 The Sourceror s Apprentice

The Assembly Language Journal of Merlin Programmers

Vol 1 No11 Nov-Dec 1989

Out With the Old, In With the New

The Apple Il had atough time in the closing moments
of 1989. Apple's pre-Christmas profits were far less
than expected (with the rumorists and USA TODAY
blaming the Apple II's slow sales!), and our beloved
CALL A.P.P.L.E. expired. The next issue we receive
will no doubt be the last.

Beforeyouallrun out and buy a NeXT (ha!), stop and
consider two things:

First, I had an inkling about all this back in August.
To wit, “...Apple has yet to reap all the consequences
of years of neglect and exploitation. Computer
markets turn slowly nowadays, and Apple’s moder-
ate amount of support at present will not stem the
tide in the short term.” (Vol.1 No. 7, p.3)

Second, blame for the demise of CALL AP.P.L.E.,
the only multi-language technical journal for the 11,
can be at least partly laid at the feet of Apple, Inc.
Listen carefully, now, I am not denigrating those
who work on and champion the Apple II at Apple,
Inc. Those folks are doing a tremendous work. I am
suggesting, however, that one of the unfortunate
ramifications of Apple’s decision to take APDA back
in-house was that the move left Tech Alliance all
dressed up with no place to go. The co-op had hired
lots of employees and managers, made capital in-
vestments in hardware and buildings, and had built
APDA into a fairly well-established concern. With
the rug pulled out from under them, they were left
scrambling to cut costs as fast as possible, I can
assure you that is harder to successfully pull off
than expansion.

My hunch is that, for whatever reasons (the rumor
mill has churned out a hundred stories) the CALL
A.P.P.L.E. folks couldn’t make it happen in time to
keep the magazine from financial disaster.

In conclusion, friends, the passing of our beloved
CALL A.P.P.L.E. is notreally a commentary on the
state of the Apple II market. It is the unfortunate
symptom of a long chain of events. I don't know if
Apple, Inc.’s decision to take back APDA was good or
evil - but it had a nasty side effect. Though it be a

' grievous wind that hath blown in our faces this

holiday season, there is yet reason for hope - Apple
obviously does have plans for the II line, and my
sources suggest some actual marketing money in

the pipeline.

AsI've said before, I think there shall be rewards for
those who persevere, but even now the worst is
probably not over.

On the positive side, one idea I've heard floated is for
Apple to appoint an “Apple II Czar”, i.e. someone to
put the corporate infrastructure aright as far as the
I is concerned. This has some potential, I think,
especially since the stockholders really took a hit in
the wallet the last few days. Stockholders don't care
which product makes them bucks - as long as they
are making their money. Bucks is bucks, after all.

The subscriber survey...

My thanks to all who took the time to return the
subscriber survey. Ireallylearned alot. Here's how
it turned out...

As of this date (early December), 80 of you re-
sponded. Not everyone answered every question, so
the number of responses per question doesn't al-
ways add up to 80.

1) I find the content of the Apprentice:
e 10 said too difficult

» 12 said too simplistic

e 53 said about right

2) I find the tone of the newsletter:
e 27 said too light, cut the chatter
¢ 53 said about right

3) I find the page layout in this issue:
¢ 0 said too squished

e 43 said not enough content

s 36 said okay, a decent tradeoff

4) 1find the current mix between 8 & 16 bit:
e 17 said too biased in favor of the GS

¢ 17 said too biased in favor of the 8 bit Apples
¢ 45 said about right

5) If Apple discontinues the Apple II, I would;
¢ 28 said buy an IBM PC or compatible

¢ 16 said buy a Macintosh

¢ 33 said “other”

‘The Sourcerors Apprentice

Page 2

6) I use my Apple II...

¢ 73 at home for word processing, etc.
¢ 37 for business purposes

¢ 35 for educational software

7) Topics I'd like to see...

Too numerous to even sumrnarize - but I have lots
more ideas now, thank you. We're addressing some
of them this very month.

8) If the subscription price were raised to $35 per
year for 12 pages per month, I would:

¢ 54 said continue subscribing

o 22 said not renew

Over half (44) attached extra pages or wrote on the
back. Iread every letter and note.

e To all of you who asked how I can continue
producing this newsletter if my margin is so small;
I can afford to continue because A) I consider The
Sourceror’s Apprentice a long term investment, and
B) Ido a considerable amount of contract program-
ming, consulting, and custom applications develop-
ment. It was obvious, I hope, that SApp (as I call it)
is not my main gig. As uncomfortable as this might
make some of you feel, I recently co-authored a
Macintosh product that is doing pretty well. 1
encourage you to delight in the ironic fact that, for
once, something on the Macintosh is subsidizing
something on the Apple II. I know I do.

» To those who wondered if I weren't "too nice" to be
in business - now there is a criticism I can take! In
actuality, I cannot figure out why business people in
general are not the nicest human beings on the
planet - alter all, they're trying to persuade you 1o
voluntarily give them your money. I, for one, don't
do business with anyone who isn't trying very hard
to keepme happy. Asyou'llsee ina few paragraphs,
the subscriber survey has convinced me that I have
not been being nice enough! (Although it is a fact
that surveys of this kind tend to get the most
satisfied and the least satislied to respond.)

The way we were...

I have not been able to offer nearly as much of my
time to The Apprentice as I would have liked. Robert
Muir (the letter I lead with last month) was right
about that. That’s part of the reason why the tone of
this rag has been pretty informal and the distribu-
tion schedule pretty loose. As I mentioned above,
that's also why we've been able to continue when
others have croaked.

Still, I don't really think there is anyone in a better
position to publish something of this nature (a
conceit, perhaps, but we entrepreneurs have gotto

believe in ourselves), and I also don't think it can be
produced any cheaper. Everyone wants more for
their money (see survey question #3!), but as I
explained last month, it can’t be done with our
present structure.

It is a foolish businessman, however, who doesn't
listen to his customers. Well over half of you who
responded want more for your money, and it now
behooves me to figure out a way to make it happen.

...and the way we shall be.

e The bad news first: a small price increase. One
year will now be $29.95, two years will $56. The
quarterly disk will be $25 per year.

In return, I am “professionalizing” this publication
somewhat. I am hiring out the disk duplication
duties so that they can be distributed in a more
timely fashion, and I am negotiating with one per-
son to be an associate editor and another high
powered type (o be a regular columnist. They are
both good and would really help bump us up to the
next notch in the publishing hierarchy.

o To offset their pay and to provide funds for an
expanded format, I am going to aggressively pursue
advertisers. With CALL A,P.P.L.E.out ol the picture,
we are now one the primary contact points with the
Apple II programming community. If you have de-
veloped something for programmers or have hard-
ware for sale, please consider an ad here.

Don’t expect a glossy cover and four color ads. But
we are most delinitely going to do our level best to be
responsive to your desires. Incidentally, our ad
policy will not allow the sacrifice of editorial space
{or advertising space. My intention is to use the ad
monies (when and if we can get them) to finance
additional articles.

CALL A.R.T.I.C.L.E.S

Since we're going to be needing more quality code
and articles than I and my cohorts could possibly
generate, I am hereby requesting that the 12 of you
who found this newsletter too simplistic start writ-
ing for us {and contact your hotdog buddies, too).
I've moved the pay up a notch, we're looking at $75
- $125 for a nice piece that requires neither too
much rewriting or recoding on my part. All'submis-
sions require articles in unformatted text files and
source code in Merlin format.

As for the other survey questions... I thought it
hilarious that there was an exact tie betwixt those
who want more GS stuff and those who don't. It'sa
no-win deal for an Apple II publisher. I've even

The Sourceror s Apprentice

Page 3

heard the boys at A2-Central moaning about this.

I also found it interesting that our survey yielded
only 16 of 80 who would move to the Mac if Apple
ended the life of the II. You can bet that I'll be
forwarding the results to Mr. Sculley. The “other”
computer of choice was probably the Armniga.

Allin all, the survey results were most encouraging.
My thanks to everyone, and especially to those who
took the time to share their ideas, insights, and kind
words. You Apple II foks are an intelligent, articu-
late bunch, not to mention patient and kind (well,
most of you, anyway).

A GS BASIC 4U0?

Micol Systems, Canada, is up to version 3.5 of their
GS BASIC. Up until now I've been {airly lukewarm
about the product. It has some nice features, but
Micol was making some decisions I really couldn't
understand, including only supporting the linking
of assembly files generated by their own assembler.

You can guess how I [elt about that, being one of the
world’s foremost Merlin promoters.

After along period of discussion, the Micol gang has
finally come around to my way of thinking. We are
currently E-MAILing each other silly trying to work
out the details. I plan an article or series of articles
on mixing Micol with Merlin.

The Micol people are also planning some other very
intelligent moves, so I am therefore finally offering
the software for sale for $95 to subscribers (ship-
ping not included). The suggested retail is $149.95.

Incidentally, in a no-holds-barred effort to get back
on our publishing schedule, this issue is a doubler,
meaning it includes the material for both November
and December. I know I had a lot of non-program-
ming material to discuss, but at least it was two
months worth!

We aim to please, though, and if the idea of a “one
fer two” bothers you, drop us postcard and we'll
extend your subscription a month.

I hope you had a blessed Christmas and I give you
all my best wishes for a happy New Year - and New
Decade, too.

== Ross ==

Jumping Around, Hiring a Picker, & a P8

MLI Error Handler

by Ross W. Lambert, Editor

One of the most popular types of articles requested in the subscriber survey was that of pre-cooked and re-
usable subroutines. It rerninds me of my days as a teacher - whenver a specialist would come to “inservice”
us poor schmucks, we'd invariably cry, “Gimme a worksheet!”, meaning “Give me something I can use right
now in my classroom.” They seldom did, by the way. I'll try to respond better.

In this month'’s listing, I have tried to give you a reusable ProDOS 8 MLI error handler that you can just link
into your own code with very little modification. Not only that, but I have also attempted to illustrate a few
techniques for selecting myriads of options that I have found useful.

The first section of code begins by setting up the screen. Idon't care if the screen is in 40 or 80 columns
- the error messages all {it correctly either way. The Imprint subroutine called in line 37 was first run in the
very first Apprentice (Vol.1 No. 1, January, 1989). I made a minor modification for this article so I have
reprinted it again. You can see it's usefulness in lines 38-41; the screen layout is done very much like you
would in BASIC or another higher level language.

The Imprint routine also makes use of a 65XXX series habit of depositing the return address after a JSR
right on top of the stack. In this case Don Lancaster (the original author) bumped the return address by
the length of the strings to be printed so that program control would resume immediately after the embedded
ASCII text. It's a neat trick, I think.

Although none of the routines in this program need parameters, a similar technique can allow us to pass
data back and forth between generic routines (I'll detail this more next month). This allows for incredibly

The Sourceror's Apprentice Page 4

modular programming; which is in turn the secret to productivity. I can assure you that, for many
employers, the speed with which you churn out a working application is sometimes of the highest
importance. Please make a mental note, however, that in certain situations where blinding speed is
required, a custom in-line routine can execute faster than a generic subroutine.

Speaking of modularity, I have setup this program into three separate, independent, linkable modules. The
demo module (Listing 1) is only useful to show off the other two, of course, but the embedded string printer
and the MLI error handling module are ready to be linked into you own code as-is. Don’t forget to declare
their entry points as labels EXTernal to your source file.

Meanwhile, back at the BRAnch (hehehe), the demo loop in lines 43 -62 merely grabs an MLI error code
from a table and passes it to the error handler. The error handler locks for a match in its own table of error
numbers, jumps to the appropriate routine, displays an error message and waits for a keypress. Try to not
to get excited when the demo tells you your volume bitmap may be damaged; it's only a test of the system:.
If this were an actual emergency...

Listing 1 - The Demo Module

1 Hokokokokok ok R oK oK oK ok R RO R K KO K 6K R R KR R K s F R HOK R HOROH K K oK
2 ok *
3 * A General Purpose P8 MLI Error Handler *
4 * By Ross W. Lambert *
S % *
6 * Copyright (C) 1389 *
7 * Ariel Publishing, Inc. *
8 * A1l Rights Reserved *
9 * *
1 AOKARRAORK oK R H R R AR R R OK R R A SR bR R R R K 3 R R K HOK AR R KK
11
12
13 * Stuff for Merlin
14
15 mx 11
16 REL ;we’re making linkable files
17 DSK DemoModule.L
18
19 LST OFF
20
21 * A few equates
22
23 OurPtr = $06 ;Zero page pointer
24
25 BELL = $FF3A
26 HOME = $FCS8 ;clear screen, home cursor
27 ProDOS = $BFo0Q ;ProDOS MLI entry point
28 cout = $FDED
29 CROUT = $FDBE ;generate a carriage return
30 Keyboard = $Co00 ;read a key
31 ClrStrobe = $co10 ;clears keyboard queue
32 PRHEX = $FDE3 ;print lower nibble of A as hex char
33
34 * Declare our external references...
35
36 EXT Imprint,errorlist,MLI_Error
37
38 * Real stuff starts here...
39
49 Start JSR Home
41 JSR Imprint
42 ASC “Pg8 MLI Error Trapper Demo”,8D,8D

43 ASC " Cycling through MLI errors ~, 8D

o

RN

The Sourcerors Apprentice

Page 5

44 ASC * (ESCape to quit)”,8D

45 ASC “ ~,8D,00

46

47 * He’11 cycle through all 30 MLI errors and display error msgs.
48

48 LDX #28 ;count 29 to @ backuwards
50

S1 :loop STX ErrCount

52 LLDA errorlist, X ;get an error

53

54 JSR MLI_Error ;90 handle it

35 ;key pressed is returned in accumulator
56 CMP #155 ;user want to escape?
S BNE :cont

S8 JMP Quit :yep, so leave

59

6@ :cont LDX ErrCount

61 DEX

62 BNE :Toop ;Just quit when done
63

64 Quit LDR #4 ;we’re outta here

65 STA ParmTbl

66

67 JSR ProDOS

68 DFB $65 ;QUIT call to MLI

69 DA ParmTb1

70

71 brk ;should never get here
72

73 ErrCount DFB Q

74

75 ParmTbl DS S

Listing 2 - The Embedded String Printing Module

1

2 AorokoorokoRoRoRoROR kR KK sk R R OR B R HOR K RO K O HOK
3 * *
4 * Embedded String Printer *
5 % *
B HokokotokROR R OR R sk ok sk st ok ok Rk kR kR Kk RORROKOK
7

8 mx g1

S REL

10 DSK EMBEDSTR.PRTR.L
11 LST OFF

12

13 * Equates

14

15 HTAB = $24

16 OurPtr = $06

17 cout = $FDED

18 CROUT = $FDBE

19

20

21 * Start of printing module
23 Imprint ENT

24

25 LDA OurPtr
26 STA PTRSAVE
27 L.DA OurPtr+i1

;zero page pointer

;9enerate a carriage return

;a global label

;g9et previous contents of $06
;save it in our own data table

The Sourceror's Apprentice Page 6

28 STA PTRSAVE+1 ;do likewise for $07

29

30 PLA

31 STAa OurPtr ;pull return address off stack
32 PLA

33 STA OurPtr+1

34

35 LLDX #0 ;move cursor flush left

36 STX HTAB

37 JSR CROUT ;move douwn a line from last cursor
38 LDV #0

39

40 nxtchrz INC OurPtr ;inc pointer to point at text
41 BNE nextchr

42 INC OurPtrt+i ;if it rolled, inc highbyte, too
43

44 nextchr LDA (OurPtr).vy :get character

45 BEQ exit4 ;terminate on zero

46 JSR cour

47 JHP nxtchr2

48

49 exit4 LDA OurPtr+1 ;oet hibyte of return address
50 PHA ;push back onto stack

51 LDA OurPtr ;get lobyte

Se PHA ;and push back onto stack

53

54 LDA PTRSAVE+1 ;restore zero page

35 STA QurPtr+i

56 LDA PTRSAVE

57 STA OurPtr

58 RTS

58

6@ PTRSAVE DS 2 ;data table

The error handling module itsell does some peculiar things. Let’s pick ‘em apart.

First, it scans the list of error numbers looking for a match. It increments the X register so that when a
match is found it can use X as an offsel into a jump table. The jump table that begins at line 89 (JMPFL)
is a list of the addresses of our error handlers. There is an error handler for each error (although if you
look at the handlers themselves several of them handle more than one error).

When amatch isfound, the routine moves the X register into the accumulator, shifts left to double it, then
moves it back into X. Since the addresses in the table at JMPFL are two bytes each, the offset needs to
be doubled in this fashion to point us to the correct error handling routine.

The final bit of weirdness is the manner in which I actually did the jump. Instead of moving the address
to zero page and doing an indirect JMP (a buggy opcode on the 6502, by the way) it is faster to read each
address directly and push it on the stack. Why the stack? Hmmm... well, it is a little bit of scullduggery,
I must admit. We're going to fake out the CPU. If the address of the error handler is on top of the stack
and we then execute an RTS, the CPU just returns control to the address sitting on top of the stack. Our
silicon savant does not know whether we really JSR'd or not, and it doesn’t care. The PHA highbyte, PHA
lowbyte, and RTS combination is a quick and effective method for jumping who-knows-where, The lookup
table of addresses combined with this technique makes for a very elfective “option picker”, as Don
Lancaster called it in The Assembly Language Coolkbook for the Apple II/1le. (Although the book is getting
a little long in the tooth - it discusses EDASM in depth - it still is an invaluable resource for 8 bit
programmers. I'm sure Don himself could put a copy in your hands. Call 602/428-4073).

Speaking of the lookup table of addresses, you might notice that they all are the destination address less

one byte. The reason for this is that the RTS returns control to the code living one byte past the address
left on the stack.

Listing 3 - The Error Handling Module

i,

The Sourceror's Apprentice

Page 7

1 sktolopokoRokok sk oRR sk AORK R stRORBOR KR ROKR A R OK
2 % *
3 * Segment: Error Handler *
4 * *
5 setetolor sk HORBOR HORRAOROK AR KR AR AOK SRR R oK
6

7 mXx 211

8 REL

S DSK MLI . ERR.L

10 LST OFF

11

12 * A few equates

13

14 OurPtr = $06

15

16 BELL = $FF3A

17 court = $FDED

18 CROUT = $FDSE

19 Keyboard = $coro
20 ClrStrobe = $co10
21 PRHEX = $FDE3

23 * Our lone external reference

25 EXT Imprint

26

27 * The MLI and our demo module passes the
28

29 MLI_Error ENT

30 STA error_number
31 JSR BELL

32 LDA error_number
33

34 LDX #28

35 scan CHMP errorlist, X
36 BEQ matchfound
37 DEX

38 BNE scan

33

40 BRK

41

42 matchfound

43 TXA

44 ASL

45 TAX

46 LDA JMPFL+1, X
47 PHA

48 LDA JMPFL, X

49 PHA

S0

51 RTS

52

53

54 errorlist ENT

S5

S6 DFB 1

57 DFB 4

S8 DFB $25

59 DFB $27

60 DFB $28

61 DFB $28

62 DFB $2E

63 DFB $40

64 DFB $42

65 DFB $43

;Zero page pointer

;generate a carriage return
;read a key

;clears keyboard queue

;lower nibble of A as hex char

error number in the accumulator

;store error_number

;29 MLI errors

;should never get here

;for doubling
;to use as offset

;push page address onto stack

;a “fake* - allows indirect jump!

;List of MLI errors by number

The Sourcerors Apprentice Page 8

105
106
107
108
108
110
111
112
113
114
115
116
117
118
119

DFB $44

DFB $45

DFB $46

DFB $47

DFB $48

DFB $49

DFB $4A

DFB $4B

DFB $4C

DFB $4D

DFB $4E

DFB $50

DFB $51

DFB $52

DFB $53

DFB $54

DFB $55

DFB $56

DFB $57

DFB $58

 table of error handler addresses (all -1 ‘cuz RTS takes you one PAST
JMPFL DA erri-1

DA errd-1
DA erradS-1
DA err2?-1
DA err2g8-1
DA erraB-1
DA err2k-1
DA err4d-1
DA errd4z2-1
DA errd43-1
DA errd44-1
DA errd5-1
DA errdb-1
DA err47-1
DA err4g8-1
DA err49-1
DA errd4f-1
DA errd4B-1
DA err4C-1
DA errd4D-1
DA errd4E-1
DA err50-1
DA err51-1
DA errSz2-1
DA err53-1
DA err55-1
DA err56-1
DA errS57-1
DA err58-1

120 * Multiple labels for the same address here because MLI errors (in hex)

121 * are not user-correctable,

122
123
124
125
126
127
128

errl
errd
errzdS
errd3
errdf

These are programmer’s problems!

;invalid MLI command/programmer error
;invalid parameter count/prog.error
;interrupt table full

;file not open error

;incompatible version of ProDOS

The Sourceror s Apprentice Page 9

129
130
131
132
133
134
135
136
137
138
139
140
141
142

144
145
146

148
148
150
151
152
153
154
155
156
157
158
159
i60
161
162
163
164
165
166
167
168
169
170
171
172
173
174
1735
176
177
178
178
180
181
182
183
184
185

187
188
189
190

192

err50
errsSS
errS6

err2?

err28

errzB

err4o

errd4sS
err2kE

errd42

errdd

err46

errd4’?

errdsg

errd9

JSR
AsC
LDA
LSR
LSR
LSR
LSR
JSR
LDA
JSR

JMP

JSR
ASC
JHP

JSR
ASC
ASC
JMP

JSR
AsC
JMP

JSR
Asc
JMP

JSR
ASC
JSR
JMP

JSR
JMP
JSR
JMp
JSR
AscC
JMP
JSR
AsC
JiHP
JSR
AsC
JMP
JSR

ASC
JMP

;file busy error
;VCB table full
;buffer in use

Imprint
“Error 8: “,00
error_number ;move high nibble down to low nibble

PRHEX
error_number
PRHEX ;print low nibble

DoPrompt

Imprint
~“1/0 ERROR*,8D, @0
DoPrompt

Imprint
“NO DEVICE CONNECTED*, 8D
“Check slot and drive selection.”,600

DoPrompt
Imprint
“Your disk is write protected.”, 8D, 00
DoPrompt
Imprint ;invalid pathname syntax
“INVALID PATHNAME”, 20
DoPrompt
;two MLI errors related to not
;having a volume online
Imprint

“VOLUME NOT ONLINE~*, 8D, Q0
vol_prompt
DoPrompt

Imprint
“BUFFERS FULL*, 8D, 00
DoPrompt

Imprint
“DIRECTORY NOT FOUND*, 8D, 09
DoPrompt

Imprint
“FILE NOT FOUND*,8D, 00
DoPrompt

Imprint
“DUPLICATE FILE NAME~, 8D, 00
DoPrompt

Imprint
“DISK FULL”,8D, 00
DoPrompt

Imprint
“DIRECTORY FULL*,8D, 00
DoPrompt

‘The Sourceror's Apprentice Page 10

193
194
195

256

errdB JSR
ASC
JMP

errd4C JSR
ASC
JMP

errdD JSR
ASC
JMP

err4kE JSR
ASC
JMP

errS1 JSR
ASC
JMP

errse JSR
ASC
JMP

errS3 JSR
AsC
JMP

err>? JSR
JMP

errS8 JSR
ASC
JMP

get_response
JSR
LDA
JSR
STAR
rdkbd LDA
BPL
ChMP
BEQ
CHMP
BNE

exit3 JSR
RTS

DoPrompt
JSR
AsC
ASC
JSR
RTS

vol_prompt
JSR

Imprint
“FILETYPE ERROR”, 8D, 00
DoPrompt

Imprint
~“OUT OF DATA*, 8D, 00
DoPrompt

Imprint .
“RANGE ERROR*, 8D, 00
DoPrompt

Imprint
“FILE LOCKED*,68D, 00
DoPrompt

Imprint
“THE DIRECTORY MAY BE DAMAGED”, 8D, 00
DoPrompt

Imprint
“NOT A PRODOS DISK*,b8D, 00
DoPrompt

Imprint
“INVALID PRRAMETER”, 8D, 00
DoPrompt

Imprint
“DUPLICATE VOLUMES ONLINE*,8D, @0
DoPrompt

Imprint
“The volume bitmap may be damaged!”,8D,00
DoPrompt

CROUT

By ¥ ;print cursor
court

ClrStrobe

Keyboard

rdkbd

#$8D ; RETURN?
exit3

#155 ;escape?
rdkbd

CROUT

Imprint

"Press RETURN to try again,”,8D
"ESCape to abort...”,6 00
get_response

Imprint

e

The Sourceror's Apprentice Page 11

257
258
259
260
261
262
263
264
265

283

Asc

* This secti
* places).
* on your ap

LDA
STR
LDR
STA

LDX
LDY
: 1oop LDA
ORA
JSR
INY
DEX
BEQ
JMP

history JSR
RTS

error_number

Pathname STR

“Please insert: ~,8D,00

oh requires a volume name (which is potentially kept in various
For this demo I’ve hardcoded a fake path at Pathname. Depending
plication, you might want to do a GET_PREFIX and display that.

#{Pathname ;put location of path into zero page
OurPtr

#>Pathname

OurPtr+i

Pathname ;length of string
#1 ;offset to skip length byte
(OurPtr),Vv

#$80 ;clean up display
cout

history
: 1oop

CROUT

OFB @
“/THIS.IS.A.TEST”

Listing 4 - Linker Names File Creator (Merlin 8 only)

ODITQUL WM

shokokodoRROR sk R ORFOK
*
* Names Fil
*
*

o e dooROR R OROR R OK

DsK
STR
STR
STR
BRK

sk ok S oK s SR o R oK R K oK sk o s Rl R HORKROFORROROROROHROR R KOk
*
e Creator for Merlin 8 Linker *
*

o ok o b b oo R R o ok ok s oo R OROROR SRR R RoORORORORSOR FOR ROROR

MLI . NAMES
“DemoModule. ¥
“Embedstr .prtr.L¥
“MLI.ERR.L*

Listing 5 - Linker Command File (Merlin 16 only)

—
SOOI UPA WM

-
-

P e
Noahw

RO HORROR KRR K K
*
* | inker Com

* (Merlin 16
"

Ol e ROROK R RO %K

org
typ

Tkv

asm
asm
asm

ookook ke ok R RO R RO R R RO R K R RO KK R R KO RORAOR K HOR
*
mand File for P8 MLI Error Routines *
only) *
*’
koK ok o ok R e kR OROROR R K R ORRORROFOR RO RO R ORORK K oK
$2000 ;let’s create a SYS file
$FF
$00 ;specify absolute Tinker (P8)
mli.err.link.s ;change to your names for each
str.printer.s ;if you rename them!

mli.err.demol. s

The Sourcerors Apprentice

Page 12

18 Ink demomodule.

19 Tnk embedstr .prtr .1
20 Tnk mli.err.1

21

22 sav MLI.ERR.DEMO

I had Merlin 8/16 and then got the update to Merlin 16+. The additional documentation Ireceived
did not point out that you could link 8 bit files with no hassle using the 16+ linker. Through a
little experimentation, I discovered that the LKV $00 pseudo op still invokes the absolute linker,
so your eight bit code links like a charm even in Merlin 16+. And at the risk of provoking the ire
of all you Ile and Ilc fans, I am compelled to add that the IIGS and Merlin 16+ is an absolutely
incredible 8 bit programming environment. The command files of the linker are flexible, powerful,
and easy to use, and the linker itself is like lightning. All of the [iles in this program linked and
saved to disk in 3 seconds to my Applied Ingenuity Inner Drive.

For some perverse reason it is tempting, when starting a new project, to write the entire thing
from scratch. Hopefully our example of re-usable, linkable files will help at least some of you to
discover the speed and power inherent within a more modular style.

== R0s§ ==

Magqgic Text : Using USR

More Merlin Magic
From Jerry K

By Jerry Kindall, Contributing Editor

MagicText is a USR function for Merlin 8/16. Il was
designed for maximum {lexibility in entering TXT
strings. In fact, MagicText can replace all of Merlin's
text opcodes, except for STR (and that's only be-
cause I couldn't fit the code to handle a leading
length byte into page 3 of RAM).

To install MagicText, you simply press D (for Disk
Command) at Merlin's main menu, then type BRUN
MAGICTEXT. Onceyou've done that, MagicText will
be installed and ready to use. (You can also auto-
matically run MagicText when you run Merlin by
putting its pathname into Merlin's startup bulfer,
but then Merlin wouldn't load the full screen editor
automatically.)

Using MagicText

MagicText is activated by a USR psuedo-op in your
source code. (Ifyou use Merlin 16, use USRO instead
of USR.) A typical MagicText statement might look
like this:

greeting usr ‘Hi therel’ ;greetingstring
That's a simplistic example, of course, and it doesn'’t
show you the flexibility of MagicText at all. However,
nolice that, just as with any other Merlin psuedo-op,
you have an optional label, the opcode, the operand,
and an optional comment.

MagicText will allow you to use any character at all
{except the tilde character, ~) as a delimiter for the
string, but I suggest the use of the apostrophe or
quote. With MagicText, there’s no reason to ever
need more than one delimiter.

MagicText works its magic by means of the tilde
character. The tilde has special meaning in Mag-
icText strings. For example, if you put ~A in a
MagicText string, MagicText will insert a control-A
character into the string. (Infact, any character in
the ASCII range 64-95, which includes the upper-
case letters and the symbols @, [, \,], A, and _, will
generate a control character when preceded by a
tilde.)

Here's an example, which contains two bell charac-
ters embedded in the text:

usr ““GAre you awake?”G* ;alaken user
If you follow the tilde with another tilde, MagicText
will put one tilde character into the object code. If
you follow the tilde with a quote mark or an apostro-
phe, MagicText will insert those characters as well,
even il you're using one of them as a delimiter.
Here's an example:

The Sourceror s Apprentice

Tage 13

usr “Joe said, "*I am going to the store.”**

If you follow the tilde with a dollar sign, MagicText
will interpret the two characters after the dollar sign
as a hex byte. Here’s an example of using this
feature to terminate a string with a carriage return
and a zero byle:

usr "Main menu -~ Please make a
selection”$8D~$00~

MagicText also recognizes a few lower-case letters
after the tilde, as flags to change modes. Remember,
if you use upper-case letters, MagicText will con-
sider the letter a control-character. (Note: ~1 is a
Iower-case letter L, not the numeral one.)

“1: Switch to Jow-ASCII (highbit ¢lrl chars
“h: Switch to hi-ASCII (high bit set) chars
“i: Switch to inverse text

“f: Switch to flashing text

“m: Switch to MouseText

“n: Switch back to normal text (high-ASCII)

MagicText uses the ~I and ~h flags to select high or
low ASCII text, instead of looking at the delimiter.
Text is always assumed high ASCII unless you use
the ~1flag to specify low ASCII. (MagicText passes all
characters except hex bytes through the high/low
ASCII flag, including control characters and the
bytes generated by ~~, ~', and ~".)

The ~i, ~f, and ~m flags cause MagicText to manipu-
late the ASCII codes of your texl to produce the
desired types of characters. Inverse text works
properly inn 80-column mode, with both upper and
lower case (in 40-column mode, lower case inverse
text is displayed as flashing punctuation and nu-
merals). Flashing text does not support lower-case,
MouseText expects you to specify an ASCII code in
the range of 64-95 ({the letters and symbols @, [, \,
], ~, and).

The display flags ~i, ~f, and ~m are useful mostly for
applications that will be storing characters directly
to screen memory, or using only the 40-column
output routines, The 80-column firmware will ig-
nore some of these ASCII codes or treat them as
control characters (in particular, the uppercase
inverse letters).

The ~n flag is actually the same as ~h and sets high-
ASCII normal characters. The ~I flag will also turn
off ~i, ~f, or ~m, and switch to low-ASCII characters.
Here's an example which generates the ASCII codes
for a small mousetext box:

usr "mZNN\A\\Y
Here's another example with an inversed word:
usr “It’s time to”i PARTY “n*
How Does It Work?

If you're not familiar with Merlin’s USR opcode, you
should check out pages 124 and 125 in the Merlin
8/16 manual. (That information probably moved
around somewhat when Merlin 16+ was released.
Check the index if you don't find it on pages 124-
125.

MagicText starts out by hooking itself up to Merlin's
USRvector (lines 80-90). Notice that the code which
does this actually resides in the input buffer, but
since that code won't be needed again, it’s OK to put
it in such an unstable memory location. The actual
USR routine starts at address $300.

The first thing MagicText does when it gets control
is determine the delimiter being used and to initial-
ize a few flags (lines 92-103). Then it falls into the
main processing loop (lines 105-135), which proc-
esses each character in the operand. If a tilde is
found, the tilde routine (lines 159-187) gets control,
and examines the character after the tilde to figure
out what to do. If a tilde is not found, the current
mode (lo/hi ASCII, inverse/flash/mousetext) is
checked and the character is adjusted accordingly
before being placed into the object code.

The tilde routine checks for ~, ‘, and “ characters,
and if it finds them following a tilde, places them into
the object code via PROC (line 112). Next it checks
for h, 1, i, f, m, and n; if they are found, the
appropriate mode is set. If a dollar sign is found, the
hex byte routine is activated. If none of these
characters are found, the character is converted to
a control character and put into the object code
(lines 183-186).

The hex byte routine (192-200) calls the hex digit
routine (206-219) twice, once for each nibble, then
combines the two nibbles into a byte and puts them
into the object code.

The code is a little bit tricky in places because of my
desire to fit it into page 3 of RAM, but is otherwise
fairly straightforward. It’s a good example of how to
write a USR routine for Merlin,

‘The Sourceror's Apprentice Page 14

I've found MagicText quite useful in my programming. I hope you find it useful in yours. Enjoy!

Listing 1 :MagicText Assembly Listing

1 skooRskokoksoRHORROR R s KR R R R sOR R R sROR SRR RORFORHOR MK

2 % *

3 ¥ MagicText *

4 %k *

S % A Merlin 8/16 USR Routine *

6 * by Jerry E. Kindall *

7Ok August 1989 *

8 K *

g * Public Domain *

10 % *

11 Aok KRR AOR R ok K ok R R KRR R R ORHORSROK KR RORHOK KK

12

13

14

15 * MagicText is a replacement for all of Merlin’s

16 * various text-generation psuedo-ops. It allous

17 * you to switch between high ASCII, low ASCII,

18 * inverse, normal, flashing, and mousetext, and

19 * to insert control characters and hex bytes,

20 * all in the same source statement. The only

21 * thing that MagicText can’t do is produce a

22 * leading length byte = you’ll still have to use

23 * STR for that,

24

25

26

27 Syntax:

28 USR “‘text’ ;comment

29 :

30 The apostrophe is a delimiter and can be any

31 character except ”, and it must be matched

32 by another such character. Apostrophe or quote

33 recommended. An optional comment may follow.

34

35 If a tilde (*) is encountered in the text, the

36 tilde and the character that follows it are
treated specially. The following characters

38 are valid after a tilde (all letters MUST be

33 lower case):

~ Y

w
~J
¥ XK X ¥ X X X X EEE XX EX XX XXX X

42 h: switch to high~ASCII characters

43 n: switch to normal (high-ASCII) characters
44 i: switech to inverse characters

45 f: switeh to flashing characters

46 m: switch to mousetext characters

47 “. insert a tilde (ie, "~ = one tilde)

insert an apostrophe (ie, = one apost)
insert a quote (ie, "* gives one quote)
S50 *§: the next two characters are a hex byte;

S1 *“$@D inserts the hex value 0D

ST

53 * Any other characters are considered control
54 * chars: “A inserts a control-A, etc

58 org $2F2

The Sourceror s Apprentice Page 15

59

60

61

62 * Internal Merlin Entry Points:

63 * See Merlin 8/16 Manual, pp 124-125

64

65 opndlien = $BB ;length of operand

66 worksp = $280 ;operand work buffer

67 usrvect = $B6DA ;USR routine vector

68 putbyte = $ESF6 ;put a byte into object
69

70

71

72 * Zero page locations used by this routine:
73 * Allocated by Merlin as temporary storage

74
75 dlimit = $60 ;string delimiter
76 mode = $61 sASCII mode
77 hotld = $62 ;temporary storage
78
79
80
81 * Connect the USR routine to Merlin
82
Q2FQ@: AS 4C 83 setup 1da #$4C
Q2F2: 8D DA B6 84 sta usrvect
Q2FS: A9 00 85 1da #usrop
Q2F7:. 8D DB B6 86 sta usrvect+l
Q2FA: A9 03 87 1da 8/usrop
Q2FC: 8D DC B6 88 sta usrvectt+g
Q2FF: 60 89 rts
90
91
92
93 * USR psuedo-op entry point
94 *
95 * On entry from Merlin: A =0, ¥ = @,carry = 1
96
0300: AS 8@ 97 usrop tda #$80
2302: 85 61 98 sta mode ;high ASCII (normal) mode
Q304:. 85 60 99 ' sta dlimit ;no realdelimiter
2306: 20 B9 @03 100 Jjsr get ;9et firstchar of opernd
0309: FO 38 101 beq done ;we’re at end of line
@30B: 85 6@ 102 sta dlimit ;we have the delimiter
103
104
105
106 * Main text processing loop
107
030D: 29 BS 23 108 loop Jsr get ;get next char of operand
03198: FO 31 109 beq done ;at end, we’re done
0312: C9 7E 110 cmp #777 ;is it a command?
0314: FO 41 111 beq tilde ;yes, go do it
0316: A6 61 112 proc 1dx mode ;what mode we in?
0318: FO 23 113 beq lo ;low ASCII mode
Q31R: 30 19 114 bmi hi ;high ASCII mode
031C: EQ 902 115 cpx #2
Q31E: 90 19 116 blt mst :1 = mousetext mode
0320: FQ @6 117 beq inv ;2 = inverse mode
0322: 29 3F 118 fis and #$3F ;else flashing mode
0324: 0S 40 119 ora #$40
0326: DO 15 120 bne o ;put the character
0328: CS 40 121 inv cmp #$40 ;less than 64, OK already

@32AR: 90 11t 122 blt lo

The Sourceror's Apprentice Page 16

0932C: C9 60 123 cmp #$60 ;greater than 96, it’s 0K
032E: BO oD 124 bge lo
0330: 29 3F 125 and #800111111 ;convert to 0-32
9332: 4C 3D 03 126 Jmp lo ;and put the char
0335: 09 8@ 127 hi ora #%10000000 ;set hi bit of char
0337: Do 04 128 bne lo ;and put it
0339: 29 3F 129 nmst and #800111111 ;convert to 0-32...
033B: 09 49 130 ora #%01000000 :convert to 64-95
@33D: 20 F6 ES5 131 1o Jsr putbyte ;put the character
0340: 4C oD @3 132 Jmp lToop ;and go back to the top
133
0343: 60 134 done rts ;we’re all donel
135
136
137
138 * Set the various text modes
139
0344: A9 03 140 setfls 1da #$03 ;mode = 3 (flash)
0346: 2C 141 hex 2C ;fake BIT to skip next instr
142
0347: A9 80 143 sethi 1da #$80 :mode = $80 (nhorm/hi)
0349: 2C 144 hex 2C
145
@34A: A9 ©° 146 setlo 1da #$00 :mode = @ (lo ASCII)
034C: 2C 147 hex 2C
148
034D: A9 ot 148 setmst 1da #$01 ;mode = 1 (mousetext)
034F: 2C 150 hex 2C
151
035Q@: A9 02 152 setinv 1da #fo2 ;mode = 2 (inverse)
0352: 85 61 153 sta mode ;set it
2354: 4C oD 83 154 Jmp loop ;back to the top
155
156
157
158 * Handle tilde commands
159
P357: 20 BS 03 160 tilde Jsr get ;9et char after tilde
©35A: CS 7E 161 cmp #rv ;it’s a tilde, do it
@35C: Fo B8 162 beq proc
Q35E: C9 27 163 cmp a#g27 ;it’s an apost, do it
0360: FO B4 164 beq proc
0362: C9 22 165 cmp 8 ;quote, do it
0364: FO B@ 166 beq proc
0366: 20 BD 93 167 Jjsr check ;is it a delimiter?
0369: FO D8 168 beq done it is, exit
036B: C9 24 169 cmp #7¢7 :$ = hex mode
936D: Fo 20 170 beq hex
Q36F: CS 68 171 cmp #7h7 ;set high ASCII
0371: FO D4 172 beq sethi
©373: C3S 6C 173 cmp #7717 ;set lo ASCII
@375: Fo D3 174 beq setlo
0377: C9 69 175 cmp #7§°’ ;set inverse
@378: FO DS 176 beq setinv
237B: C9 6E 177 cmp #'n’ ;set normal (high)
037D: Fo C8 178 beq sethi
@37F: CS 6D 179 cmp #'m’ ;set mousetext
@381: F@ CA 180 beq setmst
9383: C9 66 181 cmp #°f’ ;set flashing
0385: F©O BD 182 beq setfls
@387: 29 1F 183 and #800011111 ;it’s a ctrl-char
03839: A6 61 184 }dx mode
038B: FO Be 185 beq lo ;if low ASCII on, set louw

038D: D@ A6 186 bne hi ;otherwise, set high

P

‘The Sourceror s Apprentice

Page 17

;get one hex digit
;mult by 16

;hold it

;get next digit
;combine with hold
;and store it

;get a char
;it’s RAOK
;at EOL, return ©
;back

; lower case?

;no

;yes, fix to upper
;convert ASCII to hex

;it’s a number

;must be a letter; fix it

;9et char from workspace
;and point to next

;hit delimiter?

;yep

;at end of 1line?

187

188

189

18990 * Handle hex bytes

191
@38F: 20 A0 03 192 hex Jsr dig
©382: @A 193 asl
0383: @A 194 asl
0394: ©A 195 as|
@395: @A 196 asl
93396: 85 62 197 sta hold
0398: 20 AG O3 198 Jsr dig
@39B: @5 62 198 ora hold
9339D: 4C 3D @3 200 Jmp 1o

201

202

203

204 * Get a hex digit from operand

205
@3R0: 20 BS 03 206 dig Jsr get
@3A3: DO 04 207 bne valid
@3A5: 88 208 dey
@3A6: A9 00 2083 1da #0
@3A8: 60 210 rts
@3A9: C9 60 211 wvalid cmp #$60
Q3AB: S0 02 212 blt conv
@3ARD: ES 20 213 sbe #$20
Q3AF: 38 214 conv sec
@3BO: E9 30 215 sbe #°0Q!
03B2: C9 ©0A 216 cmp #10
03B4: S0 @2 217 blt back
@3B6: E9 07 218 sbe 87
@3B8: 60 219 back rts

220

221

222

223 * Get one character from operand

224
03B9: BS 80 02 225 qet 1da worksp,y
@3BC: C8 226 iny
@3BD: C5 60 227 check cmp dlimit
@3BF: FO 02 228 beg rts
03C1: C4 BB 229 cpy opndlen
@3C3: 60 230 rts rts

Unleashing TextEdit

By Jay Jennings

Probably the most exciting new tool included with
System Disk 5.0 is the TextEdit toolset. The old
LineEdit toolset allows a user to enter and edit a
single line of text in a program. TextEdit allows the
user to enter multiple lines. In fact, TextEdit can be
thought of as a full featured word processor. By full
featured, I mean it supports multiple fonts, styles,
and colors in the text, [ull editing according to the
Human Interface Guidelines, and can support a
document of virtually unlimited size...all this with

one toolset!

The purpose of this article is to show you how to
create a little text editor with just a few lines of code.
We won't go into different fonts, styles, and colors,
however. That would take more pages than Ross will
let me have. But we will include the load and most
of the save code.

Our program starts all needed tools, allocates a 64K

The Sourceror's Apprentice

i’age 18

buffer for our text, creates a window, installs a
TextEdit control, and then heads for the Event loop.
There’s no menu bar in this program. To quit the
program, click on the close box of the window.

The program currently doesn’'t save the text. You
could do that by adding the TEGetText call (ex-
plained in the article) and then writing the data to
disk. This program also lacks any error checking, I
left that out because of space, but you should check
for errors after every tool call.

Let’s skip the descriptions of the normal stuff like
opening windows and go straight for the throat of the
TextEdit control. Then we'll back up and see how to
install it in a window using NewControl2,

The first parameter in the template is a parameter
count. You can have as few as 7 parameters in the
template or as many as 23. This depends on how
many of Apple’s defaults you want to accepl. For our
purposes, all we need are 18 parameters.

du 18

The second parameter is the ID of our control. This
needs to be unique for the window in which the
TextEdit control resides. Just pick your favorite
number. Notice that in the next line I use the “dl”
pseudo-op. This is a macro that takes the place of
the “adrl” pseudo-op just because defline long makes
more sense when defining a long number than adrl
does. Right? (Edilor: I think so. I've always felt funny
using ADRL - ADdRess Long- when defining flags or
other non-address sorts of things.)

d1r 7

Parameler number three is four word values that
specily the boundary rectangle for the TextEdit
control.

du 5,5,170,610

The fourth parameler is the actual value that indi-
cates you're implementing a TextEdil control.

dl $85000000

The next two parameters are [lags that specify how
the TextEdit control will act while being used. The
first of the two flag words must be set to zero. The
second is a little more flexible, but 9 times out of 10
you'll need to set it exactly as I show it here,

du @
dwu R0111_0100_0000_0000

Parameter number seven is a long space that is left
blank. It’s for our use so we can put anything we
want in there, Well, anything that’s not over four

bytes long, anyway.

Now we get. to the “grand-daddy” parameter...
number eight. There are a zillion bits that mean a
zillion different things (give or take a few). I'm just
going to go through a few of the more important
ones. Those I don't mention, just leave them as is
until you latch onto the docs for the TextEdit toolset
in the Apple IIGS Toolbox Reference, volume 3.4.
(Editor: or until a future SApp article)

Bit 28 @ = word wrap the text

1 = break at CR only
Bit 27 ©@ = scrolling permitted

1 = no manual or autoscrolling
Bit 26 0 = editing permitted

1 = no editing alloumed
Bit 24 @ = tab inserted in document

1 =tab to next cntrl in windou
Bit 23 ® = no rect around TE control

l=draw rect around TE control
Bit 20 Q = user can select text

1 = user cannot select text

Here's the way the parameter looks lor a “generic”
kind of TextEdit control...

di £0110_1010_1010_0000_0000_0000_0000 _
0000

Parameter number nine (actually four words) de-
scribes the amount of white space to leave between
the boundary rectangle and the text itself. The
default values of 2, 6, 2, and 4 (top, left, bottom,
right) can be specified by using $FFFF for each
parameler.

dw $FFFF, $FFFF, $FFFF, $FFFF

Parameters ten and eleven concern the vertical
scroll bar. Set them both to zero if you don’t want a
verlical scroll bar. If you’d like a scroll bar without
any hassles, set parameter ten to $FFFF (or -1) and
parameter eleven to zero. This will give you a scroll
bar that scrolls 9 pixels at a time,

dl $FFFF
duw 9

The horizontal scroll bar is handled by parameters
twelve and thirteen and are dealt with just like the
vertical scroll bar was. Well, they will be, but hori-
zontal scrolling isn’t implimented yet. For now, they
MUST be set to zero or bad things will happen toyou
and your computer.

The Sourcerors Apprentice

Page 19

dl 0
du 0

The next four parameters (fourteen through seven-
teen) are complicated enough that you'll need the
manual to make good use of them. Just leave them
as they are for the purposes of our demo code.

dl 0 ;ref to style information
du 0 ;textDescriptor

dl o ;ref to initial text

dl o ;length of initial text

Thelast parameter we’ll deal with sets the maximum
number of characters that we want our control to
allow. Since our program sets up a 64K buffer for
text, we’ll specily that as the maximum size.

dl 65535

Phew! The TextEdit template is done. Now we'll dive
into the other two calls that are used with TextEdit
quite a lot. The first, TESetTex(, grabs text from a
buffer in memory and places il into the TextEdit
document. The other, TEGetText, grabs the text
from the TextEdit record and places it in a bufler.
Then you'd be ready to save it to disk, transmit it
over the modem, or whatever else you desired.

There are six parameters that need 1o be pushed on
the stack for TESetText. The first defines the format
of the next parameter. Bits 3-4 show the next
parameter is a pointer. Bits 0-2 specify thal we're
after an unformatted block of text. We're going to
take the easy way out and use all pointers in our
example (we could use handles or resource IDs if we
wanted to gel sneaky). That means the second
parameteris apointer to the text that will be insertied
in the TextEdit document. The third parameter
specifies the number of characters in the text buffer.
The next two parameters should be set to zero as
they're for style information and we won't be getting
into that at this time. The last parameter is the
handle to the TERecord in memory. But, we don't
even have to worry about that too much because if
we put a zero in that parameter it will defaull to the
active record. Here’s what the parameter list looks
like for our program... ‘

Pushlord #g00101 ;textDescriptor
PushLong TextBuffer ;textRef
PushLong TextlLength ;textlLength
Pushlord 40 ;styleDescriptor
PushLong #0 ;styleRef
PushLong 40 ;teHandle

_TESetText ;make the calll

The format for TEGetText is very similar. Since the
callis going to return aresult, we have to push space
on the stack first. And instead of pointing to a block
of text in memory, we point to a block of space that
the text will end up in after the call.

PushLong %@ ;space for result

Pushlord #%001@1 ;bufferDescriptor
PushLong TextBuffer ;bufferRef
PushLong #65535 ;bufferLength

PushWord 40
PushLong #0
PushlLong #0 ;teHandle
_TEGetText ;yank out data
PulibLong TotallLength ;Ilngth of all
in record

;stylieDescriptor
;styleRef

text

In order for the TextEdit control to become active it
has to be installed in our window. We use the
NewControl2 call and install it just like any other
control, like a button, checkbox, or edit line. The use
(and abuse} of NewControl2 is a subject for the
future, so for now, just stare very hard at that part
of the source code and absorb the subtle intricacies
through osmosis. Okay, I'll explain the parameters
here very brielly.

You push a long space on the stack first. The call
returns a handle to the control although we don’'t do
anything with that value in our program.

The second parameter is the pointer to the window
you want to install the control in. That value is the
one returned in the NewWindow call made earlier.

The third parameter is a reference for the fourth, and
last parameter. By pushing a zero we're saying that
the next parameter is a pointer to the template of a
single control. By using different values for the third
parameter we can specify that the last parameter
will be a handle, pointer, or resource ID of a single
template or table of templates. NewControl2 is a very
handy call. It's made window-type programming
very quick and easy (until you get to line edit
controls...which is a subject for a future article).
Here’s what the NewControl2 call should look like...

PushlLong #0 ;space for result
Pushl.ong WindowPtr ;ptr wndw chntrl
PushWord #0 ;ref descriptor
PushlLong#Template;addrofentrl tmplate
_NeuwControl2

PullLong TEHandle ;retrieve cntrl hndi

That’s it! You know everything needed to become a
TextEdit guru. Well, you know enough to get started
on it, anyway. Look over the source code and follow
the logic to see what's happening.

The Sourcerors Apprentice

Page 20

Editor: You'll nolice that Jay does a JSR StartUp and
JSR Shutdown - those are calls to routines virtually
identical to the Generic Start I we ran last time. They
can {and probably should) be put into reusable,
linkable files. The only time they'd need lo be
changed is when your current application needs
more tools than are included in those generic rou-
tines.

Incidentally, we had two reports of difficulties with

Generic Start II, but had no luck tracking down the
bug. We did find that the tools requested did not
equal the tools listed in the StartStopRec, but that
was not actually a fatal error., Jay and I both are
using his code with no trouble, and the other person
I sent a copy to has reported no problems either.

That doesn’t mean that anyone is crazy, of course, it
Justmeans that we couldn’t replicate the problem (no
response_from TaskMaster).

1 st of f

2 *::::::::::================:===============:==========================
3 ¥ Mini word processor for The Sourceror’s Apprentice

4 * Another Mohawk Man Creation

S * Copyright 19838 - PunkHWare

6 *::::::::====:===============:====::=======::=========================
7 XC

8 pee

9 mX o0

10 cas in

11 rel

12 use mWwp . macs

13 put 1/tool . equates/el6. . window

14 put 1/tool . equates/el6 . memory

15 put 1/tool . equates/elb.gsos

16 *

17 do @

18 di mac ;3 new macro

19 adrl 11
20 eom
21 fin
22 *

23 phk
24 plb ;set data and program bank the same
25 Jsr StartUp ;1oad and start the tools
26 Jsr MemAlloc ;grab a 64K chunk for data
27 Jsr Makelindow ;a window for TextEdit to live in
28 Jsr WakeTextEdit ;...and make it active
29 Jsr GetFile ;choose a file to load
30 bes :NoFile ;if cancel was clicked, branch
31 Jsr SetText ;put the text in the window
32 :NoFile
33 _InitCursor
34 Jsr EventlLoop :;go do that loop thing
35 Jmp ShutDoun ;and exit the program
36 *
37 GetFile
38 “SFGetFile2 #120;#40;%0;#Promptl;#0; #08; #ReplyRec
39 1da ReplyRec ;see what was clicked
49 bne :Load ;if file picked, go load it
41 sec
42 rts
43 :Load

44 iGS0S _Open;OpenParms;1

The Sourcerors Apprentice

45 1da OpenRefNum

46 sta ReadRefNum

47 sta CloseRefNum

48 MovelLong OpenEOF ;ReadRequest ;move the length of file
49 Movelong BufferPointer;ReadBuffer ;move the buffer address
S0 i GS0S _Read;ReadParms;1

51 iGSOS _Close;CloseParms;1

52 Movel.ong BufferPointer;50 ;move address to direct page
53 1dy OpenEOF ;get Tength of file if < 64K
54 sep $20 ;90 to B bit accumulator
55 lloop 1da [50].y ;grab a character

56 and #$7F ;strip off the hight bit
57 sta [S50].y ;and resave it

58 dey ;point to the previous character
59 bp1 Jloop ;if not -1, keep looping

60 rep $20 ;back to 16 bit accumulator
61 cle

62 rts

63 *

64 SetText

65 “TESetText #&101;BufferPointer;0OpenEOF;#0;#0; 80

66 rts

67 *

68 Startup

69 _TLStartup ;tool locator first

70 “"MMStartup #0 ;start the mem manager

71 Pulllord ProglID

72 _MTStartup ;misc tools manager

73 “StartUpTools ProglD;#0;#StartStopRec

74 PulllLong SSRec

75 rts

76 K

7?7 ShutDoun

78 “ShutDownTools #@;SSRec ;kill everything we started
79 _MTShutDoun

80 “MMShutDouwn ProglD

81 _TLShutDown

82 iGSO0S _Quit;:QParms;1

83 :QParms ds 2

84 ds 4

85 *

86 MemAlloc

87 “NewHandle #63999;ProglID;#attrLocked; #0

88 PullLong BufferHandle

89 Deref BufferHandle;BufferPointer

90 rts

91 *

92 Makelindouw

93 “Neuwlindow #WindowTemplate

94 PulllLong WindowPtr ;orab and save the pointer
95 rts

96

97 WakeTextEdit

98 “NewControl2 WindowPtr;#0;#TETemplate

99 PulllLong TEHandle ;save the TextEdit handle

100 rts

101 *

Page 21

‘The Sourcerors Apprentice Page 22

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
1z0
121
122
123
124
123
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
158
160

Eventloop
“TaskMaster 8#$FFFF:8EventRec
pla ;get the event code
beq EventlLoop ;if nothing, keep looping
cmp swlInGoAway : ;if window close box was clicked. ..
bne EventLoop ;...then we’re done
rts
*
ContentDraw
“DrawControls WindowPtr
rti
*
ReplyRec
dw %] ;good or bad?
duw %] stype
dl (%] ;auxtype
dw 2 ;type of reference
adrl FileName ;filename reference
dw Q ;type of reference
adrl PathName ;pathname reference
FileName duw 18
ds 17
PathName duw 68
ds 64

Promptl str
Prompt2 str
DefaultName duw
stri
OpenParms du
OpenRefNum ds
adr]
dw
duw
ds
ds
ds
ds
ds
ds
ds
OpenEOF ds

ReadParms duw
ReadRefNum ds
ReadBuffer ds
ReadRequest ds

‘Choose a file to load:’

‘Save file as:’

10

‘Sample’

12

2 ;ref number of newly opened file
FileNamet2

;filetype

AhOONVNALAVNNESS

:length of newly opened file

BN VI N

4

ReadTransfer ds 4

CloseParms du
CloseRefNum ds

SSRec ds
ProglID ds
StartStopRec
dw
duw

1
2

4
2

Q
$80 ; 640 mode

‘The Sourcerors Apprentice

Page 23

161 du 9

162 adrl 0

163 dw 17

164

165 duw $1e,$0100
166 duw $04,$0300
167 duw 18, $0201
168 dw $06, $0300¢
169 du 27,$0300
170 duw 14,$0300
171 dw 16, $0300
172 duw 15,$0300
173 dw $1c,$0300
174 duw 20,$0300
175 du 21,%0101
176 dw 22,%0101
177 duw 5,%$0101
178 dw 23,%010t
178 dw $13, $0200
180 duw $22,%$0100
181 du $8,¢0101
182

183 BufferHandle ds 4
184 BufferPointer ds 4
185 WindowPtr ds 4
186

187 EventRec

188 ellhat ds 2

189 eMessage ds 4

150 ellhen ds 4

181 elhere ds 4

192 eModifiers ds 2

193 TaskData ds 4

194 TaskMask adrl $001f5fff
195 adrl @

196 adrl ©

197 duw 0

198 adrl O

198 adrl 0

200 adrl ©

201 adrl 0

2ez

203 WindowTemplate

204 duw rend-WindowTemplate
205 du Xll@@@@@&ill@l@@l
206 adrl windoutitle
207 ds 4

208 duw 11,0,199,630
209 adrl 0

210 dw (%]

211 dw Q

212 dw]

213 dw %]

214 duw (%]

215 duw %)

216 du %)

217 du 0

218 duw 0

219 duw 0

;global

dpage handle
number of tools

;Resource
;quickdraw
; qdaux '
;event
;font
;window
;control
;menu

;list
;lined
;dialog
;scrap

; desk
;fite
;print manager
;TextEdit

;event code

;event result

;ticks since startup
mouse location
;status of modifier keys

parm list length

frame bits

pointer to title

refcon

zoomed rectangle

color table pointer

vert offset of content
horiz offset of content
data area height

data area width

max grow height

max grow width

vert. arrow scroll amount
horiz arrow scroll amount
vert. page amount

horiz page amount

‘The Sourceror's Apprentice

Page 24

220 adrl 0 ; info bar ref con

221 dw Q ; info bar height

2e2 adrl 0 ; window procedure

223 adrl 0 s info bar draw routine

224 adrl ContentDraw : window content draw rtn
225 dw 26,2,198,637 starting position rect
226 adrl -1 ; window plane, -1 is front
227 adrl @ ; memory for windou,

228 :end '

229 HindouwTitle str ¢ TextEdit Example *

230

231 TEHandle ds 4

232

233 TETemplate

234 du 18 ;number of parameters

235 adrl 900 ;control ID

236 dw 5,5,170,610 ;boundary rectangle

237 adrl $85000000 ;editTextControl

238 duw o ; flags

239 duw 80111 _1100_0000_0000 ;more flags

240 ds 4 :refcon

241 adrl 80110 _0010_1010_0000_0000_0000_0000_0000 ;

242 duw $EFFF, $FFFF, $FFFF, $fFFff ; indent rect defs, standards
243 dl ~1 ;make a default vert scroll bar

244 du (%) ;vert scroll amount — 0 = default
245 dil @ ;start with no horiz scroll bar

246 dus (%] ;horz scroll amount

247 dl) ;ref to style information

248 duw 0 ;textDescriptor

249 di] ;reference to initial text

259 dl Q ;length of initial text

251 dl 65535 ;max num of chars allouwed

252

254

255 sav mwp . 1

‘The Sourceror s Apprentice

Copyright (C) 1989 by Ariel Publishing
All Rights Reserved

Box 398 Pateros, WA 98846 (509) 923-2249 GEnie: R.W.LAMBERT
Apple, Apple 11, ligs, BASIC.SYSTEM, and ProDOS are registered trademarks of Apple Computers, Inc.

Subscription prices in US dollars (Canadaand Mexico add $5, non-North American orders add $18 per year)
1year..$29.95 2years..$56 Backissues are $3 each (non-USA add $2) There is a quarterly source code diskette available for $25 per
year (Canada and Mexico add $5, non-North American orders add $15)

WARRANTY AND LIMITATION OF LIABILITY: | warrant that the information inThe Apprentice is correct and somewhat useful to somebody
somewhere. Any subscriber may ask for a full refund of theier last subscription payment at any time. At no time shall | or my contributors be
held liable for any incidental or consequential damages in excess of the fees paid by a subscriber.

We here at Ariel Publishing freely admit our shortcomings, but nevertheless strive to bring glory to the Lord Jesus Christ.
(Hi Nate!)

	thesourcerorsapprentice_v1n11 part 1
	thesourcerorsapprentice_v1n11 part 2

