

.

‘,?‘..

)
v d

L R - F_a T et

Read Me First...

Special Applied Engineering (Beta)16 Bit Card Software Developer's Package

The version of the 16 Bit Card that is being sent to software developers is "only" capable of addressing up
to 8 Meg of memory. The version that will be shipped to custojr'n;.ers will be capable of addressing up to 16
Meg of memory, the full capability of the 65816 processor. This Beta version of the 16 Bit Card is provided
with only one ribbon cable to connect it to a RamWorks Il memory expansion card. Ordinarilly it would have
another shorter ribbon cable to connect the 16 Bit Card (P2) to a 2 Meg. RamWorks memory expander
piggy-back card. This "2 Meg." cable is not required when using the 512K version of the RamWorks
memory expander piggy-back card.

‘Applied Engineering Technical Support

Applied Engineering has a staff of technicians dedicated to answering specific questions about Applied
Engineering products and software. If your question cannot be resolved by the technician, he will refer
the question to the appropriate engineer. The technical support representatives are available Monday
through Friday, between the hours of 9 AM to 5 PM (Central). The technical support telephone number is
(214)241-6069. Please have as much information as possible available about your problem if you call.

Soldered MMU chip on the /e main logic board

Important!: Some (very few) Apple //e's were manufactured with.the MMU chip soldered in. If your //e does not
have a socket for the MMU, the MMU will have to be desoldered and a socket installed. This is very tricky and should

only done by a professional with the proper tools. Apple Computer, Inc has assured us that /e's are now assembled
with socketed MMU chips.

Main Logic Board\ . ff. Reta—e

END VIEW of

PR T

SOLDERED MMU

SOCKET

Main Logic Board —_—
BSEHESERes e

END VIEW of SOCKETED MMU

Installation

. o A
Installing the 16 Bit Card
* Turn the //e power switch to the OFF position, but leave the computer plugged in.
* Remove the //e top lid. ! |

* Make surethe power-on indicator light inside the computer is OFF. (See lllustration 1.)

[Hustration 1:

Power-On _~T]
Indicator

— CPU

Power —T|

Supply | — MMU

Auxiliary —
Slot

* lfinstalled, remove the RamWorks Il card from the //e auxiliary slot.

* Remove the 74LS273 chip from the RamWorks Il socket marked "CPU." (Refer to
lllustration 2.) Carefully set the RamWorks Il aside and store the 74LS273 in a safe place.

Installation

Illustration 2:

RAMWORKS I
ceu 1 M1 [

N

RATRATATEATATATTEATRNIRIN

Remove 74LS273
from this socket

* Locate the CPU chip and the MMU chip on the /e main logic board. (Refer to lllustration 1.)

* Remove the MMU chip from the /e main logic board. Use a small flatblade screwdriver to gently
lift alternate endis of the chip until it is free from its socket. Carefully set the MMU chip aside.

* Remove the CPU chip in the same manner. The //e's CPU chip is not required with the 16 Bit
Card installed. Store it in a safe place.

* Verify that all pins on the 16 Bit Card CPU and MMU header connectors are straight. (Referto
lllustration 3.) ‘

Installation
lllustration 3:
Native (16 bit) mode RamWorks I MMU / CPU Future
indicator L.E.D. Connector Headers Expansion

Connector

Socket for 2 Meg.
Memo[y ExRaLnder
2 Meg. Memory Expander 16L8 P.AL.
riobon cable connector (optional) MMU Socket

(optional)

* Install the MMU chip on the 16 Bit Card, as shown in Illustrauon 4. Be sure the notch is oriented
as indictated in the illustration.

IMustration 4: !

Ribbon cable to
CPU Connector
on RamWorks [l

' BECB1G

Insert MMU into
this socket

Notch

Installation

* Plug one of the ribbon cable header connectors (both ends are the same) into the 16 Bit Card
socket marked "P1" exactly as shown in lllustration 4.

* Invertthe 16 Bit Card (solder side up; component side down) and position it above the CPU
and MMU sockets on the //e main logic board . The red LED on the 16 Bit Card should be
pointing toward the keyboard.

B N

* Using the viewport to élign the header pins on the 16 Bit Card with the socket holes on the /e
main logic board, install the 16 Bit Card into the CPU and MMU sockets. Press gently but firmly
until the card is securely seated.

IMustration 5: i

16 Bit
Card ~—

Viewport —_||

RamWorks || ~—

Ribbon
Cable

* Position the keyboard end of the RamWorks |l card near the installed 16 Bit Card. Install the
free end of the 16 Bit Card ribbon cable to the RamWorks Il socket marked "CPU." Verify that
all header connector pins are fully seated in the socket and that the cable is installed as shown
in lllustration 6.

Installation

lustration 6:

Ribbon cable from
P1 of 16 Bit Card.

Install the RamWorks Il 'card into the //e's auxiliary slot.

(0NNAANANNANNANNAANAAN

* Replace the //e's top lid. Installation is complete.

+ Boot the disk labeled "/E 16 Bit Developer's Disk" and.run the program "TEST816."

If the computer will not boot or fails the test program, check to see that all chips, cables, and
connectors are securely seated in their sockets. Also check for bent pins on the MMU chip and
on the ribbon cable and CPU / MMU headers. :

|

|

Installation

For developers with the 2 Meg. RamWorks memory expansion piggy-back card, a special ribbon
cable is required to connect the 16 Bit Card to the 2 Meg. expander card. This cable is available
from Applied Engineering.

To install this cable you must first remove the PAL16L8 chip from the 2 Meg. expander and install it
on the 16 Bit Card. This chip is to be inserted in the socket NEXT to socket "P2." One end of the
ribbon cable is then connected to socket "P2" with the cable trailing toward the keyboard when
installed. The other end of this cable is to be connected to the empty 1618 socket on the 2 Meg.
expander. The cable should 4lso trail toward the keyboard end of the card when installed.

lllustration 7:

00000000

000000000000000000000000

Install
ribbon cable Remove
connector from P2

PAL 16_L8
of 16 Bit Card 1

s g — { L

i
|
|
|

Operation and Architecture

|
The 16 Bit Card will allow you to address up to 16 Meg linearly, using the 65816 processor's native mode
of operation. In 65C02 emulation mode, the memory on the Rarnworks Il card will look and act exactly like
the memory on a Ramworks Il without the 16 Bit Card installed,, with one exception: with the 16 Bit Card
installed, hitting CONTROL-RESET will always put you back in BANK 0; on a Ramworks |l without the 16 Bit
Card, CONTROL-RESET has no jeffject on the bank register. | ;

If you have a 1 Meg Ramworks II; you will get banks 00 thru OF, fWhether you are in 65C02 emulation mode
or in the 65816 native mode. If you have a 1 Meg Ramworks Il with a 1/2 Meg (512 K) piggy back, you will
get banks 00-17, whether you are. in 65C02 emulation mode or i;P 65815 native mode.

If you have worked with the Applied Engineering 2 Meg piggy back board before, you probably know of its
unique memory mapping scheme. Banks are arranged in the order 00 through OF (on Ramworks 1l), then
from 10-17,30-37,50-57,70-77 (on the 2 Meg piggy back). This is. done to maintain compatibility with other
piggy back cards from Applied Engineering, and with the original Ramworks. In 85C02 emulation mode,
the banks retain this partially non linear mapping; however, in 65816 native mode, the banks become
linearized, from 00 thru 2F.

In an Apple lle equipped with a Ramworks Il but not a 16 Bit:Card, the memory on the Ramworks Il is
accessed as alternate banks of auxiliary memory. The 64K of memory on the Apple lle motherboard is
accessed when the MMU's softswitches are set one way (MAIN memory) and the memory on the
Ramworks Il card is accessed when the MMU's softswitches are set the other way (AUXILIARY memory).
One unique bank of 64K of memory is chosen from the available banks on the Ramworks |l card by the
BANK SELECT REGISTER, which is in the lle's memory map at location $C073. Bank 0 on the Ramworks !
card is where the video generator circuits in the Apple lle look for the 80 column video and Double High
Resolution graphics information. No matter what 64K bank the BANK SELECT REGISTER is pointing to,
all video access goes to bank 0. (This feature is patented by Applied Engineering.)

All hardware locations, including the MMU's softswitches, are located in the $C000 to $CFFF range of
memory (hereafter referred to as $CXXX), which is called the HARDWARE PAGE. With a Ramworks I
installed, access to $CXXX range of memory IN ANY BANK will'access the hardware page. In other words,
the $CXXX range of ANY BANK is mapped into the HARDWARE PAGE.

When the 16 Bit Card is installed and running in the 65C02 emulation mode, the softswitches still work
exactly as they do without the 16 Bit Card. However, when the processor is in the 65816 native mode
accesses to the hardware page can only be accomplished from 65816 BANK 0. Any bank other than
65816 BANK 0 will not allow you to access the hardware page. If you are in a 65816 bank other than BANK
0, and you access the $CXXX range, you will be accessing RAM MEMORY, NOT the hardware page
When you are in 65816 BANK 0, the Apple lle softswitches, which are in the hardware page, will allow you
to flip back and forth between main memory or auxilllary memory. If you are in a bank other than BANK 0,
the softswitches will have no effect. That is, even if you go into 65816 BANK 0 and flip MMU softswitches
so that you are looking at AUX memory, when you go into a 65816 bank other than BANK 0, the
softswitches will have no effect. This is because there is no auxiliary memory associated with 65816 banks
other than BANK 0. In 65816 native mode, BANK 0 main memory is the 64K on the Apple ile
motherboard, and BANK 0 auxiliary memory is the first 64K on'the Ramworks card. This allows you to use
the softswitches to flip between main memory and aux memory (as long as you are in BANK 0); this makes
using the 80 column video and double high resolution graphics easier. If the 65816 is in a bank other than
BANK 0, it will map into a corresponding bank on the Ramworks Il or a piggy back card.

Operation and Architecture

The softswitches that control access to the LANGUAGE CARD area of memory that overlays the
motherboard ROM space can only be accessed from 65816 BANK 0. Further, they only have an effect in
65816 BANK 0. Because the 65816 looks for its interrupt vectors in BANK 0 at locations $FFF4 through
$FFFF, you must use the language card RAM space to store these vectors.

One further note on using softswitches: The 65816 can have 8-bit wide registers or 16-bit wide registers.
In the 85C02 emulation mode-all registers (except the PC) are 8-bits wide, but in the native mode you can
set the width of the X and Y régisters with the X bit in the Prdtessor Status Register (P). If X=0 the X and Y
registers are 16-bits wide, and iff X=1 then X and Y are 8-bits wide. The M bit in the P register controls the
width of the Accumulator. If M=0 then the Accumulator is 16-bits wide, and if M=1 then the accumulator is
8-bits wide. You should only access the hardware page it M=1 and X=1. This will prevent unwanted
problems because of writes to two successive addresses.

16 Bit Memory Maps

65816 Native mode . 65C02 Emulation Mode
65816 Bank 0 65816 Bank 0
(Main) (Aux.)
//fe motherboard RW Bank 0 //fe Main Memory RW Bank 0

65816 Bank 1

RW Bank 1 i I RW Bank 1
65816 Bank 2

RW Bank 2 | RW Bank 2
65816 Bank 3

RW Bank 3 RW Bank 3
65816 Bank 4 ’

RW Bank 4 RW Bank 4
[] @
® @
® ®

65816 Bank 2F

RW Bank 2F ' RW Bank 2F

65C816 Data Sheet

The following pages have been excerpted from the W65C816 Data Sheet

and are reprinted with permission from Western Design Center, Inc.

P! L
W65C816 Processor Programn!lling Model

CTTeBITs_] 8BITS H 8BITS]

I" Data Bank Reg. X Register Hi (}T;)_(.Iaegister Low .
|~ (0BR) (XH) X) g (XL) s
rﬁa_ta_ Bank Reg. Y Register Hi {{,]Y Register Low ,
L. @8" (YH) 12 e (VL) st
re=-_ " ['stack Register Hi &% Stack Reg: Low
| o SH (Shaensy) s
- = 6502 Accumulator (é ccumulator &

-/ Registers (B) 1 R (A) A
Program Bank Reg.| - “; Program > (P|C) . Counter - -+

(PBR) 24 (PCH) 27 b S(PCL)

F===——=—- Direct Reg. Hi 1 Direct Reg. Low
| o (DH) (D) (DL)

Status Register Coding

STATUS REG. (P)

[1T8] [

Ve

— EMULATION 1 = 6502

'NV.MXD 1 ZC

0=NATIVE

CARRY 1=TRUE

ZERO 1=RESULT ZERO
IRQDISABLE . 1=DISABLE

DECIMAL MODE
INDEX REG. SELECT
MEMORY SELECT [
— OVER FLOW
—NEGATIVE

10

1=TRUE
1=88BIT.0=168BIT
1=8BIT0=16BIT
1=TRUE
1=NEGATIVE

65C816 Data Sheet

Functional Description

The WBE5CB02 offers the design engineer the opportunity to utilize both
existing soltware programs and hardware conligurations, whilo also
arlieyiiiy Dies ane b vty es o Inciaagm] register lsngihs anil laster
execution times. The WE5C802's "ease of use” design and implementa-
tion features provide the designer with increased llexibility and reduced
implementation costs. In the Emulation mode, the W65C802 not only
offars software compalibility, but is also hardware (pin-to-pin) com-
patible with 6502 designs...plus il provides Jhe advanlages vl 16-bil
internal operation in 6502-compatible applications. The W65C802is an
excellent direct replacement microprocessor for 6502 designs.

The W65CB16 provides the design engineer with upward mobility and
software compatibility in applications where a 16-bit system configura-
tion is desired. The W65C818's 16-bit hardware configuration, coupled
with current software allows a wide selection of system applications. In
the Emulation mode, the W65C816 offers many advantages, including
full software compatibility with 6502 coding. In addition, the WE5C81 6's
powerful instruction set and addressing modes make it an excellent
choice for new 16-bit designs.

internal organization of the W65C802 and W65C816 can be divided into
two parts: 1) The Register Section, and 2) The Control Section. Instruc-
tions (or opcodes) obtained from program memaory are executed by
implementing a series of data transfers within the Register Section.
Signals that cause data transtfers to be executed are generated within the
Control Section. Both the W85C802 and the W65C816 have a 16-bit
internal architecture with an 8-bit external data bus.

instruction Register and Decode

An opcode entets the processor on the Data Bus, and is latched into the
Instruction Register during the instruction fetch cycle. This instruction
is then decoded, along with timing and interrupt signals, to generatethe
various Instruction Register control signals.

Timing Control Unit (TCU) :

The Timing Control Unit keeps track of each instruction cycle asitisex-
ecuted. The TCU is set to zero each time an instruction fetch is executed,
and is advanced at the beginning of each cycle for as many cycles as is
required to complete the instruction. Each data transfer between regis-
ters depends upon decoding the contents of both the Instruction Regis-
ter and the Timing Control Unit.

Arithmetic and Logic Unit (ALU)

All arithmetic and logic operations take place within the 16-bit ALU. In
addition to data operations, the ALU also calculates the effective address
for relative and indexed addressing modes. The result of a data operation
is stored in either memory or an internal register. Carry, Negative, Over-
flow and Zero flags may be updated following the ALU data operation.

Internal Registers (Refer to Programming Model)

Accumulators (A, B, C)

The Accumulator is a general purpose register which stores one of the
operands, or the result of most arithmetic and logical operations. In the
Native mode [E=0), when the Accumulator Select Bit (M) equals zero,
the Accumulator is established as 16 bits wide (A + B = C). When the
Accumulator Select Bit (M) equals one, the Accumulator is 8 bits wide
(A). In this case, the upper 8 bits (B) may be used for temporary storage
in conjunction with the Exchange Accumulator (XBA) instruction.
Data Bank Register (DBR)

During modes of operation, the 8-bit Data Bank Register holds the de-
fault bank address for memory transfers, The 24-bitaddressis composed
of the 16-bit instruction effective address and the 8-bit Data Bank ad-

dress. The register value is multiplexed with the data value and is present
on the Data/Address lines during the first half of a data transfer memory
cyrle far the WRECB16. The Data Bank Register is initialized to zero dur-

Ing Resél.

Direct (D)

The 16-bit Direct Register provides an address offset for all instructions
using difact addressing. The effective bank zero address is formed by
adding the B-bit instruction operand aduress 10 the Direct Register The
Direct Register is initialized to zero during Reset.

Index (X and Y)

There are two Index Registers (X and Y) which may be used as gencral
purpose registers or to provide an index value for calculation of the ef-
fective address. When executing an instruction with indexed addressing,
the microprocessor fetches the opcode and the base address, and then
modifies the address by adding the Index Register contents to the ad-
dress prior to performing the desired operation. Pre-indexing or post-
indexing of indirect addresses may be selected. In the Native mode (E=0),
both Index Registers are 16 bits wide {providing the Index Select Bit (%)
equalszero). If the Index Select Bit (X) equals one, both registers will be
8 bits wide, and the high byte is forced to zero.

Processor Status (P)

The B-bit Processor Status Register contains status flags and mode select
bits. The Carry (C), Negative (N), Overflow (V),and Zero (Z) status flags
serve to report the status of most ALU operations. These status flags are
tested by use of Conditional Branch instructions. The Decimal (D), IRQ
Disable (1), Memory/Accumulator (M), and Index (X) bits are used as
mode select flags. These flags are set by the program to change micro-
processor operations.

The Emulation (E) select and the Break (B) flags are accessible only
through the Processor Status Register. The Emulation mode select flag
is sele¢ted by the Exchange Carry and Emulation Bits (XCE) instruction.
Table '1, W85C802 and W65CB16 Mode Comparison, illustrates the
teatures of the Native (E=0) and Emulation (E=1) modes. The M and X
flags are always equal to onein the Emulation mode. When an interrupt
occurs during the Emulation mode, the Break flag is written to stack
memory as bit 4 of the Processor Status Register.

Program Bank Register (PBR)

The 8-bit Program Bank Register holds the bank address for all instruc-
tion fetches. The 24-bit address consists of the 16-bit instruction effective
address and the 8-bit Program Bank address. The register value is multi-
plexed with the datavalue and presented on the Data/Address lines during
the first half of a program memory read cycle. The Program Bank Regis-
ter is initialized to zero during Reset. The PHK instruction pushes the
PBR register onto the Stack.

Program Counter (PC)

The 16-bit Program Counter Register provides the addresses which are
used to step the microprocessor through sequential program instruc-
tions. The register is incremented each time an instruction oroperand is
fetched from program memory.

Stack Pointer (S)

The Stack Pointer is a 16-bit register which is used to indicate the next
available location in the stack memory area. It serves as the effective ad-
dress in stack addressing modes as wellas su broutine and interrupt pro-
cessing. The Stack Pointer allows simple implementation of nested sub-
routines and multiple-level interrupts. During the Emulation mode, the
Stack Pointer high-order byte (SH) is always equal to one. The bank ad-
dress for all stack operations is Bank zero.

11

t

65C816 Data Sheet |

AD-AT ¢

ADDRESS BUFFER (LOW)

BE (B16)

AB-A1S <:

ADDRESS BUFFER (HIGH)

INTERNAL ADDRESS BUS (16 BITS)

BE (816)

D0-07 (802)
DO/BAO-D7/BAT (816)

-

DATA BUS/BANK ADDRESS BUFFER

e

INDEX X
(16 BITS)

INDEX Y

t

hﬁ BITS)

STACK POINTER
(S) (16 BITS)

AN

ALU
(16 BITS)

¢ 1 ain

TRANSFER
SWITCHES

INTERNAL SPECIAL BUS (16 BITS)

ACCUMULATOR
(C) (16 BITS)
(A) (8 BITS)
(B) (8 BITS)

CNONLE

[

PROG. COUNTER
(PC) (16 BITS)

DIRECT (D)
(16817S)

PROG. BANK (PBR)
(8 BIT s]

DATA BANK (DBR)
(8 BITS)

DATA
LATCH/
PREDECODE

N
7

I

PREDECODE

INTERNAL DATA BUS (16 BITS)

|

<

BE (816)

: i let—— ABORT (878)
0
i lt—— TRG
INTERRUBT
LIOGIC Wt
|
o —— RES -
TIMING
CONT. [
— £
[t w w CLOCK
S Sa 8 GEN- |—s
= h E o ERATOR
w Wy Wy
e oy af ——
2 zZ ze
H oF ow
[o FZz
= 0s TS
@ 2 =13
] xE [4
= =3 =
©“w wun @
o z z [
- uw
| o
I =
1
1 p——
— el
SYSTEM
CONT.
PROCESSOR 0
STATUS (P)
(8 BITS) ——
—_—e
INSTRUCTION REGISTER |
> (8 BITS)

S0 (802)

Block Diagram — Internal Arc%hltecture

12

Voo

Vss

RDY

@2 (IN)
@1 (OUT) (802)

#2 (OUT) (802

/W

SYNC (802)
VPA (816)
VDA (816)
ML (816)
VP (816)

E (B16)

M/X (816)

65C816 Data Sheet

W65C816 Compatibility Issues

W65C816/802

w65C02

NMOS 6502

1, S (Stack)

Always page 1 (E = 1), 8 bits
16 bits when (E = 0).

Always page 1, 8 bits

Always page 1, 8 bits

2. X (X Index Register)

Indexed page zero always in
page 0 (E=1),
Cross page (E = 0).

Always page 0

)
o

Always page 0

3. Y (Y Index Register)

Indexed page zero always in
page 0 (E=1),
Cross page (E=0).

Always page 0

Always page 0

4. A (Accumulator)

8 bits (M = 1), 16 bits (M = 0)

8 bits

8 bits

5. P (Flag Registor)

N, V, and Z fiags valid in
decimal mode.
D = 0 after reset or interrupt.

N, V, and Z flags valid in
decimal mode.
D = 0 after reset and

N, V, and Z flags invalid
in decimal mode.
D = unknown after reset.

Signatures 00-7F user defined
Signatures 80-FF reserved

interrupt. D not modified after interrupt.
6. Timing
A. ABS, X ASL, LSR, ROL, 7 cycles 6 cycles 7 cycles
ROR With No Page Crossing !
B. Jump Indirect
Operand = XXFF 5 cycles 6 cycles 5 cycles and invalid page
crossing
C. Branch Across Page 4 cycles (E=1) 4 cycles 4 cycles
3 cycles (E=0)
D. Decimal Mode No additional cycle Add 1 cycle No additional cycle
7. BRK Vector OOFFFE,F (E=1) BRK bit=0 FFFE,F BRK bit = 0 on stack FFEFE,F_BRK bit = 0 on stack
on stack if IRQ, NMI, ABORT. if IRQ, NMI. it IRQ, NML.
OOFFESB, 7 (E=0) X=X on I
Stack always.
8. Interrupt or Break PBR not pushed (E = 1) Not available Not available
Bank Address RTI PBR not pulied (E = 1) o
PBR pushed (E = 0)
RT! PBR pulled (E = 0) !
9. Memory Lock (ML) ML = 0 during Read, Modify and | ML = 0 during Modify and Write. | Not available
Write cycles.
10. Indexed Across Page Extra read of invalid address. Extra read of last instruction Extra read of invalid address.
Boundary (d),y; a,x; a,y (Note 1) fetch.
11. RDY Pulled During Write Ignored (E = 1) for W65C802 only. | Processor stops ignored
Cycle. Processor stops (E = 0).
12. WAl and STP Instructions. Available Available Not available
13. Unused OP Codes One reserved OP Code specified No operation Unknown and some “hang
as WDM will be used in future up'” processor.
systems. The W65C816 performs
a no-operation.
14, Bank Address Handling PBR = 00 after reset or interrupts. Not available Not available
15. R/W During Read-Modify- £'= 1, R/W = 0 during Modify and R/W =0 only during Write cycle R/W=0 during Modify and
Write instructions Write cycles. Write cycles.
E =0, R/W = 0 only during
Write cycle.
16. Pin 7 W65C802 = SYNC. SYNC SYNC
W65C816 = VPA
17. COP Instruction Available Not available

Not available

Note 1. See Caveat section for additional information.

13

v

65C816 Data Sheet

W65C802 and W65C816
Microprocessor Addressing Modes i

The WE5C816 is capable of directly addressing 16 MBytes of memory.
This address space has special significance within t';enain addressing
modes, as fo'lows:]

Reset and Interrupt Vectors :
The Reset and Interrupt vectors use the majority of the fixed addresses

between 0OFFEQ and 00FFFF, ?

[
Stack :
The Stack may use memory from 000000 to 00FFFF. The eflective ad-
dress of Stack and Stack Relative addressing modes will always be within
this range.

Direct

The Direct addressing modes are usually used to store memory registers
and pointers. The effective address generated by Direct, Direct, X and
Direct,Y addressing modes is always in Bank 0 (000000-00FFFF).

Program Address Space

The Program Bank register is not affected by the Relative, Relative Long,
Absolute, Absolute Indirect, and Absolute Indexed Indirect addressing
modes or by incrementing the Program Counter from FFFF. The only
instructions that affect the Program Bank register are: RTI, RTL, JML,
JSL, and JMP Absolute Long. Program code may exceed 64K bytes al-
though code segments may not span bank boundaries.

Data Address Space

The data address space is contiguous throughout the 16 MByte address
space. Words, arrays, records, or any data structures may span 64 KByte
bank boundaries with no compromise in code efficiency. The following
addressing modes generate 24-bit effective addresses:

Direct Indexed Indirect (d,x) i,
Direct Indirect Indexed (d),y

‘Direct Indirect (d)

Direct Indirect Long [d]

Direct Indirect Long Indexed [d],y

Absolute a

Absolute a,x

Absolute a,y

Absolute Long al

Absolute Long tndexed al,x

Stack Relative Indirect Indexed (d.s),y

The following addressing mode desc-iptions provide additional detail as
to how effective addresses are calculated.

Twenty-four addressing modes are available for use with the W65C802
and W65C816 microprocessors. The "long" addressing modes may be
used with the W65C802; however, the high byte of the address is not
available to the hardware. Detailed descriptions of the 24 addressing
modes are as follows:

1. Immediate Addressing—#

The operand is the second byte (second and third bytes whenin the
16-bit mode) of the instruction.

2. Absolute—a

With Absolute addressing the second and third bytes of the instruc-
tion form the low-order 16 bits of the effective address. The Data
Bank Register contains the high-order 8 bits of the operand address.

Instruction: I opcode [addrl] addrh I
Operand
Address; | DBR | addrh I addri |

3. Absolute Long—al

The second, third, and fourth byte of the instruction form the 24-bit
effective address.

Inslructlon:l opcode | addrt] addrh ! baddr |
Operand ’ | ’

Address: baddr addrh addrl I

4. Direct—d

The second byte of the instruction is added to the Direct Register
(D) to form the effective address. An additional cycie is required
1

when the Direct Register is not page aligned (DL not equal 0). The
Bank register is always 0.

Instruction: || opcode [offset |
'[' | Direct Register |
|| ; |

Operand 'l
Address:

offset [

00 l effective address |

5. Accumulator—A

This form of addressing always uses a single byte instruction. The
operand is the Accumulator.

6. Implied—i
Implied addressing uses a single byte instruction. The operand is
implicitly defined by the instruction.

7. Direct Indirect Indexed—(d),y

This address mode is often referred to as Indirect,Y. The second
byte of the instruction is added to the Direct Register (D). The 16-bit
contents of this memory location is then combined with the Data
Bank register to form a 24-bit base address. The Y Index Register is
added to the base address to form the effective address.

lnstructlon:[opcode ‘

i |

offset |

Direct Register |

+ i offset |
| 00 | direct address |
then:
I 00 | (direct address) |
+| oer |
I base address |
+ | ! Yreg |
Operand l '
Address: effective address

8. Direct Indirect Long Indexed—[d],y
With this addressing mode, the 24-bit base address is pointed to by
the sum of the second byte of the instruction and the Direct
Register. The effective address is this 24-bit base address plus the Y
Index Register.

Instructlon: | opcode | offset]

I Direct Register [

. l

offset]

| 00 f direct address |
then:
| (direct address) |
- | ! YReg |
Operand
Address: I effective address |

9. Direct Indexed Indirect—(d,x)

This address mode is often referred to as Indirect,X. The second
byte of the instruction is added to the sum of the Direct Register
and the X Index Register. The result points to the low-order 16 bits
of the effective address. The Data Bank Register contains the high-
order 8 bits of the effective address.

14

65C816 Data Sheet

Inslruclion:l opcode]

oﬂset_]

| Direct Register

+ | oftset

+| b

I

|

| direct address]
‘ l

|

)‘(Reg
| 00 l address’
then: i
‘ 00 l (address) l
| oer |
Operand I I
Address: effective address

10. Direct indexed With X—d,x
The second byte of the instruction is added to the sum of the Direct
Register and the X Index Register to form the 16-bit effective
address. The operand is always in Bank 0.

Inslruclion:] opcode l oftset |

| Direct Register 1
’ | |

| direct address |

offset

+| | XReg |

Operand i
Address:

11. Direct Indexed With Y—d,y
The second byte of the instruction is added to the sum of the Direct
Register and the Y Index Register 10 form the 16-bit effective
address. The operand is always in Bank 0.

00 I effective address l

Insirucllon:[opcode] offset]

| Direct Register

+ l

|
offset |
| direct address |
|

i 1
+ 1l
1

Y Reg

Operand |
Address: 00

Absolute Indexed With X—a,x

The second and third bytes of the instruction are added to the
X Index Register to form the low-order 16 bits of the effective ad-
dress. The Data Bank Register contains the high-order 8 bits of the
effective address.

effective address l
12.

Instruction: [opcode | addrl] addrh _l

| oBR | adam | adan |

+ | XReg |

Operand l |
Address: effective address

13. Absolute Long Indexed With X—al,x
The second, third and fourth bytes of the instruction form a 24-bit
base address. The effective address is the sum of this 24-bit address
and the X index Register.

14.

15.

16.

17.

18.

15

Instruction: i_opcode [addri | adarh | badar
| bagdr | adarh | aden |
+| | xReg |
Operand 1 1
Addréss: effective address
1

Absolute Indexed With Y—a,y

The second and third bytes of the instruction are added to the
Y Index Register to form the low-order 16 bits of the effective ad-
dress. The Data Bank Register contains the high-order 8 bits of the
effective address.

Instruction: [opcode | addrl | addrh |

l DBR | addrh I addrl |

‘| | Yreg |

Operand | |
Address: effective address

Program Counter Relative—r

This address mode, referred to as Relative Addressing, is used only
with the Branch instructions. If the condition being tested is met,
the second byte of the instruction is added to the Program Counter,
which has been updated to point to the opcode of the nextinstruc-
tion. The offset is a signed 8-bit quantity in the range from -128 to
127. The Program Bank Register is not affected.

Program Counter Relative Long—rl

This address mode, referred to as Relative Long Addressing, is used
only with the Unconditional Branch Long instruction (BRL)and the
Push Effective Relative instruction (PER). The second and third
bytes of the instruction are added to the Program Counter, which
has baen updated 10 point to the opcode of the next instruction. With
the branch Instruction, the Program Counter is loaded with the
result, With the Push Effective Relative instruction, the result is
stored on the stack. The offset is a signed 16-bit quantity in the range
from -32768 to 32767. The Program Bank Register is not affected.

Absolute Indirect—(a)

The second and third bytes of the instruction form an address to a
pointer in Bank 0. The Program Counter is loaded with the firstand
second bytes atthis pointer. With the Jump Long (JML) instruction,
the Program Bank Register is ioaded with the third byte of the
pointer.

Instruction: | opcode | addrl [addrh |
Indirect Address = | 00 | addrh | addrl
New PC = (indirect address)

with JML:
New PC = (indirect address)
New PBR = (indirect address +2)

Direct Indirect—(d)

The second byte of the instruction is added to the Direct Register to
form a pointer to the low-order 16 bits of the effective address. The
Data Bank Register contains the high-order 8 bits of the effective

address.
Instruction: [opcode | offset_]
1 Direct Register |
+ | offset ‘
| 00 | direct address |
then:
. | 00 I (direct address) I
: + l DBR l
Operand
Address: | effective address l

19.

20.

21.

22,

65C816 Data Sheet

Direct Indirect Long—[d]

The second byte of the instruction is added to the Direct Register to
form a pointer to the 24-bit effective address.

Inslructlon:[opcode | oftset |

l Direct Register‘ l
1

+ | offse:t
l 00 | direct address“‘ ' |
then: -
Operand
Address: | (direct address) l
Absolute Indexed Indirect—(a,x)

The second and third bytes of the instruction are added to the
X Index Register to form a 18-bit pointer in Bank 0. The contents of
this pointer are loaded in the Program Counter. The Program Bank

Register is not changed.
addrh l

addri l

Instruction: opcode addrl

l [
| adarh |
| | XReg |

PBR l address |

then:
PC = (address)

Stack—s

Stack addressing refers to all instructions that push or puil data
from the stack, such as Push, Pull, Jump to Subroutine, Return from
Subroutine, Interrupts, and Return from Interrupt. The bank ad-
dress is always 0. Interrupt Vectors are always fetched from Bank 0.

Stack Relative—d,s

The low-order 16 bits of the effective address is formed from the
sum of the second byte of the instruction and the Stack Pointer. The
high-order 8 bits of the effective address is always zero. The relative

offset is an unsigned 8-bit quantity in the range of 0 to 255.

Instruction: opcode f offset 1
| Stack Pointer |
+ | offset]
Operand
Address: 00 | effective address |

23.

24.

16

|
Stack Relative Indirect Indexed—(d,s),y
The second. byte of the instruction is added to the Stack Pointer to
form a pomtqr to the low-order 16-bit base address in Bank 0. The
Data Bank Register contains the high-order 8 bits of the base ad-
dress. The effective address is the sum of the 24-bit base address
and the Y Index Register.

lnstructlon:.; Ijacode |
| |
I |

oftset]

Stack Pointer I

offset I
: | 00 | S + offset |
then:
| S + offset |
+| oer |
| base address l
+ | i Y Reg I
Operand
Address: ' effective address |

Block Source Bank, Destination Bank—xyc

This addressmg mode is used by the Block Move instructions. The
second byte'of the instruction contains the high-order 8 bits of the
destination'address. The Y index Register contains the low-order 16
bits of the destination address. The third byte of the instruction
contains the! hlgh -order 8 bits of the source address. The X Index
Register contains the low-order 16 bits of the source address. The
C Accumulator contains one less than the number of bytes to move.
The second byte of the block move instructions is also [oaded into
the Data Bank Register.

i
Instruction:

opcode | dstbnk | srcbnk |
dstbonk — DBR
Source '
Address:] scrbnk l X Reg I
Desllnatlon|
Address: | DBR | Y Reg |

Increment (MVN) or decrement (MVP) X and Y.
Decrement C (if greater than zero), then PC+3 — PC.

65C816 Data Sheet

ADC
AND
ASL

BCC
BCS
BEQ
BIT

BNE
BPL
BRA
BRK
BRL
BVC
BVS
CLC
CLD
CLI

CLv

CMP
COP
CPX
CPY
DEC
DEX
DEY
EOR
INC

INX

INY

JML
JMP
JSL

JSR

LDA
LDX
LDY
LSR
MVN
MVP
* NOP
ORA
PEA

PE!

PER

W65C802 and W65C816 Instruction Set—Alphabetical Sequence

Add Memory to Accumulator with Carry
“AND" Memory with Accumulator

Shift One Bit Left, Memory or Accumulator
Branch on Carry Clear (Pc = 0)
Branch on Carry Set (Pc = 1)
Branch if Equal (Pz = 1)

Bit Test !

Branch if Result Minus (PN = 1)

Branch if Not Equal (Pz = 0)

Branch if Result Plus (PN = 0)

Branch Always

Force Break

Branch Always Long

Branch on Overflow Clear (Pv = 0)

Branch on Overflow Set (Pv = 1)

Clear Carry Flag

Clear Decimal Mode

Clear Interrupt Disable Bit

Clear Overflow Flag

Compare Memory and Accumulator
Coprocessor

Compare Memory and Index X -

Compare Memory and Index Y

Decrement Memory or Accumulator by One
Decrement Index X by One

Decrement Index Y by One

“Exclusive OR" Memory with Accumulator
Increment Memory or Accumulator by One
Increment Index X by One
Increment Index Y by One
Jump Long

Jump to New Location
Jump Subroutine Long
Jump to New Location Saving Return Address

Load Accumulator with Memory

Load Index X with Memory

Load Index Y with Memory

Shift One Bit Right (Memory or Accumulator)

Block Move Negative

Block Move Positive

No Operation

"OR" Memory with Accumulator

Push Effective Absolute Address on Stack (or Push Immediate
Data on Stack)

Push Effective Indirect Address on Stack (or Push Direct

Data on Stack)

Push Effective Program Counter Relative Address on Stack

1

For alternate mnemonlics, see Table 7.

PHA
PHB
PHD
PHK
PHP|
PHX
PHYi
PLA
PLB
PLD
PLP
PLX
PLY
REP
ROL
AOR
RTI
RTL
RTS
SBC
SEC
SED|
SEI
SEP,
STA
STP
STX
STY
STZ
TAX
TAY
TCD
TCS
D¢
TRB
TSB
TSC
TSX
TXA
TXS
TXY
TYA
TYX
WAl
WDM
XBA
XCE

Push Accumulator on Stack

Push Data Bank Register on Stack

Push Direct Register on Stack

Push Program Bank Register on Stack

Push Processor Status on Stack

Push Index X on Stack

Push index Y on Stack

Pull Accumulator from Stack

Pull Data Bank Register from Stack

Pull Direct Register from Stack

Pull Processor Status from Stack

Pull Index X from Stack

Pull Index Y form Stack

Reset Status Bits

Rotate One Bit Left (Memory or Accumulator)
Rotate One Bit Right (Memory or Accumuilator)
Return from interrupt

Return from Subroutine Long

Return from Subroutine

Subtract Memory from Accumulator with Borrow
Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status

Set Processor Status Bite

Store Accumulator in Memory

Stop the Clock

Store Index X in Memory

Store Index Y in Memory

Store Zero in Memory

Transfer Accumulator to Index X

Transfer Accumulator to Index Y

Transfer C Accumuilator to Direct Register
Transfer C Accumulator to Stack Pointer Register
Transfer Direct Register to C Accumulator
Test and Reset Bit

Test and Set Bit

Transfer Stack Pointer Register to C Accumulator
Transfer Stack Pointer Register to Index X
Transfer Index X to Accumulator

Transfer index X to Stack Pointer Register
Transfer Index X to Index Y

Transfer Index Y to Accumulator

Transfer Index Y to Index X

Wait for Interrupt

Reserved for Future Use

Exchange B and A Accumulator

Exchange Carry and Emulation Bits

Vector Locations

E=1

OOFFFE,F —IRQ/BRK Hardware/Software
OOFFFC,D—RESET Hardware
OOFFFA,B —NMI . Hardware
OOFFFB,9 —ABORT - Hardware
OOQFFF6,7 —(Reserved)

OOFFF4,5 —COP Software

E=0

OOFFEE,F —IRQ Hardware
OOFFEC,D—(Reserved)
OOFFEA,B—NMI Hardware
OOFFE8,9 —ABORT Hardware
OOFFE6,7 —BRK Software
OOQFFE4,5 —COP Software

The VP output is low during the two cycles used for vector location access.
When an interrupt is executed, D = 0 and | = 1 in Status Register P.

17

65C816 Data Sheet |

Opcode Matrix

M M
s [
D LSD D
0 1 2 3 5 6 7 8 9 A B c D E
o [BRKs|ORA(dx) | COPs | ORAds | TSR | ORAd | ASLd | ORA[d] |PHPs| ORA# [ASLA|PHDs| TSBa | ORAa | ASLa | ORAall .
28| 28 2%g | 2%4 2%s5 |23 |25 2% |1 3] 2 2|1 2|1%4]| 3% | 34| 36| 4%s5
1|BPLr [ORA (d).y |ORA (a)|ORA (dis).y| TRBd ORAdx|ASLdx| ORA[d]y | CLCi |ORAaly| INCA[TCSi| TRBa |ORAax|ASL ax|ORA al ;
22| 25 2%s 2%7 | 2%5 [2.4 | 2 6 2%6 |1 2| 3 ai[{®2]|1%2| 3% | 34 | a7 | 4*5
o |JSRa [AND (dx) [JSLal | ANDds | BITd ANDd |ROLd | AND[d} | PLP s | AND a' ROLA|PLDs| BITa | AND2 | ROLa | ANDall ,
3 s 2 6 4%g 2%y 23|23 |25 2%6 |1 4| 22" 1 2|1*s5]| 3 4 34| 36| 4%s
3 [BMIT [AND (d).y |AND (d) [AND (d.s).y | BIT,d.x [AND d,x[ROL dx| AND [d].y | SECi |AND ay|DEC A[TSCi| BITax |AND ax|ROLax|ANDald ,
2 2 25 2%s 2%7 2% 2 4 |26 2%6 1 23 4| 1%|1%2| 3% 3 4 37| 4%s
4| RTIs |[EOR(dx) | WDM | EORds |MVPxyc| EORd |LSRd | EOR[d] |PHAs| EOR# |LSRA[PHKs| JMPa | EORa | LSRa EORal| ,
17| 28 2%2 2%4 3*7 |23 |25 2% |1 3|22 |1 2|1%3| a3 34| 36| 4%s
5 |BVCr | EOR (d)y |EOR (d)|EOR (d.s).y |MVN xyc|EOR dx |LSR dix | EOR[d]y | CLIi [EORay| PHYs|TCDi| JMPal | EORax|LSR ax|EORald
2 2 2 5 2°s 2%7 3%*7 | 24 | 258 2%¢ 1 2] 34 | 1%°3[1%2| 4¥*4 34| 37| a*s
g |RTSs [ADC (dx) | PERs | ADCdis | STZd | ADCd |RORd | ADG[d] |PLAS| ADC# |[RORA|RTLs| JMP (a) | ADCa | RORa | ADCal 6
16 2 6 3*sg 2%, 2°3 | 23|25 2%¢ 1 422 |12[1%s| 35 34| 36| 4*s
7 |BVSr [ADC (d).y |ADG (d)[ADC (d,5).y| STZ dx |ADC dx |ROR d.x| ADG [d],y | SEIi |ADC aly| PLYs |TDC i |JMP (a,x) | ADC a,x | ROR a.x| ADC al.¥ ;
2 2 25 2°s 2%y 2%4 | 24 |26 2¥%g 1 2| 3 4 |1%4[1%2| 3°%6 34| 37| 4%s
g |[CRAT|STA(dx) | BRLM | STAds | STYd | STAG | STXd | STA[d) | DEYi| BIT# | TXAi[PHBs| STYa | STAa | STXa | STAal| .
2%2 2 6 a¥*3 2%4 23|23 |23 2%s 1 2] 2% |1 2(1%3]| 3 4 34| 34| a*s
o [BCCr | STA(d)y | STA(d) |STA ds)y [STY dx |STAdx |STX dy | STAIdLy | TYAi [STAay| TXSi|TXYi| STZa |STAax|STZax|STAalx| o
2 2 2 8 2%s5 2%y 2 4 2 4 |2 4 2%6 12035 |1 2[1%2] 3%4 35 |3%° | 4%*s
A|LDY#[LDA(dx) | LDX# | LDAds | LDYd |LDAd |LDXd | LDA[d] | TAYi | LDA# | TAXi|PLBs| LDYa | LDAa | LDXa | LDAal| ,
2 2 2 6 2 2 2%4 23 |23 |23 2%g 1222 |1 2[1*%s| 3 4 34 | 34| 4*s
g |BCSr [LDA(d)y [LDA(J) |LDA (d,s).y | LDY dx |LDAdx [LDX dy | LDA[d}y | CLVI [LDAay| TSXi [TYXi | LOYax [LDAax |LDXay|LDAalx 5
2 2 25 2°%s 2%7 2 4 2 4 |2 4 2% 1 2|3 4|1 2[1*2| 3 4 34 | 34| 4%s
c|CPY#|CMP(dx) | REP# | CMPds | CPYd |CMPd | DECd | CMP[d) | INYi | CMP# | DEXi|wali| CPva | CMPa | DECa | CMPal c
22| 26 2% 2%4 23 |23 25| 2% [12[22|12|1°3| 34 | 34| a36]| 4*s
p [BNEr |CMP (d)y |CMP (d) |CMP (ds).y[PEls |CMP d,x|DEC dix| CMPldly | CLDi |CMPay| PHX s [STPi | JML (a) | CMP a.x | DEC a.x| CMP al, o
22| 25 2%s 2%y 2%¥s | 2,4 |28 2%s |1 2| 3 4;|1%°3|1°3| 3% | 3 4 [37| a*s
g |CPX# [SBC (dx) | SEP# [SBCds | CPXd | SBCd | INCd | SBG[d] | INXi | SBC# [NOPi|XBAi| CPXa | SBCa | INCa | SBCal £
22| 256 2%3 | 2%y 23 |23 (25| 2% |1 2|22 12[1*3| 34 | 34|36 a*s
F |BEQr|SBC (d)y [SBG(d)|SBC (d.s)y | PEAs [SBCdx|[INCdx | SBC(dly [SEDI |SBCay| PLX's [XCE i |USR (ax) | SBC ax | INC ax | SBC al.x E
2 2 2 5 2%s 2%7 3%s5 | 24 |26 2% |1 2| 3 4 |1%4|1%2| 3%*g 34 | 37| 4%s
0 1 2 3 4 5 6 7 8 9 A B c D E F
symbol | addressing mode symbol | addressing mode
immediate (d] direct indirect long
A accumulator {dl.y direct indirect long indexed
r program counter relative a absolute
rl program counter relative long a,x absolute indexed (with x)
i implied ay absolute indexed (with y)
s stack al absolute long
d direct al.x absolute long indexed
d.x direct indexed (with x) d,s stack relative
dy direct indexed (with y) (d,s)y stack relative indirect indexed
(d) direct indirect (a) absolute indirect
(d.x) direct indexed indirect (a,x) absolute indexed indirect
(d).y direct indirect indexed xyc block move
Op Code Matrix Legend
INSTRUCTION | ADDRESSING
MNEMONIC * = New W65C816/802 Opcodes MODE
@ = New W65C02 Opcodes
BASE Blank = NMOS 6502 Opcodes BASE
NO. BYTES NO. CYCLES

18

65C816 Data Sheet

Operation, Operation Codes, and Status Register

PROCESSOR
= STATUS CODE MME-
AN, _ ZIEI% s |] e | %] o, P S -_g.'g7as4sz|a MONIC
=le|% |0 |2 |- |T|B|B |0 |d|d|R(d| |TIE8|B|S(8I® D2V MxD I ZClE=0
OPERATION 1123145 |67 |8]a|w|n|w2|1a[wa]spefr7]|18|19f20 |21 |22|a3|24|N v 1 B D | Z CIE= 1

ADC A+M+C—A 59 |60 | 6F |65 T1 |77 [BY |15 70 |7F |79 72 |67 73 N V . &6 ADC
AND AAM — A 29 |2D|2F |25 3 jar|2 |35 30 |3F |38 3z |27 3 N . .2 AND
ASL c- [is7__0] -0 0E 06 |0A 16 1E N A ASL
B8CC BRANCHIFC =0 90 . - b g v BCC
BCS BRANCH IF C =1 BO 3 i BCS
BEQ BRANCHIFZ =1 Fo TN BEQ
BIT AAM (NOTE 1) 89 | 2C 24 34 3c 3 MeMe Z . BIT
BMI BRANCH IFN =1 30 AL T BMI
BNE BRANCH IF Z = 0 po BNE
BPL BRANCH IF N =0 10 . i BPL
BRA BRANCH ALWAYS | [. .le BRA
BRK BREAK (NOTE 2) 00 .o 0| . BRK
BAL BRANCH LONG ALWAYS i 82 A .|* BRL
BVC BRANCH IF V =0 50 . F BVC
BVS BRANCH IF V = 1 70 g . BVS
CLC 0-C 18 2 . .] CLC
CLD 0-D o8 P 0. . . cLD
CLl o= 58 &t & F | DR cLl
CLV 0=V B8 .0 . i a el s CLv
CMP A-M Co|cD|CF{CS D1 |p7{c1| D5 DD |DF |08 Dz |C7 D3 N . i ZcC CMP
coP CO-PROCESSOR 0z . 01 . .|* cor
CPX X-M EO|EC Ed4 N . .. 2Z¢C CPX
CPY ¥-M co|cC c4 N ; . 2C cPY
DEC DECREMENT CE C6 |3A D6 DE N oL S DEC
DEX X-1-=X% CA N . 4 DEX
DEY ¥-1-% B8 N . . G ik DEY
ECR AVM — A 494D | 4F |45 51 [s7] 41|58 50 |5F | 59 52 |47 53 [I R EOR
ING INCREMENTS EE EB [1A F6 FE N . . z INC
INX Xel1=X EB N . . Z INX
INY Yel=Y ca N . I 4 INY
JML JUMP LONG TO NEW LOC. oC . B G
JWP JUMP TO NEW LOC. 4C|5C 6C 0 o i JMP
JSL JUMP LONG TO 5UB. 22 . .. J5L
JSR JUMP TO SUB. 20 FC . o JSA
LDA M=A AS|AD| AF | AS B1|B7|A1|BS BD |BF |BS B2 |AT A3 N 2 . Z LDA
LDX M= X az| AE AB B6 BE N B . 2. LDX
LoY M= AD|AC Ad B4 BC N Vo e LDY
LSA 0— !15{? 0] -¢ 4E 46 44 56 5E 0 ., . ZC LSA
MVN M — M BACKWARD ; 541 . F .o |% MVN
MVP M — M FORWARD a4 . . * MVP
NOP NO OPERATION EA . . . NOP
ORA AVM — A 0a| oD| OF | 05 1 17|01 15 10 |1F |18 12 (o7 13 N 7 A ORA
PEA Mpc + 1, Mpc + 2 — Ms - 1, Ms g F4 . v PEA

§5-2-
PEI M(d). M(d + 1) = Ms - 1, Ms D4 . 4 PEI

-2-8

PER Mpc + rl, Mpc +rl + 1~ Ms -1, Ms | 62 g . . .|* PER

$-2-5]
PHA A-Ms.5-1—-5 18 : e i wow o PHA
PHB DBA -~ Ms, S-1-§ 8B " ¥ S PHB
PHD D—-Ms,Ms-1,8-2—§ 08 . me w0 m PHD
PHK PBR—Ms, S-1~8 48 N AR LoL e PHK
PHP P—MsS-1~§ 08 R - PHP
PHX X—Ms.S-1-8 DA ST T .le PHX
PHY Y—~Ms, S-1~—§ SA G, i e £ 5 . .|e PHY
PLA S+1—-S Ms—A 68 N z . PLA
PLB §+1~S, Ms— DBA AB NG s & Z .|* P8
PLD §+2—8S Ms-1,Ms—D 28 N Z .* PO
PLP S+1—S Ms—P NVMXDI 2 FLP
PLX S+9—-8 Ms—X FA N e al % PLX
PLY S5+1-5Ms-Y TA N z . PLY
REP MAP ~ P c2 NVMXDI1 ZCl* REP
ROL -C 2E 26 | 2A 36 3E N . zZcC ROL
ROR c— 6E B |5 % 7€ N oL z e ROR
ATI RTRN FROM INT. 40 NVMXDI ZC ATI
RTL ATRN FROM SUB, LONG 68 S Ta i . oL |* RTL
RTS ATRN SUBROUTINE] ; 5 s ATS
SBC A-M-C—A Ea| ED| EF | ES F1|FT| E1| FS FD |FF| F8 F2|E7? F3 NV SR SBC
SEC 1-C 38 ; oo 1 SEC
SED 1-D] . BRI . SED
SEI 11 78 i B oy ow ; SEI
SEP MVP —~ P E2 NVMXDI ZCl® SEP
STA A= M 8D 8F | 85 91|97 81) 95 oD |9F | 98 92 | 87 93 . . . STA
5TP STOP (1— ¢2) DB ’ ; F . . .|o sTP
STX =M 8E 85 96 i i Y oa 5TX
5TY Y= M 8C a4 94 ¥ v .o STY
S1Z 00— M 8c B4 74 SE i e . . .|e sT2
TAX A=X AR N . . 2 TAX
TAY A=Y AB N . o B TAY
TCO c-D 5B N .. Z .® TCD
TCS -5 18 1 s oa s s s .. o™ TCS
TDC D-¢c 78 i N . . Z & TDC
TRB 1c) 14 . . .2 .|e TRB
158 AVM — M [T+ 04 . e . . . Z .|® TSB
TSC 5-C B N .o . 2 % TSC
TSX 5-X BA Ny e L R T5%
TXA X—A BA N . . . & TXA
TXS X=$ ELS i i Lo g TXS
TXY K=Y 98 N Z .|* Txvy
TYA Y~ A 98 N . z . TYA
TYX Y= X BB N . Z .|® Tyx
WAI 0— RDY ce 0 N Lo e wal
WDM NO OPERATION (RESERVED) 42 i 3w . . |® WOM
XBA B—aA EB N Z .|® xBA
XCE C—E FB . . El|* XCE

Noies: " 3. % = New W65CB16/802 instructions + Add VvV OR

1. Bit immediate N and V flags nol slfectdd. When M = 0, M15 — N and M14 —V. ® = New W65C02 Instructions - Exclusive OR

2. Break Bil {B) 1n Status register indicate:

s hardware or software break.

Blank = NMOS 6502

- Subtract
A AND

2

2b.

-4

2¢.

o

2d.

a

*3a,

*3b

w3c.

4

o

w

*6b,

® 6¢.

® 6d

65C816 Data Sheetgzi

ADDRESS MODE

immedate ¥
(LDY.CPY,CPX.LDX.ORA,

AND,EOR,ADC,BITLDA, (1)(8) 2a.

CMP,SBC REP,SEP)
(14 Op Codes)

(2 and 3 bytes)

(2 and J cycles)
Absolute 8
(BIT.STY,STZLODY,
CPY,CPX,STX,LDX,
ORA AND,EOR,ADC,
STA,LDA,CMP,SBC)
(18 Op Codes)

(3 bytes)

{4 and 5 cycles}
Absolute (R-M-W) &

{ASL.ACOL.LSA,ROR
DEC.INC, TSB,TRB}
{6 Op Codes)

(3 bytes)

{6 and B cycles)

Absolute (JUMP) »
(JMPY4C)

{1 Op Code)

(3 bytes)

(3 cycles)

Absolute (Jump to
subrouline) a

(JSR)

(1 Op Code}

{3 byles)

(8 cycles)

(dilterent order from N6502}
Absolute Long ai
(ORA.ANO.,EQR,ADC
STA.LDA.CMP,SBC)
{8 Op Codes)

(4 bylas)

(5 and 6 cycles)
Absolute Long (JUMP) sl
(JMP)

(1 Op Code)

(4 bytes)

(4 cycles)

Absolute Long {(Jump to
Subroutine Long) al
(JSL)

(1 Op Code)

(4 bytes)

(7 cycies}

Direct d
{BIT.STZSTY.LDY.
CPY.CPX,STX,LDX,
ORA.AND.EOR,ADC,
STA,LDA CMP,SBC)
{18 Op Codes)

{2 byles)

{3,4 and 5 cycles)
Direct (R-M-W) d
{ASL,AOL,LSR,AOR
DEC.INC,TSB.TRB)
{6 Op Codas)

(2 byles)

(5,6.7 and 8 cycles)

Accumulator A

L]

(1)
3)
(1}

2l

m

2)

(1)
{3)
{1

{ASL,INC,ROL,DEC,LSR,ROR)

{6 Op Codes)
(1 byte)
(2 cycles)

. implied |

{DEY. INY, INX, DEX, NOP,
XCE, TYA, TAY,TXA, TXS,
TAX,TSX,TCS,TSC.TCD.
TDC,TXY.TYX.CLC.SEC.
CLI,SEI.CLV.CLD.SED)
{25 Op Codes)

{1 byte)

(2 cycles)

Implied |

(XBA)

(1 Op Code)

(1 byte)

{3 cycies)

Wait For Interrupt

(WAI)

{1 Op Code) (9)

{1 byle) -

(3 cycles) IRQ,NMI

Slop-The-Clock

{STP)

{1 Op Cods) s

(1 byte} RES=%

(3 cycles) AES=0
AES-0
RES=3

See 21a Slack

[HarAsma —ans

ArWLN =
gren:
—-——oo -
PR -

PRl E- XA
Bk 5 :
e GOO0C s
B - 1 - Y - T - I -
- GOBOO0

- X -

&
“ D00 ~“000= —==000~

SALUNS QUARNS OB ELN

- ¥ - -)

popN s mENOGALN -

3
~ = 00— = =00 =00=

D00 == —00=00 ===

Mo ONAELWLNN -
o parg E

- 00000 ===
O == O ==00 =
0O+ 000000 ==

Y-
oo -

Tl o8
-
00—

-“-00000 -
- - E-R-R-1

PBR.PC
PBR.PC+1
PBR.PC+2

PBA,PCI
PBA,PC*1
PBR,PCH2
DBR.AA
DBR.AA*

l

PBR,PC!
PBR.PC+1
PBR,PC+2
DBR,AA
DBR.AA+
DBR.AAM
DBR.AAY
DBR.AA
PBA.PC
PBA.PCH
PBA.PC+2

PBR, NEW PC

PBR.PC,
PBRPC+1
PBR.PC+2
PBR.PC+2
0.8

0.5-1

PBRNEW PC

PBR.PC

PBR.PC+1
PBR,PC+2
PBR,PC+3
AABAA

AAB,AA+Y
PBR.PC

PBR,PC+1
PBR.PC#+2
PBR.,PC+3

NEW PB‘R.PC

PBR,PC
PBR,PC+1
PBA,PC+2
0.8

0.8
PBR.PC+3
0.5-1
0.5-2

NEW PBR,PC

PBR.PC |
PBR.PG*1
PBR.PC+1
0.0+D0
0,D+D0+1

PBR.PC
PBR.PC*
PBR,PCH
0,0+D0
0.D+DO+1
0,0400+1
0.0+00+1
0,0+00
PBA,PC
PBR,PC+1

PBR.PC
PBR.PC+1

PBR.PC
PBR.PC+1
PBR.PC+1

RDY

PBA.PC

PBA.PC+1
PBA,PC+1
PER.PCH1

-0 -

PBR.PC

PBR.PC+1
PBR,PC+1
PBR,PC*1
PBR,PC+1
PBR,PC+}
PBR.PC+1

Detailed Instruction Operation

WL VDA,VPA ADDRESS BUS DATA BUS

Op Code
1oL
IDH

Op Code
AAL
AAH
Data Low
Data High

Op Code
AAL

AAH
Data Low
Dala High
10

Dala High
Dala Low
Op Code
NEW PCL
NEW PCH
Op Code

Op Code
NEW PCL
NEW PCH
10

PCH

PCL

Nexl Op Code

Op Code
AAL

AAH

AAB

Data Low
Data High
Op Code
NEW PCL
NEW PCH
NEW BR
Op Code

Op Code
NEW PCL
NEW PCH
P8R

10

NEW PBR
PCH

PCL

Nexl Op Code

Qp Code
o]0
10
Dala Low
Dala High

Op Code

[vle]

e}

Dala Low
Data High
10

Data High
Data Low
Op Code

10

Op Code
(o]

Op Code
10
10

Op Code
10

IRQ(BRK)

Op Code
10

[[e]
RES({BRK}
RES(BRK)
RES{BAK)
BEGIN

o ~

»

L = T S S

- OO .-
4

LR
r=%-3

S-=-~-~00~-@===
@ g

- OO k-

3

ADDRESS MODE

Direct Indirect Indexed (d),y
(ORA,AND,EOR.ADC,
STA.LDA.CMP,SBC)

(8 Op Cades)

(2 bytes)

{5.6,7 and B cycles)

Direcl Indirect
Indaxed Long [d).y
{ORA AND.EQOR,ADG,
STA.LDA.CMP,SBC)
(8 Op Codes)

(2 bytes)

(6,7 and 8 cycles}

i
Direct Indexed Indireci (d,x)
{ORA,AND,EOR,ADC,
STA,LDA,CMP.SBC)

(8 Op Codes)

{2 bytes}

(6.7 and B cycles}

Direct,X d,x .
(BIT.STZSTY,LOY,
ORA,AND,EOR.ADC,
STA.LDA,CMP,SBC)
(11 Op Codes)

(2 bytes) k.

(4,5 and 6 cycles)
Direct, X(A-M-W) d,x
(ASL,AOL.LSR,ROR,
DEC.INC}

{6 Op Codss)

{2 byles) 1
{6,7.8 and 9 cycles)

Drrect,Y d,y
(STX.LDX)

(2 Op Codes)

(2 bytes}

(4,5 and B cycles}

Absolute X a,x
(BIT.LDY,STZ,
ORA,AND.EOR,ADC,
STA.LDA.CMP.SBC)
(11 Op Codes}

(3 bytes)

(4,5 and 6 cycles) f
Absolute. X{R-M-W) a,x
(ASL.ROL.LSR,AOR,
DEC.INC)

(6 Op Codes)

(3 bytes)

(7 and 9 cycles)

Absolute Long, X al,x
(ORA.AND.EOR.ADC,
STA.LDA.CMP,SBC)
(8 Op Codes)

(4 bytes)

{5 and 6 cycles)’
Absolute,Y ay
(LDX,ORA,AND.EOR.ADC,
STA,LDA.CMP,SBC)
{9 Op Codes)

(3 bytes)

{(45and 8 cycles)

. Relative r

(BPL,BMI,BVC BVS,BCC,
BCS.BNE.BEQ,BRA)

(9 Op Codes)

(2 bytes)

(2,3 and 4 cycles)

. Relative Long rl

{BAL)

{1 Op Code)
{3 byltes)

{4 cycles)

. Absoiute Indirect (a}

(JMP) |
(1 Op Code) H
(3 byles)

{5 cycies)

Absolule indirect (s)

(ML)

{1 Op Code)
(3 bytes)

(6 cycies)

Direct Indirect (d)
(ORA AND,EOR,ADC,
STALDA.CMP,SBC)
(8 Op Codes) '

(2 bytes)

(5,6 and 7 cycles)

2r0 ."N ol
!I

gooropns paosonNS g0

»
P A G e e e g

0000 -= 000000~ ~ 000000 == 000000 ==

OO0 OO0 n sttt O Dt =D OO

ARONN S BALNN
[[

pr- oo

o
- s DO DO D

- 000 = == 000 = == 0==000 =

phpLN~ pro

L
D00 ~== 0000 == 0000000 = =

®

gorens NGO aGN S

pon-

gs
Cha S e A a A — e ———— OOOO0 .-

OO0 % ~= 000 % ==000= ==0==000=

-k s b b b s e e e ke e o e ke e e
OO - D00 - OO == OCODOOO ===

SRON A

-0 -

DUBLURNNS ~ONALRN~ LN~ = 8O0
A m et 0D s e e 00— —==s00= =000 =

®
OO mm S CEO = —- =00 ===

L. VDA,VPA ADDRESS BUS DATA BUS

PBA.PC Op Code
PBR,PC+1 [2]o]
PBR.PC»1 10
00«00 AAL
0,0+00+1 AAH

DBR,AAH,AAL+ YL 10
DBR,AA+Y

DBR.AA+Y+1

PBA,PC

PBR,PC+1

PBR.PC+1 10
0,0+D0 AAL
0,0+D0O#+1 AAH
0.0+D0+2 AAB
AABAA+Y Data Low
AAB AA+Y Y Dals High
PBR.PC Op Code
PBRA,PC+1 Do
PBRAR,PC+1 0
PBR,PC+1 [}
0,D+DO+X AAL
0,.0+D0+X+1 AAH
DBR.AA Oata Low
DBR,AA¢1 Dats High
PBA.PC Op Code
PBR.PC*1 [a]e]
PBR,PC*1 10
PBR.PC+1 0
0,0+DO+X Data Low

0.D+DO+X+1 Data High

PBR,PC Op Code
PBR,PC+1 0o
PBR.PC+1 10
PBR,PC+1 10
0,0+D0*X Osta Low

0.0+00+X+1 Data High
0,D+00¢X+1 10
0,0¢00¢X+1 Data High

0,0+DO*X Data Low
PBA.PC QOp Code
PBR,PC+1 [s]¢]
PBR,PC+1 1
PBA.PC+1 [{e}
0,.0+DO+Y Dats Low
0,0+D0+Y+1 Data High
PBR.PC Op Code
PBR,PC+1 AAL
PBR,PC+2 AAH
DBR,AAH,AAL+ XL 1O
DBR.AA+X Data Low

DBR.AA+X+1 Data High

PBR.PC Op Cods
PBR.PC+1 AAL
PBR.PC»2 AAH
DBA,AAH AAL+XL 10
DBR.AA*X Data Low

DBR,AAvX+1 Dats High
DBR.AA+X+1 10
DBR,AA+X+1 Data High

DBR,AA+X Data Low
PBR,FPC Op Code
PBR,PC+1 AAL
PBAR.PC+2 AAH
PBR.PC+3 AAB

AAB AA+X Data Low
AAB,AA+X+1 Data High
PBR.PC Op Code
PBR,PC*1 AAL
PBR.PC»2 AAH
DBA,AAH,AAL+YL IO
DBR.AA+Y Data Low
DBR.AA+Y+1 Data High
PBR.PC Op Code
PBR,PC+1 Offset
PBA.PC+1 10
PBR.PC*1 10
PBRPC+Offsst Op Code
PBR,PC Op Cade
PBR.PC+1 Ofiset Low
PBA.PC*2 OHset High
PBR.PC+2 0
PBR,PC+Offsel Op Code
PBR,PC Op Code
PBR,PC+ AAL
PBR.PC2 AAH
0.AA NEW PCL
0,AA+1 NEW PCH
PBA.NEW PC Op Code
PBAR.PC Op Code
PBA,PC+1 AAL
PBR,PC+2 AAH
0.AA NEW PCL
0,AA1 NEW PCH
0,AA+2 NEW PBR
NEW PBR,PC Op Cods
PBR.PC Op Code
PBR.PC+1 [o]e]
PBR,PC+1 [[o}
0.0+DO AAL
0,0+D0*1 AAH
DBR.AA Oata Low
DBA.AA«Y Data Low

2

DR -

=%~

FE e

S

-t ot DD ettt o= =

=X~}

OO s e b .- 55—

va SR a
[=X=3

Do
33

I i
33 e

N Y
S S

65C816 Data Sheet

Detailed Instruction Operation (continued)

ADDRESS MODE CYCLE VP, ML, VDA.VPA ADDRESS BUS DATA BUS R/W ADDRESS MODE CYCLE VP, ML, VDA,VPA ADDRESS BUB DATABUS R/W
%19 Direc! indirecl Long [d] 1. 1 1 1 1 PBRPC Op Code 1 #23. Stack Relative Indirect 1. 1t 1 t PEBRPC Op Code 1
{ORA AND.EOR.ADC 2. 1 1 [} 1 PBR.PC+1 DO 1 Indexed (d.s),y 2. LI | o 1 PBRPC+1 sO 1
STA.LDA,.CMP.SBC) 2) 2a L | 0 0 PBR.PCe1 10 1 (ORA,AND.EOR.ADC, 3. LI | 0 0 PBRe¢PC#l 10 1
(8 Op Codes} 3. L | 1 0 0Db+DO AAL 1 STA,LDA,CMP.SDC) 4. LI | 1 0 08+80 AAL 1
(2 bytes) 4, 11 1 0 0D+DO«1 AAH 1 (8 Op Codes) 5 T 1 0 0.5+50+ AAH 1
(6.7 and 8 cycles) 5. 1 1 0 0,D+DO+2 AAB 1 (2 bytes) ©. 1 1 0 0 05S+50+1 10 1
6. 1 1 1 0 AAB.AA Daia Low 1/0 (7 and B Cycies) 7. LI | 1 0 DBR.AA+Y Data Low 1/0
(1) 6a 11 1 0 AAB.AA*Y Data High 1/0 {1 7e 1 1 1 0 DBR,AAY+1 Data High 1/0
20a Absolute Indexed Indirect (a.x) 1 it 1 1 1 PBRPC Op Code 1 #24a. Biock Move Positive 1. 1 1 1 1 PBRPC Op Code 1
(JMP) 2 1 1 1] 1 PBRPC# AAL 1 {torward) zy¢ 2. A | 0 1 PBR,PC*1 DBA 1
11 Op Code) 3 T 1 0 1 PBRPC2 AAH 1 (MVP) 3. 1 1 0 1 PBRPC+2 SBA 1
{3 bytes) 4 1Y 0 0 BR.PC+2 [[v] 1 (1 Op Code) N-2 | 4, 11 1 o SBAX Source Dala !
(6 cycles) S, L | 1] 1R BR,AA+X NEW PCL 1 (3 bytes) ; Byle | 5. 11 1 0 DBAY Desl. Data o
[L] 1 PBRAA+X+ NEW PCH 1 {7 cycles): C=2 | 6. LI | 0 0 DBAY 10 1
1 1 1 1 EBR,NEWPC Op Code 1 x = Sourch Address 1. 1 0 0 DBAY 10 1
*206 Absolute Indexed Indirect ! 1 1 1 1 PBRPC Op Code 1 y = Destirfation e 11V 1 1 PBRPC Op Code L
{Jump 1o Subroutine Indexed 2 1 1 0 1 PBRPCH AAL 1 ¢ =Number of Bytes to Move -1} 2. 1 1 0 1 PBRPCH DBA !
Indirect) (a,x) 1 1 1 1 0 08§ PCH o x,y Decrement 3. 1 % 0 1 PBRPC+2 SBA 1
(JSR) 4 o1 10 08-1 PCL o MVP 1s used when the N-1 | 4. 101 1 0 SBAX-1 Source Data 1
{1 Op Code) 5 1 1 0 1 PBRPCs2 AAH 3 destinationslar address ~ Byte | 5. 11 1 0 DBAY-1 Dest. Dats o
{2 bytas) 6 1 1 0 © PBAPCI2 0 1 1s higher (more positive} C=1 LG- 11 0 0 DBAY-1 10 1
(8 cycles) 1 11 0 1 PBRAAX NEW PCL 3 than Ihe dource slant address. LT- ' 1 0 0 DBAYA 10 }
& T 1 o 1 PBRAA«X»1 NEW PCH 1 . L R 1 1 PBRPC Op Code 1
1 11 1 1 PBANEWPC NextOpCode 1 FFFFFF 2. LI | o 1 PBRPCH1 DBA L}
21a Stack (Hardware 1 1 1 1 1 PBRPC 10 ' Dest. Stant N Byte | 3. 1 1 6 1 PBRPCs2 SBA 1
Interrupls) & 3y 2 1 1 0 0 PBRPC 0 1 Last | 4. | B | 1 0 SBAX-2 Source Data 1
(IRQ.NMIABORT,RES) (7} 3 11 1 0 68 PBR o rce Start G=0 | 5. L | 1 o DBAY-2 Dest. Data a
(4 haraware interrupls) 4 1t 1 1 0 081 PCH 0 Dest, End 3 ' 1 0 0 DBAV-2 10 !
{0 bytes) 5 11 1 0 0S-2 PCL o Source End LI 11 0 O DBAY-2 (o] 1
(7 and 8 cycles) 6. v 1 0 05-3 P o 1 1. s I | 1 1 PBR,PC+3 Next Op Code 1
T o 1 1 0 OVA AAVL 1
8 0 1 1 0 O0VAH AAVH 1 #24n. Block Move Negative [1 1 1 1 PBRPC Op Code 1
1 11 1 1 0AAV Next Op Code 1 [backward) xyc 2 1 1+ 0 1 PBRPC# DBA 1
21b. Stack {Soltware 1. 1 1 1 1 PBRPFC Op Code 1 (MVN) N-Z | 3 1 1 @ 1 PBRPCe2 SBA 1
Interrupts) s (3} 2. 1 1 0 1 PBRPC+l Signalure] {1 Op Code) Byte | 4, 1 1 1 0 SBAX Source Data 1
{BRK,COP) 7 3 11 1 0 oS PBR 0 (3 bytes) Cs2 | 5 11 1 0 DBAY Dest. Dala]
(2 Op Codes) 4 11 1 0 081 PCH 0 (7 eycles) 6. 1 1 0 0 DBAY 10 1
{2 byles) 5 L | 1 0 08-2 PCL o x = Source Address LT L | 0 0 DBAY [[o] 1
{7 and 8 cycles, 6. L | 1 0 0S-3 (COP Laiches) P o ¥ * Destination P
yoles) 7 0 1 1 0 OVA (M\"I). 1 © = Numbaer of Byles to Mave -1 | - 1 1 1 1 PBRPC Op Code 1
& D 1 1 0 OVAn AAVH 1 xy Incremont 21 1 0 1 PBRPCH DBA 1
1 LS| 1 1 0AAV NextOp Code 1 FFFFFF BNd i : : ? ; :g:':?‘z :BA Dal :
21c. Stack (Relurn from 1 11 1 1 PBRPC Op Code 1 Source End c’:: € 1% % o DBA'.Y:1 et oata 8
Interrupl) B 2. it 1 0 0 PBRPC+ 10 1 6 1 1 0 0 DBAY# 10 1
(RTN) 3 2 11 0 0 PBRPCe 10 1 Dost.End 7. 11 © 0 DBAY+ 10 1
(1 Op Code) 4, (I | 10 05e1 P 1 Source Start i
11 byte) 5 11 1 D 082 PCL 1 Dest. Stan M. 1 1 1 1 PBRPC Op Code 1
{6 and 7 cycles) & 1 1 1 0 083 PCH 1 2 4 1 0 3 FBAPCH 08A !
(ditlerant order trom N6502} (7) 7 11 1 0 0Sed PBA 1 00600 NByte | 3. 1t 1 0 1 PBRPC+2 SBA 1
\ IS 1 1 PBR.PC New Op Code 1 el | 4 LI 1 0 SBAXs2 Source Data 1
& MV 15 used when the 5 3 o 1 0 DBAY+2 Dest. Dala L]
21d Stack (Relurn from 3 171 ¥ 1 EBRPC Op Code ! destination slan address & 1 1 0 0 DBAY® 10 1
(S;%‘;““"e’ s g : : g g ﬁ:::g:: :g : is lower (more negative) T 1 1 0 0 DBAY+2 10 1
i) %
(+ Op Code) . 11 1 0 0.8 PCL 4 LT;:.::"M'“ stan L1 1 1 1 1 PBRPC3 Nex! Op Code 1
{1 byte) 5. L N | 1 0 0S+2 PCH 1
(6 cycles) 6 T 1 o 0 0.5¢2 10 1
1 1 1 1 1 PBRPC Op Code 1 Noles:
%210 Slack (Relurn from 1. 1 1 1 1 PBRPC Op Code 1 (1} Add 1 byte {lor immediale only) for M=0 or X=0 {1.e 16 bil data), 8dd 1 cycle for M=0 or X=0.
Subroutine Long) s 2. 11 0 0 PBRPCH 10 1 (2) Add 1 cycle for direct register low (DL} not equal 0.
(RTL) 3, 1y B o PORECH 1o i (3) Special case tor aborting instruction. This is the last cycle which may be aborted or the Slalus.
(1 Op Code) 4 11 1 0 08 NEW PCL ' PBR or DBR regrslers will be updaled
{1 byle} s 1 1 1 0 08¢2 NEW PCH 1 o1 egislers wi up .
(6 cycles) 6 101 1 0 0.8+3 NEW PBR 1 {4) Add 1 cycle for indexing across page boundaries, or wrile, or X=0. When X=1or in the
1, TR | 1 1 NEWPBR.PC NextOpCode 1 emulation mode, this cycle conlains invalid addresses.
211 Stack {Push}s 1 ' 1 1 1 PBRPC Op Code 1 (5) Add 1 cycle it branch s taken.
{PHP,PHA, PHY PHX, 2 1 1 0 0 PBRPC+ 10 1 (6) Add i cycle if branch is laken across page boundaries in 6502 emulation mode (E=1)
PHD.PHK,PHB) (1) 3a 1 o1 008 Regisier High 1 {7) Subiract 1 cycle lor §502 emuiation mode (E=1)
ﬂ S:‘e(;,odes) 3 11 1 0 0S-1 Ragister Low 1 (8) Add 1 cycle for REP.SEP.
(3 and 4 cycles) (9) Wait at cycle 2 tor 2 cycles alter NMT or TRQ active inpul.
21g. Stack {Pull) s 1 1 1 1 1 PBRPC Op Code 1 g
(PLPPLAPLY.PLXPLD,PLB) 2 ' 1 0 0 PBRPCH 10 1 Abbreviglions;
{Dillerent than N6502) 3 1 1 © 0 PBRPC+ 10 1 AAB Absolute Address Bank
(6 Op Codes) 4 11 1 0 oSt Register Low 1 AAH Absolute Address High
(1 byte) 1) 4a 1 1 0 0.5+2 Register High 1 AAL Absoluie Address Low
{4 and 5 cycles) AAVH Absolute Address Veclor High
%21, Stack (Push Elfective 1 T 1 1 1 PBRPC 0Op Code 1 AAVL Ablclute fdress Vectar Low
Indirect Address) s 2 1 1 0 1 PBRPCe Do 1 D B Banator
(PEN) 2 2a 11 6.0 PBRPCH 0 ! ‘DBA Destination Bank Address
(1 Op Code) 3. }, 1 1 .0 0000 AAL b DBR Data 8ank Regisler
(2 bytes) 4, 1 1 1 0 0D+«00A AAH 1 DO Direct Olfsel ¢
16 and 7 cycles) s v 1 1 0 oS AAH 0 roct e
6. N N 1 0 0S-1 AAL o IDH immedhate Date High
y IDL Immediate Dala Low
#21), Stack (Push Etleclive 1. 101 1 1 PBRPC Op Code 1 10 internal Operation
Absolule Address) s 2 i1 © 1 PBRPCH\ AAL 1 P Statlus Regisler
{PEA) 3. 1 1 0 1 PBRPCe2 AAH 1 PBR Program Bank Register
{1 Op Code) 4 1 1 1 0 0S AAH o PC Program Counter
(3 byles) -3 11 1 0 05 AAL 0 R-M-W Read-Modily-Write
(5 cycles) S Stack Address
#21) Stach (Push Elfective 1 11 1 1 PBR.PC Op Code 1 SBA Source Bank Address
Program Counter Relative 2. 1.1 o 1 PBR,PC+1 Offsat Low 1 SO Slack Offset
Address) s 3 " 1 0 1 PBRPC+2 Oftsel High 1 VA Vecior Address
(PERA) LN ' 1 0 @ PBRPCe2 10 1 %y Index Registars
{1 Op Code) 5 LI | 1 [] PCH+OFF+ o = New W65CB16/802 Addressing Modes
(3 bytes) CARRY ® = New W65C02 Addressing Modes
(6 cycles) 6. L | 1 0 0S-1 PCL+OFFSET 0 Blank = NMOS 6502 Addressing Modes
%22 Slack Relative d.s] LI | 1 1 PBR.PC Op Code 1
(ORA AND,EQR,ADL, 2 L | o ' PBRPC+1 SO 1
STA.LDA.CMP.SDC}) 3 LI | o @ PBRPC+1 10 1
(8 Op Codes) 4 L | 1 o - 0,5+S0 Dala Low 1/0
(2 bytes) () 4a 11 1 0 05504 Data High 170

{4 and 5 cycles)

21

———

e

RN e g DA AR Siea's ey

=i

65C816 Data Sheet

Recommended W65C816 and W65C802 Assembler
Syntax Standards

Directives

Assembler directives are those parts of the assembly language source
program which give directions to the assembler; this includes the defini-
tion of data area and constants within a program. ThIS standard excludes
any definitions of assembler directives.

Comments

An assembler should provide a way to use any line of the source program
as a comment. The recommended way of doing thisis to treat any blank
line, or any line that starts with asemi-colon oran asterlsk asacomment.
Other special characters may be used as well. '

The Source Line

Any line which causes the generation of a single W65C816 or W65C802
machine language instruction should be divided into four fields: a label
field, the operation code, the operand, and the comment field.

The Label Fleld—The label field begins in column one of the line. A label
must start with an alphabetic character, and may be followed by zero or
more alphanumeric characters. An assembler may define an upper limit
on the number of characters that can be in alabel, so long as thatupper
limit is greater than or equal to six characters. An assembler may limit
the alphabetic characters to upper-case characters if desired. If lower-
case characters are allowed, they should be treated as identical to their
upper-case equivalents. Other characters may be allowed in the label, so
long as their use does not conflict with the coding of operand fields.

The Operation Code Field—The operation code shall consist of a three
character sequence (mnemonic) from Table 3. it shall start no sooner
than column 2 of the line, or one space after the label if a label is coded.

Many of the operation codes in Table 3 have duplicate mnemonics; when
two or more machine language instructions have the same mnemonic,
the assembler resolves the difference based on the operand.

If an assembler allows lower-case letters in labels, it must also allow
lower-case letters in the mnemonic. When lower-cage letters are used in
the mnemonic, they shall be treated as equivalent to the upper-case
counterpart. Thus, the mnemonics LDA, Ida, and LdA mustall berecog-
nized, and are equivalant,

In addition to the mnemonics shown in Table 3, an assembler may pro-
vide the alternate mnemonics shown in Table 6.

Alternate Mnemonics

Standard Alias
BCC BLT .
BCS BGE
CMP A CMA
DEC A DEA
INC A INA
JSL JSR
JML JMP
TCD TAD
TCS TAS
TDC TDA
TSC TSA
XBA SWA

JSL should be recognized as equivalent to JSR whenp it is specified with a
fong absolute address. JML is equivalent to JMP with long addressing
forced.

The Operand Field—The operand field may start no sooner than one
space after the operation code field. The assembler must be capable of
at least twenty-four bit address calculations. The assembier should be
capable of specifying addresses as labels, integer constants, and hexa-
decimal constants. The assembler must allow addition and subtraction
in the operand field. Labels shall be recognized by the fact that they start
alphabetic characters. Decimal numbers shall be recognized as contain-
ing only the decimal digits 0...9. Hexadecimal constants shall be recog-
nized by prefixing the constant with a “$" character, followed by zero or
more of either the decimal digits or the hexadecimai digits “A”... "F". If
lower-case letters are allowed in the tabel field, then they shall also be
allowed as hexadecimal digits.

All constants, no matter what their format, shall provide at least enough
precision to specify all values that can be represented by a twenty-four
bit signed or unsigned integer represented in two’s complement notation.

Table 8 shows the operand formats which shall be recognized by the
assembler. The symbol d is a label or value which the assembler can
recognize as being less than $100. The symbol ais alabel or value which
the assembler can recognize as greater the $FF but less than $10000; the
symbol al is a label or value that the assembler can recognize as being
greater than SFFFF The symbol EXT is a label which cannot be focated
by the assembler at the time the instruction is assembled. Unless in-
structed othe |se :an assembler shall assume that EXT labels are two
bytes long. The sy;mbols rand rl are 8 and 16 bit signed displacements
calculated by the ?ssembler.

Note that the operand does not determine whether or not immediate
addressing loads one or two bytes; this is determined by the setting of
the status register. This forces the requirement for a directive or directives
that tell the assembler to generate one or two bytes of space for imme-
diate loads. The directives provided shall allow separate settings for the
accumulator and index registers.

The assembler shall use the <, >, and A characters after the # character
in immediate address to specify which byte or bytes will be selected from
the value of the operand. Any calculations in the operand must be per-
tormed before the byte selection takes place. Table 7 defines the action
taken by each operand by showing the effect of the operator on an ad-
dress. The column that shows a two byte immediate value show the bytes
in the order in which they appear in memory. The coding of the operand
is for an assembler which uses 32 bit address calculations, showing the
way that the address should be reduced to a 24 bit value.

Byte Selection Operator

Operand One Byte Result Two Byte Resulit
#$01020304 04 04 03
#<$01 020304 04 04 03
#>$01020304 03 03 02
#1$01020304 02 02 01

In any location in an operand where an address, or expression resulting in
an address, can be coded, the assembler shall recognize the prefix char-
acters<,|, and >, which force one byte (direct page), two byte (absolute)
orthree byte (Iong absolute) addressing. In cases where the addressing
mode is not forced, the assembler shall assume that the address is two
bytes unless the assembler is able to determine the type of addressing re-
quired by context in which case that addressing mode will be used. Ad-
dresses shall be truncated without error if an addressing mode is forced
which does not require the entire value of the address. For example,

LDA $0203 LDA [$010203

are completely equivalent. If the addressing mode is notforced, and the
type of addressing cannot be determined from context, the assembler
shall assume that a two byte address is to be used. If an instruction does
not have a short addressing mode (as in LDA, which has no direct page
indexed by Y) and a short address is used in the operand, the assembler
shall automaticaily extend the address by padding the most significant
bytes with zeroes in order to extend the address to the length needed. As
with immediate addressing, any expression evaluation shall take place
before the address is selected; thus, the address selection character is
only used once, before the address of expression.

The! (exclamation point) character should be supported as an alternative
to the| (vertical bar).

Along indirectaddress is indicated in the operand field of an instruction
by surroundmb the direct page address where the indirect address is
found by square brackets; direct page addresses which contain sixteen-
bit addresses are indicated by being surrounded by parentheses.

The operands 9f a block move instruction are specified as source bank,
destination bank—the opposite order of the object bytes generated.

Comment Fleld—The comment field may start no sooner than one space
after the operation code field or operand field depending on instruction
type.

22

65C816 Data Sheet

Addressing Mode
Immediate

Absolute

Absolute Long

Direct Page

Accumulator

Implied Addressing

Direct indirect
Indexed

Direct Indirect
Indexed Long

Direct Indexed

Indirect

Direct Indexed by X

Direct Indexed by Y

Absoiute Indexed by X

Format

#d

#a

#al
HEXT
#<d
#<a
#<al
HEXT
#>d
H#>a
#>al
#>EXT
#ad
#Aa
#Aaal
HANEXT
\d

la

a

lal
IEXT
EXT
>d

>a

>al

al
SEXT
d

<d

<a

<al
<EXT
A

{no operand)
(d)y
(<d)y
(<a)y
{<al)y
(KEXT).y
[dly
[<dly
[<aly
[<all,y
(<EXT]y
(d.x)
(<d,x)
(<a,x)
(<al,x)
(KEXT,x)
dx
<d,x
<a,x
<al,x
<EXT.x
d,y
<dy
<ay
<aly
<EXTy
d,x

Id,x

a,x

la,x

- lal,x

1EXT,x
EXT,x

Address Mode Formais

Addressing iMode
Absolute Infexed by Y

i
A
!

Absolute Léng Indexed
by X

Program Counter
Relative and
ProgramiCounter
Relative Long

Absolute Indirect

Direct Indirect

i

Direct Indirect Long

Absolute Indexed

Stack Addressing
Stack Relative
Indirect indexed

Block Move

Note: The alternate ! (exclamation point) is used in place of the| (vertical bar).

23

Format

1dy

d,y

a,y

lay

laly
IEXT.y
EXTy
>d.x
>a,X
>al,x
al,x
SEXT,x
d (the assemblier calculates
a rand rl)
al

EXT

(d)

(M)

(a)

(ta)

(tal}
(EXT)
(d)

(<a)
(<al)
(<EXT)
[d]

[<a)
[<al]
[<EXT]
(d,x})
(1d,x)
(a.x)
(1a,x)
(lal,x)
(EXTX)
(IEXT,x)
(no operand)
(d.shy
(<d.s)y
(<a.s)y
(<al,s)y
(<EXT,s)y
dd

d.a

d,al
d,EXT
ad

a,a

a,al
a,EXT
ald

al.a

al,al
al,EXT
EXT,d
EXT.a
EXT,a!
EXT.EXT

TR A N B S

65C816 Data Sheet

Addressing Mode Summary

Memory Utllization
Instruction Tires in Number of Program
| In Memory Cyciles Sequence Byles
i Original | New Original New
Address Mode { 8 BIt NMOS W65C816 8 BIt NMOS W65CB16
wo 6502 | i 6502
1. Immediate ¢ ' 2 | 219 2 203
2. Absolute 4(5) - 4(3.5) 3 k]
3. Absolute Long — 5(3) — 4
4, Direct " 3(5) 13(3.4.5) 2 2
5. Accumulator 2 2 1 1
6. Implied 2 o 2 1 1
7. Direct Indirect Indexed (d),y 501 5(1.3.4) 2 2
8. Direct Indirect Indexed Long [d], ¥ — 8(3.9) — 2
9. Direct Indexed Indirect (d,x) 6 6(3.4) 2 2
10. Direct, X 4(5) 4(3.4.5) 2 2
11, Direct, Y 4 413.4) 2 2
12. Absolute, X 4(1.5) 401.3.5) 3 3
13. Absolute Long, X — 5(3) ot 4
14. Absolute, Y 40 401.3) 3 3
15. Relative 2(%2) 2(2) 2 2
16. Relative Long ra. 30 — 3
17. Absolute Indirect (Jump) 5 5 3 3
18. Direct Indirect -— i 5(3.4) 2
19. Direct Indirect Long — CBl34) -— 2
20. Absolute Indexed Indirect (Jump) —) — 3
21, Stack 3-7 1 3-8 1-3 1-4
22, Stack Relative : = ; 4(3) — 2
23. Stack Relative Indirect Indexed : - 7@ — 2
24. Block Move X, Y, C {(Source, Destination, Block Length) — 7 — 3
NOTES:
1. Page boundary, add 1 cycle if page boundary is crossed when forming address.
2. Branch taken, add 1 cycle if branch is taken.
3. M=0or X =0, 16 bit operation, add 1 cycle, add 1 byte forimmediate.
4. Direct register low (DL) not equal zero, add 1 cycle.
5. Read-Modify-Write, add 2 cycles for M = 1, add 3 cycles for M= 0.

24

65C816 Data Sheet

Caveats and Application Information

Stack Addressing

When in the Native mode, the Stack may use memory locations 000000
to DOFFFFF. The effective address of Stack, Stack Relative, and Stack
Relative Indirect Indexed addressing modes will always be within this
range. In the Emulation mode, the Stack address range is 000100 to
0001FF. The following opcodes and addressing modes willincrement or
decrement beyond this range when accessing tlwo or three bytes:

JSL; JSR(a,x); PEA; PEl; PER; PHD; PLD; RTL; d,s; (d,s).y

Direct Addressing

The Direct Addressing modes are often used to access memory registers
and pointers. The effective address generated ‘by Direct; Direct,X and
Direct,Y addressing modes will always be in the Native mode range
000000 to OOFFFF. When in the Emulation mode, the direct addressing
range is 000000 to 0000FF, except for [Direct] and [Direct},Y addressing
modes and the PEI instruction which will increment from 0000FE or
0000FF into the Stack area.

When in the Emulation mode and DH is not equal to zero, the direct
addressing range is 00DH00 to 00DHFF, except for [Direct] and [Direct),Y
addressing modes and the PEI instruction which will increment from
O0DHFE or 00DHFF into the next higher page.

When in the Emulation mode and DL in not equal to zero, the direct
addressing range is 000000 to OOFFFF.

Absolute Indexed Addressing (W65C816 Only)

The Absolute Indexed addressing modes are used to address data out-
side the direct addressing range. The W65C02 and W65C802 addressing
range is 0000 to FFFF. Indexing from page FFXX may result in a 00YY
data fetch when using the W65C02 or W65CB02. In contrast, indexing
from page ZZFFXX may resultin ZZ+1,00YY when using the W65C816.

Future Microprocessors (i.e., W65C832)
Future WDC microprocessors will support all current W65C816 operat-
ing modes for both index and offset address generation.

ABORT Input (W65C816 Only)

ABORT should be held low for a period not to exceed one cycle. Also, if

ABORT is heid low during the Abort interrupt sequence, the Abort Inter-

rupt will be aborted. It is not recommended to abort the Abort Interrupt.

The ABORT internal latch is cleared during the second cycle of the Abort

Interrupt. Asserting the ABORT input after the foliowing instruction

tycles will cause registers to be modified:

* Read-Modify-Write: Processor status modified if ABORT is asserted
after a modify cycle.

* RTL: Processor status will be modified if ABORT is asserted after
cycle 3. ___

* IRQ,NMI, ABORT BRK, COP: When ABORT is asserted after cycle 2,
PBR and DBR will become 00 (Emulation mode) or PBR will become
00 (Native mode).

The Abort Interrupt has been designed for virtual memory systems. For
this reason, asynchronous ABORT's may cause undesirable resulis due
to the above conditions.

\ADA and VPA Valid Memory Address Output Signals (W65C816
nly)

When VDA or VPA are high and during all write cycles, the Address Bus
is always valid. VDA and VPA should be used to qualify alt memory cycles.
Note that when VDA and VPA are both low, invalid addresses may be
generated. The Page and Bank addresses could also be invalid. This will
be due to low byte addition only. The cycle when only low byte addition
occursis an optional cycle forinstructions which read memory when the
Index Register consists of 8 bits. This optional cycle becomes a standard
cycle tor the Store instruction, all instructions using the 16-bit Index
Register mode, and the Read-Modify-Write instruction when using 8- or
16-bit Index Register modes.

Apple Il, lle, lic and 11+ Disk Systems (W65C816 Only)

VDA and VPA should not be used to qualify addresses during disk opera-
tion on Apple systems. Consult your Apple representative for hardware/
software configurations.

DB/BA Operation when RDY is Pulled Low (W65C816 Only)
When RDY is iow, the Data Bus is held in the data transfer state (i.e., ¢2
high). The Bank address external transparent latch shouid be latched
when the ¢2 clock or RDY is low.

M/X Output (W65C816 Only)

The M/X output reflects the value of the M and X bits of the processor
Status Register. The REP, SEP and PLP instructions may change the
state of the M and X bits. Note that the M/X output is invalid during the
instruction cycle following REP, SEP and PLP instruction execution.
This cycle isf'us'ed as the opcode fetch cycle of the next instruction.

All Opcodes Function in All Modes of Operation

It should be noted that all opcodes function in all modes of operation.
However, some instructions and addressing modes are intended for
W65C816 24-bit addressing and are theretore less useful for the W65C802.
The following is a list of instructions and addressing modes which are
primarily intended for W65CB16 use:

JSL; RTL; (d]; [d]y: JMP al; JML; al; al,x
The foliowing Instructions may be used with the W85C802 even though
a Bank Address is not multiplexed on the Data Bus:
! PHK; PHB; PLB
The following instructions have “limited” use in the Emulation mode:

e The REP and SEP instructions cannot modify the M and X bits when in
the Emulation mode. In this mode the M and X bits will always be high
(logic 1).

When in the Emulation mode, the MVP and MVN instructions use the
X and Y Index Registers for the memory address. Also, the MVP and
MVN instructions can only move data within the memory range 0000
(Source Bank) to 00FF (Destination Bank) for the W65C816, and 0000
to OOFF for the W65CB802.

Indirect Jumps

The JMP (a) and JML (a) instructions use the direct Bank for indirect
addressing, while JMP (a,x) and JSR (a,x) use the Program Bank for in-
direct address tables.

Switching Modes

When switching from the Native mode to the Emulation mode, the X and
M bits of the Status Register are set high (logic 1), the high byte of the
Stack is set to 01, and the high bytes of the X and Y Index Registers are
set to 00. To save previous values, these bytes must always be stored
before changing modes. Note that the low byte of the S, X and Y Registers
and the low and high byte of the Accumuilator (A and B) are not affected
by a mode change.

How Hardware Interrupts, BRK, and COP Instructions Affect
the Program Bank and the Data Bank Registers

When in the Native mode, theé Program Bank register (PBR) is cleared to
00 when a hardware interrupt, BRK or COP is executed. In the Native
mode, previous PBR contents is automatically saved on Stack.

Inihe Emula_t‘ion mode, the PBR and DBR registers are cleared to 00 when
a hardware interrupt, BRK or COP is executed. In this case, previous con-
tents of the PBR are not automatically saved.

Npte that a Return from Interrupt (RTI) should always be executed from
the same “mode” which originally generated the interrupt.

Binary Mode
The Binary mode is set whenever a hardware or software interrupt is
executed. The D fiag within the Status Register is cleared to zero.

!

WAI Instruction

The WA instruction pulls RDY low and places the processor in the WAI
“low power"” mode. NMI, IRQ or RESET will terminate the WAl condition
and transfer control to the interrupt handler routine. Note thatan ABORT
input will abort the WA instruction, but will not restart the processor.
When the Status Register | flag is set (IRQ disabled), the IRQ interrupt
will cause the next instruction_(following the WAI instruction) to be
executed without going to the IRQ interrupt handler. This method re-
sults in the highest speed response to an IRQ input. When an interrupt

25

65C816 Data Sheet

is received after an ABORT which occurs during the WAL instruction, the
processor will return to the WAI instruction. Other than RES (highest
priority), ABORT is the next highest priority, followed by NMI or IRQ
interrupts.

STP Instruction i

The STP instruction disables the ¢2 clock to all circuitry. When disabled,
the ¢2 clock is held in the high state. in this case, the Data Bus will remain
in the data transfer state and the Bank address will }not be multiplexed
onto the Data Bus. Upon executing the STP instructidn, the RES signal is
the only input which can restart the processor. The pfbcessor is restarted
by enabling the ¢2 clock, which occurs on the falling edge of the RES
input. Note that the external oscillator must be stable and operating prop-
erly before RES goes high.

COP Signatures

Signatures 00-7F may be user defined, while signatures 80-FF are re-
served for instructions on future microprocessors (i.e., WB5C832). Con-
tact WDC for software emulation of future microprocessor hardware
functions.

WDM Opcode Use

The WDM opcode will be used on future MiCroprocessors. Forexample,
the new W65C832 uses this opcode to provide 32-bit floating-point and
other 32-bit math and data operations. Note that the W65CB32 willbea
plug-to-plug replacement for the WB5CB8186, and can be used where high-
speed, 32-bit math processing is required. The WE5C832 will be available
in the near future.

RDY Pulled During Write g
The NMOS 6502 does not stop during a write operation. In contrast, both
the W65C02 and the W65C816 do stop during write operations. The
W65C802 stops during a write when in the Native mode, but does not
stop when in the Emulation mode. '

I
MVN and MVP Atfects on the Data Bank Register
The MVN and MVP instructions change the Data Bank Register to the
value of the second byte of the instruction (destination bank address).

Interrupt Priorities
The following in errupt priorities will be in effect should more than one
interrupt occur at the same time:

RES * Highest Priority
ABORT

NMI .

IR " | Lowest Priority

]

Transfers from 8-Bit to 16-Bit, or 16-Bit to 8-Bit Registers

All transfers from one register to another will resultina full 16-bit output
from the source register. The destination register size will determine the
number of bits actually stored in the destination register and the values
stored in the processor Status Register. The following are always 16-bit
transters, regardless of the accumulator size:

TCS; TSC; TCD; TDC

Stack Transfers

When in the Emulation mode, a 01 is forced into SH. In this case, the B
Accumulator will not be loaded into SHduringa TCS instruction. When
in the Native mode, the B Accumulator is transferred to SH. Note that in
both the Emulation and Native modes, the full 16 bits of the Stack Regis-
ter are transferred to the A, B and C Accumulators, regardless of the
state of the M bi}l in the Status Register.

26

