16 DEVICE SELECT
o q ¢ 7 PULSES
WR OR RD G2 [
5
18| o ' B
. 3
> 3
L2
1
0 —_ -
12

—
-

Fig. 2-14. SN74154 decoder used to produce 16 nonabsolute decoded device
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sections, but the address inputs, A and B, are common to both of the
decoder sections. Each section of the SN74155 has separate control
or enabling inputs.

A large decoder such as the SN74154 4-line to 16-line decoder pro-
vides broad address decoding flexibility. A single SN74154 decoder
may be used to nonabsolutely decode 16 addresses, and when either
WR or RD is used as one of the enable inputs, the SN75154 may be
used to directly generate 16 device select pulses, without the need
for additional gating. This is shown in Fig. 2-14.

Additional decoders or gates may be added to the basic circuit so
that absolutely decoded device select pulses are generated. A typical
example of this is shown in Fig. 2-15. Either the RD or WR signal
may be used to gate or enable the lower decoder. The NoR gates
have been used to gate together the address selection signal from the
upper portion of the circuit and the address selection plus the func-
tion pulse from the lower decoder. Thus, the upper portion of the
circuit is used to “qualify” the outputs from the lower decoder to
make the address selection absolute. In this example, two device
select pulses have been shown. Although this circuit will work, it is
not particularly useful, since it can be simplified.
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Fig. 2-15. Using SN74154 decoders and gating for absolute device address selection.
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Since the SN74154 decoders have two enabling inputs, G1 and G2,
the Nor tesshminFig.ﬂ-lﬁma beelmnnamdbyumgthe
second enabling input as the “qualifier” that will enable the decoder.
Theuseofthistypeofc:rcmtlsshownm Fig. 2-16. In this example,
the lower decoder now has two enabling input signals, the RD con-
trol signal from the computer, and the enabling signal from the up-
per portion of the circuit. You should note that the upper decoder
has both of its enabling inputs used, so that it is enabled only for a
specific pattern of bits on the HI address bus. In this case, gating has
been used to generate the enabling signal for the upper decoder.

A third decoder could be added to this circuit to generate device
select pulses for output devices. The inputs to this additional decoder
would be the same as those to the lnwerdecoder except that the WR
signal would be used instead of the RD signal.

Many decoder schemes are possible, and you will have an oppor-
tunity to explore the use of decoders in the experiments. The main
point is that the use of decoders simplifies the process of device se-
lection and gating. Decoders are generally used in situations that re-
quire flexibility and the generation of several device select or device
address signals in proximity to one another.
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Fig. 2-16. An improved device selection circuit.
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Fig. 2-17. SN7485 four-bit magnitude comparator chip.

Using Comparators

The use of digital comparators for device address detection will be
the last technique discussed. The comparator-based schemes are rel-
atively straightforward and they are very similar to the “program-
mable-gate” schemes shown in Figs. 2-4 and 2-5. Remember that
comparators, too, are simply collections of gates, connected or inte-
grated, to perform a comparing function. The comparator circuits
allow us to present an address that is constantly compared to the 16-
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Fig. 2-18. Two SN7485 comparators used to detect address 205.
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Fig. 2-19. Comparators and decoders used for address selection.

bit values on the address bus. This comparing is done by gating
circuits within the comparator chips. A typical comparator is the
SN7485 4-bit magnitude comparator, shown in Fig. 2-17. Besides
the equal condition, the SN7485 can also detect the greater-than
and less-than conditions, but these are not used in address com-
parison. Caution: The SN74L85 version of the SN7485 chip is not
a pin-for-pin equivalent. Consult a manufacturer’s data sheet for
. additional information.

- A typical address-comparison scheme is shown in Fig. 2-18 in
which only 8 of the 16 address bits have been shown for clarity.
The comparators have been preset to detect the address 205 or
11001101;. Like an 8-input gate circuit, this scheme can only detect
a single address, so most comparators are used with decoders for a
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flexible decoding scheme, as shown in Fig. 2-19. The unique “equal
condition” output of the SN7485 comparators is a logic one, so where
necessary, it has been inverted to provide the enabling signal to a
decoder chip. In this circuit, two additional comparators have been
used so that the device addresses are absolutely decoded. Now, the
outputs of the SN74154 decoder are only active when address bits
Al5-A4 match the corresponding logic states that have been preset
at the inputs to the three comparator circuits. In this case, the ad-
dress_bits must be 11101001 for A15-A8 and 0000 for A7-A4. Since
the WR function pulse must also be present to enable the decoder,
you should realize that output device address selection signals are
being generated by this circuit, for addresses 59648 through 59655,
or E900H through E907H. Another SN74154 decoder could be added
to this circuit to generate 16 device address selection signals for in-
put devices. You would need parallel connections between the inputs
of both decoders except that the RD signal would be used in place
of the WR signal.
This completes our discussion of device addressing circuits and
the combinations of device addresses and function pulses to obtain
device select pulses. In future examples, we will expect that you will
recognize the notation WR 54390 as a logic-zero device select pulse,
generated by the proper gating of the WR function pulse and ad-
dress 54390. In some cases, the actual gating will be shown, but in
most cases, we will assume that you understand the origin of the
signal. While you will probably see many different device addressing
and selecting circuits in other books, magazine articles, etc., you will
quickly find that they all function in pretty much the same way—
gating an address signal with a function pulse to select a particular
device.

In some of the experiments, you will explore the use of device
select pulses to control devices. In the next chapter, you will learn

how these pulses are used to control the flow of 8-bit data bytes on
the data bus of the 6502.




CHAPTER 3

1/O Interfacing

Now that we have developed a number of ways of selecting and
identifying I/O devices, the actual construction and configuration of
the I/O ports become very important. In this section, we will de-
velop some of the actual bus interfacing schemes that will allow 1/0O
devices to transfer 8-bit bytes to the computer and to receive bytes
transferred to them by the computer. As we found with the device
selecting circuits, there are many circuits for input ports and output
ports. Only a few sample circuits will be provided to illustrate the
basic principles of interfacing.

OUTPUT PORTS

Output ports are devices that receive data bytes from the com-
puter, controlled by POKE commands in the BASIC-language pro-
grams. You have already seen that there is a definite timing relation-
ship between data on the bus, the WR pulse and the device address,
when a POKE command is executed. This has been shown in Fig.
1-4. In the Apple computer, the duration of the WR pulse is about
500 nanoseconds. If we use the WR pulse to gate the data from the
data bus to an output device, through the use of the device select
pulse, the data is only presented to the output device for about 500
nanoseconds. This period is hardly long enough to allow the receiv-
ing device to perform a meaningful function. To eliminate this prob-
lem, each output port must be equipped with some sort of circuit
that can acquire data from the bus and “hold” it for as long as
needed, or until it is “updated” by another data transfer.

The type of circuit that can perform this function is called a latch,
since it can latch the information and hold it until it is updated or
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until the power is turned off. There are many different types of latch
integrated circuits that offer different configurations of control and
data inputs and outputs. Rather than describe all of the various types
of latches, we have chosen to describe three general-purpose devices,
the SN7475, the SN74175, and the SN74LS373. The pin configura-
tions and function tables are shown in Fig. 3-1. While the SN7475
and SN74LS373 are true latch devices, the SN74175 really contains
flip-flops. The SN7475 latch chip contains four latch circuits and the
SN74175 contains four flip-flop circuits, so two SN7475 or two
SN74175 chips are required for each 8-bit output port. The
SN74LS373 contains eight latch circuits, so only one of these is
required to construct an 8-bit output port.

Let us briefly describe the operation of these latch circuits, so that
their use becomes apparent. We will use the SN7475 latch chip as
an example. The SN7475 latch circuits can be thought of as “gates
that remember.” This is shown in the function table for the SN7475
latch, shown in Fig. 3-1. In examining this function table, you will
note that when the enable input (G) is a logic one, the data, or logic
level present at the “D” input, is passed through the latch to the “Q”
output. The Q output is the inversion of the Q output. When the
enable input goes from a logic one to a logic zero, the level present
at the D input at this time is latched or remembered by the Q and Q
outputs. The timing relationship shown in Fig. 3-2 illustrates these
operations.

As soon as the “G” input goes to the logic one level, the Q output
assumes the state of the “D” input even if the levels at the “D” input
are changing. The logic levels are passed from the “D” input to the
“Q” output when the “G” input is a'logic one; the “Q” output remains
at the level of the “D” input when the “G” input goes to a logic zero.
The SN7475 is divided into two sections, each of which can operate
independently of the other. The two gate inputs may be connected
to make the four latch circuits operate in tandem. Of course, the in-
puts and the outputs to the latches remain independent, so that four
input signals may originate from different places in a circuit. How-
ever, all four inputs will be latched at the same time if the separate
functions are operated in tandem.

The SN74LS373 operates in the same way as the SN7475, although
only one gating or enabling signal is used. In this chip, only the Q
outputs are provided. The Q outputs are not available. An additional
output control has been provided, but when the SN74L.S373 is used
as an output port, this control signal, Output Control (pin 1), is usu-
ally grounded.

The SN74175 chip contains four flip-flops that acquire and hold
information that is present on the positive-going edge of the clock
pulse. The outputs are only updated at this time, and the inputs are
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Fig. 3-1. Pin configurations and function tables for SN7475 (top), SN74LS373
(middle), and SN74175 (bottom) latch chips.

not continuously gated through the SN74175 on either the logic zero
or the logic one portion of the clock signal. This is what distinguishes
this flip-flop device from the latch devices, although in computer in-
terfacing, the net effect of both types of chips is the same.

A common clear input is also provided on the SN74175, so that the
flip-flops may be “cleared” (Q=0, Q=1), when this input is taken to

D INPUT |
6 INPUT | i i a
Q@ OUTPUT 1 |

Fig. 3-2. SN7475 latch circuit timing relationships.



the logic zero state. In most cases, the clear input will be connected
to +5 volts (logic one) and will not be used.

Each of the integrated circuits may be used to latch and maintain
the data put out by the Apple computer during the execution of a
POKE command. It is a simple matter of using an output device
select pulse to activate the latch circuit once it has been properly
connected to the bus. A typical 8-bit output port is shown in Fig. 3-3.
In this circuit, a logic one output device select pulse is required to

cause the latch circuits to acquire and hold the information output
by the Apple.

SN7475

. ] 16
D D7
i
D5 D 0 D5
D4 ip B2 D4
G
DATA
DATA BUS 4 13 LATCHED
FOR
PERIPHERAL
SN7475
D3 2 1p Q-l 16 D3
02 g D 0 15 D2
D1 > D Q L0 D1
DO D Q |2 DO
[ ! G G
DEVICE SELECT L 14 113

PULSE

Fig. 3-3. Two SN7475 latch chips used to form an output port.

In Fig. 3-4, two SN74175 latch chips have been used as an output
port, with some sort of logic monitors being used to provide a visual
indication of the information that has been latched by the chips. The
“1” indication at the connections to the CLEAR inputs at the output
port means that these inputs are connected to +5 volts, or a logic one
level. The “1” notation is used to distinguish a logic level connection
from a power-supplying connection, which is noted as +5 volts, or
+5 V.

An SNT74LS373 8-bit or octal latch has been used as an output port
as.shown in Fig. 3-5. Only one integrated circuit is required for this
output port. The Output Control line has been grounded so that the
outputs are permanently enabled. Again, an output device select
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Fig. 3-4. Two SN74175 latch chips used to form an output port.

pulse must be supplied from the device selection logic. Once an out-
put port has been properly connected to the data bus and a source
for the device select pulse, it can be accessed under control of soft-
ware commands. For example, the command, POKE 49312,0 would
transfer the value zero to the output port with the address 49312. If
there is actually an output port connected to the data bus, which cor-
responds to this address, then the value zero would be transferred
to it. o

The program shown in Example 3-1 may be used to generate an
increasing binary count at output port 49320. The count will con-

+5 GND
2o |10 SNT4LS373

D7 31p q = D7

- 4 5
T & .
s 9 LATCHED OUTPUT

A
DATA BUS 3 12 SORT DATA
. 13 15

T 16

DO ' L1 A L 0o
I G EN |

OUTPUT DEVICE SELECT
Fig. 3-5. SN7415373 latch chip used to form an output port.



tinue in sequence (in binary), 255, 255,0,1, 2. .. 254, 255, 0, 1, etc.
This program will be seen again, in the experiments.

Example 3-1. An 8-Bit Binary Counting Program for Port 49320

10 FOR N = 0 TO 255
20 POKE 49320,N

30 NEXT N

40 GOTO 10

Output ports are rather easy to construct. Most parallel-in, paral-
lel-out logic devices with internal latch capabilities can be used as
latches. Examples of devices that can be used as latches are the
SN74193 programmable binary counter, the SN74L.S194A universal
shift register, the SN74198 shift register, etc.

Most output ports are readily configured with standard inte-
grated circuits, but some of the newer integrated-circuit devices that
are meant specifically for use with microcomputers are becoming
available with built-in latch functions. An example is the Signetics
NE5018 8-bit digital-to-analog converter chip which contains a latch
section.

Typical applications for output ports include the following:

Transfer data to a printer

Transter data to a video display

Control a traffic light

Transfer data to a floppy disk

Actuate switches on a model railroad

Control valves and pumps in a chemical process
Control a plotter

Transfer data to a seven-segment display
Control another computer

In some applications, the value of the information is actually used,
while in others, the on or off state of each bit is used. Some devices
such as a printer may use a combination: ports for the transfer of the
data to be printed and ports for the control of the printer functions.
Displays made up of seven-segment LEDs frequently require the

.use of several output ports, even though the display is considered to
be only one “device.”

INPUT PORTS

Input ports are used with I/O devices so that they may transfer
information to the computer in 8-bit bytes. Unlike output ports that
must be able to accept and hold information that is placed on the bus
at a specific time, and may be continuously connected to the data
bus, input ports must be able to “disconnect” themselves from the
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ONE- BIT DATA  BUS
Fig. 3-6. Attempted use of standard gates on a data bus.

bus when they are not in use. The input ports must pass logic ones
and zeros to the CPU, but they must be configured so that they do
not interfere with the use of the bus when they are not selected.
Depending on the type of gate chosen, simple gates cannot be
used to gate data onto the data bus lines since their “unselected” out-
put state will be either a logic one or a logic zero, as shown in Fig.
3-6. Note that even when none of the gates is selected or enabled, the
outputs of the gates are at different logic levels, as noted by the
quoted logic levels. These levels “compete” for the use of the bus,
probably leading-to one or more burned out chips. This should
clearly illustrate why gates alone are not used on data buses.

Voo #C  4A 4 3¢ 3A a3y
_(wl ol jel {n] el el |s

w j‘i ' Fig. 3-7. SN74125 bus buffer chip

pin configuration.

- — a— — S— —— —_—

1L 2 I |4 |6 ) ¥
. 1C 1A 1¥ 2 2A ¥ GND

Special integrated circuits with three-state outputs are available
to simplify the design of input ports. A typical three-state device is
the SN74125 bus buffer, shown in Fig. 3-7. The diagram of the four
devices should look familiar, It is simply a buffer (logic one in, logic
one out, etc.), but with an additional control line, shown connected
to one of the angular sides of the buffer symbol. The buffer will pass
logic ones and zeros from its input to its output when it is enabled,
but unlike a simple gate, when it is disabled, the output appears to
be electrically disconnected from the bus, or other logic device, to
which it is connected. In three-state devices, this third state is often
called the HI-Z or high-impedance state, to note its disconnected
condition. The disconnecting and connecting is rapid, generally tak-
ing less than 20 nanoseconds. R

In the SN74125 circuit, each three-state buffer has its own enable
input, which must be a logic zero for the data to be passed from the
input to the output. A logic one state on the enable input forces the
output into the high-impedance state. A similar integrated circuit,

50



DATA BUS

SN74125 ]
DATA A {?
™
DATA B 4
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DATA C I ? Fy
DATA D %
A
B  BUS ENABLE
T INPUTS
D

Fig. 3-B. Typical three-state bus for four devices.

the SN74126, is a pin-for-pin replacement for the SN74125, except
that it is enabled with a logic one and disabled with a logic zero.
These chips serve to illustrate the action of three-state devices, but
they are not generally found in computer interface circuits, since
more useful devices are available.

For purposes of illustration, a typical bus is shown in Fig. 3-8. In
this circuit, four one-bit devices have been connected to the bus.
Only a one-bit bus is shown for clarity, although in an 8-bit bus sys-
tem, eight lines would be required. When one of the BUS ENABLE
INPUTS is placed in the logic zero state, the corresponding data bit
is passed through the buffer and onto the bus. We will assume that
there are no other devices connected to the bus. Thus, the truth table
shown in Table 3-1 applies to this simple bus circuit.

When none of the buffers has been enabled or connected to the
bus, the bus is not connected to anything except the input of the
gates, memories, etc., that are the “receivers” of the data bit, so the

Table 3=1. Truth Table for a Four-Device Three-5tate Bus

Enable
D C B A Bus Content
1 1 1 1 Undetermined (all devices HI-Z)
1 ] 1 0 Data A
1 1 0 1 Data B
1 0 1 1 Data C
0 1 ] 1 Data D
0 0 0 0 Not Allowed
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logic value of the bus is unknown. Whenever a logic zero is applied
to one of the bus buffer enable inputs, the selected buffer passes its
'data onto the bus. The condition in which more than one buffer has
been enabled is not allowed, since bus conflicts will arise.

All of the devices that are to be used with the Apple computer
system to transfer information to the CPU must have three-state out-
puts. Thus, even memory chips must have three-state outputs, as
they in fact do. The computer designer must be sure that the system
has been designed so that no two input devices are selected at the
same time. If such a multiple selection takes place, improper opera-
tion of the computer occurs.

Input ports that may be used to transfer information to the com-
puter are readily constructed using standard three-state integrated
circuits. In most cases, eight individual three-state buffers are used,
one per bus line. In most cases, too, the enable inputs are all con-
nected in parallel, so that all eight buffers transfer their information
onto the bus simultaneously. In some cases, the common enabling in-
put is provided within the chip so that only a single pin on the chip
is required for the control of all eight bits.

There are many chips that may be used to construct input ports,
but only a few of them are general enough to warrant our considera-
tion. The two main integrated circuits that will be used in our exam-
ples are the SN74365 and the SN741.5244. The SN74365 may also be
- noted as the DM8095 (National Semiconductor Corp.), which is an
exact replacement. The pin configuration for these two chips is
shown in Fig. 3-9. |

You will note quickly that while the SN741.S244 has eight three-
state buflers on one chip, the SN74365 has only six. If the SN74365
device is used to construct an input port, two of the integrated circuit
packages must be used. A typical 8-bit input port is shown in Fig.
3-10. In this case, only two of the three-state buffers in the lower
SN74365 chip have been used. Since the SN74365 contains built-in

Ve G w1 JAd 1¥2 A3 1Yl IAF  Ava Al vec &2 BA By 54 5Y da 4y

_[n].[e] [w orisidniiwijobjelinl fw] [u] [u] [u] [u] [n] [w][s
IN@aNaRY|
ST LW B

A A A

sFRsHeH ' HeH1Hwe 1 2 3 4 § [ 1710
1a7 ¥ 141 2¥2 184 .rﬂ ] T 14 — 74 -~ 1A 3_'!' v
SN74L5244 | SN74365A SN74LS365.

Fig. 3-9. 5N7415244 and SN74365 (DM8095) three-state bus driver chip
- pin_configuration.
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- NOR gates that control the enabling of the three-state buffers, these
have been used to gate the RD function_ pulse and the device ad-
. dress, 49321. If the device select signal; RD 49321, had already been
generated elsewhere in the interface circuit, it could be applied to
- one of the enable inputs on both chips, while the other enable inputs

were- grmmded, or logic zero. This control scheme is shown in Fig.
3 11 | _

T 45 GND
SN74365
: _ D7
- o
_ | 1 DS
INPUT PORT 13 04 10
| m by DATABUS
2 D2
— D1
I Y
+5 GND
.
3
937 b 1l
RD ! 1"’1 G2

-~ Fig. 3-“!' 'I'rplul mpui Fllﬂ :uns‘lrucl'mf using SN74365 I‘:lllp!

Usmg such an mput port, data values may be input to the com-

puter through the use of the PEEK command, as shown in Example
3-2; 7

Example 3-2. Data Input Program for Pnrl'_ 49321

10 .A = PEEK (49321)
20 PRINT A
30 GOTO 10

i SN74365
(ON BOTH CHIPS)

RD 49321

Fig. 3-11. Alternate control scheme for SN74365 three-state chips.



In this example, the 8-bit binary value is converted to a decimal
number between zero and 255 when it is input by the Apple using
the PEEK command at line 10 in the program. It is then “printed” on
the video monitor screen. It would have been just as valid to use the
following command:

10 PRINT PEEK(49321): GOTO 10

A similar input port may be constructed by using an SN741.5244
octal (8-bit) buffer. This chip contains two independent sets of four
buffers each, which are independently controlled with two enable
inputs, 2G and 1G. Since there are no built-in Nor gates in the SN74-
1.5244, external device select gating is required. A typical input port
in which an SN74L.S244 chip has been used is shown in Fig. 3-12.
Software steps similar to those shown in Example 3-2 would be used

SN74LS244
S B
D7 Ha o v D7
§ 14
3 12
INPUT DATA 11 3 DATA BUS
13 7
15 5
D0 17 3 D0
o _
RD = 3 1:1 26
ADDRESS ;
$N7432 .

Fig. 3-12. Input port configured with an SN7415244 chip.

to control the flow of information from this port into the computer.

Both the SN74365 and the SN74LS244 have pin-for-pin equiva-
lent circuits that invert the data bits as they are passed through the
chips and onto the data bus. These buffers are the SN74366 and the
SN74LS240, respectively. The SN74366 is also equivalent to the
DN8096 chip. In most cases, the noninverting buffers will be the ones
used in interface circuits.

In some cases, peripheral devices may generate more than eight
bits of information that must be read by the computer. An example
of such a device would be a 12-bit analog-to-digital converter. When
more than eight bits of information are to be input, the bits are di-
vided into groups of eight bits. In the case of the 12-bit converter,
there would be two groups, one containing 8 bits, and the other con-
taining the remaining four bits. Likewise, a 16-bit value would re-
quire two input ports, as would a 9-bit value. When not all eight bits
in an input port are used, the unused bits are generally placed in the
logic zero state by connecting them to ground, or logic zero. If the
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state of the unused bits cannot be determined, perhaps they have not
actually been constructed in the input port circuit. You can “elim-
inate” these bits by using appropriate software commands. These
commands “mask” these unused bits, so that they become zeros.

Since a 12-bit value may represent decimal values between (0 and
4095, some means must be found for converting the individual bytes
that have been input into a single value. We will assume that the
eight least-significant bits have been input as a single byte from port
49312, and that the four most-significant bits have been input from
input port 49313 at bit positions D3-D0. We will further assume that
the unused bits at input port 49313 have been grounded so that they
are logic zeros.

Now that the configuration of the input ports has been defined,
let’s see how the information is manipulated so that the original value
is reconstructed from the two separate bytes of data from the two in-
put ports (Fig. 3-13). Since the least-significant bits can represent
values between 0 and 255 from the 12-bit interface device, these bits
do not require any “conversion,” since the Apple will simply input

SN74125
DO

INPUT DATA
D1

Do

DATA BUS

/Y

D1

[

2D
ADDR

Fig. 3-13. Two-bit input port.

these eight bits and convert them to a value within the range of 0 to
255. However, if the four most-significant bits are considered apart
from the other bits, converting them to decimal will yield values be-
tween 0 and 15, rather than their original positional values of 0, 256,
512, and so on. These bits have been “offset” by a factor of 256 due
to the fact that the 12-bit data value had to be “split” into smaller
pieces so that it could be input by the Apple. Remember that any
8-bit value that is input into the Apple will be automatically con-
verted into a decimal number with values in the range of 0 to 255.

When the two values have been input into the Apple, it is a simple
matter to “reconstruct” the data. If the information from the four
most-significant bits is multiplied by 256 and then added to the value
from the eight least- significant bits, a resulting value will represent
values between ( and 4095, inclusive, the value that was originally
present as a 12-bit binary value at the interface device. The complete
software routine is shown in Example 3-3.
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Example 3-3. Program for a 12-Bit Input Conversion

10 A = PEEK(49312)

20 B = PEEK(49313)

30 C = (B % 256) + A
40 PRINT C

You could simplify this by placing all of the steps on one line:
10 PRINT(PEEK{49313) % 256) + PEEK(49312)

This simple program will print the decimal equivalent of the 12-bit
binary value that was present at the peripheral or interface device
when the program was run. The program can be used for interfaces
with from 9 to 16 binary outputs, but you must be careful to ground
the unused bits. You will see another method of “masking,” or clear-
ing the bits in the experiments.

Input ports are used to transfer information from external devices
to the computer. This information may represent actual values of
weight, temperature, resistance, etc., or the information may be in-
terpreted as individual binary bits representing the state (on or off)
of individual devices, for example, empty/full, ready/busy, etc.
Some typical uses for input ports would include the following:

Transter of traffic sensor information to the computer
Transfer of digital values from an instrument to the computer
Transter of status (on-off) bits from a printer to the computer

In interfacing applications, the main requirement for input ports is
that their outputs have three states so that they will not cause con-
flicts on the data bus when they are used.

56



CHAPTER 4

Flags and Decisions

In almost all of the previous examples, we have assumed that there
is little synchronization required between the computer and the ex-
ternal I/O devices. Thus, output ports have been assumed to always
be ready for more data to be transferred to them. In the case of input
ports, we have assumed that the data values are present and ready
for transfer to the computer, when the computer reaches a PEEK
command in a program. This may not always be the case. We must
often deal with I/O devices that are slower than the computer.

1/O DEVICE SYNCHRONIZATION

Since not all I/O devices may be ready for the computer at all
times, a means of synchronizing the computer and the I/O devices
is required. The synchronization generally involves the use of signals
that are called flags. These signals are used to indicate that various
devices are busy or not busy, ready or not ready, converting or not
converting, and so on. Thus, “flags” indicate the status of devices, and
they are often called status flags.

For illustrative purposes, we will assume that we are required to
interface a device to an Apple computer. The device will provide
8-bit data values to the computer on an irregular basis. In most cases,
such devices also generate a flag signal that indicates that the device
is ready to transfer its information to the computer. Such a device is
shown in Fig. 4-1. Note that a standard three-state input port has
been used to transfer the information to the computer. The READY
flag presents an interesting problem. How is the computer going to
monitor or check the condition of the READY flag, so that it can
determine when a new data value is ready?
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INPUT DEVICE | —_—
READY/BUSY |——> SYNCHRONIZING FLAG
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"\

TO DATA BUS

!

INPUT PORT / RDXYZ

T

Fig. 4-1. Simple input device with synchronizing flag output.

As we stated previously, there is no rule that limits input ports to
the transfer of actual numeric values. The computer has no way of
knowing that the 8-bit value, 01100100,, represents 100, rather than
five devices being off, and three devices being on. Thus, another in-
put port could serve quite well as a way of transferring the status flag
information from the input device to the computer. The other seven
bits at this input port may be unused, or they may be used to indicate
the status of other external devices. In this way, software steps may
be used to check the condition or status of external devices.

When the status of a flag is checked in a computer program, the
computer may be programmed to wait until a flag has changed to a
particular state before going on with the required action, or it may
be programmed to check the flag periodically, going on about other
tasks in the meantime.

There are logic operations in assembly language and in BASIC
that allow us to check the status of individual flags, or bits, in an 8-bit
data word. In this way, the actual logic zero or logic one state of a
flag may be detected, with the computer making a decision based
upon the state of the flag.

LOGICAL OPERATIONS AND FLAGS

Probably the most useful operation, where flag detection is con-
cerned, is the logic AND operation. You should recall that two bits,
A and B, may be “aAnped” together, as shown in Fig. 4-2. The result
indicates that only when both of the bits are logic ones will the result
be a logic one. Another way to think of this is to treat the “A” bit as

— I MASK (A)
—_—Trr
o [ M
AND GATE

Fig. 4-2. Representation of logical AND operation using DATA and MASK to
yield RESULT.



VALUE 00111010 00011010 11110000 00011111

HASK 00100000 00100000 00100000 00100000

RESULT 00100000 00000000 00100000 00000000

Fig. 4-3. Example of AND operation in which eight bits of information are
operated on.

a “mask,” and the “B” bit as information or data. When the mask is
a zero, the result is a zero. When the mask is a one, the data is passed
through the gate. In this way, selected bits may be masked, while
others are “passed through” the mask. If, for example, we wished to
check the state of bit D5 in the data word 00111010, a mask of
00100000 could be used. The mask is ANnped with the data word, as
shown in Fig. 4-3, for several different data words. In all cases, the
logic state of D5 was passed through to bit D5 in the result. All of
the other bits were masked, or set to zero. In this way, the total re-
sult was zero when bit D5 was zero, and the result was nonzero when
bit D5 was a one. This could be used as the basis for decision making
steps in a program. You must remember to convert the masks to their
decimal equivalent before trying to use them in a BASIC program.
In the case of bit D5, the mask would be converted to 32.

FLAG-DETECTING SOFTWARE

Once an interface has been constructed so that the states of the
various flags may be detected, as shown in Fig. 4-4, software may be
used to make decisions based upon the states of the flags.

In some dialects of BASIC, there are logical operations that will
perform bit-by-bit AND operations, such as the ones shown in Fig.
4-3. In these cases, simple expressions may be used in BASIC pro-

INPUT DEVICE ONE-BIT INPUT F‘EHT RD 49321
READY/BUSY &b—‘
D7 } D7 1
e
| +T0 DATA
BUS
| J
| D0 } DO
| JL RD 49320

Fig. 4-4. Complete interface in which the flag is detected by software.
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Example 4-1. A Logic Zero Used for Control

4010 A = PEEK(49321)
4020 IF (A AND 32) = 0 THEN 200
4030 . . . Continue here if flag = logic one

grams to perform the ANDing operations between two data words
that have values between 0 and 255. Keep in mind that the binary
equivalents are what is actually being aAnped. Examples 4-1 and 4-2
illustrate how these AnD operations could be used to detect a flag
that is input at bit D5 from an input port, port 49321.

Example 4-2. A Logic One Flag Used for Control

4010 A = PEEK(49321)
4020 |IF (A AND 32) > 0 THEN 200
4030 . . . Continue here if flag = logic zero

In either case, when the proper condition is met, the program
would probably input data from an input port, or perform some other
action that is signaled by the presence of the flag,

Unfortunately, the Apple computer does not use its logical com-
mands in this way. In the Apple, an AnD operation allows only the
ANDing of two distinct true-or-false conditions, so it is very difficult
to mask eight bits to determine the state on only one. Unless we wish
to spend a great deal of time in a complex BASIC routine, we must
consider the use of an assembly-language subroutine that will per-
form the logical operations for us rather quickly. Since you can easily
point the Apple to assembly-language routines, this is worth pursu-
ing a bit further. In fact, we will provide you with some simple, easy-
to-use routines.

ASSEMBLY-LANGUAGE LOGICAL OPERATIONS

The assembly-language instruction set for the 6502 microprocessor
contains an AND and an or operation. Each of these instructions will
operate upon two 8-bit bytes, providing a single byte as the result of
the operation. Thus, we must write a short routine that will perform
the operation.

The Apple provides some “spare” read/write memory locations on
memory page 03H, and we have chosen to locate our routines on this
page, since it will make the routines independent of the total memory
size of your computer. A complete listing for the routine is provided
in Table 4-1. Note that both hexadecimal and decimal addresses and
data/instruction values are provided for you. You do not have to be
an expert in assembly language programming to use this routine, but
we have provided some comments so that you can follow the opera-
tion of the program, if you wish.
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Table 4-1. Assembly-Language Logic Subroutine

l Address Byte Data Byte
Hexadecimal 'I' Decimal Hexadecimal | Decimal

0300 768 — — MASK Byte Goes Here
0301 769 —_ — DATA Byte Goes Here
0302 770 — — ANSWER Found Here
0303 771 48 72 PHA Push Reg A
0304 772 AD 173 LDA Load Reg A from
0305 773 00 0 MASK location
0306 774 03 3
0307 775 2D 45 AND Reg A with DATA *
0308 776 01 1
0309 777 03 3
030A 778 8D 141 STA Store result in
0308 779 02 2 ANSWER location
030C 780 03 3
030D 781 68 104 PLA Pull Reg A back
030E 782 &0 | 26 RTS Return to BASIC

*Substitute ODH, or 13 decimal, for an OR operation.

Three read/write memory locations are used for the temporary
storage of the various data bytes, called MASK, BYTE, and AN-
SWER. The MASK location is loaded with the mask byte, and the
BYTE location is loaded with the byte that is to be operated on. After
the logical operation has taken place, the ANSWER location contains
the result.

To use this routine, you need to load the MASK information into
address 768, and the DATA byte into address 769. You can use
POKE operations to do this. Once this is done, you simply need to
call the assembly-language subroutine, so that the operation is per-
formed. How do you do this?

Calling an assembly-language subroutine from BASIC is not very
difficult, In the Apple computer, you simply need to put a three-byte
jump instruction in three successive locations, addresses 10, 11, and
12, or 0A, 0B, and 0C, in hexadecimal notation. Since our routine
starts at address 771, or 0303H, you need to put the following infor-
mation in these three locations: a 76 in address 10, a 3 in address 11,
and a 3 in address 12. Once you have loaded this address information
into these three locations, you can access the assembly-language sub-
routine with a USR function. In this case, you need to first load the
MASK and BYTE information, and then use the USR function. This
is shown in Example 4-3.

In this case, the value 32 is the mask byte, and 129 is the value that
is to be aAnped with it. The Q is a “dummy” variable that is required
for the use of the USR function, and the value 5 is a “dummy” value
that has no effect on the subroutine. You can use any variable for Q,

61



Example 4-3. Calling the Logical Operation Subroutine

1590 POKE 768,32: POKE 769,129
1594 Q = USR(5)

as long as you don’t use it elsewhere, and you may substitute any
value for the 5, say 0.

Once you have called the assembly-language subroutine, you will
find the result in location 770, and a PEEK operation may be used to
get at it. The program shown in Example 4-4 shows the complete use
of the subroutine. We have assumed that the subroutine has been
loaded, probably through the use of the monitor. In this example, the
three-byte jump instruction is loaded by using POKE operations.

Example 4-4. Using the Logic Operation Subroutine

2030 POKE 10,76: POKE 11,3: POKE 12,3
2040 POKE 768,32: POKE 769 PEEK(49321)
2050 Q = USR(7)

2060 IF PEEK(770) > 0 THEN 3460

2070 . .. Continue here if flag = 0

In this example, the data to be used in the logical operation is ob-
tained from an input port by using a PEEK command and the ad-
dress for the device.

You can also perform an Or operation with the same subroutine,
simply by changing the operation code (op-code) for the AND opera-
tion from a 2DH to a 0DH. Again, a POKE operation can do this just
before you use the subroutine. Thus, the subroutine provided in
Table 4-1 can be used for both logical operations.

You should be able to load the subroutine into the read/write
memory by using the monitor for the Apple. We refer you to the
Apple I1 Reference Manual for information about the monitor. You
could also use 12 POKE commands to load the program steps, but
this invites errors.

It is unfortunate that you must resort to assembly language to per-
form the logical operations that are readily available in other BASIC
dialects. However, the assembly-language program is fairly simple,
and it has provided a simple example of the use of such programs,
and how they can be called from a BASIC program. If you are not
an assembly-language programmer, perhaps this has whetted your
appetite.

COMPLEX FLAGS

At this point, you may be asking, if the flag on the input device
shown in Fig. 4-4 is used to indicate the availability of an 8-bit value,
how does the device know when the computer has input, or ac-
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INPUT DEVICE RD 49321
[ READY/BUSY {$
07 i | D7
-
TO DATA
BUS
DO I DO
CLEAR FLAG L
: JL roasso

Fig. 4-5. Complete flag circuit in which flag is cleared by computer-generated pulse.

cepted, the value that it has made available? In some cases, a signal
from the computer to the I/O device is used to indicate that the flag
has been detected, and that the necessary action has taken place.
This signal “clears” the flag. The flag-clearing actioni may be per-
formed by a separate signal. The same signal that controls the input
port for the data may perform the flag-clearing action. This is shown
in Fig. 4-5, and a simple timing diagram is shown in Fig. 4-6.

READY/BUSY FLAG oo {I | /_
RD49321 1 1 I
RD49320 _. \I'I \I'I

Fig. 4-6. Flag timing diagram.

When the flag is placed in the logic one state, this indicates that
the device is ready to transfer a byte to the computer. The RD 49321
pulse represents the transfer of the flag status information to the
computer. When the computer tests the flag and finds that it is a
logic one, it executes the steps that actually transfer the data from
the device to the computer. The RD 49320 pulse is used here to en-
able the three-state buffers at the correct time. This pulse is also used
to clear the internal flag circuit of the device.

The second RD 49321 pulse again reads the status of the flag, but
since the flag is now a logic zero, the computer takes no further ac-
tion. The third time that the flag is tested, however, the flag is a logic
one, and the data is transferred to the computer and' the flag is
cleared. A simple set of program steps that can be used to control the
interface is provided in Example 4-5. We have assumed that the logi-
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cal ANp subroutine has been loaded, along with the three-byte
pointer,

Example 4-5. A Simple Flag Testing Program

1050 POKE 768,32: POKE 769,PEEK(49321)
1060 Q@ = USR(Q)

1070 IF PEEK(770) = O THEN 50

1080 D = PEEK(49320)

1090 . .. Continue here after data input

Typical devices that use flags in this way are keyboards, floppy
disks, analog-to-digital converters, and other devices that may pro-
vide data bytes at irregular periods.

FLAG CIRCUITS

In some cases, devices may not have the necessary flag circuits
within them for easy flag control, or they may not generate logic
levels that are stable for relatively “long” periods so that they can be
properly detected by the computer. In these cases, the “flag” may be
a very short pulse. In fact, some flag pulses are too short to be de-
tected by the computer, if they are simply input by means of a three-
state input port.

In cases such as this, it is necessary to design a circuit that will
“capture” the flag pulse so that it may be detected by the computer
sometime later. Even if the computer can test a flag bit every few
milliseconds, it will frequently “miss” short pulses of a few micro-
seconds duration.

Flip-flop or latch circuits are generally used to remember the pres-
ence of flag pulses. Typical flip-flop devices are the SN7474 D-type
flip-flop, and the SN7476 J-K flip-flop. Most introductory digital elec-
tronics books provide a good coverage of flip-flop devices if you need
to review their operation.

A typical flip-flop-based flag circuit is shown in Fig. 4-7. In this
circuit, the input device generates a READY pulse that clocks the
flip-flop, transferring the logic level from the D input to the Q out-
put. The Q output is detected by the computer through the use of an
input port that is separate from the input port that is used for the
transfer of the eight data bits. The status of the flag bit is easily
tested by the computer, as has been described. Once the necessary
action has taken place, in this case, the input of data from the input
device, the flag flip-flop is.cleared. A logic zero pulse, CLEAR, ap-
plied to the clear input of the flip-flop serves this purpose. While the
RD 49360 pulse used to control the 8-bit input port could be used to
clear the flip-flop, we have shown a separate clear signal, so that the
timing relationships can be shown, as in Fig. 4-8.
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INPUT DEVIGE INPUT PORT

D7
— DATA BUS
—ep— D3
DO Do
READY J ‘ JL
| - RD49360
I L FLAG PULSE
I
SN7474 RD49361
IHF'I.IT PORT

aq CLEAR

Fig. 4-7. Flip-lop circuit used for detection of flag pulse.

In the timing diagram, the READY pulse sets the flip-flop, so that
its Q output is a logic one. This is detected when the status flag in-
formation is input from port 49361. The logic one state of the flag
causes the software to perform the steps that input the data byte and
then clear the flag. The separate CLEAR signal could be generated
by a POKE command, and appropriate circuitry, although the use
of the readily available RD 49360 pulse is probably easier.

DEVICE READY ] 1

FLAG OUTPUT (Q)

FLAG TEST (IN 25) N N N M N
DATA IN (IN 20) [ 1
CLEAR [ I

Fig. 4-8. Flag flip-flop timing diagram.

In this example, the flag was tested twice while it was in the logic
zero state. Since this indicated that no new data was ready, no input
transfers or flag clears were initiated.

Several experiments at the end of this book involve the use of flags.
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MULTIPLE FLAGS

Many systems have a number of flags that must be checked on a
regular basis. In some cases, a priority must be established, since
some devices are more important, or require faster attention, than do
others. The priority is easily set in the program, since the order in
which the various bits are tested determines which devices are “ser-
viced” before others. The program steps shown in Example 4-6 will
check several flag bits in sequence, from bit D7 to bit D5, providing
a priority in the order in which the corresponding devices would be
serviced by the computer.

In this example, the flag for bit D7 was detected when it was a
logic one, while the other two flags were detected when they were
logic zero. Other bit-sensing steps may be added for other flags, and
the order in which the bits are tested may be changed at any time,
simply by changing the program to reflect the new order. Note that
the data involved in the AND operation is not changed, and it only
needs to be input from the input port at the start of the sequence of
instructions.

Example 4-6. Flag Priority Software Steps

300 POKE 769,PEEK(54098):POKE 768,128: Q= USR(0)
305 IF PEEK(770) > 0 THEN 1050

310 POKE 768,64:Q=USR(0Q)

315 |IF PEEK(770) = O THEN 20

320 POKE 768,32:Q=USR(0)

325 IF PEEK(770) = 0 THEN 1010

330 ... And so on for other bits

INTERRUPTS

In some cases, it is necessary for an I/O device to be serviced as
soon as it is ready. It may not be able to wait the many milliseconds,
or even longer periods, that the computer may require to check flags
and make decisions based upon them. Almost all computers have at
least one interrupt input that allows you to “demand” immediate
servicing from the computer, irrespective of what it is doing. The
6502 processor chip used in the Apple computer has two interrupt
inputs; an interrupt request input (IRQ), and a nonmaskable inter-
rupt input (NMI). The IRQ input is sensitive to a logic zero, while
the NMI input is edge sensitive, being triggered by a logic one to
logic zero transition. These inputs are not used within the basic
Apple computer. However, they are readily available at the internal
interface connectors, and they may be used by add-on peripheral
devices and interfaces.

If a device is going to require extremely fast servicing, fast enough
to require the use of an interrupt, it goes without saying that assem-
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bly-language programming will also be required. Since this is be-
yond the scope of this book, we refer you to Programming & Inter-
facing the 6502, With Experiments and 6502 Software Design,
Howard W. Sams & Co., Inc., Indianapolis, IN 46268. Both books
discuss the use of interrupts in detail, providing examples and assem-
bly-language programs for the control of interrupts.

The Apple interrupts IRQ and NMI use specific memory locations
from which the 6502 processor “fetches” the address of the subrou-
tine that is to be used as the service routine for each interrupt. The
IRQ uses locations FFFEH and FFFFH, and the NMI uses locations
FFFAH and FFFBH. Since these locations are actually within the
read-only memory chips that contain the BASIC interpreter and the
monitor, the addresses in these four locations are fixed and you can-
not change them. However, these fixed addresses are simply used to
point to other locations in read/write memory where you can ac-
tually change the pointers for the interrupt service subroutines. We
refer you to the Apple II Reference Manual for the details of how to
use these “vector” locations.

FINAL WORDS

A few final words are necessary before you leave this chapter. We
have chosen to introduce you to a simple assembly-language subrou-
tine for performing the logical AND or or manipulation on two 8-bit
bytes, along with the use of the assembly-language subroutine call-
ing operation, USR. Actually, the Apple computer has a flag-check-
ing command in its instruction set: WAIT. This instruction can be
used to check individual flags, or groups of flags, and it can detect
logic one and logic zero flags, too. However, there is a limitation to
its use. If the proper flag pattern is not detected, then there is no way
for you to ever leave the flag-checking operation, and you must reset
the computer to get back control. Likewise, you cannot decide to
branch to one portion of a program if the flag or flags are set, and to
branch in another direction if they are not set. If the WAIT com-
mand is used, you will simply continue to WAIT until the condition
is met. This is fairly inflexible, and we have chosen to avoid the use
of the WAIT command for this purpose.

We have introduced you to the USR command for calling assem-
bly-language subroutines, and if you expand your horizons and con-
tinue to learn more about assembly-language programming, you will
find that this instruction is quite valuable. However, if you simply
want to access an assembly-language subroutine, such as the logical
AND subroutine, you can use the CALL command, followed by the
decimal address of the start of the subroutine. A CALL 771 opera-
tion can be used to call the logical axp subroutine. Of course, you
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must POKE the MASK and DATA bytes before you call the subrou-
tine.

The object here has been to show you a bit more of the power of
the Apple computer and how it can handle different tasks. The easy
path isn’t often the most interesting or educational.

68



CHAPTER §

Breadboarding
With the Apple

It has always been our philosophy that computers should be easy
to use, both for program development and for hardware or interface
development. Since the necessary signals for interfacing most com-
puters are readily available somewhere in the computer system, it
was decided to develop some general-purpose interface circuits that
could be used with a number of different computers. These circuits
are fairly simple and are easily constructed and adapted to many
computers besides the Apple. A printed circuit was developed con-
taining all of the necessary circuits for interfacing purposes. A photo-
graph of the interface is shown in Fig. 5-1. A standard 40-conductor
flat cable is used to connect the interface breadboard to various com-
puters. While the interfacing circuits could have been breadboarded
and then used for the experiments, it was thought that this would
only provide additional points at which problems could surface.

BASIC BREADBOARD

The basic breadboard contains a number of useful circuits that al-
low interface designs to be easily set up and tested. The basic sec-

tions are Power Supply, Logic Probe, Device and Memory Decoders,
Bus Bufters, and Control Circuitry.

Power Supply

The power supply section of the breadboard may be operated in
one of two ways. An external +5-volt power supply may be used, as
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Fig. 5-1. Apple breadboard system.

long as it can supply 1 ampere of current, or an external transformer
may be used to supply 12.6 volts (ac) to the on-board power supply
circuits. In either case, the breadboard power supply is separate
from the computer power supply. A separate power supply is often
used because some computer systems cannot supply sufficient power
for their own circuits and the added interface circuits that you may
wish to test. Whenever an external power supply is used, you must
be sure that there is a good, low-resistance common ground connec-
tion between both power supplies. A power supply schematic is
shown in Fig. 5-2.

If the on-board power supply is to be used, the 12.6-V ac trans-
former is connected to pins 1 and 2 on plug number 1 (P1); the rec-
tifier diodes, D1-D4, the filter capacitor, Cl1, and the voltage regula-
tor, VR, are all installed. We suggest that a small heat sink be used
with the +5-volt regulator. When the breadboard is used in this
manner, +5 volts are available at pin 5, and ground is available at
pin 6, on P1. These connections may be used for external devices, if
required.

If a separate +5-volt power supply is to be used, the power supply
parts D1-D4, C1, and VR are not needed and should be removed or
not installed. The +5-volt and ground connections are made at pins
5 and 6, respectively, at P1.

Since other voltages are often required, such as =12 or +15 volts,
provision has been made at P1 to connect additional external power
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Fig. 5-2. Breadboard power-supply circuit schematic.

supplies. The positive voltage, +V, and negative voltage, —V, are
connected to pins 4 and 3, respectively, at PL.

All of the voltages are available at the socket at position 1C-16.
The available connections are shown in Table 5-1.

Table 5-1. Power Supply Connections for the Power Socket, IC-16

Pin* Voltage Awvailable
7.10 +5

512 GND

3,14 +V (External)
1,16 —V (External)

*All other pins are unconnected.

Power for the integrated circuits on the printed-circuit board has
been derived from the +5-volt power supply. The connections at
IC-16 (socket) provide a means of easily obtaining power tor the
experiments.,

Logic Probe

The logic probe circuit, Fig. 5-3, is useful in determining the logic
state of various outputs, and also for detecting pulse activity at out-
puts. The logic-probe section of the breadboard contains a level de-
tector and a pulse detector circuit. An LM-319 (1C-15) comparator
has been used to detect the logic one and logic zero levels, while an
SN74LS123 (IC-14) has been used to detect and “stretch” pulses. -
We have used a green light-emitting diode (LED) for the logic zero
indicator (D-7), a red LED for the logic one indicator (D-6) and a
vellow LED for the pulse indicator (D-5). The input to the probe
is available at pins 1-4 at IC socket IC-19. These inputs are marked
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“P.” All of these inputs are in parallel, and any one may be used, but
do not try and connect the logic probe to two signals at the same
time. The logic probe should be thought of as two low-power Schot-

tky (LS) input loads.
+5 o5
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- § 220 R3
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Fig. 5-3. Logic probe circuit schematic.

If you have an external logic probe, the circuitry in this section
may not be needed. If you wish, you do not have to construct this
portion of the circuit. In any case, it will be useful to be able to detect
pulses and also to be able to detect the state of pulses, etc. We have
found the logic probe to be very useful in troubleshooting bread-
boarded interface circuits.

Memory and Device Decoders

A major portion of the circuitry on the breadboard is devoted to
I/O address decoding, as shown in Fig. 5-4. The decoders can be
operated in either a device mode or a memory mode, depending
upon the type of computer in use. In device addressing, only the LO
address bits (A7-A0) are decoded, while in memory addressing, all
of the address bits (A15-A0) are decoded. The Apple computer uses
memory addressing to identify I/O devices, since it is based upon
the 6502 microprocessor chip. Likewise, computers based upon the
6800 microprocessor also use memory addressing. Computers built
around the 8080, 8085, and Z-80 family of chips can use either type
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Fig. 5-4, Address decoder circuit schematic.
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of addressing. As you look over the schematic in Fig. 5-4, you should
recognize that the address decoding uses a combination of digital
comparators and decoders.

In the device addressing mode, an SN74LS85 4-bit comparator
(IC-5) is used to compare preset address bits to the address bits
present on the LO address bus lines A7-A4. The switches at 1C-6 are
used to preset the logic levels that will be compared with the address
bus. The package at IC-6 is a set of dual-in-line switches, so care is
required in making the switch settings. The switch positions are
clearly marked, “7,” “6,” “5,” and “4” at the switch marked “LO.” It
you are installing the switch, be sure that the open or off position is
to the right (logic one position ). Pull-up resistors at IC-7 provide the
logic one inputs to the SN74L.S85 when the switches are open, or in
the logic one position.

When an address match occurs between the preset bits and ad-
dress bits A7-A4, the SN74154 decoder (IC-12} is enabled. Although
the SN74154 decoder has the ability to decode address bits A3-A0
into 16 unique address outputs, only the first 8 have been used,
more than enough for breadboarding and interface testing.

Thus, if the address switches for bits 7-4 are set to 1011, the de-
coder would decode addresses 10110000, through 10110111, or ad-
dresses 176 through 183, decimal. For device addressing, the lowest
switch at IC-6 must be “open” or in the “D” position. This places the
decoder in the correct mode.

The decoded-address outputs are present at the IC-20 socket. They
are labeled “0,” “1,” and so on, through “7.” The entire section is
called “ADDRESS.” Note that there is a bar over the address num-
bers to indicate that the unique output state is a logic zero pulse.
The address notation, zero through seven, is a sequential addressing
that will help you in determining which pins are connected to the
device address outputs. In most cases, the numbers will have no rela-
tionship to the actual addresses that have been decoded. In the ad-
dressing example cited previously, in which addresses 176 through
183 were decoded, the output labeled “0” would correspond to the
decoded address of 176. Table 5-2 details the decoder outputs that
are available at the address socket, 1C-20.

Memory addresses are also easy to decode on the interface bread-
board. Two additional comparator chips, IC-3 and IC-4, are used to
compare address-bus lines A15-A8 with a preset HI address. The HI
address bits are set at the eight-switch dual-in-line package of
switches labeled HI, at IC-2. When using memory addressing, you
must be careful not to try and select addresses that have been as-
signed to the internal Apple memory (ROM or R/W). You must also
remember to convert the complete 16-bit address into the equivalent
decimal value for use in PEEK and POKE instructions.
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In the memory address mode, you must place the lowest switch at
IC-6 in the “closed” or in the “M” position. This allows the SN74154
decoder to be activated only when there is a match between address
bits A15-A8 and the bits preset at the HI dip-switch and a match
between address bits A7-A4 and the bits preset at the LO dip-switch.
Thus, addresses between XXXXXXXX XXXX0000 and XXXXXXXX
XXXX0111 are accessible, where X=1 or 0. These decoded addresses
are present as logic zero pulses at the “ADDRESS” socket (IC-20).
Remember that only the first eight addresses in a selected 16-address
block are available. Thus, if 10000001 is set for the HI address and
1110 is set for the LO address ( bits A7-A4), addresses 33248 through
33256 would generate logic zero pulses at pins 1 through 8 at the
“ADDRESS” socket, respectively. Keep in mind that the SN74154
decoder decodes all 16 addresses; you only have access to the “lower”

eight.

Table 5-2, Address-Decoder Connections for the Address Socket, 1C-20

Pin (1C-20) Designation SN74154 Output Pin
1,16 0 ]
2,15 ] 2
3,14 2 3
4,13 3 4
5,12 4 5
6,11 5 &
7.10 & 7
8,9 7 8

Connections for address-bus lines A3-A0 (unbuffered) are avail-
able on the breadboard at pins 8-5, respectively, on the socket at
IC-19. These signals may be used in some experiments, but caution
is required, since these signals are not buffered, and present a direct
connection to the Apple computer.

The address decoder section of the breadboard will save you a
great deal of time and effort, because you will not have to construct
device address decoder circuits when you wish to implement I/0
ports, or try some simple interface circuits.

Bus Buffers

Two 8216 noninverting bus buffer chips, IC-10 and IC-11, have
been used to buffer the bus, as shown in Fig. 5-5. This means that the
bus is available with a full fan-out of 30 (it can power 30 standard
7400-type inputs) and that it is isolated from the Apple data bus.
The eight bits on the data bus are available at the socket at IC-18.

The information in Table 5-3 shows the connections to the data

bus.
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Fig. 5-5. Bus buffer circuit schematic.

The bus buffers are always enabled, and the normal mode of op-
eration is for the transfer of data from the Apple to the breadboard.
This means that without additional signal use, you could monitor the
bus “activity” by connecting logic probes or other suitable monitors
to the outputs of the bus buffer chips, D7-D0. Output ports are im-
plemented by simply using the proper control signals (described in
the next section) to control an 8-bit latch. The eight latch inputs are
connected to D7-DO at the socket 1C-18.

Input ports, however, must be implemented so that they turn the
bus buffers in the opposite direction to “drive” data into the Apple.
Actually, there are two bus buffers for each bus line, as shown in the
pin configuration shown in Fig. 5-6 for the 8216 buffer. The DIEN
input determines which set of buffers is enabled, thus directing data
to, or from, the Apple. All input operations must activate the proper

Table 5-3. Data Bus Connections at IC-18

Pin (1C-18) Data Bus Signal
1,16 D7
2,15 D6
3,14 D5
4,13 D4
512 D3
6,11 D2
7,10 D1
8.9 ] DO )
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PIN CONFIGURATION LOGIC DIAGRAM
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Fig. 5-6. The 8216 bus buffer chip pin configuration.

set of buffers so that the Apple receives the data properly. Special
control circuitry has been provided to do this for input operations.

Control Circuitry

The control circuitry on the breadboard is rather simple, consisting
mainly of some general-purpose buffers to buffer control signals out-
ut by the computer. Six signals are provided, IN, RD, OUT, WR,
%géfﬂ and INTAK. For Apple interfacing, you will only be con-
cerned with the WR, RD, and RESET signals. The other signals are
useful when the breadboard is used with other computers. This con-
trol circuitry is shown in Fig. 5-7. The general-purpose interrupt sig-
nal is also buffered, but it is an input to the computer. Connections
to the control signals are made at the socket at IC-17, as noted in
Table 5-4.

The control circuitry also generates a signal that switches the 8216
bus buffers into the input mode, so that data may be transferred into
the Apple. It would seem to be merely a matter of turning the bus
around whenever a memory read operation took place. If this were
implemented, the bus buffers on the breadboard would be placed in
the input mode, even when a memory chip was activated within the
Apple. This would cause a bus “conflict,” so the bus on the bread-
board must be placed in the input mode only when an input device
on the breadboard itself has been selected.



To handle input ports properly, the input port device select signal
is used to gate data onto the data bus and also to control the mode
of the 8216 bus buffers. In effect, up to four input port device select
pulses may be ORed together to place the breadboard bus buffers in
the input mode. You will probably not use more than four input ports
+5

RI 1000 OHMS

IC-13 1C-13

1C-I7 SOCKET

2 WNT  — |3 1C-9 SN74365 ' | INTERRUPT
1.3 RD 4 | RD
14 TNTAK 2 2 | o3 | TNTAK
13 WR 5 ! -+ I e | WR
'z 00T 4 L | o5 | BOT
. W ] b LW
2 RESET e 7 | RESET
L
P2 PINS | EN

b

IC-17 SOCKET

W L 9 1 5
X -LS 10 4 &
INP REQ | 14| 12 m- 4 2 E}—vm INPUT
13 13 I ENABLE
Z| e - SN74LS20 NABLE

Fig. 5-7. Contrel circuit schematic,

on the breadboard. Thus, these signals turn the bus around for the
input of data only when an input port device select signal is gener-
ated on the breadboard, and it is wired by the user to one of the four
bus buffer enable inputs.

The “INPUT REQUEST” control pulses are required to be logic
zero pulses. They are applied to the pins labeled W, X| Y, and Z,
which are pins 16 through 13 on the socket at IC-17.

Table 5-4. Control Signual Connections at 1C-17

Pin {IC-17) Contrel Signal Direction
1 INT Input
2 Not Used ——
3 INTAK Qutput
4 RD Cutput
5 ouT Qutput
& WR Output
7 RESET Qutput
8 IN Output
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The actual ORing of these control signals is performed by the
SN74L.520 gate, IC-8. The INPUT REQUEST signal that is output
by this 4-input NAND gate is further gated with OUT and WR. This
gating provides a safety interlock, so that if your breadboard circuits
have been improperly wired, the bus drivers cannot be placed in the
input mode when an output-type operation is takirlg_B}ace. The re-
sultant “INPUT REQUEST, BUT NOT OUT OR WR” signal con-
trols the input/output mode of the 8216 bus buffers. L

Since the Apple generates only the memory write signal, WR, this
simply means that your interface will not be able to turn the bus
around for an input operation, when the computer is performing a
write operation. The OUT signal is used for interfacing with 8080,
8085, or Z-80 computers.

Two input ports are shown in Fig. 5-8. Each of these ports is con-
trolled by a device select pulse that enables the three-state buffers.
This same signal is used as the input request signal, INP REQ, and
each input port must generate its own input request signal. In this
example, the two input request signals have been connected to the
W and Z pins at the INP REQ section of the socket at IC-17. It
would have been just as easy to connect the lines to the X and Y pins.

The use of the interlocking INPUT REQUEST signal, and the as-
sociated circuitry only applies to testing interface circuits on the
breadboard. If you wish to construct an interface that will directly
plug into the Apple, and that will not use bidirectional bus buffering,
then you will not need to use such an interlock. The main purpose of
this circuitry is to protect your Apple computer from possible dam-

CONNECTIONS TO INPUT REQUEST
0w 10
} 4

INPUT PORT

DATA | ~> DATA BUS
2=
ADDR

DATA

INPUT PORT

RD:
ADDR

Fig. 5-8. Typical input ports showing use of INPUT REQUEST signal.
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Fig. 5-9. Wire-wrap varsion of the interface circuit.

age caused by careless or incorrect wiring of a test circuit. Once a
circuit has been completely tested and debugged, you can probably
connect it directly to the data bus of the Apple without any problem.

Breadboard Construction

The breadboard circuits may be constructed using wire-wrap tech-
niques, as shown in Fig. 5-9. In this case, the circuits could be ex-
panded and modified through simple wiring changes, but the bread-
board itself would be somewhat difficult to use.

To aid in interface construction and testing, a printed circuit has
been developed in which all of the necessary circuitry has been
placed on a single board. The power supply and logic probe circuitry
have been incorporated to make the breadboard easy to use. The
breadboard is shown in Fig. 5-10, and is available in kit or assembled
form from Group Technology, P.O. Box 87B, Check, VA 24072. A
large space has been left unused on the breadboard so that a solder-
less breadboard socket may be mounted directly on the printed-cir-
cuit board for easy experimentation. Typical breadboard sockets are
the “SK-10” from E & L Instruments, Derby CT 06418 and the “Super
Strip” from AP Products, Inc., Mentor, OH 44060. A complete list of
parts needed for the breadboard, along with the printed-circuit board
artwork is provided in the Appendix.

CONNECTIONS TO THE APPLE

Since the interface breadboard uses a 40-conductor cable to con-
nect to various computers, you will need a means of connecting the



Fig. 5-10. Packaged version of the interface.

cable to one of the peripheral interface slots in the Apple. We rec-
ommend the use of a flat cable assembly such as shown in Fig. 5-11.
There is a printed circuit female edge connector assembly on one end
of the cable, and a 0.1-inch by 0.1-inch female pin grid connector
on the other. The openings on both connectors must face in the same
direction. A ready made cable is available from Group Technology,
BG-100-Cable, which uses a two-foot length of flat cable.

The actual connections with the Apple bus signals are made with
a small adapter card. This card “twists” and “turns” the various sig-
nals so that they are routed from the edge connector to the periph-
eral connector in the Apple. You can easily put together an adapter
by using a Vector 4609 prototype card. This card plugs into one of

PC BOARD EDGE

— ‘i'-'lr PIN CONTACTS
EDGE CONNECTOR |
0.1" GRID
— CONNECTOR

GABLE-APPROX. 2 FT.
Fig. 5-11. Cable for interface.



SIGNAL  APPLE PIN INTERFACE PIN

10 SEL 1 -
- A0 2 2
Al 3 77
A2 1 10
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A 7 35
AB 3 38

o 0 5| aboRess sus
A9 11 17
AL0 12 s
Al 13 g
A2 14 5
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Al4 16 10
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lio
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Fig. 5-12. Apple-to-interface

the peripheral connectors in the Apple, and it has a 40-conductor
edge connector that will connect directly to the interface cable. Of
course, if you wish, you may make direct solder connections to the
cable, but we do not recommend this. You can make direct soldered
connections between the corresponding signal conductors on each
edge connector by using short pieces of hookup wire. If you do not
wish to make soldered conmections, vou can solder wire-wrap pins
into the holes provided at each edge connector, making the connec-
tions using wire-wrap wire.

The connections are shown in Fig. 5-12. If you choose to use the
Vector prototype card, there are several important things that you
must do before you start to make the connections between the two
edge connectors, no matter which wiring technique you choose to
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SIGNAL APPLE PIN INTERFACE PIN

+12v 50 N/C -
DO 49 30 )
D1 48 22
D2 47 32
D3 46 26
- . 1g [ DATABUS
D5 44 28
D6 43 24
D7 42 20
DEVICE SELECT 41 ~
00 40 -
USER 1 39 -
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Q3 37 =
™ 36 -
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&Y " ONLY ONE, NOT BOTH ~ —
—12V 33 =
INH 32 =
RES 3] —————mm o -2 RESET
IRQ 30 - ) [ [—
N S 21 | INTERRUPT
INT_IN 28 —
DMA ™ IN 27 —
GND 26 _L. 8.29.37  GROUND
TO SN7400, PIN 7

—=== = (OPTIONAL CONNECTION

connectors connections.

use. There are probably one or two printed circuit “foil runs,” or con-
ductor paths between the 40-conductor connector and the +5-volt
and ground contact pins on the 50-conductor Apple connector. All
such connections must be broken, so that the 40-conductor connector
contacts are “free,” and uncommitted to any signals. You can use a
small razor knife to cut these connectors. We recommend making
two cuts through each conductor, about 2 or 3 millimeters apart. A
soldering iron can then be used to “lift” the cutout section by heat-
ing it. You should do this to only the power connections which are
connected between the two connectors. All of the other pins are
“free.”

Since the Vector prototype board does not use plated-through
holes, be sure that you connect +5 volts and ground to the respective

a3



power buses, and that the proper connections are made to the
SN7400 chip.

The SN7400 chip is used to gate the read/write (R/W) signal with
the main clock signal of the 6502 processor, ®1. This gating generates
the memory read signal, RD, and the memory write signal, WR. If
this gating is not done, the cnmputer peripherals on the interface
breadboard will not work properly. In some computers, there are
separate read and write signals. If you wish to use separate read and
write signals for memory control in the Apple and other computer
systems that are based on the 6502 microprocessor chip, you must
generate them through the proper gating.

INTERFACE
YECTOR 4609 CARD CONNECTOR
= ¥ ——gp—40
COMPONENT SIDE TLLLLLL
(FRONT VIEW) CHIP
RERARA
—— 3 4

SIDE

e
-—_‘-H'-—=+

E

|
é

-h-""-*-=-

24 25

oo SIDE
AN A A
50 49 27 26

Fig. 5-13. Vector 4609 card contacts and interface contact arrangements.

The pin locations for the Vector card edge connectors are shown
in Fig. 5-13. Please note that this figure shows the component side
of the card. Once you have made the needed connections between
the two edge connectors, and between the connectors and the
SN7400, we suggest that you use an chmmeter or other continuity-
checking instrument, to be sure that there are no short circuits be-
tween adjacent and opposite pins, and that the correct connections
have been made. These tests should be made with the SN7400 chip
out of its socket. However, don’t forget to plug it back in after you
have tested the connections!

OTHER CONSIDERATIONS

If you wish to try and interface some of the 6502 family interface
chips, and even some of the nonfamily chips, you will ﬁnd that these
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chips have rather slow access times when compared to the standard
three-state input chips, such as the SN74385 and the SN741.5244,
Access times for these large, programmable chips can be as long as
200 ns. Since the read/write timing for the 6502 chip is fairly critical,
there will not be sufficient time for the data from these chips to be
accessed and placed on the bus if the extra delay caused by the 8216
bus buffer chips and the interlocking circuits is taken into account.
Therefore, if you wish to use the breadboard to test interface circuits
that use complex, programmable interface chips, you will need to
“defeat” the interlock. You can do this rather simply by removing the
two 8216 bus buffer chips and by using short jumper wires at each
sacket to connect the Apple data bus signals to the interface data bus
lines. For example, you would need a jumper between pins 5 and 6,
pins 2 and 3, pins 14 and 13, and pins 9 and 10 on each socket. We
refer you to Fig. 5-5 for the circuit that uses the 8216 bus buffer chips.

A word of caution is in order, however. By removing the bus buf-
fer chips, you are connecting your interface circuits directly onto the
Apple data bus. Please use extreme caution when doing this so that
you do not cause any short circuits or bus conflicts in the Apple. We
have provided a simple interface example in Chapter 7 in which the
direct bus interfacing is used.
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CHAPTER 6

Apple Interface
Experiments

The purpose of the experiments in this section is to provide you
with some hands-on experience in the use of latched output port and
three-state input port circuits that were developed in the previous
chapters. You will find that these experiments use simple SN7400-

series devices to transfer data to and from the Apple.

INTRODUCTION TO THE EXPERIMENTS

Breadboarding of circuits will be required in this chapter, and a
complete list of parts that will be used is provided in Appendix B.
We have assumed that you have had some experience in breadboard-
ing simple logic circuits, and that you are familiar with the basic
breadboarding skills. Some auxiliary functions will be required in
the experiments to both monitor logic states and to generate them.
In general, we use lamp monitors or LEDs to indicate logic one (on)
and logic zero (off), logic switches to generate logic levels, and de-
bounced pulsers, or pulsers for short, to generate logic levels with
clean noise-free transitions between the logic levels. Some simple
schematic diagrams of these types of circuits are provided in the
Appendix. If you do not wish to build these circuits, they can be
breadboarded separately, or similar functions can be purchased from
companies such as E & L Instruments, Derby, CT 06418 or PAC-
COM, Redmond, WA 98052. In general, most of the experiments in
this book can be done with a few simple circuits.

We have provided one experiment that illustrates the use of a
decoder circuit for device addressing, While many decoder schemes
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are possible, we think that one experiment should illustrate the basic
principles. If you are interested in other decoder circuits, there are
many different ones described in 8085A Cookbook, and Program-
ming & Interfacing the 6502, With Experiments (Howard W. Sams
& Co., Inc., Indianapolis, IN 46268 ). Actually, memory and 1/O de-
vice addressing is pretty much the same, from one computer to the
next. In most interface circuits, the decoder circuit that is used on
the interface breadboard will work quite well.

While this book tackles Apple interfacing at a fairly low level,
there are other important interfacing topics that you might wish to
study. Many of these are covered in TRS-80® Interfacing, Book 2
(Howard W. Sams & Co., Inc., Indianapolis, IN 46268). The infor-
mation presented is fairly general, and it is easily applied to Apple
computer systems. Topics covered include: high-current, high-volt-
age load driving, digital-to-analog and analog-to-digital converters,
practical data processing (smoothing, filtering, averaging, etc.),
serial communications, and remote control.

The photograph in Fig. 6-1 shows a typical Apple-breadboard lab-
oratory station that is used in performing the experiments in this
chapter. A 40-conductor cable has been used to connect the bread-
board and the Apple computer—Fig. 6-2. This cable has been de-
scribed in Chapter 5. When you connect the interface breadboard
to the Apple, be sure that the cable is oriented properly. The cable
must point away from the component side of the card used to con-
nect the interface to the Apple. At the interface-breadboard end of

R

Fig. 6-1. Apple computer and breadboard in experimental use.

87



Fig. 6-2. Interface cable. (Note connecter orientation on same side of flat cable.)

the cable, the cable must be pushed onto the 40 pins so that the cable
is pointed either down or away from the printed-circuit board. If the
cable is connected improperly, the Apple will respond with a screen
full of random characters rather than the APPLE II banner, when
it is first turned on. This does not seem to cause any permanent dam-
age to the Apple or to the interface as long as they are not connected
this way for too long.

Some experiments will build on, or use, the circuits or programs
developed in previous experiments. Please do not turn off the power
to the computer, and do not disconnect circuits until you are told to
do so, otherwise, you will spend a great deal of time reloading pro-
grams and reconstructing interface circuits. There will be a reminder
at the end of some of the experiments just so that you don’t forget
this tip.

Most readers will probably perform the experiments in sequence,
so there will not be too much difficulty in referring back to previous
experiments for the details of the interface circuits. However, if you
choose to skip over some experiments you may find this a bit confus-
ing. To help everyone with the interface circuits, we have repro-
duced the important input port, output port, and control circuits in
Fig. 6-27 at the end of this chapter. You can make a photocopy of
this figure, or you may remove it from the book so that it will be
nearby when you need it. The basic circuits shown in this figure are
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used in most of the experiments unless otherwise noted, and you can
use these circuits to build general-purpose input and output ports as
you need them.

If you are an instructor planning to use this book as the basis for
laboratory experiments with the Apple, you will find that the pro-
grams are easily loaded onto cassettes. In this way the programs are
readily available for the students, who do not have to spend their
time trying to debug programs. If you choose to use cassettes, you
should use high quality tape, and once the programs have been re-
corded on the tape, the “write protect” tab on the back edge of the
cassette should be removed. This will prevent students from acciden-
tally recording programs over those already on tape.

Students may find it valuable to maintain cassettes of their own,
so that their lab solutions and other programs are readily available,
either for exchange with other students or lab groups, or for refer-
ence during the next lab period.

The experiments in this chapter have been divided into two
groups, although no division, chapter subheading, or other note
marks the sections. The first 11 experiments provide a basic set of in-
terfacing and programming investigations for readers who are inter-
ested in basic interfacing concepts. These first experiments provide
a basis for the laboratory portion of a first course in computer inter-
facing and computer electronics.

The last few experiments provide additional lab investigations into
more advanced topics, and they also provide projects that may be
used to supplement the basic set of experiments. Of course, all of the
experiments may be done, too.

EXPERIMENT NO. 1
USE OF THE LOGIC PROBE

Purpose

The purpose of this experiment is to show you how the logic probe
circuit on the breadboard may be used to detect logic levels and
pulses.

Discussion

We have assumed that you are using the breadboard logic probe,
although other logic-probe circuits will work equally well. The steps
in this experiment are useful in helping you to become familiar with

the breadboard and the signals available.

Step 1

Your Apple computer should be connected to its video monitor
and also to the interface breadboard through the 40-conductor cable.



This connection has been described in the introduction to the experi-
ments,

Turn on the power to the Apple and to the breadboard. The com-
puter should print “APPLE II” and the flashing square cursor should
be seen. If this is not the case, turn off the power and check your con-
nections. Be sure that the 40-conductor cable is securely pushed onto
the pins at the interface breadboard and onto the edge of the board
that connects it to the Apple. You should also check the orientation
of the cable to be sure that it is correct. If you cannot locate the prob-
lem, obtain assistance.

Step 2

With the power applied to the breadboard, connect a jumper wire
between one of the logic probe input pins, P, at the PROBE socket,
and one of the +5-volt power pins at the power socket. What is the
effect on the logic probe indicators?

The red LED is on, indicating the presence of the logic one state.

The probe jumper wire should now be moved from the +5-volt
power pin to one of the ground pins on the same power socket. What
is observed, once this connection is made?

The green LED is on, indicating the presence of a logic zero state at
the input to the probe circuit. You may have noticed that the pulse
detecting LED (vellow) flashed as you made the connection to +5
volts or to ground. This flash indicates that the probe detected a
change in the logic level. Either a logic-one-to-logic-zero, or a logic-
zero-to-logic-one transition will cause the yellow LED to flash. This
makes it particularly useful for detecting pulses and logic transitions.

Connect the probe input to address line AQ at IC-19. What do you
observe when this connection has been made? All of the LEDs are
on, probably at different intensities. This is due to the fact that the
6502 microprocessor chip is executing many, many assembly-lan-
guage instructions in the BASIC and monitor ROMs, thus using the
address bus to address various memory locations. Move the logic
probe test wire to the other address bus lines, Al, A2, and A3. You
should be able to detect similar “activity” at these pins, too.



Step 3

You may wish to test other points on the breadboard with the logic
probe. The data bus lines and the control signals may be easily
tested. You should keep in mind that the logic probe is only sensitive
to the logic levels presented by the outputs of standard transistor-
transistor logic (TTL) chips used on the breadboard and in the ex-
periments. Do not attempt to use the probe to measure anything but
these logic levels. If you connect the probe to voltages outside the
zero to +5-volt range, the probe circuit will be damaged.

Step 4

When you use the probe, you will notice that there are many com-
binations of lit LEDs. For example, you may see that the red and

yellow LEDs are lit, while the green one is unlit. Do you have an
idea of what this means?

This means that a pulse is being detected, and that the normal logic
level of the circuit being tested is a logic one. The green LED lights
very briefly (you can’t see it), to indicate the fleeting presence of the
logic zero pulse. The pulse detecting circuit stretches the pulse and
lights the yellow LED so that you can “see” that a pulse has been
“caught.”

You may also see the green and yellow LEDs on, with the red
LED oft. What would this indicate?

A logic zero level would be indicated, with short logic one pulses.

It is possible that all LEDs may be lit, too. In this case, the input
to the logic probe is rapidly changing between logic one and logic
zZero.

In some of the following experiments, the logic probe will be used
to examine outputs and to detect logic states and pulses. This will
be noted by, “. . . use your probe to examine. . . ,” or perhaps by,
“. .. use the logic probe to measure . . ..” This simply means that you
are to connect the logic probe to the circuit being tested, so that you
can “see” what is happening.

Turn your computer off.
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EXPERIMENT NO 2
USE OF THE DEVICE ADDRESS DECODER

Purpose
This experiment allows you to explore the use of the device ad-
dress decoder circuit on the interface breadboard printed-circuit

board. Since this decoder will be used in all of the experiments, you
must have a good understanding of its use.

Discussion

In this experiment, address bits A15-A0 will be used to identify
specific addresses for use by I/O devices. The address switches will
be set up for a specific range of addresses, and the logic probe will
be used to examine the action of the decoder circuit. You will also
use an SN7402 Nor gate integrated circuit.

Pin Configuration of the Integrated Circuit (Fig. 6-3)

fwifol el [nl (] [s] [s]
4 L
<7 <

Fig. 6-3. SN7402 NOR-gate pin configuration.
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Step 1

No circuits should be presently wired on your breadboard. If there
are any circuits present, remove them from the solderless bread-
board. In this experiment, the entire 16-bit address bus will be used
by the decoder section of the interface. Be sure that the bottom
switch at the LO address dip switch (IC-6) is in the “M” position,
or in the “ON” position.

Step 2

Place the dip switches for all of the address bits, A15-A4, in the
logic one position. Remember not to change the setting of the “M”
switch. Can you determine which set of addresses will be decoded
by the SN74154 decoder? What addresses in this block will be avail-
able at the ADDRESS output socket? You may wish to examine the
schematic in Fig. 5-4.
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Addresses in the block from 65520 to 65535 will be decoded by the
4-to-16 decoder (SN74154). Since the decoder only provides you
with the “bottom” eight addresses, only addresses from 65520 to
65527 will be available,

Step 3

Turn your computer on. If you are running a program, press the
RESET key. Use the logic probe to test the eight address outputs at
the ADDRESS socket. Are any of the decoder outputs active (puls-
ing )? Since you are not running a program, is this what you would
expect?

Two of the outputs should be active, 0 and 4, corresponding to
addresses 65520 and 65524. While the computer is not running a
BASIC program, it is executing many assembly-language steps that
monitor the keyboard, etc. Remember that the address decoding cir-
cuitry is always decoding addresses.

Step 4
Wire the circuit shown in Fig. 6-4. Be sure that you connect the
power pin, pin 14, to +5 volts and the ground pin, pin 7, to power

RD 6 4 3 1

7 — A
g SN7402(ALL)
= 3 10 -3
11
13
e >~
e 12

*DECODER SOCKET POSITIONS
Fig. 6-4. Function pulse-generation circuit.

ground. Refer to Fig. 6-3 for the pin configuration of the SN7402,
You may substitute an SN74LS02 for this chip. The outputs of the
gates, A, B, and C, are not connected to any circuit at this time.

Step 5

Change the switch settings on the dip switches for bits A15-A4 for
an address of 49312, This is 11000000 10100000, and you should ig-
nore the four least-significant bits. What range of addresses will be
available when the address switches are set this way?



Addresses from 49312 through 49327 will be decoded, but only ad-
dresses 49312 through 49319 will be available.

Step 6
Enter the following program into the computer and run it:
10 A = PEEK(49318)
20 GOTO 10

Using the logic probe, monitor the outputs of the decoder, and note
your observations below:

You should see that the “6” output is active, and one or more other
outputs may be active, too.

Now monitor the outputs of the gates, A, B, and C, and note any
activity, at these points, as determined with the logic probe, in the
space below:

Logic 0 Logic 1 Pulse

A
B

C

Is this what you would expect? Can you explain this?

Yes, this is what is expected, since the input (PEEK) command is
the program specified device 49318 as an input device, and the de-
coded address is found at the “6” output from the decoder. Thus, only
output “B” should be active. No other input devices were specified
in the program, and no output devices were specified, either.

Step 7
Change the device address in line 10 so that address 49325 is se-

lected. Line 10 should now be 10 A=PEEK(49325). Run the pro-

gram and test the gate outputs A, B, and C once again. Are any of
the outputs active, indicating the presence of pulses? Why?
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None of the outputs should be active, since device address 49325 has
not been implemented in the circuit. Furthermore, address 49325 is
not readily available on the breadboard. Of the addresses in the
block 49312 through 49327, only addresses 49312 through 49319 are
available at the ADDRESS socket.

Step 8
Change line 10 in the program so that it is now

10 A=PEEK(49318):B=PEEK(49319)

Where do you observe the pulses in the circuit when you run the
modified program?

You should find that outputs A and B are active. Output C is not ac-
tive since it is an output control pulse, and there are no output
(POKE) commands in the program.

Step 9

Make another modification to your program. Change line 10 so
that you can control output device 49318. Your statement at line 10
should look like this:

10 POKE 49318,0

You can use any data value that is between 0 and 255, inclusive. Now
run your program and test outputs A, B, and C. Which output do you
expect to be active? Is this what you found?

Output C is active, since the POKE command is an output-type com-
mand, and the address, 49318, corresponds to the “6” output pin from
the decoder. You are probably surprised to see that the B output is
also active. When a POKE instruction is executed by the BASIC in-
terpreter in the Apple, the computer system does a read-before-write
operation, so that the selected address is read from, before being
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written to. This must be kept in mind during the design of interface
circuits.
Step 10

Could you reconfigure the switches in the address decoder section
so that addresses 50944 through 50951 are generated by the decoder?
How would you attempt to do this? Are these addresses really going
to be available?

Yes, you could change the switch settings to allow the decoder to
operate between these addresses. First, convert the first address into
its binary equivalent: 50944 = 11000111 00000000. Second, make the
changes in the switch settings for A15-A8 and for A7-A4. Now, what
addresses would correspond to the “6” and “7” outputs from the de-
coder? Test your answers by using PEEK commands in the simple
program that you have been using in this experiment. You should be
able to see the pulses at the A and B outputs from the gates.

Once you have tested this, be sure to return the address switches to
their previous settings, corresponding to the binary value, 11000000
10100000.

Do not remove the circuit from your breadboard. It will be used
again. The program will not be used, however, so you may turn off
the power to your breadboard and computer.

EXPERIMENT NO. 3
USING DEVICE-SELECT PULSES

Purpose

In this experiment, you will observe the use of device-select pulses
to control an external device. Although generally used to control the

flow of information, the PEEK and POKE commands may also be
used to generate useful pulses to simply control external devices.

[ ] L ]
Discussion

In this experiment, a simple device will be turned on and off
through the use of device select pulses. The logic probe will be used
as the “device,” and a simple flip-flop will be controlled by two soft-
ware-generated pulses.
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Pin Configuration of the Integrated Circuits (Fig. 6-5)

2
v CLR X 2CK 2ZPR 20 20
Eui|ﬂ| i inl|w]l s L .

R
o ™ g
CK
a
CLR
l:LI’Iu g"
CK
0 . 0
A T 1
11 :_:l_fll_i ] 7

1 i 1CK PR 10 1@ GND
CLR

SN7474

Fig. 6-5. SN7402 and SN7474 chip pin configurations.

Step 1

The device select circuit used in Experiment No. 2 is also used in
this experiment. If it has not been wired, wire it as shown in Fig. 6-4.

Step 2

Wire the SN7474 flip-flop as shown in Fig. 6-6. The “1” noted at
the “D” input to the SN7474 means that a logic one (+5 volts) is
applied to this input. Likewise, a “0” would indicate a logic zero, or
ground connection. The 0 and 1 notations are used to distinguish
logic level connections from power-carrying connections. The Q out-
put from the flip-flop should be the only device connected to the
logic probe. Remember to make the power connections to the
SN7474 flip-flop; pin 14 to +5 volts and pin 7 to ground.

Step 3

In this circuit, the WR 49318 pulse (signal C) will clock the out-
put of the flip-flop to a logic one, while the RD 49319 pulse (signal
A ) will clear it to a logic zero. Since a flip-flop is stable in either state,
once pulsed by RD 49319, its Q output will remain in the logic one

+5 GND

EAA T0 LOGIC PROBE

SN7474
(WR 49318)

FROMA <
{RD 49319)

Fig. 6-6. Simple flip-flop controller circuit.
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state until power is removed, or until it is cleared to logic zero with
a WR 49318 pulse.

Enter the following program in to your computer and run it.
10 A = PEEK(49319)

20 POKE 49318,0

30 FOR T = TO 300: NEXT T

40 A = PEEK(49319)

50 FORT = 0 TO 300: NEXT T

60 GOTO 20

Disregard the flashing of the logic probe pulse LED. What is the
effect on the logic one and logic zero LEDs?

They flash logic one, logic zero, logic one, etc., in sequence.

Step 4 _
Alter the time delay routine at line 50 to:

50 FORT = 0 TO 1000: NEXT T

When this change has been made, run the program. What is the
effect of this simple program change?

The logic zero LED is on for a longer period. Thus, it is possible to
generate control pulses that are a known period apart, say 1 second.

Step 5

Can you determine the software delay necessary in a FOR . . . :
NEXT T statement to generate a 1-second period? Modify your pro-
gram and test various delay counts until you closely approximate 1
second. You might want to try for a 10-second period and then divide

the count by 10 for a 1-second period. What delay count did you
come up with? We found that a delay statement,

FORT = 0 TO 780: NEXT T

required about 1 second to be executed.

Step 6

You can now use the power of BASIC to allow you to tell the com-
puter how long each LED is to be ON. The following program may
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be entered and run. It first asks you for the period of each LED, in
seconds, and then runs the program.

10 A = PEEK(49319)

20 INPUT “RED LED PERIOD “;Q

30 INPUT “ GREEN LED PERIOD “; R

40 PRINT “TOTAL CYCLE PERIOD “; Q+R; “ SECONDS"
50 POKE 49318,0

60 FOR S = 1 TO Q

70 FOR T = 0 TO 780: NEXT T
80 NEXT §

90 A = PEEK(49319)

100 FOR S = 1 TO R

110 FOR T = 0 TO 780: NEXT T
120 NEXT S

130 GOTO 50

When the program is run, the time delays may be somewhat length-
ened. Why?

The additional software steps (FORS =1TO Q, FORS =1TO R
and NEXT S), add time to the overall execution time of the pro-
gram, although you will not see appreciable lengthening of the pro-
gram.

What does this program show you?

It illustrates many principles; the use of simple programs and simple
circuits to control external devices. It also illustrates the power of
BASIC to control external devices through relatively simple software
steps. Remember, though, that BASIC is relatively slow.

Even though PEEK and POKE commands were used, the success
of the flip-flop interface did not depend on the actual transfer of any
data or information. The flip-flop was controlled, or switched,
through the use of device select pulses, alone. This principle is often
used when a control signal or control pulse is required, but no data
is transferred.

Please remember that when a POKE command is used in the
BASIC interpreter in the APPLE computer, a read and a write opera-
tion are performed. Thus, if you choose to use a POKE command to
generate a device select pulse for control purposes, you must remem-

ber that the APPLE will also perform a read from the same address.
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If you are using two control pulses with the same address, say, WR
XYZ and RD XYZ, the RD XYZ will also be activated during a write
operation caused by a POKE XYZ command.

The SN7474 flip-flop circuit may be removed from your bread-
board, but the SN7402 circuit should be retained. The program will
not be used again, so you may remove power from your system.

EXPERIMENT NO. 4
CONSTRUCTING AN INPUT PORT

Purpose

The purpose of this experiment is to construct an input port using
three-state buffer circuits.

Discussion

The simple 8-bit input port that you will construct as a part of this
experiment will provide a means of entering data into the computer.
Several additional experiments will use this input port. The device
select circuit used previously will be used in this experiment. The

SN74365 or DM8095 three-state buffer chips will be used in this
experiment.

Pin Configuration of the Integrated Circvit (Fig. 6-7)
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A 4y
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Fig. 6-7. SN74365, or DM8095 three-
state buffer chip pin configuration.
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Step 1

The gating circuit developed in Experiment No. 2 will be used in
this experiment. If this circuit is not present on your breadboard,
refer to Fig. 6-4 for the circuit details, and wire the circuit shown.
Your computer and breadboard power should be off.

Step 2

Wire the 8-bit input port circuit shown in Fig. 6-8. Two SN74365
(DMB8095) three-state integrated circuits are required.
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Fig. 6-8. Simple 8-bit input port.

Step 3

Note that in this circuit only one of the two enabling inputs to the
three-state buffer chips has been used. The unused input has been
grounded, or connected to logic zero. Thus, the internal gate will not
be used for combining a function pulse and a device address. The
enabling signal will simply be transferred through the gate to the
three-state buffer circuits within the chip.

Connect the DEVICE SELECT line to point A (pin 1 on the
SN7402), as shown in Fig. 6-4. This is the signal for Eﬁpzm

The notation LOGIC SWITCHES in Fig. 6-8 is used to represent
switches that can generate logic one or logic zero signals at the eight
individual inputs to the input port. Simple jumper wires to the +5-
volt and ground power supply buses may be used. There is addi-
tional information in the Appendix about this type of logic function.

Step 4

Once the input port has been constructed and the device select
pulse has been provided from the SN7402 nor gate, enter and run
the following test program:

10 PRINT PEEK(49319): GOTO 10



What is displayed on the screen when the program is running? Does
changing the logic switches have any effect on the displayed value?
Is this what you would expect?

The value 255 is displayed, corresponding to 11111111,. Changing
the logic switches had no effect on the values that were displayed.
At first, you might have expected the values to change as you
changed the switch settings, but this was not observed. Why?

The interface circuit was not provided with an input request (INP
REQ) signal that is used to place the two bus buffers in the input
mode.

Step 5

Make a connection between the SN7402 A, or RD 49319, signal and
the W input at the INP REQ section of the CONTROL SIGNALS
socket. This signal will place the 8216 bus buffers in the input mode.

Now that this connection has been made, restart your program and
change the switch settings. Are the changes in the switch settings
shown as changes in the numbers being displayed? You should test
several different settings.

The switch values are now transferred to the computer, converted
into decimal numbers and displayed on the monitor screen.

If you would rather see the values in binary form, the following
program may be run. It will display the binary numbers continu-
ously.

10 A = 128
20 B = PEEK(49319)

30 FORQ =1 T0O 8

40 IF B— A{D THEN GOTO 100
50 PRINT "“1”;

60 B = B—A

65 A = Af2

70 NEXT Q

75 PRINT

80 GOTO 10
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100 PRINT “0°;
110 GOTO 65

If you wish to change a switch setting and then obtain its binary
equivalent, change line 10 to:

10 INPUT A%: HOME: A = 128

Now, whenever you wish to display the binary value of the logic
switch setting at the input port, simply depress the RETURN key
on the Apple keyboard. Of course, the switch settings are already in
binary format, so the correlation between the displayed binary value
and the individual bits at the input port should be easy.

Do not remove the circuit from your breadboard, and do not turn
off the power. Both the program and the circuit will be used in the
next experiment.

EXPERIMENT NO. 5
MULTIBYTE INPUT PORTS

Purpose
The purpose of this experiment is to show you how multiple bytes
of information may be input and processed by a BASIC program.

Discussion

Not all input devices transfer only one byte of information to the
Apple computer. Some devices may require 9 or more bits. In this
experiment, you will simulate two input ports through the use of the
input port that was constructed in Experiment No. 4. Refer to Exper-
iment No. 4 for construction details of the input port. We recom-
mend that you work through Experiment No. 4 before proceeding
with this experiment, if you have not already performed it.

Step 1

If you do not have an input port connected to your Apple com-
puter, we refer you to Experiment No. 4. The circuit developed in
that experiment must be used.

Step 2

In handling multibyte data, the Apple must be programmed so
that the various bytes are ordered from most-significant to least-sig-
nificant byte. In this experiment, we shall use byte “M” as the most-
significant byte (MSBY) and “L” as the least-significant byte
(LSBY). Since the Apple will interpret 8-bit values as decimal num-
bers between 0 and 255, can you suggest an equation or series of



operations that can be used to obtain the decimal equivalent for a
two-byte binary number?

Since the MSBY is “offset” by a factor of 256, you can use the follow-
ing relationship:

VALUE = (M % 256) + L

where VALUE is the final decimal value of the 16-bit word.

Step 3

To test this equation, enter the following program into the com-
puter:

200 INPUT “SET MSBY ON SWITCHES ‘;A$
210 M = PEEK(49319)

220 |INPUT “SET LSBY ON SWITCHES "";A$
230 L = PEEK (49319)

240 V = (256 k M) + L

250 PRINT V

260 GOTO 200

Now run the program, starting it by entering GOTO 200, and press-
ing the RETURN key. When the computer asks, “SET MSBY ON
SWITCHES?” set the eight bits for the value of the MSBY on the
eight switches. Depress the RETURN key on the keyboard. When
the computer asks, “SET LSBY ON SWITCHES?” change the eight
switches so that they represent the eight bits that you wish to enter
for the LSBY value. When the switches have been set, depress the
RETURN key so that the computer will know that you are ready.
Now the decimal value should be displayed on the video monitor.
Some typical 16-bit values that you might wish to try are listed be-
low. Fill in the decimal value for each, as generated by the Apple.
You should be able to check these fairly quickly with the aid of a
calculator.

MSBY LSBY VALUE
11001010 11000001
11000111 00011101
00000001 10000001

You should find values of 51905, 50973, and 385.

Step 4
The following program is a combination of the binary output pro-
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gram, and the two-byte decimal calculation program. It will allow
you to input two 8-bit bytes to represent a 16-bit value, display the
decimal value and the binary value.

10 A = 32768

20 FORS = 1 70 2

30 FORQ = 1TO 8

40 IF B—A<0 THEN GOTO 100

50 PRINT “1%;

60 B = B—A

65 A = A/2

70 NEXT Q

75 PRINT * “:NEXT S

80 PRINT: GOTO 200

100 PRINT "0";

110 GOTO 65
200 INPUT “SET MSBY ON SWITCHES “; A$
210 M = PEEK(49319)
220 INPUT “SET LSBY ON SWITCHES "; A%
230 L = PEEK(49319)
240 V = (256 * M) + L
250 HOME: PRINT V
260 B = V: GOTO 10

Step 5

Run the program by entering a GOTO 200 command and then de-
pressing the RETURN key. Set values for the MSBY and LSBY on
the switches. There should be a correlation between your switch set-
tings and the binary bits that are displayed on the screen. You should
be able to convert the binary value into a decimal value fairly easily.
The 16-bit binary value has been “split” into two 8-bit values so that
you can easily compare the bits with your switch settings.

Now that you have seen how the Apple can operate on two 8-bit
bytes to reconstruct a 16-bit value, you should realize that other
types of operations could have been performed, too. Although only a
single input port has been used in this experiment, it would be easy
to construct another one with a new device address to provide the
additional byte of data required in the 16-bit application that has
been simulated in this experiment.

You probably noticed that a new variable, A$, was used in this ex-
periment, and in the last one. This is a “dummy” variable that has
been used so that the program can be halted at a predetermined
point so that the experimental conditions could be changed before
the computer is allowed to go on. The A$ variable is a string vari-
able, and when the RETURN key is pressed a null, or “nothing,”
string of characters is assigned to this variable. This is just a “trick”
that halts the computer until we depress the RETURN key.
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The interface circuit used in this experiment will be used in the
following experiment, so it should be saved. The software will not

be used, so the computer and interface may be turned off.

EXPERIMENT NO. 6
INPUT PORT APPLICATIONS

Purpose

The purpose of this experiment is to show you how an input port
may be used for control applications.

Discussion

In this experiment, the 8-bit input port will be used to transfer in-
formation to the Apple, but the Apple will process the eight bits of
data in a nonnumeric fashion. In this way, the state of eight external
devices will be monitored.

Step 1

If you do not have an input port connected to your Apple computer,
we refer you to Experiment No. 4. The input port described in that
experiment will be used in the following steps.

Step 2

In many cases, the computer will be used to process nonnumeric
information that tells the computer about the status or state of ex-
ternal devices. In such a way, it is easy to determine when devices
are on or ofl, valves open or closed, elevators up or down, and so on.

Enter the following program into your computer and run it. This
program demonstrates how a value may be used to cause the com-
puter to take a preprogrammed course of action:

10 INPUT A$: HOME

20 A = PEEK(49319)

30 IF A>127 THEN GOTO 70
40 PRINT “INPUT <= 127"
50 GOTO 10

70 PRINT “INPUT > 127"

80 GOTO 10

Step 3

You must press the RETURN key to cause the computer to execute
the input and comparison steps. Set the logic switches at the input
port to a value that is less than 127 (00000000 to 01111110) and press
RETURN. What happens? Try this with a value of 127 or greater
(01111111 to 11111111). What happens? What happens when the
binary value is equal to 127 (01111111)? You should see the correct



message for each value that is input to the computer. This program
illustrates how the computer can be used to make a decision based
upon a value. In some cases, the value of an individual bit may be
used as the basis for a decision. The binary conversion program pro-
vided in Experiment No. 4 allowed you to see a binary equivalent for
a decimal value. This program made decisions based upon the value
of individual bits, so that it could determine whether to display a
one in each bit position.

Step 4

In this step, the basic binary-display routine will be used, but
rather than display ones and zeros, the computer will display “ON,”
for a logic one and “OFF,” for a logic zero. You should be able to
modify the program from Experiment No. 4 to do this, just by chang-
ing the PRINT statements, but the following program is provided for
you. Note that the program from Experiment No. 4 has been
“moved,” or relocated to higher line numbers. Before you enter this
program, remember to delete the old one, if you have not already
done so by turning off the power. The NEW command may be used
to delete the old program. Simply type NEW and then press the
RETURN key.

410 INPUT A$: HOME: A = 128
420 B = PEEK (49319)

430 FORQ = 1 TO 8

440 IF B—A <0 THEN GOTO 500
450 PRINT “ON *

460 B = B—A

470 A = A/2

480 NEXT Q

490 GOTO 410

500 PRINT “OFF “;

510 GOTO 470

Note: There are two spaces after ON, and one space after OFF. This
generates equal spacing.

Run the program. Remember that the switches should be set, and
then the RETURN key pressed, to perform the “conversion” and dis-
play. You should see that a line of ON and OFF messages is dis-
played, with the ON notation for the logic one bits, and the OFF no-
tation for the logic zero bits. The PRINT statements in the program
could be changed to display OPEN and CLOSED, UP and DOWN,
and other similar notations for the bits.

Step 5

While the simple program in Step 4 has some uses, the display of
the ON and OFF messages in column format may be more useful.
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The HTAB and VTAB commands in BASIC may be used to generate
such a vertical display of the conditions. The same basic program is
used, with the necessary changes marked (*). You need to leave the
spaces after ON and OFF in lines 450 and 500, respectively.

*400 H = 20: V = 8

410 INPUT A$: HOME : A = 128
420 B = PEEK(49319)

430 FORQ = 1 TO 8

440 IF B—A<O0 THEN GOTO 500
*450 HTAB H: VTAB V: PRINT “ON *;
460 B = B—A

*470 A = Af2: V = V+1

480 NEXT Q

*490 GOTO 400

*500 HTAB H: VTAB V: PRINT “OFF ;
510 GOTO 470

You should now observe that the display of ON and OFF conditions
is vertical, since the HTAB and VTAB commands have been used to
“move” the cursor in a vertical fashion.

Thus, the ON and OFF conditions can be displayed in a number
of ways. In fact, in some computers, graphical representations and
~alphanumeric characters may be mixed so that the ON/OFF condi-
tions may be displayed near a pictorial representation of the device
or process being monitored.

While the program is running, make changes to the switch settings
to confirm that the program and the input port are working prop-
erly.

Step 6

You may want to run the program continuously, so that the
switches may be changed, and the ON/OFF conditions monitored,
without the need to press the RETURN key each time a new display
is needed. The INPUT A$ is the “dummy” input command that
causes the computer to stop and wait for you to press the RETURN
key. Remove this statement from the program, so that line 410 looks

like this:
410 HOME: A = 128

Now run the program. Does this provide a reasonable display? Why?

Our display flickered badly, since the HOME command clears the
entire screen and positions the cursor in the upper left-hand corner



of the monitor screen each time the computer restarts the program.
This takes time, and it slows down the display. Can you suggest any
further changes to the program to reduce or eliminate the flicker?

Step 7

By removing the HOME command, you can reduce the time that
the Apple takes to clear the entire screen and “home” the cursor to
the upper left-hand corner of the video display area. When the
HTAB and VTAB commands are used, they position the cursor at
exactly the right place to print each ON or OFF on each line, one
per bit. If no spaces are left after the “ON” at line 450, the printing
of the ON would not cover the last F in OFF, and you would see
ONF, instead of ON. Thus, the spaces are needed to “erase” any
characters remaining on a line.

We suggest that you use the following for line 410 in your pro-
gram:

410 A = 128

Now, start the program by typing in HOME:GOTO 400, and then
pressing ENTER. If you do not use the HOME command, the pro-
gram will simply write over whatever is on the screen. The HOME
command clears the screen for you just before the program is started.

Step 8

The VTAB and HTAB commands can also be used to generate
titles or captions for each of the eight lines of information in the dis-
play. Several captions follow, and you may add or change the ones
provided:

5 HOME

10 VTAB 8: HTAB 1

15 PRINT “ACID PUMP”;
20 VTAB 9: HTAB 1

25 PRINT “BASE PUMP";
30 VTAB 10: HTAB 1

35 PRINT “HEATER";

40 VTAB 11: HTAB 1

45 PRINT “"MIXER";

50 VTAB 12: HTAB 1

35 PRINT “FLUSH CYCLE";
60 VTAB 13: HTAB 1

65 PRINT “DISHWASHER";
70 VTAB 14: HTAB 1




75 PRINT “"VACUUM™:
80 VTAB 15: HTAB 1
85 PRINT “DRYER"”;

We suggest that you add these lines to your program if you plan to
go ahead with Experiment No. 7. You should test your program after
you add these lines.

The hardware and the software used in this experiment will be
used in the next experiment, so you should not dismantle your cir-
cuit, nor should you remove power to the computer.

EXPERIMENT NO. 7
INPUT PORT APPLICATIONS (II)

Purpose

The purpose of this experiment is to show you how logical opera-
tions may be performed on data.

Discussion

This experiment will use ANp operations, and they will be per-
formed on the ON/OFF information from eight external “sensors.”
The conditions of these sensors will be used to trigger actions in the
computer.

Step 1

The program used in this experiment is the same as the one used
in Experiment No. 6. If it has not been completely entered into your
computer, you must enter it and test it. If it has been entered and
tested in the previous experiment, you may wish to check it against
the following listing:

5 HOME 50 VTAB 12: HTAB 1

10 VTAB 8: HTAB 1 55 PRINT “FLUSH CYCLE"”;
15 PRINT “ACID PUMP"; 60 VTAB 13: HTAB 1

20 VTAB 9: HTAB 1 65 PRINT “DISHWASHER":
25 PRINT “BASE PUMP"; 70 VTAB 14: HTAB 1

30 VTAB 10: HTAB 1 75 PRINT “VACUUM";
35 PRINT “HEATER"; 80 VTAB 15: HTAB 1
40 VTAB 11: HTAB 1 85 PRINT “DRYER’;

45 PRINT “MIXER”; 400 H =20 V = 8
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410 A = 128
420 B = PEEK(49319) 470 A = Al2: V = V+1I

430 FORQ = 1 10 8 450 NEXT @

490 GOTO 400
450 HTAB H: VTAB V: PRINT “ON ~; =90 HTAB H: VIAB V: PRINT “OFF “;

460 B = B—A 510 GOTO 470

When successfully loaded and tested, the program should generate
a display such as that shown in Table 6-1. The various ON and OFF
conditions shown by your computer will probably be different, based
upon the logic switch settings at your input port.

Step 2

Make notes alongside of Table 6-1 to indicate which bits at the
input port correspond to the different labels. You can do this by

Table 6-1. Control Program Output

ACID PUMP ON }
BASE PUMP OFF
HEATER ON
MIXER ON
FLUSH CYCLE ON
DISHWASHER ON
VACUUM OFF
DRYER OFF

testing the input bits, or by analyzing your program. You should
find that bit D7 is the “ACID PUMP,” bit D8 is the “BASE PUMP,”
and so on, down to bit D0, which is the “DRYER.”

Step 3

Refer to Chapter 4, Example 4-3 and use the Apple monitor to
enter this assembly-language program into the computer. You can
simply type CALL -151 and then RETURN to enter the monitor.
Check that your program has been entered correctly. Remember that
the monitor program uses hexadecimal numbers. If you do not know
how to use the monitor, refer to Apple II Reference Manual, or fol-
low these steps:

1. Press the RESET key and type CALL -151, and press the
RETURN key. The Apple should respond with an asterisk (°).
2. Type 0300:00 00 00 48 AD 00 03 2D 01 03 8D 02 03 68 60 Leave
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a space between the two-digit groups. Use 00 for the first three
values in the program.

3. Press the RETURN key, type 02FF, press the RETURN key,
then press the RETURN key twice, and check the data against
what is in the listing in Example 4-3, and what is noted above.

Step 4

To test the assembly-language program, enter the program shown
below into the computer and run it. Make the necessary decimal-to-
binary and binary-to-decimal conversions on scrap paper to check
your results. Press RESET to return to BASIC.

1000 POKE 10,76:POKE 11,03:POKE 12,03

1010 INPUT “MASK BYTE ““; M: POKE 768.M
1020 INPUT “DATA BYTE “; D: POKE 769,D
1030 Q = USR(0): PRINT “ANSWER “; PEEK(770)
1040 GOTO 1010

If your answers prove to check with those that you calculate by
hand, go on to the next step. If not, carefully check that the assem-
bly-language steps have been entered correctly, and test the program
again, Remember, the errors could be in your “hand” calculations.

Step 5

We now want you to modify your program so that it will detect
when any of the appliances, DISHWASHER, DRYER, or VACUUM
are on, and whenever the ACID PUMP and BASE PUMP are both
on. The logical AND assembly-language subroutine can be used, al-
though there are probably other solutions that will also work.

Can you suggest a method of making these determinations? We
suggest that you review the logical AND operation, as presented in
Chapter 4, Think about the operations as they are presented in
Table 6-2.

Step 6

The logical AND operation can be used to mask out the unwanted
bits, D5-DO0 for the pump test, and bits D7-D3 for the appliance test.
Thus, two “masks” must be established, one for the pumps, and one
for the appliances. What would these masks be, in decimal and in
binary?



Table 6-2. Control Conditions To Be Detected

D7 D6 | D5 D4 D3 D2 D1 DO
1 1 X X X X X X ACID AND BASE PUMPS
BOTH ON
X X X X X 0 0 1
X X X X X 0 1 0
X X X X X 0 1 1
X X X X X i 0 0 ANY APPLIANCE ON
X X ) 4 X X 1 0 1
X X X X X 1 1 0
| X | X | X X X ].....L_ 1 1

X

The mask for the pumps would be 11000000;, or 192, while the mask
for the appliances would be 00000111;, or 7. When these masks are
Anped with the input values from the sensors, or logic switches, the

desired bits will be “filtered” through the mask.

Step 7

Now that the two masks have been established, suggest some soft-
ware steps that could be used to determine the state of the “filtered”
bits. You need to think of the individual bits, as well as the decimal
equivalents for the bits. You may use new variables, if you need to.

Don’t care, logic one or zero.

We used a new variable, C, to represent the value input from the
sensors. This allows the variable B to be used independently in the
ON/OFF display portion of the program. If you use the variable B,
you will find that it is always zero. We will let you try and find
out why. We used either:

POKE 768,7:POKE 769:C:Q=USR(0)
IF PEEK(770) = 0 THEN . . .

or
POKE 768,7:POKE 769,C:Q=USR(0)
IF PEEK(770) >0 THEN . . .



to detect the appliances, and similar steps to detect the pumps. In
each case, the THEN . . . statement is executed on one condition,
and the program continues on in the other.

Step 8

In order to test your program ideas, add steps to the basic flag-
detecting program so that DANGER is printed on the display if
both pumps are on, and APPLIANCES is printed if any of the ap-
pliances are on. Write your program steps in the following space
and review them carefully before you change the program. Remem-
ber that you will need a line just like line 1000 in the program given
in Step 4, if you are going to use the assembly-language subroutine.
This program line initializes the three locations used by the USR
command so that it points the computer to the start of the correct
subroutine.

Your program steps will probably look like these:

420 B = PEEK(49319): C = B

490 GOTO 600

600 POKE 768,7: POKE 769,C

605 Q = USR(0)

610 IF PEEK(770) = O THEN 700

615 HTAB 20:VTAB 17: PRINT “APPLIANCES";
620 POKE 768,192

625 Q@ = USR(0)

630 IF PEEK(770) <> 192 THEN 800

635 HTAB 20:VTAB 18: PRINT “DANGER";
640 GOTO 400

700 HTAB 20:VTAB 17: PRINT “ ",
710 GOTO 620
800 HTAB 20:VTAB 18: PRINT

810 GOTO 400
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Test your program. You may have forgotten steps to clear the AP-
PLIANCES and DANGER displays from your screen. You may also
have forgotten to use three POKE commands to load the informa-
tion required by the USR command. You can do this without add-
ing another step to your program, simply type in the POKE com-
mands, followed by a RETURN. They only need to be executed
once.

The commands for printing spaces at lines 700 and 800 are used
to clear the APPLIANCES and DANGER signals that are displayed.
This program could be much more complex, containing steps to use
reverse video, or to flash the display when an emergency condition
is sensed by the program. You should realize by now that the soft-
ware can handle both mathematical and logical operations. You
should also see that the use of assembly-language subroutines is not
too difficult.

. You may turn off the computer, although the assembly-language
AND operation program will be used again. The input port will also
be used again, so do not dismantle your circuit.

EXPERIMENT NO. 8
CONSTRUCTING AN OUTPUT PORT

Purpose

The purpose of this experiment is to have you construct a simple
8-bit output port and investigate its use.

Discussion

In this experiment, a simple 8-bit latch circuit will be used to
construct an output port. The output port will be used in this ex-
periment, and in some of the following experiments, in which it

will be necessary to transfer information to external devices. Two
SN7475 quad latch integrated circuits will be used.

Pin Configuration of the Integrated Circvit (Fig. 6-9)

ENABLE

1 28 12 awp 38 30 _
,IH ,I‘Ii ! ] 13 12 |I|,,, W _.Il
FUNCTION TABLE
i (Each Latch)
L ] (#] o —Iﬂ qJ Lu o= —~{D a INPUTS WTFUI-_I.':;
P G|l a a
“T°T1¢ CEREE L H|L H
H H| H L
a 4] -
i i L T_ X L | @ G
H = high level, L = low level, X = irrelevant
I"__ ———rTT— - Qg = the level of O before the high-to-low transition of G
e s s s
D 20 ENABLE Vor 30 4D 4G

34

Fig. 69. SN7475 4-bit match chip pin configuration.
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Step 1

The gating circuit used in Experiment No. 2 will be used in this
experiment. If this circuit is not available on your solderless bread-
board, we suggest that you perform Experiment No. 2 and then this
experiment. The gating circuit may also be wired and used directly.
Refer to Fig. 6-4 for the circuit details.

Step 2

Wire the circuit shown in Fig. 6-10. Two SN7475 latch integrated
circuits are required, along with eight individual lamp monitors, or

+5 GND

D7 2 [
3 s LAMP
g c
DATA 7 5 MONITORS
BUS J
E; ¢
B IG SN7475
+5 GND
5 2 |_
2 16
':!~|I:J Qs ;‘ LAMP
6| 10
7 [s 5 MONITORS
4

G
DEV.- SEL- I: "1 6 SN7475

Fig. 6-10. Simple B-bit output port schematic.

equivalent logic level detecting circuits. Do not connect the device
select input, DEV SEL, at this time.

Step 3

Refer to the circuit shown in Fig. 6-4. Try to determine which of
the three control outputs, A, B, or C, would be used to control the
latch enable inputs that are connected to the DEV SEL line. Which
one would you use? Why?
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The A output, RD 49319, has already been used and RD 49318
would not work, since it is decoded for an input port. The WR 49318
output (C) would be the choice to use. It provides a positive pulse
which is the same type of pulse required by the SN7475 latch chips.
This output is also decoded for an output device. You should re-
member that the 7 and 6 output pins from the decoder on the printed
circuit board actually correspond to decoded addresses 49319 and
49318, respectively.

Make a connection between pin 13 on the SN7402 and pins 4 and
13 on both of the SN7475 latch chips. This is the DEV SEL connec-
tion shown in Fig. 6-10.

Step 4

To test the output port, enter the following program into your
computer: |

10 A =20
20 POKE 49318,A
30 END

Preset the variable A to zero, as shown, and run the program. What
happens to the lamp monitors?

They should be unlit, since zero has been transferred to the output
port. Now set A to 255 and run the program again. You should see
all of the LEDs light. If these conditions have not been found, re-
check your circuit and the test program.

Step 5
The program may be changed so that you can easily enter new
values from the keyboard. The new program is:

10 INPUT A
20 POKE 49318,A
30 GOTO 10

You may try any values that you choose, but we suggest that you
try powers of two first, 0, 1, 2, 4, 8, etc., since these will test the indi-
vidual LEDs.
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Since an 8-bit output port can only display values between zero
and 255, what happens when you try to output a value that is out-
side of this range? Would you expect to see a “portion” of the value,
say the eight least-significant bits? Try running the program with
the value 256. What happens?

The Apple displays
?ILLEGAL QUANTITY ERROR IN 20

which indicates that the value was not within the proper range for
the function that was requested. The line number for the “error”
is provided in the error message. Negative numbers are also “caught”
in this way.

Step 6

Restart the program and enter a value of 90. You should observe
a display of 01011010 on the lamp monitors. Now try and enter a
value of —24. When the error is detected, and the error message

displayed, does the displayed value change?

No. Error conditions are detected prior to any attempted use of the
POKE function. How do you think the Apple will handle fractional
numbers? Enter a decimal fraction, such as 6.01. What is displayed?

The Apple will “strip off” the decimal portion of the number. You
may wish to experiment with some other numbers, too.

Step 7
Can you write a short program that could be used to increment
a value from 0 to 255, displaying each new value on the LEDs?
Write your program in the space below, and test it. What do you
observe? Can you make the program loop back on itself so that the
incrementing counting is displayed again and again?



We used the following program:

10 FOR A = 0 TO 255
20 POKE 49318,A

30 NEXT A

40 GOTO 10

Remember that you cannot go above 255, or below 0, without gen-
erating an error message. You may wish to put a short time delay
in your program so that the LEDs do not flash on and off so quickly.
An example of such a time-delay step is:

25 FOR T = 0 TO 500: NEXT T

You should see that it is fairly simple to construct an output port,
and to control it with simple software commands.

The output port will be used in the following experiment, but the
power may be shut off.

EXPERIMENT NO. 9
OUTPUT-PORT AND INPUT-PORT INTERACTIONS

Purpose

The purpose of this experiment is to show you how input-port
and output-port commands can be used in the same program.

Discussion

In many cases, input ports and output ports will be used together
in interface circuits. They will be controlled by PEEK and POKE
commands within the same program, and there frequently will be
transfers of information between the ports. In this experiment, you
will observe how such ports may be used together in a simple circuit.

Step 1

The simple input port (Experiment No. 7) and output port (Ex-
periment No. 8) used previously will be used in this experiment.
We refer you to Experiment Nos. 2, 3, and 8 for the appropriate
circuit details.

Step 2

Once the input port and output port have been constructed, enter
the following program into your computer and run it. It is used to
test the I/O port circuits.

10 A = PEEK(49319)
20 POKE 49318,A

30 GOTO 10 119



As you actuate the logic switches at the input port, you should see
the corresponding bits at the output port change, consistent with
the switch actions. If this is not the case, recheck your circuits and
your program.

Step 3

In this step, two values will be entered from the keyboard and
then displayed on the LEDs. At this point, you should be able to
write a short program to do this. Make an attempt in the space
provided:

We used the following program, in which a most-significant byte
(MSBY) and a least-significant byte (LSBY) were simulated:

10 INPUT “MSBY “;A$: M = PEEK(49319)
20 INPUT “LSBY “;A$: L = PEEK(49319)
30 POKE 49318M

40 INPUT A$

50 POKE 49318,L

60 GOTO 10

In this program, the string variable, A$, has been used as a “dummy”
variable to “stop” the computer so that you can perform the neces-
sary actions before the program goes on.

Step 4

Run your program. You should be able to enter two values into
the computer. When you type RUN RETURN, the computer is
ready for you to set the MSBY on the switches. After you have done
this, press the RETURN key, so that the computer can perform the
data acquisition step. Then, set the LSBY on the switches and again
press RETURN. When the LSBY has been acquired, the MSBY will
be displayed. By pressing RETURN, you will cause the computer
to display the LSBY.

Step 5

This program shows how the computer can acquire and store val-
ues for later display. Eight bits of information are easy to manipu-
late. How could a number between 0 and 65535 be displayed on
two output ports?
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These numbers would have to be “split” into an 8-bit MSBY and an
8-bit LSBY. Can you suggest how this might be done?

The number could be divided by 256 to get the MSBY as the infeger
portion of the answer. For example, if we start with the number
10923:

10923/256 = 42.668

The integer portion of the result, 42, when converted into an 8-bit

binary number, would be the MSBY of the value. The LSBY can
also be calculated: _

10923 — (42 % 256) = 171

Here, the 171 must also be converted into its 8-bit binary equivalent
to be the LSBY.

A BASIC program can be written for the Apple to perform these
functions. Could you write it?

Step 6 -
We developed the following program to make the “conversion:”

10 INPUT “VALUE "; V

20 M = V/[256

30 L =V — INTM) % 256
40 PRINT INTM), L

50 INPUT A$

60 POKE 49318 M

70 INPUT A%

80 POKE 49318,L

90 GOTO 10

The MSBY and the LSBY will be displayed on the video monitor in
their decimal form. The INT command has been used to “strip” the
decimal fraction from the value for M, for clarity. This is not re-
quired for the POKE operation, since the decimal fraction will be
ignored.
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Step 7

Enter our prngram, or yours, into the computer and test it. You
will have to press the RETURN key to display the MSBY on the
LEDs, and you must press it a second time tu display the LSBY.

Can you enter values greater than 655357 Can they be converted
and displayed?

Yes, you can enter them, and they will be converted, but you cannot
display them, since they will generate results that are greater than
256.in the MSBY. This generates an error condition. Can you do
anything to prevent this?

You can add some steps to your program that will check the range
of the value before attempting the conversion. Steps can also be
added to remove any fractional portions of the number. The follow-

ing steps can be used:

12 IFV < = 65535 AND V > = 0 THEN 18
14 PRINT “VALUE OUT OF RANGE, TRY AGAIN": GOTO 10
18 V = INT(V)

You might want to try adding these steps to your program. Program
steps such as these prevent errors, and they orient the program

toward the user. Keep this type of programming in mind when you
write complex programs of your own.

EXPERIMENT NO. 10
DATA LOGGING AND DISPLAY

Purpose

The purpose of this experiment is to show you how the input port
may be used to acquire information, and how the computer can
store this information for later display at the LEDs.

Discussion

In this experiment, a set of 10 data values will be acquired from
the three-state input port, and will be displayed on the LEDs at a
later time. More flexible display ideas will also be developed and
larger lists of data acquired.
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The input port and output port described previously will be used
in this experiment. By now, you should be familiar with these types
of ports, but we refer you to Experiment Nos. 2, 3, and 8 for the
necessary details. If you have not performed these experiments, we
recommend that you do so before going on with this experiment.

Step 2

In this experiment, you will use the computer to acquire and dis-
play a set of values that are acquired from the input port. While
these may be acquired with software steps such as:

50 INPUT A%
60 Q = PEEK({49319)
70 INPUT A%

80 R = PEEK{49319}

this takes a great number of software steps to acquire a small amount
of information. Can you suggest an alternative?

A list of values can be acquired by using a loop, and an array can
be used to store the information, so that a new variable need not
be assigned to each new data value. Can you write a short program
that could be used to acquire 10 data points?

We used the following program, which should look somewhat like
yours. Note the use of an array to store the information.

10 DIM A1)

20 PRINT "“START“

30 FOR P = 1 TO 10
40 INPUT AS

50 AP} = PEEK{42319}

60 NEXT P 113

70 PRINT “START DISPLAY. . .”



8 FORP =1TO 10

90 OGET A%

100 PRINT A(P): POKE 49318,A{P)
110 NEXT P

120 PRINT “END OF RUN": END

In this program, you must press the RETURN key to cause the
computer to acquire a value. When the computer prints “START
DISPLAY .. .” on the screen, it will display a value that it has stored,
each time you press RETURN. The value will also be displayed on
the LEDs in binary form. Note that 2 GET A$ command has been
used here, instead of an INPUT AS$. Is there any difference?

Yes, the GET A$ command suppresses the question mark (?), and
any character key (A, & 1, etc.) may be used in place of the RE-
TURN key. The alphanumeric symbol is not displayed. This “cleans

up” the display of the data values.

Step 3

Run either your program, or ours, to acquire 10 data values. Once
the values have been acquired, vse the computer to display them.
What results do you observe?

You should find that your values have been stored properly, and
that they are also displayed and printed on the video monitor. If you
do not require the values at the output port, could you modify the
program so that it only displays the values on the monitor?

Yes. Simply change line 100 to:

100 PRINT AP}

and remove line 90.

Step 4

The low-resolution graphics mode on the Apple could also be
used to display the values in graphical form. We suggest that you
attempt to use the HLIN command to draw a horizontal set of lines

124



‘that represent the relative values that have been input from the port.

Remember that there are limits on the dimensions of the screen area

for the HLIN command. These limits are 39 points in each direction.
Note your display program steps in the following space: -

We used the following steps to generate a horizontal bar graph of
the information:

80 OGR: COLOR = 5
90 FOR P = 1 TO 10
i00 D = AP)6.5

110 HLIN 0D AT P
120 NEXT P

130 END

These steps were added to the program that we developed in Step 2.
Try your program, or the one shown here.

In this set of program steps, the data value has been divided by
6.3, so that instead of having a range between 0 and 255, the range
is “condensed” to be 0 to 39. The subscript for the array has also
been used to increase the starting position of each horizontal line.
The data starts at the top of the screen for A(1), and proceeds down
the screen for the later data values. You could also use the value
of P to change the color for each of the horizontal lines.

Step 5

 Additional chan'ges can be made to the program so that a time-
delay routine is used in place of the INPUT A$ command. This
would mean that data values would be obtained at definite intervals,
as programmed in the delay routine. You would no longer need to
press the RETURN key to have a new data value acquued

Change your program so that a time delay routine is used in place

of the INPUT A$ command at line 40. Make the delay fairly long,
about 2 or 3 seconds. Here is an example of a useful routine:

40 FOR T = 0 ta 2000: NEXT T

Connect the logic probe to the “A” output, pin 1, on the SN7402
NOR gate. The acquisition of a data value from the three-state in-



put port will cause the logic probe to flash the yellow LED. This
will tell you that a value has been acquired.

You may want to change your program to acquire more than 10
points. With the simple display routine, you can acquire up to
39 values.

Make the necessary changes to your program so that a time delay
is used to synchronize the acquisition of the data from the input
port. Run your program. You may want to increase the delay so
that you can easily change the switches:

Your program should now look something like this:

10 DIM A0}
20 PRINT “START”
30 FOR P = 1 TO 10

40 FOR T = 0 TO 2000: NEXT T
50 A(P) = PEEK(49319)

60 NEXT P

70 PRINT "“START DISPLAY. . .
80 GR: COLOR = 5

90 FORP.= 1 TOQ 10

100 D = A{P)/s6.5

110 HLIN 0D AT P

120 NEXT P

130 END

Have you noticed that not all of your values cause changes in the
display? Try entering values of 0, 1, 2, 3, and so on up to 9. You may
need to slow down the delay, or to go back to the INPUT A$ com-
mand at line 40 so that you have sufficient time to make the changes
to the switches. What do vou find in the display when you enter
these numbers? Why?

The values 0-6 show the same value on the display, and the values 7-9
also show the same value, but one “square” greater than the previous
values, 0-6. The reason for this is that all the values are “compressed”
to be between 0 and 39, so the resolution is cut from one-part-in-256
to one-part-in-40. Thus while the data has 256 discrete values, the
display only can accommodate 40 different values. The division of
the value by 6.5 “compresses” it to fit in the space available on the
display. You will also note that a value ot zero still “lights” one
square 'on the video monitor. Unfortunately, the BASIC program
will generate one “lit” square for the command HLIN 0,0 at X,
wherever X is on the screen.

The point of this experiment is that the computer can be used
to acquire information and display it, or use it, in many ways. The
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input and output ports are simply additional ways of getting infor-
mation into and out of the computer.

EXPERIMENT NO. 11
SIMPLE DIGITAL-TO-ANALOG CONVERTER

Purpose

The purpose of this experiment is to show you how a simple 8-bit
digital-to-analog converter (DAC or D/A) can be interfaced to
the Apple.

Discussion

A simple D/A converter, the Signetics NE5018 8-bit converter,
will be interfaced to the Apple. Although we have not discussed
analog converters, they have been thoroughly described in Micro-
computer-Analog Converter Software and Hardware Interfacing
(Howard W. Sams & Co., Inc., Indianapolis, IN 46268). We refer
you to this book for additional information about these devices.
Other topics, such as sample and hold amplifiers, analog multiplex-
ers and instrumentation amplifiers are also described.

Pin Cn_nﬁguratinn of the Integrated Circuit (Fig. 6-11)

DIGITAL GND ANALOG GND

DBO {L5B) AMP. COMP.

oB1 SUM NODE

DB2 vee +
Fig. 6-11. Signetics NE5018 8-bit
D/A converter chip

pin configuration, | DB4

DBE3 Your

Vee -
DBS | DAC cOMP.

CBs BIPOLAR OFFSET R

DBT (MSB) Vaer IN

LE VRer OUT

NG | VRer ADJ.

Step 1

Two additional power supplies are required in this experiment,
+12 and —12 volts. They will be used to power the D/A converter
integrated circuit. Be sure that these power supplies are available,
and that they are adjusted for the proper voltages before proceeding.

Wire the circuit shown in Fig, 6-12. The device-select pulse is ob-
tained from the SN7402 nor gate circuit that has been used in
previous experiments. The device-select signal is available from
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-2 + 12

DO £

DI :

D2 -

: ¥

DATA D3 —1 NE 5018
BUS D4 -

05 - 2 = VDAC

06 .

D7

|4
4. TK

e

EVICE SELECT —ed

Fig. 6-12. Schematic for simple D/A converter interface, using NESO18 D/ A
converter chip.

point C {Fig. 6-4), but it must be inverted before it can be used
by the NES018 chip. An SN7404 inverter chip may be used for this,
as shown in Fig. 6-13. Wire this inverter circuit, too, connecting
the input of the SN7404 inverter to pin 13 on the SN7402, and wiring
the output of the SN7404 inverter to the DEVICE SELECT input
on the NES5018 converter.

+5
SN7404
14
Ha T RN
DEVICE SELECT ? DEVICE SELECT

Fig. 6-13. Simple device-select pulss-inverier circyit,

At this point, carefully check the +12 and —12-volt power supply
connections to be sure that they are correct. If you are using sepa-
rate power supplies, you must be sure that there is a low-resistance
ground connection in common to all of them and to the breadboard.

Step 2

The NE5018 D/A converter will convert values between 0 and
255 to voltages between 0 and +10 volts. Since the 0- to 10-volt



range has been divided into 256 values, or 255 steps, the voltage in-
crement available is:

10 volts/255 steps = 39 millivolts/step

You can probably write a short program that would increment an
8-bit count and output it to the DA converter. Don’t worry about the
internal operation of the D/A converter, just treat it like an output
port. Your program will generate a slowly increasing positive volt-
age ramp. Develop your program in the space below:

We used the program:

10 FOR V = 0 TO 255
20 POKE 43918,V

30 NEXT V

40 GOTO 10

A simple voltmeter or volt-chm-milliammeter (vom) may be used
to monitor the voltages. Connect the meter between ground and the
NE5018 VDAC output (VDAC is positive ). Try your program. Does
the voltage increase slowly? What happens when the voltage reaches
about +10 volts?

The voltage increases slowly to +10 volts. When it reaches this
value, it quickly changes to zero volts, or ground, and it starts to
increase slowly once again.

You can slow the voltage ramp by introducing a short time delay
routine in your program. We used the following:

25 FORT = 0 TO 100: NEXT T

Step 3

Develop a program that will generate a negative-going ramp, and
one that will generate a triangular ramp (slow-up then slow-down).

We used the following programs:

Negative ramp
10 FOR V = 255 TO 0 STEP -1
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20 POKE 49318, V

30 NEXT V

40 GOTO 10

Triangular output

10 FORV = 0 TO 255
20 POKE 49318, V

30 NEXT V

40 FOR V = 254 TO 1 STEP —1
50 POKE 49318, V

60 NEXT V

70 GOTO 10

You may wish to try either of these programs, or the ones that
you wrote. Why is the range in one of the triangular output loops
254 to 1 instead of 255 to 07

If the range is 255 to 0, these two values will be output twice, al-
though you probably couldn’t tell the difference on the meter. A
time delay, or delays, may be useful in these programs.

Step 4

Since you know that the voltage from 0 to 10 volts corresponds
to steps from 0 to 255, can you write a program that would allow
you to enter a voltage from the keyboard and that would generate
this voltage on the meter? Use the following space for your program:

We developed the following program, which you may wish to try:

10 INPUT “VOLTAGE ";V
20 R =V %k 255

30 POKE 49318, R

40 GOTO 10

Step 5

Try your program, too. Does it generate a voltage from the D/A
converter that closely matches the voltage that you entered? Our
program seemed to work well, considering inaccuracies in the meter.
This program does not have any “error detecting” steps, so you can
also try and generate a +15-volt signal from the converter, What do
you think will happen? Will the converter burn out?



The converter will not burn out, since it can only accept an 8-bit
value, which corresponds to an output of +10 volts. The “15” input
for 15 volts will cause an ILLEGAL QUANTITY ERROR, since we
are trying to transfer the value 382 to an 8-bit device. It just can’t
be done with eight bits.

Step 6

At this point, you should be able to write a program that will al-
low you to enter an upper voltage and a lower voltage, and to have

the Apple generate a triangular wave between them. Use your best
programming skills.

We used the following program:

10 INPUT “UPPER VOLTAGE"; H
20 IFH <= 10 AND H >= 0 THEN 40

30 PRINT “VOLTAGE OUT OF BOUNDS”: GOTO 10
40 INPUT “LOWER VOLTAGE; L

50 IFL <= 10AND L >= 0

60 PRINT “VOLTAGE OUT OF BOUNDS'': GOTO 40
70 IF H > L THEN 90

80 PRINT “UPPER V MUST BE HIGHER THAN LOWER V": GOTCO 10
90 H = H % 255: L = L % 255

100 FOR V = L TO H.

110 POKE 49318, V

120 NEXT V

130 FOR V = H—1 TO L+1 STEP —1

140 POKE 49318, V

150 NEXT V

160 GOTO 100

Run your program and test it. You should be able to make the meter
needle “swing” between the upper and lower voltages. You may use
a time delay, or delays, if you wish to slow the meter movement so
that you can easily watch it.

This experiment clearly shows you how a simple D/A converter
may be interfaced to your computer. The NE5018 used internal
latches, and much of the analog circuitry has been placed on the
converter chip. D/A converters find use in applications that require
the computer to control voltage-dependent devices, such as servo
motors, amplifiers, etc.

You will not use the NE5018 D/A converter again, so you may
remove it from your breadboard. The SN7402 Nor gate chip should
be retained, but the SN7404 inverter may be removed. Power may
be turned off. Carefully remove the connections to the +12- and

131



—12-volt power supplies, so that they will not come in contact with
any of the circuits.

EXPERIMENT NO. 12
OUTPUT PORTS, BCD, AND BINARY CODES

Purpose

The purpose of this experiment is to explore the use of an SN74-
L.S373 chip as an output port.

Discussion

Newer integrated circuits, such as the SN741.S373 octal latch, are
available to simplify the task of output-port construction. In this
experiment, you will construct an 8-bit output port using one of
these chips, and the use of binary-coded decimal numbers will be
explored.

Pin Configuration of the Integrated Circuit (Fig. 6-14)

V¢ ® 8O0 T 70 80 e 50

50
20| |19 ‘m]lr.' 1 15”14 13| [12][n]

e
e e

CONTROL

Fig. 6-14. SN74LS373 octal latch chip pin configuration.

Step 1

Wire the circuit shown in Fig. 6-15. You may use output “C,”
pin 13, on the Nor gate circuit shown in Fig. 6-4 as the “G” input
to the SN74LS373 chip. If this Nor gate circuit is not wired on
your breadboard, refer to Experiment No. 2.

Step 2

Note that the SN74LS373 chip has two control inputs, G and OC.
The G input controls the latch, and the OC input controls the latch
outputs, which are three-state. Thus, the latch may be used not only
to obtain information from a bus, but to pass it on to another bus,
as well. The relationships of the signals are shown in Table 6-3.
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Fig. 6-15. Using SN74L5373 octal latch chip as output port.
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Table 6-3. Control Signal Truth Table for the SN74LS373

OQutput Control Enable (G) Data Qutput
L H H H
L H L L
L L X Qo
H X X Z

When the Output Control (OC) signal is a logic one, the outputs
have been disabled, or placed in the high-impedance state (HI-Z).
When the enable or Gating input (G) is a logic one, the informa-

tion present at t
the Q outputs. T

for the SN7475 latch chip.

In this experiment, the OC input should be grounded (logic zero),
so that the outputs are always enabled.

Step 3

Once the output port has been wired, test it by writing a short
program that will take values from the keyboard and display them
in binary at the output port. A binary incrementing-count program
can also be used to test the port. You should be able to write pro-
grams such as these without any further assistance.

Step 4

Enter the following program into your computer and run it.

10
20
30
40
50

FOR C = 0 TO 255
POKE 49318, C
FORT = 0 TO 500: NEXT T

NEXT C
GOTO 10

ne D inputs is passed through the latch circuits to
his is the same type of operation that was observed
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What do you observe at the LEDs?

You should see a slowly incrementing binary count. You may in-
crease the length of the time delay at line 30, if you wish.

Now that the LEDs are displaying an increasing binary count,
carefully remove the connection between the OC pin, pin 1, on the
SN74L.S373 chip and ground. What happens to the display, or

LEDs? When you replace this connection, what do you observe?

In our set of LEDs, all of the LEDs became unlit when the con-
nection was removed. When the OC input pin was again grounded,
the count was found to be continuing. The Output Control signal
did not affect the count. Even though the outputs were disabled and
placed into their high-impedance state, the counting continued, and
the latches were “updated” with new information by the computer.
In our system, the high-impedance state of the outputs caused the
LED:s to be turned off. This may be different from your observations,
but you should see that the latch outputs change dramatically when
the OC input pin is not at ground.

The SN74LS373 chip is called a three-state octal latch chip, since
it has three-state outputs on eight latch functions. This chip is par-
ticularly useful in computer interface circuits, since it contains all
eight latches, and since its outputs may be placed in the high-imped-
ance state. The SN74L.S373 can be used in complex interfaces that
are connected to several different computer buses. In fact, the SN-
741.S373 could be used as part of a communication circuit that could
link two or more computers.

Step 5

Now that you have another input port wired on your breadboard,
we will use it to further explore some of the manipulations that can
be performed by the Apple. In past examples, we have used the
computer to control an incrementing binary count. This is not the
only code that is in digital electronic equipment. Another popular
code is the binary-coded decimal format, in which decimal digits
are each assigned their own binary code, independent of the other
digits. Of course, this code is still “binary,” in the sense that only
two states are possible for each bit. For example, the decimal num-
ber 9530 would be represented as 1001 0101 0011 0000 in binary-
coded decimal, or bcd. Note the separation between each set of
four bits. One set of four bits is used to represent the decimal digit
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for each decade. The bed code is used in many electronic devices,
and is used to conirol seven-segment displays and other decimally
oriented devices.

We would like you to try and write a program that will “split” a
number into its bed equivalents. The output port will be used to
display the different groups, two bed digits at a time. The ten’s and
one’s bed digits should be displayed at the output port first, followed
by the thousand’s and hundred’s bed digits. You may use the RE-
TURN, or other key to “stop” the computer between displays of
the digits.

We used the following program:

10 INPUT “VALUE “; A
20 IF A < 10000 THEN. 30 ELSE 10
30 GOSUB 1000
40 POKE 49318, A+C
50 GET A$:A = B
60 GOSUB 1000
70 POKE 49318, A+C

80 GOTO 10

1000 B=20:C =0

1010 IF A > 99 THEN 1100
1020 IF A < 10 THEN RETURN

1030 C = C+16: A = A—10
1040 GOTO 1020
1100 A = A—100: B = B+1
1110 GOTO 1010

In the subroutine, the variables are A, B, and C, In .this case, the
A represents the decimal value to be converted to bed (the starting
value ), B represents the “hundreds,” while C represents the “tens.”
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At the end of the subroutine, A represents the units, or “ones.” You
could have used a new variable for this purpose, if you wished.

In some cases, it may be difficult for you to remember that you
are tricking the Apple into generating bed values for you, since you
are really interested in the binary codes that are being output to
the port. Thus, while you have tricked the Apple into outputting
the binary pattern 10011001, which represents 99 in bed, the Apple
really thinks that it is outputting a decimal 153, which is the num-
ber that causes the binary pattern, 10011001, to appear on the LED:s.
There are many different ways in which you can “fool” the com-
puter into working with odd codes, or codes that do not match the
ones that it normally uses.

If you are going to go on to further experiments, you may want
to leave the SN74L.S373 output port on your breadboard. However,
if you already have another output port already available, the SN-
741.S373 circuit may be removed. Power may be turned off.

EXPERIMENT NO. 13
OUTPUT-PORTS TRAFFIC-LIGHT CONTROLLER
Purpose

The purpose of this experiment is to show you how the Apple
computer may be used as a controller in a real application.

Discussion

While the control of a traffic light may not seem like a realistic
problem for us to tackle with the computer, it does illustrate the
ability of the computer to make decisions and control external
events.

Step 1

An 8-bit output port will be used in this experiment. If you have
one already connected to your computer, you can use it as long as
it can control some LEDs. If you have completed one of the output
port experiments, you may use one of the output port circuits used
in the experiment. If you need to construct an output port, we refer
you to Experiment No. 8.

Lamp monitors or individual LEDs may be used to simulate the
lamps of the traffic light. Only six LLEDs are needed, since the north-
south and east-west lamps wnu]d be the same, with a red, yellow,
and green lamp for each. We used colored LEDs and we adupted
the following convention:
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BIT LED - BIT LED

Do RED D3 RED

D1 . - YELLOW $ ELM ‘D4 YELLOW ; MAIN
D2 GREEN D5 GREEN

Step 2

You must now determine the patterns of logic ones and zeros that
are required to turn the individual LEDs on or off. In our circuit,
the latch chips were used to drive the LEDs directly, and a zero
turned a LED on, while a one turned a LED off. What values are
you going to use to turn the various LEDs on and off?

We found that the following binary values were needed. The deci-
ma] equivalents have-also been provided for you.

ELM Red 954 11111110 MAIN Red 247 11110111
ELM Yellow 253 11111101  MAIN Yellow 239 11101111
ELM Green 231 11111011 =~ MAIN Green 223 11011111

Siep 3

To start the traffic-light control operation, write a program that
will flash the yellow light on Main Street and the red light on Elm

Street; one second on and one second off. What is the “on” pattern,
and what is the “off” pattern?

The off pattern is 255, or all logic ones, while the on pattern has
bits D4 and DO both as logic zeros, or 238,9. We used the following
program: -

10 POKE 49318,255
20 FORT = 07O 770: NEXT T
30 POKE 49318,238

40 FORT = 0 TO 770: NEXT T
50 GOTO 10
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Step 4

Determine the lamp patterns that will be required for normal
traffic light operation. How many are used? What are they? How can
they be stored in the computer?

There are only four patterns. They are (a) red on Elm, green on
Main (222), (b) red on Elm, yellow on Main (238), (c) green on
Elm, red on Main (243), and (d) yellow on Elm, red on Main (245).
The values could be stored through the use of DATA statements,
subscripted variables, or just as variables, one per lamp pattern.

Step 5

In the remainder of this experiment, we will assume a “yellow
period” of two seconds. Thus, if Elm Street is on a 10-second period,
the green light will be on for 10 seconds, followed by a 2-second
yellow, before the signal goes to red.

Write a program that will allow you to sequence through the
light patterns, with a 6-second period on Elm and a 10-second pe-
riod on Main Street.

We used the following program:

10 M = 10: E = 6: P = 49318
20 DATA 222, 238, 243, 245

30 READ L

40 POKE P,L

50 FORR =1TO M

'I_SH



60
70
80
90
100
110
120
130
140
150

FORT = 0 TO 770: NEXT T 160
NEXT R 170
READ L 180
POKE P,L 190
GOSUB 1000 200
READ L

POKE P,L 1000
FORR = 1TO E 1010
FORT = Q0 TO 770: NEXT T 1020
NEXT R 1030

Step 6

While the program listed in the previous step will operate cor-
rectly, many of the steps are repetitive. Could you suggest a new
program that could be written in a simpler way? How would you
simplify the program?

READ L
POKE P,L

GOSUB 1000

RESTORE
GOTO 30

FOR R
FOR T
NEXT R
RETURN

|

1 TO 2
0 TO 770: NEXT T

In the program in Step 5, the only changes in the four basic sections
of the program are to the time delays and the light patterns. By us-
ing an array of values, one simple loop may be used. We found that
the following program worked well:

10
20
30
40
50
60
70
80
90
100
110

A1)
M(1)
INPUT “MAIN DELAY “; M(1)
INPUT “ELM DELAY “; M(3)
FORQ = 1T0 4

POKE 49318, A(Q)

FOR R = 1 TO M(Q)

FORT = 0TO 770: NEXT T
NEXT R

NEXT Q

GOTO 50

o

222: A(2) = 238: A(3) = 243: A(d) = 245
0: M(2) = 2: M(3) = 0: M(4) =

2
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In this new program, the A array stores the light patterns, while the
M array stores the time intervals.

Step 7

So far, the computer has served only as a sequencer, generating
the proper lamp patterns and time delays. In this step, some control
steps will be added to the traffic-light control program.

The traffic on Main Street is usually heavy, so the normal mode
for the traffic light should be green on Main and red on Elm. The-
program should be able to detect a single car waiting on Elm, so
that it may be given the green light. However, Main Street must
be given at least 30 seconds of “greén time,” before any cars are
sensed on Elm Street. This means that every car waiting on Elm
Street will not automatically trigger a green-on-Elm sequence. To
make things even more interesting, there is a sensor on Main Street,
too. If five or more cars are waiting on Main Street at a red light,
Main Street will be given the green light, and the cars on Elm will
have to wait.

In order to program this, you may wish to draw a simple flowchart
of the problem. An input port could be used to simulate the two road
sensors, but to teach you a bit more about the Apple, the keyboard
will be used instead.

The keyboard uses two memory addresses for control. Address
49152 contains the keyboard data, and address 49168 is used as a
flag-clear pulse output.

Enter the following program into your computer and run it:

2000 PRINT PEEK(49152): GOTO 2000

Press some of the keys on the keyboard and note what happens on
the display. What do you observe?

There is 2 new decimal value displayed whenever a new key is
pressed, and the value continues to be displayed until a new key
is actuated. Thus, the information at input port 49152 represents the
code of the last key that was pressed.

Step 8

We would like to have the computer input a value from the key-
board input port only when a key has been pressed. To do this, you
must use the keyboard flag bit, which is bit D7 at input port 49152.
If this bit is a logic zero, all values from this port will be less than 128.
If this bit is a logic one, the values will be 128 or greater, up to 255.
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Thus, by testing the value input from the input port, you can deter-

mine if a key has been pressed. Of course, after a key is “detected,”

you must reset the flag bit, with a read operation to address 49168.
Enter the following program into your computer and run it:

2000 IF PEEK(49152) >= 128 THEN PRINT PEEK(49152)
2010 Z = PEEK(49168)
2020 GOTO 2000

Now press some of the keys, one at a time. What is displayed? Is the
decimal code for each key displayed as you press it?

You have probably found that some keys are “missed,” once in a
while. Since the keyboard flag is cleared during every pass through
the loop, it is possible to have the Apple clear a keyboard flag before
it is detected. You would really want to have the flag cleared only
after a key has been detected.

Step 9

Write a short keyboard control program that will detect every
key, only once, and print its decimal equivalent.

We used the following program that constantly checked the key-
board, but which only printed a character when the flag was set,
and only then cleared the keyboard flag.

2000 IF PEEK(49152) < 128 GOTO 2000
2010 PRINT PEEK(49152)

2020 Z = PEEK(49168)

2030 GOTO 2000

Note that the variable, Z, is a dummy variable, provided simply so
that the keyboard flag may be cleared with the PEEK(49168) com-
mand.

If you want to use the decimal value for a key, without the flag
bit, simply subtract 128.

Step 10

Write your traffic-light controller program and test it, using the
“E” key as the Elm Street sensor, and the “M” key as the Main Street
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sensor. Of course, you will have to determine the corresponding key
codes.

We used approximately 10-second periods, for test purposes, with
2-second yellow periods. The program that we used is listed for you:

10 A = 0: P = 49318
20 POKE P, 222

30 FORR = 0TO 10
40 FOR T = 0 TO 770: NEXT T
50 NEXT R

55 Z = PEEK(49168)

60 |IF PEEK(49152) = 197 GOTO 80
70 GOTO 60

80 Z = PEEK(49168): POKE P, 238
90 FOR R = 1TO 2

100 FORT = 0 TO 770: NEXT T
110 NEXT R

120 POKE P, 243

13¢ FOR R = 0 TO 1000

150 |IF PEEK(49152) = 205 THEN 190
170 NEXT R

180 GOTO 210

190 Z = PEEK(49168): A = A+1
200 IF A < 5 THEN 170

210 POKE P, 245

220 FORR = 1 TO 2

230 FORT = 0 TO 770: NEXT T
240 NEXT R

250 GOTO 10

You should note that the keyboard flag is reset before it is tested at
line 60. This clears any keyboard entries that are made during the
first 10-second period. You can remove this step, if you want the
Elm Street sensor to “remember” any cars that trip it during this
period.

The flag-detecting step at line 150 has been embedded in the over-
all timing loop. This means that the flag is always being checked,
and that these flag-detecting steps must be figured into the overall
delay period. You can do this by testing various values of the delay
constant at line 130.

There are many other things that this program could do. For ex-
ample, many intersections have pedestrian control signals, left-hand
turn signals, flashing lights, and other special features. You could
make the program as complex as you wish. In this situation, the
timing is not particularly critical. It wouldn’t really matter if the
cars had to wait an extra second or two while a flag is tested. How-
ever, periods of 10 or 20 seconds could be annoying to drivers. Keep
this in mind as you program. In some cases, the time requirements
will be so strict, and the time periods so short, that assembly-lan-
guage programming is dictated.
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The six LEDs should be removed from the breadboard, but the
output port should be retained, since you will use it in the next ex-
periment. Power may be turned off.

EXPERIMENT NO. 14
LOGIC-DEVICE TESTER

Purpose

The purpose of this experiment is to show you how the computer
can be used to test an electronic device. In this case, simple gates
are used.

Discussion

Most logic chips that contain gates may be tested by applying
known logic levels to their inputs and then comparing the outputs
with the truth-table for the device being tested. In this experiment,
the computer will be used in such a manner. One input port and one
output port are required. Various devices, such as SN7400, SN7402,
SN7408, etc., may be tested. The test is a functional test, and not
a test for dynamic properties, such as switching time, propagation
delay, and other parameters.

Step 1

You will need to construct an input port and an output port for
use in this experiment. You should be able to construct such ports
without further assistance. Many of the previous experiments have
detailed this for you. You may wish to use an SN74LS373 chip as

+5
‘H SN7400 QUAD 2-INPUT NAND
0O : 3
DI 2 | DO
4
D2 6
FROM D3 2 |: )3 DI 4o
QUTPUT . INPUT
D5 =
10
D6 p 8
D7 9 I I D3
7

Fig. 6-16. Schematic for the SN7400 NAND gate test circuit.
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the input port. When these ports have been constructed and tested,
go on to the next step.

Step 2

The test configuration for an SN7400 Nanp-gate package is shown
in Fig. 6-16. For the pin configuration of other chips, we refer you
to Fig. 6-17.
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Fig. 6-17. Pin configurations of some standard gates.

Wire the test circuit as shown in Fig. 6-16. Remember to connect
the +5-volt and ground inputs to both the interface chips and to the
circuit that is to be tested. The unused inputs at the input port should
be grounded.
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You should be able to develop the truth tables for the various
gates shown in Fig. 6-17, starting with the NAND gate. For a two-
input gate, there are only four combinations of inputs. How many
combinations would there be for four gates in a single integrated
circuit package?

Possibly you said 16 combinations, four for each of the four gates,
or 256 combinations, the number possible with eight binary inputs.
Actually, there are only four meaningful combinations, since all of
the gates are tested at the same time. Knowing that one gate is bad
for one particular combination of inputs does not serve much pur-
pose. If one gate is bad, then the entire “package” is bad.

Step 3

What are the four combinations of eight bits that will be used at
the output port to test the NaND gate? You should write down both
the decimal and binary values for these numbers.

Our values were:

00 00 00 00 = 0

01 01 01 01 = 85
10 10 10 10 = 170
11 11 11 11 = 255

Since the outputs have been connected to input bits D3-D0, we
would expect them to be all ones or all zeros, that is 0 or 15, de-
pending upon the test pattern. To “remove” the unused bits, D7-D4,
we have grounded them. What will they be when they are input?
Will this affect the results? Can you suggest another way of “re-
moving~ these bits from the test data?

The bits will be input as logic zeros, and they should not affect the
data. If the bits are not grounded, a logical ANp operation could be
used to mask them. The assembly-language subroutine could be
used.

Step 4

Develop a short program that will test the NaND gate that you
have interfaced. Your program may closely resemble the traffic-light
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control program shown in Experiment No. 13, Step 6. The program
does not have to be very complex.

The following program worked quite well in this application:

10 T(1) 0: T(2) = 85: T(3) = 170: T(4) = 255
20 R(1) 15: R(2) = 15: R(3) =15: R(4) =0
30 FOR S =1 TO 4
40 POKE 49318, T(S)
50 IF PEEK(49319) <> R(S) THEN 100
60 NEXT 5
70 PRINT “TEST OK": END
100  PRINT “FAILURE": END

Step 5

Since the pin configurations for the SN7400, SN7408 and SN7486
are equivalent, that is, inputs and outputs are at the same positions

on the chips, could a generalized test program be developed for
them? How?

Yes, a generalized test program could be developed so that the user
could enter the device name, while the computer set up the appro-
priate truth-table information to be used in the tests. The truth ta-
bles are provided in Table 6-4.

You should note that the test patterns are all the same, only the
results change.

We used the following test program:

Table 6-4. Truth Tables for the NAND, AND, and EXOR Gates

SN7400 SN7408 SN7486
A ouT A B ouTt A B ouT
O 0 1 0 0 0 0 0 0
0 1 1 0 1 0 0 1 i
1 0 1 1 0 0 i 0 1
1 1 0 1 1 1 1 1 0
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10 INPUT “LAST TWO DIGITS “;A$

20 IF A$ = 00" THEN 200

30 IF A$ = “08" THEN 300

40 IF A$ = “86" THEN 400

50 PRINT “TEST NOT AVAILABLE”: GOTO 10

60 T(1) = 0: T(2) = 85: T(3) = 170: T(4) = 255
70 FORS = 1 TO 4

80 POKE 49318, T(S)

90 IF PEEK(49319) <> R(S) THEN 120

100 NEXT S

110 PRINT “TEST OF SN74';A$;” OK':END

120 PRINT “FAILURE”: END

200 R(1) = 15: R(2) = 15: R3) = 15: R4) = 0
210 GOTO 60

300 R(1) = 0: R(2) = 0: R(3) = 0: R4) = 15
310 GOTO 60
400 R(1) = 0: R(2)
410 GOTO 60

15: R(3) = 15: R(4) = 0

The last two digits that are requested by the program are the last
two digits in the device number; that is, 00 for SN7400, 08 for SN-
7408, and so on. If several SN7400, SN7408 or SN7486 chips are
available, you may wish to test these devices. You may wish to re-
move an input or an output connection to simulate a fault to check

the interface and your program.

Step 6

It should also be possible for the computer to test logic devices
such as flip-flops and counters. If you are familiar with the SN7493
4-bit binary counter, you may wish to try the following steps. If not,
you may find it worthwhile to read through these steps.

The pin configuration and schematic diagram for the SN7493
counter are provided in Fig. 6-18. In order to test this device, the
counter outputs must be available to the computer, and the com-
puter must be able to reset and clock the counter chip. We will not
try to test the counter exhaustively, but we will test the ability to
reset the counter, and the counting function.

A N Gp GND Op o
u| I ) [ | n w0 . s L‘_

J Fig. 6-18. SN7493 4-bit counter

op

pin configuration.
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Step 7
Wire the SN7493 counter as shown in Fig. 6-19. You will need to
use the input port and the output port from the previous steps in

this experiment. You will also need two Nor gates, as shown in
Fig. 6-19. A single SN7402 chip will provide these gates. Do not

+5
SN7402 : l
—— Z
49317
3— 3 4 INPA A 12 DO
WR 1 1 9
; INFE B D1
7 8 TO INPUT
i RO D D3

| J
lm SN7493
N *GROUND INPUT BITS D7-D4

Fig. 6-19. Test circuit schematic used to check SN7493 counter chips.

substitute an SN74L.93 counter for the SN7493. Remember to ground
the unused inputs on the input port.

Step 8

Write a short test program that will exercise the reset function
on the counter, and one that will test the ability of the computer
to clock the counter and increment its count by one.

We used the following program:

10 POKE 49318,0
20 IF PEEK{49319) > 0 THEN 1000
30 PRINT “RESET TEST OK"
40 FOR C = 1 TO 15
50 POKE 49317, O
60 IF PEEK(49319) <> C THEN 1010
70 NEXT C
80 PRINT “COUNT TEST OK': END
1000 PRINT “RESET FAILURE":END
1010 PRINT “COUNT FAILURE AT *; C: END
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The program first tests the reset and then starts the necessary tests
to test the ability of the chip to increment its count by one for each
pulse that is received at the INP A pin.

Step 9

This program does not test all 16 counter states. The last count
from 1111 to 0000 is not tested. Could you change the program to
take care of this?

It should not be difficult for you to add the final test to the program.
There are several ways in which you could do this. Here is one:

90 POKE 49317,0
100 IF PEEK(49319) <> 0 THEN 1010
110 PRINT “COUNT TEST OK": END

In this case, a final count has been generated and the “wrap-around”
count from 1111 to 0000 has been tested.

The output port will not be used again, so you may remove it
from your breadboard. The input port will be used again. The power
may be turned off, since the program will not be used again.

EXPERIMENT NO. 15
SIMPLE FLAG CIRCUITS

Purpose

The purpose of this experiment is to demonstrate the construction
and use of simple flag circuits.

Discussion

Flags are signals that are used by the computer and I/O devices
so that their operations are synchronized. Flags are commonly used
to indicate one of two possible conditions, ready/busy, full/empty,
hot/cold, and other combinations that relate the conditions of an
interface to the computer. Experiment No. 6 illustrated the use of
input ports to transfer nonnumeric information to the computer.
This experiment will develop this concept further. An 8-bit input
port is required in this experiment.
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Pin Configuration of the Integrated Circuit (Fig. 6-20)

2

Vee CLR 2D 2CK 2PR 20 20

Fig. 6-20. SN7474 dual D-type
flip-flop chip pin configuration,
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1 i 1CK 1PR 10 1 GND
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Step 1

An input port will be required in this experiment. You should be
able to construct an input-port circuit without further instructions.
Many of the previous experiments have detailed the construction
of such ports, and we recommend that you use one of these circuits.
Once your input port has been wired and tested, go on to the next
step.

Step 2

One of the previous experiments investigated the use of simple
switches as sensor or flag inputs. This experiment will use flip-flop
circuits in place of the mechanical switches or jumper wires. Wire
the circuit shown in Fig. 6-21.

A jumper wire should be used as the connection between +5 volts
and the clear input, pin 1, so that you can clear the flag by moving
the wire from +5 volts to ground and then back to +5 volts. The
pulser circuit may be a pair of cross-coupled NAND gates, or an
equivalent circuit that will generate “clean” noise-free logic transi-
tions. This type of function is described in the appendix.

+3 GND

DO TO INPUT
PORT

SN7474

PULSER

150 .

Fig. 6-21. Simple flip-Alop-based flag circuit.




Step 3

How would you program the computer so that the logic state at
bit DO of the input port could be monitored? Assume that there are
two possible conditions:(a) the other bits are grounded (logic zero),
or ( b) the other bits may be used for other flag inputs.

If the other bits are grounded, then the value from the input port
will be zero when the flag is cleared, and nonzero when it is set.
If the other bits are used for flag inputs, then the “unwanted” bits
must be masked. The masking operation uses the logical ANp opera-
tion, so an assembly-language subroutine would have to be used.

Step 4

In this case, you will enter the assembly-language program that
is used to perform the AND operation on two data bytes. Follow these
steps to enter the program:

1. Press the RESET key and type CALL -151 and press the RE-
TURN key. The Apple should respond with an asterisk (*)
when it is in the Monitor mode.

2. Type 0300:00 00 00 48 AD 00 03 2D 01 03 8D 02 03 68 60 Leave
a space between the two-digit groups as shown. Use 00 for the
first three values in the program.

3. Press the RETURN key, type 02FF and press the RETURN
key three times. Now, check the data shown on the display
with the information that you entered.

To test this assembly-language routine, you may use the follow-
ing program. Since the AND operation will use binary numbers, you
will have to convert your test numbers into binary so that you can
check the results.

1000 POKE 10,76: POKE 11,03: POKE 12,03
1010 INPUT “ MASK BYTE “;M: POKE 768,M
1020 INPUT “ DATA BYTE ";D: POKE 769,D
1030 Q = USR(0): PRINT “ANSWER “; PEEK(770)
1040 GOTO 1010

If the program does not provide the proper results, re-enter the
Monitor mode and check the data bytes that you have entered.
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You should realize that the POKE commands in line 1000 are used
to set up pointer address bytes so that the USR command can “lo-
cate” the assembly-language subroutine that you entered. We refer
you to Chapter 4 and to Experiment No. 7 for more information
about this type of assembly-language subroutine use.

Step 5

Now that you have entered the assembly-language program that
will AND two bytes to yield an 8-bit result, you will use it to test the
flag bit. What would you use as the mask byte?

Since the flag is being input to the computer at bit DO, only the
least-significant bit (LSB) would be “set,” so the mask would be
000000015, or 1;9. The mask byte is placed in address 768, as you can

probably tell from the test program in the previous step.

Step 6

Write a short program that could be used to test the flip-flop flag
circuit. The Apple should print a “0” if the flag is cleared, or a “1”
if the flag is set. You can reset the flag manually by moving the
jumper wire that connects flip-flop pin 1 and +5 volts so that pin 1
is momentarily connected to ground.

We used the following program:

10 POKE 10,76: POKE 11,3: POKE 12,3
20 POKE 768,1

30 POKE 769,PEEK(49319)

40 Z = USR(0)

S0 IF PEEK(770) = 0 THEN 80

60 PRINT "1

70 GOTO 30

80 PRINT "0”

90 GOTO 30

This program seemed to work very well. Could you “invert” the
program so that a logic 0 would be sensed as the on condition, and
so that a logic one would be sensed as the off condition?
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Yes. Simply reverse the commands at lines 60 and 80. You can easily
“invert” the sense of a flag in software.

Step 7

In this step, you will use a short program that will count the
number of times that the flag is set. Again, the assembly-language
subroutine will be used. You may wish to add another pulser circuit
to provide the flag-clearing operation to replace the jumper wire
between pin 1 on the SN7474 and +5 volts.

Enter the following program and run it:

10 POKE 10,76: POKE 11,3: POKE 12,3
20 POKE 768,1

30 HOME: C = 0

40 POKE 769, PEEK(49319)

50 Z = USR(0)

60 IF PEEK(770) = 0 THEN 40

70 C = C+1: HTAB 1: VTAB 1: PRINT C

80 GOTO 40

Be sure that the flip-flop is cleared before you test the program.
With the program running, actuate the pulser and set the flip-flop.
What do you observe? Is this what you expected?

We found that the count started as soon as the flip-flop was set, and
that it continued for as long as the flag remained set. Clearing the
flip-flop stopped the count. What we really wanted was one count
each time the flip-lop was set.

Why didn’t this happen as expected? The set state of the Hip-flop
continued to be tested and detected by the program. We could not
reset the flip-flop fast enough by hand to stop the counting at one
count per pulser actuation.

Step 8

In most computer systems, the computer, or the flag-containing
device clears the flag after it has been detected. To allow your inter-
face to clear the flip-flop, add the circuit shown in Fig. 6-22. You will
need an SN7402 Nor-gate chip. Be sure that you wire the +5-volt
power supply to pin 14, and ground to pin 7, on the SN7402 chip.
Since the Nor-gate circuit will provide the reset signal for the flip-
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‘B%F 3 3 TO SN7474 PIN 1

13
SN7402
Fig. 6-22. Simple flag-clearing circuit schematic.

flop, be sure that you remove the wire that was used to connect +5
volts to pin 1 on the SN7474 flip-flop.
The circuit shown in Fig. 6-22 will allow you to clear the flip-flop

with a POKE 49318 command.
Modify your program so that line 65 is added:

65 POKE 49318,0

When this command is executed, the flag will be cleared. Since you
may not know the state of the flag when you start the program, you
might want to add a flag-clearing command at the start of the pro-
gram, too. Now run the program. When the flag is detected, the flag
is immediately cleared. Then the count is incremented and dis-
played. |

One of the benefits of using this type of flag, and using the assem-
bly-language subroutine to check the flag, is that you do not “stall”
the computer waiting for a flag, unless you want to. Thus, you can
write a program to check for a flag. If the flag is not present, the
computer goes about some other task. If the flag is set, the device
associated with it is serviced, and the computer then goes on.

The BASIC interpreter in the Apple has a flag-checking command
called WAIT. This command may be used to test for a flag, but if
the flag is not found, the program continues to wait for it, and it
cannot do anything else. If a program “hangs up” waiting for a flag
that never occurs, you must press the RESET key to re-establish
control of the Apple. We refer you to Basic Programming Reference
Manual for the Apple for more information.about the WAIT com-
mand. This command does not incorporate any flag-clearing com-
mands.

EXPERIMENT NO. 16
A SIMPLE ANALOG-TO-DIGITAL CONVERTER

Purpose

In this experiment, you will interface an 8-bit analog-to-digital
converter to the computer. Several different types of measurements
will be made.
Discussion

There are many applications for analog-to-digital converters, or
A/D converters in computer systems. The A/D converters allow the
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computer to measure analog voltages such as those that would arise
from various signal sources and transducers. In this experiment, a
simple 8-bit A/D converter will be used. The converter is a National
Semiconductor ADCO0804-type converter. This converter has three-
state outputs, so it can be interfaced directly to a microcomputer
data bus without difficulty. However, the three-state outputs have
an access time that can be as long as 200 nanoseconds. Thus, if you
attempt to use the ADC0804 A/D converter on your interface bread-
board, you will find that the additional time required to actuate the
bus interlocking circuitry to turn the data bus around for input will
be too long. The data from the converter will be “missed” by the
computer.

In order to perform this experiment, you must have access to the
“bare” Apple data bus. This is explained in the following steps.

Pin Configuration of the Integrated Circuit (Fig. 6-23)

ADC 080X
Dual-In-Line Package

=] —h' u “_ Ve (OR Veg!
A =t b2 cukn

Wh —a 2 oeo ise)

Fig. 6-23. Pin configuration of the ADC0804 ik im LA
A/D converter.
WTR —0) 18 om
Vi) — o
Vini=} -.-—]I L DBd
A BND — 2 pes
VRep/2 —l— L DBB
10 1
D GND DB7 (MSB)

TOP VIEW

Step 1

In this experiment, you will interface the ADC0804 A/D converter
directly to the data bus as it comes from the Apple. To do this, care-

fully remove the two 8216 bus bufter chips at IC-10 and IC-11 on
your interface ‘breadboard.

Step 2
Wire the ADCO0804 integrated circuit as shown in Fig. 6-24. The

data bus lines are placed into the corresponding holes at the sockets
for IC-10 and IC-11. If the wires do not fit into the holes very easily,
we suggest placing a 16-pin socket with larger access holes in the
sockets at IC-10 and IC-11. This will allow you to make the connec-
tions without having to force the wires in the small holes. The wires
should fit into the corresponding holes without much force. If exces-
sive force is used, you may bend the socket contacts so that they

155



S 31K
TO APPLE r
DATA BUS | 1 z%ﬁoﬂ
l DO |
3 1K
19319
WR 4
RD

Fig. 6-24. ADCO0804 interface circuit schematic.

do not make proper contact with the 8216 chips when they are re-
inserted into their respective sockets.

Step 3
Enter the following program into your computer and run it:

10 POKE 49319,0

20 FORT = 0 TO 100: NEXT T
30 PRINT PEEK(49319)

40 GOTO 10

What does the program do? What is displayed on the video screen?

The program exercises the A/D converter, starting a conversion, pro-
viding a time delay so that the conversion can be performed, and
then reading and displaying the data. Slowly adjust the potentiom-
eter as you observe the data to confirm that the converter is oper-
ating.

As you change the voltage setting of the potentiometer, you should
see a corresponding change in the value displayed by the Apple.
What is the minimum value? What is the maximum value? Does this
seem to be what you would expect?
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The minimum value should be in the range of 0 or 1. The maximum
value should be between 253 and 255. This is what is expected from
an 8-bit device, since it can only generate values between 0 and 255.

Step 4

The ADC0804 chip has a flag output that can be used to monitor
the status of the converter; that is, busy or ready. This output is a
logic zero when data is ready for the computer, and it is a logic one
when the converter is performing a conversion. This output is really
the output of a flag circuit, and the flag is reset when the eight data
bits are read into the computer. Since the converter can perform
many thousands of conversions in a second, is there any need to
monitor this flag signal?

Probably not, since the converter will complete the conversion pro-
cess before the data can be accessed by a BASIC-language program.
Can you suggest some possible uses for the flag output?

The flag could be used for assembly-language A/D converter pro-
gramming. In assembly-language programs, the flag could be tested
as an input to an input port, or it could be used with the interrupt
on the 6502 microprocessor chip. Since these are high-speed appli-
cations, it would be useful to monitor the flag to determine when the
converter had finished a conversion.

Step 5
Remove line 20 from your program and run the program. What do
you find?

The data values are the same as those observed when the program
was used with the time delay steps. Thus, the converter is “outrun-
ning~ the BASIC control program.

Step 6

The values displayed on the screen do not represent the actual
voltage that is being measured, but are an 8-bit binary representa-
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tion. Write a program that will perform the conversion to voltages.
You may add the steps to the program already in use.

We used the following steps which simply perform a mathematical
conversion of the decimal value 0 to 255 to a corresponding voltage
0 to +5 volts.

10 POKE 49319,0

20 FORT = 0 TO 100: NEXT T
30 PRINT (PEEK(49319)%5/255)
40 GOTO 10

Try our program, or your own. Does it work?

It should. You will see that the computer prints many decimal digits,
probably too many, since the converter is only accurate to a maxi-
mum of one part in 256, or about 0.25%. Unfortunately, rounding
is not a trivial task in the Apple. You can perform either a mathe-
matical rounding, or you can use a string operation to print only a
selected number of digits after the decimal point. You can use the
following if you wish:

30 A$ = STR$(PEEK(49319)% 5/255)
40 PRINT LEFT$ (A%$.4)
50 GOTO 10

Remember that this routine simply limits the displayed value to four
decimal digits. It does not perform any rounding.

Step 7

Try to write a routine that will use the high-resolution graphics
capability of the Apple computer, so that the program will plot the
voltage values with respect to time. The measurements should be
taken at a regular time (time-delay program), and a continuous
line-plot should be drawn. If you are not familiar with the high-
resolution graphics formats and commands, use the program pro-
vided below:

100 HRG: HCOLOR = 3: Y1 =0
110 FOR X = 0 TO 249
120 POKE 493190
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130 Y2 = PEEK(49319)/1.594
140 - HPLOT X.Y1 TO X+1, Y2

150 Y1 = Y2
160 NEXT X
170 END

Try this program. Vary the potentiometer setting as the program is
~ running. The plot should appear as the changes are made. A con-
stant voltage will give you a horizontal line on the screen.

Step 8

Can you suggest a simple experiment that would demonstrate the
use of the A/D converter and the graphics program?

There are several simple experiments that you might like to try.
Each involves measuring a voltage that is proportional to the physi-
cal measurement that is being made. For example, you could mea-
sure the voltage across a photocell in changing light conditions, a
voltage across a charging capacitor, or a voltage that is proportional
to temperature.

Wire the circuit shown in Fig. 6-25. In this circuit, you will use
the A/D converter and computer to measure a charging voltage
across a large electrolytic capacitor.

?+d
2 33K
Fig. 6-25. Capacitor-charging 1
circuit diagram. JUMPER |+ |00/ 16WVEC

Use the jumper wire to discharge the capacitor, and leave it in
place until after you have started the program. Once the program
is running, remove the jumper to ground. You should see the volt-
age slowly increase, as the capacitor is charged. Why does the graph
show the zero-voltage point on the top of the screen, and the high-
voltage point on the bottom?
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The computer plots from the top to the bottom in increasing values,
so if you want to invert the display, you will have to “invert” the
values from the converter. This means that you will need to convert

a zero into 159, and a 159 into a zero. To do this, simply change line
130 to:

130 Y2 = 160—(PEEK(49319)/1.594)

Step 9

You can also use the A/D converter to measure temperature. An
LM335 temperature sensor may be used to generate a voltage that
is proportional to temperature, at a rate of 10 mV/K. The Kelvin
scale of temperature uses the same units of degrees as the Celsius
scale, except that 0°C = 273K. Thus, a room temperature of 20°C
will be the equivalent of 293K, and the LM335 will generate 293 X
10 mV as its output, or 2.93 volts.

To measure temperature, wire the circuit shown in Fig. 6-26.
Be sure that the potentiometer or capacitor-charging circuit is not
connected to the A/D converter input at the same time as the tem-
perature sensor.

You can use the same graphical display program that was used

in the previous step, but you may wish to add a time-delay step at
line 155:

155 FORT = 0 TO 100: NEXT T

This will delay the display, since the temperature changes will be
slower than the capacitor-charging voltage changes.

Run the program. Heat the sensor with your fingers. Do you ob-
serve any change? What do you expect to see?

+5
—— 2200
w OUTPUT
. 10mV/°K
BOTTOM VIEW LM335 ADJ (N/C)

Fig. 6-26. Schematic for a temperature-measuring circuit,
and pin configuration for LM335 chip.
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You probably will not see much change, since the display is set up
for a range of 0 to 500K, as represented by 0 volts to +5 volts from
the sensor. If you see more than a few “points” increase in the dis-
play, you have significantly warmed the sensor. You can more readily
cool the sensor with some moisture, or with a can of freeze-spray that
is used to cool electronic components. If this is not available, a piece
of ice can be used to cool the sensor.

Could you “expand” the display to provide a more useful display
of the temperature changes? How could you do this?

There are several ways of “expanding” the display. If you know that
the temperatures will only vary between 200 and 300K, you could
change the software so that the display on the screen represented
voltages between +2 and +3 volts. However, keep in mind that you
have not increased the resolution of the converter in doing this.
There will still be the same number of discrete voltage steps in the
converter’s range. You have only expanded the display of these
values.

You could also use some other circuits. Operational amplifiers
could be used to scale the voltage range of +2 to +3 volts to 0-5
volts, so that the entire temperature range of 200 to 300K would
generate 0-5 volts. This could be measured by the converter and
displayed on the screen. Now, the resolution has been increased,
since the entire 256 different voltages are used in the temperature
range of interest.

There is much more to analog-converter interfacing, but we hope
that this experiment has interested you in the use of these important
devices. For additional interfacing ideas and techniques, we refer
you to TRS-80 Interfacing, Book 2, and Microcomputer-Analog Con-
verter Software and Hardware Interfacing (Howard W. Sams & Co.,
Inc., Indianapolis, IN 46268 ).

Please note that in this experiment, we generated a reference volt-
age of +2.5 volts by using two 1000-ohm resistors to divide the +5-
volt supply in half. In precision analog-converter applications, a
+2.500-volt reference is used in place of the resistors. We have
chosen to use the resistors in this experiment because they are in-
expensive and easy to set up. However, they produce results that
are not as accurate as would be needed for precision measurements.
There are many reference devices and circuits available, as noted in
the references mentioned above.
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CHAPTER i

On the Bus

While many readers will be content to perform some of the experi-
ments in the previous chapter, and go no further with the design and
development of interfaces, there are others who will be interested
in developing special-purpose interface circuits that will become a
permanent part of their computer system. This chapter is written for
this reader. We will describe how you can design special interface
circuits that can take advantage of many of the built-in features of
the Apple computer.

If you want to construct an interface circuit that will be used again
and again, you will want to construct it on something other than a
solderless breadboard. Breadboarded circuits take up workspace,
they are messy and frequently come apart at the worst possible mo-
ment. The alternative is to construct the interface circuit in some
permanent form, so that it can be mounted out of harm’s way, inside
the Apple case.

When the Apple computer was designed, it must have been obvi-
ous to the engineers that people would be interested in expanding
the system so that various standard peripherals and nonstandard cir-
cuits could be added to the computer. Thus, they provided eight fe-
male edge connectors at the rear of the main printed circuit board,
so that the important computer signals would be readily available for
anyone who wanted to use them. You have already used some of
these signals, since the interface that was described previously plugs
into one of the available “slots.”

The slots are numbered 0-7, and you can use all but slot 0, which
has been reserved by the manufacturer for special expansions of the
computer. Slots 1-7 are available for you to use as you wish. There
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Table 7-1. Apple Bus Signals and Descriptions

Pin Name Description
1 ! 1/O SELECT A logic zero signal, active at slot n, when the computer
addresses locations CnOOH-CnFFH. Active during P,.
Not available at slot 0. (10)*
2-17 A15-A0 Buffered address bus lines. {5)
18 R/W Buffered read/write control signal. (2)
19 SYNC Video timing synchronization signal. Available only at
slot 7. (?)
20 1/O STROBE A logic zero signal, active at all slots when the com-
puter addresses locations C80OOH-CFFFH. Active during
Po. (4)
21 RDY Ready control input to 6502 processor.
22 DMA Direct-memory access control input.
23 INT QUT Interrupt daisy chain signal to adjacent slot.
24 DMA OUT DMA daisy chain signal to adjacent slot.
25 +5 volts + 5-volt power supply connection. 500 mA maximum
available to all cards.
26 GND System electrical ground.
27 DMA IN DMA daisy chain signal to adjacent siot.
28 INT IN Iinterrupt daisy chain signal to adjacent slot.
29 NMI Nonmaskable interrupt input to 6502 chip. Vectors pro-
cessor to subroutine at O3FBH.
30 RQ Maskable interrupt input to 6502 chip. Address of in-
terrupt subroutine in 03FE and O3FF.
31 RES Input/ output line. When pulled low, the Apple is reset.
Interface may monitor or generate a reset.
32 INH When pulled to a logic zero, all internal ROMs are dis-
abled.
33 —-12 V —12-volt power supply connection. Total of 200 mA
available to all cards.
34 -5V — 5-volt power supply connection. Total of 200 mA
available to all cards.
35 COLOR REF This 3.580 MHz color reference signal is only present at
slot 7. (?)
36 7M A standard 7.159 MHz reference signal. (2)
37 Q3 A standard 2.046 MHz reference signal. (2)
38 D Standard 1.023 MHz microprocessor clock signal. (2}
39 USER 1 Logic zero input. When pulled low, all internal [/0 de-
vices are disabled.
40 ¢o Standard 1.023 MHz microprocessor clock signal. Com-
plement of P1. (2)
41 DEVICE SELECT Logic zero signal, one per slot. Active for 16 addresses
per slot (see Table 7-3). (10)
42-49 D7-D0 Buffered data bus signals. (1)
50 +12 V + 12-volt power supply connection. Total of 250 mA
| available to all cards. '

*Number in parentheses indicates the number of SN74LS00-family inputs that each signal can
drive per interface slot.

are many companies that sell plug-compatible interfaces, and you
can plug these into these slots without further ado.
In Chapter 5, some of the common interface signals were de-
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scribed; the address bus signals, the data bus signals, and some of
the control signals. There are other useful signals provided at the
seven available interface edge connectors. The signals are listed and
described in Table 7-1.

Since you are already familiar with the data bus and address bus
signals, they will not be discussed any further. Some of the other
signals are important, too, and they can be used to greatly simplify
the construction of interface circuits.

INTERFACE CONTROL SIGNALS

1/O SELECT

The I/O SELECT signal (pin 1) is active when it is a logic zero,
as indicated by the “bar” above the same of the signal. Each of the
seven available interface slots, 1-7, has its own I/O SELECT signal,
thus this signal may be used to select a specific card. The I/O SE-
LECT signal for a card slot, n, is active when the address bus lines
are set at addresses Cn00 through CnFF, inclusive. For example, if
the Apple addresses location C5AB, the 1/O SELECT signal at slot
5 will be a logic zero. None of the I/O SELECT signals at the other
slots will be active at this time. There will also be times when none

of these signals is active. The range of addresses that affect the I/O
SELECT signals is shown in Table 7-2.

Table 7-2. 1/0 SELECT Address Allocations

I
Interface Slot | Address Range
] C100-C1FF 4940849663
2 C200—-C2FF 4966449919
3 C300-C3FF 49920-50175
1 4 C400-C4FF 50176-50431
5 C500-C5FF 50432-50687
] C600—-C6FF 50688-50943
| 7 C700-C7FF 50944-51199

There are a number of possible uses for this signal. Since it is ac-
tive when the Apple addresses a contiguous block of 256 addresses,
or one page, the signal could be used to enable a memory chip with
256 addresses. It could also be used to enable a device address de-
coder that could address 256 1/O devices. These applications are
shown in block diagram form in Figs. 7-1 and 7-2.

You might be wondering why anyone would want to add a block
of 256 bytes of memory to an Apple computer system, when the
Apple can easily contain 48K of memory by itself. In some applica-
tions, it is necessary to have short assembly-language routines that
can “drive” an interface. The assembly-language programs do their
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ROM OR
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Fig. 7-1. Using 1/ O SELECT to control a page of memory.

job very efficiently. Such “driver routines” can be placed in read-only
memory (ROM), and the ROM chip may be used in the interface
circuit. In this way, the driver routines are a part of the overall inter-
face, and they are “loaded” when the interface card is plugged in.
They do not have to be loaded from cassette or disk, and they do not
take any of the other memory space.

DECODER I UP TO 256

10 SELECT

ADDRESS BUS Al-AQ

- DEVICE ADDRESS
CIRCUITS OUTPUTS

Fig. 7-2. Using 1/ O SELECT to control a memory address decoder.

Sometimes an interface will require a small amount of read/write
(R/W) memory for temporary storage. You can also use the I/O
SELECT line to control a 256-byte block of R/W memory.

Remember that each interface slot has its own I/O SELECT sig-
nal, and each signal is active when the Apple addresses a specific
“page” of memory.

1/O STROBE

The I/O STROBE signal is a logic zero signal that is provided at
all of the interface slots. It is common to all of the connectors, and
is not specific to any one. This signal will be a logic zero whenever
the Apple accesses a location within the range C800H to CFFFH, in-
clusive. Thus, every card will be signalled when the address on the
address bus is within this range, which covers 2048 addresses, or 2K
of memory.

You may use this signal to enable memory chips and I/O devices,
but you will probably want to further “qualify” this signal by gating
it with some of the address bus lines, A10-A0. A simple block dia-
gram of how this signal could be used is shown in Fig. 7-3. In this
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Fig. 7-3. Using 1/ O STROBE for 1K memory block control.

circuit, the I/O STROBE signal has been used to select a 1K block
of ROM on an interface card. The remaining 1024 addresses could
be divided among the other interfaces as you wish. We urge that you
use caution in using this signal, however, since you may find that
some manufacturers have used this line to decode memory and I/O
device addresses in just this manner. Thus, you may find that you
have a conflict in addressing between a commercial interface that
you wish to add to your system, and one that you have already de-
signed, built, and installed.

DEVICE SELECT

This signal is specific to each interface slot, and it has a range of
only 16 addresses for each slot, as shown in Table 7-3. The DEVICE
SELECT signal is active in the logic zero state. Since the DEVICE
SELECT signal is active for only a 16-address block, its use will be
fairly well limited to I/O device addressing, as shown in Fig. 7-4. In
this circuit, the DEVICE SELECT signal has been used to enable a
4-to-16-line decoder. If a particular interface has only a single func-
tion, and only requires a single enable signal, you may decide to use
the DEVICE SELECT signal by itself, without any further decod-
ing. This is permissible, as long as you realize that the device selected
in this way will be active at 16 different addresses, COnOH to COnFH,

SN74154
Al B
:§ E : 16 DECODED DEVICE
2 ADDRESSES
DEVICE SELECT G 1
L G ﬂ A
— I

168 Fig. 7-4. Using DEVICE SELECT to enable a 16-address decoder.



Table 7-3. DEVICE SELECT Address Allocations

Interface Slot Address Range
0 COB0—COS8F 4928049295
1 C090-CO9F 49296—49311
2 COAQO-COAF 49312-49327
3 COBO—COBF 4932849343
4 COCO—COCF 4934449359
5 CODO-CODF 49360-49375
6 COEO—COEF 49376—49391
7 COFQ—COFF 49392-49407

inclusive. This use of the signal also limits your ability to add other

tunctions to the interface, should you decide to expand it at a later
time.

IRQ and NMI

These are the two interrupt inputs to the 6502 microprocessor
chip. The IRQ (interrupt request) is maskable, and it can be dis-
abled by using the appropriate software steps. The NMI ( nonmask-
able interrupt) is always active.

These interrupt input lines are common to all of the seven inter-
face slots, with the TRQ signal connected at pin 30, and the NMI
signal connected at pin 29. In most interface circuits, the NMI line
would be dedicated to one peripheral, and that must be recognized,
no matter what. The IRQ line would be shared among many inter-
face circuits. Appropriate software steps would be required within
the interrupt service subroutine so that the computer could detect
which device had actually requested the interrupt. Each of the inter-
rupting devices could have a 1-bit input port that could be read to
determine the status of its interrupt flag. A typical interrupt flag cir-
cuit is shown in Fig. 7-5. Notice that the flag is cleared under soft-
ware control.

SN7474 ___
1 RD XYZ
+5
—n— D Q _[L» TO DATA BUS BIT
1K | SN74125
INTERRUPT = Ty
REQUEST CK 0 %‘:HD}' = T0 IRQ

L RD QRS

(FLAG CLEAR)

Fig. 7-5. Interrupt flag circuit diagram. 169



If this type of a “polled” interrupt is used, with the computer poll-
ing each of the devices that could have generated an interrupt, a pri-
ority can be established in the software. Thus, if the computer checks
the devices in the order A, B, C, and so on, device A has the highest
priority, since it will be checked first when an interrupt is detected.

The interface slots also have two other interrupt lines that may be
of interest, depending upon your application. These signals are the
interrupt input (INT IN) at pin 28, and the interrupt output (INT
OUT) at pin 23. These signals are used to “daisy chain” interrupt
signals form one card to the next. The signals are only connected be-
tween the interface connectors, as shown in Fig. 7-6. Thus, the INT
OUT signal on slot 1 is connected to the INT IN signal on slot 2, the
INT OUT on slot 2 is connected to the INT IN on slot 3, and so on.
The INT IN and IN OUT lines are only connected to the adjacent
interface slot, and they do not go any further.

REAR OF APPLE

'|23r 28| N |23 28] | |23 B

INT OUT INT IN

*NOTATIONS ARE INTERCHANGEABLE, DEPENDING UPON USE.

Fig. 7-6. INT IN and INT OUT bus signals.

A simple daisy-chained interrupt scheme is shown in Fig. 7-7. The
lower-priority interrupting devices are further down the chain, fur-
ther from the INT connection to the 6502 microprocessor chip. In
this circuit, a higher priority device can pass its interrupt request up
the chain, blocking any interrupt requests from the lower priority
devices that are further down the chain. Once the higher-priority
device has been serviced and its interrupt flag has been cleared, it
will “open” its gate and allow the lower priority interrupt request to
pass on to the computer.

As you can see, the computer still needs some way of determining
which device is generating the interrupt, so that it can select the cor-
responding interrupt service subroutine. This type of interrupt
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scheme is quite complex, and we recommend using the simple inter-
rupt flag circuit provided in Fig. 7-5. This should be sufficient for
most uses. In the daisy-chain configuration, you cannot have “empty,”
or open, slots between interface circuit boards, since this will break
the INT IN/INT OUT circuit “chain.” Enough said about interrupts.
For more information, we refer you to Programming & Interfacing
the 6502, With Experiments (Howard W. Sams & Co., Inc., Indian-
apolis, IN 46268 ).

DMA

The DMA input is used to allow an external device to address
memory locations without first having to go through the 6502 micro-
processor. Thus, the external device has direct memory access, or
DMA. Since several devices could request a direct memory access
transfer of information, a daisy-chained set of peripherals is possible,
since the interface slots have DMA IN and DMA OUT pins that con-
nect to the adjacent interface connectors. Direct memory access in-
terfaces are not trivial design projects, and we recommend that you
thoroughly understand the operation of the 6502 microprocessor chip
and its associated circuitry before you attempt to use this teature.

RES

The reset line at pin 31, RES, is actually a bidirectional signal line.
You can use this line to reset your interface circuits, since it will be
a logic zero when the Apple is reset when power is applied, or when
the RESET pushbutton is pressed. You can also force the Apple into
a reset condition by grounding this line. If you choose to use this line
to reset the Apple from your interface, a high-current open-collector
gate or buffer must be used to pull the line to ground. An SN7407
open-collector buffer chip could be used in this type of circuit. The
RES signal line is common to all of the interface slots.

INH

In the Apple computer, you can substitute your own assembly-
language programs for the programs stored in the BASIC interpreter
ROMs. By pulling the INH line at pin 32 to ground, you will inhibit
all of the BASIC interpreter and Monitor ROMs, so that your own
programs can control the entire system. Since there is some room
already available for this type of operation, you probably won't use
this function, since you would not have access to any of the useful
subroutines within the standard ROMs supplied with the Apple. It
would be difficult, for example, to control the display, without the
subroutines in the BASIC interpreter ROMs. You will need an open-
collector buffer chip to pull this line to ground, if you choose to use
this function.
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USER 1

This input will allow you to inhibit the generation of all of the
I/0 SEEEIETI' and DEVICE SELECT signals within the Apple com-

puter, so that you can “turn off” all of the I/O devices. This line must
be pulled down to a logic zero to cause this action. To prevent the
accidental use of this line, you must use a wire jumper to connect two
solder pads on the main printed circuit board of the Apple, before
the USER 1 signal can be used. We refer you to the Apple II Refer-
ence Manual for the necessary details. B L

Since your primary purpose in using the I/O SELECT and DE-
VICE SELECT signals is to simplify your interface design, there is
probably no need to use this line, unless you wish to do some sort of
expansion of the computer system with I/O devices that are external
to the basic system, or that might use some of the memory addresses
that have been assigned to the I/O SELECT and DEVICE SELECT

signals. The USER 1 signal is present at pin 39 on the interface con-
nectors.

RDY

There are times when it is necessary to slightly “delay” the 6502
microprocessor so that an external I/O device, or memory chip will
have sufficient time to access its data and present it on the data bus.
The ready input (RDY ) found at pin 21 on each of the interface con-
nectors can be used to put the 6502 in a “wait” condition when it is
grounded. This input must be synchronized with the microprocessor
clock, and it should change its state during the ®; clock logic one
state. The RDY input was used in older 6502-based computers, since
older memory devices could not access their data as fast as required
by the computer. Thus, when they were addresses, they had to put
the 6502 into a “wait” condition for several clock cycles until their
data was available. We doubt that you will find much use for this
signal, except in specialized interfaces.

Clock Signals

There are six clock signals that are available for interface use.
These are ®,, ®,, Q3, 7M, COLOR REF, and SYNC. The ®, and
®, are the main timing clock signals, running at 1 MHz. The clock
signals are the inverse of one another. These signals are used to co-
ordinate external I/O operations with the normal flow of data on the
bus. As shown in Fig. 5-12, the ®, signal is used to control the gener-
ation of the RD and WR signals for external I/O devices. The IO
SELECT and DEVICE SELECT signals at the 1/ O connectors have
already been gated, or “qualified,” with the ¢, clock signal.

The Q3 signal is a 2 MHz clock signal that is asymmetric; that is,
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Fig. 7-8. Timing diagram for various Apple clock signals.

it is not a square wave. The 7TM signal is a 7 MHz clock signal that is
a square wave. The clock signals are derived from the main clock
circuitry within the Apple, and their timing relationships are shown
in Fig. 7-8. We refer you to a complete data sheet for the 6502 mi-
croprocessor for additional information about the 6502 timing rela-
tionships.

The COLOR REF and SYNC signals are available only at inter-
face slot 7. The COLOR REF signal is the 3.5 MHz color reference
signal generated by the video clock circuit in the Apple. The SYNC
signal is the video timing synchronization signal. You will probably
not use these signals in your interface designs unless you will be
using video control circuits.

Power

The interface connectors provide access to four standard voltages
and to ground. The voltages provided are +12, —12, +5, and —5
volts. The current for each of these voltages is limited to a few hun-
dred milliamperes, so you should consider the use of low-power in-

terface chips, such as those found in the SN74LS00 family.

Other Considerations

The bus-driving capability of the interface signals is quite limited,
with most signals limited to driving only a few SN74LS00-type in-
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puts. You must be careful in your design that you do not overload
these signals by expecting them to drive more chip inputs than they
can. If you need additional power from these signals so that they can
drive more inputs on an interface card, you must buffer the signals
with appropriate buffer chips. Just keep in mind that the buffers will
need some additional power from the power supplies, and there is
not a great deal of “extra” power at the interface connectors. Thus,
you must balance your needs for signal buffering with the available
power. You could always use an external power supply to power
some of the interface cards, but this defeats the purpose behind put-
ting the interface circuits in the Apple enclosure in the first place.

AN INTERFACING EXAMPLE

Now that most of the useful interface signals have been described,
let’s take a close look at a typical interface circuit that can be used
with the Apple computer. In many applications, it is necessary for
the computer to communicate with other devices. These may include
printers, controllers, remote data acquisition stations, and maybe
even other computers. In most cases, a form of serial communication
is used, so that long lengths of multiconductor cables are not re-
quired. Most serial communication schemes use three or four wires,
so that the information that is to be exchanged is transmitted in serial
fashion, bit by bit, over the wire. One set of wires is used for trans-
mitting, and the other set is used for receiving. Such communication
is usually called asynchronous-serial communication, since there is
no common clock signal, or reference, that connects the two systems.

Most of the microprocessor chip manufacturers have developed
some type of communication chip for their family of microprocessors.
In fact, you can even “cross” families, so that a communication chip
that was developed for the 8080A family can be used with a 6502
processor. In fact, that is exactly what we plan to do in this example;
an 8251 universal synchronous/asynchronous receiver-transmitter
chip will be interfaced to the Apple computer, right at the interface
slot. We will not provide you with a great deal of detail about the
operation of the USART chip, since this has been covered in detail
in TRS-80 Interfacing, Book 2 (Howard W. Sams & Co., Inc., Indi-
anapolis, IN 46268). A magazine article covering the subject is also
available. See “Cross-Pollinating the Apple,” Byte, April, 1979, p. 24.

Since the 8251 USART chip is a bus-compatible chip, it should not
be too difficult to interface the Apple. A pin configuration and block
diagram for the USART are provided in Fig. 7-9. You should be able
to recognize the data bus inputs, the RD and WR control inputs and
a chip select input, CS. Since the USART contains two sets of regis-
ters, there must be some way of distinguishing between them. The

175



BLOCK DIAGRAM

W

DATA TRANSMIT
<‘:{> BUS <:> BUFFER TXD
D, D, BUFFER P
I I
RESET
- READ/WRITE P
00 —|  CONTROL E'Eﬂ%'g” e TE
LOGIC L
RD ] et | X
WR ——g

cS
Y RECEIVE
DSR 4 BUFFER  |e—— RXD
DTR = 5 P)
MODEM
CONTROL

CTS <:> :
RTS _ l
I—~ RXRDY

PIN CONFIGURATION RECEIVE __
o CONTROL [~ RXC
o, 28 Jo,
0,2 27 o, p—> SYNDET
rxD [ 3 26 ] Voo
aND ] 4 28 [] AxC
o, s 24 (] OTR -~
o, e 23 (] ATS
o, ] 7 22 (] OSA Pin Name | P Function
ol s A2S1A o1 3 meger s . D7 Dg | Dsts Bus {8 binsl
i SN n Funcion ciD Control or Data is to be Written or Read
=K 20 [ cLx O3h Dats Set Ready AD Resd Data Command
wa [ 1w 19 [ TaD g"‘ ;H* Termnal Ready WR Weite Data or Control Command
e YNOET nec Detect -
S 5Y cs Chip Enable
-:E n 18 _!_E v ATE Reguert 1o Sand Dats CLK Clock Pulse (TTL)
co L] 12 7] CTS cTs Clear to Send Data RESET | Raeset
Ro [ 13 16 7] SYNDET :"E T;M*“H Empty Txt Tranamtter Clock
e +5 Vaolt Supply TeD Teanamitter Data
TxRDY
AxADY 14 15 =RD GHND Ground m Receiver Clock
AxD Raceiver Data
ReRDY | Receiver Ready (has character for BOBODI
TxRDY Tesnamaitter Ready (resdy for char. from BOBO)

176 Fig. 7-9. Pin configuration and block diagram for the 8251A USART chip.



CONTROL/DATA input at pin 12 (C/D) performs this function.
A logic one selects the control mode, or command mode, while a
logic zero selects the data mode. One of the address bits can be con-
nected to this input to allow the computer to access each of the inter-
nal registers by using one address for the command register and an-
other address for the data register.

Since the USART will be communicating with other asynchronous-
serial devices, there are standard data rates that must be used to as-
sure that the data rates of the transmitting instrument and the receiv-
ing computer are fairly close. A Motorola MC14411 bit rate generator
chip has been chosen to perform this function, since it is crystal con-
trolled. There are other popular clock-generating schemes, too.

Since the standard logic levels provided by SN7400 family tran-
sistor-transistor logic (TTL) devices cannot be used to drive long
communication lines, you will need to choose whether you wish to
use 20 mA current-loop signals or standard RS-232C control levels.
The necessary level-conversion circuits are easy to obtain, and they
are detailed in the references noted previously.

Since any sort of communication interface is useless without the
software to drive it, you will need some software routines that can
drive the USART chip. For the most part, these will be simple, and
you may wish to use BASIC-language programs for control purposes.
If you choose to use assembly-language programming, you might
consider putting your control programs in ROM, and putting the
ROM right on the interface board. Since there are 256 bytes of ad-
dress space available for each interface slot, a small ROM can be
accommodated. The 256-byte space is quite enough for some USART
control programs. You can use the Monitor to test your assembly-
language programs before they are put into ROM.

A complete USART interface is shown in Fig. 7-10. This circuit
has been wired and tested in our Apple computer. If you wish to use
this circuit in your computer, we suggest that you obtain the data
sheets for the 8251 or 8251A USART chip, and the Motorola MC-
14411 bit-rate generator chip, so that you will understand how they
work. In Fig. 7-11, we have provided a general addressing circuit for
a 256-byte block of ROM, which could be used to store the assembly-
language USART control routines. The actual circuit would depend
upon the particular ROM chip, or chips that you choose to use. In
this circuit, Fairchild 93427 ROMs have been used. These are fast,
bipolar, fusible-link ROMs. Each chip contains 1024 bits, organized
in 256 4-bit words, so two chips are required for a complete 8-bit
word. Slow, erasable PROM chips are not recommended, since their
access times are fairly slow, and they could cause problems. Most of
these devices contain many more locations than you can use.

You can build this circuit on a standard interface wire-wrap card,
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or on another type of suitable prototype card that can be plugged
into one of the available interface slots. If you use the wire-wrap
prototype technique, you will find that the wire-wrap pins and the
chips stick out from both sides of the card, making it difficult to use

the adjacent interface slots.
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Fig. 7-10. Simple USART-to-Apple interface circuit schematic.

In our computer system, we used the USART interface in slot 3,
so that the USART was addressed as devices 49328 and 49329. The
registers at address 49328 are the receiver and transmitter registers,
while the registers at address 49329 are the control and flag registers.
Keep in mind that you can have two registers for each address, since
one is a write-to register, and the other is a read-from register. If you
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Fig. 7-11. A 256-byte memory expansion circuit diagram.

moved the card to another interface slot, the addresses for the
USART would change, as noted in Table 7-3.

To use the USART interface, you must first initialize the chip with
some control information that is sent as two consecutive bytes to the
control register. Don’t worry about sending two bytes to the same
register, the USART “knows” what to do with them. After the
USART has been initialized, you can use it to transmit and receive
asynchronous-serial streams of information. The program shown in
Example 7-1 can be used to transmit an 8-bit byte of data, while the
program shown in Example 7-2 can be used to receive an 8-bit byte.

Example 7-1. USART Transmitter Control Subroutine

1010 POKE 49328, TX
1020 WAIT 49329, 1
1030 RETURN

Example 7-2. USART Receiver Control Subroutine

1050 WAIT 49329, 2
1060 RX = PEEK(49328)
1070 RETURN

The software checks the necessary flags so that the transmitter trans-
mits its data only when it is ready, and the receiver only provides
data when it has actually received some.

The main point here has been to develop a simple interface that
uses many of the Apple bus interface control signals, so that you can
see how they work. It is also nice to know that the interface example
actually works, and that it can be used in some real applications. We
hope that you have seen how easy it is to develop an interface for
the Apple, based upon the concepts of port addressing, port control,
and flags, that we introduced throughout the book.
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APPENDIX A

Logic Functions

In the experiments in this book, several logic functions are re-
quired. These functions are noted as lamp monitors, logic switches,
and pulsers. In each case, the equivalent circuits are simple, but
rather than duplicate them in each schematic diagram, block dia-
grams have been used. The following sections describe each of the
functions that are required.

LAMP MONITORS

Lamp monitors are simply light-emitting diodes, or other on-off
indicating devices that are used to indicate the state of a logical
output. We have adopted the convention of logic one being the lit,
or on state, and logic zero being the unlit, or off, state. The two cir-
cuits shown in Fig. A-1 may be used to construct lamp monitors. The

LED 220
+5
4700
INPUT 2N5134
T GROUND
LED 220

INPUT ® 'I>cE K—WwWW—s + 5

7404 or 7405

Fig. A-1. Schematics of two simple lamp-monitor circuits that may be used
in experiments.



use of red LEDs is recommended, since they are inexpensive and
readily seen. You will require at least eight of the individual lamp
monitors to do the experiments in this book.

LOGIC SWITCHES

Logic switches are simply switches that have been configured to
provide either the logic one or the logic zero voltages to the TTL-
compatible integrated circuits used in the experiments. A typical
logic switch is shown in Fig. A-2. A single-pole, single-throw toggle
switch or slide switch may be used. At least eight of the logic-switch
circuits will be required in the experiments.

1000

Fig. A-2. Schematic of simple logic- | +5
switch circuit that may be used to __‘—«W‘
generate logic one or logic J,_/' » OUTPUT

zero output. 0

PULSERS

The pulser circuit is used in the experiments to provide “clean”
outputs that are free of the “bounce” that is normally associated
with mechanical switches. Since most switches use spring-like metal
contacts, the contacts will often open and close several times after
the switch has been opened or closed. If such a mechanical switch
is used to provide pulses to a counter, up to 30 to 40 pulses may be
counted, depending on the type of switch used. Since there are many
cases in which a clean logic one to logic zero, or logic zero to logic
one, transition is required, a debounced switch is frequently useful.
Mechanical switches are easily debounced, if they have contacts of
the single-pole, double-throw form. A typical debouncing circuit is
shown in Fig. A-3. In this case, two NAND gates have been used to
form a flip-flop that may be set, or reset, by the switch. As shown in

1000

+5
I SN7400
# > |
Fig. A-3. Schematic for debounced
pulser in which “cross-coupled” Kl
NAND gate has been used to I

- . 3
eliminate contact bounce.




Fig. A-3, two outputs are available. With the switch in the position
shown, the normal logic states are shown at the outputs of the two
gates. When the switch is moved to the other position, the outputs
of the NaND gates will switch. It is suggested that a momentary
switch be used in the pulser circuits.

Lamp monitors, logic switches, and pulsers are all useful devices
when breadboarding logic circuits. While the circuits shown in Figs.
A-1 through A-3 are simple, you may not wish to build them your-
self. Several companies produce digital breadboarding devices that
incorporate lamp monitors, logic switches, and pulsers, as well as
other digital functions. We suggest that you write to the following
companies for information about their digital-electronic bread-
boarding systems:

E & L Instruments, Inc.
61 First Street
Derby, CT 06418

AP Products, Inc.
Mentor, OH 44060

PACCOM
14825 NE 40th, Suite 340
Redmond, WA 98025

Good Luck getting any
parts from these guys
these days. ILMAQ!!I!I]
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Parts Required for ,.::npix

the Experiments

4 SN7402 Quad Nor-gate integrated circuit (IC)

2 SN7474 dual D-type flip-flop IC

2 DMB8095 or SN74365 three-state input buffer (2@ per input
port)

2 SN7475 Quad latch IC

1 NE5018 eight-bit D/A converter IC (Signetics Corporation)

1 SN7404 hex inverter IC

2 SN74LS373 three-state octal latch IC

1 0.01-uF, disc ceramic capacitor

1 4700-ohm, V4-watt resistor

6 220-ohm, Y4-watt resistors

6 Visible LEDs (2@ red, 2@ green, and 2@ yellow)

1 10K, potentiometer trimmer-type

1 10K, Y4-watt resistor

1 100-uF electrolytic capacitor 16 WVDC

1 33K, Y4-watt resistor

1 150-pF disc capacitor

1 2200-ohm, Vi-watt resistor

1 ADCO0804 analog-to-digital converter (National Semiconductor
Corp.)

1 LM335 temperature sensor 183

4 1000-ohm, Y4-watt resistors

Besides the parts listed, you will need an assortment of SN7400,
SN7408, SN7402, SN7410, SN7486, SN7430, and SN7493 integrated
circuits for use in the logic-tester program in Experiment No. 14. We
suggest that you read through this experiment to determine exactly
what circuits you will want to test.

Other useful equipment: a *=12-volt power supply (for use with
the D/A converter circuit), hook-up wire, an extra solderless bread-

board, pulsers, logic switches, lamp monitors, and a voltmeter or
vom.

Information about the analog converters is available from:

ADC0804 A/D Converter NES5018 D/A Converter
National Semiconductor Corp. Signetics Corporation
2900 Semiconductor Drive 811 East Arques Avenue
Santa Clara, CA 95051 Sunnyvale, CA 94086

Integrated circuits and components are available from many man-
ufacturers, and we suggest that you check the many advertisements
in the last pages of Radio-Electronics, Popular Electronics, Kilobaud
Microcomputing, and other electronic magazines. We have tried to
use standard parts wherever possible. - 184



Apple Interface D
Breadboard Parts ATEERPE

Parts required for the construction of the Apple Intertace Bread-

board:
IC1 &7

IC 2 & 6
IC 34, & 5

IC 8

IC 9

IC 10 & 11

IC 12

IC 13

IC 14

IC 15

IC 16, 17, 18,
& 20

IC 19

D1 - D4
D5
D6
D7
D8 & D9

16-pin resistor network, eight independent 1000-
ohm resistors

8-position DIP switch (on-off)

SNT74LS85 Quad comparator IC ( Do Not Substi-
tute SNT4L85)

SN74L.S20 dual four-input nNanD gate IC

SN74365 or DM8095 three-state buffer

8216 noninverting bus buffer, Intel or equivalent

SN74154 decoder 1C

SN7404 inverter 1C

SN74123 or SN74SL.123 dual monostable 1C

LM319N dual comparator (14-pin package)

High-quality 16-pin I1C sockets, Augat 516-AG-
10D, or equivalent

High-quality 8-pin IC socket, Augat 508-AG-10D,
or equivalent

1IN4001 50 piv, 1-ampere diodes*®

Yellow LED

Red LED

Green LED

IN4148 or 1N4154, small-signal diodes 195



Rl & RS
R2 & R3
R4 & RS
R6

R7

Cl
C2,4&5
C3 & C6
C7 & C8
VR

P1

P2

T1
Misc.

1000-ohm, ¥3-watt resistor

220-ohm, Y4-watt resistor

47K, V4-watt resistor

3900-ohm, V4-watt resistor

2200-ohm, Y4-watt resistor

2200-uF, 16 V dcw electrolytic capacitor (axial)*®

0.1-uF disc ceramic, 50-volt capacitors

1-uF, 35 V dew tantalum electrolytic capacitors

3.3 uF, 50 V dcw electrolytic capacitors (axial)

LM309K 5-volt, 1-amp voltage regulator®

Molex right-angle 6-pin connector (PN 09-75-
1061) optional

Requires 1@ mating female housing ( PN09-50-
7061 ) and 6@ connector pins (PN 08-50-0106
or 08-50-0108)

40-pin right-angle jumper header, AP Products
923875R, or equivalent

12.6 V ac transformer 1 amp

11 16-pin IC sockets

3 14-pin IC sockets

1 24-pin 1C socket

Cable assembly: 40-pin header on one end, with
a 40-pin card edge connector on the other, fac-
ing the same direction

Solderless breadboard socket, SK-10, Superstrip,
or equivalent, 4@ 4-40 X 5 flat-head mach.
screws, 4@ #4 internal-tooth lock washers, 4@
#4 hex nuts.

Heat sink for VR, 2@ 4-40 X 1% mach. screws,
2@ #4 internal-tooth lockwashers, 2@ #4 hex
nuts, mica insulator, thermal grease (optional).

Power cord

The parts marked with “*” are not required if an external +5-volt
power supply will be used to power the system.
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Printed-Circuit E
Board Artwork faikiky

This appendix contains artwork that may be used to make a
printed-circuit board of the Apple interfacing breadboard. Since the
artwork has been reduced, it must be enlarged before it can be used.
We recommend that you have a print shop make a high-contrast film
negative, or positive, depending on the process that you will use.
The long thick black line in each of the three diagrams should be
enlarged so that it is four (4) inches long. The process-camera
operator should be able to correct the enlarging process so that the
resulting film is the right size for the printed-circuit board. You may
not choose to use the parts overlay, but it has been provided as a
guide to the placement of the various parts.

ﬁ\\ ‘—“ﬂ tf@tj
| i&t

Fig. E-1. Printed<ircuit board artwork for component side of interface breadboard
(right reading).
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Fig. E-2. Printed-circuit board artwork for solder side of interface breadboard

reverse reading).
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Fig. E-3. Nomenclature overlay for interface breadboard (right reading).
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Index

A

ACID PUMP, 111
Address

bus, 15

comparison, 42

decoding, 26-27

decoder circuit, 73

use, 92-96

lines, 27

negative, 25

page, 10

positive, 25

select pulse, 31

selection signal, 39

16-bit, 27
Addressing, device, 27-43
Analog-to-digital converter, 154-161
AND gates, 27
ANSWER, 61
APPLESOFT BASIC, 17
Assembly

language, 23-25

logical operations, 60-62

BASE PUMP, 111

BASIC, 23-25
interpreter, 24

Bar
graph, horizontal, 125
notation, 15

BCD, 132-136
Bidirectional, 10
Binary
codes, 132-136
notation, 27
numbering, 25
Bit, least-significant, 152
Breadboard
basic, 69-80
construction, 80
Buffer enable, 52
Bus
buffer chips, 155
circuit, 76
-compatible chip, 175
low address, 28
Byte, 9, 61
least significant, 103
most significant, 103

CALL, 67

Capacitor-charging circuit, 159
Card readers, 14

Chip-enable input, 12
CLEAR, 47

Clock signals, 173
Comparators, using, 41-43
Comparing, 27

Connections to Apple, 80-84
Control signal, 15
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Controllers, 14 F

Converter . Fetches, 67
analog-to-digital, 154-161 Field-programmed, 12
digital-to-analog, 127-132 Flag(s), 58-59 :

Crash, 18 . circuits, 64-65, 149-154

D/A converter, 127 clearing, 69

commands, 154

DAC, 127
Daisy chain, 170 Eﬂmple.x, 62-64
Data, 61 -detecting software, 59-60

bits, 54 ml:llti.ple,ﬁﬂﬁﬁ
bUE, 15 prio ntYi

control, 22-23 Stﬂ:'ElS, 5674
display, 122-127 tfas ‘mg,

' timing, 63
logging, 122-127 g
transfer, 22-23 ip- Dﬂ A

Debounced pulser circuit, 181 circuit,
Debug, 25 timing, 65

Floppy disks, 64
Full/empty, 149
Function pulse, 31

Decimal numbering, 25
Decoded address, 31

Decoders
device, 72-75 G
Efnif: _‘?g-?s G input, 34
usin 3;_;_37 Gates, address decoding, 27-32
e Gating, 27
x-line, 33 ing,
y-line, 33 t:tlrcmt, 29
Decoding, 27 ilnp'ut,;?.‘}[i
DEV SEL, 116 ogic,
Device programmable, 30

decoders, 72-75

select pulse, 31, 96-100 H
Digital-to-analog converter, 127-132 High-impedance state, 133
Dip switch, 92 HOME, 16
Display(s), 14 Horizontal bar graph, 125

memory, 24 Hot/cold, 149
DMA, 172
DRYER, 111
Dummy variable, 61 !
Dynamic memory, 11 INH, 172

Input
E /output (1/0) devices, 14-15

* port(s), 17, 49-56
8-bit output port, 116 applications, 106-115

ENABLE, 34‘ _ constructing, 100-103
Experiments, introduction, 86-89 interactions. 119-122

204 multibyte, 103-106



INTEGER BASIC, 17
Interface

circuits, 20-22

control signals, 166-175
Interfacing, 175-179
Interrupt(s), 66-67

flag circuit, 169

polled, 170

request, 66, 169-172
Inverted signal, 31

1/0

commands, 15-16

device address decoding, 26-27

synchronization, 57-58

program, 15
SELECT, 166-167
STROBE, 167-168

IRQ,

66, 169-172

Lamp
monitor(s), 136, 180
circuit, 180

Latch, octal, 47

Least
-significant bit, 152

byte, 103

LED, 71
Light-emitting diode, 71
LOAD, 16
Logic
chips, 143
-device tester, 143-149
levels, 143
monitors, 47
one, 27

used for control, 60

probe, 71-72

circuit, 72
use, 8§9-91

-switch circuit, 181
switches, 181
zero, 28

used for control, 60

Logical
operation(s), 58-59

Low

subroutine, 62

-address bus, 28
-power Schottky, 72

LS, 72
LSB, 152
LSBY, 120

M

Maps, memory, 19-20
Mask, 61
-programmed, 12
Memory, 10-14
decoders, 72-75
display, 24
dynamic, 11
map, 19-20
static, 11
MEMAR, 13
MEMW, 13
Monitors, lamp, 180
Most-significant byte, 103
MR, 13
MSBY, 120
Multibyte input ports, 103-106
MW, 13

NAND gates, 27

Negative address, 25

NMI, 66, 169-172

Nonmaskable interrupt, 66, 169-172
NOR gates, 29

O

Octal, latch, 47
Operational amplifiers, 161
OR gates, 29
Output
port(s), 17, 44-49, 132-136
constructing, 115-119
interactions, 119-122
three-state, 50

Page address, 10
PEEK commands, 18
Peripherals, 14
Pin configuration
ADCO0804, 155
[LM335, 160
NES018, 127
SN7402, 92 205



Pin configuration—cont
SN7474, 150
SN7475, 46
SN7493, 147
SN74125, 50
SNT4LS139, 33
SN74175, 46
SN741.5244, 52
SN74365, 52
SNT741.S373, 46
2114, 13
2708, 13
6502, 11
8216, 77
8251A, 176
PLOT, 16
POKE commands, 18
Polled interrupt, 170
Port(s), 17
constructing input, 100-103
output, 115-119
input, 49-56
multibyte input, 103-106
output, 44-49, 132-136
Positive address, 25
Power, 174
supply, 69-71
PRINT, 15
Printers, 14
Programmable
gate, 41
gating, 30
Pulse(s)
address select, 31
device select, 31
function, 31
-generation circuit, 93
-inverter circuit, 128
software generated, 96
using device-select, 96-100
Pulsers, 181-182

Q
Qualifier, 40

R
RAM, 13
Random

access memory, 13
color pattern generator, 16
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RD, 53

RDY, 173

Read
-from register, 178
only, 11
/write, 11

Ready/busy, 149

Refreshing, 11

Register
read-from, 178
write-to, 178

RES, 172

ROM, 11

R/W, 11

SAVE, 16
Schottky, low power, 72
SCRN, 15
Sensors, 14
Sequencer, 140
Software
commands, 20-22
flag detecting, 59-60
-generated pulses, 96
I/0 control instructions, 15-25
Speaker control program, 22
Static memory, 11
Status flags, 57
Switch, dip, 92

T

Tester, logic device, 143-149
Timing diagram, 22
Traffic-light controller, 136-143
Truth tables, 29

12-bit input conversion, 56

256-byte memory expansion circuit,
179

Unbuffered, 75
USART
chip, 175
receiver control subroutine, 179
-to-Apple interface circuit, 178
transmitter control subroutine, 179
USER 1, 173



APPLE
INTERFACING

With  this: ook you are provided with real, tested interfacing cireults that
‘Work. plus ihe necessary software (In! BAS!C) to conneat your Apple cam:
“puter 1o the outsigd world. This combination will sable you'to! (1) 'control
alectromic and efectromechanical devices: (2) monitor exlernal eyenis—
tamperaiure. peassure, lgquid feval, light |evel ete,, and (3) communicate
with othdr complitesrs. modems. serial printers. And mherinterfacedavtces

First you.are givan the dinlding blocks required fot a therough undersiand-
fng ofiintertacing Clearly and conmsaly {he authars take you thraugh the
8502 microprogessar, ‘Apple Interfacing, laput/autpul inteffacing, (Inpul
gons and output ports), and flags; Breadboarding with the Appie. \nciuding

eadboard construction and connections-to the Apple, is discussad, The
sixtéen exparimants ih Chapter b g everythmq together Your comprehans
sion 1§ continually reinforcad as you connect ihe circulls, enter tha 'com-
mands. and see the resolts. A communications interface (and sofiware) as
well as a list of the intarface signals available at tha seven Slols 18 given in.
Chapter 7,

Any Appia user who desires an sxtension of fis compunng capabilities will
fmd (his.book a valiable addifion to his library

Dr. Jonathan A, Titus i= the president ol Tychon, Inc. In Biackaburg, Virginia Mastof
M&<uteant work mvolves techinical writing and \héapplication of microcomputers for
data scquisillanand comteol Ha has wiitten and coauthored 2 number of Articlas o
compiitars 1or bath professianal and popalar applicalions
Jorr's firstanicrocompiter experience was with {he 8008, and his Matk-8 compulipe:
(s teaturad as the st widely avallable hobby computer & has co-mstrunied
covsses with tha American Cligmical Socisty and now warks wih thie Tyehon hard-
ware and soltwale programs

David G, Larsen 2 an |nsttuctoc in the Dapartment of Chesistry at Virgima Fory.
JAectmig Institute. & Stato Univorsity, whore ha teaches undargrduale and graduate
COUNS 10 Anilog sna aigilal slacironics. Higtt cosuthorof Other books in ths Biacks
e Continmting Edication Sares™ and e monthiy commnt on mcvocomaum

interfacing, Heisa co-NSItUCLon 0l A surics ot one—lo-nvu»dty workshops on the dig:

ital and microcomputon ravolution, Taughl ungarihe auspicesof 1he Extanson Divi
SN OF the University, which atirnot professionals from: all parts of ine’ wortd,

‘Dr. Christopher A. Titus i 4 microcampiiter applicatronsehginess with Tyction, Int.,
In Blacksburg, Virginia: He recelved gls ProfY from Virginia Polytéchnic Inatiute
wilitg: working on ‘microcomputelr putomated ghamical nstrumanis Hs has co-
-authored a number'of Insttmeritation artivies atil has Had papets presented al mujo|
RIGINER INg And STBNCE confurences
Chris has peogrtmed with the Intel 8008, Intel 5080, any MOSTechno&ogy 6502
Migrocomputers. He fuss wrillen Boithe asanmblat; disasserhbion, arid dehog: soll-
waTe as wall & compints opetating syalam tar microcompiliars
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