

CONTENTS

INTRODUCTION 2

INSTALLATION 4

TIMEMASTER II H.O. SWITCHES 4

MODE SELECTION 5

SETTING THE CLOCK 6

READING THE CLOCK 7

FINDING THE TIMEMASTER II H.O. BY SOFTWARE 9

READING THE TIME WITH MILLISECONDS 10

THE BSR REMOTE CONTROL OPTION 11

TIME BASE CALIBRATION 15

THE BATTERY 15

DOS DATER 16

TIME/DATE STAMPING IN PRO DOS 17

READING THE TIMEMASTER II IN 6502 MACHINE CODE 18

READING THE CLOCK WITHOUT USING FIRMWARE 20

INTERRUPTS 22

CP/M AND YOUR TIMEMASTER II H.O. 30

USING PASCAL WITH THE TIMEMASTER II H.O. 31

DISK CONTENTS 32

COMMON QUESTIONS ABOUT THE TIMEMASTER II H.O. 34

SOURCE CODE FOR MILLISECONDS 36

NOTICE:

THE TIMEMASTER II H.O. DESIGN, PCB LAYOUT AND ROM FIRMWARE WERE

COPYRIGHTED IN 1984 BY APPLIED ENGINEERING. THIS MANUAL IS ALSO

COPYRIGHTED. A PATENT IS PENDING ON THE TIMEMASTER II H.O.

REV 1.2

1

Thank you very much for selecting the H.O. for use in your
computer. We feel confident that you will enjoy owning it and
using it as much as we’ve enjoyed designing it and constructing
it.

Because of the fact that all different kinds of people buy Apple
computers and clock cards for them, for literally thousands of
different types of applications, we have tried to categorize the
sections in this manual with regard to computing skill. In this
way, if you’re just beginning at computing, you can avoid the more
technical and programming related sections of the manual. On the
other hand, if you possess more computer skills, you can quickly
skim over the beginning sections and move right into the necessary
information for programming. Each section will fall into one of
four skill levels. The skill level is indicated with the numbers 1
through 4 in parentheses just to the right of each section
heading. Please do not be intimidated by reading skill levels that
you may think are beyond you because chances are you’re a lot
smarter about computers than you think. Of course, no programming
skill is required to use the Timemaster II H.O. because hundreds
of commercially prepared software programs are designed to use it
automatically and nearly all serious software under development
today is designed to read your clock card. In general, the manual
begins in the easier skill levels and moves to the more advanced.
However, this order is not strictly adhered to. A description of
these four skill levels follows below:

(1) You should know how to get inside your Apple, make a copy of
a disk, be able to CATALOG a disk, and RUN a program. If you do
not know how to do this, please see pages 57 through 69 in the
Apple IIe owners manual or pages 15 and 16 in the Apple II+
Applesoft Tutorial.

(2) Simple BASIC Programming Skills — If you do not currently
possess these skills, a few hours spent with the Applesoft
Tutorial will give them to you.

(3) Advanced BASIC Programming Skills and small knowledge of
electronics. You should know what is meant by “when this line is
pulled low and be able to convert numbers from hex to decimal and
back again. This skill level is rarely shown because the
TimeMaster II H.O. is so easy to use in BASIC.

(4) Machine Language Programmer - As the title would indicate, you
need to know how to program in machine language. You’ll find many
source listings in this manual as well as on disk. All machine
language programs on disk were written with the S—C Macro
Assembler. We have experimented with many assemblers and we agree
with the software reviewers that the S—C assembler is the best. We
regret that we cannot provide source code for other assemblers. We
remind our customers that competitive clock cards come with little
or no source code at all. The S—C Macro assembler may be purchased
at low cost from S—C Software, telephone number 2l4-324—2050.

2

Welcome to the world of real time!

Your Applied Engineering TIMEMASTER II H.O. will greatly expand
the use of your Apple computer by adding the dimension of real
time and date in intervals of 1 millisecond to 99 years.

Applications of the H.O. are limited only to the imagination.
Anywhere you need to know the time or date you can use the
H.O. Applications include time and date stamping of reports,
checks, letters, file updates, calculating time intervals, and
recording measurements (data logging).

As you read this manual, you will soon learn why the TIMEMASTER
series is the favorite among professional programmers.

**
* *
* IMPORTANT! (1) *
* Make a backup copy of your H.O. disk *
* *
* before installing the clock or doing *
* *
* anything else. *
* *

The H.O. has many options. These options can sometimes confuse a
computer novice. The ONLY way we could have made the H.O. easier
to use would be to have limited its performance. Some of the
programs on the H.O. disk were written for just one of the
modes (the TIMEMASTER II H.O. is really 8 clocks in one) so be
sure you are in the right mode for the sample program you are
experimenting with.

Your new clock uses the latest in CMOS and NMOS large scale
integration ([.51) technology to bring to you a unique peripheral
which retains the day, date, and time even when your Apple
computer is turned off. The on—board ROM allows the highest
degree of programming simplicity as well as a very high degree of
compatibility with existing software. The TIMEMASTER was
designed to meet or exceed all of Apple’s high quality standards.

Your new TIMEMASTER II H.O.is a fourth generation of clock
cards designed by Applied Engineering. Our first clock card was
designed in 1980. It was called the Time II. Our second clock
card was the Timemaster and it had many improvements over the old
Time II. In the Timemaster II, we added PRODOS compatibility.
With the Timemaster II H.O., we’ve added BSR control and other
features and yet maintained software compatibility with both the
older Timemaster and Timemaster II. We consider the TIMEMASTER
II H.O. (just H.O. for short) to represent the zenith in computer
clock technology. It has received rave reviews from both
professional programmers, beginning programmers, as well as the
average computer user. Again, welcome to the world of real time!

3

INSTALLING THE H.O. IN YOUR APPLE (1)

1) TURN OFF THE APPLE’S POWER SWITCH. This is very important to
prevent damaging the Apple as well as your H.O.

2) Remove the cover from the Apple.

3) Plug your H.O. into any slot except 0. (The Apple //e has
no slot 0.) Slot 4 is the preferred slot (because some
commercial software expects a clock to be in slot 4)
but any slot is fine. Insert the fingers of the circuit
board into the slot you have chosen. The fingers will
enter the slot with some friction, and will then seat firmly.

4) Make certain switch #1 on the H.O.is in the ON (closed)
position.

5) Replace the Apple’s cover.

H.O. SWITCHES (1)

There is a device in the upper left corner of the H.O. card
containing 4 switches. These provide control over the display
format, enable/disable interrupts, and more. Please never use
pen or pencil to change switch settings. A bent out paper clip
works best.

O 1 SET Must be closed when setting the clock.
P 2 MODE Selects display mode (see below)
E 3 NMI Enables Non—Maskable Interrupt
N 4 IRQ Enables Interrupt Request

Note: OPEN = OFF. Push down toward “OPEN” to turn switch off.

The normal settings are switches 1 and 4 closed and 2 and 3 open.

4

MODE SELECTION (1)

Your H.O. has two switch—selectable modes, controlled by
switch 2 on the card. The most powerful of these modes is called
the TIMEMASTER mode, which includes compatibility with both DOS
3.3 and PRO DOS. The other mode is included for compatibility
with certain older commercial software products which were
designed around older generation clocks and do not allow
modification for direct usage with the 11.0.

 MODE Sw 2 Format
TIMEMASTER open various, see below
Apple Clock closed MO/DD HH:MM:SS.WYY

TIMEMASTER MODE (SW 2 open) (1)

This is the most powerful mode and can supply the time/date
information formatted in seven different ways. The desired format
is selected by PRINTing a single character to specify which
format to use.

In the following table, the character between quotation marks is
the format selection character. Each format is illustrated using
Friday, December 14, 1984, 3:30 PM.

" " MO/DD HH:MI:SS.WYY APPLE CLOCK MODE
 12/14 15:30:23.384

“:‘ W MO/DD/YY HH:MI:SS TIMEMASTER MODE
 3 12/14/84 15:30:23
"%" WWW MMM DD HH:MI:SS PM THUNDER CLOCK

FRI DEC 14 03:30:23 APPLESOFT

“&“ WWW MMM DD HH:MI:SS THUNDER CLOCK
FRI DEC 14 15:30:23 APPLESOFT

“#“ MO,OW,DD,HH,MI,SS THUNDER CLOCK
12,03,14,15,30,23 APPLESOFT

“>“ WWW MMM DD HH:MI:SS PM THUNDER CLOCK
FRI DEC 14 03:30:23 PM INTEGER

"<" WWW MMM DD HH:MI:SS THUNDER CLOCK
FRI DEC 14 15:30:23 INTEGER

So that the colons can be accepted by an Applesoft INPUT
statement, formats which contain colons are preceded by a
quotation mark. The quotation mark tells Applesoft to allow
colons in the input string. The first four formats above are
designed for use with Applesoft and include the leading quotation

5

mark. The last two formats are designed for use with Integer
BASIC, and begin with a space rather than a quotation mark.

Even though there are two formats which display the time in AM/PM
format using a 12—hour clock, the internal hardware is still
keeping time in 24—hour format.

APPLE CLOCK MODE (SW 2 closed) (1)

The Apple Clock mode emulates the format of the Mountain Hardware
Apple Clock, for compatibility with commercial software which
specifies the Mountain Hardware card and does not allow other
brands. Certain “signature” bytes in the firmware for this mode
should be recognized by such software, allowing you to use it with
your H.O.

The Mountain Hardware card delivers the time/date in this format:

MO/DD HH;MI;SS.MMM

Note the semicolons separating hours, minutes, and seconds. The
last three digits are milliseconds. Hours are given for a 24—hour
clock (00—23) . Note also that day—of—week and year values are not
present. The Mountain Hardware clock does not provide any day—of—
week or year values.

The H.O. card substitutes day-of-week and year values for the
millisecond values. (If you need time to the nearest millisecond,
the H.O can deliver it in a much more accurate way. Please see
page 10 for more information.) So, the H.O. substitutes colons
for semicolons, giving the standard display of time:

MO/DD HH:MI:SS.WYY
12/14 15:30:23.384 (Fri, Dec 14, 1984, 3:30 PM)

So that the colons can be accepted by an Applesoft INPUT
statement, the format is preceded by a quotation mark. The
quotation mark tellsApplesoft to allow colons in the input
string.

SETTING THE CLOCK (1)

To set the clock, the switch marked “SET” (switch 1) must be
closed (ON). Once the time and date have been properly set, you
may wish to protect the clock by placing switch 1 in the open
(off) position. However, as of yet, no accidental time change has
ever occurred.

The program called SET CLOCK conveniently reads the current clock
setting, allows you to enter new date and time values, and then
sets the clock to these new values at your signal. RUN the
program and follow the directions on your screen. The program
automatically finds your TIMEMASTER II H.O. card by searching
slots 1 through 7 for certain “signature” bytes. The program also
determines which mode you have selected with switch 2.

6

READING THE CLOCK (2)

It is very easy to read the date and time from the H.O. The
H.O. contains 2048 bytes of on-board ROM. The ROM contains the
software that makes it easy to obtain the date and time.

The simplest way to read the date and time involves three steps:

1) set input and output to the H.O.
2) INPUT the date/time info
3) restore input and output to keyboard and screen

Here is a simple example:
100 SLOT = 4
110 PRINT CHR$(4) “IN#”SLOT
120 PRINT CHR$(4) “PR#”SLOT
130 INPUT A$
140 PRINT CHR$(4) “IN#0”
150 PRINT CHR$(4) “PR#0”

The program will receive the formatted date/time information in
the string A$, in the format determined by the MODE switch on the
H.O. The easiest way to tell what mode you have is to add one
more line to the program:

160 PRINT A$

Type in the program above and run it. Remember to put in line 100
the slot number that your H.O. is in.

If you have switch—selected the TIMEMASTER mode, you can specify
which of the formats to use. Change line 130 to one of the
following, and try running the program again:

130 INPUT “:“;A$
130 INPUT “ “;A$
130 INPUT “%“;A$
130 INPUT “&“;A$

The TIMEMASTER mode also includes a format which returns numeric
values rather than a string, and happens to be the mode used
internally by Apple PRO DOS. Change line 130 and 160 like this,
and RUN again:

130 INPUT “it “;MNTH,WEEK,DAY,HR,MIN,SEC
160 PRINT MNTH,WEEK, DAY,HR,MIN,SEC

It is a good programming technique to put CHR$(4) in a string
variable D$, rather than including it “spelled—out” in each DOS
command line. Another useful change to our demonstration program
would be to keep reading the display the time in a loop, until
you press any key on the keyboard. Combining these changes
produces the program on the next page. TRY IT!!!

7

100 SLOT = 4 clock slot
110 D$ = CHR$(4) : HOME D$ = “control D”
120 PRINT D$”IN#”SLOT set input to clock
130 PRINT D$”PR#”SLOT set output to clock
140 INPUT “:“;A$ get the time
150 PRINT D$”IN#0” restore keyboard in
160 PRINT D$”PR#O” restore keyboard out
170 VTAB 12 : HTAB 10 center the display
180 PRINT A$ print the time
190 IF PEEK (—16384) < 128 THEN 120 key pressed?
200 POKE —16368,0 reset key test

If you want to rearrange the time/date to a different format, you
can use the MID$ function to pick any part out of the formatted
string. The following examples show how to access various
portions of the TIMEMASTER and APPLECLOCK formats. please see
your APPLESOFT TUTORIAL if you are unfamiliar with string
manipulation. (It’s really quite easy.) TRY IT!!!

TIMEMASTER format: W MO/DD/YY HH.MI.SS
WK$ = LEFT$(A$,l) day of week (“0” — “6”)
MO$ = MID$(A$,3,2) month (“01” — “12”)
DA$ = MID$(A$,6,2) day of month (“01” — “31”)
YR$ = MID$(A$,9,2) year (“00” — “99”)
HR$ = MID$(A$,12,2) hour (“00” — “23”)
MI$ = MID$)A$,15,2) minute (“00” — “59”)
SE$ = RIGHT$(A$,2) second (“00” — “59)

APPLECLOCK format: MO/DD HH:MI:SS.WYY

 WK$ = MID$(A$,16,l) day of week (“0” — “6”)
MO$ = LEFT$(A$,2) month (“01” — “12”)
DA$ = MID$(A$,4,2) day of month (“01” — “31”)
YR$ = RIGHT$(A$,2) year (“00” — “99)
HR$ = MID$(A$,7,2) hour, (“00” — “23”)
MI$ = MID$(A$,1~,l) minute (“00” — “59”)
SE$ = MID$(A$,13,2) second (“00” — “59”)

So if you are only interested in seconds, we need only add or
change these lines to the last program.

180 SE$ = RIGHT$(A$,2)
185 PRINT SE$

If you want the values as numbers, simply use the VAL function.
For example, the day of week as a number would be WK = VAL (WK$).
Using the day of week as a number allows you to look up the full
spelling of the day name. One easy way to program it would be
like this:

WK = VAL(WK$) IF WK=3 THEN WK$ = “WEDNESDAY”
IF WK=O THEN WK$ =“SUNDAY” IF WK=4 THEN WK$ = “THURSDAY”
IF WK=l THEN WK$ = “MONDAY” IF WK=5 THEN WK$ = “FRIDAY”
IF WK=2 THEN WK$ = “TUESDAY” IF WK=6 THEN WK$ = “SATURDAY”

8

You can obviously do a similar thing to the spelling of the
month names. You can prefix the year with a “19” or a “20” using
any method you like.

If you have the clock set in one of the 24—hour modes and still
want to read AM/PM times, you can use the following program
segment to convert the hour and append “AM” or “PM” as
appropriate:

HR VAL(HR$)
IF HR>ll THEN AP$ = “PM”
IF HR<12 THEN AP$ = “AM”
IF HR=0 THEN HR = 12
IF HR>12 THEN HR = HR—12

There are a number of programs included on disk with your
H.O. which read and display the clock. Try them and then
analyze how they are programmed.

FINDING THE CLOCK SLOT BY SOFTWARE (2)

Each switch—selected mode of the TIMEMASTER II has a unique
firmware “signature” in ROM. Some of the signature bytes are
embedded in certain locations for compatibility with commercial
software written for different clock cards. For example,
special effort was made to make the APPLE CLOCK mode appear to
software as though you have the Mountain Hardware card.

As well, a simple to use signature was added to distinguish the
Applied Engineering card from other brands, and to distinguish
the various switch—selected modes.

The following subroutine will search slots 1 through 7 for a
TIMEMASTER II H.O. card. If no H.O. is found, the subroutine will
return with SLOT 0. If found, SLOT will equal the slot number,
and AP will equal a 1 or 3 indicating which switch—selected mode
is set.

1000 REM FIND TIMEMASTER II H.O. SLOT
1010 SLOT = 0
1020 FOR I = 1 TO 7
1030 ADDR = 12*4096 + 1*256: REM $CS0O
1040 IF PEEK(ADDR) = 8 AND PEEK (ADDR + 1) = 120 AND PEEK

(ADDR + 254) = 178 THEN SLOT I : I = 7
1050 NEXT
1060 IF SLOT = 0 THEN RETURN
1070 AP = PEEK(ADDP+255)
1080 PRINT “SLOT = “;SLOT;” AP = ";AP

The values of AP can be interpreted easily:
AP MODE AP MODE

1 APPLECLOCK 3 TIMEMASTER

9

READING THE TIME WITH MILLISECONDS (2)

Before we begin our discussion of millisecond time, we remind the
user not to go through the extra steps required for millisecond
accuracy if the events being measured or program lengths will not
allow you to realize this accuracy in a true sense. To quote an
old and wise lab technician, “Don’t measure it with a micrometer,
mark it with chalk, then cut it with an ax.” But if it’s
milliseconds you want, a few additional commands will enable
milliseconds on the H.O. If you want to know the time to the
nearest millisecond, please read on; however, most people are
really trying to measure the elapsed time in milliseconds between
two events. If this is what you’re trying to do, please see the
program on the Timemaster II H.O. disk called Millisecond Timer.

Any use of the H.O. involving milliseconds requires the use of
interrupts. DOS 3.3 has an inconsistency in that it can
sometimes cause interrupt software to crash. This particular bug
has been discussed in several Apple magazines. Applied
Engineering has written a program called PATCH DOS 3.3 FOR
INTERRUPTS (found on Timemaster II H.O. disk) . This program
will fix DOS 3.3 to work with interrupts. After running this
program, you can INITialize as many disks as you’d like. Always
run the PATCH DOS 3.3 FOR INTERRUPTS before using any millisecond
or interrupt capabilities or use a boot disk that has the
modification already made to it. Your Timemaster II H.O. disk is
such a disk so after booting up on the Timemaster II H.O. disk,
you can simply INITialize new disks. Commercial programs that use
interrupts make this patch automatically. The use of interrupts
with PRODOS are extremely complex and therefore we recommend the
use of DOS 3.3 until the many bugs in PRODOS are worked out.

The millisecond feature is enabled by printing a “.“ (period) to
the clock card after selecting the format. (Format selection
clears the interrupt selection.) The firmware sets up the IRQ
vector at $3FE and $3FF to point to an interrupt handler in ROM,
and sets a flag that will cause interrupts on the clock card to
be set up. One additional step has to be done from your program,
which is to enable the IRQ interrupt with a CLI instruction. In
Applesoft, you can issue a CLI instruction by POKEing a CLI and
RTS, and then calling them, as in line 100 below. The following
program shows how; it assumes your clock card is in slot 4:

100 POKE 768,88: POKE 769,96: CALL 768 set up interrupts
110 TEXT: HOME good programing
120 PRINT “PRESS A KEY TO END” ref to line 200
130 SLOT = 4 or any slot

set clock input
140 PRINT CHR$ (4) “IN#”;SLOT set clock output
150 PRINT CHR$ (4) “PR#”;SLOT get the time
160 INPUT “:.“;A$
170 PRINT CHR$ (4) “IN#0” restore keyboard

restore output
180 PRINT CHR$ (4) “PR#0” print the time
190 VTAB 4: PRINT A$
200 IF PEEK (—16384) < 128 THEN 120 key pressed??

reset key ck.
210 POKE — 16368,0

10

THE BSR REMOTE CONTROL OPTION (1)

The Applied Engineering BSR Remote Control option allows your
Apple to send control signals to your BSR ultrasonic command
console. The command console then sends these signals along your
existing 120 volt AC wiring. To remotely control appliances or
lights, or almost any electrical device, you plug into a BSR
remote module. The BSR interface is designed to operate with the
BSR/x-l0 ultrasonic command console, model UC30l or model GDP—
1510 from Heathkit (NOT a kit) This is the same command console
that operates with the BSR/x—10 cordless controller. Be sure you
have the right model of command console or it will not be able to
hear the signals from your Timemaster II H.O. BSR interface.
The command consol sold by Radio Shack is not compatible with the
BSR option because it has no ultrasonic receiver.

You will find that the command console has 22 command buttons.
Sixteen for setting devices 1 through 16 and 6 function buttons.
Your BSR interface can simulate the pushing of all 22 command
buttons. Remote modules can be purchased in two types; an
appliance module, which simply turns things on and off and can
handle heavy loads. The second type is a lighting module, which
comes in several styles, a plug in lamp type, wall mount single
pole, and 3—way style that fit neatly where your old light switch
was.

Please read the owners manual that comes with the BSR command
console and remote modules before using the Timemaster II H.O.
BSR interface. it is also a good idea to experiment a little bit
with the command console and a few remote modules.

To connect the BSR interface to your H.O., slip the interface
connector over the lower 4 pin plug, taking care that the two
wires going into the connector go over the lowest two pins of
this connector. Please refer to the drawing below.

11

The transducer itself should be placed near enough to the
controller to operate. This can be as far away as 6 or 8 feet if
the transducer is aimed directly at the pickup inside the
controller box. After installing the H.O. with the BSR interface
attached, you can type in the program below to test the
positioning of the transducer. When the program is running, you
should see the red light on the controller flashing on and off.

100 PR#4 (or whatever slot)
110 PRINT “U”
120 GOTO 110 (press CTRL RESET to stop)

The H.O. firmware includes the ability to send signals to the BSR
system. After selecting the H.O. with PR~s C (s is the slot) , you
can print code letters to cause the various commands to be sent.
The code letters correspond to the command console buttons as
follows:

CODE COMMAND CODE COMMAND
LETTER BUTTON LETTER BUTTON
A 1 L 12
B 2 M 13
C 3 N 14
D 4 0 15
E 5 P 16
F 6 Q ON
G 7 R OFF
H 8 S BRIGHT
I 9 T DIM
J 10 U ALL LIGHTS ON
K 11 V ALL OFF

For example, to turn on light #1, do this: (2)

100 PRINT CHR$(4)”PR#4” (or whatever slot)
110 PRINT “AQ”
120 PRINT CHR$(4) “PR#0”

The “A” is button “1” and “Q” is “ON”. Each command code is
automatically transmitted 5 times to be certain it is correctly
understood by the BSR controller. This is equivalent to holding
down the button on the command console for about 1/2 second.

The BRIGHT and DIM commands are special. The range from fully
OFF to fully ON is divided into many small steps. If you press
and hold down the DIM button, it takes about 5 seconds to run
through enough steps to fully dim the selected light;
correspondingly, 5 seconds of BRIGHT will bring it back to fully
on. The firmware simulates holding down the button, and you have
the option of telling it how long to “hold it down”. For the
following sample program, you will need a light connected to
button #1. Use the BSR controller manually and push (1) then

12

(ON). If the light does not come on, it may be necessary to hold
down the BRIGHT button. Now type in the following program:

10 PRINT CHR$ (4)”PR#4”
20 PRINT “ATTTTTTTTTTTTT”
30 PRINT CHR$ (4)”PR#o”

The “A” is for button “1” and the “T” means “DIM”, the more “T”,s

the more dimming you’ll get. Now change line 20 to:

20 PRINT “ASSSSSSSSSSSSSS”

Now reRUN the program and notice that the light will brighten. A
shorthand way of controlling the number of DIM or BRIGHT commands
issued each time a “T” or “5” is printed is available. By
printing a “i” followed by a letter “A” through “Z” to select the
number of times the DIM or BRIGHT command will be transmitted for
each “T” (DIM) or “5” (BRIGHT), “A” for a little, “Z” for a lot.
So let’s change line 20 in the program above to use the “*“
command to dim the light on button “1”. Now change line 20 to:

20 PRINT “A*NTII

Now reRUN the program, by changing the “N” to other letters you
can vary how long the “BUTTON” is pressed. When the H.O. sees the
“i” it knows that the next character, “N”, is the duration code
for the following DIM (“Tin’) or BRIGHT (“S”) commands. The
letters “A” thru “Z” used here for duration control should not be
confused with the letters “A” thru “V’1 used as button commands.

To use the next sample program, you will need a lamp on “1” with
a lamp module and a appliance module on “2”. Plug both remotes
into wall outlets nearby. If you have small radio to plug into
the appliance module, it would help you know when the module is
turned on. Be sure your COMMAND CONSOLE is plugged in. To be
sure everything is set up properly, press button “1” then press
“ON” on the COMMAND CONSOLE. Then press “2”, “ON” on the COMMAND
CONSOLE. Now press “1”, “OFF”, “2”, “OFF”. The light and the
radio should have turned on and then off. If not, check to see
if you have things set up properly and try again.

Now enter the program below that will allow us to exercise the
H.O.’s BSR capability.

90 INPUT “WHAT SLOT IS THE H.O. IN “;S
100 INPUT “COMMAND =
110 IF B$ = ““ THEN END
120 PRINT CHR$ (4) “PR#”;S
130 PRINT B$
140 PRINT CHR$ (4) “PR#0”
150 GOTO 100

13

When we RUN this program using the commands shown, we get the
following results:

RUN
COMMAND = AQ turns on the light
COMMAND = AR turns the light off
COMMAND = BQ turns on the radio
COMMAND = BR turns off the radio
COMMAND = AQTTTTTTTTTTT turns light on then dims it
COMMAND = ASSSSSSSSSSSS brightens the light
COMMAND = AR turns off the light
COMMAND = AQBQ turns on the light and radio
COMMAND = ARBR turns them both off

And now what you’ve all been waiting for, a program that will
send commands to your REMOTE MODULES at specific times using the
clock function of the H.O. This program will dim and brighten a
light connected to REMOTE MODULE “1” every 30 seconds.
10 TEXT: HOME just good programing
20 SLOT = 4 or any slot
30 PRINT CHR$ (4)”IN#”;SLOT set input to clock
40 PRINT CHR$ (4)”PR#”;SLOT set output to clock
50 INPUT “:“;A$ get time from clock
60 PRINT CHR$ (4)”IN#0” restore keyboard
70 PRINT CHR$ (4)”PR#0” restore output
80 SEC$ = RIGHT$ (A$,2) throw away all but sec.
90 VTAB 4: PRINT “SEC. = “;SEC$ display seconds

100 PRINT CHR$ (4)”PR#”;SLOT get ready to send code
110 IF SEC$ = “00” THEN PRINT “A*RT” dim if sec 00
120 IF SEC$ = “15” THEN PRINT “A*RS” brighten if sec = 15
130 IF SEC$ = "30” THEN PRINT "A*RT" dim if sec = 30
140 IF SEC$ = “45” THEN PRINT "A*RS” brighten if sec 45
150 PRINT CHR$ (4)”PR#0” restore keyboard
160 GOTO 30 get new time

BSR set ups can vary from the simple to the complicated. For
example, you could have two H.O.’s in your Apple that went to two
different COMMAND CONSOLES, each with its own separate house
code. This would give you control over 32 different devices. It
is also possible to have one COMMAND CONSOLE in the study with
your computer, and another COMMAND CONSOLE in the bedroom, set to
the same house code. Each COMMAND CONSOLE would control the same
devices.

14

TIME BASE CALIBRATION (1)

Your H.O. has a quartz crystal time base which oscillates at
32,768 HZ. This frequency can be adjusted up or down
approximately 2 HZ by the trimmer capacitor which is next to the
DIP switches at the rear of the board. Your H.O. was calibrated
at the factory to 32,768.0 HZ. +/— 0.002%. The manufacturer of
the crystal specifies that the frequency may age up to 0.005% or
5 parts per million in one year. If the clock is consistently
gaining or losing time, you may wish to adjust the trimmer. Using
a small screwdriver, turn the trimmer SLIGHTLY clockwise to speed
up the clock, or counter clockwise to slow it down.

+1- 30 SECOND ADJUST (2)

Your H.O. has the ability to adjust the seconds +— 30. By
momentarily connecting the two top pins on the upper four pin
connector marked “5V” and marked "ADJ” (for adjust) you can reset
the seconds to 00, adding one minute if the seconds were greater
than 30. It should be reminded that the set clock routine on the
Timemaster II H.O. disk can set the clock as accurately as you
can push the return key ; however , in some scientific
applications, it may be necessary to trim the time more
accurately using the +— 30 second adjust feature.

THE BATTERY (1)

The H.O. is supplied with a rechargeable Ni—Cad battery to keep
the clock running when the computer is turned off, or when power
fails. The H.O. will automatically detect power going off and
switch to the on—board battery. The clock will continue keeping
time while the on-board battery supplies power. The battery is
charging whenever power is applied to the APPLE. The time to
fully charge a discharged battery is approximately 10 hours. Your
H.O. may be used while charging the battery. A fully charged
battery can keep the clock running for 5 to 7 months. In order
to keep the battery charged, your APPLE should be turned on at
least 0.5% of the time or about 1 hour a week or 4 hours a month.
The battery CANNOT be overcharged and under normal use it will
not require attention.

TIME TO FULLY CHARGE BATTERY (IN HOURS)

15

AUTOMATIC TIME/DATE STAMPING OF FILES IN DOS 3.3 (2)

One nice application of the H.O. is to automatically record the
current date and time on file names in the catalog when you
SAVE, BSAVE, or RENAME files. This feature is found in many large
computer systems, as well as Apple pascal, sos, and PRO DOS.

Some small but significant patches must be made to DOS 3.3 to
allow automatic time/date stamping of your files. First, a
routine to read the clock and overlay the time/date string on
your file name must be called for every SAVE, BSAVE, or RENAME
command. Second, the two places inside DOS 3.3 where file names
are compared must be modified to ignore the right end of the
names (where the time/date string may or may not be found).

A program on the TIMEMASTER II H.O. disk called INSTALL DOS DATER
will automatically make these patches for you. This program
allows you to specify what portion of the time/date string you
want to use in stamping file names. The DOS DATER patches require
that the H.O. be in the Timemaster mode (switch 2 open) . The
Timemaster format must be used because other clock cards contain
no year information. INSTALL DOS DATER searches slots 1 through
7 to find your 1-1.0. and checks that you have the right mode
selected.

You can select any contiguous portion of the formatted date and
tIme:

W MO/DD/YY HH:MI:SS

The most commonly used stamp is the MO/DD/YY portion, with the
leading space.

Using INSTALL DOS DATER, you can select the portion of the string
you wish to use with the arrow keys and the “12’ and “R” keys.
When the string is as you like it, press RETURN and the patches
will be recorded. Simply follow the directions in the program to
modify as many DOS 3.3 disks as you’d like. Once the patches
have been applied to the DOS booted, any disks you initialize
with the INIT command will have the patched DOS on them.

After you become familiar with the various features of time/date
stamping your files, you may wish to update the DOS on the older
disks. The slot your H.O. was in at the time INSTALL DOS DATER
was executed is frozen into the installed patches, so do not try
to move the card to another slot! If you do move your H.O. to a
different slot, you will have to reRUN INSTALL DOS DATER.

There is normally no problem with using the patched DOS with any
existing programs on any disks as long as they are not copy
protected. Any new files SAVEd, BSAVEd, or RENAMEd will have the
current date added. The INIT command will also cause the date to
be added to the greeting prOgram’s name. Should you ever be
running with an unpatched DOS and want to use files that have
time/date stamps, you will probably want to temporarily patch the

16

DOS in memory so that it ignores the time/date stamp. (You don’t
have to; but if you don’t,you will have to type all 30
characters of the file name, which includes the time/date
stamp.)

There are two places that file names are compared inside DOS 3.3,
and both of them must be patched to shorten the EFFECTIVE file
name. The effective file name is 30 characters long, minus the
length of your time stamp. If you are using the recommended stamp
of “ MO/DD/YY”, your effective file name is 30—9, or 21
characters. You need the following POKES:

POKE —19965,21 in the catalog search routine
POKE —22653,20 in the OPEN command handler

(Note that the second POKE puts a value one less than the
effective length into DOS.)

AUTOMATIC TIME/DATE STAMPING FILES IN PRODOS (1)

PRO-DOS will automatically time and date stamp files with the
H.0. in the TIMEMASTER mode (switch 2 open). PRODOS goes one
step further than the patches for DOS 3.3, in that the date and
time of original creation of a file is kept along with the date
and time of last modification.

A word of caution should be mentioned regarding date stamping of
files in PRODOS. PRODOS was written for an older design clock
made by another company. This clock does not have any year
information so PRODOS calculates the year based on the date and
day of week. In other words, if it’s the 16th and it’s Monday,
it must be 1984? So the TIMEMASTER II H.O. had to take a small
step backwards to be compatible with Apple’s new PRODOS. The
PRODOS look up table goes from 1981 to 1987. After 1987, it
will restart again with 1981 Even though your H.O. will show the
correct year of 1988, PRO-DOS will not read the year from the
H.O. Apple Computer is expected to directly support the H.O. in
future releases of PRODOS. Until then, you will have to live
with the same limitations that the buyers of other clock cards
will be stuck with forever.

17

READING TIMEMASTER II H.O. IN 6502 MACHINE CODE (4)

For those of you that wish to use the H.O. in a machine language
program, keep reading. If this is not you, turn the page quickly!

The easiest way to read the H.0. from a machine language program
is to call on the built-in firmware the same way a BASIC program
does. The technique to use depends upon the switch—selected mode
you have chosen.

If you have NOT chosen the TIMEMASTER mode (switch 2 open) then
you can use the following short subroutine. There are four
elementary steps involved:

1) save the current input hook ($38,$39)
2) set input hook to $CsØØ(where s=slot of
TIMEMASTER II
3) read the time, storing in a buffer
4) restore the original input hook

1040 *------------------------------------
1050 READ.TIME

0300— A5 38 1060 LDA $38 KSWL PUT CURRENT
0312— 48 1070 PHA INPUT HOOK
0303— A5 39 1080 LDA $39 KSWH ON THE STACK
0365— 48 1090 PHA

1100 *------------------------------------
0306— A9 C4 1110 LDA #$C4 $CN (N=SLOT CLOCK IS IN)
0308— 85 39 1120 STA $39 KSWH
030A— A2 00 1130 LDX #0
030C— 86 38 1140 STX $38 KSWL

1150 *------------------------------------
030E— 20 18 FD 1160 .1 JSR $FD18 MONITOR KEY INPUT ROUTINE
0311— 9D 00 02 1170 STA $200,X SAVE CHARACTER FROM CLOCK
0314— E8 1180 INX
0315— C9 8D 1190 CMP #$8D END OF INPUT?
0317— DO F5 1200 BNE .1

1210 *------------------------------------
0319— 68 1220 PLA RESTORE INPUT HOOK
031A— 85 39 1230 STA $39 KSWH
031C— 68 1240 PLA
0310— 85 38 1250 STA $38 KSWL
031F— 60 1260 RTS

After the subroutine has executed, the time/date string is in the
buffer at $200, ending with a carriage return.

The above subroutine is on your TIMEMASTER II H.O. disk. The
source code is in the S.ML (OLD MODES) in the format for the S—C
Macro Assembler. The object code is in B.ML (OLD MODES). An
Applesoft BASIC program which loads B.ML (OLD MODES) and CALLS it
is called ML (OLD MODES).

18

If you have chosen to use the TIMEMASTER mode, your job is even
easier. There are two direct entries in the TIMEMASTER mode
firmware which you can use from machine language. Their use is
illustrated in the following subroutine:
0300— A9 BA 1000 LDA #":" SELECT TIME MASTER MODE
0302— 20 OB C4 1010 JSR $C4ØB MODE SELECTION
0305— 20 08 C4 1020 JSR $C408 READ TIME TO $200
0305— 60 1030 RTS

If your H.O. is not in slot 4, modify lines 1010 and 1020
appropriately. The entry at $CsOB receives the format selection
character. The entry at $CsØ8 reads the clock and stores the
correctly formatted string at $200, terminated by a carriage
return.

If you want to write a machine language program which can read
the clock no matter how switch 2 is set, you can merely look at
$CsFF to see which mode the H.O. is in. The following program
does just that, and proceeds to read the clock according to its
mode:

1040 *----------------------------
1050 READ.TIME

0300— A9 C4 1060 LDA #$C4 (FILLEDIN BY CALLER IF
DIFFERENT)
0302— 8D 10 03 1070 STA SLOTl
0305— 8D 19 03 1080 STA SLOT2
0309— 8D LC 03 1090 STA SLOT3
030B— 8D 25 03 1100 STA SLOT4

 1101 *-----------------------
030E— AD FF C4 1110 LDA $C4FF TIMEMASTERII WITH 5W3, 5W4
OFF?
0310— 1120 SLOT1 .EQ *—1 $CN BYTE
0311— C9 03 1130 CMP #$03
0313— DO 09 1140 BNE OLD.MODES NOT TIMEMASTER II MODE
0315— A9 BA 1150 LDA #“:“ SELECT TIME MASTER MODE
0317— 20 OB C4 1160 JSR $C4OB MODE SELECTION
0319— 1170 SLOT2 .EQ *-l $CN BYTE
031A— 20 08 C4 1180 JSR $C408 READ TIME TO $200
031C— 1190 SLOT3 .EQ *-1
031D— 60 1200

1210*-------------------------
1220 OLD.MODES

031E— A5 38 1230 LDA $38 KSWL PUT CURRENT
0320— 48 1240 PHA INPUT HOOK
0321- A5 39 1250 LDA $39 KSWH ON THE STACK
0323— 48 1260 PHA

1270*-------------------------
0324— A9 C4 1280 LDA #$C4 $CN (N~SLOT CLOCK IS IN)
0325— 1290 SLOT4 .EQ *-1
0326— 85 39 1300 STA $39 KSWH
0328— A2 00 1310 LDX #0
032A— 86 38 1320 STX $38 KSWL

 1330 *------------------------

19

032C— 20 18 FD 1340 .1 JSR $FD18 MONITOR KEY INPUT ROUTINE
032F— 9D 00 02 1350 STA $200,x SAVE CHARACTER FROM CLOCK
0332— E8 1360 INX
0333— C9 8D 1370 CMP #$8D END OF INPUT?
0335— DO F5 1370 BNE .1

1390 *-------------------------------
0337— 68 1400 PLA RESTORE INPUT HOOK
0338— 85 39 1410 STA $39 KSWH
033A— 68 1420 PLA
033B— 85 38 1430 STA $38 KSWL
0330— 60 1440 RTS

The above subroutine is on your TIMEMASTER II H.O. disk. The
source code is in S.ML (ALL MODES) in the format for the S—C
Macro Assembler. The object code is in B.ML (ALL MODES). An
Applesoft BASIC program which loads B.ML (ALL MODES) and CALLS it
is called ML (ALL MODES).

READING THE CLOCK WITHOUT USING THE ON—BOARD FIRMWARE (3)

Sometimes you may want to read the H.O. without using the
programs in the on—board ROM. This is not too difficult, and the
job can be broken down into the following tasks:

1. Initialize the PIA chip.
2. “Hold” the clock.
3. Address a digit.
4. Read the digit.
5. Repeat steps 3 and 4 until all relevant

digits have been read.
6. “Release” the clock, and allow interrupts.

The following Applesoft program shows how it can be done. (The
program is on your H.O. disk.) The program is intended to be
instructive in nature, as Applesoft does not quite run fast
enough to update the time in precise one second intervals.

10 DIM FMT(30)
20 HOME : INPUT “SLOT:”;SLOT: IF SLOT < 1 OR SLOT > 7

THEN PRINT CHR$ (7);: GOTO 20
40 GOSUB 2300: REM READ FORMAT DATA
50 GOSUB 2000: REM INITIALIZE PIA
60 GOSUB 2100: REM READ CLOCK
70 VTAB 10: HTAB 10: PRINT T$
80 IF PEEK (— 16384) < 128 THEN 60
90 POKE — 16368,0: END

2000 REM SETUP PIA
2010 PA = 49280 + SLOT * 16: REM $C080 + $NO
2020 CA = PA + l:PB = PA + 2:CB PA + 3
2030 IF PEEK (CB) < > 0 THEN 2060

 :REM PIA ALREADY SET UP
2040 POKE CA,0: POKE CB,0: POKE PA,0: POKE PB,255

 :REM SET DIRECTION REGISTERS

20

2050 POKE CA,4: POKE CB,4: REM POINT AT DATA REGISTERS
2060 RETURN
2100 REM READ CLOCK USING FORMAT
2110 T$ = ““: FOR I = 1 TO NC
2120 POKE PB,16: REM HOLD CLOCK
2130 D = FMT(I): IF D > 127 THEN 2170
2140 M = 16: IF D = 56 OR D = 53 THEN M = 4
2150 POKE PB,D:T PEEK (PA): REM READ THE DIGIT
2160 D = T — INT (T / M) * M + 176
2170 T$= T$ + CHR$ (D)
2180 NEXT
2190 POKE PB,47: RETURN
2300 REM “W MM/DD/YY HH:MM:SS” FORMAT
2310 DATA 54,160,58,57,175,56,55,175,60,59,160,

53,52,186,51,50,186,49,48,0
2320 NC = 0
2330 READ D: IF D = 0 THEN RETURN
2340 NC = NC + 1:FMT(NC) = D: GOTO 2330

In the program above, the PIA chip is initialized by the
subroutine at line 2000. The subroutine at line 2300 reads a
format definition into the array ENT. The numbers in the list
are either clock digit addresses (values from 48 through 60) or
ACSII characters (values) 127):

Clock Registers ASCII Character
Tens Units

Digit Digit
Year 60 59 160 space
Month 58 57 175 = slash
Day 56 55 186 = colon
Day of week none 54 0 = end of format
Hour 53 52
Minute 51 50
Second 49 48

The subroutine at line 2100 reads the clock by stepping through
the format array. Line 2120 “holds” the clock, and line 2190
“releases” it.

The Applesoft program above is very similar in concept to the
programs in the on—board ROMs. By varying the format definition,
many different arrangements of the clock data can be displayed.

An assembly language program which reads the clock without using
on—board firmware is on the TIMEMASTER II H.O. disk. The source
code is in the file named S.TIME BY INTERRUPT, in the format
of the S—C Macro Assembler. The object code, which can be BRUN,
is in the file named B.TIME BY INTERRUPT.

21

INTERRUPTS (3)

One of the main features of the H.O. is the ability to generate
interrupts at set intervals. Interrupts can add new dimensions to
your Apple. For instance, background and foreground programming is
possible by letting the interrupt handler routine initiate the
background program. Also, data can be sampled at precise
intervals.

The following interrupt intervals are available: 1/1024 second, 1
second, 1 minute, or 1 hour. The interval is selected by storing
values from the table below in the control registers on the clock
card.

Time Control Register

CRA CRB

none $04 $04
1024 Hz $05 $04
1 Sec $OC $04
1 Min $04 $05
1 Hour $04 $0C

SAMPLE INTERRUPT PROGRAMS (3)

This and other details of interrupt handling are best done with
machine language routines. The source listing of a program that
uses interrupts is on the last page of this manual. The name of
this program is MILLISECONDS. Both source and object files are
on your H.O. disk, in S.MILLISECONDS and B.MILLISECONDS
respectively. The source file is in the format for the S—C Macro
Assembler.

There are several programs on your H.O. disk which load
B.MILLISECONDS and use the subroutines to illustrate the use of
interrupts. MILLISECONDS will display a running count of
milliseconds, using the 1024 Hertz interrupt. MILLISECOND
STOPWATCH will allow you to precisely time the interval between
two presses of the space bar, using your Apple as a stopwatch
with accuracy to the nearest millisecond. TIME LIMIT QUIZ
illustrates using interrupts to provide a time limit to some
activity by the user (in this case an interesting multiple choice
quiz)

It is interesting to listen to the Apple ‘bell” while millisecond
interrupts are being processed. Try it, and you will hear what
happens when you slow down timed loops to process interrupts.

Note that the interrupt interval generated on the card is
1/1024th of a second, which is not a millisecond (it is about
0.977 milliseconds) Programs such as those above which need real
milliseconds must multiply the 1024 Hz counter value by
1000/1024.

22

The two files S.TIME BY INTERRUPT and B.TIME BY INTERRUPT are the
source and object files for another program which uses
interrupts. Again, the source file is in the format of the S-C
Macro Assembler. If you BRUN B.TIME BY INTERRUPT, the top two
lines of the screen display will be used to display the current
date and time. The time will be updated every second.

H.O. INTERRUPT UTILITIES (3)

A binary file named B.CLOCK UTILITIES is on the H.O. User Disk.
This file contains seven very useful programs which can be called
from an Applesoft program to work when you want to use interrupts.

The file is designed to be BLOADed at $300, and uses all of the
space from $300 through $3CF. Five bytes from $EB through $EF,
not used by Applesoft or DOS, are used for communication between
the UTILITIES and your Applesoft program. Include the following
statement at the beginning of your Applesoft program:

PRINT CHR$(4)”BLOAD B.CLOCK UTILITIES”:CALL 785

The “CALL 785” searches from slot 7 down toward slot 1 looking
for the H.O. Even if you know ahead of time which slot is being
used, you still must CALL 785 to set up the utilities.

After “CALL 785”, you can PEEK(235) for the slot number. If
PEEK(235) is zero, no H.O. was found. PEEK(236) will be 3 if the
H.O. is in the normal mode, or 1 in the Appleclock mode.

The other six subroutines deal with interrupts:
CALL 768 -- Initialize interrupts
CALL 771 -- Turn off interrupts
CALL 774 -- Clear interrupt counter
CALL 777 -- Read interrupt counter
CALL 780 -- Enable interrupts
CALL 783 -- Disable interrupts

CALL 768 -- Initialize interrupts: Four interrupt intervals are
available. You select which one you want by POKE 237:

POKE 237,0:CALL 768 1024 times per second
POKE 237,1:CALL 768 once per second
POKE 237,2:CALL 768 once per minute
POKE 237,3:CALL 768 once per hour

CALL 768 puts the address of an interrupt handler into #3FE and
3FF, clears an interrupt counter, selects the interrupt interval
you have specified, and enables interrupts with a CLI
instruction.

CALL 771 -- Turn off interrupts: This CALL disables interrupts
with an SEI instruction, and de—selects interrupts on the clock.

CALL 774 -- Clear interrupt counter: Zeroes the 32—bit counter.

23

CALL 777 —— Read interrupt counter: Disables interrupts, copies
the interrupt 32—bit counter into 236, 237, 238, and 239 and re—
enables interrupts. You may follow CALL 777 with CNT = PEEK(239)
+ 256 * PEEK(238) + 65536 * PEEK(237) + 16777216 * PEEK(236)

CALL 780 —— Enable interrupts: Enables interrupts with the CLI
instruction, without changing the clock card setup.

CALL 783 —— Disable interrupts: Disables interrupts with the SEI
instruction, without de—selecting clock card interrupts.
Interrupts may later be re—enabled with CALL 780.

CLOCK UTILITIES SOURCE CODE (4)

1010 *SAVE S.CLOCK UTILITIES
1020 *--------------------------------
1030 .OR $300
1040 .TF B.CLOCK UTILITIES

EB— 1050 *---------------------------------
1060 SLOT .EQ $EB PEEK(235)

EC— 1070 MODE .EQ $EC PEEK(236)
ED— 1080 INTERVAL .EQ $ED POKE(237) 0=MS,1=SEC

2=M1N,3=HR
EC— 1090 COUNT.SAFE .EQ $EC — $EF PEEK (239)

1100 *
1110 *

 1120 *---------------------------------
0300—4C 49 03 1130 CALL.768 JMP INTERRUPT.INIT
0303—4C 9B 03 1140 CALL.77l JMP INTERRUPT.CLEAR
0306—4C 83 03 1150 CALL.774 JMP INTERRUPT.ZERO
0309—4C 8E 03 1160 CALL.777 JMP INTERROPT.READ
030c—4C 99 03 1170 CALL.780 JMP INTERRUPT.ENABLE
030F—78 1180 CALL.783 SEI .DISABLE
0310— 60 1190 RTS
0311— 1200 CALL.785 .EQ * FIND SLOT

1210 *---------------------------------
1220 FIND.SLOT

0311—AO C7 1230 LDY #$C7 START WITH SLOT 7
0313—8C AA 03 1240 .1 STY GET.ROM.BYTE+2
0316—AD FF CF 1250 LDA $CFFF RELEASE $C800 SPACE
0319—A2 FE 1260 LDX #$FE LOOK FOR $B2 AT $CNFE
031B—20 A8 03 1270 JSR GET.ROM.BYTE
031E—C9 B2 1280 CMP ~t$B2
0320—DO 13 1290 BNE .2
0322—20 A8 03 1300 JSR GET.ROM.BYTE MODE BYTE
0325—85 EC 1310 STA MODE
0327—20 A8 03 1320 JSR GET.ROM.BYTE
032A—C9 08 1330 CMP #$08 “PHP” AT $CNOO
032C—DO 07 1340 BNE .2 NOT THIS SLOT
032E—20 A8 03 1350 JSR GET.ROM.BYTE
0331—C9 78 1360 CMP #$78 “SEI” AT $CNO1
0333—FO 07 1370 BEQ .3 THIS SLOT
0335—88 1380 .2 DEY NEXT SLOT DOWN
0336—CO Cl 1390 CPY #$Cl
0338—B0 D9 1400 BCS .1

24

033A— A000 1410 LDY #0
 1420 *–––STUFF SLOT $NO VALUE--------

033C— 98 1430 .3 TYA $CN
033D— 29 OF 1440 AND #$OF $ON
033F— 85 EB 1450 STA SLOT
0341— OA 1460 ASL
0342— OA 1470 ASL
0343— OA 1480 ASL
0344— 0A 1490 ASL
0345— 8D B0 03 1500 STA SLOT16 $NO
0348— 60 1510 RTS

1520 *---------------------------------
1530 INTERRUPT.INIT

0349— 78 1540
1550 *---LOAD INTERRUPT VECTOR---------

034A— A9 AD 1560 LDA #IRQ.HANDLER
034C— 8D FE 03 1570 STA $3FE
034F- A9 03 1580 LDA /IRQ.HANDLER
0351— 8D FF 03 1590 STA $3FF

1600 *---SET UP INTERRUPTIONS-----------
0354— AE BO 03 1610 LDX SLOT16
0357- A9 00 1620 LDA #0 POINT AT DIRECTION REGS
0359— 9D 81 CO 1630 STA $C081,x
035C— 9D 83 CO 1640 STA $C083,X
03SF— 9D 80 CO 1650 STA $C080,X PORT A ALL INPUT
0362— A9 FF 1660 LDA #$FF
0364— 9D 82 CO 1670 STA $CO82,x PORT B ALL OUTPUT
0367- AS ED 1680 LDA INTERVAL 0... 3
0369— 29 03 1690 AND #$03
036B— A8 1700 TAY
036C— B9 CA 03 1710 LDA INTERVAL.CRA,Y
036F— 9D 81 CO 1720 STA $C081,X 5=MS 12~SEC 4M1N 4=HR
0372— B9 CC 03 1730 LDA INTERVAL.CRB,Y
037S— 9D 83 CO 1740 STA $C083,X 4=MS 4=SEC 5=MIN 12=HR
0378— A9 2F 1750 LDA #$2F ENABLE INTERRUPTS OUT PIA
037A— 9D 82 CO 1760 STA $C082,X
037D- BD 80 CO 1770 LDA $C080,X CLEAR PREVIOUS INTERRUPT
0380— BD 82 CO 1780 LDA $C082,X

1790 *---
1800 INTERRUPT.ZERO

0383— 78 1810 SEI SET INTERRUPT DISABLE
0384- A9 00 1820 LDA #0 ZERO THE 4 BYTE COUNTER
0386— A2 03 1830 LDX #3
0388— 9D C6 03 1840 .1 STA COUNT,X
038B— CA 1850 DEX DECREMENT X
038C— 10 FA 1860 BPL .1

1870 *---
1880 INTERRUPT.READ

038E— 78 1890 SEI DISABLE INTERRUPTS WHILE
038F— A2 03 1900 LDX #3
0391- BD C6 03 1910 .1 LDA COUNT,X
0394— 95 BC 1920 STA COUNT.SAFE,X
0396- CA 1930 DEX DECREMENT X
0397— 10 F8 1940 BPL .1

1950 *---

25

1960 INTERRUPT.ENABLE
0399— 58 1970 CLI ALLOW INTERRUPTS AGAIN
039A— 60 1980 RTS

1990 *-------------------------
2000 INTERREJPT.CLEAR

039B— 78 2010 SEI DISABLE INTERRUPTS
039C- AE B0 03 2020 LDX SLOT16
039F— A9 04 2030 LDA #04
03A1— 9D 81 CO 2040 STA $C081,X
03A4— 9D 83 CO 2050 STA $C083,X
03A7— 60 2060 RTS

2070 *-------------------------
2080 GET.ROM.BYTE

03A8— BD 00 C7 2090 LDA $C700,x
O3AB— E8 2100 INX
O3AC— 60 2110 RTS

2120 *--------------------------
2130 IRQ.HANDLER

O3AD- 8A 2140 TXA SAVE X-REG
O3AE— 48 2150 PHA
O3AF— A2 BO 2160 LDX #SLOT16 $NO
03B0— 2170 SLOT16 .EQ ~—1
03B1- BD 80 CO 2180 LDA $C080,X CLEAR INTERRUPT
O3B4— BD 82 CO 2190 LDA $C082,X
O3B7— A2 03 2200 LDX #3
O3B9— FE C6 03 2210 .1 INC COUNT,X
O3BC— DO 03 2220 BNE .2
O3BE— CA 2230 DEX
O3BF— 10 F8 2240 BPL .1
03C1- 68 2250 .2 PLA RESTORE X AND A REGS
03C2— AA 2260 TAX
03C3— AS 45 2270 LDA $45 GET SAVED A REG
03C5— 40 2280 RTI RETURN

 2290 *---------------------------
03C6— 2300 COUNT .BS 4

 2310 *---------------------------
O3CA— 05 OC 2320 INTERVAL.CRA .DA #5,#12
03CC— 04 04 05
O3CF— OC 2330 INTERVAL.CRB .DA #4,#4,#5,#12

2340 * ---------------------------
0300— CALL 768 0399— INTERRUPT.ENABLE
0303— CALL 771 0349— INTERRUPT.INIT
0306— CALL 774 038E- INTERRUPT.READ
0309— CALL 777 .01=0391
030C— CALL 780 0383- INTERREJPT.ZERO
030F— CALL 783 .01=0388
0311— CALL 785 ED— INTERVAL
03C6- COUNT 03CA- INTERVAL.CRA
EC- COUNT.SAVE 03CC- INTERVAL.CRB

0311— FIND.SLOT O3AD- IRQ.I-IANDLER
.01=0313 .02=0335 .03=033C SC— MODE

03A8— GET.ROM.BYTE SB- SLOT
039B— INTSRRUPT.CLSAR 03B0- SLOT16

.01=03139 .02=03C1

26

CONTROLLING INTERRUPTS WITHOUT MACHINE LANGUAGE (3)

In order to illustrate how to program interrupts using Applesoft,
without separate machine language files, the following program
was written by Bill Goodwill. Bill’s program sets up the clock to
interrupt once per second. Three tiny machine language programs
are POKEd into memory: at $300, a routine which the IRQ
interrupt; and at CALL 782 a program to enable the IRQ interrupt.
At each interrupt the program at $300 stores a non—zero value at
779, so that the Applesoft program will know an interrupt
occurred.

Bill’s Applesoft program is in a tight loop waiting for a non-
zero value (line 2400) . For grins, a period is printed every trip
through this loop. When PEEK(77) is finally non—zero, Bill zeroes
it and counts the event in C, and prints a slash, for grins
again. When C finally reaches the limit T, the program reads the
clock and displays it on the screen.

You could substitute your own list of activities to be performed
after each interrupt, and after each time the counter C reaches
the limit T.

PATCHES FOR DOS 3.3 WHEN USING INTERRUPTS (3)

The Apple and DOS designers must not have really expected users
to take advantage of interrupts. The IRQ interrupt handler inside
the Apple monitor ROM saves the A—register at location $45 in
RAM. This would be all right, except that DOS 3.3 uses location
$45 in 25 different places as a temporary variable. An interrupt
at the wrong time could greatly confuse DOS, and has the
potential of clobbering a disk or at least a running program.

The easiest way around the problem is to be certain that the IRQ
interrupt is disabled before any/every DOS command, and enabled
when the DOS commands are finished. Another approach (tried in a
product called Doubletime Printer from Southwestern Data Systems)
is to replace the monitor ROM chip with one which does not use
location $45. The best solution is to patch DOS 3.3 50 that it
does not use location $45.

The program called PATCH DOS 3.3 FOR INTERRUPTS on the H.O. disk
installs patches which make DOS 3.3 completely compatible with
the use of the IRQ interrupt.

If you are expecting to use the millisecond interrupt for precise
interval counting or other purposes, you may still have a
conflict with DOS. Because disk I/O operations are critically
timed with software, DOS 3.3 disables the IRQ interrupt during
the reading or writing of the disk data. The IRQ interrupt will
be ignored during the time it takes to bring a drive up to speed,
find the proper track and sector, and read or write the data.

27

HOW TO READ THE TIME/DATE UNDER AN INTERRUPT (3)

It is usually not a good idea to try to use the built-in firmware
to read the time and date in an interrupt driven program. The
H.O. firmware uses the system input buffer at $200 to build the
time/date string.

It is possible that your use of the clock interrupt does not
require all of the clock data. Perhaps only certain clock
registers need to be read, so that a separate machine language
program could be much faster than an attempt to read the whole
clock using the on-board firmware. To keep interrupt overhead to
a minimum your interrupt routine could read only selected
registers.

The on—board firmware “forgets” your interrupt interval selection
in most cases. If you don’t want to reestablish the interrupt
interval after each clock read, you may want to use a separate
clock read program.

A program is on your H.O. disk which reads the clock and formats
the date and time. The source code is in the file named S.TIME BY
INTERRUPT, in the format of the S—C Macro Assembler. The object
code, which can be BRUN, is in B.TIME BY INTERRUPT.

HOW TO DISABLE INTERRUPTS (4)

Once you begin using interrupts, it is important to know how to
disable them. The IRQ interrupt can be disabled using the SEI
instruction from machine language programs.

Pressing RESET (or Ctrl—RESET in newer Apples) will disable the
IRQ interrupt. RESET will also clear the interrupt selections in
the clock card, so that both IRO and NMI interrupts will cease.

Both IRQ and NMI interrupts from the clock can be cleared and
disabled by storing a zero value in the control registers
($C081+NO AND ~C083+N0).

Since the clock interrupts must be connected to the Apple bus by
switches 3 or 4 on the clock card, flipping the switches off
will obviously disconnect the interrupts.

1990 REM BASIC INTERRUPT ROUTINE BY WILLIAM P. GOODWILL
2000 TEXT : HOME : INPUT “WHAT SLOT IS THE TIMEMASTER IN?

“;SLOT: IF SLOT < 1 OR SLOT > 7 THEN 2000
2010 REM **LOAD 3 SMALL ASSY LANGUAGE ROUTINES**
2020 REM **;COME HERE UPON INTERRUPT
2030 REM **768 LDA #01 ;SET FLAG FOR BASIC
2040 REM ** STA 779
2050 REM ** LDA PIA ;CLEAR PIA
2060 REM ** LDA ~45 ;RESTORE ACCUMULATOR
2070 REM ** RTI ;THEN RETURN
2080 REM **779 BYTE 00 ;BASIC FLAG
2090 REM **;USE “CALL 780” TO DISABLE INTERRUPTS

28

2100 REM **780 SET
2110 REM **RTS
2120 REM **;USE “CALL 782” TO ENABLE INTERRUPTS
2130 REM **782 CLI
2140 REM ** RTS
2150 DATA 169, 1,141,11,3,173,208,192,165,69,64,0,120,96,88,96
2160 FOR A = 768 TO 783: READ X: POKE A,X: NEXT A
2170 CALL 780: REM TURN OFF INTERRUPTS
2180 POKE 1022,0: POKE 1023,3: REM POINT TO INTERRUPT HANDLER
2190 A = — 16256 + 16 * SLOT: REM PTA BASE ADDRESS = $C080+$NO
2210 POKE 774,128 + SLOT * 16
2220 POKE A + 1,0: POKE A + 3,0: REM DATA DIRECTION REGS
2240 POKE A,0: REM PORT A INPUT,8 BITS
2250 POKE A + 2,255: REM PORT B OUTPUT,8 BITS
2260 REM THE NEXT 2 POKES DETERMINE INTERRUPT RATE
2270 REM (THIS BASIC PROGRAM IS TOO SLOW FOR 1024 HZ INTERRUPTS)
2280 POKE A + 1,12: REM CONTROL REGISTER A (1 PER SECOND)
2290 POKE A + 3,4: REM CONTROL REGISTER B
2300 POKE A + 2,47: REM TELL PTA TO PASS INTERRUPTS
2310 X = PEEK (A): REM CLEAR PTA FLAGS
2320 F = 779: REM BASIC FLAG ADDRESS
2330 Z = 0: REM FLAG VALUE WHEN CLEAR
2340 CALL 782: REM ENABLE INTERRUPTS
2350 T = 3: REM NUMBER OF INTERRUPTS PER CYCLE
2360 ONERR GOTO 2380
2370 GOTO 2460: REM TWIT
2380 CALL 780: STOP : REM DISABLE INTERRUPTS BEFORE HALTING
2400 IF PEEK (F) Z THEN PRINT “.“;:GOTO 2400:REM WAIT FOR TNT
2410 PRINT “/“;: REM DO THE FOLLOWING ON EVERY INTERRUPT
2420 POKE F,Z: REM RESTORE FLAG AFTER INTERRUPT
2430 C = C + 1: IF C<T THEN GOTO 2400 REM TNCR CTR,COMPARE TO MAX
2450 REM PERFORM THIS OPERATION WHENEVER COUNT REACHES MAX
2460 C = 0: REM INIT COUNTER
2470 PRINT
2485 D$ = CHR~ (4): PRINT
2490 PRINT D$”IN#SLOT”: PRINT D$”PR#”SLOT
2500 VTAB 5: INPUT “:“;K$
2510 PRINT D$”IN#0”: PRINT D$”PR#0”
2520 PRINT K$
2530 CALL — 958
2540 POKE A + 1,12: REM CONTROL REGISTER A (1 PER SECOND)
2550 POKE A + 3,4: REM CONTROL REGISTER B
2560 GOTO 2400

29

CP/M AND YOUR TIMEMASTER II H.O. (2)

The TIMEMASTER II H.O. may be used under the CP/M operating system
with the appropriate software. When using MBASIC or GEASIC
your H.O. can be used m ost easily by POKEing a short interface
routine. A sample program that shows how this is done may be
found on the H.O. disk. The program is called T.CPMDE1 and is
stored as a text file which can be converted to the CP/M system
by using the APDOS utility on the CP/M master disk. This program
was written for the TIMEMASTER mode.

To convert the APPLE DOS text file to a CP/M file, do the
following:

1) Put a copy of your H.O. disk in drive 2 (B).

2) Put a CP/M disk wi-th BASIC and APDOS on it in drive 1 (A)

3) Turn on computer or do a PR#6 (RETURN> SO YOU GET AN A>.

4) Type APDOS <RETURN> YOU SHOULD NOW HAVE AN *.

5) Type TMl.BAS~T.CPMDE1 <RETURN> , this will convert T.CPMDEl.

6) Type <control> C , this will put you back in CP/M.

You should now have a program on your CP/M disk, called TMl
This program can be run from MBASIC or GBASIC.

30

USING PASCAL WITH THE TIMEMASTER II H.O. (2)

In Pascal, an intrinsic unit has been supplied to enable the
access of the H.O. from within a Pascal program. The unit is
already linked into a standard Pascal library and can be accessed
with the statement:

Uses TIMEMASTER

in a programs heading.

The unit supplies the following functions and procedures:

PROCEDURE GETCLOCK;

FUNCTION CLDAY;
FUNCTION CLMONTH;
FUNCTION CLDATE;
FUNCTION CLYEAR;
FUNCTION CLHOURS;
FUNCTION CLMINUTES;
FUNCTION CLSECONDS;

AND THE VARIABLES
TIME STRING 13
TODAY STRING 18

The functions listed return the integer value of the function
name. Note that the CLDAY is the day of week and the CLHOURS is
the hours 0 to 23 format. These return the same information that
is returned when using the input statement in BASIC.

The procedure GETCLOCK sets the strings time and TODAY with the
current time and date. The time string returns the time in the
following format:

12:30:08 PM

while the TODAY string is in the format of

SUN MAR 20, 1983

and both have leading and trailing blanks.

To use these utilities, the system library on your boot disk will
need to be replaced with the system library on the suppied disk.

The file system start up will also need to be included on your
boot disk if the automatic dating feature is desired.

The three text files supplied are the programs that were used to
make the TIMEMASTER II unit.

31

DISK CONTENTS (1)

Your TIMEMASTER II H.O. disk contains many useful and instructive
example programs. Some of these have been mentioned in the
preceding pages. The disk is not protected (however it is
copyrighted) and you can and should make a backup copy using any
standard Apple disk copy program (for example, COPYA on the DOS
3.3 System Master Diskette).

Side one of the diskette, which is labeled, contains DOS 3.3
(Copyright 1981 by Apple Computer, Inc.). A small patch has been
made to this DOS, to speed up the LOAD, BLOAD, RUN, and BRUN
commands.

The programs on this side include a file which can be moved to a
CP/M environment. The others can be used either with DOS 3.3, and
many of them with Apple PRO DOS. Side two of the diskette contains
files intended to be used with Apple Pascal.

There are seveal files on side one of the H.O. diskette which are
type thu. Normally file type I signifies Integer BASIC files, but
in this case it signifies source assembly language files to be
used with the S—C Macro Assembler. You may also have other
programs on the H.O. disk.

S.MILLISECONDS Source file (S—C Macro Assembler) of
B.MILLISECONDS

B.MILLISECONDS Object file used by next three programs
which sets up and
processes millisecond interrupts.

MILLISECONDS Uses B.MILLISECONDS to give a running
display of
elapsed milliseconds.

MILLISECOND STOPWATCH Uses B.MILLISECONDS to provide a very
precise stopwatch.

THE LIMIT QUIZ Uses B.MILLISECONDS to give a fun
multiple choice quiz with time limits
on your responses.

S.TIME BY INTERRUPT Source file (S—C Macro Assembler) of
B.TIME BY INTERRUPT

B.TIME BY INTERRUPT BRUN this to put current date/time
on top line of screen. It will stay
there while you work, and be updated
every second!

BASIC INTERRUPT ROUTINE Bill Goodwill’s program which sets up
interrupts and demonstrates them
entirely within Applesoft.

32

PATCH DOS 3.3 FOR INTERRUPTS
Installs patches which make DOS 3.3
safe for interrupts. (See text)

SET CLOCK The program to use when you need to set
a new time and/or date in
your TIMEMASTER II.

EXAMPLE HOOKS Three different ways to hook in the
TIMEMASTER II and read it.

DATE & TIME DISPLAY Nicely displays date and time, updating
every second.

TIME II DEMO Reads the clock and displays date and
time in all available
formats according to selected mode.

ANALOG CLOCK Displays an old fashioned clock with
moving hands and an audible
“tick—tock”.

FIND TIMEMASTER SLOT & MODE
Program which finds the slot and
mode of your TIMEMASTER II.

READ TIME (NO ROM) Program which reads and displays the
date and time without using the
on—board ROM firmware.

ML (ALL MODES) Calls B.ML (ALL MODES) to read the
date/time string regardless of
the mode selected by 5W3 and SW4.

S.ML (ALL MODES) Source file (S—C Macro Assembler) of
B.ML (ALL MODES),
a program which reads the date/
time string in assembly language.

B.ML (ALL MODES) Object file used by ML (ALL MODES).

ML (OLD MODES) Calls B.ML (OLD MODES) to read the
date/time string, which works
only when NOT in TIMEMASTER II mode.

S.ML (OLD MODES) Source file (S-C Macro Assembler) of
B.ML (OLD MODES), a program which reads
the date/ time string in assembly
languages.

B.ML (OLD MODES) Object file used by ML (OLD MODES).

INSTALL DOS DATER Modifies DOS 3.3 in memory to stamp date
and/or time on files with
SAVE, BSAVE, RENAME, or INIT.

33

S.DOS DATER Source file (S-C Macro Assembler)

B.DOS DATER Object file used by INSTALL DOS DATER
TALKING CLOCK If you have an Echo II, this program

will speak the time once per minute.

TALK Used by TALKING CLOCK, do not BRUN

T.CPMDE1 CP/M demo

The files which can be moved to PRO DOS (using CONVERT on the
PRO DOS Users Disk) are:
B.MILLISECONDS ANALOG CLOCK
MILLISECONDS FIND TIMEMASTER II SLOT & MODE
MILLISECOND STOPWATCH READ TIME (NO ROM)
TIME LIMIT QUIZ ML (ALL MODES)
BASIC INTERRUPT ROUTINE B.ML (ALL MODES)
SET CLOCK ML (OLD MODES)
EXAMPLE HOOKS B.ML (OLD MODES)
DATE & TIME DISPLAY TIME II DEMO

The file names will be changed by CONVERT so that non—letters
become periods, and truncated to 15 characters. With two
exceptions, these programs will function under PRO DOS without
modification. The two programs ML (ALL MODES) and ML (OLD MODES)
must be slightly modified, to correct the names of the binary
files loaded in line 30 of both programs.

COMMON QUESTIONS ABOUT THE TIMEMASTER II H.O. (1)

Q. Which slot should I plug the TIMEMASTER II H.O. into?

A. Any empty slot from slot 1 through slot 7 will do, but we
recommend slot 4 if it’s available. Some commercial software
expects a clock to be in slot 4 without looking anywhere
else.

Q. The program I have says it works with a clock card but I
can’t get it to work with the TIMEMASTER II H.O.

A. You may have purchased a dud program. The H.O. has
been tested with dozens of clock type programs. You may want
to contact the software publishers for help. Applied
Engineering is very cooperative with programming companies
and most software houses will be eager to solve your problem
because of the large volume of TIMEMASTER sales. By
helping you, they will be helping their other customers as
well.

34

Q. What mode is recommended for my own programming?

A. The TIMEMASTER mode (switch 2 open)

Q. I’m thinking of buying a program that says it will work with
a real-time clock. Does this automatically mean that it will
work with the H.O.?

A. usually, but not always. Try to check with the author of the
program to make sure that he supports TIMEMASTER.
Over 300 software developers have purchased the TIMEMASTER,
so compatibility problems should be rare.

Q. With some of the sample programs, I will see a cursor
looking thing flashing on part of the screen. What causes
this?

A. The cursor is caused whenever control is restored to the
screen. This is part of the Apple monitor ROM and cannot
be avoided when using PR#’s. The cursor appears to flash
because the clock is constantly being reread. However,
most programs only read the clock periodically thereby
preventing the cursor from reappearing. If you are going to
write a program that must constantly read the clock, you
might want to not use the on—board firmware or do it with
interrupts.

Q. I’ve written this really neat program that uses the H.O.
Should I give it to Applied Engineering?

A. Depending on the quality of the program, Applied Engineering
may compensate you. If your program is really spectacular,
you may want a software publisher to sell it for you.

Q. The TIMEMASTER II H.O. seems to be way out in front of its
competition, in both features and price. How did you do it?

A. Apple peripherals are our only business - that’s why we’re so
good at it!

MILLISECONDS SOURCE CODE

 1020 .OR $300
 1030 .TF B.MILLISECONDS
 1040 *-------------------------------

35

0300— 4C 11 03 1050 JMP INT.INTERRUPT CALL 768
0303— 4C 6C 03 1060 JMP RESET.COUNT CALL 771
0306- 4C 7A 03 1070 JMP SAVE.COUNT CALL 774
0309- 4C A6 03 1080 JMP STOP.INTERRUPT CALL 777

1090 *----------------------------------
030C— 1100 MSCNT.SAFE .B54 780.. .783, MSB FIRST

1110 *----------------------------------
0310- 1120 SLOT 16 .BS 1 $NO (ZERO IF NOT FOUND)

1130 *----------------------------------
1140 INIT.INTERRUPT

0311— 78 1150 SEI DISABLE IRQ
1160 * -FIND TIMEMASTER II SLOT

0312— AO C7 1170 LDY #$C7 START WITH SLOT 7
0314— 8C 8A 03 1180 .1 STY GET.ROM.BYTE+2
0317— A2 FE 1190 LDX #$FE LOOK FOR $B2 AT $CNFE
0319— 20 88 03 1200 JSR GET.ROM.BYTE
031C— C9 B2 1210 CMP #$B2
031E— DO OF 1220 BNE .2
0320— E8 1230 INX NEXT CHECK $CNOO
0321— 20 88 03 1240 JSR GET.ROM.BYTE
0324— C9 08 1250 CMP #$08 “PHP” AT $CNOO
0326— DO 07 1260 BNE .2 NOT THIS SLOT
0328— 20 88 03 1270 JSR GET.ROM.BYTE
032B— C9 78 1280 CMP #$78 “SEI” AT $CNO1
032D— FO 06 1290 BEQ .3 THIS SLOT
032F— 88 1300 .2 DEY NEXT SLOT DOWN
0330— CO Cl 1310 CPY 4b$C1
0332— BO EQ 1320 BCS .1
0334— 60 1330 RTS

1340 *---STUFF SLOT $NO VALUE---------
0335— 98 1350 .3 TYA $CN
0336— OA 1360 ASL
0337— OA 1370 ASL
0338— OA 1380 ASL
0339— OA 1390 ASL
033A— 8D 10 03 1400 STA SLOT 16 $NO
033D— FO 48 1410 BEQ RETURN... NO TIMEMASTER II FOUND
033F— AA 1420 TAX

1430 *---LOAD INTERRUPT VECTOR ---------
0340— A9 8D 1440 LDA #IRQ.HANDLER
0342— 8D FE 03 1450 STA $3FE
0345— A9 03 1460 LDA/I RQ HANDLER
0347— 8D FF 03 1470 STA $3FF

1480 *---SET UP INTERRUPTIONS---------
034A— A9 00 1490 LDA #0 POINT AT DIRECTION REGS
034C— 9D 81 CO 1500 STA $C081,X
034F— 9D 83 CO 1510 STA $C083,X
0352— 9D 80 CO 1520 STA $C080,X PORT A ALL INPUT
0355— A9 FF 1530 LDA #$FF
0357— 9D 82 CO 1540 STA #C082,X PORT B ALL OUTPUT
035A— A9 05 1550 LDA #~05 SELECT INTERVAL (CRA)
035C— 9D 81 CO 1560 STA $C081,X
03SF— A9 04 1570 LDA #~04 (CRB)
0361— 9D 83 CO 1580 STA $C083,X
0364— A9 2F 1590 LDA #$2F ENABLE INT. OUT OF PIA

36

0366— 9D 82 CO 1600 STA $C082,X
0369— BD 80 CO 1610 LDA $C080,X CLEAR LAST INT. USE
 $C080 FOR 1024 & iSEC. USE $C082 FOR iMIN & 1 HOUR

1620 *-------------------------------
1630 RESET.COUNT

036C— A9 00 1640 LDA itO ZERO THE 4-BYTE COUNTER
036E— 8D A8 03 1650 STA MSCNT
0371— 8D A9 03 1660 STA MSCNT+1
0374— 8D AA 03 1670 STA MSCNT+2
0377— 8D AB 03 1680 STA MSCNT+3

1690 *-------------------------------
1700 SAVE.COUNT

037A— 78 1710 SEI DISABLE INTERRUPTS
0378— A2 03 1720 LDX #3 WHILE COPYING TUE COUNT
037D— BD A8 03 1730 .1 LDA MSCNT,X TO A SAFE LOCATION
0380— 9D 0C 03 1740 STA MSCNT.SAFE,X
0383— CA 1750 DEX
0384— 10 F7 1760 BPL .1
0386— 58 1770 CLI ALLOW INTERRUPTS AGAIN
0387— 60 1780 RETURN RTS

1790 *-------------------------------
1800 GET.ROM.BYTE

0388— BD 00 C7 1810 LDA $C700,X
0388— E8 1820 INX
038C— 60 1830 RTS

1840 *-------------------------------
1850 *-------------------------------
1860 IRQ.HANDLER

038D— AS 45 1870 LDA $45 SAVE A—REG
038F— 48 1880 PHA
0390— 8A 1890 TXA SAVE X—REG
0391— 48 1900 PHA
0392— AE 10 03 1910 LDX SLOT 16 $NO
0395— BD 80 CO 1920 LDA $C080,X CLEAR INTERRUPT
0398— A2 03 1930 LDX #3 iNCREMENT COUNTER
039A— FE A8 03 1940 .1 INC MSCNT,X
039D— DO 03 1950 BNE .2
039F— CA 1960 DEX
03A0— 10 F8 1970 BPL .1
03A2— 68 1980 .2 PLA RESTORE X AND A REGS
03A3— AA 1990 TAX
03A4— 68 2000 PLA
03A5— 40 2010 RTI RETURN

2020 *-------------------------------
2030 STOP.INTERRUPT

03A6— 78 2040 SEI
03A7— 60 2050 RTS

2060 *-------------------------------
03A8— 2070 MSCNT .BS 4

2080 *-------------------------------

37

