Gy o

1

4

Computer

INCORPORATED

ROMPLUS +

OPERATING MANUAL

g

ROMPLUS +

OPERATING MANUAL

@ 1981 MOUNTAIN COMPUTER, INC.
Manual Part Number 11-00233-01D

Table of Contents

i INTRODUCTION
ii INSTALLATION

Chapter 1 HARDWARE FEATURES

LI |
WWN = =

General

ROM Space
RAM Space
TTL Inputs
Control ROM

—))) e

Chapter 2 USING ROMPLUS+

2-1 Activating ROMPLUS+

2-2 Commands

2-3 CTRL-SHIFT-M

2-3 CTRL-SHIFT-N

2-4 Selecting RAM
Chapter 3 ADVANCED PROGRAMMER'S INFORMATION

3-1 The Control Word

3-3 Control ROM

3-5 The Branch Table

3-6 Writing Your Own ROM

3-6 Programs On Two ROMs

Chapter 4 REFERENCE

Apendix A CONTROL ROM SOURCE LISTING

A-1 General Information

INTRODUCTION

Mountain Hardware's ROMPLUS+ is a powerful addition to your Apple
II* computer. ROMPLUS+ has room for six of the 2316 type ROM's,
or the 2716 EPROM. With each 2316 chip holding 2K bytes of

memory, ROMPLUS+ has the capacity of 12K bytes of read only
memory.

Whether your applications of the Apple II are for business,
education, research, or just fun, eventually you will discover a
set of programs that you use constantly. Examples are special
peripheral drivers, utility routines, and data collection
programs. You may access these programs on the ROMPLUS+ board as
soon as you turn your Apple II on.

Additionally, ROMPLUS+ provides 255 bytes of RAM which may be
activated or deactivated under program control. The on-board
control ROM simplifies your program selection. You need only
type a few keystrokes to run any program on ROMPLUS+. The
control ROM relieves the burden of remembering many different
addresses. ROMPLUS+ also has two TTL level inputs, and these are
available for any user application. For example, an option on
Mountain Hardware's Keyboard Filter ROM uses one of these inputs
to monitor the shift key on the Apple II's Keyboard.

This manual is a user's manual for ROMPLUS+. In this manual, we

cover installation, hardware features of ROMPLUS+, using the
ROMPLUS+, and writing your own PROMs.

¥Apple II is a trademark of Apple Computer, Cupertino, CA.

INSTALLATION

To install ROMPLUS+ simply follow these instructions:

1.

Turn off the power switch at the back of the
Apple II. The removal or insertion of any card

with power on could cause severe damage to both

the computer and ROMPLUS+.

Remove the cover from the Apple II by pulling
up on the cover at the rear edge.

Now choose an Apple II slot number. Slot
number 0 should never be used as it is reserved
for Apple's language cards. In general,
we recommend that you install ROMPLUS+ into a
slot immediately below the disk controller
card. For example, if the disk is in slot #6,
place ROMPLUS+ into slot #5. The only restric-
tion is that you may not place ROMPLUS+ into
slot number O.

Plug ROMPLUS+ into the slot you have chosen.
Make sure the Dboard is firmly seated 1in the
socket.

Replace the cover on your Apple II and turn on
your computer.

ii

Chapter 1
HARDWARE FEATURES

General

In this section, we discuss in detail the hardware features of
ROMPLUS+. The four basic parts are the ROM sockets, the RAM, the
TTL inputs and the control ROM.

The ROMPLUS+ board is shown in Figure 1. This figure gives the
layout of the board's features. ‘

TTL
ROM [ROM e
SOCKET SOCKET Inputs
#1 $#2
ROM ROM
[S8ecer [[550ken
IMRom ROM RAM
SOCKET SOCKET
#5 #6 Control”YROM
FIGURE 1.

ROM Space

ROMPLUS+ has six 2U4-pin sockets located on the left side of the
board. These sockets accept the 5 volt 2316 type of ROM chips,
with each chip holding 2048 bytes. A pin for pin compatible
cEPROM, such as the 2716 may also be used in the ROM sockets.

All of the ROM chips are mapped into the $C800-$CFFF memory
address space, but only one chip is mapped at any one time. If

1-1

Chapter 1 HARDWARE FEATURES

your application program is larger than 2048 bytes, do not worry.
There is a scheme for switching control from one chip to another
chip. This scheme, plus information for creating your own chips,
is given in the Advanced Programmers Information chapter.

RAM Space

ROMPLUS+ has 256 bytes of read-write memory (RAM) on-board. This
RAM may be activated or deactivated.under program control. When
activated, the RAM maps into the $CF00-$CFFE memory address
space. Notice that only 255 bytes are available. The last byte
at location $CFFF may not be used. This is because of the Apple
II's peripheral convention which deactivates all peripheral
boards when memory address $CFFF is referenced. Also, when the
RAM is active, the top 256 bytes of the selected ROM chip are not
available. This is because the RAM maps into the same space used
by the ROM chip. If your ROM chip uses all of its 2048 bytes,
simply deactivate the RAM. See chapter 5 for information on the
control word used to activate or deactivate the RAM.

The RAM will retain its contents whether ROMPLUS+ is active or
not in use. The RAM, of course, loses its contents when power is
switched off.

The RAM provides the ROM chips with their own private storage
area. This will help to minimize memory conflicts. However, the
RAM may be used by any program in the Apple II.

We recommend that the RAM be allocated in the following way:

Address Use

$CF00-$CFO03 Scratch area for control ROM
$CFOU-$CF5F Scratch area for ROM socket #1
$CF60-$CFT7F Scratch area for ROM socket #2
$CF80-$CFIF Scratch area for ROM socket #3
$CFA0-$CFBF Scratch area for ROM socket #U4
$CFCO-$CFDF Scratch area for ROM socket #5
$CFE0-$CFFE Scratch area for ROM socket #6

1-2

Chapter 1 HARDWARE FEATURES

TTL Inputs

A four pin connector on ROMPLUS+ provides two TTL level inputs
and two ground pins. A matching four pin plug with wire is
available from Mountain Computer. Order Part No. MHP-X021.
Price $3.00.

12314

Left /lll]lll]\ Right

Pins 2 and 3 are grounded. Pins 1 and 4 are the TTL inputs. The
inputs are held high by pull-up resistors. Therefore, an unused
input will be read as a high level, or a "1". The TTL inputs are
read through the control word. Chapter 5 has more information on
the control word. Pin 1 on the connector maps to bit 4 of the
control word. Pin 4 on the connector maps to bit 5 of the
control word.

Control ROM

The control ROM provides the "intelligence" which makes ROMPLUS+
easy to use. It controls input and output functions and allows
for easy ROM socket selection and entry point selection. Many of
its features are in the next chapter, Using ROMPLUS+.

The control ROM occupies the memory address space $CNOO-$CNFF,
where N is the slot number. The ROM is supplied with power
whenever it is addressed. This results in a power-saving.

Chapter 2
USING ROMPLUS+

This chapter covers the basic information you need for typical
operation of ROMPLUS+. This chapter should be read carefully.
We will cover such topics as selecting ROMPLUS+, activating RAM,
ROM socket selection, and entry-point selection.

Activating ROMPLUS+

ROMPLUS+ is a peripheral that is activated in the same manner as
other Apple II peripherals. From BASIC, ROMPLUS+ is turned on by
a "IN#n" or "PR#n" command, where n is the slot number. From
the monitor, a "nCTRL-K" or "nCTRL-P" command will turn on
ROMPLUS+. If you are running BASIC under DOS, use the regular
DOS procedure of printing a CTRL-D followed by the command.
Whenever the board is activated, the RAM is also activated.

The board is deactivated by using both the "IN#0" and "PR#O0"
commands. Hitting the "RESET" key will also deactivate ROMPLUS+.
If another peripheral card is accessed via the "IN#n" or "PR#n"
commands, ROMPLUS+ will be deactivated. Of course, any reference
to address $CFFF will deactivate ROMPLUS+ (or any other
peripheral board).

Once ROMPLUS+ has been activated, all input and output operations
are vectored through the control ROM. This is transparent to the
user, i.e., nothing seems different. However, the control ROM is
looking for one of two special command characters. If the
character passed on input or output is not a special command
character, it is passed to the input or output routine. If the
character is a command, then the next two characters are
interpreted as parameters of the command.

i

Chapter 2 USING ROMPLUS+

Commands

The two command characters are CTRL-SHIFT-M and CTRL-SHIFT-N
(ASCII codes $9D and $9E respectively). You may obtain these
characters by pressing the CONTROL, SHIFT, and letter keys
simultaneously. These characters were chosen to minimize typing
accidents.

The syntax of the commands are:

CTRL-SHIFT-M<ROM socket #»<entrypoints.
CTRL-SHIFT-N<ROM socket #><entry point>.

There are no spaces between the command character, the ROM socket
#, and the entry point. The brackets are not entered. No return
is necessary after the command. Notice the command is three
characters long.

ROM socket number is a value from O to 6 which specifies which
ROM socket you want to select. Only one ROM socket is active at
one time, but one ROM socket may call another ROM socket.
Selecting chip number 0 will deactivate the current ROM socket
without deactivating ROMPLUS+. If an invalid ROM socket is
selected, the "bell"™ will beep.

Entry point is a letter, starting with A, and ending with a
letter depending on the particular ROM chip selected. The number
of entry points on any ROM is determined by information on that
particular ROM. The first entry point is always "A", the second
entry point is "B", and so on. If an illegal entry point is
specified, the bell will beep. The documentation accompanying
any commercially available ROM for ROMPLUS+ will detail the valid
entry points of that ROM. If you write your own ROM, you will
place a table of entry points on the ROM. The number of entry
points determines the valid entry point characters. More
information on writing your own ROM chips is in the next
chapter.

Chapter 2 USING ROMPLUS+

CTRL-SHIFT-M

This command selects one of the two operating modes of ROMPLUS+.
The CTRL-SHIFT-M command will let the selected ROM gain control
every time a character is inputed or outputed.. When this command
is issued, all subsequent input and output is vectored through
two hooks which are located on the selected ROM.

Recall that when ROMPLUS+ is activated, the input and output is
vectored through the control ROM. This means that when a
character is input, a call is placed to the control ROM which
calls the input driver. The control ROM inspects this character
and then passes it along to the program requesting input.
Similarly, on output of a character, a call is placed to the
control ROM, which inspects the character and then calls the
output driver. Whenever ROMPLUS+ is not active, input and output
are not vectored through the control ROM.- Instead, they are
vectored to the normal input and output drivers of the Apple.

When the CTRL-SHIFT-M command is given, the input and output are
now vectored through the input and output hooks on the selected
ROM. Normally, these input and output hooks point to locations
within the selected ROM. More information about the hooks is in
the next chapter.

In general, all of the hooks and vectors are transparent to the
user. When ROMPLUS+ is deactivated, I/0 vectors through the
normal Apple II I/0 drivers. When ROMPLUS+ is active, I/0 is
vectored through the control ROM. When a CTRL-SHIFT-M command is
given, all subsequent I/0 is vectored through the selected ROMs'
I/0 hooks. The ROMs' I/0 hooks are located in the branch table.
More information about the branch table is in the next chapter.

The net effect of the CTRL-SHIFT-M command is that the selected
ROM gains control on every input or output character. This
continues until ROMPLUS+ is deactivated, or the particular ROM is
deactivated. Examples of the type of program which use this mode
of operation are printer drivers, or Mountain Hardware's Keyboard
Filter. These programs need to execute with every input or
output operation.

CTRL-SHIFT-N

This command selects one of two operating modes of ROMPLUS+. The
CTRL-SHIFT-N command will pass control to the selected ROM
program. This program is executed immediately and then control
returns. If this command was printed as part of a BASIC progranm,
then control returns to BASIC. If this command was entered
immediately from the keyboard, then control returns to the
keyboard.

2-3

Chapter 2 USING ROMPLUS+

A program executed by the CTRL-SHIFT-N command in one ROM may
execute another ROMPLUS+ program in another ROM by outputting
anothr CTRL-SHIFT-N command. However, a program executed by the
CTRL-SHIFT-N command may not output a CTRL-SHIFT-M command. In
the former case, the control ROM keeps track of control. In the
later case, the control ROM keeps track of control. In the later
case, we have a situation which is logically meaningless. It
does not make sense to have a routine type of program calling a
special driver type program.

It does make sense however, to have a driver type program
(activated by CTRL-SHIFT-M) call upon a routine type program
(CTRL-SHIFT-N). For example, a program such as Keyboard Filter
might call upon a routine on another ROM. It would output a
CTRL-SHIFT-N command. The control ROM keeps track of the calling
ROM and the called ROM. It returns control to the calling ROM
when the called ROM returns.

Selecting RAM

Any time ROMPLUS+ is activated, or any ROM is activated via the
CTRL-SHIFT-M or CTRL-SHIFT-N commands, the on-board RAM is
activated. Whenever this RAM is active, the top 256 bytes of the
selected ROM are not available. If your program uses the top 256
bytes of the ROM, you must deactivate the RAM before the code is
executed. Otherwise, the computer will read the contents of RAM
and interpret that data as instructions. This usually results in
disaster. It is necessary to reactivate RAM before returning
control. The next chapter contains a few routines used for con-
trolling the state of the RAM.

Notes

The control ROM on ROMPLUS+ makes use of two locations in memory
normally used by the monitor. These two locations are $3A and
$3B. As a result, whenever ROMPLUS+ is active, the monitor "L"
command for disassembly and the Apple II mini-assembler will not
work properly. To restore these commands, deactivate ROMPLUS+.

The Apple II peripheral scheme states that all ROM's in the
$C800-$CFFF space must be de-selected whenever $CFFF is
referenced. Therefore, take care that your programs never
reference location $CFFF.

2-4

Chapter 3
ADVANCED PROGRAMMER’S INFORMATION

This chapter contains information for the advanced use of
ROMPLUS+. The sections about the control word and the control
ROM should be read by anyone using ROMPLUS+. The other sections
about the branch table, preparing your ROM, and programs greater
than 2K bytes are intended for the user that will prepare their
own ROM chip for use in ROMPLUS+. However, anyone using ROMPLUS+
will benefit from the information in those sections.

The Control Word

The features of ROMPLUS+ are controlled by the control word. The
control word is a read/write word located at a slot dependent
memory address. The address of the control word is $C080+$NO (or
-16256+16%¥N from BASIC), where N is equal to the slot number.
The following table summarizes:

Slot # Hex Address BASIC Address
1 $C090 -16240
2 $COAO -16224
3 $COBO -16208
b $CoCO -16192
5 $CODO -16176
6 $COEO -16160
7 $COFO -16144

A write to the control word location may be used to select a ROM
socket, activate or deactivate the board, or activate or
deactivate the RAM. The function of the particular bits are
described below:

I7|6|5|4|3|2|1|0I control word

Bit 7: This bit controls the RAM. If a "0" is written,
the RAM is deactivated. If a "1" s written,
the RAM is activated.

Bit 6-4: Unused.
Bit 3: This bit controls the Dboard. If a "O" is

written, the ROMPLUS+ is deactivated. If a "1"
is written, the board is activated.

Chapter 3 ADVANCED PROGRAMMERS INFORMATION

Bit 2-0: These bits select the ROM socket to be -enabled.
Bit two is the most significant bit of the
value. If the value=0, then none of the ROMs
are enabled. If set from 1 to 6, the corresp-
onding ROM is enabled. The value should never
equal 7.

A read to the control word is used to check the status of the
RAM, find the currently enabled ROM socket number, or to sense
the value of the two TTL inputs. The function of the particular
bits are described below.

I7lslslalal2l1lol contro1 word

Bit T: This bit reads the status of RAM. If equal to
"O", then RAM is deactivated. If equal to "1",
then RAM is active.

Bit 6: Unused.

Bit 5: TTL input from pin 4.

Bit U4: TTL input from pin 1.

Bit 3: Unused.

Bit 2-0: These bits indicate which Rom socket is current-

ly enabled. The value is determined the same
way as the bits 2-0 of the written control word.

We next examine several programming examples of control word use.
First, if we wish to activate ROMPLUS+ and select ROM socket
number one, we use these machine language instructions:

LDA #$89 :RAM active, board active, ROM i1

STA $C080,X tWrite control word
In that example, and in the examples to follow, we assume that
the X register contains the slot number (1-7) multiplied by 16.
This is the standard convention for slot independent I/0 on Apple
II.
To do the same thing in BASIC, we use a statement like this:

POKE -16256+16%SLOT, 137

Chapter 3 ADVANCED PROGRAMMERS INFORMATION

Now suppose you wish to activate ROMPLUS+, deactivate the RAM,
and select ROM #5. You would do one of the following:

LDA #$0D :Deactivate RAM, activate ROMPLUS+, select
ROM #5.
STA $C080,X :Write control word

or POKE -16256+16%SLOT, 13

If you wish to toggle the state of the RAM (i.e., turn off when
it is on and turn on when it is off), you would use this code:

LDA $C080,X :Read control word
EOR #$80 :
ORA #%80 :
STA $C080,X :Write control word

From BASIC, use these statements:
S=(PEEK(-16256+16%SLOT)+128)MOD 256
IF S MOD 16<8 THEN S=S+8
POKE -16256+16%*SLOT,S

It is necessary to set bit 3 so that you don't deactivate
ROMPLUS+. This final example will test the TTL input at bit 4.

LDA $C080,X :Read control word

BIT #$10 tMask bit #U4

BNE :If bit is set

BEQ ¢If bit is clear
In BASIC:

IF (PEEK(-16256+16%¥SLOT)MOD 32)>15 THEN BIT IS SET

Remember that when writing the control word, bit 3 must be set to
activate ROMPLUS+. Even if ROMPLUS+ is already active, bit 3
must be set if you do not want to deactivate ROMPLUS+.

If a read of the current ROM chip yields ROM socket number zero
as the active ROM, then no ROM is active. If ROMPLUS+ is not
active, then the current ROM chip will read as ROM socket number
zero.

Control ROM

The control ROM provides "intelligence" for ROMPLUS+. It is a
256 byte memory which controls the functions of ROMPLUS+. A
complete source listing is in the Appendix. In this section, we
will detail memory usage and entry points of the control ROM.

3-3

Chapter 3 ADVANCED PROGRAMMERS INFORMATION

The control ROM uses two bytes of memory in the zero page. These
two locations are $3A and $3B. These two locations were chosen
to take advantage of the monitor indirect jump at $FEBC. The use
of the two page zero memory locations ($3A & $3B) causes a memory
conflict with two of the monitor's commands. As mentioned
erlier, when ROMPLUS+ is activated, the mini-assembler and the
disassembler will not work.

Additionally, the control ROM uses seven bytes in the screen
space. These locations are slot dependent, and they are
summarized in the following table.

Symbolic Name Byte Location Usage

CHIP $478+SLOT# Contains active ROM socket #
for CTRL-SHIFT-M commands

MODE $UF8+Slot# Used to parse commands

WHICH $578+S1ot# Used to hold the entry point
letter

CURCHIP $5F8+S1ot# Contains number of most rec-
ently used ROM socket

TCHIP $678+Slot# A scratch location

S0 $6F8+Slot# Contains the value (Slot
* 16)

MSLOT $7F8 Contains the value ($CN

where N=Sloti#)

The control ROM has three entry points. Assuming that N = Slot
number, the entry points are:

$CNOO Initial entry point, used when ROMPLUS+ 1is
activated. It will initialize variables
and I/0 hooks.

$CNO6 Output entry point. Vector here to output
a character.
$CNO8 Input entry point. Vector here to input a

character.

3-4

Chapter 3 ADVANCED PROGRAMMERS INFORMATION

The Branch Table

Every ROM that is to be used on ROMPLUS+ must have a branch table
at the beginning of the ROM. The branch table allows the user to
select an entry point into the ROM by using Jjust a 1letter to
designate the entry point. A summary of the branch table is as
follows:

Address
$C800 Address of output hook routine
$Cc802 Address of input hook routine
$c80o4 Value which indicates length of Branch
table
- $C805 . Address for entry point #1
$C807 Address for entry point #2

$C805+(2%(n-1)) Address for entry point #n

A1l of the addresses are 2 bytes long, with the low order byte
first. All branch tables must have at least one entry point.
With only one entry point, the branch table would end at $C806
and the value of the byte at $C804 would be $07. The value
contained at $C804 is the total number of bytes in the branch
table. Therefore, if there are "N" entry point address, the
value of $C804 is (2¥N+5).

The input and output hook address ($C800 and $C802) are used by
the CTRL-SHIFT-M command. $C800 contains the address of the
routine to be called every time a character is to be outputed.
This output hook address is usually the address of a routine on
that particular ROM. $C802 contains the address of the routine
on a particular ROM to be called every time a character is to be
inputted. All character I/0 routines should end with a return
from subroutine instruction. If the ROM that you write does not
use the CTRL-SHIFT-M command, then these I/0 hooks will not point
to a routine on the ROM. Instead, you should use the addresses
of the standard Apple I/0 drivers. The output hook, $C800,
should contain the address $FDFO, with the low oder byte first.
Likewise, the input hook, $C802, should contain the address
$FD1B. These I/0 hooks on the ROM must always point to valid I/0
routine addresses.

The branch table is the only requirement for ROM's. The

application program's code may begin immediately after the branch
table.

3-5

Chapter 3 ADVANCED PROGRAMMERS INFORMATION
Writing Your Own ROM

There are a few things you should remember when writing your own
ROMs. First, your program should never reference location $CFFF.
Any reference to that address will disable all memory that maps

into $C800-$CFFF. 1If you do reference that address, you will
disable ROMPLUS+.

The slot number of ROMPLUS+ may be found by your program by
reading $7F8. It will contain the value $CN where N is the slot
number. Location $6F8+N contains the value $NO.

The control ROM makes sure that RAM is active whenever a ROM
socket is selected. If your program must deactivate the RAM, it
must reactivate RAM before it finishes executing.

Programs On Two ROMs

The 2K bytes of storage on each ROM is large enough for all but
the larger programs. If you have an application program that is
larger than 2K bytes, there is a scheme allowing you to use two
ROMs in conjunction.

ROMPLUS+ will map any one of the six ROMs into the $C800-$CFFF
address space at one time. If you simply had the first ROM write
a control word which switches the ROM socket number to the new
ROM socket number, your program will immediately switch to the
other ROM. This usually blows up the program.

One solution to this problem is to write a subroutine dispatching
subroutine, and place this subroutine into identical addresses on
the two ROMs. This way, you enter the subroutine dispatching
subroutine on the first ROM, the switching of ROM occurs, and the
dispatching routine continues on the second ROM, because the
identical addresses contain identical code.

Here is the code which will do the task:

*¥The A register contains the ROM socket number

¥*you wish to use. The Y register contains a

¥value which determines which routine is run (routine
¥number ¥2). You must preserve the X register.

MSLOT EQU $7F8
CONTROL EQU $C080
CHIPNUM EQU $0
SUBADDR EQU $1

3-6

Chapter 3 ADVANCED PROGRAMMERS INFORMATION

CHIPCALL STA CHIPNUM :save ROM number
LDX MSLOT :get $CN
LDA $638,X :get $NO
TAX :x contains value $NO
LDA CONTROL,X :get control word
ORA #$08 :turn on activate bit 3
PHA :save so we can restore

later

AND #$F8 :set ROM number to zero
ORA CHIPNUM tor in new ROM number
STA CONTROL, X twrite to control word

At this point, we are now on the other ROM. Call routine
specified by Y.

LDA SUBTABLE, X :get low byte of address

STA SUBADDR tand store here

LDA SUBTABLE+1,y :get high byte of address

STA SUBADDR+1 tand store here

JSR CALLSUB tindirect subroutine call

PLA :return, get old state

STA CONTROL, X trestore old ROM

RTS sreturn out of this routine
CALLSUB JMP (SUBADDR) :indirect jump to routine
SUBTABLE DA SUB1 ttable of routine addresses

DA SUB2 :low byte first, high byte

second

It is necessary for this routine to be located at identical
addresses on the two ROMs. Otherwise it will not work. SUBADDR
may be located anywhere in memory as long as there are no

possible memory conflicts. We recommend the page zero addresses
of $1 and $2.

The program "CHIPCALL™ is a subroutine, and should be called with
the "JSR" instruction. Before you call the subroutine, set up

the "A" and "Y" registers. The value of the X register must be
preserved.

Chapter 4
REFERENCE

This chapter is a concise description of the hardware and
software of ROMPLUS+. It is intended to serve as a reference
section only.

The hardware features of ROMPLUS+ are:

1.

4.

Sockets for six 2K ROMs (2316) or EPROMs (2716).
Total ROM capacity is 12K bytes. ROM 1is selected by
software.

256 bytes of RAM which can be enabled or disabled under
software control.

Two TTL levels inputs which are held high by pull-up
resistors. The inputs are read from the control word.

A 256 byte control ROM which controls the operation of
ROMPLUS+.

The software features of ROMPLUS+ are summarized below:

l.

2.

ROMPLUS+ is activated by the "IN#n" or "PR#n" commands
from BASIC. ROMPLUS+ is deactivated by both "IN#n"

and "PR#n" commands, or by RESET, or by referencing
location $CFFF.

There are two modes of operation available. These

modes are selected by these commands:
a) CTRL-SHIFT-M: This mode will run the selected ROM

program every time a character is
inputted or outputted.

b) CTRL-SHIFT-N: This mode will run the selected ROM

program immediately, and then
return control to the calling pro-
gram.

The command structure is:

CTRL-SHIFT-M<ROM socket numbers<entry point>
CTRL-SHIFT-N<ROM socket numbers<entry point>

The "CTRL-SHIFT-letter" character is typed by holding
down the CONTROL and SHIFT keys while typing either "M"
or "N".

<ROM socket number> is a value from 0 to 6, and selects

Chapter A REFERENCE

a ROM socket. BROM socket zero will disable all the
ROMs without disabling ROMPLUS+. <entry point> is a
character used to select the entry point into the ROM.

A1l ROMs must have at least one entry point. Entry
point A is the first entry point, B is the second entry
point, etec.

There are no spaces between the command character,
the Ram socket number, and the entry point character.
The brackets are not typed.

RAM is enabled and disabled by bit 7 of the control
word. The top 256 bytes of any selected ROM is not
available when RAM is enabled. If RAM is disabled by

any ROM, then it must be enabled before the ROM
returns.

4-2

Appendix A
CONTROL ROM SOURCE LISTING

General Information

The following pages contain the Control ROM Source listing. Once
ROMPLUS+ has been activated, all input and output operations are
vectored through the control ROM. This is transparent to the
user. The Control ROM is looking for one of two special command
characters (CTRL-SHIFT-M or CTRL-SHIFT-N.) If the character
passed on input (or output) is not one of these special commands,
then it is passed on to the input routine. If the character is
one of the special commands, then the next two characters are
interpreted as parameters of the Control ROM command.

NOTE

The Control ROM makes use of two locations in memory
that are normally used by the monitor. These two loca-
tions are $3A and $3B. Whenever the ROMPLUS+ card is
active, the monitor "L" command for disassembly and the
Apple II mini-assembler will not work properly.

[N o

>0) Iy N R

12

Appendix A CONTROL ROM SOURCE LISTING

* FRET 0N
+
P IP 3 S0 SRR POR KR R R PR R R R R PR R P N

* CONTROL PROM FOR MOUNTHRIN
HARCWARE ROM EBOARD

#

* EY ANDY HERTZFELD

+

(Ch 1979 BY ANDY HERTZFELD
*

*

#* VERSION 1. €. 4716/79

B3

EE SR B R RS ER B S SR BB S B2 3 B 2 e
B3

EGUARTES FOR SCREEN SPACE

+*

MSLOT EQU 7FE
CHIP EQU $ZBS
MODE EQU $428
WHICH EQU $4B8
CURCHIP EQU #5385
TCHIP EQU $3BE2

e EQL $&38
*

MISC EQUATES

*

I0RTE EQY $FFS3
CSW EQU $3Z6

STRCK EQU $150
RDKEY EQU $FDAE
CHAROQUT EQU $FDFB
EELL Ef! $FBDD
CONTROL EQU $COSA
ENTRIES EQU #0368
CHIFLIM EQU $C204
GOYECTOR EQL $FEBC

P EQ #=R
CTLA Ea #5D
CR EQU %8D

CTLB EQU $9E
SCTLA EQU $3R
#
*

ORG $e3
0BT %63

Appendix A CONTROL ROM SOURCE LISTING

48 *
49 =
5@ # WE USE 3 DIFFERENT ENTRY
51 * POINTS: "FIRST", FOR THE
52 % INITIARL ENTRY AND "OENTRY"
52 % AND "IENTRY" FOR THE OUTPUT
54 % AND INPUT RE-ENTRIES. THE
S5 % C AND ¥ BITS RRE USED TO
S6 # REMEMEER WHICH ENTRY OCCURED
ST
5300: 2C 58 FF 56 FIRST BIT IORTS SET WFLAG FOR INITIAL ENTRY
£303: 38 53 SEC & MAKE INITIAL ENTRY OUTFUT
€304: 70 @4 60 EYS ENTRY ALWAYS TAKEN
£306: 38 61 OENTRY SEC
6307: 90 62 HEX 9@ TRICK TO SAVE A BYTE
£308: 18 52 IENTRY CLC ;HIDE RS BRANCH OFFSET
£309: B8 64 CLY
65
66+ COMMON ENTRY POINT
67
£30R: 48 63 ENTRY FHA
£30B: A 69 THA
£36C: 48 70 PHHA
630D: 98 71 Ty
IBE: 48 7z FHF
630F: @8 7z FHF
T *
7S % NOW ME MUST FIND OUT WHAT SLOT
7 # WE‘RE IN. THIS IS ACHIEVED BY
77 % MAKING A DUMMY JSR WHICH WILL
78 # LEAVE OUR RDDRESS ABOVE THE
79 % STACK. INTERRUPTS MUST BE
88+ DISAELED
1
z SEI
55 FF &3 JSR IORTS CUMMY JSR
a4 TSR
&5 FLA
86 FLA
&7 FLFA
85 PLA :RECOYER INPUT CHARRCTER
&9 TRY & AND KEEF IN ¥ REGISTER FOR NOMW
9 DEX
a1 THS
92 FLA ; GET $CN FROM STACK
@7 93 STR MSLOT
a4 TAX 5 SLOT # IN
95 ASL
96 RSL
97 ASL
a8 ASL
A6 59 STA S8, %
83 190 LDA CHIP, X
@5 161 STR CURCHIP, X
18z

A-3

ry Oy Ty
b e i)

£34A:
6340
€24F .

6351:
6333

[N AN\

28
a9
5@

AD
85
as
A9
85
A9
85
AS
ap
Fa

BO

A9
ap
pa

A9
1)

Appendix A CONTROL ROM SOURCE LISTING

ie

F8 o7
37
39
a6
36
g
38
505
B8 @3
35

a2
BB &
56

D)
oy

a9
B8 84

i@z
104
185
106
ia?¢
1063
1e3
118
111
112
11z
114
115
11e
117
118
112
129
121
122
123
124
125
126

B e
Ly

128
129
138
131
132
133
134
135
136
137
138
129
140
141
142
143
144
145
146
147
148
143
150
151
152
153
154
155
156
157

*

NOW RECOVER STATUS AND GO TO

* THE PROPER ROUTINE ACCORDINGLY

S
PLP ; RE-ENABLE INTERRUPTS
PHP : SAVE STATUS
BVYC REENTRY

*

* THE FOLLOWING CODE IS FOR THE

* INITIAL ENTRY ONTO THE BOARD.

WE INITIALIZE OUR YARIABLES

* AND SET THE HOOKS TO POINT TO

THE RE-ENTRY POINT.

RS

INIT LDA MSLOT

/ STAR CSW+L
STA CSW+3
LDA #<0ENTRY

STR O CSW

LA #<IENTRY
STR CSW+2
LDR #5008
5TR CHIR X

BER REZET ALWAYS THRKEN
B
+
WE COME HERE FOR A RE-EMTRY
WE CHECK FOR COMMANDS JUST
ON OUTPUT. AT THIS POINT THE
#+ CARRY STILL MARKS MWHERE
+ WE CAME FROM.
*

REENTRY BCS OUTHOOK

*
SET WHICH TO INFUT HOOK
E3

LDA #$02

5TH MWHICH. &

BME YECTOR ALMAYS TAKEN
*
HERE WE HANDLE THE OUTPUT HOOK.
% WE SET WHICH AND UFDATE THE
CURRENT CHIP AND THEN GO CHECK
FOR COMMAMDS

*
OUTHOOK LOA #+4

STR WHICH, &
E 3
THE FOLLOWING ROUTINE CHECKS
% FOR THE CHIP INITIALIZATION
* COMMAND. IT IS CALLED ONLY
ON OUTPUT TO PREVENT THE SAME
CHARACTER FROM PASSING THROUGH
* TWICE. THE MODE YRARIABLE KEEPS
TREACK OF QUR CURREENT STHTE

A-4

Appendix A CONTROL ROM SOURCE LISTING

158 *
6356: 98 159 COMMAND TYA
6357: BC 38 94 160 LDY MODE. X
635A: 20 OF 161 BMI GETNUM
635C: D@ 29 162 BNE GETINIT
163 *
635E: €3 %0 164 CMF #CTLA
6350: F@ B4 165 BEG SAYEMODE
6362: C9 9E 166 CMP #CTLE
6364: DB 41 167 ENE WECTOR
6366: 9D 38 @4 168 SAVEMODE STA MODE, X
52€9: FB 3C 169 BEQ VECTOR FLWAYS TAKEN
1ve o«
171 % PARSE THE NUMBER., CHECKING TO
172 4 MAKE SURE ITS FROM @ TO &,
172
636B: 49 BA@ 174 GETHUM EOR #$B8 MUST BE 3=
626D: 09 67 175 CMP 37
636F: BB B9 176 BCS NOGOOD AND < 7
6371: 1E 33 94 177 RSL MODE, X
£374: 9D BR @5 178 STA TCHIF, X
6377: DB 2E 173 BNE VECTOR ALWAYS TAKEN

128
151

182

THE FOLLOMING CODE HANDLES
ERRORS BY RINGING THE BELL
AND CANCELLING ANY PARTIAL

[N
[}
il

184 COMMANDS. ITS IN THIS WEIRD
125 FLACE BECAUSE OF THE £582°S
136 FELATIVE ADDRESSING CONSTRRIMT.
187 #*

6373: 48 133 NOGOODE FPHA

637A: 28 DD FE 123 NOGGOD JSR BELL
123 =

a37’D: A9 24 121 EESET LDR #%05

637F: 9D 38 a5 192 STA CURCHIF, ¥

63682: 3D 38 84 13Z 5TR MODE. ®

6285: Fo 28 194 BE® VECTOR ALWAYS TARKEN
135 &#
125 # HANDLE THE SELECTION FREAMETER
197« BUT DON'T ERRCR CHECK IT TILL
122 % THE CHIP 15 RCTIVATED
123 %

6287 BA 2868 GETINIT AsSL . CARRY IS SET

6388: ES 7D 281 SEC #¥TD 0 2RSS

628R: 9D B2 04 282 SETWHICH STA WHICH. &

628D: A9 68 28z LDA #$0

6X8F: 3D & 84 204 STR MODE: »

6382. BD B2 45 265 LbA TCHIP, X

6395: 9D 28 45 206 5TA CURCHIF, ¥

5398: (0 3A 267 ‘ CPY #SCTLA

623A7: DO 9B 208 ENE VECTOR

629C: 3D BS 9= 289 5TA CHIF, ¥

539F: BC 3% 96 218 LY 58, %

&3A2: @9 &8 211 ORA #¢28

S3R4:. 99 8@ CA 242 STA CONTROL. ¥

A-5

Appendix A CONTROL ROM SOURCE LISTING

213 *
214 #*
215 *

216 * THE FOLLOWING ROUTINE HANDLES
217 * THE VECTORING TO CHIP 1/0 HOOKS
218 * FIRST WE ENABLE THE SELECTED CHIP.

2198 %

63R7: 28 228 VECTOR PLP ; RECOVER STRTUS

63A8: BC 38 86 221 LDY S0, X

63AE: B9 88 CA 222 LDA CONTROL, Y

63AE: 48 222 PHA

63RF: AD FF CF 2z LDR $CFFF [DISRELE OTHER ROMS

62B2: BD X8 @5 225 LDA CURCHIF, ¥

63B5: A9 28 226 ORR #%328

63B7: 99 88 Co 227 STR CONTROL, ¥

63BA: &8 2z8 FLA

632BB: 8D 682 CF 229 STA FCFa2

63BE: 8C 82 CF 2z28 STY $CFez

63C1: BD 38 @5 231 LDA CURCHIF, ¥

63C4: D8 BE 232 BNE VECHOOK
233 *
23 # NO CHIF HAS BEEN ACTIVATED YET
Py 4+ S0 GO TO STAMDARD KEYIN OR KEYQUT
236 #

=3C6: A9 FD 237 LDA #>CHRROUT

63C8: 85 3B 238 STR PC+1L

&3CA:. R9 F@ 229 LDA #{CHARDUT

53CC: BB 92 2468 BCS ITSOUTPUT

&3CE: A9 1B 241 LDR #<EDKEY

&62DB: 85 ZA 242 ITSOUTPUT STR FC

&3D2: Do 12 243 ENE ERIT ALWAYS TAKEN
244 #
245 =«
246 & NOW WE OBTARIN THE FROFER RUDEESS
247 # TO VECTOR TO BY INDEXING IMTO
242 * THE INITIALIZATION TAELE ON THE
249 « CHIP. WE STORE THE RDDREESS
256 # [N LOCRSL RAM AND THEW YECTOR
251 # THERE BY AW INDIRECT JUMP
252 %

&304 BC BS 84 252 VECHOOK LDY WHICH, X ; GET INDEX

22D7:. CC 94 C8 254 CPY CHIPLIM

5ZDA: BA 9D 255 BCS NOGOOD2

&b B9 81 C8 256 LDA ENTRIES+1.Y

&2DF: 2% ZB 257 STH PC+1

G3EL. B9 @8 0o 258 LDA ENTRIES.Y

s2E4: B85S ZA 258 STR PC

XXXXXX

Appendix A CONTROL ROM SOURCE LISTING

268 #
261 #* NOW WE RESTORE REGISTERS AND GOTO
262 * THE HOOK ROUTINE.

263 %
63E6: 68 264 EXIT PLA
63E7: A8 265 TRY
63E8: 68 266 PLA
63ES: AR 267 TAX
63ER: 68 268 PLA
63EB: 28 BC FE 269 JSR GOVECTOR
278 %
63EE: 48 271 PHA
63EF:. 98 272 TYA
63F8: 48 273 PHR
63F1: AC 03 CF 274 LDY $CFB3
63F4: RAD B2 CF 275 LDA $CF@2
63F7: 89 o8 276 ORA #f08
63F9: 99 8@ Ca 277 STA CONTROL. Y
63FC: 68 278 PLA
€3FD: A8 2v9 TRY
63FE: 68 260 PLA
63FF: 68 281 RTS
282 *
282 *
284 % ALL DONE!
285 %

--—- END RSSEMBLY ---

TOTAL ERRORS: @@

256 BYTES OF OBJECT CODE
WERE GENERATED THIS ASSEMBLY.

A-T

Mloumcnn Gonmpu
INCORPORATED
Located in the Santa Cruz Mountains of Northern
California. Mountain Computer, Inc. is a computer peripheral
manufacturer dedicated to the production of use-oriented
high technology products for the microcomputer. On-going
research and development projects are geared to the continual
supply of unique, innovative products that are easy to use
and highly complementary in a broad variety of applications.

it S
il l“ WIHWIl“\“”“]lllmnt| "
2N il . “l'

.\
|

| \‘\
1

	Cover

	Table of Contents

	Introduction

	Installation

	Hardware Features

	Using ROMPLUS+
	Advanced Programmer's Information

	Reference

	Control ROM Source Listing

