
eSourcerors 5tpprentice
The Assembly Language Journal of Merlin Programmers Vol 1 No 11 Nov-Dec 1989

ut ith the Id, In With the New

TheApple II had a tough time in the closing moments
of 1989. Apple's pre-Christmas profits were far less
than expected (with the rumorists and USA TODAY
blaming the Apple II's slow sales!), and our beloved
CALL AP.P.L.E. expired. The next issue we receive
will no doubt be the last.

Beforeyou all run out and buy a NeXT (ha!), stop and
consider two things:

First, I had an inkling about all this back in August.
To wit, "...Apple has yet to reap all the consequences
of years of neglect and exploitation. Computer
markets tum slowly nowadays, and Apple's moder­
ate amount of support at present will not stem the
tide in the short term." (Vol. 1 No.7, p.3)

Second, blame for the demise of CALL AP.P.L.E.,
the only multi-language technical journal for the II,
can be at least partly laid at the feet of Apple, Inc.
Listen carefully, now, I am not denigrating those
who work on and champion the Apple II at Apple,
Inc. Those folks are doing a tremendous work. I am
suggesting, however, that one of the unfortunate
ramifications ofApple's decision to take APDA back
in-house was that the move left Tech Alliance all
dressed up with no place to go. The co-op had hired
lots of employees and managers, made capital in­
vestments in hardware and buildings, and had built
APDA into a fairly well-established concern. With
the rug pulled out from under them, they were left
scrambling to cut costs as fast as possible. I can
assure you that is harder to successfully pull off
than expansion.

My hunch is that, for whatever reasons (the rumor
mill has churned out a hundred stories) the CALL
A.P.P.L.E. folks couldn't make it happen in time to
keep the magazine from financial disaster.

In conclusion, friends, the passing of our beloved
CALL A.P.P.L.E. is not really a commentary on the
state of the Apple II market. It is the unfortunate
symptom of a long chain of events. I don't know if
Apple, Inc. 's decision to take backAPDA was good or
evil - but it had a nasty side effect. Though it be a
grievous wind that hath blown in our faces this
holiday season, there is yet reason for hope - Apple
obViously does have plans for the II line, and my
sources suggest some actual marketing money in

the pipeline.

As I've said before, I think there shall be rewards for
those who persevere, but even now the worst is
probably not over.

On the positive side, one idea I've heard floated is for
Apple to appoint an "Apple II Czar", Le. someone to
put the corporate infrastructure aright as far as the
II is concerned. This has some potential, I think,
especially since the stockholders really took a hit in
the wallet the last few days. Stockholders don't care
which product makes them bucks - as long as they
are making their money. Bucks is bucks, after all.

The subscriber survey...
My thanks to all who took the time to return the
subscriber survey. I really learned a lot. Here's how
it turned out...

As of this date (early December), 80 of you re­
sponded. Not everyone answered every question, so
the number of responses per question doesn't al­
ways add up to 80.

1) I find the content of the Apprentice:
" 10 said too difficult
" 12 said too simplistic
" 53 said about right

2) I find the tone of the newsletter:
" 27 said too light, cut the chatter
" 53 said about right

3) I find the page layout in this issue:
" 0 said too squished
" 43 said not enough content
" 36 said okay, a decent tradeoff

4) I find the current mix between 8 & 16 bit:
" 17 said too biased in favor of the GS
" 17 said too biased in favor of the 8 bit Apples
" 45 said about right

5) If Apple discontinues the Apple II, I would:
" 28 said buy an IBM PC or compatible
" 16 said buy a Macintosh
" 33 said "other"

%e Sourceror's .9Lpprentice

6) I use my Apple II...
• 73 at home for word processing, etc.
• 37 for business purposes
• 35 for educational software

7) Topics I'd like to see...
Too numerous to even summarize - but I have lots
more ideas now, thank you. We're addressing some
of them this very month.

8) Ifthe subscription price were raised to $35 per
year for 12 pages per month, I would:
• 54 said continue subscribing
• 22 said not renew

Over half (44) attached extra pages or wrote on the
back. I read every letter and note.

" To all of you who asked how I can continue
producing this newsletter ifmy margin is so small:
I can afford to continue because A) I consider The
Sourceror'sApprenUce a long tern1 investment, and
B) I do a considerable amount ofcontract program­
ming, consulting, and custom applications develop­
ment. It was obvious, I hope, that SApp (as I call it)
is not my main gig. As uncomfortable as this might
make some of you feel, I recently co-authored a
Macintosh product that is doing pretty well. I
encourage you to delight in the ironic fact that. for
once, something on the Macintosh is subsidizing
something on the Apple II. I know I do.

" To those who wondered if I weren't "too nice" to be
in business - now there is a criticism I can take! In
actuality, I cannot figure out why business people in
general are not the nicest human beings on the
planet - after all, they're trying to persuade you to
voluntarily give them your money. I, for one, don't
do business with anyone who isn't trying very hard
to keep me happy. As you'll see in a few paragraphs,
the subscriber survey has convinced me that I have
not been being nice enough! (Although it is a fact
that surveys of this kind tend to get the most
satisfied and the least satisfied to respond.)

The way we were...
I have not been able to offer nearly as much of my
time to TheApprentice as Iwould have liked. Robert
Muir (the letter I lead with last month) was right
about that. That's part ofthe reason why the tone of
this rag has been pretty informal and the distribu­
tion schedule pretty loose. As I mentioned above,
that's also why we've been able to continue when
others have croaked.

Still, I don't really think there is anyone in a better
position to publish something of this nature (a
conceit, perhaps, but we entrepreneurs have got to

Page 2

believe in ourselves), and I also don't think it can be
produced any cheaper. Everyone wants more for
their money (see survey question #30, but as I
explained last month, it can't be done with our
present structure.

It is a foolish businessman, however, who doesn't
listen to his customers. Well over half of you who
responded want more for your money, and it now
behooves me to figure out a way to make it happen.

...and the way we shall be.
" The bad news first: a small price increase. One
year will now be $29.95, two years will $56. The
quarterly disk will be $25 per year.

In return, I am "professionalizing" this publication
somewhat. I am hiring out the disk duplication
duties so that they can be distributed in a more
timely fashion, and I am negotiating with one per­
son to be an associate editor and another high
powered type to be a regular columnist. They are
both good and would really help bump us up to the
next notch in the publishing hierarchy.

• To offset their pay and to prOVide funds for an
expanded forn1at, I am going to aggressively pursue
advertisers. With CALL AP.P.L.E. out ofthe picture,
we are now one the primary contact points with the
Apple II programming community. If you have de­
veloped something for programmers or have hard­
ware for sale, please consider an ad here.

Don't expect a glossy cover and four color ads. But
we are most definitely going to do our level best to be
responsive to your desires. Incidentally, our ad
policy will not allow the sacrifice of editorial space
for advertising space. My intention is to use the ad
monies (when and if we can get them) to finance
additional articles.

CALL A.R.T.I.C.L.E.S
Since we're going to be needing more quality code
and articles than I and my cohorts could possibly
generate, I am hereby requesting that the 12 ofyou
who found this newsletter too simplistic start writ­
ing for us (and contact your hotdog buddies, too).
I've moved the pay up a notch, we're looking at $75
- $125 for a nice piece that requires neither too
much rewriting or recoding on my part. Allsubmis­
sions require articles in unformatted text files and
source code in Merlin format.

As for the other survey questions... I thought it
hilarious that there was an exact tie betwixt those
who want more GS stuff and those who don't. It's a
no-win deal for an Apple II publisher. I've even

\

The Sourcerors Ylpprentice

heard the boys at A2-Central moaning about this.

I also found it interesting that our survey yielded
only 16 of 80 who would move to the Mac if Apple
ended the life of the II. You can bet that I'll be
forwarding the results to Mr. Sculley. The "other"
computer of choice was probably the Amiga.

All in all, the survey results were most encouraging.
My thanks to everyone, and especially to those who
took the time to share their ideas, insights, and kind
words. You Apple II foks are an intelligent, articu­
late bunch, not to mention patient and kind (well,
most of you, anyway).

A GS BASIC 4U?
Micol Systems, Canada, is up to version 3.5 of their
GS BASIC. Up until now I've been fairly lukewarm
about the product. It has some nice features, but
Micol was making some decisions I really couldn't
understand, including only supporting the linking
of assembly files generated by their own assembler.

You can guess how I felt about that, being one ofthe
world's foremost Merlin promoters.

Page 3

After a long period ofdiscussion, the Micol gang has
finally come around to my way of thinking. We are
currently E-MAlLing each other silly trying to work
out the details. I plan an article or series of articles
on mixing Micol with Merlin.

The Micol people are also planning some other very
intelligent moves, so I am therefore finally offering
the software for sale for $95 to subscribers (ship­
ping not included). The suggested retail is $149.95.

Incidentally, in a no-holds-barred effort to get back
on our publishing schedule, this issue is a doubler,
meaning it includes the materialforboth November
and December. I know I had a lot of non-program­
ming material to discuss, but at least it was two
months worth!

We aim to please, though, and if the idea of a "one
fer two" bothers you, drop us postcard and we'll
extend your subscription a month.

I hope you had a blessed Christmas and I give you
all my best wishes for a happy New Year - and New
Decade, too.

== Ross ==

Jumping
MLI Error

ound, Hiring a Picker, & a P8
andler

by Ross W. Lambert, Editor
One of the most popular types of articles requested in the subscriber survey was that of pre-cooked and re­
usable subroutines. It reminds me of my days as a teacher - whenver a specialist would come to "inservice"
us poor schmucks, we'd invariably cry, "Gimme a worksheet!", meaning "Give me something I can use right
now in my classroom." They seldom did, by the way. I'll try to respond better.

In this month's listing, I have tried to give you a reusable ProDOS 8 MLI error handler that you canjust link
into your own code with very little modification. Not only that, but I have also attempted to illustrate a few
techniques for selecting myriads of options that I have found useful.

The first section of code begins by setting up the screen. I don't care if the screen is in 40 or 80 columns
- the error messages all fit correctly either way. The Imprint subroutine called in line 37 was first run in the
very first Apprentice (Vol. 1 No. I, January, 1989). I made a minor modification for this article so I have
reprinted it again. You can see it's usefulness in lines 38-41; the screen layout is done very much like you
would in BASIC or another higher level language.

The Imprint routine also makes use of a 65XXX series habit of depositing the return address after a JSR
right on top of the stack. In this case Don Lancaster (the original author) bumped the return address by
the length of the strings to be printed so that program control would resume immediately after the embedded
ASCII text. It's a neat trick, I think.

Although none of the routines in this program need parameters, a similar technique can allow us to pass
data back and forth between generic routines (I'll detail this more next month). This allows for incredibly

%e Sourcerors 5ZLpprentice Page 4

modular programming; which is in tum the secret to productivity. I can assure you that, for many
employers, the speed with which you chum out a working application is sometimes of the highest
importance. Please make a mental note, however, that in certain situations where blinding speed is
required, a custom in-line routine can execute faster than a generic subroutine.

Speaking ofmodularity, I have setup this program into three separate, independent, linkable modules. The
demo module (Listing 1) is only useful to show off the other two, of course, but the embedded string printer
and the MLI error handling module are ready to be linked into you own code as-is. Don't forget to declare
their entry points as labels EXTernal to your source file.

Meanwhile, back at the BRAnch (hehehel, the demo loop in lines 43 -62 merely grabs an MLI error code
from a table and passes it to the error handler. The error handler looks for a match in its own table of error
numbers, jumps to the appropriate routine, displays an error message and waits for a keypress. Try to not
to get excited when the demo tells you your volume bitmap may be damaged; it's only a test of the system.
If this were an actual emergency...

Listing 1 - The Demo Module

**
* ** A General Purpose P8 MLI Error Handler *
* By Ross W. Lambert *
* ** Copyright (C) 1989 *
* Ar i e 1 Pub 1 ish ing, Inc. *
* All Rights Reserved *
* *
**

;zero page pointer

;we're making 1 inkable fi les

;generate a carriage return
;read a key
;clears keyboard queue
;print lower nibble of A as hex char

;clear screen, home cursor
;ProDOS MLI entry point

Demo N ,8D,8D
errors «,80

OFF

%11

DemoModule.L

Home
Imprint
«P8 MLI Error Trapper
« Cycl ing through MLI

$06

$FF3A
$FC58
$BF00
$FDED
$FD8E
$C000
$C010
$FDE3

LST

EXT

mx
REL
DSK

JSR
JSR
ASC
ASC

BELL =
HOME =
ProD OS =
COUT =
CROUT =
Keyboard =
ClrStrobe =
PRHEX =

1
2
3
4
5
6
7
8
9

10
11
12
13 * Stuff for Merl in
14
15
16
17
18
19
20
21 * A few equates
22
23 Ourptr
24
25
26
27
28
29
30
31
32
33
34 * Declare our external references ...
35
36
37
38 * Real stuff starts here ...
39
40 Start
41
42
43

rrlie Sourceror's JlLpprentice Page 5

;yep, so leave

;count 29 to 0 backwards

;get an error

;just quit when done

;QUIT call to MLI

;go handle it
;key pressed is returned in accumulator
;user want to escape?

;we're outta here

;should never get here

It' (ESCape to qu it) N, 80
It' N,80,00

MLI_Error

#28

ErrCount
errorl ist,X

ErrCount

: loop

o

#155
:cont
Quit

5

#4
ParmTbl

ProD OS
$65
ParmTbl

ASC
ASC

OS

LOX

brk

LOX
OEX
BNE

CMP
BNE
JMP

JSR

JSR
OFB
OA

STX
LOA

LOA
STA

Quit

: loop

ErrCount OFB

:cont

ParmTbl

44
45
46
47 * We'll cycle through all 30 MLI errors and display error msgs.
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

Listing 2 - The Embedded String Printing Module

* Start of printing module

; a g1oba 1 1abe 1

;get previous contents of $06
;save it in our own data table

;generate a carriage return

;zero page pointer

EMBEOSTR.PRTR.L
OFF

%11

$24
$06
$FOED
$F08E

Ourptr
PTRSAVE
Ourptr+l

:=

:=

mx
REL
OSK
LST

:=

ENT

LOA
STA
LOA

* Equates

Imprint

HTAB
Ourptr
COUT
CROUT

1
2 ********************************
3 * *
4 * Embedded String Printer *
5 * *
6 ********************************
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

%e Sourcerors .9Lpprentice Page 6

28 STA PTRSAVE+1 ;do 1 ikew ise for $07
29
30 PLA
31 STA Ourptr ; pull return address off stack
32 PLA
33 STA Ourptr+1
34
35 LOX #0 ;move cursor flush left
36 STX HTAS
37 JSR CROUT ;move down a 1 ine from last cursor
38 LOY #0
39
40 nxtchr2 INC Ourptr ; inc pointer to point at text
41 SNE nextchr
42 INC Ourptr+1 ; if it rolled, inc highbyte, too
43
44 hextchr LOA (OurPtr), Y ;get character
45 SEQ exit4 ;terminate on zero
46 JSR COUT
47 JMP nxtchr2
48
49 exit4 LOA Ourptr+1 ;get hibyte of return address
50 PHA ;push back onto stack
51 LOA Ourptr ;get lobyte
52 PHA ;and push back onto stack
53
54 LOA PTRSAVE+1 ;restore zero page
55 STA Ourptr+1
56 LOA PTRSAVE
57 STA Ourptr
58 RTS
59
60 PTRSAVE OS 2 ;data table

The error handling module itself does some peculiar things. Let's pick 'em apart.

First, it scans the list of error numbers looking for a match. It increments the X register so that when a
match is found it can use X as an offset into a jump table. The jump table that begins at line 89 (JMPFL)
is a list of the addresses of our error handlers. There is an error handler for each error (although if you
look at the handlers themselves several of them handle more than one error).

When a match is found, the routine moves the X register into the accumulator, shifts left to double it, then
moves it back into X. Since the addresses in the table at JMPFL are two bytes each, the offset needs to
be doubled in this fashion to point us to the correct error handling routine.

The final bit of weirdness is the manner in which I actually didthejump. Instead of moving the address
to zero page and doing an indirect JMP (a buggy opcode on the 6502, by the way) it is faster to read each
address directly and push it on the stack. Why the stack? Hmmm... well, it is a little bit of scullduggery,
I must admit. We're going to fake out the CPU. If the address of the error handler is on top of the stack
and we then execute an RTS, the CPU just returns control to the address sitting on top of the stack. Our
silicon savant does not know whether we really JSR'd or not, and it doesn't care. The PHA highbyte, PHA
lowbyte, and RTS combination is a qUick and effective method forjumpinp; who-knows-where. The lookup
table of addresses combined with this technique makes for a very eIfective"option picker", as Don
Lancaster called it in The Assembly Language Coolcboolcfor the Apple II/IIe. (Although the book is getting
a little long in the tooth - it discusses EDASM in depth - it still is an invaluable resource for 8 bit
programmers. I'm sure Don himself could put a copy in your hands. Call 602/428-4073).

Speaking of the lookup table of addresses, you might notice that they all are the destination address less
one byte. The reason for this is that the RTS returns control to the code liVing one byte past the address
left on the stack.

Listing 3 - The Error Handling Module

'Ifie SourcerorsYLpprentice Page 7

* The MLI and our demo module passes the error number in the accumulator

* Our lone external reference

Ourptr :::: $06

BELL :::: $FF3A
COUT :::: $FOEO
CROUT :::: $F08E
Keyboard :::: $C000
ClrStrobe :::: $C010
PRHEX :::: $FDE3

MLI_Error ENT
STA error_number
JSR BELL
LOA error_number

LOX #28
scan CMP error 1 ist, X

BEQ matchfound
OEX
BNE scan

BRK

matchfound
TXA
ASL
TAX
LOA JMPFL+l,X
PHA
LOA JMPFL,X
PHA

RTS

errorl ist ENT

OFB 1
OFB 4
OFB $25
OFB $27
OFB $28
OFB $2B
OFB $2E
OFB $40
OFB $42
OFB $43

;store error_number

; 29 ML I err'ors

;should never get here

;List of MLI errors by number

;a fffake N
- allows indirect jump!

;push page address onto stack

; for doub 1 ing
;to use as offset

;generate a carriage return
;read a key
;clears keyboard queue
;lower nibble of A as hex char

;zero page pointer

MLI. ERR. L
OFF

Imprint

%11

EXT

mx
REL
OSK
LST

* A few equates

1 ********************************
2 * *
3 * Segment: Error Handler *
4 * *
5 ********************************
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

The Sourcerors !lLpprentice Page 8

* table of error handler addresses (all -1 'cuz RTS takes you one PAST

* Multiple labels for the same address here because MLI errors (in hex)
* are not user-correctable. These are programmer's problems!

DFB $44
DFB $45
DFB $46
DFB $47
DFB $48
DFB $49
DFB $4A
DFB $4B
DFB $4C
DFB $40
DFB $4E
DFB $50
DFB $51
DFB $52
DFB $53
DFB $54
DFB $55
DFB $56
DFB $57
DFB $58

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

addr)
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

JMPFL

errl
err4
err25
err43
err4A

DA
DA
DR
DR
DR
DA
DA
DA
DR
DR
DR
DR
DA
DR
DR
DR
DR
DA
DR
DR
DA
DA
DA
DA
DA
DR
DR
DA
DA

errl-l
err4-1
err25-1
err27-1
err28-1
err2B-l
err2E-l
err40-1
err42-1
err43-1
err44-1
err45-1
err46-1
err47-1
err48-1
err49-1
err4A-l
err4B-l
err4C-l
err4D-l
err4E-l
err50-1
err51-1
err52-1
err53-1
err55-1
err56-1
err57-1
err58-1

; inval id MLI command/programmer error
; inval id parameter count/prog.error
; interrupt table full
;file not open error
; incompatible version of ProDOS

%e Sourceror's Ylpprentice Page 9

Imprint
.... 1/0 ERROR N,8D,00
DoPrompt

Imprint
.... NO DEVICE CONNECTEDN,8D
.... Check slot and drive selection. N,00
DoPrompt

Imprint
.... your disk is write protected. N,8D,00
DoPrompt

Imprint
.... FILE NOT FOUNDN,8D,00
DoPrompt

Imprint
.... INVALID PATHNAME N,00
DoPrompt

Imprint
.... VOLUME NOT ONLINE N,8D,00
vol_prompt
DoPrompt

;two MLI errors related to not
;having a volume onl ine

; inval id pathname syntax

;move high nibble down to low nibble

;print low nibble

;file busy error
;VCB table full
;buffer in use

DoPrompt

PRHEX
error_number
PRHEX

Imprint
....Error #: ,00
error_number

Imprint
.... BUFFERS FULLN,8D,00
DoPrompt

Imprint
.... DIRECTORy NOT FOUNDN,8D,00
DoPrompt

Imprint
.... DUPLICATE FILE NAMEN,8D,00
DoPrompt

Imprint
.... DISK FULLN,8D,00
DoPrompt

Imprint
.... DIRECTORy FULLN,8D,00
DoPrompt

JMP

JSR
ASC
JMP

JSR
ASC
ASC
JMP

JSR
ASC
LOA
LSR
LSR
LSR
LSR
JSR
LOA
JSR

JSR
ASC
JMP

JSR
ASC
JMP

JSR
ASC
JSR
JMP

JSR
ASC
JMP

JSR
ASC
JMP

JSR
ASC
JMP

JSR
ASC
JMP

JSR
ASC
JMP

JSR
ASC
JMP

129 err50
130 err55
131 err56
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146 err27
147
148
149
150 err28
151
152
153
154
155 err2B
156
157
158
159 err40
160
161
162
163 err45
164 err2E
165
166
167
168
169
170 err42
171
172
173
174 err44
175
176
177
178 err46
179
180
181
182 err47
183
184
185
186 err48
187
188
189
190 err49
191
192

%e Sourcerors !ilpprentice

193
194 err4B JSR Imprint
195 ASC "'FILETYPE ERROR N,8D,00
196 JMP DoPrompt
197
198 err4C JSR Imprint
199 ASC "'OUT OF DATAN,8D,00
200 JMP DoPrompt
201
202 err4D JSR Imprint
203 ASC "'RANGE ERRORN,8D,00
204 JMP DoPrompt
205
206 err4E JSR Imprint
207 ASC "'FILE LOCKEDN,8D,00
208 JMP DoPrompt
209
210 err51 JSR Imprint
211 ASC "'THE DIRECTORY MAY BE DAMAGED N,8D,00
212 JMP DoPrompt
213
214 err52 JSR Imprint
215 ASC "'NOT A PRODOS DISKN,8D,00
216 JMP DoPrompt
217
218 err53 JSR Imprint
219 ASC "'INVALID PARAMETERN,8D,00
220 JMP DoPrompt
221
222 err57 JSR Imprint
223 ASC "'DUPLICATE VOLUMES ONLINEN,8D,00
224 JMP DoPrompt
225
226 err58 JSR Imprint
227 ASC "'The volume bitmap may be damaged!N,8D,00
228 JMP DoPrompt
229
230
231
232 get_response
233 JSR CROUT
234 LOA #N N ;print cursor
235 JSR COaT
236 STA ClrStrobe
237 rdkbd LOA Keyboard
238 BPL rdkbd
239 CMP #$80 ; RETURN?
240 BEQ exit3
241 CMP #155 ; escape?
242 BNE rdkbd
243
244 exit3 JSR CROUT
245 RTS
246
247
248 DoPrompt
249 JSR Imprint
250 ASC "'Press RETURN to try again,N,8D
251 ASC "'ESCape to abort .. . N,00

252 JSR get_response
253 RTS
254
255 volyrompt
256 JSR Imprint

Page 10

--~

--- ...

%e Sourcerors Ylpprentice Page 11

ASC NPlease insert: N,80,00

error_number OFB 0

;clean up display

; length of string
;offset to skip length byte

NITHIS.IS.A.TESTN

LOA #(Pathname
STA Ourptr
LOA #)Pathname
STA Ourptr+1

LOX Pathname
LOY #1
LOA (OurPtr), Y
ORA #$80
JSR COUT
INY
OEX
SEQ history
JMP : loop

JSR CROUT
RTS

history

: loop

Pathname STR

* This section requires a volume name (which is potentially kept in various
* places). For this demo I've hardcoded a fake path at Pathname. Depending
* on your appl ication, you might want to do a GET_PREFIX and display that.

;put location of path into zero page

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

Listing 4 - Linker Names File Creator (Merlin 8 only)

MLI. NAMES
NOemoModule.LN
NEmbedstr.prtr.LN
NMLI. ERR. LN

OSK
STR
STR
STR
SRK

1 **
2 * *
3 * Names File Creator for Merl in 8 Linker *
4 * *
5 **
6
7
8
9

10
11
12

**
* ** Linker Command File for P8 MLI Error Routines *
* (Mer lin 16 on 1y) *
* ***

;change to your names for each
; if you rename them!

;let's create a SYS file

;specify absolute linker (P8)

m1 i . err. link. s
str.printer.s
m1 i .err. demo 1 . s

$00

$2000
$FF

lkV

asm
asm
asm

org
typ

Listing 5 - Linker Command File (Merlin 16 only)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

%e Sourcerors !JLpprentice Page 12

18
19
20
21
22

lnk
lnk
lnk

sav

demomodule.l
embedstr.prtr.l
ml i .err. 1

MLI.ERR.DEMO

I had Merlin 8/ 16 and then got the update to Merlin 16+. The additional documentation I received
did not point out that you could link 8 bit files with no hassle using the 16+ linker. Throu,gh a
little experimentation, I discovered that the LKV $00 pseudo op still invokes the absolute linker,
so your eight bit code links like a charm even in Merlin 16+. And at the risk of provoking the ire
of all you lIe and lIe fans, I am compelled to add that the IIGS and Merlin 16+ is an absolutely
incredible 8 bit programming environment. The command files ofthe linker are flexible, powerful,
and easy to use, and the linker itself is like lightning. All of the files in this program linked and
saved to disk in 3 seconds to my Applied Ingenuity Inner Drive.

For some perverse reason it is tempting, when starting a new project, to write the entire thing
from scratch. Hopefully our example ofre-usable, linkable files will help at least some ofyou to
discover the speed and power inherent within a more modular style.

== Ross ==

Magic Text: Using USR

More Merlin Magic
From Jerry K
By J eny Kindall, Contributing Editor

MagicText is a USRfunction for Merlin 8/ 16. It was
designed for maximum fleXibility in entering TXT
strings. In fact, MagicText can replace all of Merlin's
text opcodes, except for STR (and that's only be­
cause I couldn't fit the code to handle a leading
length byte into page 3 of RAM).

To install MagicText, you simply press D (for Disk
Command) at Merlin's main menu, then type BRUN
MAGICTEXT. Once you've done that, MagicText will
be installed and ready to use. (You can also auto­
matically run MagicText when you run Merlin by
putting its pathname into Merlin's startup buffer,
but then Merlin wouldn't load the full screen editor
automatically.)

Using MagicText

MagicText is activated by a USR psuedo-op in your
source code. (Ifyou use Merlin 16, use USRO instead
of USR) A typical MagicText statement might look
like this:

greet i ng usr 'H i there!' ; greet i ng str i ng

That's a simplistic example, of course, and it doesn't
show you the fleXibility ofMagicText at all. However,
notice that,just as with any other Merlin psuedo-op,
you have an optional label, the opcode, the operand,
and an optional comment.

MagicText will allow you to use any character at all
(except the tilde character, -) as a delimiter for the
string, but I suggest the use of the apostrophe or
quote. With MagicText, there's no reason to ever
need more than one delimiter.

MagicText works its magic by means of the tilde
character. The tilde has special meaning in Mag­
icText strings. For example, if you put -A in a
MagicText string, MagicTeA'L will insert a control-A
character into the string. (In fact, any character in
the ASCII range 64-95, which includes the upper­
case letters and the symbols @, [, \,], /\, and _, will
generate a control character when preceded by a
tilde.)

Here's an example, which contains two bell charac­
ters embedded in the text:

;awaken user

If you follow the tilde with another tilde, MagicText
will put one tilde character into the object code. If
you follow the tilde with a quote mark or an apostro­
phe, MagicText will insert those characters as well,
even if you're using one of them as a delimiter.
Here's an example:

rrhe Sourcerors YLpprentice Page 13

usr «NmZ\\\\""
usr «Joe sa i d, N "I am go i ng to the store. N ""

If you follow the tilde with a dollar sign, MagicText
will interpret the two characters after the dollar sign
as a hex byte. Here's an example of using this
feature to terminate a string with a carriage return
and a zero byte:

Here's another example with an inversed word:

usr «It's time toNi PARTV Nn "

How Does It Work?

MagicText also recognizes a few lower-case letters
after the tilde, as flags to change modes. Remember,
if you use upper-case letters, MagicText will con­
sider the letter a control-character. (Note: -1 is a
lower-case letter L, not the numeral one.)

The -n flag is actually the same as -hand sets high­
ASCII normal characters. The -1 nag will also tum
off -i, -1', or -m, and switch to low-ASCII characters.
Here's an example which generates the ASCII codes
for a small mousetext box:

N 1: Sw itch to 1ow-ASC I I (h i gh bit c 1r) chars
N h: Sw itch to hi -ASC II (h i gh bit set) chars
Ni: Switch to inverse text
Nf: Switch to flashing text
Nm: Switch to MouseText
N n: Sw itch back to norma 1 text (h i gh-ASC I I)

The display flags -i, -f, and -m are useful mostly for
applications that will be storing characters directly
to screen memory, or using only the 40-column
output routines. The 80-column firmware will ig­
nore some of these ASCII codes or treat them as
control characters (in particular, the uppercase
inverse letters).

If you're not familiar with Merlin's USR opcode, you
should check outpages 124 and 125 in the Merlin
8/16 manual. (That information probably moved
around somewhat when Merlin 16+ was released.
Check the index if you don't find it on pages 124­
125.

MagicText starts out by hooking itself up to Merlin's
USR vector (lines 80-90). Notice that the code which
does this actually resides in the input buffer, but
since that code won't be needed again, it's OK to put
it in such an unstable memory location. The actual
USR routine starts at address $300.

The first thing MagicText does when it gets control
is determine the delimiter being used and to initial­
ize a few flags (lines 92-103). Then it falls into the
main processing loop (lines 105-135), which proc­
esses each character in the operand. If a tilde is
found, the tilde routine (lines 159-187) gets control,
and examines the character after the tilde to figure
out what to do. If a tilde is not found, the current
mode (lo/hi ASCII, inverse/11ash/mousetext) is
checked and the character is aclj usted accordingly
before being placed into the object code.

The tilde routine checks for -, " and" characters,
and if it finds them follOWing a tilde, places them into
the object code via PROC (line 112). Next it checks
for h, 1, i, 1', m, and n; if they are found, the
appropriate mode is set. If a dollar sign is found, the
hex byte routine is activated. If none of these
characters are found, the character is converted to
a control character and put into the object code
(lines 183-186).

The hex byte routine (192-200) calls the hex digit
routine (206-219) twice, once for each nibble, then
combines the two nibbles into a byte and puts them
into the object code.

The code is a little bit tricky in places because ofmy
desire to fit it into page 3 of RAM, but is otherwise
fairly straightforward. It's a good example ofhow to
write a USR routine for Merlin.

Please make ausr «Ma i n menu
selectionN$8DN$00"

MagicText uses the -1 and -h nags to select high or
low ASCII text, instead of looking at the delimiter.
Text is always assumed high ASCII unless you use
the -1 flag to specify low ASCII. (MagicText passes all
characters except hex bytes through the high/low
ASCII flag, including control characters and the
bytes generated by --, -', and -".)

The -i, -1', and -m nags cause MagicText to manipu­
late the ASCII codes of your text to produce the
desired types of characters. Inverse text works
properly in 80-colunm mode, with both upper and
lower case (in 40-column mode, lower case inverse
text is displayed as flashing punctuation and nu­
merals). Flashing text does not support lower-case.
MouseText expects you to specify an ASCII code in
the range of 64-95 (the letters and symbols @, [, \,
J. 1\, and J.

%e Sourcerors YLpprentice Page 14

I've found MagicText quite useful in my programming. I hope you find it useful in yours. Enjoy!

Listing 1 :MagicText Assembly Listing

The apostrophe is a del imiter and can be any
character except H, and it must be matched
by another such character. Apostrophe or quote
recommended, An optional comment may follow.

Ifat i 1de (H) i s encountered in the text, the
tilde and the character that follows it are
treated specially. The following characters
are val id after a tilde (all letters MUST be
lower case):

MagicText is a replacement for all of Merl in's
various text-generation psuedo-ops. It allows
you to switch between high ASCII, low ASCII,
inverse, normal, flashing, and mousetext, and
to insert control characters and hex bytes,
all in the same source statement. The on 1y
thing that MagicText can't do is produce a
leading length byte - you'll still have to use
STR for that.

* ** Mag i c T ext *
* ** A Merl in 8/16 USR Routine *
* by Jerry E. Kindall *
* August 1989 *
* ** Publ ic Domain *
* **

$2F0org

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 *
16 *
17 *
18 *
19 *
20 *
21 *
22 *
23 *
24
25
26
27 * Syntax:
28 * USR 'text' ; comment
29 *
30 *
31 *
32 *
33 *
34 *
35 *
36 *
37 *
38 *
39 *
40 *
42 * h: switch to high-ASCII characters
43 * n: switch to normal (high-ASCII) characters
44 * i: switch to inverse characters
45 * f: switch to flashing characters
46 * m: switch to mousetext characters
47 * H insert a ti lde (ie, HH :::: one ti lde)
48 *' insert an apostrophe (i e, H' :::: one apost)
49 * If. insert a quote (i e, H" gives one quote)
50 *$: the next two characters are a hex byte;
51 *H$0D inserts the hex value 00
52.*
53 * Any other characters are considered control
54 * chars: HA inserts a control-A, etc
55
56
57
58

%e Sourcerors .9Lpprentice Page 15

* Connect the USR routine to Mer1 in

* Main text processing loop

* Internal Mer1 in Entry Points:
* See Mer1 in 8/16 Manual, pp 124-125

* Zero page locations used by this routine:
* Allocated by Mer1 in as temporary storage

;string del imiter
;ASCII mode
;temporary storage

; length of operand
;operand work buffer
;USR routine vector
;put a byte into object

;get next char of operand
;at end, we're done
; is it a command?
;yes, go do it
;what mode we in?
;low ASCII mode
;high ASCII mode

;high ASCII (normal) mode
;no real del imiter
;get firstchar of opernd
;we're at end of 1 ine
;we have the del imiter

;1 = mousetext mode
;2 = inverse mode
;e1se flashing mode

;put the character
;less than 64, OK already

= $60
= $61
= $62

= $8B
= $280
= $860A
= $E5F6

get
done
** 7"""

til de
mode
10
hi
#2
mst
inv
#$3F
#$40
10
#$40
10

#$80
mode
d1 imit
get
done
d1 imit

#$4C
usrvect
#usrop
usrvect+1
#/usrop
usrvect+2

jsr
beq
cmp
beq
1dx
beq
bmi
cpx
b1t
beq
and
ora
bne
cmp
b1t

1da
sta
1da
sta
1da
sta
rts

1da
sta
sta
jsr
beq
sta

d1 imit
mode
hold

opnd1en
worksp
usrvect
putbyte

inv

loop

proc

usrop

* USR psuedo-op entry point

** On entry from Mer1 in: A = 0, Y = 0,carry = 1

f1s

setup

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

0300: A9 80
0302: 85 61
0304: 85 60
0306: 20 B9 03
0309: F0 38
0308: 85 60

02F0: A9 4C
02F2: 80 OA 86
02F5: A9 00
02F7: 80 DB B6
02FA: A9 03
02FC: 80 DC B6
02FF: 60

0300: 20 89 03
0310: F0 31
0312: C9 7E
0314: F0 41
0316: A6 61
0318: F0 23
031A: 30 19
031C: E0 02
031E: 90 19
0320: F0 06
0322: 29 3F
0324: 09 40
0326: 00 15
0328: C9 40
032A: 90 11

%e Sourcerors 5tpprentice Page 16

032C: C9 60 123 cmp #$60 ;greater than 96, it's OK
032E: 80 00 124 bge 10
0330: 29 3F 125 and #%00111111 ; convert to 0-32
0332: 4C 30 03 126 jmp 10 ;and put the char
0335: 09 80 127 hi ora #%10000000 ;set hi bit of char
0337: 00 04 128 bne 10 ;and put it
0339: 29 3F 129 mst and #%00111111 ; convert ,to 0-32 ...
0338: 09 40 130 ora #%01000000 ;convert to 64-95
0330: 20 F6 E5 131 10 jsr putbyte ;put the character
0340: 4C 00 03 132 jmp loop ;and go back to the top

133
0343: 60 134 done rts ; we're all done!

135
136
137
138 >I< Set the various text modes
139

0344: A9 03 140 setf1s 1da #$03 ;mode = 3 (f1 ash)
0346: 2C 141 hex 2C ;fake 8IT to sk i p next instr

142
0347: A9 80 143 sethi 1da #$80 ;mode = $80 (norm/h i)
0349: 2C 144 hex 2C

145
034A: A9 00 146 set10 1da #$00 ;mode = 0 (10 ASCI I)
034C: 2C 147 hex 2C

148
0340: A9 01 149 setmst 1da #$01 ;mode = (mousetext)
034F: 2C 150 hex 2C

151
0350: A9 02 152 setinv 1da #$02 ;mode = 2 (i nverse)
0352: 85 61 153 sta mode ;set it
0354: 4C 00 03 154 jmp loop ;back to the top

155
156
157
158 >I< Handle til de commands
159

0357: 20 89 03 160 til de jsr get ;get char after tilde
035A: C9 7E 161 cmp # 7'" 7 ;it's a tilde, do it
035C: F0 88 162 beq proc
035E: C9 27 163 cmp #$27 ; it's an apost, do it
0360: F0 84 164 beq proc
0362: C9 22 165 cmp u 7)J' ;quote, do it
0364: F0 80 166 beq proc
0366: 20 80 03 167 jsr check ; is it a del imiter?
0369: F0 08 168 beq done ; it is, exit
0368: C9 24 169 cmp #'$' ;$ = hex mode
0360: F0 20 170 beq hex
036F: C9 68 171 cmp #'h' ;set high ASCII
0371 : F0 04 172 beq sethi
0373: C9 6C 173 cmp #' 1 ' ;set 10 ASCII
0375: F0 03 174 beq set10
0377: C9 69 175 cmp #' i ' ;set inverse
0379: F0 05 176 beq setinv
0378: C9 6E 177 cmp #'n' ;set norma 1 (h i gh)
0370: F0 C8 178 beq sethi
037F: C9 60 179 cmp #'m' ;set mousetext
0381 : F0 CA 180 beq setmst
0383: C9 66 181 cmp #'f' ;set flashing
0385: F0 80 182 beq setf1s
0387: 29 IF 183 and #%00011111 ; it's a ctr1-char
0389: A6 61 184 1dx mode
0388: F0 80 185 beq 10 ; if low ASCII on, set low
0380: 00 A6 186 bne hi ;otherwise, set high

rrhe Sourcerors YLpprentice Page 17

187
188
189
190 >I< Handle hex bytes
191

038F: 20 A0 03 192 hex jsr dig ;get one hex digit
0392: 0A 193 asl ;mult by ,16
0393: 0A 194 asl
0394: 0A 195 asl
0395: 0A 196 asl
0396: 85 62 197 sta hold ;hold it
0398: 20 A0 03 198 jsr dig ;get next digit
0398: 05 62 199 ora hold ;combine with hold
0390: 4C 3D 03 200 jmp 10 ;and store it

201
202
203
204 >I< Get a hex digit from operand
205

03A0: 20 89 03 206 dig jsr get ;get a char
03A3: 00 04 207 bne val id ; it's AOK
03A5: 88 208 dey ;at EOL, return 0
03A6: A9 00 209 lda #0
03A8: 60 210 rts ;back
03A9: C9 60 211 val id cmp #$60 ;lower case?
03AB: 90 02 212 blt conv ;no
03AO: E9 20 213 sbc #$20 ; yes, fix to upper
03AF: 38 214 conv sec ;convert ASCII to hex
0380: E9 30 215 sbc #'0'
0382: C9 0A 216 cmp #10 ; it's a number
0384: 90 02 217 blt back
0386: E9 07 218 sbc #7 ;must be a letter; fix it
0388: 60 219 back rts

220
221
222
223 >I< Get one character from operand
224

0389: 89 80 02 225 get lda worksp,y ;get char from workspace
03BC: C8 226 iny ;and point to next
03BO: C5 60 227 check cmp dl imit ; hit de 1 imiter?
03BF: F0 02 228 beq rts ;yep
03Cl: C4 B8 229 cpy opndlen ;at end of 1 ine?
03C3: 60 230 rts rts

1 • t its 1
By Jay Jennings

Probably the most exciting new tool included with
System Disk 5.0 is the TextEdit toolset. The old
LineEdit toolset allows a user to enter and edit a
single line of text in a program. TextEdit allows the
user to enter multiple lines. In fact, TextEdit can be
thought of as a full featured word processor. By full
featured. I mean it supports multiple fonts. styles,
and colors in the text, full editing according to the
Human Interface GUidelines, and can support a
document of virtually unlimited size...all this with

one toolset!

The purpose of this article is to show you how to
create a little text editor withjust a few lines ofcode.
We won't go into different fonts, styles, and colors,
however. That would take more pages than Ross will
let me have. But we will include the load and most
of the save code.

Our program starts all needed tools, allocates a 64K

%e Sourceror's .9Lpprentice

buffer for our text, creates a window, installs a
TextEdit control, and then heads for the Event loop.
There's no menu bar in this program. To quit the
program, click on the close box of the window.

The program currently doesn't save the text. You
could do that by adding the TEGetText call (ex­
plained in the article) and then writing the data to
disk. This program also lacks any error checking. I
left that out because of space, but you should check
for errors after every tool call.

Let's skip the descriptions of the normal stuff like
opening windows and go straight for the throat ofthe
TextEdit control. Then we'll back up and see how to
install it in a window using NewControl2.

The first parameter in the template is a parameter
count. You can have as few as 7 parameters in the
template or as many as 23. This depends on how
many ofApple's defaults you want to accept. For our
purposes, all we need are 18 parameters.

dw 18

The second parameter is the ID of our control. This
needs to be unique for the window in which the
TextEdit control resides. Just pick your favorite
number. Notice that in the next line I use the "dl"
pseudo-op. This is a macro that takes the place of
the "adrl" pseudo-op just because define long makes
more sense when defining a long number than adrl
does. Right? (Editor: [think so. I've alwausJeUJunny
using ADRL - ADdRess Long- when dejlJ1ingjIags or
other non-address sorts Qf things.)

dl 7

Parameter number three is four word values that
specify the boundary rectangle for the TextEdit
control.

dw 5,5,170,610

The fourth parameter is the clctual value that indi­
cates you're implementing a TextEdit control.

d 1 $85000000

The next two parameters are Dags that specify how
the TextEdit control wiII act while being used. The
first of the two flag words must be set to zero. The
second is a little more Dexible, but 9 times out of 10
you'll need to set it exactly as I show it here.

dw 0
dw ~0111_0100_0000_0000

Page 18

Parameter number seven is a long space that is left
blank. It's for our use so we can put anything we
want in there. Well, anything that's not over four
bytes long, anyway.

Now we get to the "grand-daddy" parameter...
number eight. There are a zillion bits that mean a
zillion different things (give or take a few). I'mjust
going to go through a few of the more important
ones. Those I don't mention, just leave them as is
until you latch onto the docs for the TextEdit toolset
in the Apple IIGS Toolbox Reference, volume 3.4.
(Editor: or until aJuture SApp article)

Bit 28 0 = word wrap the text
1 = break at CR only

Bit 27 0 = scroll ing permitted
1 = no manual or autoscroll ing

Bit 26 0 = editing permitted
1 = no editing allowed

Bit 24 0 = tab inserted in document
1 =tab to next cntrl in window

Bit 23 0 = no rect around TE control
l=draw rect around TE control

Bit 20 0 user can select text
1 = user cannot select text

Here's the way the parameter looks for a "generic"
kind of TextEdit controL ..

dl %0110_1010_1010_0000_0000_0000_0000
0000

Parameter number nine (actually four words) de­
scribes the amount of white space to leave between
the boundary rectangle and the text itself. The
default values of 2, 6, 2, and 4 (top, left, bottom,
right) can be specified by using $FFFF for each
parameter.

dw $FFFF,$FFFF,$FFFF,$FFFF

Parameters ten and eleven concern the vertical
scroll bar. Set them both to zero ifyou don't want a
vertical scroll bar. If you'd like a scroll bar without
any hassles, set parameter ten to $FFFF (or -1) and
parameter eleven to zero. This wiII give you a scroll
bar that scrolls 9 pL'<:els at a time.

dl $FFFF
dw 0

The horizontal scroll bar is handled by parameters
twelve and thirteen and are dealt with just like the
vertical scroll bar was. Well, they will be, but hori­
zontal scrolling isn't implimented yet. For now, they
MUST be set to zero or bad things will happen to you
and your computer.

rrlie Sourcerors .9Lpprentice Page 19

dl 65535

dl 0
dw 0

The last parameter we'll deal with sets the maximum
number of characters that we want our control to
allow. Since our program sets up a 64K buffer for
text, we'll specify that as the maximum size.

PushWord #%00101 ;textDescriptor
PushLong TextBuffer ;textRef
PushLong TextLength ;textLength
PushWord #0 ;styleDescriptor

The second parameter is the pointer to the window
you want to install the control in. That value is the
one returned in the NewWindow call made earlier.

You push a long space on the stack first. The call
returns a handle to the control although we don't do
anything with that value in our program.

In order for the TextEdit control to become active it
has to be installed in our window. We use the
NewControl2 call and install it just like any other
control, like abutton, checkbox, or edit line. The use
(and abuse) of NewControl2 is a subject for the
future, so for now,just stare very hard at that part
ofthe source code and absorb the subtle intricacies
through osmosis. Okay, I'll explain the parameters
here very brieOy.

The third parameter is a reference forthe fourth, and
last parameter. By pushing a zero we're saying that
the next parameter is a pointer to the template of a
single control. By using different values for the third
parameter we can specify that the last parameter
will be a handle, pointer, or resource ID of a single
template ortable oftemplates. NewContro12 is a very
handy call. It's made Window-type programming
very qUick and easy (until you get to line edit
controls...which is a subject for a future article).
Here's what the NewControl2 call should look like...

PushLong #0 ; space for resul t
PushWord #%00101;bufferDescriptor
PushLong TextBuffer ;bufferRef
PushLong #65535 ;bufferLength
PushWord #0 ;styleDescriptor
PushLong #0 ;styleRef
PushLong #0 ; teHand 1e
_TEGetText ;yank out data
Pull Long Tota 1Length; 1ngth of all

text in record

The fOn11at for TEGetText is very similar. Since the
call is going to return a result, we have to push space
on the stack first. And instead of pointing to a block
of text in memory, we point to a block of space that
the text will end up in after the call.

PushLong #0 ;space for result
PushLong WindowPtr;ptr wndw cntrl
PushWord #0 ;ref descriptor
PushLong#Template;addrofcntrl tmplate
_NewContro12
PullLong TEHandle ;retrieve cntrl hndl

;ref to style information
;textDescriptor
;ref to initial text
;length of initial text

dl 0
dw 0
dl 0
dl 0

Phew! The TextEdit template is done. Now we'll dive
into the other two calls that are used with TextEdit
quite a lot. The first, TESetText, grabs text from a
buffer in memory and places it into the TextEdit
document. The other, TEGetText, grabs the text
from the TextEdit record and places it in a buffer.
Then you'd be ready to save it to disk, transmit it
over the modem. or whatever else you desired.

There are sLx parameters that need to be pushed on
the stack for TESetText. The first defines the fonl1at
of the next parameter. Bits 3-4 show the next
parameter is a pointer. Bits 0-2 specify that we're
after an unfom1atted block of text. We're going to
take the easy way out and use all pointers in our
example (we could use handles or resource IDs if we
wanted to get sneaky). That means the second
parameter is a pointer to the text that will be inserted
in the TextEdit document. The third parameter
specifies the number ofcharacters in the text buffer.
The next two parameters should be set to zero as
they're for style infon11ation and we won't be getting
into that at this time. The last parameter is the
handle to the TERecord in memory. But, we don't
even have to worry about that too much because if
we put a zero in that parameter it will default to the
active record. Here's what the parameter list looks
like for our program...

The next four parameters (fourteen through seven­
teen) are complicated enough that you'll need the
manual to make good use of them. Just leave them
as they are for the purposes of our demo code.

PushLong #0
PushLong #0
_TESetText

;styleRef
;teHandle
; make the ca 11 !

That's it! You know everything needed to become a
TextEdit guru. Well, you know enough to get started
on it, anyway. Look over the source code and follow
the logic to see what's happening.

rrhe Sourcerors YLpprentice Page 20

Editor: You'll notice that Jay does aJSR StartUp and
JSR Shutdown - those are calls to routines virtually
identical to the Generic Start II we ran last time. They
can (and probably should) be put into reusable,
linkable jiles. The only time they'd need to be
changed is when your current application needs
more tools than are included in those generic rou­
tines.

Incidentally, we had two reports ojdifficulties with

Generic Start II, but had no luck tracking down the
bug. We did Jind that the tools requested did not
equal the tools listed in the StartStopRec, but that
was not actually a jatal error. Jay and I both are
using his code with no trouble, and the other person
I sent a copy to has reported no problems either.

That doesn't mean that anyone is crazy, ojcourse, it
just means that we couldn't replicate the problem (no
responsejrom TaskMaster).

iGSOS _Open;OpenParms;1

;a new macro

in

] 1

%00

;set data and program bank the same
StartUp ;load and start the tools
MemAlloc ;grab a 64K chunk for data
MakeWindow ;a window for TextEdit to 1 ive in
WakeTextEdit ; ... and make it active
GetF i 1e ; choose a f i 1e to load
:NoFile ; if cancel was cl iCked, branch
SetText ;put the text in the window

do
mac
adrl

phk
plb
jsr
jsr
jsr
jsr
jsr
bcs
jsr

HSFGetFile2 #120;#40;#0;#Prompt1;#0;#0;#ReplyRec
lda ReplyRec ;see what was cl icked
bne :Load ; if fi le picked, go load it
sec
rts

use mwp.macs
put 1/tool.equates/e16.window
put 1/tool.equates/e16.memory
put 1/too 1 . equates/e 16. gsos

*----------------------------------

eom
fin*----------------------------------

1st off
*===
* Mini word processor for The Sourceror's Apprentice
* Another Mohawk Man Creation
* Copyright 1989 - PunkWare
*===

xc
xc
mx
cas
rel

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18 dl
19
20
21
22
23
24
25
26
27
28
29
30
31
32 : NoF i 1e
33 _InitCursor
34 jsr EventLoop ;go do that loop thing
35 ~~~ ~~~~~ow~ ~~~~_=~~~ the program
36 *
37 GetF i 1e
38
39
40
41
42
43 :Load
44

rrlie Sourcerors Ylpprentice Page 21

SetText
NTESetText #%101;BufferPointer;OpenEOF;#0;#0;#0
t'ts*----------------------------------

Startup

;move the length of file
;move the buffer address

;move address to direot page
;get length of file if < 64K
;go to 8 bit aooumulator
;grab a oharaoter
;strip off the hight bit
;and resave it

;point to the previous oharaoter
;if not -1, keep looping
;baok to 16 bit aooumulator

;kill everything we started

;tool looator first
;start the mem manager

] loop
$20

] loop

lda OpenRefNum
sta ReadRefNum
sta CloseRefNum
MoveLong OpenEOF;ReadRequest
MoveLong BufferPointer;ReadBuffer
iGSOS _Read; ReadParms;1
iGSOS Close;CloseParms;l
MoveLo~g BufferPointer;50
ldy OpenEOF
sep $20
1da [50] ,y
and #$7F
sta [50] ,y
dey
bpl
rep
ele
rts*----------------------------------

NShutDownTools #0;SSRee
_MTShutDown
NMMShutDown ProgID
_TLShutDown
iGSOS _Qu i t; :QParms; 1

:QParms ds 2
ds 4

*----------------------------------
MemAlloe

_TLStartup
NMMStartup #0
Pull Word ProglD
_MTStartup ;miso tools manager
NStartUpTools ProgID;#0;#StartStopReo
PullLong SSReo
rts*----------------------------------

ShutDown

NNewHandle #63999;ProgID;#attrLooked;#0
PullLong BufferHandle
Deref BufferHandle;BufferPointer
rts

*----------------------------------
MakeWindow

NNewWindow #WindowTemplate
PullLong Windowptr ;grab and save the pointer
rts

*----------------------------------
WakeTextEdit

NNewContro12 WindowPtr;#0;#TETemplate
PullLong TEHandle ;save the TextEdit handle
rts

*----------------------------------

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101

rrhe Sourcerors YLpprentice Page 22

CloseParms dw 1
CloseRefNum ds 2

ReadParms dw 4
ReadRefNum ds 2
ReadBuffer ds 4
ReadRequest ds 4
ReadTransfer ds 4

EventLoop
HTaskMaster #$FFFF;#EventRec
pla
beq EventLoop

; if window close box was cl iCked ...
; ... then we're done

;get the event code
; i f noth ing, keep loop ing

640 mode

;good or bad?
;type
;auxtype
;type of reference
;filename reference
;type of reference
;pathname reference

4
2

o
$80

'Choose a f i 1e to load:'
'Save f i 1e as: '
10
'Sample'
12
2 ;ref number of newly opened file
FileName+2
o
o
2
2 ;filetype
4
2
8
8
4
4 ;length of newly opened fi le

o
o
o
o
F i 1eName
o
PathName
19
17
68
64

#wlnGoAway
EventLoop

ds
ds

SSRec
ProgID

StartStopRec
dw
dw

Promptl str
Prompt2 str
DefaultName dw

strl
OpenParms dw
OpenRefNum ds

adrl
dw
dw
ds
ds
ds
ds
ds
ds
ds

OpenEOF ds

dw
dw
dl
dw
adrl
dw
adrl

F i 1eName dw
ds

PathName dw
ds

cmp
bne
rts*----------------------------------

ContentDraw
HDrawControls Windowptr
rtl*----------------------------------

ReplyRec

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

rrfie Sourcerors .9Lpprentice Page 23

dw 0
adrl 0
dw 17

BufferHandle ds 4
BufferPointer ds 4
Windowptr ds 4

;event code
;event result
;ticks since startup
;global mouse location
;status of modifier keys

dw $le,$0100
dw $04,$0300
dw 18,$0201
dw $06,$0300
dw 27,$0300
dw 14,$0300
dw 16, $0300
dw 15, $0300
dw $lc,$0300
dw 20,$0300
dw 21,$0101
dw 22,$0101
dw 5,$0101
dw 23,$0101
dw $13,$0200
dw $22,$0100
dw $8,$0101

parm 1 ist length
frame bits
pointer to title
refcon
zoomed rectangle
color table pointer
vert offset of content
horiz offset of content
data area height
data area width
max grow height
max grow width
vert. arrow scroll amount
horiz arrow scroll amount
vert. page amount
horiz page amount

dpage handle
number of tools

;Resource
;quickdraw
;qdaux
;event
;font
;window
;control
;menu
; 1 i st
; 1 ined
;dialog
;scrap
; desk
; f i 1e
;print manager
;TextEdit

2
4
4
4
2
4
$001f5fff
o
o
o
o
o
o
o

:end-WindowTemplate
Z 1100,00~0.1110\1001

windowtitle
4
11,0,199,630
o

""o
o
o
o
o
o
o
o

WindowTemplate
dw
dw
adrl
ds
dw
adrl
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

EventRec
eWhat ds
eMessage ds
eWhen ds
eWhere ds
eModifiers ds
TaskData ds
TaskMask adrl

adrl
adrl
dw
adrl
adrl
adrl
adrl

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

%e Sourceror's .9Lpprentice Page 24

*===

sav mwp. 1

:end
WindowTitle str ' TextEdit Example'

info bar ref con
info bar height
window procedure
info bar draw routine

; window content draw rtn
; starting position rect

window plane, -1 is front
memory for window,

;more flags

;number of parameters
; control 10

;boundary rectangle
;editTextControl

4

o
o
o
o
ContentDraw
26,2,198,637
-1
o

18
900
5,5,170,610
$85000000
o ; flags
%0111_1100_0000_0000
4 ;refcon
%0110_0010_1010_0000_0000_0000_0000_0000 ;
$ffff,$ffff,$ffff,$ffff ; indent rect defs, standards
-1 ;make a default vert scroll bar
o ;vert scroll amount - 0 = default
o ;start with no horiz scroll bar
o ;horz scroll amount
o ;ref to style information
o ;textOescriptor
o ;reference to initial text
o ;length of initial text
65535 ;max num of chars allowed

adrl
dw
adrl
adrl
adrl
dw
adrl
adrl

TEHandle ds

TETemplate
dw
adrl
dw
adrl
dw
dw
ds
adrl
dw
dl
dw
dl
dw
dl
dw
dl
dl
dl

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

rrlie Sourceror's Ylpprentice

Copyright (C) 1989 by Ariel Publishing Box 398 Pateros, WA 98846 (509) 923-2249 GEnie: RWLAMBERT
All Rights Reserved Apple, Apple II, Ilgs, BASIC.sYSTEM, and ProDOS are registered trademarks of Apple Computers, Inc.

Subscription prices in US dollars (Canadaand Mexico add $5, non-North American orders add $18 per year)
1year...$29.95 2years...$56 Back issues are $3 each (non-USA add $2) There is a quarterly source code diskette available for $25 per
year (Canada and Mexico add $5, non-North American orders add $15)

WARRANTY AND LIMITATION OF LIABILITY: Iwarrant that the information inThe Apprentice is correct and somewhat useful to somebody
somewhere. Any subscriber may ask for a full refund of theier last subscription payment at any time. At no time shall I or my contributors be
held liable for any incidental or consequential damages in excess of the fees paid by a subscriber.

We here at Ariel Publishing freely admit our shortcomings, but nevertheless strive to bring glory to the Lord Jesus Christ.
(Hi Nate!)

	thesourcerorsapprentice_v1n11 part 1
	thesourcerorsapprentice_v1n11 part 2

