CFFA

Reference Manual

CompactFlash | IDE
Interface for Apple I

CFFA - CompactFlash Interface for Apple I

Manual for CFFA version 1.2 by Richard Dreher
R&D Automation - May 2002

Disclaimer of All Liability

Plain English Version:

Do not use this manual or the CFFA Interface card for any mission-
critical applications, or for any purpose, in which a bug or failure could
cause you a financial or material loss. This product was designed to
enhance your Apple Il computing experience, but may contain design
flaws that could inhibit its proper operation, or result in a loss of the
data recorded on the storage devices attached to it. When using this
product you assume all risks associated with operation or data loss. If
these terms are not acceptable, you may return the product for a
refund.

Legalese Version:

Richard Dreher, doing business as R&D Automation, makes no
warranties either express or implied with respect to this manual or with
respect to the software or firmware described in this manual, its
quality, performance, or fitness for any particular purpose. All software
and firmware is sold or licensed “as is”. Any risk of incidental or
consequential damages resulting from the use of the information in
this manual or the software / firmware / hardware described herein,
shall be assumed by the user or buyer or licensee. In no event will
R&D Automation be liable for direct, indirect, incidental or
consequential damages resulting from any defect in the software /
firmware / hardware described in this manual.

R&D Automation reserves the right to make changes and
improvements to the product described in this manual at any time and
without notice.

Contents

Basic INnformation ..o 6
Warranty and Return Informationcccoooiriiiiiii e 7
WAININGS ..ottt 8
Quick Start INSrUCHIONSeoiiiiiie e 9
Installation Detailscoouiiiiiiiie e 10

CFFA Partition SCheme ... 10
Apple Il Boot Procedure with CFFA Interface Card Installed.................. 11
CompactFlash Memory Cards..........ccoveveeeeeiiiiiiiiieee e 13
CompactFlash SOCKEtcooiiiiiiiiiie e 13
(O] e V=T =T [R 13
CF Disadvantagescceoruiiiiiiiiee ittt 14
CF RemMOVADIlItyccooiriiiiieeeee e 14
IDE DFIVES ...ttt ettt et e e e e e 15
IDE Drives Compatible with the CFFA...........cccoi i, 15
IDE Drive CONNECIONcciiiiii et a e 15
IDE POWEr CONNECION ...ttt 15
Mounting Holes for 2.5” DIVESceeiiiiiiiiiieee e 16
Preparing the Storage DevVice.........cc.oveviiieiiiiie e 17
Partition Scheme for Storage Devices............cccevviiieiiiiiiiiiniiee e, 17
Formatting Storage DeviCesccoveiiiiiiiiiiiee e 17
Devices Compatible with CFFAcoooiiiiieee e 17
GS/OS USEIS.. .ttt ettt e e e e e e e e e e nnraeeaaaeas 18

Advanced Information..........cccceiiiiiccciccnnr 20

HAMAWAIE ...ttt et e e e e e eaa e e e aas 21
AREIA CPLD.... ...ttt e e et e e eneeas 21
Altera CPLD PiNOULccoiiiiieiiiee et 22
CPLD LOGIC FilSeeiiiiiiiiiiit ettt 23

FIFMWAETE e e e 25
Why a Static Partition Scheme? ... 25
Firmware Updates ... 25
Contributing Firmware to the CFFA Project.......ccccccoovciiievieciiecieeeee 25
EPROM Firmware Select JUMPErS.........cccoiiiiiiiiiiiiiicc e 26
EPROM LAYOUL......ocoiiiiieiiiie e ciie et e et s eeeseeeeeenee 27
CFFA Hardware Memory Map........cccuueeiieeiieiiiiiieee e 29

Marketing Megabytesooiiiiiiiiiee e 31

Contact INformationccciiiiiiee e 32
CFFA WED SIte...cueiiiiieeiie ettt 32
Internet E-Mailcooo o 32

CFFA Message Web FOrumcocceeiiiiiieiiee e 32
ACKNOWIEAGEMENTS ...t 33

Appendix 1: Firmware Listing......cccccooeeceecemmiiiinccccceeceree e 34

Basic Information

Warranty and Return
Information

You may return the CFFA Interface card for any reason within 90 days
of receiving it. This should allow you enough time to evaluate the
compatibility with your system. | guarantee your CFFA Interface card
to be free of defects under normal usage for a period of one year from
the date you receive the product. This means that if the card fails, and
you have treated it properly, | will repair, replace, or refund your
money at my discretion, to be determined by me on a case by case
basis.

If you want to return the product under warranty, please contact me via
E-mail to discuss return arrangements. Include your name and the
serial number from the sticker on the back of the card. It is your
responsibility to get the product you are returning back to my door. |
will not be responsible for lost shipments. Please choose shipping
methods and insurance as you deem necessary.

Warnings

You should avoid electrostatic discharge to the CFFA Interface card.
Like all electronics devices, static “shock” can destroy or shorten the
life span of the CFFA Interface card. Avoid touching the CFFA
Interface card after you have walked across the room, especially over
carpet, and especially in dry weather.

You should safely discharge yourself before you handle the CFFA
Interface card. This can be done by momentarily coming into contact
with a grounded piece of metal.

In all cases, please exercise common sense and observe all electrical
warnings provided by the manufacturers of the equipment you are
using.

Quick Start Instructions

Most Apple Il users will probably not need instructions to install the
CFFA Interface card, but | have included Quick Start instructions,
below, as well as more detailed information in the next section. The
information provided will give you insights into the behavior of the
card, so you may better know what to expect.

1.
2.
3.

10.

Discharge yourself of excess static charge.
Open and remove the CFFA card from the anti-static bag.

Set the shorting-block jumpers for the desired firmware version.
For most people the default jumper settings should work fine. See
Table 2: Firmware Select Jumper Settings, page 26 for details.

Attach a storage device. Insert a CompactFlash card* or connect
an IDE hard drive, but not both.

*IMPORTANT: Many CF cards have a ridge or lip that may catch on the CFFA’s
top edge during insertion. In this case it may seem to require a large force to
completely insert the card. Do NOT force it—simply lift the CF card’s ridge over the
top edge of the CFFA board and finish inserting the CF card.

Turn off power to your Apple Computer.

Insert the CFFA Interface card into any empty Apple slot.
Typically, slot 7 is used for mass storage devices.

Turn on your Apple computer. Assuming the attached storage
device is not formatted yet, your computer will boot off another
device.

The CFFA partition scheme is fixed so no user partitioning is
necessary or possible. You simply need to format any or all drives
on the device using any software that can format a ProDOS
volume. | recommend Apple’s System Ultilities version 3.1 or later.
Remember that every drive after the second drive will show up in
another slot than the one the CFFA is actually using.

If you want to be able to boot from the device, after formatting the
drive(s), ProDOS users will have to copy ProDOS and a startup
program like BASIC.SYSTEM to the first drive. | recommend using
ProDOS version 2.0.3. GS/OS will need to install Apple ligs
system software from floppies or another drive.

Before using the card for storing information that you would care
not to lose, spend some time testing the CFFA card in your
particular environment. In any case, always backup important data
onto multiple sources.

Installation Details

The CFFA Interface card comes in an anti-static bag. This bag is a
good place to store the card at times when the card is not installed in a
computer. Before opening the zip-top bag, be sure you do not have a
static charge built up in your body.

The CFFA Interface card can be installed in any Apple Il slot.
Depending on which Apple and what firmware or driver you are using,
you may get varying degrees of functionality based on which slot you
use. The card was designed to physically fit into any slot when using a
CompactFlash device. If you mount a 2.5 inch hard drive onto the card
(using standoffs and the drive mounting holes), | recommend using
slot 7 because the hard drive will not interfere with the slots next to it.

CFFA Partition Scheme

The CFFA Interface card uses a fixed partition scheme described in
Table 1 below. If you are using ProDOS 8 and Firmware #0 you will
see up to four 32 MB drives. If you are using GS/OS and the
COMPACTFLASH driver will see up to 6 drives: up to four 32 MB
drives and up to two 1 GB drives.

Table 1: CFFA patrtition scheme

Drive # will exist for... Device of size:
Drive 1 (up to 32 MB) Any Size
Drive 2 (up to 32 MB) >32MB *
Drive 3 (up to 32 MB) > 64 MB
ProDOS 2.x or later

Drive 4 (up to 32 MB) > 96 MB
ProDOS 2.x or later

Drive 5 (up to 1 GB) > 128 MB
GS/0S with COMPACTFLASH driver

Drive 6 (up to 1 GB) > 1152 MB
GS/OS with COMPACTFLASH driver

* Please note that the marketing departments of most device manufactures now define
“MB” to mean 1,000,000 bytes instead of the more proper 1024 x 1024 = 1,048,576
bytes.

10

The following are a few example configurations for different device
sizes:

e A 16 MB CF card gives you 1 drive: Drive 1 = 16 MB.

e A48 MB CF card gives you 2 drives: Drive 1 = 32 MB,
Drive 2 =16 MB.

e A 128 MB CF card gives you 4 drives: Drive 1 = 32 MB,
Drive 2 = 32 MB, Drive 3 = 32 MB, Drive 4 = 32MB.

If you are using GS/OS, you will get the stated drive size
configurations:

o A1 GB IDE Hard Drive gives you 5 Drives: Drive 1 = 32MB,
Drive 2 = 32 MB, Drive 3 = 32 MB, Drive 4 = 32 MB, Drive 5 =
896 MB

e An 1.6 GB IDE Hard Drive gives you 6 drives: Drive 1 = 32
MB, Drive 2 = 32 MB, Drive 3 = 32 MB, Drive 4 = 32 MB, Drive
5=1024 MB, Drive 6 = 486 MB

Apple Il Boot Procedure with CFFA Interface
Card Installed

When the Apple Il boots, it begins a slot scan process, starting with
slot 7, or Startup Slot on a llgs, looking for a bootable device. If no
bootable device is found in that slot it then proceeds to the next lower
slot. For example, if you install your CFFA card into slot 7 with an
unformatted device connected to it (as you might after having just
received your card), the CFFA firmware will be called by the Apple’s
ROM because the CFFA Interface card will be recognized as a
storage device.

After the card’s firmware is called, it will check to see if a device is
attached to the card. If a device is found, it will attempt to read the
boot block off of the device into memory at location $800. The
firmware will wait up to 10 seconds (on a 1MHz Apple) for a device to
respond. If no device is found it will return control to the Apple’s boot
scan ROM routine and the next lower slot will be checked.

If a device was attached and the boot block was read into memory, the
firmware will then check to see if the first byte of the boot block code is
equal to $01 and the second byte is not equal to $00. If both
conditions are met, the firmware will jump to the boot block code and
the boot sequence will proceed under the boot code’s control. If both
conditions are not met, the firmware will return control to the Apple’s
boot scan ROM routine. See Figure 1 for a flow chart diagram of the
boot sequence logic.

11

Figure 1: Apple Il boot sequence logic with CFFA Interface card.

PowerOn Boot
Slot n = 7 (or startup
Slot on GS)
Scan = True

Manual Boot:

PR#n

Scan = False

il
Read signature of |
card in Slot n -
e §
+ Yes
Does signature _ Jump to
indicate a No ,, Il; ; : 01,7 [No | AppleSoft at
storage device? : $E000
+Yes 4
> Call sg)éPcl)'\(’)OM at Display
n CFFA boot
failure msg.
-]
 / No No
Is a device No h;/zliyo';:c Yes o Is Scan Yes
attached to card? ’ g True?
elapsed?
+Yes A A
Read boot blk 0
(LBA mode = 1)
Any errors
durning read of Yes
boot block?
+ No
Is 1st byte of N
boot block = $01 —=
AND 2nd <> $00
Jump to boot
code at $801 . Gray boxes White boxes
Key represent code in represent code in
Apple's ROM CFFA's firmware

12

CompactFlash Memory Cards

This section provides detailed information specific to the use of
CompactFlash (CF) memory cards with the CFFA Interface card.

CompactFlash Socket

Connector J3 labeled “CompactFlash Socket” is a Type Il socket. This
allows you to connect either Type | flash cards or Type Il devices,
such as the IBM Microdrive. The socket is hardwired to use the

attached device’s “True IDE” compatibility mode. It is also hardwired to
address the device as an IDE master.

When inserting a CF card into the CFFA, you should insert the card
label side out. It should not take much effort to insert a card. After the
socket pins start to engage the card, a little extra force is needed to
fully mate the two.

IMPORTANT: Many CF cards have a ridge or lip that may catch on the CFFA'’s top
edge during insertion. In this case it may seem to require a large force to completely
insert the card. Do NOT force it—simply lift the CF card’s ridge over the top edge of the
CFFA board and finish inserting the CF card.

TIP: To make CF card removal much easier you can fashion a handle by folding a piece
of cellophane tape over the top of the CF card that extends up about an inch (2.5 cm).

CF Advantages

CompactFlash cards have several advantages over traditional hard
drives.

e CF cards are solid state memory devices which are
completely silent and more reliable than IDE hard drives.

e CF cards use less power and generate less heat than IDE
hard drives.

e CF cards have no seek delay times related to mechanical
head movement. All data in a CF card is accessed at the
same speed.

13

CF Disadvantages

CompactFlash cards do have a few disadvantages when compared to
traditional hard drives.

e The cost per megabyte is higher for CF cards.

e Each sector on a CF card can only be written to a limited
number of times. This is the write cycle endurance, and is a
specification of the CF card itself, and not the CFFA Interface
card. You can typically find endurance specifications for CF
cards on the manufacturer’s web site. For example, SanDisk
Corporation specifies that their SDCFB-XX line of CF cards
has an endurance of greater than or equal to 300,000 write
cycles per block.

Because SanDisk CF cards can dynamically reorganize blocks that
are causing errors, this effectively extends the useable life of their
product.

If you are using the CFFA interface card in a system that is doing a
very large number of write operations to the connected device, you
may want use an IDE Hard drive instead of a CF card.

CF Removability

Although most CF cards are used in a “removable” sense, the CFFA
interface card does not treat a CF card as a removable device. The
card’s firmware does not report to either ProDOS or GS/OS that it
supports removable devices. You should not treat it like a removable
device. In other words, if you want to remove the CF card from the
CFFA interface card, shut down your computer first.

Removing the card with the computer’s power on will not hurt the CF
card, but if you plug the card back in, you will not be able to access the
data until you do a complete power cycle of the computer or a reset” of
the card. The reason the CF card is not “removable” is that it is being
used in the “True IDE” mode and should be thought of as a normal
hard drive. For the same reason you don’t pull out your hard drive with
the power on, you should not pull out a CF card with the power on.

*Reset of the card will occur when the Apple performs a reset, as long as the CFFA’s
reset enable jumper J2 is installed.

14

IDE Drives

This section provides detailed information specific to the use of IDE
hard drives with the CFFA Interface card.

IDE Drives Compatible with the CFFA

Most IDE drives should be compatible with the CFFA Interface Card. It
is necessary for the IDE drive to support LBA (Logical Block
Addressing) mode in order to work with the CFFA card. All IDE drives
larger than 528 MB today support this mode. Most old IDE drives
smaller than 528 MB did not support LBA and therefore will not work
with the CFFA card. If in doubt, try your drive to see if it works.

IDE Drive Connector

Connector J5 labeled “IDE” allows you to connect a single IDE hard
drive. Pin 1 of this connector is at the top of the board next to the label
“J5”. A drive connected to this connector should be set to a “Master”
drive and any CompactFlash card should be removed from the
CompactFlash socket J3. The firmware shipped with the CFFA card
doesn’t currently support drives set to “Slave”. If you set your drive to
“Slave” you may be able to leave it connected while you are using a
CF card, but you will not be able to access the drive until you set the
drive back to “Master” and remove the CF card.

IDE Power Connector

Connector J1 labeled “IDE POWER” on the CFFA Interface card is
provided to supply power to an IDE hard drive that you connect to J5.
This connector provides access to the Apple’s power supplies: +5v,
+12v, and Ground. It is up to you to ensure that the device you attach
to this connector does not consume more power than the Apple’s
power supply is capable of delivering. Remember to consider the load
of all the other devices in your system.

J1 power connections are labeled as follows:
e +5v DC is labeled “5v-RED”
e +12v DC is labeled “12v-YEL”
e Ground is labeled “GND-BLK”

The labels RED, YEL, and BLK written on the CFFA PCB silkscreen
show the standard wire colors used by most IDE drive connectors.

15

Because J1, the power connector, is a screw terminal type and
requires you to connect wires, it is not fool proof. This connector can
be miswired. Miswiring could cause the destruction of the IDE hard
drive, the CFFA Interface card, and possibly your computer. Use
caution, and observe polarities when connecting power to an IDE
drive.

IMPORTANT: It is your responsibility to be sure that the device you attach to connector
J1 is wired correctly, regardless of the wire colors involved.

Mounting Holes for 2.5” Drives

The CFFA Interface card has four mounting holes for a standard 2.5
inch hard drive. The card has been designed so that a hard drive could
be mounted on the top (component side) of the board using stand-offs
or screws. By mounting the drive on the top of the board and placing it
in slot 7 you will not have to sacrifice another slot or lay the hard drive
on top of the computer’s power supply. Figure 2 shows the drive
mounting arrangement described above. The little circuit board with
the “CE” label on it is a connector converter board that converts from
the fine pitch pin spacing .05” of 2.5” hard drives to the standard .1”
spacing used by IDE cables. This adapter is not provided with the
CFFA Interface card, but can ordered from several places on the
Internet.

When stand-offs are not available, common 4-40x1/2” machine screws
will work. The threads of these screws do not match the thread pitch of
the drive holes, but they are close enough to catch and hold the drive
securely in place. Do not over tighten, just catch the threads. Use nuts
to hold the screws in place, as shown in Figure 2.

IMPORTANT: When mounting a drive on the CFFA Interface card, be sure that no metal

contacts, especially the “Reset Enable” header and the “Firmware Select” header, touch
or short on the bottom of the drive. This could destroy the card and the drive.

Figure 2

Preparing the Storage Device

Whether you use a CF card or an IDE drive you will need to prepare
the storage device before you can use it to store your Apple Il data.

Partition Scheme for Storage Devices

A “Partition Scheme” refers to the number and size of drives you will
get on a specific storage device. Many users may be accustomed to
deciding how the drive partitions are laid out. However, this is not
possible with the CFFA card, which uses a static partition
arrangement. Both the on-card firmware (assuming your are using
Firmware #0) and the Dave Lyons’ GS/OS driver use the same static
partition scheme. Therefore device partitioning is not possible or
necessary with the CFFA Interface card.

Formatting Storage Devices

After you attach a storage device to the CFFA Interface card, if it is not
already formatted, it must be formatted with the file system for the
operating system you will be using. This would typically be ProDOS or
HFS. It should be possible to use any software package that can
format a ProDOS or HFS volume. | have had good luck using Apple
System Utilities version 3.1 to format ProDOS volumes. | have had
some problems using Copy |l+ version 8.4. Occasionally the volumes
formatted with Copy Il+ report substantially fewer total blocks than
they should.

Formatting is a high level OS format which does not perform any kind
of media analysis or bad block checking. You may want to perform a
disk verify using Apple System utilities or Copy I+ to see if your
computer can read every block on the disk. This can be done before or
after you format the volume. Note: A disk verify can take a very long
time on a 32 MB drive.

Devices Compatible with CFFA

The CFFA Interface card was developed using SanDisk
CompactFlash cards and 2.5” IBM hard drives. Many other devices
should work with the card, but | can’t guarantee compatibility with
anything else. To help determine which devices work with the CFFA
card and which devices do not, | will maintain a compatibility list on my
web site, http://dreher.net/CFforApplell/Compatibility.html.

17

If you have information about the compatibility of a storage device with
the CFFA Interface card, feel free to post a message to the Discussion
Forum or E-mail me about it. | will update the Compatibility list as
information becomes available.

GS/0OS Users

Dave Lyons has developed a GS/OS driver specifically for the CFFA
Interface card. The driver is called: COMPACTFLASH. Once this
driver is loaded it no longer uses the on-card firmware. It provides
support for two additional drives, up to 1 GB each, and faster
performance. Note: This driver should also work with most IDE hard
drives. The driver can be downloaded via the Internet, from the CFFA
web site in the downloads section.

After downloading the driver you should copy it into the DRIVERS
folder inside your startup disk's SYSTEM folder. With the driver
installed, you will see up to six partitions on your CFFA card, rather
than the usual four. Be sure you have selected a firmware version that
supports four drives, for example, Firmware #0 - all 3 jumpers
installed. Selecting a firmware that supports a different number of
drives, for example, Firmware #2 which supports 8 drives, will cause
the GS/OS driver to not load.

Once loaded you can tell that the COMPACTFLASH driver is being
used successfully from the device name of any partition on the CFFA.
In the Finder, select a partition and type Apple-I (Icon Info). Then click
the "Where" tab and note the device name. If GS/OS is using a
"generated driver" that calls the CFFA's firmware, you will see a name
like ".DEV3". If the COMPACTFLASH driver is being used, you will
see something like ".CFFA.7A.SANDISK_SDCFB-16", where 7 is the
slot number and the following letter indicates the partition (A through
F).

The COMPACTFLASH driver controls up to two CFFA cards in your
system. Normally, each slot containing a CFFA board will be set to
“Your Card” in the Apple ligs Control Panel. However, the
COMPACTFLASH driver will find and use the card even if the slot is
NOT set to “Your Card”. In this case, you can use the card while in
GS/0S, but it will be invisible to ProDOS 8 making it impossible to
boot from the CFFA.

18

19

Advanced Information

ok

20

Hardware

This section gives detailed information about the hardware used on
CFFA Interface card.

Altera CPLD

The chip U6 is an Altera EPM7064SLC44-10 CPLD (Complex
Programmable Logic Device). It is flash based and can be
reprogrammed in two ways. You can remove* the chip from the socket
and reprogram it in a device programmer, or you can reprogram the
chip without removing it from the socket using connector J7, labeled
JTAG Port. For this you will need Altera’s programming cable and
development software that is compatible with the MAX 7000 series
CPLDs. As this is beyond the scope of this manual, you can find more
information at Altera’s web site: http://www.altera.com/.

* To facilitate the removal of chip U6 from its socket, there is a hole in the bottom of the
CFFA Interface card where you may insert a small tool to push the chip out of its socket.
The tool should have a flat end.

IMPORTANT: When inserting a tool, you should be able to insert it just over 7mm when
it contacts the bottom of the chip. If your tool stops after inserting it only 3 or 4mm you
are feeling the bottom of the socket! DO NOT APPLY PRESSURE TO THE SOCKET!
Change your tool’s alignment so your tool inserts the entire 7mm. Then apply a firm
increasing pressure until the chip pops out. Note that pin 1 is on the side of the socket
closest to C11. Pin 1 on the chip is marked by a small circle or dimple.

21

Altera CPLD Pinout

Figure 3 provides the signal names for version 1.2 of the CFFA CPLD
firmware (here “firmware” refers to the AHDL logic files used to

program the CPLD). Different firmware versions could have a slightly
different pinout.

Figure 3: Altera’s MAX Series EPM7064SLC44-10F CFFA-specific signal names

#TDI
reserved
reserved

GND
reserved

RW
#TMS
A10
Vee
A9
A8

22

3 -
2 £ 3

2 7 & o o o ¥ o = 9

2 O O 8§ =z z =z 2 =z 9 9

e = = £ & 6 & 2 & © 9

6 5 4 3 2 1 44 43 42 41 40
7 39
8 38
9 37
10 36
1 35
12 34
13 33
14 32
15 31
16 30
17 29

18 19 20 21 22 23 24 25 26 27 28

2 2 T = <]

3 ¢ 2 & =2 2 &

s 2 O 3 5

I o o 1< 1

g 8 8 § ¢

-IORD
#TDO
-IOWR
-W_ATA
Vce
W_HOST
R_ATA
#TCK
R_HOST
GND
-EPROM_EN

CPLD Logic Files

Listing 1 is the ADHL source file used to create the programmer-ready

.pof file needed to program U6. Comments in the file start and end

with the % character. This file was compiled using Altera’s MAX+Plus

Il Baseline 10.1 development software. This software is free and can

be downloaded from Altera’s web site.

Listing 1: CPLD Logic - AHDL Source File Version 1.2

CompactFlash/IDE Interface for the Apple II comp
Project Home: http://dreher.net/CFforApplell/
Project Version 1.2 Feb 8, 2002

Two or more cards would not work
because the DBUS245 select logic
expansion ROM enable flipflop st

- Moved all logic into appleidelog
Version 1.1 - Add 7M clk & DFF to fix IDE driv
Version 1.0 - 1Initial Release

Version 1.2 -

uter

in system at same time
did not take into account
ate.

ic.tdf file.
es /IORD & /IOWR timing

e Phase 2!

Note: Remember that the Apple II Bus does not hav

FUNCTION nandltch (sn, rn) RETURNS (q);

FUNCTION DFF (D, CLK) RETURNS (Q);

SUBDESIGN AppleIDELogic

(
AO, Al, A2, A3, A8, A9, AlO INPU
/RW, /DSEL, /IO_STRB, /IO_SEL, 7Mclk INPU
/R_HOST, R_ATA, W_HOST, /W_ATA OUTP!
/IOWR, /IORD, /CS0, /CSl OUTP
/DBUS245, C800_ACT, /EPROM_EN, NOT_ RW OUTP
CS_MASK QUTP

)

VARIABLE

SET_MASK, RESET MASK, %CS_MASK, % DelayDSEL NODE

/CFXX, /C800_FF NODE;
BEGIN
DEFAULTS
CS_MASK = GND;
/C800_FF = VCC;

END DEFAULTS;

o

% Expansion Slot ROM enable Flip-flop. Active low
/C800_FF = nandltch(/CFXX, /IO_SEL);
C800_ACT = !/C800_FF; % For debug only, can be r

o

% Output for debug reworked PCB Version 1.2 Rev A
busses reversed. %
NOT_RW = !/RW; % Not needed for production %
EPROM select. Active low signal %

1

/EPROM EN = (/C800_FF # /IO STRB) !$ /IO_SEL;

T;
T;
UT;
UT;

UT;
uT;

signal %

emoved %

chip U2 was wired with A and B

e

o

Fix for SanDisk Family of CompactFlash drives.
True! The idea here is to mask the read cycle t
because the read cycle was confusing the Sandis

o

e

SET_MASK = /DSEL # (A3 # A2 # Al # !A0);
RESET_MASK = /DSEL # (A3 # A2 # !Al # RAO);
CS_MASK = nandltch (SET_MASK, RESET_MASK);

o

True IDEmode is not quite
he preceeds all write cycles,
k

e

% 7Mhz clock the A0-A3 signals are used to keep f

—————— Delay /IORD and /IOWR approx 50ns using a D type FF and the Apple Bus

rom generating these signals

o0 o0 oo

a0

o

£

o

23

% when accessing the latches %

DelayDSEL = DFF(/DSEL, 7Mclk);
/IOWR = /DSEL # DelayDSEL # /RW #
/IORD = /DSEL # DelayDSEL # !/RW #

(A3 # A2 # Al # RO);
(A3 # A2 # Al # RAO);

1
1

% decode address range $CFxx for deselecting the onboard EPROM %
/CFXX = ! (A8 & A9 & AlO0 & !/IO_STRB);

% Latch chip select logic %

/R_HOST = /DSEL # A3 # A2 # Al # AO # !/RW;
R ATA = !/DSEL & (A3 # (A2 & Al)) & /RW;
W_HOST = !/DSEL & ! (A3 # A2 # Al # AO) & !/RW;
/W_ATA = /DSEL # ! (A3 # (A2 & Al)) # /RW;

% device chip select logic %

/CS0 = /DSEL # !A3 # (CS_MASK & /RW);

/CS1 = /DSEL # (A3 # !(Al & A2)) # (CS_MASK & /RW);
/DBUS245 = /DSEL & /EPROM EN & /IO_SEL;

END;

24

Firmware

This section gives detailed information about the EPROM based code
(firmware) shipped with the CFFA Interface card.

Why a Static Partition Scheme?

The partition scheme is static because the CFFA card does not have
onboard RAM, so there is no temporary place to store partition
information. In order to implement a user-configurable partitioning
scheme, the firmware/driver would have to read the partition table from
the device on every read or write access, affecting performance in a
negative way.

Firmware Updates

If new versions of firmware become available they may be
downloaded from the CFFA Interface web site. If you have access to
an EPROM programmer and eraser, you can simply download the
new firmware files, and using the programmer-ready binary file, erase
and reprogram your EPROM. After you have programmed your
EPROM you can insert the EPROM back into the interface card and
back into your Apple for testing.

Note: | recommend backing up the contents of the EPROM before you
erase it for updating. Most EPROM programmers will let you read and
save the data from an EPROM. Also, you can download all of the old
versions of firmware from the CFFA web site.

Future versions of firmware may be offered on EPROM for a small fee.

Contributing Firmware to the CFFA Project

There are two ways in which you can contribute to the firmware portion
of this project.

1. You can send me your ideas for improvements which | will
consider integrating into a future firmware version.

2. Write your own firmware/driver for my hardware and send me the
working source code and EPROM-ready binary, and | will post it
on my web site under a contributors’ section.

25

EPROM Firmware Select Jumpers

There are three pairs of pins on jumper J6 which can be used to
assign a logic 1 or 0 to the top three address lines of the EPROM.
These address lines are labeled A14, A13, and A12. When a jumper is
in place you are connecting the corresponding address line to a logic 0
level. When the jumper is removed, the corresponding address line is
pulled up to a logic 1 level. Since three address lines can represent 8
unique settings, you can select between 8 different 4K regions of
EPROM which could each contain a unique firmware version. The
CFFA Version 1.2 Rev B card comes with two main versions of
firmware and two debug versions for a total of four versions
programmed into the EPROM. See Table 2 for a list of those versions.

Table 2: Firmware Select - J6 Jumper Settings

A14 A13 A12 EPROM Firmware Selected
Offset

IN IN IN $0000 #0: SmartPort / ProDOS 8 firmware —
Supports four 32MB drives - Default setting.
Apple ligs users using GS/OS should use this
setting with the COMPACTFLASH driver.

IN IN ouT $1000 #1: Debug version of #0. Requires Apple’s
Super Serial Card in Slot 2 to use. Using
without the SSC in slot 2 may cause
unpredictable results.

IN ouT IN $2000 #2: SmartPort / ProDOS 8 firmware —
Supports eight 32MB drives. This setting
would typically be used by ProDOS 8 only
users who want 256MB of storage.

IN ouT ouT $3000 #3: Debug version of #2. Requires Apple
Super Serial Card in Slot 2 to use. Using
without the SSC in slot 2 may cause
unpredictable results.

ouT IN IN $4000 #4: Empty
ouT IN ouT $5000 #5: Empty
ouT ouT IN $6000 #6: Empty

OUT | OUT | OUT | $7000 | #7: Empty

OUT = Jumper block is not installed
IN = Jumper block is installed

26

The debug versions of firmware provide the same functionality as their
non-debug counterparts with one addition. The debug version sends
textual information out the serial port to another PC or terminal at
19200 baud. This allows the user to get an idea of what is happening
as the driver code executes. The penalty for this additional information
is @ much slower execution speed of the firmware. Therefore it is
recommended that you only use the debug versions when actually
trying to find a problem with the firmware.

The empty space on the EPROM will allow for additional firmware
versions. An example might be a 6502-only code driver for the Apple
I+ or lle.

EPROM Layout

The chip U5 located in the upper right corner of the board is an ST
Microelectronics M27C256B-10F1 256Kbit EPROM. One of eight 4K
sections of this 32KB EPROM is mapped into the Apple’s address
space starting at $C000 using jumpers J6 (A14, A13, A12). Therefore,
it contains both the Peripheral Card ROM space and the Expansion
ROM space. Because the EPROM is mapped over the entire /0
space, the EPROM has a separate space for each slot ROM. The
firmware takes advantage of this setup by repeating substantially the
same code for each $Cn00 slot space: $C100, $C200, ..., $C700.
Note: Even though the base address of the EPROM is $C000, the
EPROM is not enabled for addresses in the range of $C000 to $COFF
or $CF00 to $CFFF. Table 3 shows the relationship between an
address on the Apple’s bus and the EPROM'’s response.

Table 3: EPROM Offsets listed for when all 3 jumpers at J6 are installed

Address on EPROM Offset EPROM'’s Response

Apple’s Bus

$C000 to $COFF $0 to $FF Not Used. EPROM never enabled in this
range

$C100 to $C1FF $100 to $1FF Slot 1 ROM Space. Enabled when card is in
slot 1.

$C200 to $C2FF $200 to $2FF Slot 2 ROM Space. Enabled when card is in
slot 2.

$C300 to $C3FF $300 to $3FF Slot 3 ROM Space. Enabled when card is in
slot 3.

$C400 to $C4FF $400 to $4FF Slot 4 ROM Space. Enabled when card is in
slot 4.

$C500 to $C5FF $500 to $5FF Slot 5 ROM Space. Enabled when card is in
slot 5.

27

Address on EPROM Offset EPROM'’s Response

Apple’s Bus

$C600 to $C6FF $600 to $6FF Slot 6 ROM Space. Enabled when card is in
slot 6.

$C700 to $C7FF $700 to $7FF Slot 7 ROM Space. Enabled when card is in
slot 7.

$C800 to $CEFF | $800 to $EFF Expansion ROM space. Must be previously
enabled by access to $CnXX. (n = slot)

$CF00 to $CFFF | $F00 to $FFF EPROM never enabled in this range. Any
access disables Expansion ROM space.
But always use $CFFF to disable.

The layout shown in Table 3 is repeated 8 times, based on the setting
of jumpers J6 labeled A12, A13, A14. See Table 2 for the EPROM
offsets that would be accessed for each of the eight Firmware Select
settings, set by J6.

28

CFFA Hardware Memory Map

Table 4 shows all of the slot-specific I/0O addresses decoded by the
CFFA Interface card. These addresses are used to interface a storage
device’s task register file to the Apple’s bus. There is an extra register
to allow the translation from the 16 bit ATA device to the Apple’s 8 bit
bus. Also, due to a bug in some CF card implementation of “TruelDE”
mode, there are two special soft switches used to inhibit CPU read
cycles from confusing CF cards during block write routines.

Table 4: Slot specific I/O used by the CFFA Interface card

Apple Name Used in Read/ Description

Address Source Code Write

(for Slot 7)

$C080+$n0 | ATADataHigh R/W This register is used in combination with

($COFO0) the ATADatalow register $C080+$n8.
See $C080+$n8 description.

$C080+%$n1 SetCSMask R/W Special soft switch to disable CS0 &

($COF1) CS1 signaling to attached device during
65C02 read cycles that always precede
write cycles

$C080+$n2 | ClearCSMask R/W Special soft switch to enable CS0 & CS1

($COF2) signaling to attached device during
65C02 read cycles that always precede
write cycles

$C080+$n3 Unused

($COF3)

$C080+%$n4 Unused

($COF4)

$C080+$n5 Unused

($COF5)

$C080+$n6 | ATADevCtrl W This register is used to control the

($COF6) device’s interrupt request line and to
issue an ATA soft reset to the device.

$C080+$n6 | ATAAIltStatus R This register returns the device status

($COF6) when read by the host. Reading the
ATAAItStatus register does NOT clear a
pending interrupt. (NOTE: CFFA does
not use interrupts)

$C080+%$n7 Unused

($COF7)

29

Apple Name Used in Description

Address Source Code

(for Slot 7) -

$C080+$n8 | ATADataLow R/W This register is used to transfer data

($COF8) between the host and the attached
device. It is used in combination with the
ATADataHigh register to form a 16 bit
data word.
When reading words from the attached
device, this register must be read first,
and then the High byte can be read from
the ATADataHigh register. When writing
to the attached device, the ATADataHigh
register must be written first, and then
the ATADatalLow register can be written.

$C080+$n9 | ATAError R This register contains additional

($COF9) information about the source of an error
when an error is indicated in bit O of the
ATAStatus register.

$C080+$nA | ATASectorCnt R/W This register contains the number of

($COFA) blocks of data requested to be
transferred on a read or write operation
between the host and the device. If the
value in this register is zero, a count of
256 sectors is specified.

$C080+$nB | ATASector R/W This register contains the starting sector

($COFB) number or bits 7-0 of the Logical Block
Address (LBA) for any device access for
the subsequent command.

$C080+$nC | ATACylinder R/W This register contains the low order 8 bits

($COFC) of the starting cylinder address or bits
15-8 of the Logical Block Address.

$C080+$nD | ATACylinderH R/W This register contains the high order bits

($COFD) of the starting cylinder address or bits
23-16 of the Logical Block Address.

$C080+$nE | ATAHead R/W This register is used to select LBA

($COFE) addressing mode or cylinder/head/sector
addressing mode. Also bits 27-24 of the
Logical Block Address.

$C080+$nF | ATACommand W A write to this register will issue an ATA

($COFF) command to the device.

$C080+$nF | ATAStatus R This register returns the device status

($COFF) when read by the host. Reading the
Status register does clear a pending
interrupt. (NOTE: CFFA does not use
interrupts)

n = the slot number in which the CFFA Interface card is installed.

30

Marketing Megabytes

At some point when storage device sizes became sufficiently large,
some marketing genius decided that their products would appear more
impressive if they used the standard SI definition of the prefix Mega,
where 1 MB = 1,000,000 Bytes instead of the widely used computer-
centric definition where 1 MB = 1024 x 1024 = 1,048,576 Bytes. It
appears that after one company did this the rest were forced to follow
suit.

Therefore, you may notice that the last drive on your storage device
has a few less blocks than you may have expected. For example, one
might expect that a SanDisk 64 MB CF card would provide space for
two full 32 MB drives. However, this is not the case. It provides only
29.25 MB or 30.67 MB (marketing) for the second drive. Given that the
SanDisk 64 MB card that has 125440 ($1EA00) blocks instead of the
expected 131072 ($20000) blocks, and that the first drive consumes
the first 65536 ($10000) blocks (ProDOS wastes 1 block), that leaves
the second drive with only 59904 ($EA00) blocks. Which is a drive size
of 29.25 MB or 30.67 MB (Marketing), but not 32 MB.

Note: Block size is always 512 ($200) bytes.

31

Contact Information

The following is a list of information resources for the CFFA Interface
Card project. If you have questions, comments, or problems to report,
please contact me using one of the methods listed below.

CFFA Web Site

The CFFA web site is located at: http://dreher.net/CFforApplell/. There
you will find any new firmware revisions, project revisions, and general
project status information.

Internet E-Mail
| can be reached via E-mail at rich@dreher.net.

If you are reporting a problem, please use “CFFA problem* or similar
as your subject line. In your E-mail you should include the firmware
version number, which can be determined by removing any CF cards
or IDE drives from the CFFA Interface card and then booting your
computer with the CFFA card installed. An error message appears and
following the string “Ver:“ is the firmware version number. Also, if
possible, describe the conditions necessary to cause the problem.

CFFA Message Web Forum

To post a message in the forum, simply point your web browser to:
http://dreher.net/phpBB/. The CFFA message forum is a good place to
post technical problems and solutions. Other users may have had
similar problems and know of a possible solution. You will have to
register before you can post to the forum the first time. This only takes
a moment, and is free.

32

Acknowledgements

| would like to thank the following people for providing help on this
project:

Sherry Dreher
Josh King
Dave Lyons
Jeff Pagel

Chris Schumann

33

Appendix 1: Firmware Listing

The following is a listing of the Firmware #0 located on the EPROM at
offset $100, accessed when all three shorting blocks of jumper J6 are
in place. The rest of the code on the EPROM is not shown in this
listing. Please check for future firmware listings on the CFFA web site.
A .Ist list file is included in each firmware archive. Special thanks to
Dave Lyons for doing the vast majority of the SmartPort firmware.

Listing 2: SmartPort Firmware Version 1.2 located at Firmware #0

ca65 V2.6.9 - (C) Copyright 1998-2000 Ullrich von Bassewitz
Main file : SPDRV.S
Current file: SPDRV.S

000000 ;

000000r ; ProDOS/SmartPort driver for CompactFlash/IDE Interface for Apple II computers
000000 ; SPDRV.S Version 1.2 - 04/12/2002

000000r ;

000000r ; Firmware Contributors: Email:

000000 ; Chris Schumann cschumann@twp-1lc.com

000000r ; Rich Dreher rich@dreher.net

000000r ; Dave Lyons dlyons@lyonsd2.com

000000r ;

000000r ;

000000 ; This code requires a 65C02 or 65C816 equipped machine.

000000r ;

000000 ; Tools used to build this driver: CA65: 6502 Cross Assembler

000000r ; http://www.cc65.0rg/

000000r ;

000000 ; Here is the copyright from that tool using --version option

000000r ; ca65 V2.6.9 - (C) Copyright 1998-2000 Ullrich von Bassewitz

000000r ;

000000r ; Example build instructions on an M$DOS based machine:

000000r ;

000000r ; Assumes you have installed the CC65 package and set your path, etc.
000000r ;

000000r ; 1) c:\firmware> ca65 -t apple2 --cpu 65C02 -1 spdrv.s

000000 ; 2) c:\firmware> 1d65 -t apple2 spdrv.o -o spdrv.bin

000000r ; 3) Because the EPROM can hold up to 8 user selectable version of firmware
000000r ; you must load spdrv.bin into your EPROM programmer with one of the
000000r ; following offsets:

000000 ; (Note: this offset has nothing to do with the card slot offsets)
000000r ;

000000r ; for driver #0: use offset $0100. Selected with: Al4= IN, Al3= IN, Al2= IN
000000r ; for driver #1: use offset $1100. Selected with: IN, Al3= IN, Al2=0UT
000000r ; for driver #2: use offset $2100. Selected with: 1IN,

000000 ; for driver #3: use offset $3100. Selected with: 1IN,

000000r ; for driver #4: use offset $4100. Selected with: A14=0UT,

000000r ; for driver #5: use offset $5100. Selected with:

000000 ; for driver #6: use offset $6100. Selected with:

000000r ; for driver #7: use offset $7100. Selected with: A14=0UT, Al3=0UT, Al2=0UT
000000 ;

000000r ; where IN = jumper shorted, and OUT = jumper open

000000r ; Driver #0 through #7 correspond to the user selectable

000000 ; Jjumpers: J6 (A14,Al13,Al12) on the interface card.

000000r ;

000000 ; 4) Load as many firmware versions, up to 8, into the EPROM programmer as you
000000r ; want. Remember that most programmers will, by default, clear all unused
000000r ; memory to SFF when you load a binary file. You will need to disable that
000000r ; feature after loading the first file.

000000r ;

000000 ; 5) Now you have an EPROM ready image to be programmed.

000000r ; Using a standard 27C256 EPROM or similar, program your EPROM.

000000r ;

000000 ; Firmware Version History

000000r ;

000000r ; Version 1.2

000000r ; - Start of SmartPort driver. Based on Version 1.1 ProDOS driver

000000r ;

000000 ; Version 1.1

000000r ; - dynamically calculate drive sizes in GetStatus function

000000 i - turn off interrupts in case boot code is called manually

000000r ; - add cardID/firmware revision bytes: CFFA$xx

000000r ; - added continuation of boot scan if device not present

000000 i - added continuation of boot scan if boot block code looks invalid
000000r ; - reformatted this source file, removed tabs and added function headers
000000 ;

000000r ; Version 1.0

000000r ; - initial version for Prototype #2 with descrete latches

000000 ;

34

000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r

PLD Logic Firmware Information

This version of firmware assumes you are using PLD logic of at
least version 1.2. The source files for U6, the Altera PLD are:
; Appleideinterface.gdf

; Appleidelogic.tdf

; The programmer ready output file for the PLD logic is:
; Appleideinterface.pof

; These files are not included with this code.

; Acknowledgements

;Thanks to:

; Chris Schuman - for his extensive initial development work

; David Lyons - for technical information, many improvement ideas and

; SmartPort code development

.define EQU =

.define TRUE 1

.define FALSE 0

; Firmware Version Information

FIRMWARE VER EQU $12 ;Version 1.2 (Version of this code
SPDRIVERVERSION EQU $1200 ;SmartPort version 1.2

GSOS_DRIVER EQU $02 ;GS/0S driver will check this byte to see if it

;is still compatible with this firmware.
;Increment by one, when something changes that
jwould require a change in the GS/OS driver.
therwise only change the FIRMWARE VER for all
;other changes.

;01 = ProDOS Driver supporting 2 drives

;02 = SmartPort Driver supporting 4 drives

;03 = SmartPort Driver supporting 8 drives

; Firmware Configuration Settings:

SMARTPORT EQU TRUE

BLOCKOFFSET EQU 0 70..255: LBA of first block of first partition
PARTITIONS32MB EQU 4 ;Number of 32MB Partitions supported

;Remember, ProDOS only supports 13 total
;volumes for all devices, floppies, SCSI drives,
;RAM drives, etc.

To enable debug output, set DEBUG = TRUE, only if you have a Apple Super
Serial card in slot 2. This will output one line of text for each request
made to the firmware, which can be seen on a computer or terminal attached to
the SsC.

NOTE: If you use DEBUG=TRUE and you don't have an Apple Super Serial card in
slot 2, your computer might hang in the routine DSChar, waiting for
the SSC status bit to say it is okay to write to the 6551 UART.

Set your terminal (software) at the remote end as follows:

; BaudRate: 19200
; Data Bits: 8

; Parity: None
; Stop Bits: 1

Example debug output at terminal from CAT command in ProDOS 8. Card is in
slot 6. ProDOS makes a ProDOS 8 call to the firmware to read block 2 from
unit: 60 into buffer memory at $DCOO.

; P8: Rd B:0002 U:60 A$DCOO0 Chk$6711

Rd = ProDOS Read ($01). Also could be Wr = write ($02), St = Status ($00)
; U:60 = ProDOS 8 unit number $60 Slot 6, drive 1

ASDCO0 = ProDOS buffer address

Chk$6711 = Simple block checksum used to visually check data integrity

NOTE: When DEBUG is true, some zero-page locations are used. The data at
; these locations are saved and restored and should not impact other programs.

DEBUG = FALSE
;DEBUG = TRUE

; Driver constant definitions

INITDONESIG EQU $AS ;Device init is done signature value

CR EQU $0D
BELL EQU $07

; ProDOS request Constants
PRODOS_STATUS ~ EQU $00
PRODOS_READ EQU $01
PRODOS_WRITE EQU $02
PRODOS_FORMAT ~ EQU $03

35

000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r

36

;ProDOS Return Codes

PRODOS_NO_ERROR EQU $00
PRODOS_BADCMD EQU $01
PRODOS_IO_ERROR EQU $27
PRODOS_NO_DEVICE EQU $28

PRODOS_WRITE_PROTECT EQU $2B

PRODOS_BADBLOCK
PRODOS_OFFLINE

EQU $2D
EQU $2F

;SmartPort return codes

BAD_UNIT_NUMBER

EQU $11

; ATA Commands Codes

ATACRead
ATACWrite
ATAIdentify

EQU $20
EQU $30
EQU S$SEC

;Constants for Wait

; Constant = (Delay[in uS]/2.5 +
WAIT_100ms EQU 197
WAIT 40ms EQU 124

EQU 4

WAIT_100us

;No error

;Bad Command (not implemented
;1/0 error

;No Device Connected

iWrite Protected

;Invalid block number requested
;Device off-line

2.09)".5 - 2.7

; Slot I/0 definitions

mslot

IOBase
ATADataHigh
SetCSMask

ClearCSMask

ATADevCtrl
ATAAltStatus
ATADataLow
ATAError
ATASectorCnt
ATASector
ATACylinder
ATACylinderH
ATAHead
ATACommand
ATAStatus

DriveResetDone
DriveNumber
SeriallInitDone
DrvBlkCount0

DrvBlkCountl
DrvBlkCount2
DrvMiscFlags
Available2

$TF8

= $C080
= IOBase+0
= IOBase+l

IOBase+2

= IOBaset6
= IOBase+6

IOBase+8
= IOBase+9
= IOBase+l10
IOBase+1l
= IOBase+12
IOBase+13
IOBaset+14
IOBase+15
= IOBase+l5

Scratchpad RAM base addresses.

$478
$4£8
= $578
= $5f8

= 5678

5658
= 5778
= $7£8

;Apple defined location for the last active slot

;Two special strobe locations to set and clear
; MASK bit that is used to disable CSO line to
; the CompactFlash during the CPU read cycles
; that occur before every CPU write cycle.

; The normally inoccuous read cycles were
causing the SanDisk CF to double increment
during sector writes commands.

;when writing
;when reading

; when writing
; when reading

Access using the Y register containg the slot #

;remember the device has been software reset
inormally 0 to 3 for four 32MB partitions

;For debug: if $AS5 then serial init is complete
ilow byte of usable block count

; (excluding first BLOCKOFFSET blocks

;bits 8..15 of usable block count

ibits 16..23 of usable block count

;bit 7 = raw LBA block access

;not currently used

; Zero-page RAM

.IF DEBUG
MsgPointerLow
MsgPointerHi
CheckSumLow
CheckSumHigh
.ENDIF

zptl

StackBase

memory usage

$EB
$EC
SED
= $EE

= $EF

= $100

;data at these locations saved and restored

;data at this location is saved/restored

; ProDOS block interface locations

pdCommandCode
pdUnitNumber
pdIOBuffer
pdIOBufferH
pdBlockNumber
pdBlockNumberH

= $42
$43
$44
$45
$46
= $47

; Arbitrary locations for Smartport data
; these locations are saved/restored before exit.

spCommandCode

spParamList
spCmdList
spCSCode
spSlot
spSlotX16
spLastZP

= pdCommandCode

= $48
$4A
= $4cC
= $4D
$4E
spSlotx16

2 bytes
;2 bytes

000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r

spZeroPgArea = pdCommandCode ; $42
spZeroPgSize = spLastZP-spZeroPgArea+l

; Apple II ROM entry points

; We can use these at boot time, but not while handling a call through
; our ProDOS or SmartPort entry points, as the ROM may not be available.

SetVID

= S$FE89
SetKBD = SFE93
couT $FDED
INIT $FB2F
HOME $FC58
ROMWAIT $FCA8
AppleSoft = $E000

Start of Peripheral Card ROM Space $Cn00 to $CnFF

; A macro is used here so that this code can be easily duplicated for each slot
instead of by hand using the EPROM programmer. This is possible done because
the hardware does not overlay the Clxx address space at C2xx, C3xx, etc.
automatically. Instead the base address for the EPROM is $C000 but is enabled
; only when a valid address in the range of $C100 to $CEFF is on the bus. This
allows for the development of slot specific behaviors in firmware, if desired.
Currently that is not being done, instead the same slot code is repeated for
every slot ROM space. Addresses $C000 to $COFF are not decoded by the
hardware as it is Apple's internal I/0. Any access of $CFO0 to SCFFF is
decoded by the card to reset the Expansion ROM flip-flop, but remember to

use always address SCFFF for that task.

.macro CnXX SLOTADDR, SLOTx16, SLOT
.local P8DriverEntry
.local P8Driver
.local SmartPortEntry
.local SPDriver
.local Boot
.local Error
.local NotScanning
.local wasteTime
.local ErrorMsgDisplay
.local msgLoop
.local msgDone
.local ErrorMessage

lda #$20 ;520 is a signature for a drive to ProDOS
ldx #500 ;500 "
lda #503 ;503 "
.IF SMARTPORT
lda #$00
.ELSE
lda #$3c i83c "
.ENDIF

bra Boot

- Non-boot P8 driver entry point -
; The EPROM holding this code is decoded and mapped into $C100 to S$CEFF,

; it is not nessecary to dynamically determine which slot we are in, as is

; common in card firmware. This code is in a MACRO and is located absolutely
; per slot. Any code in this MACRO that is not relocatable will have to be

; based on the MACROs parameters SLOTADDR, SLOTx16, SLOT.

P8DriverEntry:
jmp P8Driver ilocated at $CnOA for best compatibility
SmartPortEntry: ;By definition, SmartPort entry is 3 bytes

; after ProDOS entry
jmp SPDriver

Boot:
1dy #sLOT ;Y reg now has $0n for accessing scratchpad RAM
ldx #SLOTx16 ;X reg now has $n0 for indexing I/0
lda #>SLOTADDR ;loads A with slot# we are in:$Cn
sta mslot ;Apple defined location reserved for last slot
; active. MSLOT needs the form of $Cn
bit $cfff jturn off expansion ROMs

; Need to wait here (before CheckDevice) in case the CFFA RESET jumper
; is enabled, or a Delkin Devices CF card never becomes ready.

1dy #5
wasteTime:

lda #WAIT 100ms

jsr ROMWAIT

dey
bne wasteTime
ldy #SLOT

jsr CheckDevice
bcs Error

lda #PRODOS_READ ;Request: READ block

37

000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r

38

sta pdCommandCode

stz pdIOBuffer ;Into Location $800

stz pdBlockNumber ;ProDOS block $0000 (the bootloader block)
stz pdBlockNumberH

lda #508

sta pdIOBufferH

stx pdUnitNumber ;From unit number: $n0 (where n=slot#),

; so drive bit is always 0

jsr P8Driver ;Read bootloader from device's block 0 into
; location $800

bcs Error iCheck for error during bootblock read

lda $800 ;Check the first byte of boot loader code.

cmp #501 ;If bootload code is there, this byte = $01

bne Error

lda $801 ;If second byte is a 0, it's invalid

; (we'd JMP to a BRK)
beq Error

1dx pdUnitNumber ;X should contain the unit number when jumping
; to the bootloader
jmp $801 iNo errors, jump to bootloader just read.

; If any error occured, like drive not present, check to see if we are in a
; boot scan, if so re-enter scan routine, else drop to Applesoft, aborting boot.
Error:

lda %00
bne NotScanning
lda $01

cmp mslot
bne NotScanning
jmp $FABA ;Re-enter Monitor's Autoscan Routine

;The boot code must have been called manually because we are not in a slot scan.
NotScanning:

jsr SetvID

jsr SetKBD

;Display error message

jsr INIT jtext mode, full screen, page 1
jsr HOME
ldy #0

msgLoop:

lda ErrorMessage,y
beq msgDone

ora #$80

jsr COUT

iny

bra msgLoop
msgDone :

jmp AppleSoft

ErrorMessage:
.byte CR,CR,CR,CR,CR
.byte "CFFA: Device missing, not formatted,",CR
.byte "or incompatible.",CR
"vX.Y" built automatically:
.byte "Ver:",$30+ (FIRMWARE VER/16),".",$30+ (FIRMWARE VER & $F)
Beep, then end-of-message:
.byte BELL,$00

-------------------- Non-boot entry point for driver code ——=============-=

Handle a ProDOS call

Setup MSLOT, X and Y registers.
This must be done every time we enter this driver.

P8Driver:

ldy #SLOT ;Y reg now has $0n for accessing scratchpad RAM

ldx #SLOTx16 ;X reg now has $n0 for indexing I/0

lda #>SLOTADDR ;loads A with slot# we are in:$Cn(where n=slot#

sta mslot ;Apple defined location reserved for last slot
; active. MSLOT needs the form of $Cn

bit $cfff jturn off other ROM that might be on

bit ClearCSMask,x ;reset MASK bit in PLD for normal CS0O signaling

jmp P8AUXROM

Called from jmp at $CnOD.
; 1) Push a block of zero-page locations onto the stack, creating a work space.
; 2) Get the request parameters that follow the call to this driver
3) Using request parameters as pointers get request specific information
and set up the P8 driver request registers $42-$47.
4) Call P8Driver code
5) On return from P8Driver code, restore zero page work space, and return to
i caller.

SPDriver:
lda #>SLOTADDR

000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r
000000r
000000r
000000
000000r
000000r

00C728:20

20
03
06

20
03
06

20
03
06

A2
A9
4c

A2
A9
4c

00
00
Cc3

00
00
Cc3

00
00
c3
c7
70
F8
CF

88
07
BO

sta mslot
bit Scfff

1ldx #SLOTx16 ;X reg now has $n0 for indexing I/0
bit ClearCSMask,x ;reset MASK bit in PLD for normal CS0O signaling
jmp SPAUXROM

.RES SLOTADDR+$F5-* ;skip to $CnF5, where n is the slot#

.byte GSOS_DRIVER ;GS/0S driver compatibility byte. GS/0S driver
checks this byte to see if it is compatible
with this version of firmware. This way,
changes to firware versions, that do not
affect the GS/0S driver will not prevent the
GS/0S driver from loading and running. This
byte should be incremented each time a change
is made that would prevent the GS/0S driver
from working correctly. I.e. Partition layout
; or something similar.

.byte "CFFA", FIRMWARE_ VER ;SCnF6..CnFA: Card Hardware ID,
; non-standard scheme

.byte $0 ;SCnFB: SmartPort status byte

; Not Extended; not SCSI; not RAM card
Even if not supporting SmartPort, we need a
zero at $CnFB so Apple's RAMCard driver
doesn't mistake us for a "Slinky" memory
i card.

Data table for ProDOS drive scan

$CnFC/FD = disk capacity, if zero use status command to determine
SCnFE = status bits (BAP p7-14)

7 = medium is removable

device is interruptable

5 = number of volumes (0..3 means 1..4)

3 = device supports Format call

2 = device can be written to
1

0

1
[T

device can be read from (must be 1)
= device status can be read (must be 1)

$CnFF = LSB of block driver
.word $0000 ;SCnFC-D: A zero here will cause prodos to
rely on the status command to determine

volume size

.byte $17 ; $CnFE: support 2 ProDOS drives
.byte <P8DriverEntry ; $CnFF: low-order offset to ProDOS entry point
.endmacro
.ORG $C100
CnXX $C100, $10, $01 ;Slot PROM code for slot 1
.ORG $C200
CnXX $C200, $20, $02 ;Slot PROM code for slot 2
.ORG $C300
CnXX $C300, $30, $03 ;Slot PROM code for slot 3
.ORG $C400
CnXX $C400, $40, $04 ;Slot PROM code for slot 4
.ORG $C500
CnXX $C500, $50, $05 ;Slot PROM code for slot 5
.ORG $C600
CnXX $C600, $60, $06 ;Slot PROM code for slot 6
.listbytes unlimited ;Show all of the code bytes for the 7th slot
-ORG $C700
CnXX $C700, $70, $07 ;Slot PROM code for slot 7

39

00C72C:26 A9 01 85
00C730:42 64 44 64
00C734:46 64 47 A9
00C738:08 85 45 86
00C73C:43 20 C3 C7
00C740:B0 11 AD 00
00C744:08 C9 01 DO
00C748:0A AD 01 08
00C74C:F0 05 A6 43
00C750:4C 01 08 AS
00C754:00 DO OA A5
00C758:01 CD F8 07
00C75C:D0 03 4C BA
00C760:FA 20 89 FE
00C764:20 93 FE 20
00C768:2F FB 20 58
00C76C:FC A0 00 B9
00C770:7F C7 FO 08
00C774:09 80 20 ED
00C778:FD C8 80 F3
00C77C:4C 00 EO 0D
00C780:0D 0D 0D OD
00C784:43 46 46 41
00C788:3A 20 44 65
00C78C:76 69 63 65
00C790:20 6D 69 73
00C794:73 69 6E 67
00C798:2C 20 6E 6F
00C79C:74 20 66 6F
00C7A0:72 6D 61 74
00C7R4:74 65 64 2C
00C7A8:0D 6F 72 20
00C7AC:69 6E 63 6F
00C7B0:6D 70 61 74
00C7B4:69 62 6C 65
00C7B8:2E 0D 56 65
00C7BC:72 3A 31 2E
00C7C0:32 07 00 AO
00C7C4:07 A2 70 A9
0oc7cg:Cc7 8D F8 07
00C7CC:2C FF CF 3C
00C7D0:82 CO 4C 7D
00C7D4:CA A9 C7 8D
00C7D8:F8 07 2C FF
00C7DC:CF A2 70 3C
00C7E0:82 CO 4C 00
00CTE4:C8 xx XX XX
00C7E8:XX XX XX XX
00C7EC:XX XX XX XX
00CTFO:xx XX XX XX
00C7F4:xx 02 43 46
00C7F8:46 41 12 00
00C7FC:00 00 17 OA

00C800: .listbytes 12 jrevert back to normal listing mode for the rest
00C800:

00C800: i End of Peripheral Card ROM Space —------—=—=-—=-=—=—=—-——
00C800:

00C800:

00C800: ; - Start of I/0 expansion ROM Space

00C800: Code here starts at $c800

00C800: ; This code area is absolute and can use absolute addressing

00C800: -ORG $C800 ;note: .ORG does not cause this code to be
00C800: ; placed at C800. The ".RES" statement above
00C800: ; offsets this code

00C800:

00C800:

00C800:

00C800: SmartPort

00C800: ;

00C800: ;

00C800: MagicRawBlocksUnit EQU 127 juse unit 127 in ReadBlock/WriteBlock calls for
00C800: ; raw LBA blocks.

00C800:

00C800: SPAUXROM:

00C800: ; save 2P, fetch cmd + pointer from (PC)

00C800:A0 0C 1dy #spZeroPgSize-1

00C802: save:

00C802:B9 42 00 lda spZeroPgArea,y

00C805:48 pha

00C806:88 dey

00C807:10 F9 bpl save

00C809:BA tsx

00C80A:BD OE 01 lda $101+spZeroPgSize,x

00C80D:85 48 sta spParamList

00C80F:18 clc

00C810:69 03 adc #3

00C812:9D OE 01 sta $101+spZeroPgSize,x

00C815:BD OF 01 lda $102+spZeroPgSize,x

00c818:85 49 sta spParamList+l

00C81A:69 00 adc #0

00C81C:9D OF 01 sta $102+spZeroPgSize,x

00C81F:

00C81F: ; set up spSlot and spSlotX16

00C81F:AD F8 07 lda mslot

00C822:29 OF and #S0f

40

00C824:A8 tay

asl a
asl a
asl a
asl a
tax

sty spSlot
stx spSlotX16

; clear DrvMiscFlags
lda #0
sta DrvMiscFlags,y ;no special flags (such as raw block access)

; reset the device if this is our first call
jsr ResetDriveIfFirstTime ;needs Y

.IF DEBUG

;warning this debug code trashes the Acc register
jsr DSString
.byte "SP:",0

.ENDIF

; get command code from parameter list
ldy
lda (spParamlist),y
sta spCommandCode
iny
lda (spParamList),y
tax
iny
lda (spParamList),y
sta spParamList+l
stx spParamList

lda #PRODOS_BADCMD ;anticipate bad command error
ldx spCommandCode

cpx #$09+1 ;command too large

bes out

lda (spParamList) ;parameter count

cmp RequiredParamCounts,x ;command number still in X

beq pCountOK

lda #$04 ;bad parameter count error
bra out

pCountOK:
ldy #1

lda (spParamList),y
ldy spSlot
sta DriveNumber,y

txa ;X is still the command code
asl a
tax
jsr JumpToSPCommand ;Y is still spSlot
bcs out
lda #0
out:
tax ;jerror code in X

; Restore zero page

ldy #0
restore:
pla
sta spZeroPghrea,y
iny

cpy #spZeroPgSize
bcc restore

txa

ldy #2 ;high byte of # bytes transferred
(always (1) undefined, or
(2) #bytes transferred to host)

ldx #0 ilow byte of # bytes transferred

cmp #1 ;C=1 if error code nonzero

rts

JumpToSPCommand :

lda spDispatch+1l,x

pha

lda spDispatch,x

pha

rts

RequiredParamCounts:

3 .byte 3 status

3 .byte 3 read

3 .byte 3 write

1 .byte 1 = format

3 .byte 3 = control

1 .byte 1 init
00C890:01 .byte 1 open

00C891:01 .byte 1 ;7 = close

00C892:04 .byte 4 ;8 = read

00C893:04 .byte 4 ;9 = write

00Cc894:

00C894: spDispatch:

00C894:A7 C8 .word spStatus-1

00C896:B6 C9 .word spReadBlock-1

00C898:C3 C9 .word spWriteBlock-1

00CB9A:CF C9 .word spFormat-1

00c89C:D2 C9 .word spControl-1

00C89E:F6 C9 .word spInit-1

00C8A0:01 CA .word spOpen-1

00C8A2:01 CA .word spClose-1

00C8A4:05 CA .word spReadChars-1

00C8RA6:05 CA .word spWriteChars-1

00C8A8:

00C8A8:

00C8A8: SmartPort STATUS call

00C8A8: ;

00C8A8: ; We support the standard calls, plus an "Identify" command
00C8A8: ; for unit 0, which fills a buffer with the card's Identify
00C8A8: ; data.

00C8A8: ;

00C8A8: spStatus:

00C8A8:20 OA CA jsr SPSetupControlOrStatus

00C8AB:BO 32 bcs statOut

00C8AD:

00C8AD:A4 4D 1dy spSlot

00CBAF:B9 F8 04 lda DriveNumber,y

00C8B2:D0 33 bne StatusForOneUnit

00C8B4:

00C8B4: ; StatusCode = 0 && unit == 0: status for this entire SmartPort interface
00C8B4:A5 4C lda spCSCode

00C8B6:F0 OB beg Status00

00C8B8:

00C8B8: ; Status for unit 0, subcode $49 = Identify (device-specific subcode)
00C8B8:CY9 49 cmp #549

00C8BA:DO 03 bne BadStatusCode

00CB8BC:4C 48 C9 jmp spStatusIdentify

00C8BF:

00C8BF: ; Any other status code for unit 0 is an error.
00C8BF: BadStatusCode:

00C8BF:A9 21 lda #s$21

00C8C1:38 sec

00C8C2:60 rts

00C8C3:

00C8C3: Status00:

00C8C3:A6 4E 1ldx spSlotX1lé

00C8C5:A4 4D 1ldy spSlot

00C8C7:20 DA CA jsr GetStatus

00C8CA:BO 13 bcs statOut

oocscc:

00C8CC:A4 4D 1dy spSlot

00C8CE:B9 F8 06 lda DrvBlkCount2,y

00C8D1:1A inc a

00C8D2:92 4A sta (spCmdList) ;jbyte +0 = number of drives
00C8D4:

00C8D4:A0 07 ldy #7

00C8D6: Stat00Loop:

00C8D6:BY9 DF C8 lda statOOData-1,y

00C8D9:91 4A sta (spCmdList),y

00C8DB: 88 dey

00C8DC:DO F8 bne stat00Loop

00C8DE:18 clec

00C8DF: statOut:

00C8DF:60 rts

00C8E0:

00C8EO: Stat0OData:

00CBE0:40 .byte $40 ;Interrupt flag = no interrupts caused by this
00C8EL: i interface

00C8EL:

00C8E1:00 CcC .word $CCO00 ;Vendor ID assigned to Rich Dreher by
00CB8E3: ; www.syndicomm.com 3/16/2002
00C8E3:

00C8E3:00 12 .word SPDRIVERVERSION ;Our version number
00CBE5: 00 .byte $00 ;Reserved byte
00C8E6:00 .byte $00 iReserved byte
00C8E7:

00C8ET7: StatusForOneUnit:

00C8E7:3A dec a

00C8E8:99 F8 04 sta DriveNumber,y

00C8EB:

00CBEB:A6 4C 1ldx spCSCode

00CBED:F0 16 beg StatusOor3

00C8EF:CA dex

00C8FO0:F0 08 beg StatusGetDCB

00C8F2:CA dex

00C8F3:CA dex

00CB8F4:F0 OF beg StatusOor3

00C8F6:A9 21 lda #521 ;Bad status code
00C8F8:38 sec

00C8F9:60 rts

00C8FA: ;

00CBFA: We have no interesting data to return for the device control

00C8FA: ; block, so return the shortest one allowed: a length byte of

42

00CB8FA: ; 1 followed by a data byte of 0.

StatusGetDCB:

9 01 lda #1

2 4n sta (spCmdList)

8 tay

9 00 lda #0

1 4a sta (spCmdList),y
8 clec

0 rts

StatusOor3:

9 F8 lda #SF8

2 4n sta (spCmdList)

6 4E ldx spSlotX16

4 4p 1dy spSlot

0 DA CA jsr GetStatus

0 CD bcs statOut

8 tya

0 02 1dy #2

1 4A sta (spCmdList),y

8 dey

A txa

1 4a sta (spCmdList),y
120 03 1dy 43

9 00 lda #0

1 4a sta (spCmdList),y

lda spCSCode
beq statDone

1dy #4

stat3Loop:
lda stat3Data-4,y
sta (spCmdList),y
iny
cpy #21+4
bcec stat3Loop

statDone:
clc
rts

stat3Data:
4F 4D
43 54
4C 41
.byte $02
.byte $20

.word SPDRIVERVERSION

; 0: return device status
; 3: return Device Information Block

.byte 13,"COMPACT FLASH

;Returned length = 1

;Returned data = $00

; Status code 0 and 3 start off the same; 3 returns extra data.

(1 byte device status + 3-byte block count)

; status code 3: return 21 more

;Block device, write, read, format, online,
; not write-prot

;Returns block count in YX

;CmdList +2 = bits 8..15 of block count

;CmdList +1 = bits 0..7 of block count

;CmdList +3 = bits 16..23 of block count

bytes of data

;length byte + 16-byte ASCII, padded

;device type = hard disk
;subtype (no removable media, no extended,
; no disk switched)

; so they make sense.

spStatusIdentify:
1dy spSlot
ldx spSlotX16
jsr CheckDevice
becc identl

rts

identl:
lda #0
sta ATADataHigh,x
lda #ATAIdentify
sta ATACommand, x
jsr IDEWaitReady

lda ATAStatus,x

and #509

cmp #501

bne iCommandOK
iError:
.IF DEBUG

jsr DSString
.byte "spIdfy Err:",0

00C96A:

lda #PRODOS_NO_DEVICE

Identify (Status subcode)

The status list is a 512-byte buffer that we will fill with
the drive's IDE "Identify" data.
by byte-swapping the model name and serial number strings

We post-process the data

;return error code in Acc with Carry set

;Issue the read command to the drive
;Wait for BUSY flag to go away

;Check for error response

;if DRO=0 and ERR=1 an error occured

;warning this debug code trashes the Acc register

43

00C96A:
00C96A:
00C96A:
00C96A:

00C96A:AS9 27

00C96C:
00C96D:
00C96E:
00C96E:
00C96E:
00C96E:
00C96E:
00C96E:
00C96E:
00C970:
00C972:
00C974:
00C974:
00C977:
00C977:
00C979:
00C97B:
00C97D:
00C97D:
00C980:
00C982:
00C983:
00C986:
00C988:
00C989:
00C98B:
00C98D:
00C98F:
00C991:
00C991:
00C991:
00C991:
00C991:
00C993:
00C995:
00C995:
00C997:
00C999:
00C99C:
00Cc99C:
00C99E:
00C9A0:
00C9A3:
00C9A3:
00C9A4:
00C9A5:
00C9AS5:
00C9A5:
00C9AS5:
00C9AT:
00C9A8:
00C9AY:
00C9AB:
00C9AC:
00C9AE:
00COAF:
00C9BO:
00C9B2:
00C9B3:
00C9B4:
00C9B6:
00C9B7:
00C9B7:
00C9B7:
00C9B7:
00C9B7:
00C9B7:
00C9BA:
00C9BC:
00C9BC:
00C9BE:
00C9C0:
00C9C3:
00C9C3:
00C9C3:
00C9C3:
00Cc9c4:
00coc4:
00C9C4:
00c9c4:
00C9cC4:
00c9c4:
00C9C7:
00C9Cy:
00C9Cy:
00C9CB:
00C9CD:
00C9D0:
00C9D0:
00C9D0:

44

38
60

A0
84
A0

BD

30
29
FO

BD
91
cs
BD
91
c8
DO
E6
cé6
DO

Ccé
(o3

A0
A2
20

A0
A2
20

18
60

B1
48
cs
B1
88
91
c8
68
91
c8

Do
60

20
BO

A4
A6
ac

o
5}

20
BO

A4
A6
ac

02

00

8F CO

08
ED

88 CO
4n

80 CO
4an

E9
4B
42
E3

4B
4B

2E
18
A5 C9

14
oA
A5 C9

4a

1Cc cA
07

4D
4E
8F CB

4D
4E
EA CB

lda ATAError,x
jsr DSByteCRLF
.ENDIF

lda #PRODOS_IO_ERROR

sec
rts
The "Identify" data is ready
pageCount = spCommandCode
iCommandOK:
1dy #2
sty pageCount
1dy
iLoop:

lda ATAStatus,x

bmi iLoop
and #$08
beg iError

lda ATADataLow,x
sta (spCmdList),y
iny

lda ATADataHigh,x
sta (spCmdList),y
iny

bne iLoop

inc spCmdList+l
dec pageCount

bne iLoop

; Swap ASCII text data of the
; These are both on the first

dec spCmdList+1
dec spCmdList+1

ldy #23*2

ldx #24

jsr SwapBytes
ldy #10%2

ldx #10

jsr SwapBytes

clc
rts

;jreturn error code in Acc with Ca
to read

;re-use a zero-page location

;Note: not using IDEWaitReady, in
; instead

;Wait for BUSY (bit 7) to be zero
;get DRQ status bit

;if off, didn't get enough data

Identify data to be more readable.
page of the data.
;Point to beginning of buffer
;Start at word 23 (firmware rev,

724 words

;Start at word 10 (serial number)
;10 words

rry set

line code

model number)

SwapBytes:

lda (spCmdList),y
pha

iny

lda (spCmdList),y
dey

sta (spCmdList),y
iny

pla

sta (spCmdList),y
iny

dex

bne SwapBytes

rts

;Save the lst byte
iGet the 2nd byte
;Store it in position 1

;Finally, retrieve the lst byte
;Put it in position 2

; SmartPort READ BLOCK command

spReadBlock:
jsr SPSetupReadWrite
bcs readDone

1dy spSlot
ldx spSlotx16
jmp ReadBlock

readDone:
writeDone:
rts

SmartPort WRITE BLOCK comman

spWriteBlock:
jsr SPSetupReadWrite
bes writeDone

1dy spslot
ldx spSlotxlé
jmp WriteBlock

d

; SmartPort FORMAT command

00C9D0:

spFormat:

65 CA jmp SPValidateUnitNumber

; We don't actually do anything beyond validating the unit number.

; SmartPort CONTROL command

spControl:
jsr SPSetupControlOrStatus
bes ctrlDone

jsr SPValidateUnitNumber
bcs ctrlDone

1ldx spCSCode

beqg ctlReset

dex

beg ctlSetDCB

dex

beq ctlSetNewline

dex

beqg ctlServicelnterrupt
dex

beq ctlEject

ctlSetNewline:
lda #$21
sec
ctrlDone:
rts

ctlServiceInterrupt:
lda #$1f
sec
rts

ctlReset:
ctlSetDCB:
ctlEject:
clc
rts

;Control code 0 = Reset

iControl code 1 = SetDCB

;Control code 2 = SetNewline
;Control code 3 = Servicelnterrupt

;Control code 4 = Eject

;Bad control code

;Interrupt devices not supported

; SmartPort INIT command

; unit 0 = entire chain

spInit:
lda DriveNumber,y
beg initChain
lda #BAD UNIT NUMBER
sec
rts

initChain:
clc
rts

; SmartPort Technote #2 says you can't init an individual unit;
; so return error if DriveNumber is nonzero.

spOpen:

spClose:
lda #PRODOS_BADCMD
sec
rts

; SmartPort: Open and Close are for character devices only

; SmartPort: Read, Write

; for block devices.

spReadChars:
spWriteChars:
lda #PRODOS_IO_ERROR
sec
rts

; We don't bother implementing Read and Write, although they are allowed
We would only support 512-byte transfers anyway.

; SPSetupControlOrStatus

; fetch from parameter block:

SPSetupControlOrStatus:
1dy #2

00CAOA:A0 02

; status/control list pointer
; status/control code (byte)

(word)

45

00CAOC:
00CROE:
00CA10:
00CAll:
00CA13:
00CA15:
00CA16:
00CA18:
00CAlA:
00CA1B:
00CAlC:
00CAlC:
00CAlC:
0ocailc:
00CA1C:
00CAlC:
00CAlC:
00CAlC:
0ocailc:
00CAlC:
00CAlC:
00CAlC:
00CAlC:
0ocailc:
00CAlC:
00cAlC:
00CA1C:
00CAlC:
oocailc:
00CAlC:
0ocalcC:
00CAlLE:
00CA20:
00CA22:
00CA23:
00CA25:
00CA27:
00CA27:
00CA27:
00CRA28:
00CA2A:
00ca2C:
00CA2D:
00CA2F:
00CA31:
00CA31:
00CA31:
00CA33:
00CA36:
00CA38:
00CA3A:
00CA3A:
00CA3D:
00CA3F:
00CA3F:
00CA41:
00CR43:
00CA45:
00CA45:
00CA47:
00CA49:
00CA4A:
00CA4C:
00CA4D:
00CA4E:
00CA4E:
00CA4E:
00CA50:
00CAS51:
00CAS51:
00CA52:
00CAS52:
00CA52:
00CA52:
00CAS52:
00CA54:
00CAS57:
00CA5A:
00CAS5A:
00CAS5C:
00CABE:
00CR60:
00CA63:
00CR64:
00CR65:
00CA65:
00CRA65:
00CA65:
00CA65:
00CR65:
00CA65:
00CRA65:
00CA65:
00CA65:
00CRA65:

46

Bl
85
cs
B1
85
cs
B1
85
18
60

A0
B1
85
c8
B1
85

c8
B1
85
c8
B1
85

B9
c9
FO

20
BO

A0
Bl
Do

A5
25
1A
FO
18
60

A9
38

o
=)

A9
19
99

A0
B1
A4
99
18
60

48
4n

48
4B

48
4ac

02
48
44

48
45

48
46

48
47

4D
F8 04
TF
18

65 CA
12

06
48
09

47
46

02

2D

80
78 07
78 07

06
48
4D
F8 04

lda (spParamlist),y
sta spCmdList

iny

lda (spParamlList),y
sta spCmdList+1

iny

lda (spParamlList),y
sta spCSCode

clc

rts
SPSetupReadWrite
Input:

DriveNumber,y is already a copy of SmartPort unit number

fetch from SP parameter list:

buffer pointer
block number

Validate unit number:

127 = magic,
1..N

allow any block number
Validate block number: $0..FFFE

DriveNumber,y: translated unit number in case unit was magic

DrvMiscFlags:

SPSetupReadWrite:
pdIOBuffer from parameter list

copy
1dy
lda
sta
iny
lda
sta

copy
iny
lda
sta
iny
lda
sta

#2
(spParamList),y
pdIOBuffer

(spParamList),y
pdIOBuffer+l

bit 7 set if we should not use BLOCKOFFSET

pdBlockNumber from parameter list

(spParamList),y
pdBlockNumber

(spParamList),y
pdBlockNumber+1

Validate the unit number and block number.

1ldy
lda
cmp
beq

jsr
becs

1ldy
lda
bne

lda
and
inc
beq
clc
rts

spSlot
DriveNumber, y
#MagicRawBlocksUnit
magicUnit

SPValidateUnitNumber
srwOut

#6
(spParamlList),y
badBlockNum

pdBlockNumber+1
pdBlockNumber

a
badBlockNum

badBlockNum:

srwlut:

lda
sec

rts

For the "magic raw blocks"

#PRODOS_BADBLOCK

magicUnit:

lda
ora
sta

ldy
lda
1dy
sta
clc
rts

#$80
DrvMiscFlags,y
DrvMiscFlags,y

#6
(spParamList),y
spSlot
DriveNumber,y

;jBits 16..23 of block number must be $00

;Block SFFFF is invalid

;Bad block number

unit, allow a full 3-byte block number.

;Raw block access

;Bits 16..23 of block number

SPValidateUnitNumber

Validate that DriveNumber is from 1 to N.

Input: DriveNumber

output:

SPValidateUnitNumber:

DriveNumber in range 0..N-1

00CA65:

00CAB1:

1dy spSlot
lda DriveNumber,y
beq badUnit
dec a
sta DriveNumber,y
cmp DrvBlkCount2,y
beq unitOK
bcs badUnit
unitOK:
clc
rts

badUnit:
lda #BAD_UNIT_NUMBER
sec
rts

; PBAuxROM - Handle a ProDOS call
P8AuUxXROM:

If the ProDOS unit number doesn't match our slot number, add 2 to
the drive number.

This actually happens: If we're in slot 5, we get calls for slot 2
; that want to access our 3rd and 4th partitions.

txa ; A= $n0

eor pdUnitNumber

and #$70 ;EOR the slot number

beq OurSlot

lda #2 ;Point to drive 3 or 4
OurSlot:

bit pdUnitNumber
bpl DriveOne

inc a
DriveOne:
sta DriveNumber,y
lda #0
sta DrvMiscFlags,y ;no special flags (such as raw block access)

jsr ResetDriveIfFirstTime
; process the command code and jump to appropriate routine.

.IF DEBUG

jwarning this debug code trashes the Acc register
jsr DSString
.byte "P8:",0

.ENDIF

lda pdCommandCode
cmp #PRODOS_READ
bne chkl

jmp ReadBlock

chkl:
cmp #PRODOS_WRITE
bne chk2

jmp WriteBlock

chk2:
cmp #PRODOS_STATUS
bne chk3

jmp GetStatus

chk3:
; An invalid request # has been sent to this driver.

.IF DEBUG
pha
jsr DSString
.byte "CE",0
pla
jsr DSByteCRLF
.ENDIF

lda #PRODOS_IO_ERROR
sec
rts jreturn to caller. Should always be ProDOS

ResetDriveIfFirstTime - Reset the drive once, the first time the driver
is called ide devctrl Bit 2 = Software Reset, Bit 1 = nIEN (enable
; assertion of INTRQ)

; Input:
; X = requested slot number in form $n0 where n = slot 1 to 7
; Y = $0n (n = slot#) for accessing scratchpad RAM;

; ZeroPage Usage:
; None

47

00CABL:
00CAB1:
00CAB1:

00CABL:
00CAB4:
00CAB6:

B9
c9
FO

00CAB8:
00CABS8:
00CAB8:

00CAB8:
00CABA:

A9
9D

00CABD:

00CABD:
00CABF:

A9
9D

00CAC2:
00CAC2:
00CAC2:
00CAC2:

00CAC2:
00CAC4:

A9
20

00CAC7:

00CACT:
00CAC9:

A9
9D

00CACC:
00CACC:
00CACC:
00CACC:

00CACC:
00CACE:

A9
20

00CAD1:
00CAD1:
00CAD1:

00CAD1:

00CAD4:

00CAD4 :
00CAD6:

A9
99

00CADY:
00CAD9:

00CADY:

OOCADA:
0OCADA:
O0OCADA:
00CADA:
0O0CADA:
OOCADA:
0OCADA:
O0OCADA:
00CADA:
0O0CADA:
O0OCADA:
0OCADA:
0OCADA:
00CADA:
0O0CADA:
O0OCADA:
0OCADA:
O00CADA:
00CADA:
O0O0CADA:
O0O0CADA:
0OCADA:
O0OCADA:
00CADA:
0O0CADA:
O0O0CADA:
0OCADA:
O00CADA:

00CADA

00CADD:

120
90

00CADF:

00CADF:
00CAEL:
00CAE3:
00CAES:
00CRE6:

A2
A0
A9
38
ac

00CAE9:
00CREY:
00CAE9:

00CAES:
00CREB:

A9
9D

00CAEE:

00CAEE:
00CAF1:
00CAF3:
00CAF6:

20
A9
9D
20

00CAF9:

00CAFY:
00CAFC:
00CAFE:
00CBO0O:

BD
29
c9
Do

00CBO2:
00CBO2:
00CBO2:
00CBO2:
00CBO2:

48

78
A5
21

00
80

06
86

04
A6

02
86

e
A6

A5
78

82
0A

00
00
2F

8E

00
80

78
EC
8F
78

8F
09
01
0A

; CPU Registers changed: A&, P

ResetDrivelfFirstTime:
lda DriveResetDone,Y
cmp #INITDONESIG
beq resetOK

Reset the ATA device

lda #0

sta ATADataHigh,x ;Clear high byte data latch
lda #506 ;Reset bit=1, Disable INTRQ=1
sta ATADevCtrl,x

Per ATA-6 spec, need to wait 5us minimum. Use a delay of 100us.
Should cover accelerated Apples up to 20Mhz.

lda #WAIT_100us
jsr Wait

lda #$02 ;Reset bit=0, Disable INTRQ=1
sta ATADevCtrl,x

Per ATA-6 spec, need to wait 2ms minimum. Use a delay of 40ms.
Should cover accelerated Apples up to 20Mhz.

lda #WAIT 40ms
jsr Wait

Per ATA-6 spec, wait for busy to clear, by calling IDEWaitReady

jsr IDEWaitReady

lda #INITDONESIG

sta DriveResetDone,Y ;Set the init done flag so init only happens
; once.
resetOK:
rts

GetStatus - Called by ProDOS and SmartPort to get device status and size

Input:

DriveNumber,y (0 to 3)
; X = slot number in form $n0 where n = slot 1 to 7
Y = $0n (n = slot#) for accessing scratchpad RAM;

Output:

; A = ProDOS status return code

; X = drive size LSB

; Y = drive size MSB

Carry flag: 0 = Okay, 1 = Error
DrvBlkCountO..DrvBlkCount2 = usable blocks on device

GetStatus:

.IF DEBUG

;jwarning this debug code trashes the Acc register
jsr DSString
.byte " st",0
jsr DisplayParms

.ENDIF

Determine if a drive/device is present.

jsr CheckDevice
bcc sDriveOK

ldx #$00

ldy #500

lda #PRODOS_OFFLINE
sec

jmp SExit

; Device is present
sDriveOK:

lda #0

sta ATADataHigh,x jclear high byte transfer latch
jsr IDEWaitReady
1da #ATAIdentify

sta ATACommand, x ;Issue the read command to the drive
jsr IDEWaitReady ;Wait for BUSY flag to go away

lda ATAStatus,x ;Check for error response

and #3509

cmp #$01 ;1if DRQ=0 and ERR=1 an error occured

bne sValidATACommand

.IF DEBUG

;warning this debug code trashes the Acc register
jsr DSString
.byte " Idfy Err:",0

00CBO2: lda ATAError,x
jsr DSByteCRLF

.ENDIF
ldx #0
1dy #0
lda #PRODOS_IO_ERROR
sec
jmp sExit ; Command Error occured, return error
sValidATACommand:
phy ;save Y, it holds the $0n sratchpad RAM offset
1dy #5500 ;zero loop counter
sPrefetchloop:
jsr IDEWaitReady ;See if a word is ready
bcs sWordRdy
ply

lda #PRODOS_IO_ERROR
jmp SExit

sWordRdy:
lda ATADatalLow,x ;Read words 0 thru 56 but throw them away
iny
cpy #57 ;Number of the last word you want to throw away
bne sPrefetchloop
ply
sPrefetchDone:
lda ATADatalLow,x ;Read the current capacity in sectors (LBA)
sec

sbc #BLOCKOFFSET
sta DrvBlkCountO,y
lda ATADataHigh,x
sbc #0

sta DrvBlkCountl,y
lda ATADataLow,x
sbc #0

sta DrvBlkCount2,y

.IF DEBUG
jsr DSString
.byte "Size:",0

lda ATADataHigh,x ;get the high byte of high word just for display
jsr DSByte
lda DrvBlkCount2,y
jsr DSByte
lda DrvBlkCountl,y
jsr DSByte
lda DrvBlkCountO,y
jsr DSByte
jsr DSBlank
.ENDIF

lda DrvBlkCount2,y

cmp #PARTITIONS32MB ;jmax out at (#PARTITIONS32MB * $10000 + OOFFFF)
; blocks

becs maxOutAtN

lda ATADataHigh,x
beq lessThan8GB
maxOutAtN:
lda #SFF ;The device is truly huge! Just set our 3-byte
; block count to $03FFFF
sta DrvBlkCount0,y
sta DrvBlkCountl,y
lda #PARTITIONS32MB-1 ;Number of 32MB devices, set by the equate:
; #PARTITIONS32MB
sta DrvBlkCount2,y
lessThan8GB:

PostFetch:
jsr IDEWaitReady ;jread the rest of the words, until command ends
bcc sReadComplete
lda ATADataLow,x
bra PostFetch
sReadComplete:

DrvBlkCount2 is the number of 32 MB partitions availiable - 1,
; or the highest drive # supported (zero based).

; If DrvBlkCount2 > drive # then StatusSize
; If DrvBlkCount2 = drive # then StatusSize
; If DrvBlkCount2 <

SFFFF
DrvBlkCountl, DrvBlkCount0
drive # then StatusSize = 0

; This scheme has a special case which must be handled because ProDOS

; partitions are not quite 32 meg in size but are only FFFF blocks in size.
; If a device is exactly: 32meg or 10000h blocks in size, it would appear

; as one drive of size FFFF and another drive of size 0000. To handle this
; case, we check for an exact size of 0000 and fall into the NoDrive code.

00CB5F:B9 F8 04 lda DriveNumber,y

00CB62:D9 F8 06 cmp DrvBlkCount2,y

00CB65:F0 0B beq ExactSize

00CB67:90 1E bce Fullsize

00CB69:

00CB69: NoDrive:

00CB69:A2 00 ldx #0

00CB6B:A0 00 ldy #0

00CB6D:A9 2F lda #PRODOS_OFFLINE

00CB6F:38 sec

00CB70:80 1C bra sExit

00CB72:

00CB72: ExactSize: ;If equal, the DrvBlkCountl,DrvBlkCount0O is the
00CB72: ; drive's exact size
00CB72:B9 F8 05 lda DrvBlkCountO,y

00CB75:19 78 06 ora DrvBlkCountl,y

00CB78:F0 EF beq NoDrive ;jcan't have a 0O-block device
00CB7A:

00CB7A:B9 F8 05 lda DrvBlkCountO,y

00CB7D:AA tax

00CB7E:B9 78 06 lda DrvBlkCountl,y

00CB81:A8 tay

00CB82:A9 00 lda #0

00CB84:18 clc ;no errors
00CB85:80 07 bra sExit

00CB87:

00CB87: FullSize:

00CB87:A2 FF ldx #SFF iX gets low byte of size
00CB89:A0 FF 1dy #SFF ;Y gets high byte of size
00CB8B:AY9 00 lda #0

00CB8D:18 clc ino errors

00CBSE:

00CB8E: sExit:

00CBSE: .IF DEBUG

00CB8E: php ;save the carry's state
00CBSE: pha

00CBSE: jsr DSString

00CB8E: .byte "Retd:",0

00CBSE: tya

00CB8E: jsr DSByte

00CB8E: txa

00CB8E: jsr DSByteCRLF

00CBSE: pla

00CBSE: plp jrecover the carry
00CB8E: .ENDIF

00CB8E:

00CB8E: 60 rts

00CB8F:

00CBS8F:

00CB8F: ReadBlock - Read a block from device into memory
00CB8F: ;

00CBSF: ; Input:

00CB8F: i pd Command Block Data $42 - $47

00CBS8F: X = requested slot number in form $n0 where n = slot 1 to 7
00CB8F:

00CBSF: Output:

00CBSF: i A = ProDOS read return code

00CBSF: Carry flag: 0 = Okay, 1 = Error

00CBS8F:

00CB8F: ZeroPage Usage:

00CB8F: SEF

00CB8F: w/DEBUG enabled: SEB, EC, SED, S$SEE
00CB8F: Note: location SEF is saved and restored before driver exits
00CB8F:

00CB8F: ReadBlock:

00CB8F: .IF DEBUG

00CBSF: jsr DSString

00CB8F: .byte " Rd",0

00CBSF: jsr DisplayParms

00CB8F: .ENDIF

00CB8F:

00CB8F:A5 45 lda pdIOBufferH

00CB91:48 pha

00CB92:A5 EF lda zptl

00CB94:48 pha

00CB95:

00CB95: .IF DEBUG

00CB95: lda CheckSumHigh

00CB95: pha

00CB95: lda CheckSumLow

00CB95: pha

00CB95: .ENDIF

00CB95:

00CB95:20 9F CB jsr ReadBlockCore

00CB98:

00CB98: .IF DEBUG

00CB98: ply

00CB98: sty CheckSumLow

00CB98: ply

00CB98: sty CheckSumHigh

00CB98: .ENDIF

00CB98:

00CB98:7A ply

00CB99:84 EF sty zptl

00CB9B:7A ply

00CB9C:84 45 sty pdIOBufferH

50

00CB9E: 60

00CBE2
00CBE
00CBE

00CBE6:

rts

ReadBlockCore:
.IF DEBUG
stz CheckSumLow
stz CheckSumHigh
.ENDIF

jsr IDEWaitReady
jsr Block2LBA iProgram the device's task file registers

; based on ProDOS address

lda #0
sta ATADataHigh,x

lda #ATACRead

sta ATACommand, x ;Issue the read command to the drive

jsr IDEWaitReady ;Wait for BUSY flag to clear

lda ATAStatus,x ;Check for error response from device

and #$09

cmp #$01 ;If DRQ=0 and ERR=1 a device error occured

bne rCommandOK

.IF DEBUG
;warning this debug code trashes the Acc register
jsr DSString
.byte " Err!",0
lda ATAError,x
jsr DSByteCRLF
.ENDIF

; The drive has returned an error code. Just return I/O error code to PRODOS
lda #PRODOS_IO_ERROR
sec
rts

; Sector is ready to read

rCommandOK :

ldy #2

sty zptl

ldy #0
rLoop:

lda ATAStatus,x ;Note: not using IDEWaitReady, using inline code
bmi rLoop ait for BUSY (bit 7) to be zero
and #5508 et DRQ status bit

beq rShort ;if off, didn't get enough data

lda ATADatalLow,x
sta (pdIOBuffer),y
iny

.IF DEBUG
clc
adc CheckSumLow
sta CheckSumLow
.ENDIF

lda ATADataHigh,x
sta (pdIOBuffer),y

.IF DEBUG
adc CheckSumHigh
sta CheckSumHigh
.ENDIF

iny
bne rLoop

inc pdIOBufferH
dec zptl

bne rLoop

.IF DEBUG
jsr DSString
.byte " Chk$",0

lda CheckSumHigh

jsr DSByte

lda CheckSumLow

jsr DSByteCRLF
.ENDIF

lda #0

clc

rts
; The Block was short, return I/O error code to PRODOS
rShort:

.IF DEBUG
jsr DSString

51

00CBE6: .byte " Short blk", 0

00CBE6:

00CBE6: lda zptl

00CBE6: jsr DSByte

00CBE6: tya

00CBE6: jsr DSByteCRLF

00CBE6: .ENDIF

00CBE6:

00CBE6:A9 27 lda #PRODOS_IO_ ERROR

00CBE8:38 sec

00CBE9:60 rts

00CBEA:

00CBEA:

00CBEA: WriteBlock - Write a block in memory to device
00CBEA: ;

00CBEA: Input:

00CBEA: pd Command Block Data $42 - $47
00CBEA: X = requested slot number in form $n0 where n = slot 1 to 7
00CBEA: ;

00CBEA: ; Output:

00CBEA: ;i A = ProDOS write return code

00CBEA: ; Carry flag: 0 = Okay, 1 = Error
00CBEA:

00CBEA: ZeroPage Usage:

00CBEA: ; SEF

00CBEA: ; w/DEBUG enabled: SEB, EC, SED, SSEE
00CBEA: ; Note: location SEF is saved and restored before driver exits
00CBEA: ;

00CBEA: WriteBlock:

00CBEA: .IF DEBUG

00CBEA: jsr DSString

00CBEA: .byte " Wt",0

00CBEA: jsr DisplayParms

00CBEA: .ENDIF

00CBEA:

00CBEA:A5 45 lda pdIOBufferH

00CBEC: 48 pha

00CBED:A5 EF lda zptl

00CBEF: 48 pha

00CBFO:

00CBFO: .IF DEBUG

00CBFO: lda CheckSumHigh

00CBFO: pha

00CBFO: lda CheckSumLow

00CBFO: pha

00CBFO: .ENDIF

00CBFO:

00CBF0:20 FA CB jsr WriteBlockCore

00CBF3:

00CBF3: .IF DEBUG

00CBF3: ply

00CBF3: sty CheckSumLow

00CBF3: ply

00CBF3: sty CheckSumHigh

00CBF3: .ENDIF

00CBF3:

00CBF3:7A ply

00CBF4:84 EF sty zptl

00CBF6:7A ply

00CBF7:84 45 sty pdIOBufferH

00CBF9:60 rts

00CBFA:

00CBFA: WriteBlockCore:

00CBFA: .IF DEBUG

00CBFA: stz CheckSumLow

0OCBFA: stz CheckSumHigh

00OCBFA: .ENDIF

00CBFA:

00CBFA:A9 00 lda #0

00CBFC:9D 80 CO sta ATADataHigh,x ;Clear the high byte of the 16 bit interface
0OCBFF: ; data latch
00CBFF:

00CBFF:20 78 CC jsr IDEWaitReady

00CC02:20 4D CC jsr Block2LBA ;jprogram IDE task file
00CCO05:

00CCO05: ; Write sector from RAM

00CC05:A9 30 lda #ATACWrite

00CC07:9D 8F CO sta ATACommand, x

00CCOA:20 78 CC jsr IDEWaitReady

00CCOD:

00CCOD:BD 8F CO lda ATAStatus,x ;Check for error response from writing command
00CC10:29 09 and #509

0occiz2:c9 01 cmp #$01 ;if DRQ=0 and ERR=1 an error occured
00cC14:D0 04 bne wCommandOK

00CC16:

00CC16: .IF DEBUG

00CC16: ;jwarning this debug code trashes the Acc register
00CC16: jsr DSString

00cC16: .byte " Err!:",0

00CC16: lda ATAError,x

00CC16: jsr DSByteCRLF

00CC16: .ENDIF

00CC16:

00ccCl6: ; The drive has returned an error code. Just return I/O error code to PRODOS
00CC16:

52

ooccle

00cc4D:

tA9 27 lda
sec
rts

; The Block was short,

wShort:

#PRODOS_IO_ERROR

; Sector is ready to write

wCommandOK :

ldy #2
sty zptl
ldy #0
wLoop:
lda ATAStatus,x
bmi wLoop
and #5508
beq wShort
lda (pdIOBuffer),y
pha
.IF DEBUG
clc
adc CheckSumLow
sta CheckSumLow
.ENDIF
iny
lda (pdIOBuffer),y
sta ATADataHigh,x
.IF DEBUG
adc CheckSumHigh
sta CheckSumHigh
.ENDIF
pla
bit SetCSMask,x
sta ATADataLow,x
bit ClearCSMask,x
iny
bne wLoop
inc pdIOBufferH
dec zptl
bne wLoop
.IF DEBUG

; Display the Checksum
; warning this debug code trashes the Acc register

jsr DSString

.byte " Chk$",0

lda CheckSumHigh

jsr DSByte

lda CheckSumLow

jsr DSByteCRLF
.ENDIF

lda #0

cle

rts

.IF DEBUG
; Display "W:Short"
jsr DSString
.byte " W:Shrt:", 0
lda zptl
jsr DSByte
tya
jsr DSByteCRLF
.ENDIF
lda #PRODOS_IO_ERROR
sec
rts

ote: not using IDEWaitReady, using inline code
ait for BUSY (bit 7) to be zero

et DRQ status bit

;if off, didn't get enough data

;any access sets mask bit to block IDE -CSO on
; I/O read to drive

emember that all write cycles are

preceded by a read cycle on the 6502

et back to normal, allow CSO assertions on

; read cycles

return I/O error code to PRODOS

; Input:

Block2LBA - Translates ProDOS block# into LBA and programs devices'

registers.

task file

pd Command Block Data $42 - $47
X = requested slot number in form $n0 where n = slot 1 to 7

Y = $0n (n = slot#)

i Ouput:

None

; ZeroPage Usage:

for accessing scratchpad RAM;

53

00CC4D:
00CC4D:
00CC4D:
00CC4D:
00Cc4D:
00CC4D:
00cc4D:
00CC4D:
00CC4D:
00cc4D:
00CC4D:
00cc4D:
00CC4D:
00CC4D:
00Cc4D:
00CC4D:
00cc4D:
00CC4D:
00CC4D:
00cc4D:
00CC4D:
00CC4F:
00CC4F:
00CcCc52:
00cecs2:
00CC52:
00ccs2:
00CC52:
00CcCc52:
00cecs2:
00CC52:
00CC55:
00CC57:
00CC59:
00CC5B:
00CC5D:
00CCc5D:
00CC5E:
00CC60:
00CC63:
00CC63:
00CC65:
00CC67:
00CC6A:
00CC6A:
00CC6D:
00CC6F:
oocc72:
00cc72:
00cc74:
00CC77:
00cc78:
00CC78:
00cc78:
00cc78:
00CC78:
00cc78:
00CC78:
00cc78:
00cc78:
00CcC78:
00cc78:
00CcC78:
00cc78:
00cCc78:
00CcC78:
00cc78:
00CC7B:
00CC7D:
00CCTE:
00CC7F:
00cc80:
00CcC81:
00cc82:
00ccs2:
00ccs2:
00ccs2:
0occs2:
00cc82:
00ccs2:
0occs2:
00ccs2:
0occs2:
00cc82:
00ccs2:
0occs2:
00ccs2:
0occs2:
00ccs2:
00cc83:
00CC86:
00ccs8:
00Ccc88:
00CC8B:
00CC8B:

54

B9
29
49
FO
A9

18
65
9D

A5
69
9D

B9
69
9D

A9
9D
60

BD
30
6A
6A
6A
6A
60

5A
3C
A9

9D

8E

78
80

02
00

46
8B
47
00
8C
F8

8D

01
8A

82
EO

8E

co

co

co

CPU Registers changed:

None

This function translates the block number sent in the PRODOS request

packet,

into an ATA Logical Block Address (LBA).

The least significant 16 bits becomes the ProDOS block#.
The most significant 16 becomes the ProDOS Drive #

A ProDOS block and a ATA sector are both 512 bytes.

Logical Block Mode,

LBAQ7-LBAQOO:
LBA15-LBAOS:
LBA23-LBAl6:
LBA27-LBA24:

Block2LBA:
lda #SEO
sta ATAHead, x

the Logical Block Address is interpreted as follows:
Sector Number Register D7-DO.

Cylinder Low Register D7-DO.

Cylinder High Register D7-DO.

Drive/Head Register bits HS3-HSO.

;1, (LBR), 1, (Drive), LBA 27-24, where LBA=1,
i Drive=0

;Talk to the Master device and use LBA mode.

; Remember that this write will seen by both
; the master and slave devices.

Add BLOCKOFFSET to the ProDOS block number to offset the first drive block we
This keeps the device's first BLOCKOFFSET blocks free, which usually

use.

includes a MBR at block 0.

lda DrvMiscFlags,y

and #$80

eor #3580

beq rawBlocks

lda #BLOCKOFFSET
rawBlocks:

clc

adc pdBlockNumber

sta ATASector,x

lda pdBlockNumberH

adc #0

sta ATACylinder,x

lda DriveNumber,y

adc #0

sta ATACylinderH,x

lda #1

sta ATASectorCnt,x

rts

; bit 7 = raw block access

; A = $00 or BLOCKOFFSET

;store ProDOS Low block # into LBA 0-7

;account for any overflow in LBA 0-7
;store ProDOS High block # into LBA 15-8

;jaccount for overflow from LBA 8-15
;store LBA bits 23-16

IDEWaitReady - Waits for BUSY flag to clear, and returns DRQ bit status

Input:

X = requested slot number in form $n0 where n = slot 1 to 7

ouput :

Carry flag = DRQ status bit

ZeroPage Usage:

CPU Registers changed:

None

IDEWaitReady:

lda ATAStatus,x

bmi IDEWaitReady ;Wait for BUSY (bit 7) to be zero

ror ;shift DRQ status bit into the Carry bit

ror

ror

ror

rts

CheckDevice - Check to see if a device is attached to the interface.
; Input:

X = requested slot number in form $n0 where n = slot 1 to 7
Output:

CPU Registers changed:

Carry flag: 0

Device Present, 1 = Device Missing

Checks to see if the drive status register is readable and equal to $50

If so,

return with the Carry clear, otherwise return with the carry set.

Waits up to 10sec on a standard lMhz Apple II for drive to become ready

CheckDevice:

phy

bit ClearCSMask,x
lda #SEO

sta ATAHead,x

1dy #0

;reset MASK bit in PLD for normal CSO signaling
;$E0 = [1, LBA, 1, Drive, LBA 27-24] where

; LBA=1, Drive=0

;Make sure ATA master drive is accessed

00CC8D:

00CCB2:

8F
DO
50
0D
C5
A6

64

ED

01
FC

01
F6

co

chkLoop:

lda ATAStatus,x
and #%11010000
cmp #$50

beq DeviceFound
lda #WAIT_100ms
jsr Wait

iny

cpy #100

bne chkLoop

sec

ply

rts

DeviceFound:

clc

ply

rts

;if BUSY= 0 and RDY=1 and DSC=1

;Wait 100ms for device to be ready

;Wait up to 10 seconds for drive to be ready
This time may turn out to be much shorter on
; accelerated Apple IIs

;set ¢ = 1 if drive is not attached

;set ¢ = 0 if drive is attached

Wait - Copy of Apple's wait routine. Can't use ROM based routine in case
ROM is not active when we need it.

Input:

CPU Registers changed:

Wait:

A = desired delay time, where Delay(us) = .5(5A%2 + 27A + 26)
or more usefully: A

sec
Wait2:
pha
Wait3:
sbc #1
bne Wait3
pla
sbc #1
bne Wait2
rts
.IF DEBUG

A,

P

(Delay[in uS]/2.5 + 2.09)".5 - 2.7

DisplayParms - Display the parameters of the ProDOS request

Input:

ZeroPage Usage:

CPU Registers changed:

None

DisplayParms:

st

DSString

.byte " B:",0

lda pdBlockNumberH
jsr DSByte

lda pdBlockNumber
jsr DSByte

jsr DSString
.byte " U:",0

lda pdUnitNumber
jsr DSByte

jsr DSString

.byte " A$",0

lda
jsr

lda
bra

pdIOBufferd
DSByte

pdIOBuffer
DSByte

A,

P

DSString - Sends a String to the Super Serial Card in Slot 2

Input:

ouput :

string must immediately follow the JSR to this function
and be terminated with zero byte.

None

55

00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:
00CCB2:

56

; ZeroPage Usage:

; MsgPointerLow, MsgPointerHi

CPU Registers changed: A, P

DSString:
phx
tsx
lda MsgPointerLow
pha
lda MsgPointerHi
pha

lda StackBase+2,x
cle

adc #$01

sta MsgPointerLow

lda StackBase+3,x
adc #0
sta MsgPointerHi

dssl:
lda (MsgPointerLow)
beq dssend
jsr DSChar
inc MsgPointerLow

bne dssl
inc MsgPointerHi
bra dssl

dssend:

lda MsgPointerHi

sta StackBase+3,x
lda MsgPointerLow
sta StackBase+2,x

pla

sta MsgPointerHi
pla

sta MsgPointerLow
plx

rts

;save the X reg
;put the stack pointer in X

;ipush zero page location on stack
;push zero page location on stack
;determine the location of message to display

;add 1 because JSR pushes the last byte of its
; destination address on the stack

;display message

;fix up the return address on the stack.

;restore zero page location
;restore zero page location

jreturn to location after string's null.

DSByteCRLF - Sends a Hex byte
Card in Slot 2

Input:

followed by a CR LF to the Super Serial

; A = Hex number to display

Ouput:
None

CPU Registers changed: A, P

DSByteCRLEF:

jsr DSByte
DSCRLF:

lda #$0D

jsr DSChar

lda #S$0A

bra DsChar

Input:

; Ouput:
; None

CPU Registers changed: A, P

DSByte:
pha
lsr
1lsr
lsr
lsr
jsr DSNibble
pla

DSNibble:
and #SO0F
ora #$30
cmp #$30+10
bee digit
adc #6

digit:
bra DSChar

o

DSByte - Sends a Hex byte to the Super Serial Card in Slot 2

A = Hex number to display

; DSChar - Sends a char to the Super Serial Card in Slot 2

Tnput:
A = Character to Send

i Ouput:

00CCB2:

(data out serial port)

; ZeroPage Usage:

None

; CPU Registers changed: P

DSBlank:

lda

DSChar:

pha
phy
lda
and
tay
lda
cmp
beq

; Init

lda
sta
lda
sta
lda
lda
sta

dsc0:
lda
and
beq

ply
pla
sta
rts

.ENDIF

#$20

mslot
#S0£

SeriallnitDone,y
#SA5
dsco

;Y reg now has $0n for accessing scratchpad RAM

the serial port if sig byte is not $AS5.
; Set up serial port on the Apple Super Serial card. Always assume slot 2.

#S1f

$cOab

#50b

$claa

$c0a9

#SA5
SeriallnitDone,y

$c0a9
#%$00010000
dsc0

$c0a8

;control register

;format
;jclear status

;Transmit register empty?
;If not, wait

jget byte back
isend it

57

	Basic Information
	Warranty and Return Information
	Warnings
	Quick Start Instructions
	Installation Details
	CFFA Partition Scheme
	Apple II Boot Procedure with CFFA Interface Card Installed
	CompactFlash Memory Cards
	CompactFlash Socket
	CF Advantages
	CF Disadvantages
	CF Removability
	IDE Drives
	IDE Drives Compatible with the CFFA
	IDE Drive Connector
	IDE Power Connector
	Mounting Holes for 2.5” Drives
	Preparing the Storage Device
	Partition Scheme for Storage Devices
	Formatting Storage Devices
	Devices Compatible with CFFA
	GS/OS Users
	Advanced Information
	Hardware
	Altera CPLD
	Altera CPLD Pinout
	CPLD Logic Files
	Firmware
	Why a Static Partition Scheme?
	Firmware Updates
	Contributing Firmware to the CFFA Project
	EPROM Firmware Select Jumpers
	EPROM Layout
	CFFA Hardware Memory Map
	Marketing Megabytes
	Contact Information
	CFFA Web Site
	Internet E-Mail
	CFFA Message Web Forum
	Acknowledgements
	Appendix 1: Firmware Listing

