The Sourceror s Apprentice

The Assembly Language Journal of Merlin Programmers

Rochip Mouths Off

Mike

Dear Mile,

I enjoy your publication very much, however there
are a_few things that I would like to point out or ask
about.

In your September '89 editorial you said something
about “limited by space”. In comparing your newslet-
ter to A2-Central, it looks like you have too much
space. I would like it better if you used a much
smaller typeface, smaller (or fewer) pictures, and
double column assembly listings. For $28/year, I
need more stuff. Are you not receiving enough mate-
rial to publish? Just look at all the unused space on
pages 8-11 and 16 of September ‘89! A whole page
Just for copyright info?

I'really like your editorial comments in the articles. I
believe even more are in order (ala Cecil’s in CALL
AP.P.LE.).

We really need a good assembly newsletter like
yours. (Ireally hated seeing Bob’s go away.) You are
improving, though maybe you tackled too many
magazines at the same time.

Thank you for your time.

Robert Muir
FPQO San Francisco

Dear Robert,

First, I must say that your letter had quite an effect
onme. I was upset, initially, because I'm not certain
most folks understand the newsletter industry and
the economics thereof. But it also made me think, so
. I suppose that it served a good purpose. Further-
more, it has served as the springboard for change,
and an excuse to share with the subscribership the

Vol 1 No 10 October 1989

Mike Rochip: A determined man

constraints under which a newsletter of this nature
must operate.

You'll notice the changes in the layout of this issue.
They were prompted by your comments, Robert,
and those of all the rest of you who have written re-
garding this. That is one of the advantages of a
newsletter over a magazine.

However, I think you all need to understand what
was going through my mind as I produced the last
issue, and the costs Imust balance with every issue.

Stop and consider that The Sourceror's Apprentice is
usually advertised as a 12 page newsletter. Now
consider that last month I put out a 16 page
newsletter. Yes, there were big pictures and some
white space. But would you have been happier had
I crammed everything into 12 pages? I admit, I only
had about 14 pages of material. In such a situation
I am faced with either 1) going with 12 pages and
serializing at least one article, or 2) spreading out

‘The Sourceror s Apprentice

Page 2

the 14 pages into 16.

Sure, Icould have printed another short article, But
articles cost money or time. Have we forgotten
that Bob S-C just flat ran out of both with AAL? 1
have precious little of either commodity myself, I
have plenty of articles and source code to print, but
as soon as I do I owe someone some money. Ihave
paid every contributor something for their work, al-
though usually only $25 - $75. 1 am convinced that
it is a) the morally correct thing to do, and b)
necessary for attracting high quality articles.

So am I just too cheap to print a bigger rag? Let’s
look at some facts and figures:

Income: The total subscriber base is currently
about 400. The average price paid has been $25
(we've had some intro offers and what-not). That
means the total income from the newsletter has
been about $10,000. Since the quarterly disk is
barely a break-even deal, I'll exclude it from these
figures.

Expenses: A 16 page issue (as most have been) costs
me $289 to have 450 printed (with the quality of
print and paper I demand). That's $3468 per year.
Postage for a 16 pager is $.45 perissue, That works
out to $2160 per year. Articles cost between $75 to
$150 per month. Let’s split the difference and call it
$110. That's $1320 per year.

Not including office expenses, phone bills, enve-
lopes or my time, we come out with $6948 total
expenses, Let's call it $7000.

That leaves $3000 to pay for any marketing and
expansion - and my salary. For an entire year.

Some folks have said that I ought to allow advertis-
ing. Fine, except that I cannot find any advertisers.
The fact is, the market of hard core Apple Il assem-
bly language programmers is sufficiently narrow
(probablyless than 1500 total) that nobody is going
to pay very much for advertising herein. One major
Apple II hardware company told me that they
wouldn't advertise here if I gave them the space for
free - it wouldn't be worth their time and effort.
Incidentally, this same company did advertise in
AAL for awhile, so they were basing their decision
on experience.

A publication like this one can only exist in news-

letter form (i.e. subscriber supported).

I am a little sensitive to the comment about needing
more for $28. I have spent a considerable amount of
time over the last six months talking to various
business and marketing people about Ariel Publish-
ing, Without fail, every single person has advised
me to triple or quadruple the prices of my publica-
tions. They point out, correctly, that highly techni-
cal information that cannot be got elsewhere is
worth a lot (we were the first to discuss the new tool
startups, the first with resources, and the only
Apple I publication dedicated to teaching and
sharing assembly language programming tech-
niques.). Many financial newsletters, for example,
routinely charge $140 or more per year. One com-
modities newsletter I've seen is over $900 per year!
Even if I lost 50% of my subscribers, I've been told,
I'd still come out way ahead.

I'm not going to do that, however. Instead, here in
the short run, I'm going to cut costs by limiting each
issue to 12 pages (our advertised length all along!).
As compensation to y’all, the new layout will |
squeeze in more per page.

And consider the price of Apple’s Partner Program
per year, too ($600). Granted, we do not dish out as
much information {or junk mail). But they do not
explain things as well (I think) nor do they screen
out extraneous info.

I am determined to avoid joining the long list of
failed, deceased, or struggling Apple II publications
(which definitely includes the now gasping CALL
APPLE,). The list of which I speak is not neces-
sarily a commentary on the state of the Apple II
market, by the way, since our beloved Softalk died
during the heyday of the II. Thereasonsin each case
have been a combination of business blunders and
an inability to keep costs down. Of course, Apple’s
lack of marketing momentum and money has not
helped, either.

Well, I guess I have thoroughly vented my spleen
here, haven't I? Ihope nobody found it offensive -
my intent was to inform and educate. I also hope
some of you found it enlightening. If you like The
Apprentice and would like to help insure its suc-
cess, the best thing you could do would be to talk a ¢
friend into subscribing.

The Sourceror's Apprentice

Page 3

Frankly, I have been a little discouraged and frus-
trated (you could tell?) by the lack of success of my
last two marketing ventures (embarrassing for a
supposed “guru” of small business marketing). I
fully expected to be up over 1,000 subscribers by
now,

Which leads me to my final point: Robert’s letter
really DID make me think (and I thank you for it,
Robert, and for your diplomacy). As much asIhave
berated Apple and others for being insensitive to
theirmarkets, I am nevertheless a little guilty of that
myself.

I have therefore included a quick survey on an
insert to find out what y’all are thinking and how I
canmake this a better newsletter, more in tune with
your needs.

I'll do everything I can, but I thought you all should
know what constrains us.

DesignMaster?

By the way, a couple people pointed out that I
prepared y'all for the shock of the new price of
DesignMaster but never delivered the shock itself.
Whoops. Who proofreads this newsletter, anyway?
... The ByteWorks has placed a suggested retail
price of $95 on the latest version (compatible with
system software version 5.0). One thing I forgot to
mention was that the program is greatly expanded
and enhanced, thus there is yet another reason for
the price increase. The new version is currently beta
testing. ' ’

Macro Mania

I'd also like to place a call for macro maniacs - do I
have any volunteers for the APP.BUILDER to Merlin
translation? APP.BUILDER is Eric Scldan’s macro
masterpiece for 8 bit Apple II assembly language. 1
won’t have the time to do the translation work for
awhile. Anybody else want a whack at it? You'd be
doing all Merlin 8-bitters everywhere a terrific serv-
ice! Since APP.BUILDER was created by Apple, 1
cannot sell it, hence I cannot pay anyone to do the
translation work. But I can give away free copies -
if I had a Merlin version...

Wanna Be a2 SubContractor?

Would anybody like to go into business for them-
selves as our quarterly disk distributor? I'd send
you the contents of the newsletter each month on
disk (plus other goodies). Your job would be to
arrange them into a package, copy the disks, and
mail out them out. The most onerous duty of it all
is the disk duplication (yuk). We have about 85 disk
subscribers. I'd pay a king’s ransom to get this off
my back. Send me abid if yer’ interested (include the
costs of postage and disks).

Speaking of the quarterly disk, if you are a share-
ware author and would like some guickie distribu-
tion, or if you have a demo version of a full fledged
commercial product, we’d be overjoyed to put those
buggers on our quarterly disk.

Important NEWS FLASH!!!

Ariel Publishing has a new phone number. We
moved to bigger digs and "Boondocks Bell" could not
let us keep our old number. The new number is
(509) 923-2249,

Now back to our regularly scheduled publication...
I hope you enjoy it (a little pun considering that two
of our feature articles this month have to do with
joystick programming).

== Ross ==

"If you would like to know what the Lord God thinks of
MS-DOS, you have only to look at those to whom he
has given it." /

(with apologies to Maurice Baring and Guy Kawasaki)

‘The Sourcerors Apprentice

Page 4

Just when you thought it was safe...

Honing Hot High-Res Code

by Jerry Kindall, Contributing Editor

I really enjoyed Eric Soldan’s piece in the Septem-
" ber, 1989 Sourceror’s Apprentice. I'd never even
thought it possible to get that much resolution out
of a joystick. Now, though, I'm using a variation of
Eric’s routine in a new Apple II CAD program that
Kitchen Sink Software is working on.

I feel quite odd about presuming to improve on a
literal gem of a routine, but there are, indeed, a few
improvements that one can make. For reference,
here's the heart of Eric’s original routine, sans
comments, with a few equates added, and with a
label attached to the first instruction of the routine,
but otherwise as printed on page 3:

1 ptrig $C070
2 paddlo = $C064

3 yval = 500

4

5 rdpdl0 bit ptrig

6 lda #$500

7 tay

8 clc

9 1loop adc #501
10 ldx paddlo®
11 bpl done
12 iny

13 ldx paddi0
14 bmi loop
15 done sty yval
16 "~ ade yval
17 lday #3500
18 bce rts0
19 iny
20 rtsoO rts

The first thing I noticed was that the routine starts
counting at 1, not 0 as we programmers are usually
accustomed to counting. Thishappensbecausethe
accumulator starts out at zero (line 6), and is
incremented (line 9) before the termination condi-
tion is even tested (line 10). This isn't necessarily a

bug, but I needed to get rid of the extra count. 1
originally tried initializing the accumulator to $FF
instead, but that caused the accumulator to jump
from $FF to O to 2, skipping 1 entirely, because of
the carry generated.

It’s easier to adjust things after the fact. I stuckin
a DEY right before line 15 (and gave the new line the
label DONE), reasoning that it didn’t matter which
counter I subtracted the excess count from. How-
ever, this caused O to return as 256, because of the
carry generated by adding 1 and 255 (the result of
decrementing O in the Y register.) Eventually, I
succumbed to being non-clever and inserted a SEC,
SBC #1, CLC right before line 16. The revised code,
then, follows:

1 ptrig 5C070
2 paddl0 = $C064
3 yval = $00
4
5 rdpdl0 Dbit ptrig
6 ' lda #3500
7 tay
8 clc
9 loop adc #$01
10 1ldx paddl0
11 bpl done
12 iny
13 ldx paddl0
14 bmi loop
15 done sty yval
16 sec
17 sbc #1
18 clc
19 adc yval
20 ldy #3500
21 becc rts0
22 iny
23 rtso0 rts

]

‘The Sourceror's Apprentice

Page 5

I then got to wondering why Eric used the accumu-
lator to count one half of the loop rather than using
the Xregister. Using the X register would allow the
INX opcode to be used in place of the ADC, shaving
a cycle off the increment time. Looking at the cycle
times in the comments for the listing, I realized that
Eric used the accumulator and ADC to make both
sides of the loop run with the same number of
cycles. I wondered what would happen, though, if
I did use the X register instead. The result was
mind-blowing: I was able to read values of up to 410
from my joystick! Despite the minor inaccuracy
introduced by the “lospidedness” of the new loop, it
seemed to work fine. Here'’s the routine:

1 ptrig 3C070
2 paddl0 = 5C064
3 yval = $00

4

5 rdpdl0 Dbit ptrig
6 1ldx #SFF
7 1dy #$00
8 clc

9 1loop inx

10 lda paddlo
11 bpl done
12 iny

13 lda paddl0
14 bmi loop
15 done sty yval
16 txa

17 adc yval
18 1dy #3500
19 bce rtsoO
20 iny
21 rtso rts

I start the X register at $FF, which means that the
first wrap will take me to O; thus, there’s no need to
adjust the count at the end of the loop to make it
start at zero. Since INX doesn't affect the carry flag,
the problem I ran into with Eric’s ADC loop doesn’t
happen here when X wraps around to zero.

JOYSTICK CONNECTIONS

Eric suggested making sure that a joystick was
connected before calling his routine. Here's a
routine that’ll do that, returning with a set carry if
there’s no joystick connected and a clear carry
otherwise:

1 paddl0 = 3C064
2 pread = SFB1E
3

4 chkstk 1ldx #0

5 jsr pread
6 iny

7 bne found
8 1ldy #2

9 1dx #$80
10 wait lda paddl0
11 dex
12 bne wait
13 dey
14 bne wait
15 bit paddlo
16 bpl found
17 sec
18 rts
19 found clc
20 rts

The routine reads paddle O, using the usual PREAD
routine at $FB1E, and if any value other than 255
is found, a joystick is known to be connected. If a
255 is found, it could mean that the stick is full
right, or that there’s no stick at all. Lines 8-14 form
ashort delay routine. Afterthe delay, ifthe PADDLO
timer is still high, it means that no stick at all is
connected. In Kitchen Sink’s CAD program, the Y
coordinate needed to have a range of only O to 212,
so I was able to use PREAD to read the Y axis, and
check for a disconnected joystick just before read-
ing the X coordinate with Eric’s method, all within
the same routine.

TROUBLE-FREE DELAYS

In my delay loop above, I access the paddlO timer
repeatedly. This keeps most accelerators running
at 1 Mhz through the loop — a favorite trick of mine
for acclerator-independent timing. This doesn’t
keep the Ilgs going slow, though; you need to
explicitly slow it down when accessing the Apple
game paddle softswitches. Iwrote a couple of simple
routines which manipulate the Iigs speed; you
might want to have the paddle routines call
SLOWGS before doing anything else, and exit with
aJMP toFASTGS rather than with an RTS. FASTGS
doesn’t actually set the GS’s speed to fast, butto the
speed in effect when SLOWGS was called. Here'’s
the code:

The Sourceror's Apprentice

1 romid SFE1F
2 speed = 5C036
3

4 slowgs sec

5 jsr SFELF
6 bcs noslow
7 lda speed
8 sta oldspd
9 and #S$7F
10 sta speed
11 noslow rts
12

13 fastgs sec

14 jsr SFELF
15 becs nofast
16 lda oldspd
17 and #3580
18 ora speed
19 sta speed
20 nofast rts
21

22 oldspd ds 1

I know Eric taught me a lot with his original joystick
routines; I'hope you find mine tobe as instructional.

Software
Evolution

by Steven Lepisto

Sometimes I think software is a process and not a
thing. It changes over time as new ideas and
techniques are learned and applied. Occasionally
there will come along a really novel idea which will
revolutionize the whole view of software but those
kind of ideas are quite rare. Inreality, most changes
in software are evolutionary: small changes that are
applied to make the software better and better over
time.

An early mesozoic hacker
(MSDOSus Hackemupus)

For example, back in volume 1 numbers 3 and 4 of
the Sourceror’'s Apprentice, Mr, Lambert published
an article by me detailing some code for reading an
Apple joystick in a different way. Nothing new here
asit had allbeen done before in one form or another.
I simply created one way of doing it and took the
opportunity to share this approach with others.
Well, after writing that article and code, I have
managed to make improvements in how I use the
code. I have even managed to make some small
improvements in the code itself. All the changes
were made inthe DOJOYSTICK and UPDATEJOYS-
TICK routines. The other routines still work just
fine and need no changes (as far as I'm concerned
at any rate). The changes are as follows:

1) I have modified the DOJOYSTICK routine, which
processes the raw data from the joystick, so it no
longer handles the keyboard in parallel with the
joystick. Instead, I have found it more useful to
break out the keyboard handling into a separate
routine so it can be called independently of the stick
handling. This allowed me to have simultaneous
keyboard and joystick handling for a two player

game, This approach has also changed how I use

DOJOYSTICK.

(All line numbers are in reference to those printed

The Sourcerors Apprentice

Page 7

in S.A. volume 4 number 4.)

To eliminate the parallel keyboard support (and
some dead code), replace lines 198 through 214
with

1lda stickstate

If youwish to keep the keyboard support, just delete
lines 210 through 214 which are unused instruc-
tions left over from an earlier version.

Because of the need to process state values from
different input devices, DOJOYSTICK now becomes
a general processing routine and no longer dedi-
cated to a joystick. This means that two player
games with simultaneous input are now much
easier to accomplish since all input devices can be
treated as a joystick. Also, it is now possible to
modify DOJOYSTICK slightly to pass information to
and from the routine in the registers for faster and
easier use of the routine. These changes are not
strictly necessary since you can simply copy the
device’s state value into STICKSTATE, call
DOJOYSTICK and then copy the new value in
STICKSTATE back into the variable holding the
device’s old state value. You must also save or use
JOYVECTX, JOYVECTY, BUTTON_STATE, and
TRIGGER before the next call to DOJOYSTICK since
they are changed each time the routine is called.

To make DOJOYSTICK use registers for passing
information (and thereby reduce the number of
external variables you need to deal with), make the
following changes:

a) insert after line 268:

1dx joyvectx
1dy joyvecty

b) and replace lines 198 through 214 with
sta stickstate

(if you have made the change to eliminate keyboard

support already mentioned, replace the LDA STICK-

STATE with the STA STICKSTATE at the beginning

of the routine.)

To use DOJOYSTICK now, pass in the A register the
state value you want to process. When the routine

exits, the A register will contain the new state value,
the X register will contain the x vector, and the Y
register will contain the y vector. BUTTON_STATE
and TRIGGER will still contain those appropriate
values. JOYVECTX, JOYVECTY, and STICKSTATE
no longer have-to be made external to the joystick
routines file thus reducing the number of external
variables to two.

To support the keyboard as a separate device, call
DOKEYSTICK separately (don't forget to addan ENT
after the label DOKEYSTICK) then immediately call
DOJOYSTICK (DOKEYSTICK returns the state
value in the A register). You don't have to worry
about retaining button press states from one read to
the next because there is no reliable way to tell if a
key is being held down and therefore the “button
still down” and “button up” states are meaningless.

In UPDATEJOYSTICK, the following changes will fix
a bug and make it so that the routine doesn’t use
STICKSTATE (which gets stepped on in DOJOYS-
TICK). The first two changes correct the bug.

a) change line 291 to read
bmi :1lb

b) insert at the beginning of line 301 the
label “:1b”

c) rename STICKSTATE in lines 301 and 336
to JOYSTICKSTATE.

d) insert after line 89
joystickstate ds 1
e) insert after line 101

sta joystickstate

That’s it. The bug had to do with the case when a
stick wasn't plugged in. The old button state would
have random results from one read to the next
meaning that if a stick wasn’t plugged in and
someone pressed the open-apple key, the routine
would return erroneous results for the last button
state read which all means that “button up” and
“button still down” states would be inaccurate,

Somuch for changes to the routines. Idohave anew

‘The Sourceror's Apprentice

Page 8

way of using said routines which grew out of many
experiments. Specifically, Inow call UPDATEJOYS-
TICK and then immediately call DOJOYSTICK to
process the state value thusly:

jsr updatejoystick
txa
jsr dojoystick

(UPDATEJOYSTICK returns the current state value
in the X register so a TXA is needed between the
calls). Iread the stick then process it all at once.
This keeps the process of reading and handling the
stick (and other devices) all in one area for easier
changing. I can now have a single routine for each
device that, when called, will update that device’s
state value and return specific information needed
by the calling routine. All nice and neat.

Software is changing all the time. By the time I put
out a program, the code has undergone a number of
changes from the day of conception. Not only has
the design changed but how it has been imple-
mented has undergone significant change. That’s
why I think software is a process. My joystick
routines are one example of that process of change.
Another real world example is an animation tech-
nique on the IIgs of using stack manipulation on the
super hires screen. Alien Mind is the first game I'm
aware of that uses a form of this technique. Then
came Zany Golf with incredibly fast scrolling of a
very large area. Then came Sword of Sodan with its
nearly full-screen scrolling with fast animating fig-
ures 2/3's the size of the screen. Each game builds
on the techniques of the last to create better and
better software.

Software changes and improves., This because the
programmer him/her -self grows and changes. We
experiment with new ways of doing things, having
seen that something thought impossible by most is
in fact quite possible when someone goes and does
it. As we experiment we learn and grow in experi-
ence, broadening our scope of understanding which
in turn allows us to experiment further, the process
feeding itself in a never-ending cycle.

And so Software lives on.

(Editor: Say Steve - any chance you’'d enlighten us
regarding the graphics techniques you mentioned?)

Some Light on
Resources

by Ross W. Lambert, Editor

System disk version 5.0 (and it’s progeny, the newly
released 5.02) has introduced some brand new con-
cepts for GS programmers. One of the most impor-
tant and least understood is that of resources.

What they is

A resource is an amazingly protean little beastie
that can be all things to all programs. It is amistake
to pigeonhole resources as merely text, icons, dia-
logs, and menus, although they are those things,
too. In reality, a resource is whatever you want it to
be. It is any data structure your program might
need, including tokens for a programming lan-
guage, parameter settings, and even program code!
CODE resources are quite common on Apple’s other
machine (note that I did not utter the “M” word).

Although resources themselves are new, the con-
cept of positioning a program’s data outside the
program code proper has a long and glorious history
on the Apple II. We all know, for example, that we
can change Merlin’s behavior by manipulating the
PARMS file. Apple also has long espoused placing
a program’s text all in one place for easy customiza-
tion and localization (I've written several 8 bit pro-
grams that way and it does have advantages). And
if you've ever BLOADed a binary file into an Apple-

soft program, you've been using an external re- |

source of sorts.

The Sourcerors Apprentice

Page 9

Resources on the GS, then, are a formalized, easily
managed procedure for tucking your program’s
data away in a nice safe little cubby hole. This cubby
hole is often referred to as the “resource fork”. The
part of afile that holds your program code is referred
to as the “data fork”, and yes, it is the “normal” part
of the file we're used to dealing with. At this point
it is important, conceptually, to distinguish be-
tween the data your program uses (which we'd
probably want in the resource fork) and the data
your program generates (which we'd probably put
into the data fork of a separate document file).

The obvious advantage to using the “fork” system is
that the resources travel around with the file. If
someone. copies your program from one disk to
another, you don't have to provide a list of all the
subprograms, binary files, and parameter file lists
that need to be copied with it (ever forget to copy one
of AppleWorks’ segments?). Instead, due to the
magic that is resources, the user just copies your
program. All of your resources just travel right
along with it.

Another significant advantage to resources is that
the Resource Manager does all the dirty work. Ifyou
usethenew StartUpTools callJay discussed last
month, the Resource Manager will be automatically
started and your resource file opened. If you doyour
tool set startups the old fashioned way, you'll need
to explicitly start the Resource Manager and open
your resource fork. At any rate, the Resource
Manager provides a kind of virtual memory system
for resources.

Let’s say that you have a large program with a ton
of resources operating on a computer with limited
memory. If you mark your resources as purgeable,
the Resource Manager will pull them into memory
as there is room and as they are needed. If you are
working on a larger system (memory-wise), all of the
resources will stay in memory. (Note: There are
several schools of thought regarding the proper
manipulation of resources. Some people promote
ditching resources under program control - i.e. forcing
a memory compaction - in order to avoid memory
Jragmentation, others say let the system do it. We’'ll
step into that fray in a few weeks.)

The key to this functionality is the way the Load-
Resource call works. If your resource is in memory,
it returns a handle to it. If it is not in memory

(purged due to memory compaction or whatever), it
loads the resource from disk and then returns a
handle to it.

If you want to get at the resource data itself, you
simply access it via the handle, perhaps locking the
block and getting a pointer.

Resource, resource, who's got the resource?

One interesting aspect of resources is that my
program can open and read your program’s re-
sources. This is how resource editors work, for
example. In fact, a file can have no program code
and only a resource fork (in truth, the data fork is
said to be empty). In fact, during program develop-
ment, you will probably wantto have your resources
in a separate resource file, ie. not in your
application’s resource fork. Insuch an instance you
will need to open the resource file and load the
resources yourself.

The reason for working that way is that your re-
sources, once developed, will probably change less
often than your program code. Since each recom-
pilation produces a new application, you'll be con-
stantly having to read in the resources and stuffing
them into the resource fork of the application. 'Tis
far easierto read them from an external resourcefile
until yer’ done.

How do I get started?

Now that we've delivered the “teaser” and told you all
about resources and their usefulness, Imustlet you
down a little. Developing the resources themselves
is a fairly involved process, most easily done via a
resource editor. Such editors usually create a sort
of environment where you “draw and drag” your
controls, type in your menu names, or otherwise
allow the quick and easy entry of resource data. The
editor itself then does the hard work of writing the
data to a resource file.

Unfortunately, as Jay pointed out in his article this
month, Apple chose to make their initial editor
{called Rez), an APW add-oninstead of a stand alone
application. Jay outlined a process whereby you
can still use Rez, but it is a little convoluted and
requires APW or Orca.

The Sourcerors Apprentice

Page 10

Fortunately, commercial vendors have not been
quite so near sighted (actually, I think Apple has a
right to support their product - APW - but they'd jolly
well better come up with a stand alone application,
too.) The ByteWorks (ironically!) is furiously devel-
oping a new DesignMaster which will develop re-
sources as well as source code. And another
prototyper, Genesis, is also underway. Best of all
though, a well placed source at Roger Wagner
Publishing (thanks Jeffl) told me that Glen Bredon
is also developing a resource editor for us Merlin
aficionados. None of the companies involved,
however, have even suggested a rough release date.
(...a deep sigh of impatience was heard throughout
the land...)

Even though it'll be awhile before you can use a
resource editor (easily) from Merlin, it is not too
early to survey the landscape. Almost any data
structure in your code (window definitions, icons,
etc.) can be fodder for inclusion in a resource. Look
around - I think you’ll be amazed.

== ROSS ==

More Resource Info

...And Jay
Picks Up the

by Jay Jennings

When IIgs System Disk 5.0 came on the scene it
brought a new feature with it...resources. This

article is for those programmers who know what.

resources are, but don’t know how to implement
them.

When I decided it was time to dive into this new area

I found that not only was there a lack of sample
source to study, but the documentation that comes
with the Rez compiler assumes you already know
how to use them. I'm sure the information in the
binder will be useful at some point in the future, but
what I need at the beginning is some sort of tutorial.
That’s what I hope to do with this article.

There's a big minus to using resources right now.
Until Genesys, Design Master, and other resource
editors start shipping, the only way to use resources
is with the Rez compiler. And that runs under the
APW or Orca shell. The Rez compiler is available for
about $50 through APDA and you can find the Orca
shell (under the name Orca/M assembler) in most
mail order ads. Glen Bredon, author of Merlin, is
planning on some sort of resource support for
Merlin in the future.

Assuming you have the necessary tools, we're now
going to put together a program that starts all the
tools, throws up an alert window, and then quits.
No, it's not very exciting, but it'll get you started in
the brave new world of resources!

Let’s deal with the StartUp and ShutDown routines
first. If you typed in the new Generic StartUp routine
in the last issue of SApp, you have almost everything
you need. By changing just a few lines in the code
we'll tell the program to look for the list of tools it
needs in the resource fork. Here’'s what the tool
StartUp call should look like:

Pushlong #0
PushWord UserID

;result space
;ID from the Memory Mgr

pea 2 ;next ref is res ID
PushLong #1 ;ID num of our resource
Tool $1801 ;StartUpTools call

PullLong SSRec ;we need this for ShutDown

There are only two changes. Our third parameter-

used to be a zero which meant the fourth parameter
would be a pointer to a table of tools. Now it's a two
which means the next parameter will be a resource
ID. Just in case you were wondering, a one in the
third parameter slot means we’'d use a handle in the
fourth slot.

. Now, where did we get this mysterious resource ID ¢
_ from? We made it up! That's right, these are my

resources so I'll give them any ID I want. And you'll
notice that the ID for the alert window is also a one.

The Sourceror s Apprentice

Page 11

You can use the same ID for different resource types
since the StartUp call is only
going to be concerned with a StartUp resource, etc.

Here's the new format for the ShutDown call:

PushWord #1
PushLong SSRec
Tool $1901

;reference is a handle
;give it back the record
; ShutDownTools

When we started the tools we pulled a parameter off
the stack and saved it in SSRec. Since we're using
resources we pulled off a handle instead of a pointer.
And that's why our first parameter for the Shut-
Down is a one instead of a zero.

We're half done with the new StartUp/ShutDown
routine. We have the needed code, but the program
would crash if that’s all you did. We still need to
write the actual resources, so go start up APW and
get ready for Rez.

The tool table should look very familiar. It’s very
close to the table we used last month in our assem-
bly code.

Notice that Rez looks an awful lot like C. If you're a
die hard assembly fan I'll give you a moment here to
collect yourself. Ahhh...

Here’s the Rez code you need:
#include “types.rez”

resource rToolStartUp (1) /* the resource
ID */
{
mode640,
{/* array TOOLRECS: 18 elements */
3,0,
4,0,
5,0,
6,0,
11,0,
12,0,
14,0,
15,0,
16,0,
18,0,
19,0,
20,0,
21,0,
22,0,

23,0,
27,0,
28,0,
34,0
i
resource rAlertString (1) /* resource ID
*/
{

“23/I'm using resources!/*Yeah!\0x00"

}i

There you go, that’s all the Rez code required. Notice
that the string used for the AlertWindow is almost
exactly like you've been using all along.

Since we've already seen how to change our StartUp
code, let’s look at the changes needed in our assem-
bly code to take advantage of the AlertWindow
resource.

pea 0

pea #%100
PushLong #0
PushLong #1
Tool 5590E
pla

;space for result
;alertFlags

;address of sub strings
;jresource ID
;AlertWindow call

Or, if you're using the great macros that come with
Merlin, it would look like this:

~AlertWindow #%100;#0
pla

It used to be that the first parameter (not counting
the space for result) was a zero or one, depending on
whether you used a null terminated string or a
Pascal type string. That still works if you're not
using resources. With resources it's easier if we
break that parameter down into

bits. Bits 3-15 must be zero. Bits 1 and 2 tell
whether you're using a pointer (00), ahandle (01), or
a resource (10). Bit O indicates the type of string
you're using, C string, or null terminated (0), or a
Pascal string (1).

The last parameter you push used to be a pointer to
the alert string. But with resourcesyoujust passthe
resource ID number. In this example I've used ID
number one.

The Sourceror's Apprentice Page 12

Okay, time for some standards. I haven't heard if there are already file naming standards in effect, but they
couldn’t be any better than these. So adopt these and thumb your nose at people who tell you different.

You're going to end up with five different files when you use resources. Two source files, two intermediate
files, and one final program file. Here are the suffixes I use to keep everything straight. Your assembly code
already has a .S onthe end of it so don’t mess with it. End your Rez code with .REZ (which even makes sense).
When you assemble your Merlin code into an S16 file you need to end up with a file ending with .D which
stands for data. That’s the part of the code that goes in the data fork. And compile your Rez code into a file
with a .R suffix. That’s the code that goes into the resource fork. So, this is what you should have:

SAMPLE.S <- Merlin source code
SAMPLE .REZ <- Rez source code
SAMPLE.D <~ Merlin Sl1l6 file
SAMPLE.R <—- Rez 816 file

Now we come to the last step. And this is where file number five comes into play. There's a utility called
DUPLICATE that comes with the Rez compiler. From the APW shell type the following:

DUPLICATE -D SAMPLE.D SAMPLE <return>
DUPLICATE -R SAMPLE.R SAMPLE <return>

The first line creates a file called SAMPLE and copies SAMPLE.D into the data fork. That's actually your
program code. The second line copies SAMPLE.R into the resource fork of the file. You should now have an
S16 file called SAMPLE that is ready to run.

Of course, I didn’t give you a complete program. But by pasting the StartUp, AlertWindow, and ShutDown
routines together (in that order) you can have a sample routine together in just a few minutes.

Wait aminute. We've gone through a zillion steps to do something we could have done in one step with Merlin.
But now we can change our startup routine, or the text in the AlertWindow without reassembling our main
program. Of course, you'll still have to recompile the Rez code and then copy (DUPLICATE) it into the resource
fork of the file.

(Editor: Not necessarily. cf. my article - just have Rez put the resources into a file with an empty data _fork).

The Sourcerors Apprentice

Copyright (C) 1989 by Ariel Publishing Box 398 Pateros, WA 98846 (509) 923-2249 GEnie: R.W.LAMBERT
Alf Rights Reserved Apple, Apple I, llgs, BASIC.SYSTEM, and ProDOS are registered trademarks of AppleComputers, Inc.

Subscription prices in US dollars (Canadaand Mexico add $5, non-North Americanorders add $18 per year)
1year..$28 2years..$54 Back issues are $3 each (non-USA add $2)

WARRANTY AND LIMITATION OF LIABILITY: | warrant that the information inTheApprentice is correct and somewhat useful to somebody
somewhere. Any subscriber may ask for a full refund of theier last subscription payment at any time. At no time shall | or my contributors be
held liable for any incidental or consequential damages in excess of the fees paid by a subscriber.

We here at Ariel Publishing freely admit our shortcomings, but nevertheless strive to bring glory to the Lord Jesus Christ.

