Hardcore COMPUTIST’S

= Book Of Softkeys il

SoftKey Publishing

THE

BOOK
OF
SOFTKEYS

‘volume II

Entire contents copyright © 1986 by
SoftKey Publishing
PO Box 110846-BK
Tacoma, WA 98411

All Rights Reserved. Copying done for other than
personal or internal reference (without express written
permission from the publisher) is prohibited. Any
opinions expressed by the authors are not necessarily
those of Hardcore COMPUTIST or SofiKey Publishing.

The Book Of Softkeys Volume II

The Book Of Softkeys Volume 11

Table of Contents

Table of Contents.........cuouiiiiiiiiiiiiirreeionnnereeeansnsnnnnnns 2
Introductioncooviuuiiiiiiiiiiiiiiiiiiitieereraeernnnnnnnns 3
What is @ Softkey?.coriiiiiiiiiiiiiiiititieieairrennreeeennnns 4
Apple Cider Spider..............coviieiiiiiininnna.. see SOL
Apple LOogo. .. ovvviiiii it et e, 7
Arcade Machine.......... ... 9
The Artist. ...t i iiiiieiiiiaienane 13
Bank Street Writer...........coviiiiiiiiiiiiiiiinnennn.. 16
Cannonball Blitz......................iiiiiiiia.. see SOL
Canyon Climber............oiiiiiiiiiiiiiiiiiiiiannnn. 32
Caverns of Freitag...............coooiiiiiiiiiiiiinna... 33
Crush, Crumble And Chomp...........c..ooiiiiiiiinnann.. 36
Data Factory 5.0...........coiiiiiiiiiiiiiiiiiiiiiiiienns 38
DB Master......coovveiiiiimnniinnnneanaannesnanenannns 41
The Dic*tion*ary............ccoiiiiiiiiiiiiiananan.. see SOL
Essential Data Duplicator I.................oiiiiuiiiaa... 43
Essential Data Duplicator HI.......................c.u.e. 49
Gold Rush......ooiiiiiiiiiiiiiiiiiiiiiiiiiiieienanenn. 50
Krell Logo. ..o viiuiniiiiiiiiiiiiiiineaneeanaeeaannnnns 53
Legacy of Llylgamyn..........coviiiiiiiiiiieiiianannnnn 55
L1 see Krell Logo or Apple Logo

Mask Of The SuR......ccviiiiiiiiiiiiiiierinnnonnnnenns
Minit Mam.coviitianirnsiortoreesssosvonnsnacenaes 59
Mouskattack.ooiiiiiiiiiiiiii i iiieieisereronnanas 63
Music Construction Set.............coviiviiiiiiiiiininn, 67
Oi’s Well. . ..ooiiiiiiiiiiiiiiireireinernananaaanans see SOL
Pandora’s BoX......ciiviviiinniinioiiieennincsescenannns 68
RobOtron.o ivviiiiiiiiii ittt iiiiiiiin s 71
Sammy Lightfoot.....................o.ciiial, see SOL
Screenwriter I v2.2.........ccciiiiiiiiniiinnenn, see SOL
Sensible Speller 4.0......... i, 75
Sensible Speller 4.08c, 4.1c.........ooviiiiiiiiiiiiiiiiiinns 82
the Spy Strikes Back..........civiviviiiiiiiniinenanns 89
Time Zone vI.1......cocviiiuiriiiiiiiiiiiienennnnnns see SOL
Visible Computer: 6502............c00iiiiiiiiiiininnnen. 92
Visidex ..ottt e 96
ViSitermooviiiiii ittt ettt e ittt 98
/.o 1 1 99
Hayden Software.............c.oiiiiiiiiiiiiiiiiinneens 108
SOL: Sierra Online Software......................co0uun. 110
How to make DEMUFFIN PLUS. iiiiiiiiininnes 118
Super IOB 1.5, ... ittt iiiiiiiietnesrssinnctoisrosanns 119
Using ProDOS On A Franklin Ace...............oiiiiiiiiiiiiinns 140
CrunchList oottt ittt iiiiireriariseneneroinssannns 141
Controller Saver...........coiiiiiiiiiieiiiiiireciinnciseeesnens 146
Making Liberated Backups That Retain Their Copy-protection........ 149
Examining Copy-protected Applesoft BASIC Programs............... 153
APT (Advanced Playing Technique)...........ccoveeiiinrinineenanens

Castle Wolfenstein: 31, 54, 70 Miner 2049er: 37 Serpentine: 58
Star Maze: 42 Ultima II: 8 The Wizard And The Princess: 98
Wizardry: Proving Grounds Of The Mad Overlord: 52 Zaxxon: 107

2 The Book Of Softkeys Volume 11

Introduction

Welcome to the Book Of Softkeys Volume II, a compilation
of articles from Hardcore COMPUTIST magazine (issues 6
through 10) that explain how to remove copy-protection
from commercially sold, locked-up and uncopyable software
for the Apple Il series of computer systems.

Hardcore COMPUTIST (now just called COMPUTIST) is
a monthly publication devoted to the serious user of Apple
Il computers and compatibles. Our magazine contains
information you are not likely to find in any of the other
major journals dedicated to the Apple market.

Our editorial policy is that we do NOT condone software
piracy, but we do believe that honest users are entitled to
backup commercial disks they have purchased. In addition
to the security of a backup disk, the removal of copy-
protection gives the user the option of modlfymg application
programs to meet his or her needs.

Furthermore, the copyright laws guarantee your right to
such a deprotected backup copy:

..."'It is not an infringement for the owner of a copy of a computer
program to make or authorize the making of another copy or
adaption of that computer program provided:

1) that such a new copy or adaption is created as an essential step
in the utilization of the computer program in ‘conjunction with a
machine and that it is used in no other manner, or

2) that such new copy or adaption is for archival purposes only
and that all archival copies are destroyed in the event that continued
possession of the computer program should cease to be rightful.

Any exact copies prepared in accordance with the provisions of
this section may be leased, sold, or otherwise transferred, along
with the copy from which such copies were prepared, only as part
of the lease, sale, or other transfer of all rights in the program.
Adaptions so prepared may be transferred only with the
authorization of the copyright owner."

United States Code title 17, §117 (17 USC 117)

Those of you who are not already familiar with Hardcore
COMPUTIST are advised to read the What is a Softkey? article
in order to avoid frustration when attempting to follow a
softkey or when entering the programs printed in this Book

Of Softkeys.

The Book Of Softkeys Volume II

What Is A Softkey?

Softkey is a term which we coined to describe a procedure
that removes, or at least circumvents, any copy-protection
on a particular disk. Once a softkey procedure has been
performed, the resulting disk can usually be copied by the
use of Apple’s COPYA program (on the DOS 3.3 System
Master Disk) and is said to be ‘“COPYAable.”

Hl Commands And Controls:

Commands which a reader is required to perform are set apart
from normal text by being indented and bold. An example is:

PR#6
The key must be pressed at the end of every such
command unless otherwise specified. Control characters are shown
as a single symbol. For example:

6EP)
To complete this command, you must first type the number 6 and
then hold the key while you press the [P] key.

Hl Requirements:

Most of the programs and softkeys which appear in this book
require one of the Apple Il series of computers and at least one disk
drive with DOS 3.3. Occasionally, some programs and procedures
have special requirements. The prerequisiies for deprotection
techniques or programs will always be listed at the beginning of
the article under the ‘Requirements:’ heading.

Ml Software Recommendations:

The following programs are strongly recommended for readers
who wish to obtain the most benefit from our articles:

An Applesoft Program Editor such as Global Program Line
Editor (GPLE).

A Sector Editor such as DiskEdit (SoftKey Publishing), or ZAP
from Bag of Tricks or Tricky Dick from The CIA.

A Disk Search Utility such as The Inspector, The Tracer from
The CIA or The CORE Disk Searcher (SoftKey Publishing).

An Assembler such as the S-C Assembler or Merlin/Big Mac.

A Bit Copier such as Copy II Plus, Locksmith or The Essential
Data Duplicator.

A Text Editor capable of producing normal sequential text files
such as Applewriter II, Magic Window II or Screenwriter II.

You will also find COPYA, FID and MUFFIN from the DOS 3.3
System Master Disk useful.

q The Book Of Softkeys Volume II

Bl Super IOB and controllers

Several softkey procedures will make use of a Super IOB
controller, a small program that must be keyed into the middle of
Super IOB. The controller changes Super I0B so that it can copy
different disks. See the Super IOB 1.5 article and program in this
volume of the Book Of Softkeys.

Hl RESET Into The Monitor
Some softkey procedures require that the user be able to enter

the Apple’s System Monitor (henceforth called the Monitor) during
the execution of a copy-protected program. Check the following list
to see what hardware you will need to obtain this ability.

Apple Il Plus - Apple //e - Apple compatibles:
1) Place an Integer BASIC ROM card in one of the Apple slots.
2) Use a non-maskable interrupt (NMI) card such as Replay or
Wildcard.

Apple Il Plus - Apple compatibles:
Install an F8 ROM with a modified RESET vector on the computer’s
motherboard as detailed in the “Modified ROMS’ article of Hardcore
COMPUTIST # 6.

Apple //e - Apple //c:
Install a modified CD ROM on the computer’s motherboard. Clay
Harrell’s company (Cutting Edge Ent.; Box 43234 Ren Cen Station-
HC; Detroit, MI 48243) sells a hardware device that will give you
this ability. Making this modification to an Apple //c will void its
warranty but the increased ability to remove copy-protection may
justify it.

Bl Recommended Literature

Apple [Reference Manual
DOS 3.3 manual
Beneath Apple DOS
by Don Worth and Pieter Lechner: Quality Software
Assembly Language For The Applesoft Programmer
by Roy Meyers and C.W. Finley; Addison Wesley
What’s Where In The Apple
by William Lubert; Micro Ink

Bl Keying In Applesoft Programs
BASIC programs are printed in this Book Of Softkeys in a format
that is designed to minimize errors for readers who key in these
programs. To understand this format, you must first understand the
formatted LIST feature of Applesoft.
An illustration- If you strike these keys:
10 HOME:REMCLEAR SCREEN

a program will be stored in the computer’s memory. Strangely, this

The Book Of Softkeys Volume II 5

program will not have a LIST that is exactly as you typed it. Instead,
the LIST will look like this:

10 HOME : REM CLEAR SCREEN

Programs don’t usually LIST the same as they were keyed in
because Applesoft inserts spaces into a program listing before and
after every command word or mathematical operator. These spaces
usually don’t pose a problem except in line numbers which contain
REM or DATA command words. The space inserted after these
command words can be misleading. For example, if you want a
program to have a list like this:

1¢ DATA 67,45,54,52

you would have to omit the space directly after the DATA command

word. If you were to key in the space directly after the DATA

command word, the LIST of the program would look like this:
10 DATA 67,45,54,52

This LIST is different from the LIST you wanted. The number of
spaces you key after DATA and REM command words is very
important.

All of this brings us to the Hardcore COMPUTIST LISTing
format. In a BASIC LISTing, there are two types of spaces: spaces
that don’t matter whether they are keyed or not, and spaces that
MUST be keyed. The latter spaces are printed here as delta
characters (2). All other spaces in our BASIC LISTing are put there
for easier reading and it won’t matter whether you type them or not.

Hl Keying In Hexdumps

Machine language programs are printed here as both source code
and hexdumps. Only one of these formats need be keyed in to get
a machine language program. Hexdumps are the shortest and easiest
format to type in. To key in hexdumps, you must first enter the
Monitor with CALL -151 (FETURY] ,

Now key in the hexdump exactly as it appears. If you hear a beep,
you will know that you have typed something incorrectly and must
retype that line.

When finished, return to BASIC by typing E@03G[RETURY .
Remember to BSAVE the program with the correct filename,
address and length parameters as given in the article.

El Keying In Source Code

The source code portion of a machine language program is
provided only to better explain the program’s operation. If you wish
to key it in, you will need the S-C Assembler. Without this assembler,
you will have to convert the S-C Assembler directives (printed in
Hardcore COMPUTIST # 17) to similar directives used by your

assembler.

6 The Book Of Softkeys Volume II

Apple LOGO

Logo Computer Systems, Apple Computer

How to Copy Apple LOGO
by Anne Rachel Gygi
(Hardcore COMPUTIST # 8, page 7)

Requirements:
Apple Il Plus with 64K RAM
One disk drive with DOS 3.3
A sector editor such as DiskEdit
A Bit Copy program such as Locksmith or Copy II Plus
One blank disk

Apple LOGO is copy-protected by writing Track $1 in a non-
standard format. A nibble-count technique is used on this track with
a fixed number of $FFs being written between $D6. If a copy is
made and the number of $FFs between $D6s on Track $1 is not
the same as on the original disk, then the copy will not work.

Track $1 on the distributed disk has the following format:

Number of Bytes: 1 124 1 132 1
Value: $D6 $FF $D6 $FF $D6

Rest of Track: $FF

The logic to read and analyze Track $1 is in the second boot load
Track $0, Sector $0A, which ultimately resides in memory at
$4000—$40FF . There are two constants equal to the number of Sync
Bytes ($FFs) between the three $D6s and these are loaded into
memory locations $40CD (124 or $7C) and $40CE (132 or $84).
These are bytes $7C and $7D on Track $0, Sector $OA.

Unlocking the Turtle

The technique for copying Apple Logo involves making a sector
edit to a bit copy so that the code to seek and read Track $1 is
disabled. The necessary steps are outlined next.

The Book Of Softkeys Volume II 7

E Use a bit copier (Locksmith 4.1, Nibbles Away, etc.) to copy
Tracks $0—$22 with no parameter changes. An error on Track $1
is OK.

E Use a Sector-Editing program such as DiskEdit or ZAP from
Bag of Tricks to make the following changes to the copied disk.

Track Sector Byte To

$A 813 $EA
$A $14 $EA
$A 815 $EA
$A 822 $4C
$A $23 $55

$A $24 $40

$A $79 $EA
$A $7A SEA
$A $7B $EA

SSSSSSSSeSeS

Don’t forget to write the sector back to the disk.

The first set of changes at $13—$15 eliminates (NOPs) the branch
to Logo’s RWTS at $3D00 which seeks Track $1. The changes at
$22—$23 cause a branch around the code which reads Track $1
and the final changes at $79—$7B eliminate (NOPs) the branch
which would be taken if the nibble count is not correct.

The resulting disk can now be copied with any bit copier and Apple
Logo will run because it now completely ignores whatever is on

Track $1.

Wes Felty’s APT for...

Lots Of Ships

When you board a ship and leave land, your ship will often
split into two ships. The second ship will attack you, but do
not sink it. Instead, land your ship, exit it and board the second
ship. Then sail it to another continent and exit the ship.
If you reboard the ship and set sail, it may split in two again.
You can leave ships all over the world using this technique.

8 The Book Of Softkeys Volume II

Afcade Machine

Broderbund Software, Inc

Softkey For The Arcade Machine
by Marco Hunter
(Hardcore COMPUTIST # 10, page 9)

Requirements:
Apple with 48K
One disk drive, with DOS 3.3
One blank disk
Old Monitor ROM or modified F8 ROM
Super 10B
Arcade Machine

Although Broderbund Software is generally very thorough with
their protection schemes, they left two holes in the protection on
the Arcade Machine.

First of all, Tracks $03—$11 are normal DOS 3.3 tracks. These
tracks store the various parts of the options available from the menu.

Secondly, although the main file is heavily protected on the disk
(spiral protection and what not), once loaded into memory it is fairly
clean.

Since the menu options take up Tracks $03—$11 we have room
for DOS (Tracks 0—2), as well as room for the main file (Tracks
$12—$22).

Because Track $11 is taken up by the menu options, we must
change the location of our CATALOG. I chose to put it on Track
$12.

Now we have a neat package (all on one disk) just like the original.

When we boot our deprotected version, DOS will load the main
file which from then on will access the menu options on Tracks

$03—$11.
Here’s how

[1] First of all, boot up with a DOS that has the ability to
INITialize a disk (a fast DOS is recommended).

The Book Of Softkeys Volume II 9

IZ] Next, type in the Super IOB controller at the end of this
article and SAVE it. (See the Controller Saver article.)

IE With the controller and Super IOB merged, execute the
Super 10B program:

RUN

IZI When Super 10B asks you if you want to format the target
disk, you must type a (¥]. This formatting is necessary because
the controller does a special format to the disk which puts the
directory on Track $12 instead of $11.

EI Once Super I0B has copied Tracks $03—$11, boot up the
Arcade Machine:

PR#6
EI Get into the Monitor when the main menu appears.

Move the main file and sensitive memory to safety:

2000<9600.B600M
8000<B600.CO00M
8A00<0.900M

Boot the disk that Super IOB formatted (you should get a
?FILE NOT FOUND error, but don’t worry):

6(P)

EI Enter the Monitor:
CALL -151

Put a patch just before the beginning of the Arcade Machine
code:

8FD:4C 00 93

Eﬂ Type in this routine that moves the memory back to where
it used to be:

9300: A2 00 BD 00 20 9D 00 96
9308: E8 DO F7 EE 04 93 EE 07
9310: 93 AD 04 93 C9 40 DO EA
9318: BD 00 80 9D 00 B6 E8 DO
9320: F7 EE 1A 93 EE 1D 93 AD
9328: 1D 93 C9 C0 D0 EA BD 00
9330: 8A 9D 00 00 E8 DO F7 EE
9338: 30 93 EE 33 93 AD 33 93
9340: C9 09 DO EA 4C 00 08

10 The Book Of Softkeys Volume II

You can check your typing by comparing it to the following
disassembly:

9300 A2 00 LDX #$00
93¢2- BD 90 20 LDA $2000 X
93@5- 9D 90 96 STA $9600,X
9308- E8 INX

9309- D@ F7 BNE $9302
930B- EE 94 93 INC $9304
930E- EE @7 93 INC $9307
9311- AD 9493 LDA $9304
9314- C940 CMP #3440
9316- DO EA BNE $9302
9318- BD @O 8F LDA $8000 X
931B- 9D@BB6 STA $B6@G, X
931E- E8 INX

931F- DO F7 BNE $9318
9321- EE1A93 INC $931A
9324- EE1D93 INC $931D
9327- AD1D93 LDA$931D
932A- C9Ce CMP #$C0
932C- DOEA BNE $9318
932E- BD@@BA LDA $8AGE X
9331- 9D@@ 0@ STA $0000, X
9334- E8 INX

9335- DOF7 BNE $932E
9337- EE 3093 INC $9330
933A- EE 3393 INC $9333
933D- AD3393 LDA$9333
934¢9- C9 09 CMP #3509
9342- DOEA BNE $932E
9344- 4CD008 JMP $0800

@ Save the main file:
BSAVE ARCADE “ MACHINE, AS8FD, L$8D04

Return to BASIC:

FP

Type in this short greeting program:
10 PRINT CHRS (4) *‘BRUN ARCADE “MACHINE"

EI_S—] Save it:

SAVE HELLO

The Arcade Machine is now COPYAable.

The Book Of Softkeys Volume II 11

The backside (with all the sample games) can be copied with any
good bit copier.

If you don’t have a bit copier, you can insert a POKE 47426,24
into Line 10 of COPYA to copy it.

One final note: The options from the Arcade Machine were all
written in Applesoft. If you into the Monitor and type
to get into BASIC after choosing one of the options, you can then
list the file. '

controller

410 GOSUB 80 : HOME : A$ = "FORMATING" : FLASH : GOSUB 45@ : NORMAL : POKE
44033 |18 : POKE 44703 |18 : POKE 44764 ,18 : POKE 42347 .96

415 POKE 43364 ,255 : PRINT : PRINT CHR$ (4) "INIT*HELLO,V"VL" 5"S2
".D"D2 :VL=0 : RETURN

1900 REM ARCADE MACHINE

1010 TK =3 :ST =0 :LT =18 :CD=WR : POKE 47426 ,24 : GOSUB 1120

1820 T1 =TK : GOSUB 490

1030 GOSUB 430 : GOSUB 180 :ST =ST + 1 : IF ST < DOS THEN 1030

1048 IF BF THEN 1068

1850 ST =0 :TK=TK+ 1 : IF TK < LT THEN 1030

1060 GOSUB 490 :TK=T1 :ST =9

1970 GOSUB 430 : GOSUB 108 :ST = ST + 1 : |F ST < DOS THEN 1070

1080 ST =0 :TK=TK+1 : IFBF=0AND TK < LT THEN 1078

1099 IF TK < LT THEN 1920

1100 HOME : PRINT : PRINT "DONE*WITH*COPY" : END

1120 POKE 44033 , 17 : POKE 44703 ,17 : POKE 44764 |17 : POKE 42347 .76

1130 CD=RD :S0=52 :DV=D2 : GOSUB 88 :TK = 18 :ST = 0 : GOSUB 430 :
GOSUB 100

1140 POKE 9985 ,18 : FOR A =10652 TO 10115 : POKE A ,@ : NEXT :CD = WR
: GOSUB 8@ : GOSUB 18 :TK =3 : RETURN

¥

12 The Book Of Softkeys Volume II

The Artist

Sierra On-Line

Softkey for The Artist
by Walt Campbell
(Hardcore COMPUTIST # 8, page 12)

Requirements:
Apple Il Plus or Apple //e, 48K
At least one disk drive
The Artist master disk
A blank disk
FID or COPYA

The Artist is the graphics package used to develop some of Sierra
On-Line’s biggest selling games, such as Crossfire and Mouskattack. .
That is what the introduction to the program claims and after using
the package for quite awhile, I can believe it. It contains two separate
but compatible screen drawing routines, a zoom lens type bit editor,
a 21-color fill routine, shape table construction and editor utilities,
and some nifty high-speed byte-shape design and move routines.
All in all, an exceptional set of graphics tools.

The problem, as with all of Sierra On-Line’s programs, is that
it’s copy-protected. The copy-protection scheme is similar to the
one outlined by Dan Price in the Screenwriter II softkey (Book
Of Softkeys volume I). The program uses direct disk access to check
the format of the disk tracks for embedded keys. If the keys are
not present, it clears memory and reboots the disk. The program
is otherwise pretty much box-stock DOS 3.3 and can be easily copied
using FID or COPYA from the DOS System Master disk.

I jumped into the project of deprotecting the disk after reading
Mr. Price’s softkey, feeling confident that in a short time I would
have identified the subroutine that checked the disk, bypassed it,
and have a ‘clean’ unprotected copy. Eight hours later I was no closer
to a copy and much more frustrated. I took a break from the
computer and skimmed through my back issues of Hardcore
COMPUTIST looking for a hint or clue that might aid me in
‘cracking’ this code.

The Book Of Softkeys Volume 11 13

In Ray Darrah’s article Boot-code Tracing Pest Patrol (see Book
Of Softkeys Volume I), I found a discussion of concealed code and
disguised jumps in machine language programs. This ‘turned on a
light” and I returned to the project with new optimism. Two hours
later I had my unprotected copy! Once discovered, the procedure
is (naturally!) simple and can be done in fifteen minutes. Before
outlining the procedure I would like to explain the protection scheme
more fully in hopes of aiding other enterprising hackers and maybe
saving them hours of time. Those of you not interested in the
procedures used to break the copy protection can skip to the fix
below.

The copy protection method used on The Arrist is similar to the
one used on Screenwriter I, but the author of the program not only
uses concealed jumps and stack manipulation to hide return
addresses, he has a particularly sneaky portion of code that actually
rewrites itself before it checks the disk, and then rewrites itself after
it’s done to conceal its existence.

After much experimentation, I isolated the disk checking routine
to a range of code in the main menu program. This code plays some
tricks with branch instructions and forces branches to what seems
to be the middle of other valid instructions. It pushes addresses on
the stack and executes a machine language return to jump to those
addresses, etc. This kind of code has become pretty standard in copy
* and code protection but is frustrating, nonetheless.

After digging through this mess I came to a section of code that
seemed to make no sense whatsoever and ended by jumping to an
area of memory that I knew contained no program code! I started
inserting breaks in the code to try and isolate the offending section
and, BINGO! I found a short section of disguised code that actually
rewrote successive bytes of the program! This type of protection
was new to me and may serve to illustrate further the possibilities
available to machine code programmers in code manipulation.

The program loads the Y-Register with a value of $29, indexes
to an address $29 bytes away from itself, and performs an exclusive
‘OR’ operation (EOR) with a value of $8A on the code at this new
location.

This transforms a seemingly meaningless section of code to a
detailed byte-check of the tracks on the disk and checks for the
embedded keys. If the proper format keys are not found, it clears
memory and reboots the disk. If it finds the proper keys, it rewrites
itself and returns to the main section of code! Once I got this far
in the analysis the fix became obvious and extremely simple.

THE FIX:

In order to remove this protection it is necessary to first copy the
disk with either the COPYA or the FID programs. The Artist

14 The Book Of Softkeys Volume I

master disk uses a binary Hello program, so if you use FID to copy
the programs, you must either INIT your blank disk to BRUN the
Hello program (as outlined in the Dan Price’s Screenwriter Softkey)
or use a DOS utility, such as ProntoDOS, to change the disk boot
program. Using a modified DOS-like ProntoDOS also will
noticeably speed up program disk access and the loading and saving
of hi-res pictures.

Once you have prepared your new program disk and it contains
all the files from the original master disk, follow the series of steps
listed below:

Boot up a normal DOS 3.3 disk:
PR#6
|:§:_| Insert the copy of The Artist in your disk drive.
[E Unlock the MAIN MENU program so it can be modified:
UNLOCK MAIN MENU
E Load the MAIN MENU program:
BLOAD MAIN MENU
EI Enter the Monitor:
CALL -151

[5] Modify Address $4257 from $8A to $57 and Address $4662
from $B9 to $60:

4257:57
4662:60

E Save the modified MAIN MENU program:
BSAVE MAIN MENU,A$4000,L$4D

Finally, relock the now modified program:
LOCK MAIN MENU

Alternatively, if you used COPYA to copy the disk, the changes
can be made directly to the disk with a sector editor. On my copy
of The Artist, the first change to make was at Track $05, Sector
$0C, Byte $5B. I changed this byte from $8A to $57. The second
change is at Track $05, Sector $08, Byte $66. This byte needs to
be changed from $B9 to $60. This probably won’t work on a FID
copy because the sector allocation may be different.

THAT’S IT!! You now have a copy of The Artist that is
unprotected and COPYAable!

The Book Of Softkeys Volume II 15

(_—_;
Bank Street Writer

Bank Street Writer

Softkey For Bank Street Writer
by Earl Taylor & Steve Morgan
(Hardcore COMPUTIST # 10, page 12)

Requirements:
Apple I, Apple Il Plus, //e (minimum 48K and Applesoft)
One disk drive and DOS 3.3
Blank disks

The Bank Street Writer is a word-processing program particularly
suited to the beginner. As such it includes many features to prevent
confusion and accidents which might be experienced by the computer
novice. In developing this softkey we have attempted to retain as
many of these features as possible.

The original disk is able to operate with several different
configurations of hardware. It requires (and checks for) a minimum
of 48K of motherboard RAM. In addition, the presence of Applesoft
is verified. If a 16K RAMcard is installed in Slot 0, Applesoft will
be placed there if necessary. If Applesoft is in Motherboard ROM,
the extra 16K will be used to increase the user’s text memory
allowing about 3,200 words instead of 1,300 without the card. If
installed into an Apple //e, the program will use the //e’s extra
memory and the (&) (open-apple), (&) (closed-apple) keys along
with the four cursor movement keys (=) =)F)3 .

Extensive error-trapping is performed and hitting is totally
non-destructive to the user’s text, requiring only a press of the
key to carry on.

After experiencing some difficulty in getting the softkey version
to properly operate the disk drive, we came upon a feature not
described in the manual. The program actually prevents the user
from accidentally or otherwise INITing or SAVEing files to the
master disk (something that our instincts prevented us from trying!).

We have made an effort to maintain as many of these user-proof
features as possible in our softkey. The unlocked softkey version
supports all but the following features of the original:

16 The Book Of Softkeys Volume II

1) At least 48K of RAM and Applesoft must be resident in the
machine at the time the softkey version is booted.

Our start-up program is in Applesoft. It is possible to enter
the program as an Integer BASIC file and include a few
statements to load Applesoft into the RAM card. The program
will then work normally. All the users we know have Applesoft
in ROM on the Motherboard; therefore, we felt this was not
a serious limitation.

2) The original boots VERY QUICKLY compared to the softkey
version.,

Bank Street Writer (BSW) uses a powerful bulk-loading
scheme to bring its files into memory. This scheme depends
on the format of the data on the disk and, of course, that is
what we want to change. If you’re not the kind who likes to
wait around, we strongly recommend the use of one of the fast
DOSs such as Diversi-DOS, Hyper-DOS, ProntoDos, etc.

The Boot Process

The following paragraphs describe the boot activity of the original
disk as an insight into the softkey method. You may, of course,
simply follow ‘The Softkey Steps’ if you wish.

BSW, like all disks, has a Track @, Sector @ that must be readable
by the disk controller card’s firmware at $C600 (assuming the card
is in Slot 6). This data is loaded into $800—$8FF and executed.
At this point, more data is read from Track @ and placed into memory
at $1000—$1700. Execution is passed to the code starting at $1400.

At this point the program verifies that at least 48K of RAM is
present, printing a message and stopping if it finds less. If all is
well, the BSW DOS is loaded from Tracks $1 and $2 into
$9600—$BFFF.

Next, the type of hardware configuration is determined and an
identifying character is printed in the upper left corner of the screen.
There are four possible configurations which may occur. A value
of 9, 1, 2, or 3 is stored in memory location $1F depending on
the type of hardware.

Value = Screen character: representation

: No Applesoft and no ramcard in Slot 0.
: Applesoft in ROM or ramcard and 48K.
: Applesoft in ROM and ramcard in Slot 0
: Apple //e.

w N~
I
RS

The Book Of Softkeys Volume 11 17

If no motherboard ROM Applesoft is found but a ramcard is
detected, the type-checking code automatically loads Applesoft from
Tracks 3, 4 and S into the card and activates it. For all intents, this
is the same configuration as a 48K Apple Il Plus ($IF = 1.

If $1F = 0 after the type-check, the program informs the user
that Applesoft is required and stops. For the other configurations
more data is loaded into memory as follows:

$1F= Tracks loaded. .. into memory

1 $OE, $0F, $10 $6000 to $8FFF

2 $06, $07, 308 $0000 to $FFFF
$09 $8BOJ to $OAFF

3 $0A, $0B, $4C $D0G0 to SFFFF
$0D $8BOJ to $9AFF

Next, hi-res graphics page two is displayed and filled with the
title page from Tracks $18—$19. More data is read into $400—$7FF
from Track $1A. The drive head is then positioned to Track $11
and the BSW DOS is cold-started with a jump to $9D84.

Track $11 contains a file directory like a normal disk. The BSW
DOS loads in an Applesoft greeting program at $800 and RUNs
it. The program filename is A followed by 7 backspace characters
and 22 spaces. When we later modify normal DOS to read the
catalog, this filename will not appear since the backspaces cause
the visible characters to be overwritten by the spaces when printed
to the screen.

Program A first detects if the key has been pressed during
the boot. If so, the UTILITY program is run (more on this later).
Otherwise, A loads two other small binary files. One is called #$30!
which loads at $301 and the other is INIT, loaded at $2D®. Once
these are loaded, A continues the boot with a CALL 2048. This
begins execution of the code loaded earlier at $400.

Another hardware-dependent load is performed next as follows:

$1F= Tracks loaded into memory

1 $1F $9000 to $9BFF
$20, $21 $2500 to $3CFF
$22 $3400 to $3FFF

2 $18B, $1C $0800 to $1FFF

3 $1D, $1E $0800 to $1FFF

At this point, the disk access is finally completed and the drive
is shut off. The next statement to be executed is at $525. This code
does some initialization and patching and then starts the program

18 The Book Of Softkeys Volume 11

with an indirect jump through $0000 to either $6009 for hardware
type 1 ($1F = 1) or $098F for types 2 and 3.

The Protection

The copy-protection on the BSW disk consists essentially of
changes to address and data prologue and epilogue bytes on some
tracks and non-standard encoding and sectoring (for fast load) on
other tracks.

Half-tracks, track-arcing, track synchronizing, and nibble counting
do not seem to have been used. The disk can be bit-copied but seems
to be speed sensitive which might indicate that the original was
written at slower than normal speed.

The Softkey

To obtain an unprotected version of BSW, the original is allowed
to load the required ranges of memory under the control of a small
machine language program. At specific points in the boot, the
program breaks into the monitor.

A slave DOS is then booted and used to save the files in the normal
DOS 3.3 format.

Finally, a BASIC program is written to emulate the functions of
the original boot process, ending with a CALL 1317 ($525) to do
the initializing and start the program.

In an effort to make things a little more sensible, notes are included
with the softkey steps. There are quite a number of files to capture
and many machine language patches to perform, so we suggest you
take your time and double check any typed-in code.

|I| Boot DOS 3.3 into your system.

Iz] Enter the Monitor and change the VTOC buffer (explained
later):

CALL -151
B3BF:Ab5

IE Return to BASIC and clear the program memory:
FP

[4] mitialize a disk with this modified VTOC:
INIT HELLO

EI Move the disk][controller ROM into RAM:
3600<C600.C6F7M

The Book Of Softkeys Volume II 19

: E] Enter the following machine language

36F8: A9 05 8D 21 08 A9 37 8D
3700: 22 08 4C 01 08 A0 00 B9
3708: 2D 37 99 F8 13 C8 CO 05
3710: DO F5 8D 84 14 8D 86 14
3718: 8D A@ 17 A9 4B 8D B6 14
3720: A9 32 8D 25 15 A9 37 8D
3728: 26 15 4C 00 14 A9 01 85
3730: 1F 60 A9 4C 8D 25 05 A9
3738: 59 8D 26 05 A9 FF 8D 27
3740: 05 4C 84 9D A9 2C 8D CA
3748: 14 8D D1 14 4C 00 14

Check your entry against the following disassembly:

36F8- A9 @5 LDA #$05
36FA- 8D 2108 STA $0821
36FD- A9 37 LDA #$37
36FF- 8D 2208 STA $@822
3702- 4C0108 JMP $0841
3765- AQ 90 LDY #$00
3707- B92D37 LDA$372D.Y
370A- 99 F813 STAS$13F8.Y
370D- (8 INY
379E- CP 095 CPY #3085
3710- DB F5 BNE $3707
3712- 8D8414 STA$1484
3715- 8D8614 STA$1486
3718- 8DAG17 STAS17AQ
371B- A94B LDA #$48
371D- 80DB614 STA$14B6
3720- A9 32 LDA #$32
3722- 8D2515 STA$1525
3725- A9 37 LDA #$37
3727- 8D2615 STA$1526
372A- 4C Q0 14 JMP 31400
372D- A901 LDA #$01
372F- 85 1F STASIF
3731- 60 RTS
3732- A9 4C LDA #$4C
3734- 8D 2505 STA $0525
3737- A9 59 LDA #$59
3739- 8D2605 STA $@526
373C- A9 FF LDA #$FF
373E- 8D2705 STA$0527
3741- 4C849D JMP $9D84
3744- A9 2C LDA #$2C
3746- 8DCA14 STA $14CA
3749- 8DD1 14 STA$14DI
374C- 4C Q014 UMP 31400

20 The Book Of Softkeys Volume II

Save the boot ROM and program:
BSAVE CODEBREAK,A$3600,L$14F

How CODEBREAK Works

The CODEBREAK program was developed by boot code tracing
the original disk. It operates as follows:

3600 . 36F7

3732 . 3743

3744 . 374E

Copied from the disk controller card, reads in
the track.

Places IMP ($4C) to $FF59 at $0525 which
allows us to break into the Monitor after the
last files are loaded. The boot is continued by
cold-starting the BSW DOS with a JMP $9D84.

Used later to store $2C (a harmless BIT
instruction) on top of two JSR instructions used
to load the hi-res page two graphic. We will
change the JMP $1400 at $372A to a JMP
$3744 after we have saved the logo. We can
then use the space from $4BO0—$5AFF for the
third portion of the type 2 and 3 loads.

Whew! Let’s Get Some Files
Put the BSW disk in the drive and execute CODEBREAK:

3600G

IE When the drive stops, make the following machine language

patch:

1300: 2C 81 CO 20 55 13 F0 06
1308: 2C 86 C0O 4C 15 13 20 3E
1310: 13 F0 1C EA EA

A 1300L should produce:

1300~ 2C81Co
1303- 205513
1306- F@ 06

1308- 2C8@Co
139B- 4C1513
130E- 20 3E13

1311- F@1C
1313- EA
1314- EA

©1315- A201
etc...

BIT $C081
JSR $1355
BEQ $130E
BIT $CO80
JMP $1315
JSR $133E
BEQ $132F
NOP

NOP

LDX #$01

The Book Of Softkeys Volume II 21

Because our softkey requires Applesoft to be installed before
running, some minor changes to the BSW type-checking routine at
$1300 are needed to maintain maximum compatibility. The BSW
type-checker normally first checks for a RAMcard by writing and
verifying that every bit pattern can be stored at $D000. This would
clobber Applesoft which might have been loaded there by the user
before running the softkey version. To handle this situation, the
above code first enables motherboard ROM with a BIT $C081 and
calls the BSW ‘check for Applesoft’ routine at $1355. This routine
returns with the zero flag set if Applesoft is found. If it is found,
we go to $130E where we check for a RAMcard via the JSR $133E.
If a RAMcard is found, the code branches to the //e-checker at
$132F. That code will exit with a ‘type 2’ if a /e is not found or
with a ‘type 3’ if it is found.

If Applesoft is not found in motherboard ROM, execution falls
through to $1308. We couldn’t have gotten here with the softkey
version if Applesoft were not in Slot 0, so it is re-activated and the
code exits indicating a ‘type 1°. If the ramcard check at $130E fails,
the routine also exits as a ‘type 1°.

Let’s Continue

Move the BSW code out of the way so our slave disk can
boot:

1400<9000.9BFFM

I_El Put the slave disk in the drive and boot it:
C600G

ri_;l We will now save as many files as possible:

BSAVE TYPECHECK,A$1300,L.569
BSAVE BSW.LOGO,A$4000,1.52000
BSAVE BSW.48K.1,A$6000,L53000
BSAVE BSW.48K.2,A$2500,L51B00
BSAVE BSW.48K.3,A$1400,LSAA6

IE We are ready to move on to the ‘type 2’ files. So hop into
the Monitor and load CODEBREAK:

CALL -151
BLOAD CODEBREAK

Prepare CODEBREAK for ‘type 2’ files:
372E:02

IE] Enable the ‘hi-res graphic load disabler’:
372B:44 37

22 The Book Of Softkeys Volume II

Put the BSW disk in the drive and execute the modified
CODEBREAK program:

3600G
Remember, the hi-res graphics load has been disabled so don’r be
alarmed when you don’t see the logo appear.

Move the file out of the way so we can boot:
2800<800.1FFFM

Boot the slave disk again:

C600G

Save all of the ‘type 2’ files:

BSAVE BSW.64K.1,A5$6000,1.53000
BSAVE BSW.64K.2,A$2800,1.51800
BSAVE BSW.64K.3,AS4B00,LSFA6

To get the //e files, enter the Monitor, load CODEBREAK,
and tell it we want ‘type 3’ files: ‘
BLOAD CODEBREAK
CALL -151
372E:03
@ Prevent the hi-res graphic load:
372B:44 37
@ Put the BSW original in the drive and start up
CODEBREAK:
3600G

@ Move this file out of the slave disk’s boot path:
2800<800.1FFFM

Put the slave disk in the drive and boot it by typing:
C600G

@ Now save the //e files:

BSAVE BSW.//E.1,A$6000,L$3000
BSAVE BSW.//E.2,A$2800,L.51800
BSAVE BSW.//E.3,A$4B00,LSFA6

What’s Next?

We must now capture the initialization code which resides in pages
$5—87. This is not as straightforward as the other files because this

The Book Of Softkeys Volume II 23

memory range is part of the page 1 text screen. When we jump to
the Monitor at $FF59 it immediately begins to print its prompt and
scroll the screen. This action quickly destroys the BSW data stored
there.

The data must be moved out of the text page before anything is
printed. We could modify CODEBREAK to move the data before
jumping to the Monitor, but we hate typing in code especially when
there is an interesting alternative. BSW short-circuits the character
switch pointer ($36—$37) by pointing it to an RTS instruction at
$FF58 just before it cold-starts its DOS. This is necessary to prevent
its DOS from destroying the data in the text page, since DOS
normally prints a few prompts and carriage returns to the text screen
as it starts up.

We will take advantage of this by entering the Monitor at $FF62
instead of $FF59. This will prevent the Monitor from fixing the
character switch and give us time to move the data manually. Since
no characters can be printed to the screen, we will be ‘blind’ for
a moment so type carefully.

Tell CODEBREAK to turn off the drive and JuMP into the
Monitor without resetting the character output switch:
BLOAD CODEBREAK
CALL -151
3732:2C E8 C0 4AC 62 FF
Put the BSW original in the drive and boot it with:
3600G
You will not see any of the characters you type, so be careful. If
you think you made a mistake, type and start over.
Move the file out of the way (be careful):
2500<500.7FFM

Reset the character output switch and enter the Monitor:
FF59G

You should now see the Monitor prompt. If you type 2500L, you
should see:

2500- 2086 04 JSR $0486
25@3- A5 IF LDA $1F
2505- QA ASL

etc...

If this is what you see, you’ve got it! If not, try Steps 27 through
29 again.

Put the slave disk back in the drive and boot it:
C600G

24 The Book Of Softkeys Volume II

'_Q_J_l Save the code beginning at $0525:
BSAVE BSW.$525.S7FF,A$2525,L.52DB

Getting The CATALOGable Files

The next step is to capture the CATALOGable files from the BSW
original. In order to do this, the RWTS (Read or Write a
Track/Sector) routine of our slave DOS must be modified to handle
the non-standard prologue and epilogue bytes of the BSW disk.

[E Enter the Monitor and make the necessary changes to DOS:

CALL -151
BSE7:D4
B8F1:D5
B8FC:D6
B935:D7
B938:18 60
B955:A5
B95F:96
B96A:BF
B991:9A
B994:18 60

A CATALOG of the BSW original should reveal the names of
the files mentioned earlier. Notice the extra blank line at the top
of the listing. This is where the A filename was printed. Since it
is a tedious procedure to change DOS like this, it is convenient that
we can place all these files into memory at the same time.

[E Load the files:

BLOAD INIT,A$6300

BLOAD 0$301,A57301
BLOAD PASSWORD!,A$8000
LOAD UTILITY

UTILITY contains two lines that call a machine language
subroutine. This routine is used by UTILITY to change the BSW
DOS from non-standard to standard and back again depending on
whether the BSW disk or the data disk is being accessed. UTILITY
calls the routine through the now famous ampersand (&) vector.

Happily, our slave DOS will be the same format for both the BSW
softkey disk and our data disks. If we remove the & calls, UTILITY
will work fine with our new unlocked BSW disk.

Prepare to edit line 12:

HOME: POKE 33,33: LIST 12

IE] Using the keys, and right arrow [(=Jkey, remove
from this line the &1 and .

The Book Of Softkeys Volume II 25

Remove the &1 and &0 from line 98:
LIST 98

To save the files, we must switch back to standard DOS
sector marker bytes. Insert the slave disk and type:

CALL -151
B8E7:D5
B8F1:AA
B8FC:AD
B935:DE
B955:D5
BO95F:AA
B96A:96
B991:DE

We can now save the files in standard format:

SAVE UTILITY

BSAVE INIT,A$6300,L518

BSAVE 05301,A$7301,LSCF
BSAVE PASSWORD!,A$8000,L5180

We have finally obtained all the required files from the BSW
original disk. The remaining tasks are:

1) Write a program to emulate the boot process.

2) Write two small machine language DOS patches.

The Emulation Program

Many of the BSW files were relocated before they were saved
to our slave disk. These files can be loaded back into position simply
by specifying the Address parameter of the BLOAD command.

However, there are four files that must be given special
consideration.

The BSW.48K. 3 file is loaded by the BSW original between $9000
and $9BFF. This would destroy our slave DOS’s file buffer even
if we set MAXFILES 1. A close examination of the file reveals that
it contains no meaningful data past $9AAS5 which is the bottom of
the first DOS file buffer. When we saved the file in Step 12, the
length parameter was shortened to allow us to BLOAD the file
without overwriting the file buffer.

For types 2 and 3, the same problem occurs with BSW. 64K.3 and
BSW.//e.3 and the same solution has been used.

The BSW.64K.2 and BSW.//e.2 files both need to be loaded in
the range $800—S$1FFF. This is normally Applesoft program space
and would conflict with our HELLO program.

The solution is to cause DOS to load our HELLO program into
the unused space starting at $2000 instead of the normal $800. Since
our program will be fairly short, we can load it at $2000 for all

26 The Book Of Softkeys Volume II

three hardware types and not conflict with BSW.48K.2 at $2500.

After booting the slave disk, type in the following Applesoft
program. When you have checked for and corrected any errors,
SAVE it with SAVE HELLO [RETURY) .

100 IF PEEK (104) <> 32 THEN POKE 8192 ,0 : POKE 184 ,32 : PRINT CHR$
(4) "RUNHELLO"

110 TEXT : HOME : NORMAL : IF PEEK (49152) = 155 THEN POKE 49168 @ :
POKE 104 ,8 : PRINT CHR$ (4) "RUNUTILITY"

120 |F PEEK (49152) = 197 OR PEEK (49152) = 229 THEN POKE 49168 ,0 :
PRINT CHR$ (4) "FP"

130 POKE 49168 .8 : PRINT CHR$ (4) "MAXFILES1"

140 PRINT CHR$ (4) "BRUN TYPECHECK A$1300"

175 PRINT CHR$ (4) "BLOAD BSW.LOGO, A$4000"

180 POKE 49234 ,0 : POKE 49237 ,@ : POKE 49232 ,0 : POKE 49239 .0

199 PRINT CHRS (4) "BLOAD 05301, A$301"

200 PRINT CHRS (4) "BLOAD INIT A$2D0"

210 PRINT CHRS (4) "BLOAD WRITEPROTECT, A$8700"

220 IF PEEK (31) > 1 THEN 260

230 PRINT CHR$ (4) "BLOAD BSW.48K.1,AS6000"

240 PRINT CHRS (4) "BLOAD BSW.48K.2,A$2500"

25@ PRINT CHRS (4) "BLOAD BSW.48K.3,A$9800" : GOTO 349

26@ PRINT PEEK (- 16255) + PEEK (- 16255)

270 |F PEEK (31) = 3 THEN 310

280 PRINT CHRS (4) "BLOAD BSW.64K . 1,A$D00Q"

290 PRINT CHR$ (4) "BLOAD BSW.64K.2, A$800"

300 PRINT CHRS (4) "BLOAD BSW.64K.3,A$8BG0" : GOTO 340

4
4

4
4
4

310 PRINT CHRS (4) "BLOAD BSW.//e .1, ASDO@@"

320 PRINT CHRS$ (4) "BLOAD BSW.//e.2,A$800"

330 PRINT CHRS (4) "BLOAD BSW.//e.3,A$8B0@"

340 POKE 44892 234 : POKE 44803 , 234 : POKE 44804 234 : POKE 44723
.4 : POKE 216 , 255

345 PRINT CHRS$ (4) "BLOAD PATCH,A$BFC8"

350 PRINT CHRS$ (4) "BRUN BSW.$525 $7FF A$525"

o~

This program does not create any variables. In particular, the
CHR$(4) must be used repeatedly rather than defining a D$ =
CHR$(@) since strings would be stored below HIMEM and conflict
with files to be loaded there. The program length has been minimized
by deleting unnecessary spaces in DOS commands since it must fit
between $2000 and $24FF.

The HELLO program begins by determining where it has been
loaded. Location 104 ($68) contains the high byte of the start of’
Applesoft program pointer which is normally $08. If this value is
not 32 ($20) then the program pokes a zero at 8192 ($2000) and
changes the pointer to point there. A DOS command to RUN
HELLO then reloads the program at $2000 and starts it running.
Of course, the second time through, 104 will contain 32 and the
program carries on.

The Book Of Softkeys Volume II 27

Line 110 tests for the key waiting at the keyboard and, if
found, resets the start of Applesoft pointer to $0800 and RUNs
UTILITY. As a handy exit, Line 120 checks for upper or lower-
case e at the keyboard and, if found, gives the DOS FP command
to reset the pointer to $0800, clear the program and stop. This is
convenient when you want to examine files on the disk; just hit (E]
during the boot, then load whatever you wish to look at.

Line 130 clears the keyboard of any other keys and then sets
MAXFILES 1. Line 140 runs TYPECHECK to determine the
hardware configuration and lines 150—198 load the files common
to all three hardware types. Line 160 sets the soft-switches to display
the hi-res page 2 logo. The WRITEPROTECT file in Line 190 is
created below.

Line 200 checks location 31 ($1F) and skips to line 140 if °
‘type 2" or ‘type 3” has been determined by TYPECHECK. For ‘type
1", lines 210—230 load the ...48K files and GOTO 320 to finish
execution,

Line 240 write-enables the RAMcard so it may be loaded for types
2 and 3. Line 250 directs flow to either the ...64K or ...//e file
loading.

Line 320 pokes three NOPs into DOS at 44802 ($SAF02). This
skips putting DOS onto data disks initialized by BSW and, although
not done by the original BSW, the 4 poked at 44723 frees that extra
space for data storage. The Applesoft ONERR flag 216 ($D8) is
set to prevent DOS from issuing its own error messages since the
program handles these itself.

Another small piece of code is loaded into DOS in line 330 and
the initialization program is run to start the BSW program.

The Write-Protect Patch

There is a small section of code at $B700 in the BSW DOS which
is called whenever a write operation is about to be performed. This
code reads the catalog track of the disk in the selected drive and
checks for the non-standard disk bytes of the original BSW disk.
If it finds this pattern, the carry flag is cleared, location $9AAC
is loaded with a $4D and the routine returns to the caller. If the
pattern is not found, the carry flag is set and the routine returns.

We originally thought this might be some kind of copy protection.
It turned out to be a routine to prevent the user from writing to the
original disk when he should not. Simply putting a write protect
tab on the disk would provide similar protection, but this disk is
likely to be used by children and it is easier to remove the write-
protect tab than to change the format of the disk (as we have seen).
In addition, the UTILITY program is used to customize BSW to the
user’s needs. It stores the initialization data on the BSW original
disk and the write-protect tab would need to be removed for this
operation.

28 The Book Of Softkeys Volume II

It seemed logical to find a way to support this valuable feature.
DOS maintains a buffer at $B3BB which contains the VTOC
(Volume Table Of Contents) for the most recently read disk. This
buffer is read from Track $11, Sector $0 on any standard DOS disk.

It is also written to a disk when that disk is INITed.

Not all bytes in the VTOC are used by DOS. Before we INITed
our slave disk, we changed one of these unused bytes ($B3BF) to
an $AS5. This byte will be used by our own routine at $B700 to
determine if the disk about to be written is our softkey version of

BSW.

Enter the Monitor and type the code that implements this
feature on the softkey disk:

CALL -

B700:
B708:
B710:
B718:
B720:
B728:
B730:
B738:
B740:
B748:
B750:

151

A0 09 B9 EB B7 99

B9 47 B7 99

EB B7

F1 AC C1 AAAD C2

B5 B7 B0 10
A5 F0 03 38
8D AC9A 18
B3 A0 09 B9
B7 88 10 F7
00 00 00 00
11 00 FB B7
01

AC BF
BO 06
A9 00
3D B7
60 00
00 00
BB B3

3D B7
88 10
AA 20
B3 CO
A9 4D
8D BF
99 EB
00 00
00 00
00 00

Disassemble and check this code

B700L

B700-
B702-
B705-
B708-
B70B-
B70E-
B70F-
B711-
B714-
B717-
B71A-
B71C-
B71F-
B721-
B723-
B724-
B726-
B728-
B72B-
B72C-

Ag 9 LDY #$09

BYEBB7 LDASB7EB,Y
99 3DB7 STA$B73D,Y
B9 4787 LDA$B747.Y
99EBB7 STAS$B7EB.Y

88 DEY

10F1L BPL $B782
ACCL AA LDY $AACI
ADC2 AA LDA $AAC2
20B5B7 JSR $B7BS
Bo 10 BCS $B72C
ACBFB3 LDY $B3BF
Co A5 CPY #$A5

Fo 03 BEQ $B726

38 SEC

BO g6 BCS $B72C
A9 4D LDA #$4D
8DAC9A STA $9AAC

18 CLC

A9 00 LDA #$00

The Book Of Softkeys Volume II

29

B72E~ 8DBFB3 STA $83BF
B731- A9 09 LDY #$09
B733- B93DB7 LDA$B73D,Y
B736- 99EBB7 STA $B7EB,Y

B739- 88 DEY

B73A- 19 F7 BPL $8733

B73C- 68 RTS
B73D.B750

B73D- 09 09 00

B740- 00 00 00 90 00 00 00 90
B748- 11 00 FB B7 BB B3 00 20
B750- 01

Save the code:

BSAVE WRITEPROTECT,AS$SB700,L$51

WRITEPROTECT uses the RWTS routine to read the VTOC from
the disk into the VTOC buffer at $B3BB. In order to do this without
disturbing BSW’s use of RWTS, $B700—$B710 save the current
RWTS parameters into temporary storage at $B73D and replace
them with the VTOC-reading parameters from the table at $B747.
Then the RWTS is called to read the VTOC.

If an error occurs, it may well be because the disk is unformatted
50 we exit as ‘OK-to-write’ by branching to $B72C. If no error
occurs, the value at $B3BF is compared to our constant ($A3). If
our protected disk was in the drive, this byte would match and the
branch to $B726 would be taken. Otherwise, it is safe to write the
disk so the carry is set and we branch to $B72C.

At $B726, $4D is stored at $9AAC (like the original), the carry
is cleared indicating ‘not-OK-to-write’ and execution drops into the
exit code at $B72C.

At $B72C, a 0 is stored at $B3BF to guarantee that a $A5 is never
written out to a data disk since that would write-protect it. Then
at $B731, the parameters saved at the start of the routine are restored
before returning to the caller.

One other tiny piece of initializing code is needed to satisfy
the BSW program’s use of DOS. Enter it as follows:

BFCS8: 20 DC AB A9 10 8D F0 B3
BFDO0: A9 23 8D EF B3 60

and then:
BSAVE PATCH,ASBFC8,LS14

Your softkey slave disk is now ready to boot! We have used this
softkey version of BSW to write this article and that has allowed
us to weed out many of the bugs. We were able to test all three
hardware-dependent versions to some degree, so you should have

30 The Book Of Softkeys Volume II

few, if any problems. The use of a fast DOS makes a welcome
improvement. We have successfully used Diversi-DOS but have not
tried any of the others, although they should work just as well.

The tutorial on the back of the BSW master disk is not protected
and may be copied with the normal copy methods, but for maximum
protection we recommend that you mark the disk as a *‘master”’
so BSW cannot write to it. This can be done by using Steps 1 to
4 of this softkey to INIT the disk on which you wish to copy the
tutorial. Then, use the DOS 3.3 FID program to copy all the files
from the original tutorial disk to the INITed back-up disk.

An alternative method is to use a disk-ZAP type program to modify
the fifth byte of Track $11, Sector $0 to an $AS. This method can
be used to protect other disks that might be accidentally written by
someone using the BSW program.

¥

Sean Williams’ APT for...

Castle Wolfenstein

How to Kill The S.S. Guards

If you are tired of running into S.S. guards, especially when
you no longer have any grenades to destroy them with, use
the following technique and any S.S. can be killed with the
use of bullets.

1) As the S.S. guard approaches, point your gun at him and
run into him.

2) As the screen is going through the collision routine press
the key which makes the gun point at the S.S. guard again.

3) To take his bullet-proof jacket away, press (U).

4) If the screen replies with SEARCHING..., run into the

guard again. (Remember to point your gun at him again during
the collision routine).

5) Press again and the guard will lose his bullet-proof
jacket.

6) The guard can now be killed with plain bullets.

Note: This procedure works best if you are wearing a vest
yourself, '

The Book Of Softkeys Volume II 31

Canyon Climber

Datasoft

Softkey for Canyon Climber
by John Liska
(Hardcore COMPUTIST # 10, page 8)

Requirements:
Apple Il with 48K
FID
One blank disk

Canyon Climber is an excellent 3-level arcade game in which you
attempt to scale a hi-res version of the Grand Canyon.

To remove the copy-protection, you need to make some
modifications to DOS so that errors generated by the nonstandard
end of address and end of data marks are ignored. The single binary
file can then be transferred to a normal 3.3 disk with the use of FID.

[1] First boot up with a DOS 3.3 disk and make the
modifications to DOS:

PR#6
CALL -151
B925:18 60
B988:18 60
BE48:18
3D0G

E BRUN FID and use the wildcard character (=) to transfer
the one file on the original Canyon Climber disk to a standard 3.3
disk. You must do this because the file name contains embedded
control characters.

BRUN FID

Once you have transferred the file, use a disk editor or Copy J/
Plus to change the file name so that its control characters are

eliminated.

32 The Book Of Softkeys Volume I1

T—T—-——_
Caverns of Freitag

Muse Software

Backup For The Caverns Of Freitag
by C. J. Singer
(Hardcore COMPUTIST # 6, page 6)

Requirements:
Apple 1, with 48K and Applesoft in ROM
One disk drive
FID from 3.3 System Master disk
One blank disk
The Caverns of Freitag original disk

Being the parent of three kids who like to play games on the
computer, my first thought after purchasing a program is how to
back it up before the kids have an accident with the original.

What I usually first try to do is backup the disk with Locksmith,
but I don’t really care for this method because it doesn’t allow you
to look at the program to see how it works and it does not allow
you to modify it.

Here’s my first, albeit somewhat tedious, explanation of how to
backup the Caverns of Freitag. 1 will provide another, easier method
next. The game comes from Muse Software, of Castle Wolfenstein
fame.

The Hard Way
EII Boot the Caverns of Freitag disk from slot 6:
PR#6

E While the disk is booting, stop the HELLO program from
running;:)

IE To make sure the HELLO program is in memory, type:
LIST

You should see THE CAVERNS OF FREITAG listed on your
monitor.

The ﬁook Of Softkeys Volume 11 33

If no program is listed, go back to Step 1 and try again.

El The Caverns of Freitag uses a modified DOS, which has
changed some of the DOS commands. The INIT command has not
been changed, however, so we can INITialize a blank disk, which
will contain the modified DOS along with the HELLO program
currently in memory. So, insert a blank disk into your drive and type:

INIT HELLO

If you want to see how Muse has modified the normal DOS
commands you can use a sector editing program, such as ZAP from
Bag of Tricks or DiskEdit, to view Track $1, Sectors $7—$8. If
you compare what you find with a list of the normal DOS commands
you will find that:

the SAVE command has been changed to LSDK
the CATALOG is now KSJFLKA

the MON to 983

and BSAVE to 87364.

E' Now put your original disk back in the drive and use Muse’s
modified CATALOG (KSJFLKA) to see what files are on the disk:

KSJFLKA

r_T_I Write down the list of files which are displayed so that you
can save them to the disk you just initialized. You don’t have to
write down the HELLO file since it has already been transferred.

The first file on your list should be a binary file called
OILER so load it into memory:

BLOAD OILER

When a new binary file is loaded into memory, its address
is stored at SAA72—$AA73 (hi/lo format) and its length is stored
at $AA60—$AA61. So enter the Monitor and display the address
and length of the file OILER:

CALL -151
AAT72.AA73
AA60.AA61

For the OILER file you should come out with an address of $02DE
and a length of $00DS5.

EI Put your backup disk in the drive and use the 87364 (the
modified BSAVE command) to save the file, using the address and
length parameters you just determined in the previous step:

87364 OILER,AS$02DE,L$00D5

Repeat the process of BLOADing each binary file from the
Caverns of Freitag original disk, determining its address and

34 The Book Of Softkeys Volume II

length and using the 87364 (BSAVE) command to transfer the files
onto the backup disk.

IEI For the Applesoft files on the list, you can just LOAD each
one of them from the original disk and, then, LSDK (SAVE) them
onto the backup disk.

Like I said; the above procedure is long and tedious, but it works.
Now for the easy method!

The Easy Way
III Go through Steps I through 4, outlined above.
IZI Insert your DOS 3.3 System Master and boot it
PR#6

IE Load the FID program into memory at $6800 where it won’t
get overwritten when we boot the Caverns of Freitag disk in the
next step:

BLOAD FID,AS$6800

IZI Boot the original Freitag disk and, again, stop it from
running the HELLO program:

PR#6

EI Enter the Monitor, memory move FID from $6800 back
down to $803 and, then, run FID to copy the files:

CALL -151
803<6800.9000M
803G

Izl Copy the files from the original disk to the blank, initialized
disk using FID’s wildcard option.

Now that you have a backup copy you can look at the Caverns
of Freitag, using and KSJFLKA for CATALOG. You can
LOAD or BLOAD to study or modify any of the files on the disk.

If you have a sector editor you may even want to change Track
$1, Sectors $7—$8, so that they will contain the normal DOS
commands, instead of the ones which Muse put on the disk.

%

The Book Of Softkeys Volume II 35

Crush, Crumble & Chomp

Automated Simulations (Epyx)

Backing Up Crush, Crumble & Chomp
by Jeff Rivert
(Hardcore COMPUTIST # 7, page 5)

Requirements:
Apple 1[Plus or compatible
Replay I card and utility disk with SOFTMOVE program
Crush, Crumble, and Chomp
An initialized DOS 3.3 disk with HELLO as the boot program
FID program from 3.3 System Master disk

Crush, Crumble, and Chomp is copy-protected only on areas of
the disk that contain the two main Applesoft programs. The rest
of the files, and there are a few of them, can be transferred to a
copy disk using any file transfer program.

The main (copy-protected) files are called:

C(@N]CCMAIN
CN]CC

LII Run FID (or any other file transfer program) and copy all
the files, except the two copy-protected ones, from the original to
the blank initialized disk:

BRUN FID
E] After transferring the unprotected files to your initialized
copy disk, boot the original Crush, Crumble and Chomp disk:
PR#6
EI Make a Replay copy at the point where the set-up program

starts and asks you the question DO YOU WANT TO CONTINUE
A SAVED GAME?

[4] Now, run SOFTMOVE from the Replay II utility disk.
SOFTMOVE assumes that there was an Applesoft program in
memory when you pushed the Replay button to make the copy. This

36 The Book Of Softkeys Volume II

Applesoft program is put back into memory intact, with a normal
DOS resident instead of the copy-protected DOS.

El You can now save the Applesoft file to the disk that contains
all the files you have transferred. Save it with the name CON]CC:

SAVE C{ON]JCC

E Boot the original again. This time let the set-up progress
to the point where the play actually starts and then make another
Replay copy. Repeat the SOFTMOVE procedure you used previously
on the first protected program. Save this file as CEON)CCMAIN:

SAVE C[ONJCCMAIN

That’s all there is to it. These files can now be modified at will.

A last note: The SOFTMOVE program is a surprisingly useful
utility. For instance, if you typed in a huge Applesoft program and
forgot that there was no DOS in the machine, you might want to
shoot yourself (but don’t). With Replay Il and SOFTMOVE you can
make a Replay copy and have the file on disk in no time, almost
as if DOS was in the machine all along.

Johnny Yukon’s APT for...

Miner 2049er

Unlimited Bounty Bobs

For this APT you need to have an old F8 ROM on the
motherboard or Integer card. This APT will let you choose
the starting level and will give an unlimited number of Bounty
Bobs to player number one.

1) Boot up Miner 2049er and go through the joystick
adjustment routine.

2) When the game asks ONE OR TWO PLAYERS?, hit
to get into the Monitor.

3) Enter the desired starting level minus 1 at $814 and the
actual starting level at $812. For instance to start on level 05
type: 814:04 N 812:05

4) Enter the following:
0972:A9 03 8D 16 08 8D 17 08 4C 81 09 N 981G

5) The game will start up and player number one will have
an unlimited number of Bounty Bobs.

The Book Of Softkeys Volume II 37

Data Factory 5.0

Micro Lab

Softkey For Data Factory Version 5.0
by L.S. Davis
(Hardcore COMPUTIST # 8, page 14)

Requirements:
48K Apple Il Plus or equivalent
Two blank disks
DEMUFFIN PLUS (see How To Make DEMUFFIN PLUS article)

Like most of us, I try to follow the Golden Rule: back-up thy
disks. I did just that with Data Factory Ver. 5.0 using Locksmith
4.1. 1 followed the parms carefully, read the notes and yes, it works.
However, to use the bit-copy of The Data Factory you must:

[1] Boot the disk.

E] Open disk drive door and press when the computer
starts to beep repeatedly.

EI Close door and press when the computer prints
BREAK IN 5.

E Use the program.

This procedure sounds simple and works well, but that irritating
beeping noise causes wives to yell, dogs to howl and nerves to be
on edge. What a pain. I just wanted a copy, not problems! Why
did this disk act this way? Having read Hardcore COMPUTIST from
issue no. 1, I thought maybe the answer would be in there. So...
I searched through my old issues.

Finding lots of good hints and ideas, I began. The first thing I
saw when I booted the copy was BREAK IN 5. Applesoft, I hoped.
Articles in Hardcore COMPUTIST had mentioned using
DEMUFFIN PLUS, so I thought maybe I could DEMUFFIN the files
over to normal DOS. I tried this, but had no luck. The program
did try to work, but came up instead with the infamous /0 ERROR.
Back to Hardcore COMPUTIST for more reading.

Finding several articles which referred to reducing error checks

38 The Book Of Softkeys Volume II

on copying, I began again. I looked through my What’s Where In
The Apple book and found an area of code that looked promising.

In a 48K Apple with DOS 3.3 booted, the code at $SBSDC—$B943
is a routine which reads in a sector of data from the disk. If any
Read errors are encountered, the 6502’s carry bit is set and the /0
ERROR message is printed. At $B942 is the instruction which sets
the carry bit (SEC, op code $38), so if this instruction is changed
from SEC to CLC (CLear Carry, op code $18) then any Read errors
will be ignored. Hopefully, making this change would solve my
problem.

I booted the System Master to clear the trash already in memory
and made a CALL -151(eTrY), entered B942:18 RETIRY) (as if I
knew what I was doing) and placed my disk with DEMUFFIN PLUS
in the drive. I typed BRUN DEMUFFIN PLUS, then placed the
copy of The Data Factory in the drive and (WOW!) no I/O ERRORs.
It read the disk! Just luck? I wondered.

So, I turned off the machine and started over. I initialized two
disks with just a HELLO program and made one copy of each Data
Factory disk using the following steps:

E Boot System Master:
PR#6
IZI Clear the BASIC program in memory:
FP
E Initialize two disks with TDF as the boot file:
INIT TDF
I—_—4:| Enter the Monitor:
+CALL -151
EI Change the instruction at $B942 from SEC ($38) to CLC
($18) so that any Read errors are ignored:
B942:18

IE Re-enter BASIC:
3D0G

Place a copy of DEMUFFIN PLUS in the drive and get up
and running.
Note: If you don’t have DEMUFFIN PLUS, you can create it by
modifying MUFFIN. See the article on How To Make DEMUFFIN
PLUS in this volume.

BRUN DEMUFFIN PLUS

There are two Data Factory disks: one Report, one Utility.
DEMUFFIN all the files on each to a disk formatted in Step 2 above,

using the ‘wildcard’ option (=). Replace the file called 7DF on
both disks.

The Book Of Softkeys Volume II 39

E When you have finished copying both disks, reboot with
a normal 3.3 disk:

PR#6

Both of your DEMUFFINed disks are standard 3.3 DOS and are
COPY Aable. However, on each disk is a file TDF. This file on each
disk contains line 5 which reads: PRINT CHR$ (4) “BRUN
READER, A$8E®0°’. This file contains the code which causes that
obnoxious beeping. All we have to do is change the boot program
(TDF) so that it does not load and execute this code.

Load the Applesoft file TDF, delete line 5 and then reSAVE
TDF:

LOAD TDF
5
SAVE TDF

You should do this to both disks. If you want to, you can also
DELETE the file READER which is not used after you delete line
5 in TDF.

In order to prevent a reboot if is pressed, the binary file
AMPER FACTORY.OBJ0 needs to be modified.

[11] Load the AMPER FACTORY.OBJO file into memory (it
loads at $8240):

BLOAD AMPER FACTORY.OBJO
@ Enter the Monitor:
CALL -151

@ Change the instructions at $8340 from JMP $C600 (reboot
the disk) to three NOP’s:

8340: EA EA EA
Return to BASIC:
3D0G
@ Save the modified code:
SAVE AMPER FACTORY.OBJ0,A$8240,L$1305

The disk will now boot and work just like the original, except
that you can now hit without the disk rebooting.

I have run the deprotected copies and have not yet found any
problems. I hope you have as much fun using this softkey as I had
making it. You may notice that I worked from the copy of the
original, not the original. This is much safer. That’s another of the
Golden Rules I like to follow: never use the original disk to make

changes.

40 The Book Of Softkeys Volume Il

DB Master

Stoneware, Inc.

Softkey For DB Master
by Dan Lui
(Hardcore COMPUTIST # 7, page 6)

Requirements:
Apple Il with 48K
One disk drive
DB Master (old version)
COPYA
The Inspector, or similar program
One blank disk

The old version of DB (Data Base) Master is protected very well.
The disk contains three different protection schemes.

First, it uses half-tracks from $6.5—$22.5. Second, the closing
address and data marks have been changed from the normal DOS
3.3 $DE / $AA to $DF / $AA. Third, there is a nibble-count-like
checking routine to check Track 0.

Breaking the nibble-count scheme is the most difficult task of all.

The following procedure will unlock this program. It also works
for DB’s utilities disk:

[1] Put in the DOS 3.3 System Master and type:
LOAD COPYA

[2] Add the following lines to COPYA:

199 GOSUB 490

248 GOSUB 420

259 GOSUB 420

400 POKE 47413,223: POKE 47423,171: POKE 475@5,223: POKE 47515,171

405 POKE 48351,201: POKE 48352,12: POKE 48353,105: POKE 48354,0:
POKE 48355, 24: POKE 48356,76: POKE 48357,107: POKE 48358190

410 POKE 48741,223: POKE 48742,188: RETURN

420 POKE 48741,107: POKE 48742,190: POKE 47413,222: POKE 47423,170:
POKE 47505, 222: POKE 47515,17¢

425 POKE 48741,107: POKE 48742,196: RETURN

The Book Of Softkeys Volume 11 a1

E Save the new COPYA in case you run into errors.
SAVE DB COPYADB

IE Execute the program
RUN

E] After the disk has been copied, use the Inspector, or some
other sector editor to read and modify the following sectors:

Track Sector Byte From To
00 03 $35 DF DE
00 03 $3F AB AA
00 03 $91 DF DE
00 03 $9B AB AA
00 O0E $0A A2 Do
00 0E $0B 00 12
01 OF $C7 A9 60
03 01 $3E 20 60

EE Write-protect the disk before running.

The above procedure eliminates all three of the protection schemes
Stoneware provided on the older version of the excellent DB Master.

¥

Ferrel Wheeler’s APT for...

Star Maze

Eliminating Snails and Wheels

It seems the pinwheel and the wall snail are extremely
difficult to shoot so, instead of wasting a bomb on them, here’s
a method for destroying them and anything else in the game
at no risk.

1) Drive repeatedly straight into a wall at a fairly slow speed
until the ship is completely inside a wall.

2) Once inside, turn around and position the ship so that
only enough of its nose is sticking out to still allow for firing.

When in this position, nothing can hit the ship, not even
when the snail is walking on the same wall the ship is in!

You can even use this technique to go through walls, but
this seems to use up a lot of fuel.

42 The Book Of Softkeys Volume II

Essential Data Duplicator I

Utilico Microware

Copying the uncopyable - EDD
by Steven Zupp
(Hardcore COMPUTIST # 8, page 26)

Requirements:
48K Apple Il or equivalent
One disk drive
Essential Data Duplicator Version 1
A blank initialized disk with no HELLO program
A basic knowledge of machine language helps but is not necessary
Integer firmware card or other means of [REsET)ing into the monitor

EDD (Essential Data Duplicator), in my opinion, is one of the
most incredible copy programs around. My main reason for this
praise is due to the fact that EDD requires few or no parameter
changes to duplicate many copy-protected programs currently on
the market. Its power almost makes Locksmith 4. I look like COPYA.

Unfortunately, along with its incredible copying abilities comes
an incredible copy-protection. EDD uses four phases of super-fast
track-arcing that sounds more like an army of cockroaches tap
dancing than a disk booting. Instead of encrypting the data on the
disk itself, the tracks of data are placed in a mosaic jumble of normal
tracks, half tracks, and (yes, believe it or not) quarter tracks. This
technique is loosely known as ‘checkerboarding’ and is a very
difficult scheme to crack.

Luckily for everybody, EDD is a one-time-only load program
which leaves it open to attack from snapshot-type devices. In fact,
a friend of mine armed with his Wildcard and some address changes
successfully copied it, but his copy takes forever to load, is hard
to modify, and takes up most of a disk. So, armed with my trusty
Integer firmware card I decided to try it my way.

Getting The Data

This section deals with the breaking process in detail. If you just

The Book Of Softkeys Volume II 43

want to do it, then go to the section labeled ‘Summary.’

Boot EDD. Press any key a couple of times to get to the main
menu, then flip the switch on the card to Inreger (if it’s not already
there) and press (Rese). You should end up in the Monitor.

Conveniently, EDD mainly uses the memory $800—$3FFF, with
the hi-res picture residing at $4000—$5FFF. There is some code
in the keyboard input buffer ($200—3$300) but is has no effect on
the main program, and I assume it is part of a disk-loading routine.

Before booting up our normal 3.3 slave disk we need to move
the code at $800—$8FF to a safe location ($6000—$60FF) so it
won’t get stomped upon. To move the code out of the way type:

6000<800.8FFM

This moves $800—$8FF, to $6000—S$60FF.
Now boot up DOS 3.3 by inserting your initialized disk in the
drive and typing:
C600G
This boots the disk in the drive in Slot 6. If your disk controller
is in another slot, replace the 6 with that slot number; i.e. Slot 7

= C700G.
When the cursor appears, enter the Monitor by typing:

CALL -151

To relocate the portion of memory we moved back to its original
location, type:

800<600.60FFM

Next we will make this hunk of data useable.

WARNING

You should now save this in case you mess up the steps following.
If there is an accident, just BLOAD DATA and begin again at
Making It Useable. To save it type:

BSAVE DATA, AS800,L.55800

Making It Useable

The main copy-protection routine in EDD starts at $21C9.
Assuming you still have the EDD data in memory, and are still in
the Monitor, make the following modification

21C9:60

This puts an RTS at the beginning of the routine that checks certain
memory locations. All there is to be done now is to add a short
routine which will perform some necessary housekeeping functions.

Since we will not be using hi-res page 2 ($4000), we can put our

44 The Book Of Softkeys Volume II

routine over it. Because the body of the program starts at $800,
we must put a jump to our routine before that. So at $7FD we will
put a jump instruction to $4000. Type this:

7FD:4C 00 40

In our routine there are three things that need to be done:

1. Disconnect the DOS pointers. The reason for this is EDD writes
over DOS when in operation. When DOS is connected, the
CSW (Character output SWitch) and KSW (Keyboard input
SWitch) vectors are pointing to DOS. DOS looks at the
characters coming in and going out and then sends them back
along their merry way to the monitor COUT and KEYIN
routines. If DOS is connected (the pointers are set for DOS
locations) and those locations in DOS are erased, the computer
will seemingly die, unable to input or output characters. If you
want to learn more about this process refer to the section of
this article titled More On DOS Hooks.

2. Change two Zero-Page locations. These are used by EDD to
display which drives and slots are being used. These have
nothing at all to do with the operation of the program, but it
is nice to have them correct.

3. Jump to the actual start of the program (no, it’s not $800).

Also changing the reset vector to C600 adds a nice touch so that
when is pressed, EDD will reboot instead of breaking into
Applesoft. If your controller is in another slot you can change the
slot (6) to whatever slot you want, although the wisest thing to do
would be to move your controller to slot 6.

Examine the code below then type in the hex dump that follows.

4000~ A9 00 LDA #3900

4002- 8D F2 03 STA $03F2 Sets RESET vector
4005- A9 Cé LDA #3Cé to reboot
40@7- 8D F3 03 STA $03F3 fromslot 6
400A- 20 6F FB JSR $FB6F

400D- A9 F@ LDA #$F0

4Q0F- 85 36 STA $36

4011- A9 FD LDA #$FD

4013- 85 37 STA $37 Disconnects DOS
4415- A9 1B LDA #$1B

4017- 85 38 STA $38

4019- A9 FD LDA #3FD

401B- 85 39 STA $39

401D- A9 60 LDA #360

401F- 85 0A STA $0A Sets up screen
4021- A9 60 LDA #$60 display locations
40923- 85 0B STA $0B and starts program

4025- 4C5E 29 JMP $035E

The Book Of Softkeys Volume 11 45

4000: AS 69 8D F2 83 A9 C6 8D
4008: F3 03 20 6F FB A9 F@ 85
401@: 36 A9 FD 85 37 A9 1B 85
4018: 38 A9 FD 85 39 A9 60 85
4020: BA A9 60 85 9B 4C 5E 09

Now that you have entered the routine, it is time to save the whole
thing. Type the following:
BSAVE EDD, AS7FD, LS382B
That’s it! You can DELETE the file DATA now if you want to, or
keep it on hand as a space taker-upper on your disk.
Just BRUN EDD whenever you want to use it, and hide the

original in a locked safe in a bomb shelter and you should feel safer
(watch out for safecracking rats wielding magnets, however.)

Summary

II' Boot EDD and press any key twice to get to the menu. Now
use whatever device you have to enter the Monitor. After you are
in the Monitor type:

6000<800.8FFM

E Now insert your blank disk and type:
C600G

E When the prompt appears, re-enter the Monitor:
CALL -151

IZI Type in the new code.:
800<6000.60FFM
2C19: 60
7FD: 4C 00 40
4000: A9 00 8D F2 03 A9 Cé6 8D
4008: F3 03 20 6F FB A9 F0 85
4010: 36 A9 FD 85 37 A9 1B 85
4018: 38 A9 FD 85 39 A9 60 85
4020: 0A A9 60 85 0B 4C 5E 09

E Save it as EDD:
BSAVE EDD, AS7FD, L$382B
That’s all! Just type BRUN EDD to run it.

More On DOS Hooks

This exercise is for some rainy day when you have nothing better
to do.

46 The Book Of Softkeys Volume II

First boot a normal DOS disk. Whenever you get a cursor on the
screen, type:

CALL -151

to get into the Monitor. Now we will check the present settings of
the CSW and KSW switches. Type:

36.39
You should see:

36- BD 9E
38- 81 9E

This means CSW is set to $9EBD and KSW is set to $9E81, both
DOS locations. Now we will erase DOS. Type:

800: 00
801<800.BFFFM

Wait about 5 seconds. Your Apple is temporarily dead. It will
continue to be so until you press to resurrect it.

When you press [ReseT), there will be a beep and you will see a
status line indicating $9DC1. What happened is when you pressed
(ResET), the computer realized what happened, set the CSW and
KSW switches back to normal, and showed you where the screw-
up was.

When the move routine had finished, the Apple needed to output
a character, the *k prompt for the monitor. So it looked at the CSW
pointer which still pointed at DOS, which we just erased. When
it went to the location $9EBD all it found was zeroes. It couldn’t
signal an error. It couldn’t even beep or show any sign of output
or input. Well, fortunately we have the key for such
situations. The key is wired directly to the Apple’s
microprocessor, which means it couldn’t care less what the CSW
and KSW pointers were. What happened is the routine went
through memory and fixed all the locations to default values,
including our pointers. The Apple has a very good memory and it
loves to beep at us when we screw up, and it does just that by beeping
and telling us exactly where the error was.

Now that we’re back on stable ground let’s look at our pointers
and see what’s happened. Type:

36.39
You should see:

36-FO FD
38-1BFD

Note that these are the Monitor locations COUT1 and KEYIN. When
DOS is not connected (like now) these are the values that are present.
When DOS is connected all input and output goes to DOS and then
to these locations.

The Book Of Softkeys Volume II 47

Now clear the memory from $800—$BFFF again by typing:

800:00
801<800.BFFFM

After a few seconds you will see the Monitor prompt again. Why
did the Apple die the first time we did this and not now? It is because
the first time we did this the CSW and KSW pointers were pointing
at the DOS locations which we later erased, causing massive heart
failure. This time they were pointing at safe ROM routines which
cannot be erased. ,

So remember to never erase or change the routines at $9EBD and
$9EBI unless you know how, and have the incoming data ending
up at $FDF0 and $FD1B.

Alternative devices

The snapshot-type devices currently on the market advertise the
ability to stop the execution of any program. However, when I tried
to use Wildcard to stop EDD and jump into the Monitor there were
problems. Evidently, EDD can recognize that something’s amiss
when this is done because it changes parts of itself and will not
resume operation. If you have another type of snapshot card, or
want to try it anyway, just use it to break into the Monitor instead
of a firmware board.

I will list what I know about EDD so that if you want to try fixing
or avoiding this problem you can give it a try. My friend successfully
made a Wildcard copy of EDD using a few address changes. This
suprised me since I had found, when I had used it and gone into
the Monitor, that it had changed itself. His copy took up a whole
disk and was not easily modified. Here are the changes he made
if you want to try them with your snapshoter or figure out their
meaning.

113A: A9
113B: 0B
113C: EA
21D8: 00
21DF: 00
21DE: 00

Some of the area around $CE9 was also changed, and there are
probably others.

48 The Book Of Softkeys Volume II

e 3

—_—
Essential Data Duplicator |

Utilico Microware

Copying Essential Data Duplicator III
by Joseph Leathlean
(Hardcore COMPUTIST # 10, page 7)

Requirements:
48K Apple Il or Apple 1[Plus
One disk drive
Blank disk with no HELLO Program
Integer Firmware Card or other means to into the Monitor

The method of backing up the Essential Data Duplicator I which
appeared in the previous EDD softkey can be modified so that the
technique also works on EDD [II. Only two changes need to be
made.

On EDD III the main copy-protection scheme starts at $3EE8
rather than at $21C9. This byte has to be changed to $60 (RTS).

The program’s main entry point has also been moved from $095E.
On the version dated January 25, 1984, the new entry point is $0955.
On later versions the entry point is $8953. You may have to
experiment with your version to find the proper entry point.

So if you want to perform this EDD III softkey, follow the
procedure explained in the previous EDD and make the following
changes:

II] Place a $60 at address $3EES instead of at $21C9.

I__ZI For the January 20, 1984 release of EDD change address
$4026 in the hexdump to a $55. For later versions try changing it

to a $53.
4

The Book Of Softkeys Volume II 49

—
Gold Rush

Sentient Software

Deprotecting Gold Rush
by Clay Harrell
(Hardcore COMPUTIST # 9, page 7)

Requirements:
48K Apple Il with at least one DOS 3.3 disk drive
Old-style F8 Monitor ROM or Super-Saver ROM
Blank disk
Gold Rush

It seems that there are many ‘maze’ games flooding the Apple
market, now. Most have pretty much the same theme of eating all
the dots before you get destroyed. I do enjoy these games, but variety
is the spice of life! Gold Rush uses the ‘avoid the bad guys’ theme
without the maze. It is entertaining, fun, and different from other
chase ’em games. Being intrigued by the game, I wanted to learn
more about it...

Gold Rush boots fairly quickly and is a ‘single-load’ game, which
means it does not require any other data from the disk after the initial
load. These types of programs are candidates for BLOADable files.

When booting the disk, an Applesoft prompt appears at the bottom
left of the screen which means there is some sort of modified DOS
present. Disks like these are excellent candidates for deprotection
with Super IOB. The Swap controller is probably the most versatile
since one doesn’t usually have to figure out the protection used when
using it. With this in mind, we merely boot Gold Rush, into
the Monitor and move RWTS from $B800—$BFFF down to $1900
where the standard Super IOB swap operates. This is done from
Monitor with the command 1906<B860.BFFFM

Now boot a 48K slave disk and run SUPER IOB.SWAP which
is Super IOB with the NewSwap controller merged (see Super IOB
in this volume). Remember that booting a slave disk only destroys
memory from $00—$8FFand $9600—$BFFF, so this keeps our Gold
Rush RWTS safe at $1900—$20FF.

50 The Book Of Softkeys Volume II

After making the copy, our new disk is quite CATALOGable.
Also, the disk is now deprotected and completely COPYAable and
runs fine (providing the boot file name is BOOT instead of the normal
HELLO). But remember, this is a single-load game, and as I
mentioned before, a good candidate for a BLOADable file.

CATALOG
reveals one file named BOOT. You can BRUN this file and the game
will load and execute just fine. But we want this game in a file that
we can FID to another disk or BLOAD. To start the analysis:

BLOAD BOOT
Now enter the Monitor with:
CALL -151

and type:
AA60.AA73

The first two bytes listed are the length of the last BLOADed file,
and the last two bytes listed are the address the last BLOADed file
was loaded at. These are in ‘bassackward’ order, with the low byte
first and the high byte last (in other words, 00 03 means $0300,
or 88 45 means $4588). We can see from this listing that the file
BOOT loads at $300 and is fairly short (less than $100 bytes long).

If you examine the code at $300, you will find that Sentient is
using second stage DOS to load in the game from $800 to $95FF,
and then jumps to $BOO to start the game.

Sentient Software RWTS is not as friendly as the normal RWTS.
They load $1B with the track number, $1C with the sector number
and, $1F with the top page to load to. Then they Jump SubRoutine
to $B7BS to do the load. Look at the code and try to understand
it (If you cannot, well, forget it).

After some groaning and grunting, we now know that Gold Rush
loads from $800—$95FF and starts at $BO®. With this necessary
information in hand, here are the exact steps for deprotecting Gold
Rush:

1] Boot DOS 3.3 and INITialize a disk with a null HELLO file.

FP
INIT HELLO

E Boot Gold Rush and after the game loads and the drive stops
spinning, into the Monitor.
E Move page eight out of the way so we can boot:
6400<800.8FFM

E Boot the disk you just initialized:
C600G

The Book Of Softkeys Volume 11 51

EI Enter the Monitor:
CALL -151

E Move $800 to its original location:
800<6400.64FFM

Alter the program so that it JuMPs to the entry point:
7FD:4C 00 0B

Tell DOS that we can BSAVE more than 121 sectors:
A964:FF

[9] save Gold Rush:
BSAVE GOLD RUSH,A$7FD,LS8E04

Gold Rush is now deprotected into a BRUNable file that you can
FID to any disk.

APT for Proving Grounds Of The Mad Overlord...

Creating a powerful Bishop

It seems as though a lot of Wizardry players already know
how to create a very powerful bishop, but here is the technique
anyway:

1) Take the bishop into the maze and then camp.

2) Inspect the bishop’s character and choose the identity T
option.

3) Keep trying to identify item #9 until the word SUCCESS
appears at the bottom of the screen.

The bishop should now have 100,000,000 experience points.

52 The Book Of Softkeys Volume 11

—_—
Krell LOGO

Krell Software Corp.

Using Super I0B To Copy Krell LOGO
by Andrew Harrison
(Hardcore COMPUTIST # 10, page 8)

Requirements:
Apple 1l plus with 64K or //e
Krell LOGO
Super 10B
Swap controller
One blank disk
Integer Firmware card or other means of entering the Monitor

Krell LOGO version A can be copied with the use of the Super
I0B program which has the Swap controller installed. Super IOB
and the Swap controller can both be found in the Super IOB article
in this volume. You will also need some way to into the
monitor so that the LOGO RWTS can be saved to disk.

Boot up with the original Krell LOGO disk and then
into the Monitor.

L___Z_l Move the RWTS to a safe location:
1900<B800.BFFFM

EI Boot up a DOS 3.3 slave disk with no HELLO program:
PR#6
[4] save the Krell LOGO RWTS to the same disk that has the
Super 10B program on it:
BSAVE LOGORWTS,AS$1900,1.5800

[E] Format a blank disk with the HELLO program listed below:

FP
10 PRINT CHRS(4)'‘'BLOAD BANNER.SHP’’

The Book Of Softkeys Volume II 53

20 PRINT CHRS(4)'RUN KRELL.START"’
INIT HELLO.LOGO

Iz] Load the Super 10B and type in or EXEC in the Swap
controller:

Change line 10010 to read:

10010 PRINT CHR$(4)'BLOAD LOGORWTS,A$1900""

Run the Super IOB program copying from the original Krell
LOGO disk to the disk initialized in Step 5. Do not reformat the
duplicate disk.

RUN

E After the copy has been made, RENAME the old HELLO
file on the copied disk as LOGO.START

RENAME HELLO,LOGO.START

The file that is now called LOGO. START has a CALL 2167
which needs to be removed in order for the copy to work properly.
LOAD the LOGO.STARTUP file and remove this CALL. It should
be in the first line of the program. Be sure to reSAVE the program
after you have made the change.

%

Eric Holman Whitaker’s APT for...

Castle Wolfenstein

The S.S. will not follow you if...

Hold up an SS Stormtrooper and search him. After you have
confiscated his bullets (search him twice to be sure), you can
leave the room without fear of the SS following you.

Castle Wolfenstein tries to ge the S.S. to follow you and
then shoot you on the run.

If the S.S. gent is out of bullets, the game decides that he
is not much good and does not send him trailing after you.

54 The Book Of Softkeys Volume 11

=
Legacy of Llylgamyn

Breaking Windows: Softkey For Legacy of Llylgamyn
by Jim Kaiser
(Hardcore COMPUTIST # 8, page 10)

Requirements:
Apple 1[, Apple 1l plus, Apple //e or compatible with one disk drive
A Sector Editing Program, such as DiskEdit
COPYA from DOS 3.3 System Master Disk
Two blank disks

Legacy of Llylgamyn is one of the scenarios in the Wizardry Series.
After trying to back up my original using the softkey presented in
Hardcore COMPUTIST # 4 and not succeeding, I set out to do it
myself. The program uses what Sir-Tech calls “Window Wizardry’,
a technique they probably implemented upon seeing a LISA
computer in action. I liked the ‘window’ concept so much that 1
purchased Legacy of Llylgamyn as soon as it came out.

Both sides of Legacy of Llylgamyn can be copied with COPYA
if DOS is patched so that any errors encountered when reading or
writing are ignored. The COPYA version of the boot side (side B)
needs a sector-edit performed on it so that the routine to check for
a non-original disk is circumvented. This routine is on Track $1A,
Sector $0C of the boot side. The scenario disk (side A) is unprotected
and the COPYA version of it will work just fine.

III Get out your DOS 3.3 Sytem Master disk and run COPYA:
RUN COPYA
I—;{I After the drive has stopped, halt the program:

[3] Prevent COPYA from reloading COPY.OBJ0 by deleting
line 70:

70
E] Enter the Monitor:
CALL-151

The Book Of Softkeys Volume II 55

EI Patch DOS so that any Read or Write errors are ignored:
B7C0:18

Ij__l Return to Applesoft:
3DOG

Run the program:

RUN

Copy both sides of the original Legacy of Llylgamyn disk.

E After you have copied both sides, put the original disk away
in a safe place.

Run your sector-editing program on the backup copy.
[[11] Read Track $1A, Sector $0C of the boot disk (side B)
@ Start editing at byte $15, entering the following bytes:

D0 16 EA AD 2D 00 CE FB 00 DO F8
AD DE 00 A9 01 48 A5 01 48 A5 00
48 60 A9 00 FO ED

@ Write the sector back to the disk.

The scenario side (side A) is not protected on The Legacy of
Llylgamyn, so no modifications to the scenario side of the disk are
needed. You should now have a working copy and, by the way,
you have to write-protect both sides of this disk. The only difference
between the master scenario and the duplicate is that the master is
write-protected. This disk is now COPYAable

OF SPECIAL INTEREST

I was bothered and didn’t like to always have to switch disks for
the scenario, just to enter the master disk, and then the duplicate.
So, I set out to find how I could modify the disk so that I could
enter the duplicate without a write-protect tab over the hole and still
be able to have the program not give the dreaded NOT A MASTER
DISK error. To make this modification, you should edit Track $6,
Sector $A, Byte $73, Change it from a CB to a C3. You no longer
have to put in the master and then, the duplicate. Just enter the
duplicate and press twice. Now, if I could just figure out
how to pronounce ‘‘Llylgamyn’’.

¥

56 The Book Of Softkeys Volume I1

Mask Of The Sun

Ultrasoft, Inc.

Softkey For Mask Of The Sun
by John J. Liska
(Hardcore COMPUTIST # 7, page 27)

Requirements:
Apple Il Plus
One disk drive (two are preferred)
Mask of the Sun program disk
DOS 3.3 System Master
One blank disk

Now you can unlock one of the most maddening adventures I have
ever attempted to solve.

In this diabolical foray, your quest is to retrieve the legendary
‘Mask of the Sun’ and live to tell the tale. You will encounter many
things along the way which will defy common sense and your own
intuitive logic, yet must be met.

The basic procedure is the same as the modified COPYA / DOS
combination used to unlock Zork I in the Book Of Softkeys Volume
I. The only change to DOS seems to be the use of non-standard
end marks on Tracks $03—$22 and incorrect checksums on the DOS
tracks.

The first problem is to get the information off the original disk
and onto the copy disk. Here is how:

[1] Boot the DOS 3.3 Master Disk:
PR#6

Izl Clear program in memory and initialize the front side of
the disk you wish to copy to:

FP
INIT SIDE A

IE Drop into the Monitor:
CALL -151

The Book Of Softkeys Volume II 57

IE_] Modify DOS so that it ignores end marks and checksums. :

B92D:18 60
B989:18 60

IE Put back in the System Master and use COPYA to copy SIDE
B to the back side (the side you didn’t initialize in step 2):

RUN COPYA

E When finished with the back side, use FID to copy every
file (using the wildcard (=) and prompting features of FID) from
side A except LL(V27) to the front side of the freshly INITialized
disk:

BRUN FID

We now have all the files copied except the one that checked for
copy-protection. In order to make this disk work, we have to make
a start-up file.

Type in this start-up program and save it to the front side
of the copy:

10 PRINT CHRS(4) “EXEC DISK"
SAVE SIDE A

That’s it! Whenever you boot, you will get a FILE NOT FOUND
message, but that is O.K. The reason for this is because the text
file named DISK is trying to BRUN LL(V27), but since it isn’t on
this disk, DISK just goes on to the next command.

You now have a copy of Mask of the Sun on a normal disk for
you to examine until you bust (or solve the adventure, whichever
comes first).

Now, would someone please tell me how I can get past the
BLASTED snake!

Paul Andersen’s APT for...

Serpentine

Extra Snakes

After all the snakes have appeared in the cage, type (IJ (§)
to get extra snakes.

58 The Book Of Softkeys Volume II

—_—r.____—__-;————p——ﬂ
Minit Man

Penguin Software

Backing Up Minit Man
by Clay Harrell
(Hardcore COMPUTIST # 10, page 28)

Requirements:
48K Apple with old-style (or modified) F8 Monitor ROM
One disk drive with DOS 3.3
Two blank disks
Minit Man
Super 10B

Minit Man is a Choplifter-type game from Penguin Software. The
game plays well and has nice graphics, demos and title pages.
Unfortunately, its slow loading is practically unbearable at times.
My original intent was to make Minit Man load at the speed of light. ..
But in order to do this I had to first remove the disk’s copy-
protection. Minit Man proved to be a challenge on which I had to
use -some of my own programming to overcome Penguin’s
protection. First, let’s talk about the protection used in Minit Man.

You can protect a program by various means, or you can protect
a disk full of programs with some sort of DOS modification. DOS
modifications are the least successful of protection schemes, since
someone always seems to find a way to copy all the files onto a
normal DOS disk, eluding all the protection.

MUFFIN—DEMUFFIN—DEMUFFIN PLUS

The classic program for dealing with modified DOSes is
DEMUFFIN PLUS. It works much the same way as Apple’s
MUFFIN program works.

MUFFIN was written to read files from a DOS 3.2 disk and then
write them to a DOS 3.3 disk.

DEMUFFIN was a variation of MUFFIN, allowing the hardcore
DOS 3.2 user to copy disks from DOS 3.3 to DOS 3.2.

DEMUFFIN PLUS operates on the same principle, but uses
whatever DOS is in memory to read the disk, and then writes out
to an initialized DOS 3.3 disk. While this is a powerful utility, it

The Book Of Softkeys Volume II 59

only works with programs that are based on DOS and that have a
CATALOG track with normal, or somewhat normal, files.

Now, with this tidbit of information in mind, how do we know
that a disk uses a modified DOS? There are many hints, the foremost
being the appearance of a BASIC prompt at the bottom of the screen
during booting.

Some publishers have bypassed the routine that outputs the
prompt, but you can still guess that there’s a modified DOS present
if the boot sounds like a normal DOS boot, but the disk won’t copy
with COPYA.

Modified Minit DOS

Minit Man’s protection scheme falls into this category of modified
DOS protection. Upon booting the disk, the normal DOS boot sounds
are heard and a prompt appears at the bottom left of the screen.
Instead of attempting to use DEMUFFIN PLUS, we are going to
use a different approach to the deprotection of Minit Man, using
Super I0B.

The actual modification on the Minit Man disk is that the end of
address and end of data markers have been changed on every track
to DA AA instead of the usual DE AA. In addition, the start of
address markers on every other track have been changed to D4 AA
96 instead of D5 AA 96.

The Super IOB controller starts copying from Track $2 (we do
not want the protected DOS residing on Tracks $0—$1) of the
protected disk and writes back to the same tracks of our normal
DOS 3.3 Disk.

With the Super IOB controller in hand we can now start to
deprotect Minit Man. Here are the first few steps:

v

E Type in the Minit Man controller (listed at the end of this
softkey) and save it with the SAVE CONTROLLER program (sec
Controller Saver article in this Book Of Softkeys) or just LOAD
SUPER IOB and type in the Minit Man controller and go to Step 2.

EXEC SAVE CONTROLLER
IE Copy Minit Man with its controller placed into Super IOB

[zl Boot a normal DOS 3.3 Disk (preferably with a fast DOS
since the load is so slow on the original Minit Man) and initialize
the disk with HELLO as the boot program. Then FID all the files
to the freshly INITed disk.

INIT HELLO
BRUN FID

When the copy is done you will have the bulk of Minitr Man
deprotected. Now we must make the programs on the Minit Man

60 The Book Of Softkeys Volume II

disk compatible with DOS 3.3, since the protected DOS has some
built-in routines that normal DOS does not. (Notice you can now
CATALOG the disk and see the files that make up Minit Man).

[:_4_] Clear any program in memory and get the HELLO program:

FP
LOAD HELLO

I:EI Make the following changes:

1 HOME
5 HGR2: HGR
6 CALL 33072

IE‘ Save the program:
SAVE HELLO

Now some other files on the disk need to be changed to complete
the deprotection. Follow these steps:

Remove the file PLAYGAME PROG:
DELETE PLAYGAME PROG

Clear any program in memory and type this short one:
FP
1 PRINT CHRS(4); ''"EXEC PROG"

E Save it:

SAVE PLAYGAME PROG

Replace the program DEMOSETPROG with the following:
DELETE DEMOSETPROG
FP

1 PRINT CHRS(4); *“EXEC DEMO"’
SAVE DEMOSETPROG

Now you must create some text files to load in the game and/or
demo files. You may use a word processor that creates normal text
files or you may create an Applesoft program to create them.

Note: The file names must be typed exactly as shown or you will
get a ?FILE NOT FOUND error.

@ Create the text file PROG that contains:

BLOAD DP.7.2.SHAPES
BLOAD DPBC,A8516

BLOAD DP7,A16384

BLOAD PACPICS,A2048
BLOAD DP.7.2.ANNEX,A22574
BLOAD MEMSORTSC01,A$5C01

The Book Of Softkeys Volume II 61

LOAD PACMOVE,A$6000
BLOAD TRAINS,A 14000
BLOAD DP.7.2.ANMX
CALL 23553

IE Now create the text file DEMO that contains:

BLOAD DP7.DEMO,A16384

BLLOAD DPBC.DEMO,A8516

BLOAD DP.7.2.SHAPES.DEMO
BLOAD PACPICS.DEMO,A2048
BLOAD DP.7.2. ANNEX.DEMO,A22574
BLOAD MEMSORTS5C01.DEMO,A$5C01
BLOAD PACMOVE.DEMO,A$6000
BLOAD TRAIN.DEMO,A 14000

BLOAD DP.7.2.ANMX.DEMO

CALL 23553

Be sure to carefully enter the text files exactly as shown above,
Have fun with lightning fast Minit Man!

Minit Man controller

100@ REM MINIT MAN CONTROLLER

1010 TK=2 :ST=0 :LT =35 :CD=WR

1026 T1 = TK : GOSUB 49¢@ : GOSUB 1118

1930 GOSUB 430 : GOSUB 108 :ST =ST + 1 : IF ST < DOS THEN 1038

1049 |F BF THEN 1068

1050 ST=9 :TK=TK+ 1 : GOSUB 1110 : IF TK < LT THEN 1030

1068 POKE 47505 ,222 : POKE 47413 ,222 : GOSUB 230 : GOSUB 499 :TK = T1
:ST=0

1070 GOSUB 430 : GOSUB 180 :ST=ST +1 : |F ST < DOS THEN 1070

1080ST=0 :TK=TK+ 1 : IFBF =@ AND TK < LT THEN 1079

1090 |F TK < LT THEN 1020

1190 HOME : PRINT : PRINT "DONE*WITH* COPY" : END

1116 POKE 47505 ,218 : POKE47413 ,218 : IFTK/ 2= INT (TK /2) THEN 230

1129 RESTORE : GOTO 190

63010 DATA 212 ,170 ,150

62 The Book Of Softkeys Volume II

Mouskattack

On Line Systems

Backing Up Mouskattack
by Clay Harrell
(Hardcore COMPUTIST # 7, page 6)

Requirements:
48K Apple
One disk drive, with DOS 3.3
DOS 3.3 System Master
Mouskattack
One blank, initialized 48K slave disk

Although Mouskattack is a rather old and not so thrilling maze
game, it warrants discussion on deprotection methods and the use
of DOS from protected programs.

Upon booting the Mouskattack disk, the prompt appears on the
lower left side of the screen, indicating that a somewhat normal DOS
is used by the program.

If you boot a normal DOS 3.3 disk, then put your Mouskattack
disk in the drive and type CATALOG, a directory does appear. You
will not see any files, just copyright notices and names of the authors
involved. These, however, are files in the directory.

The disk seems almost unprotected and to confirm this, I made
a copy with COPYA from the DOS 3.3 System Master. It reads the
non-DOS tracks slowly. This is due to the sector skewing used by
On-Line in hopes of a faster loading game and not due to the
protection. However, the people at On-Line were not too successful
in carrying out their intention and we shall see why, in a moment.

The first three tracks (the DOS tracks) read at the normal speed
because they are normal DOS, just like those in your DOS 3.3 System
Master.

After making my COPYA copy, I used a Disk Editor to read in
Track $11, Sector $F, of the disk. This is the first sector of the
CATALOG track.

The Book Of Softkeys Volume II 63

On-Line was able to make the directory appear without file types
and sector lengths using a simple technique. The first seven (or six)
characters in the directory name are back spaces. Starting with Byte
$OE, change the first seven characters to anything but control
characters, numbers or spaces, and you can load and examine the
files like any other DOS 3.3 files.

Don’t bother with the other file names, though. They are all blank
files. The only one we are interested in is the first directory entry,
MOUSKATTACK.

Snooping Through

Now, get back into BASIC and CATALOG the copy of
Mouskattack. The first entry of your catalog should have a binary
file, four sectors in length, called

(9H) (0H) £9H) OH) MOUSKATTACK.

You can now BLOAD this file and snoop through it.

At this, point you might ask how I knew to do this. Since
Mouskattack has a normal DOS on it, by loading in Track $1, Sector
$9, with a Sector Editor, you can see which file is the boot file or
HELLO program.

Sure enough, MOUSKATTACK is preceeded by seven s
(i.e., backspaces). Therefore, you know that MOUSKATTACK is
the first file you should snoop through.

BLOAD the file
MOUSKATTACK, enter the Monitor and examine locations
$AAT2—$AAT73. This will tell you the loading location of the last
BLOADed file. It will appear ‘bassackwards’ with the low byte first
and the high byte second (i.e., 00 08 is equivalent to $0800). Do
a 800L to list the first screen-full of the program.

Upon examination, you see that the accumulator is loaded and
then stored in a location within DOS. After this happens a few times,
you will see a JSR (jump to subroutine) at $B7B5. Now you may ask:

What’s all this stuff?

On-Line is using the second stage of DOS to load in the game
of Mouskattack. You are looking at the first stage (of three stages)
of the load and are actually tracing the boot as described in earlier
issues of Hardcore COMPUTIST, but using normal DOS.

The listing will appear as follows:

0800~ LDA #300

0802- STA $B7EB ;Volume @ matches anything
#805- LDA #5301

0807~ STA $87F4 ;Command code, 1 = Read

(0r80A- LDA #$18

08gC- STA $B7EC ;Track # to start loading from
080F- LDA #$03

64 The Book Of Softkeys Volume II

g811- STA$B7ED ;Sector # to start loading from

0814- LDA #$95

7816- STA $B7F1 ;High byte of page to load to
0819- LDA #3500

081B- STA$B7F0 ;Low byte of page to load to
P81E- LDA #303 .

0822~ STA $14 ;Sector counter in zero page
0824- LDA #$B7

0826- JSR $B7B5 ;RWTS sector read routine
0829- BCS $0822 ;Branch to $822 if Error
#82C- INC $B7F1 ;increment page to load
082F- INC $B7ED : Increment sector to load
0831- DEC $14 ;Decrement sector counter
0833~ BNE $0822 ;If sector # <> @ branch to $822
0835- JMP $9508 ; Jump to $9500

Starting with Track $18, Sector $3, the data is being loaded into
location $9500.

The sector number and memory page in which the data will be
stored is incremented and the process continues until Sector $F of
Track $18 is reached. Jump to location $9500 to start the next stage
of the load. If you jump to the monitor at location $835 instead of
$9500, you can examine the next stage of the load. Do this by typing:

835:4C 59 FF N 800G

At $9500, the same thing happens again but in a larger perspective.
The codes become more obscure and difficult to follow, so [won’t
list them here.

But now you ask:

What was the purpose of this exercise?

By examining the code at $9500, you can find the starting page
at which Mouskattack loads. You can even find the starting location!
Can you see where?

The starting location of the loading program is at $A00 and the
starting location of the loaded program is at $5300. This is the reward
for all your labor!

Since the load code lives at $9500 and DOS occupies $9D00 and
up, Mouskattack must live at $AG0—$94FF, with a starting location
at $5300. Not mentioned is the third load which overwrites the demo
code. This load is the only part of the disk that is really protected.
Our COPYA copy will work up to this load, but not past it, for the
game.

Keep in mind that the code at $900—$95FF is not destroyed by
a slave boot. Since Mouskattack lives within this area, it then
becomes easy to crack.

The Book Of Softkeys Volume II 65

Here is the procedure:
I—_TI Boot your original copy of Mouskattack.

IZ' After the demo and, when the prompt HOW MANY
PLAYERS? appears, insert a blank, initialized slave disk.

IZI Hit (REsET). It does not matter if you have an old-style
Monitor or not. With an Auto-Start Monitor, your slave disk will
boot.

Izl Enter the Monitor:
CALL-151

E To enable you to save larger binary files to disk, type:
A964:FF

EI Type in:

9FD:4C 00 53

Save the program:

BSAVE MOUSKATTACK,AS$9FD,L$8B03

Have fun with the game!

Remember how I mentioned that the load of Mouskattack was
rather slow? This is due to the method in which sectors are read
in from the disk.

Also, the sector number increments along with the page number
loaded to. If On-Line had started with the high page number, instead
of the low page number and read the sectors in decreasing order,
instead of incrementing order, the load would have taken a fourth
of the time, providing the manufacturers had used normal DOS 3.3
skewing.

This is the logic that the fast-loading DOSs have taken in order
to increase loading speed and save time.

¥

66 The Book Of Softkeys Volume 1I

I |
Music Construction Set

Electronic Arts

Softkey For Music Construction Set
by Jim Waterman
(Hardcore COMPUTIST # 9, page 7)

Requirements:
Apple 1l Plus, or compatible
Music Construction Set
Bit-copy program such as Locksmith 4.1 or Copy I Plus ver 4.1
One blank disk

III Use your bit-copier to copy Tracks $0—$22 from the Music
Construction Set onto a blank disk.

[2] Boot a normal DOS 3.3 disk.

E Insert the copy of Music Construction Set and load the file
called A44:

LOAD A4

IZI Enter the Monitor and change the bytes at $913A—$913B
to NOP’s:

CALL -151
913A:EA EA

E‘ Save A4 with the changes you have made
BSAVE A4,A$4A00,L4B60 ~

EI The Music Construction Set may now be copied with any
normal copy program such as COPYA.

¥

The Book Of Softkeys Volume II 67

Pandora’s Box

Datamost, Inc.

Deprotecting Pandora’s Box
by Clay Harrell
(Hardcore COMPUTIST # 6, page 5)

Requirements:
Apple, with 48K
One disk drive, with DOS 3.3
A sector editor, such as The Inspector or Disk Zap
A blank disk
Pandora’s Box

When program publishers buy a protection scheme, they generally
use it for as many programs as possible to get the most for their
money (yes, protection schemes are just programs that people write
and sell). The advantage of this is that once you learn what they
are doing, it is easy to backup many of their programs.

Datamost and Infocom are two examples of this. If you can backup
Zork I, then you can backup Zork II and Zork III and Deadline and
the rest.

The people at Datamost used a modified DOS for many of their
programs until about April 1983. After that they started using a
different scheme of protection on a lot of their programs. But the
company published at least seven good games before April 1983
and Pandora’s Box was one of them.

The deprotection method I am about to describe will apply to many
of them, but we will be using Pandora’s Box as an example.

Modified DOS

As we said, Datamost uses a modified DOS for its protection
scheme. Normally, this is apparent from the BASIC prompt that
appears on the screen after a few seconds into the boot.

To hide this,Datamost turns on the hi-res screen right when the
boot starts. But we still know there is a modified DOS because of
the way the boot sounds. Listen to your normal DOS disks boot.

68 The Book Of Softkeys Volume II

You will hear the same sound every time. First, the drive spins for
half-a-second or so. This is Track $0, Sectors $0—$9 getting loaded
into $B600—$BFFF.

Then, you hear the drive’s read-write head slide up to track $2
to load in the rest of DOS. Tracks $2—$1 are read in quickly and
the read-write head slides up to Track $17, and the HELLO program
is located and run.

Now, listen to Pandora’s Box load in. You will hear the same
sounds. This is a dead giveaway that a modified DOS is being used.

What to do

Whenever a modified DOS is used the first thing you should do
is boot a normal DOS disk and defeat the DOS error-checking. DOS
checks the carry bit to determine if any errors have occurred in a
disk access.

If the carry bit is clear, DOS assumes that everything is OK and
just keeps on going. The routine that gets jumped to if an error is
suspected is at $B942. This simply sets the carry bit and returns
to the calling routine.

To defeat the error-checking, we only have to change $B942 to
$18, instead of $38. This simple modification will allow us to copy
previously uncopyable disks with COPYA.

All that is left to do is to change the Datamost DOS just slightly
so that it will live in a normal DOS 3.3 environment. At Track $0,
Sector $3, change Byte $91 from $DF to $DE. What the
manufacturers have done to make their disk ‘uncopyable’ is to
change the epilogue byte from the normal $DE to $DF. This will
sufficiently confuse the copy program, preventing easy copies. (If
you do not know what is meant by an ‘epilogue byte’, please refer
to the Beneath Apple DOS book by Don Worth and Pieter Lechner.
This manual is indispensible for further understanding of DOS).

In addition, Byte $42 should be changed from $38 to $18 on the
same track and sector. This is an insurance policy, more or less,
that everything will work correctly in the normal DOS 3.3
environment. ,

What you are actually doing is changing Byte $B942 in DOS,
as we did before to make the COPYA copy, but you are doing it
directly to the disk for permanence.

These two modifications are all we need to do to make Pandora’s
Box a COPYAable disk.

The Steps

In step-by-step fashion, here’s what you should do to make
Pandora’s Box COPYAable:

IE Boot normal DOS 3.3

The Book Of Softkeys Volume II 69

I:il Enter the Monitor:
CALL-151

EI Change byte $B942 from $38 to $18 by typing:
B942:18

E Execute the COPYA program:
RUN COPYA

[:_5_] Copy Pandora’s Box to a blank disk.

I:_6—| Re-boot normal DOS 3.3 and run your sector editor. Change
the following bytes:

Track Sector Byte From To
00 03 42 38 18
00 03 91 DF DE

Write the sector back out to your COPYA disk version of
Pandora’s Box.

Eric Holman Whitaker’s APT for...

Castle Wolfenstein

Escape from the Castle Now

In the room that has a stairway at the top of the screen, the
following will allow you to escape from the castle
immediately:

Open the disk drive door but do not remove the disk. Exit
the room via the stairway at the top of the screen. Castle
Wolfenstein will attempt to save that room on a particular
sector, but with the drive door open, this will not be possible.
After your disk drive has tried twice to save the room, your
man appears above the stairway and his head will be directly
to the left. Do not close the drive door yet, or the game will fry.

Wait twice more for Castle Wolfenstein to try and save the
sector and observe what happens: You will have escaped! As
soon as you see the escape screen, close the drive door quickly.
The picture will load, and if you have the plans, you will
receive extra congratulations and a raise in rank.

70 The Book Of Softkeys Volume 11

[—————— |
Robotron

Atarisoft

Deprotecting Robotron
by Clay Harrell
(Hardcore COMPUTIST # 8, page 8)

Requirements:
Apple 1, Apple Il Plus, Apple //e with 48K
at least one DOS 3.3 disk drive.
One blank disk
DOS 3.3 System Master disk
Robotron from Atarisoft

Atari is certainly a name that everyone is familiar with when it
comes to video games. Atari has successfully marketed other
companies’ games (after buying the rights, of course) for many home
and personal computers. And finally, they have started marketing
games for the Apple.

This is good for us, the Apple users, since now we can enjoy many
of the favorite arcade games on our Apples. Atari has also blessed
us with weak copy-protection, making most of the new Atari releases
easily copyable.

Case in point: Robotron.

Robotron 2084 is the best implementation of the William’s arcade
game I have seen for the Apple. My hat is off to the author of the
Apple version, whoever it is (for some reason Atari leaves the
author’s name out of the game!?). But even though the game is well
done, not much time was put into protecting it from prying eyes,
especially since copy-protection has evolved so far on the Apple....

Atari uses a slightly modified DOS. This is evident from the
conventional boot sounds and the appearance of an Applesoft cursor
at the bottom left of the screen when booting the disk.

Just for fun, after booting the disk, type

This will prevent the BASIC HELLO program from running after
DOS is loaded on a conventional DOS 3.3 disk. If you try this on

The Book Of Softkeys Volume II 71

Robotron, you will find the same thing...the computer beeps, the
drive stops spinning and you are placed in Applesoft. You may now
list the BASIC program with the command:

LIST

This reveals a one line program that reads:
18 HOME : CLEAR: PRINT CHR$(4) ; "BNROBOTRON"

From this program we now know there must be a catalog track,
since we can see that some DOS command is used (called BN) to
run the file ROBOTRON. We know that BN is some kind of DOS
command because it is preceeded by CHR$(4).

So naturally, the next thing to do is to type:

CATALOG

Well, we get disappointed with a SYNTAX ERROR. The conclusion
we can draw from this is that someone at Atari was thinking enough
to change the DOS commands from the normal ones (they probably
used DOS Boss from Beagle Brothers, no doubt).

So the next thing to do is to boot a normal DOS 3.3 disk and then
put the Robotron disk in a drive. Now try typing:

CATALOG

This exercise provides us with the rewarding message /0 ERROR.
This is to be expected. Atari has made the disk uncopyable by
changing the epilogue bytes on the disk from DE AA EB to a
perverted DE AB FE. This can be seen by using the nibble read
commands from either The Inspector or Nibbles Away II (if you don’t
have either of these fine utilities, don’t worry about it).

Disk format review

For those of you who don’t know what ‘Epilogue Bytes’ are, I
will discuss it here for you....

First we must discuss the formatting of a DOS 3.3 disk. Every
normal DOS 3.3 disk has 35 tracks (0 — 34) and 16 sectors (0 — 15).

How the tracks are located on the disk is hardware dependent,
but how the sectors are located is software dependent, hence the
name ‘soft sectored’. Since software determines the sectoring, it
was easy for Apple to change from 13 sector format to 16 sector
format back in 1981. With this convenience it is easy to protect the
Apple disk format.

For DOS to find the sector it is looking for, it must rely on some
road markers. Every sector has what is called an ‘Address Field’.
The Address Field is a unique set of bytes on every sector that lets
DOS know the current disk volume, track, and sector number. It
also has a checksum byte to determine if some damage has occurred
to the sector making it unreadable.

72 The Book Of Softkeys Volume 11

The unique set of bytes that represent the address field are
formatted as such:

prologue volume track sector checksum epilogue

D5 AA 9 XX YY XX YY XXYY XX YY DE AA EB

Whenever DOS sees the unique set of bytes D5 AA 96, it knows
the above information follows.

Similarly, there is a ‘Data field’. It has its own set of unique bytes
to alert DOS to its whereabouts:

prologue data checksum epilog

D5 AA AD Program, data, etc ... XX DE AA EB

Whenever DOS sees the unique set of bytes D5 AA AD, it knows
that a program or some kind of data follows. This information is
on every sector of a normal DOS 3.3 disk.

If any one of the prologue bytes are changed, normal DOS wouid
not be able to locate the address or data fields and an I/0O ERROR
would result.

If the epilogue bytes are not what they should be, an /0 ERROR
will result. This is not due to their uniqueness, since DOS will read
whatever two bytes follow the information fields and use them for
verification.

Therefore, two easy things to do in protection are to alter the
address field and/or the data field prologue bytes, and alter the
protected DOS accordingly to locate these unique bytes. Now normal
DOS cannot find the address field, so it does not know what sector
it is trying to read. Or, it cannot read the data field because it cannot
find the unique set of bytes that designates the data. So COPYA
will not copy the protected disk.

Altered Epilogue Bytes

What Atari has done is to change the epilogue bytes. This is really
a minor change since normal DOS can still find the address field
(so it knows what sector it is looking at) and the data field (so it
knows where the data is), but you still get an I/0 ERROR since the
epilogue bytes are not what DOS 3.3 expects to find.

Well, for us to read the disk from normal DOS, all we must do
is to defeat the routine that detects errors. If we do this, we will
not get an I/O ERROR and we will be able to read the disk from
normal DOS 3.3. The routine that does this lives at $B942. If an
error exists, the carry byte is set and DOS says *‘bad boy’’ and scolds
you with an I/O ERROR. So a change at location $B942 from $38
(SEC) to $18 (CLC) will clear the I/O ERROR problem!

Now we may CATALOG the Robotron disk. Upon doing this,
we find two files: RUNNER and ROBOTRON.

The Book Of Softkeys Volume II 73

RUNNER is the ‘HELLO’ program and is unneeded (and also
unusable without modification since Atari has changed the DOS
commands as follows:

CATALOG has been removed.
BLOAD is BD.
BRUN is BN.)

So get out FID from your DOS 3.3 System Master and
BRUN FID

Now transfer the file ROBOTRON to a normal DOS 3.3 disk and
you’re all done!

Summary

To re-cap the instructions used to deprotect Robotron:

[1] Boot normal DOS 3.3.
[__2] mitialize a disk with normal DOS 3.3 by typing:

FP
INIT HELLO

E To enter the Monitor, type:
CALL-151

[E Change the error detection routine by typing:
B942:18

E] Insert your DOS 3.3 System Master into a drive and type:
BRUN FID

[6] Use FID to transfer the file ROBOTRON from the original
Robotron disk to your freshly INITialized DOS 3.3 disk.

BRUN the file ROBOTRON on your normal DOS 3.3 disk
to play Robotron.

74 The Book Of Softkeys Volume I1

—__———;_
Sensible Speller version 4.0d

Sensible Software

Sensible Speller Softkey
by Cris Rys
(Hardcore COMPUTIST # 9, page 9)

Requirements:
Apple 1, Apple Il Plus
16K RAM card
Blank Disk Sensible Speller V 4.0d
Super IOB or any DOS track-copy program

Sensible Speller version 4.0 is a very useful dictionary program
which has a vocabulary of over 80,000 words. The softkey of this
program incorporates a very useful feature of the language card that
lets you customize monitor routines so when you press the
key, you arrive in the monitor.

Note: If you don’t have a language card (separate from the
motherboard) you won’t be able to use the following procedure.

This softkey contains the following listings:

SPELLER.CON.......... ..., Applesoft
SPELLER.LOADER.............. hexdump and source code
SPELLER.SAVER................ hexdump and source code

EI With the computer OFF, put your 16K card in slot 1.
E Boot up the DOS 3.3 System Master disk.
I:_3_] Enter the Monitor:
CALL-151
[4] Modify DOS so that SPELLER. LOADER will work:

B639: AD 81 C0 AD 81 C0 4C B3 08
B6B3:A0 00 B9 00 DO

B6B8:99 00 D0 C8 D0 F7 EE B?7
B6C0:08 EE BA 08 AD BA 08 D0
B6C8:EC AD 80 C0 A9 07 8D 00
B6D0:02 4C 00 B7

The Book Of Softkeys Volume II 75

El Initialize the disk you want Sensible Speller on with this
modified DOS:

INIT HELLO

[6] Insert a different disk and key in the SPELLER. LOADER
hexdump.

Save this program to ease the event of error:
BSAVE SPELLER.LOADER,AS$B700,L$9A

Type in this short machine language routine which calls
the RWTS:

803:A9 B7 A0 E8 4C B5 B7

E Tell the RWTS that we wish to write Track 0, Sector 1 from
Page $B7:

B7EB:00 00 01
B7F0:00 B7 00 00 02

Insert the disk you initialized in Step 5 and write the sector:
803G

IE Now copy Tracks $2—$3 and $6—$22 of your original
Sensible Speller disk to the disk you initialized in Step 5. These tracks
are not protected but you must use a copy program which will copy
specific tracks (any bit copier should do). The Super IOB controller
(SPELLER.CON) listed at the end of this article will also work.

Here is the routine I mentioned at the beginning of this softkey.
Sensible Speller, like many other programs, checks for a RAM card
in slot 0. Because several programs (such as Sensible Speller) only
check slot 0, this technique may be used with other programs as well.

[E Boot a normal DOS disk and enter the Monitor:
CALL-151

|13—l Write-enable the language card:
C091 C091

Copy the Monitor into the language card:
F800<F800.FFFFM

IEI Read- and write-enable the language card:
C093 C093

Type in the SPELLER. SAVER program and save it on the
same disk you saved SPELLER. LOADER on:

BSAVE SPELLER.SAVER,ASD000,LS60

76 The Book Of Softkeys Volume II

Type a routine to save Page $0 into Page $71 when
is hit:
FA62:A2 00 B5 00 9D 00 71
E8 DO F8 4C 59 FF

Read-enable and write-protect the language card RAM:
C090

Insert your original Sensible Speller disk and boot it:
C600G

When the menu appears and the disk drive stops running,
press:

You should now be in Monitor.

@ Read-enable the language card in Slot 1:
Co90

Eg—_l Insert the disk you want Sensible Speller on and invoke the
SPELLER.SAVER program

D000G

The disk drive will start whirling and after a while the cursor will
come back.

You’re done!

Now may be a good time to put the language card back in Slot
0, but it is not necessary to do this to run this program.

Don’t forget to turn the computer off first.

Super I0OB controller...
SPELLER.CON

1000 REM SENSIBLE SPELLER HELPER

1010 TK=2:ST=0:LT=35:CD =WR

1920 T1 = TK: GOSUB 494

1930 GOSUB 43@: GOSUB 10@:ST = ST + 1: |F ST < DOS THEN 1030
1040 |F BF THEN 1060

1050 ST=0:TK=TK+1+2 * (TK =3): IF TK < LT THEN 1030
1860 GOSUB 499:TK =T1:5T =0

1870 GOSUB 43@: GOSUB 10@:ST = ST + 1: |F ST < DOS THEN 1070
1080ST=0:TK=TK+1+2 * (TK=3): {F BF = @ AND TK < LT THEN 1070
1098 1F TK < LT THEN 1920

1100 HOME : PRINT : PRINT "DONE“WiTH" COPY": END

The Book Of Softkeys Volume 1I 77

hexdump for...

SPELLER.LOADER

B70@: 2C 58 C# 2C 57 C@ 2C 52
B708: C@ 2C 55 CO A9 OF 8D ED
B718: B7 A9 @7 8D EC B7 A2 01
B718: 8E EA B7 CA 8E F@ B7 A9
B728: 5F 8D F1 B7 20 64 B7 CE
B728: F1 B7 AD F1 B7 C9 40 BO
B738: F3 A9 3A 8D F1 B7 20 64
B738: B7 CE F1 B7 AD F1 B7 C9
B740. 08 BO F3 A9 43 8D F1 B?
B748: 20 64 B7 A9 77 8D F1 87
B750: 20 64 B7 A9 71 8D F1 B7
B758: 2@ 64 B7 AD 51 C@ AD 54
B76@: C@ 4C 8A B7 A9 01 8D F4
B768: B7 A9 B7 A8 E8 2@ BS B7
B776. CE ED B7 18 14 A9 OF 8D
B778: ED B7 CE EC B7 AD EC B7
B780: C9 93 DO @5 A9 01 8D EC
B788: B7 60 A2 @0 BD 08 71 95
B790: 006 E8 DO F8 20 75 32 4C
B798: D9 33

hexdump for...

SPELLER.SAVER

DOGE@: A9 OF 8D ED B7 A9 65 8D
DP@8: EC B7 A2 @1 8E EA B7 CA
DP1@: 8E FO B7 A9 3A 8D F1 B7
DO18: 2@ 3A DB CE F1 B7 AD F1
DO28: B7 C9 88 BA F3 A9 @3 8D
D@28: F1 B7 20 3A D@ A9 77 8D
DO36: F1 B7 20 3A D@ A9 71 8D
DO38: F1 B7 A9 #2 8D F4 B7 A9
DO4@: B7 AD E8 20 B5 B7 CE ED
DO48: B7 10 14 A9 OF 8D ED B7
DO5@: CE EC B7 AD EC B7 C9 @3
D@58: D@ @5 A9 81 8D EC B7 60

78 The Book Of Softkeys Volume II

source code for...

SPELLER.LOADER

1000
1016
1020
1030
1040
1850
1068
1878
1080
1098
1100

DRIVE

1118 TRACK

1128 SECTOR

1130

1140 COMMAND

1150
1160
1178
1180
1190
1208
1210
1220
1230
1248
1250
1260
1278
1280
1290
1300
1319
1320
1330
1340
1350
1360
1378
1380
1390
1490
1416
1420
1439
1449

BUFHI

RWTS

LOOP1

LOOP2

*

* SPELLER.LOADER

* THIS LOADS WHAT USED TO BE
* PART OF SENS{BLE SPELLER
* WHILE 1T 1S BOOTING

*

.OR $B700
.TFSPELLER.LOADER

.EQ $B7EA
{EQ $B7EC
.EQ $B7ED
.EQ $B7F1
.EQ $B7F4
.EQ $B7B5
BIT $C850
BIT $C057
BIT $C252
BIT $CO55
LDA #$F
STA SECTOR
LDA #$7
STA TRACK
LDX #1
STX DRIVE
DEX

STX BUFHI-1
LDA #$5F
STA BUFHI
JSR READ
DEC BUFHI
LDA BUFH!
CMP #$40
BCS LOOP1
LDA #$3A
STA BUFH|
JSR READ
DEC BUFHI
LDA BUFHI
CHP #8
BCS LOOP2
LDA #$3
STA BUFHI
JSR READ

The Book Of Softkeys Volume II

79

1450 LDA #$77

1460 STA BUFHI
1479 JSR READ
1480 LDA #$71
1490 STA BUFH!
1500 JSR READ
1510 LDA $C@51
1520 LDA $C@54
1530 JMPEXIT
1540 READ LDA #1
1550 STA COMMAND
1568 LDA #3B7
1570 LDY #$E8
1580 JSR RATS
1590 DEC SECTOR
1600 BPL RTS1
1619 LDA #$F
1620 STA SECTOR
1630 DEC TRACK
1640 LDA TRACK
1650 CMP #$3
1660 BNE RTS1
1670 LDA #1
1680 STA TRACK
1694 RTS1 RTS

1709 EXIT LDX #@
1719 LOOP3 LDA $7108,X
1720 STA $8,X
1730 INX

1740 BNE LOOP3
1750 JSR $3275
1760 JWP $3309

source code for...

SPELLER.SAVER
1009 .
1010 * SPELLER . SAVER
1020 * THIS SAVES THE SENSIBLE
1030 * SPELLER FROM MEMORY TO
1049 * VARI0US SECTORS OF AN
1050 * UNPROTECTED DISK
1060 :
1070
1080 .OR $DGEY
1099 TF SPELLER. SAVER

80 The Book Of Softkeys Volume II

1108

1118 DRIVE .EQ $B7EA
1126 TRACK .EQ $B7EC
113 SECTOR .EQ $B7ED
1146 BUFHI .EQ $B7FL
1150 COMMAND .EQ $B7F4
1160 LDA #$F
1178 STA SECTOR
1180 LDA #$5
1190 STA TRACK
1200 LDX #1
1218 STXDRIVE
1220 DEX

1230 STX BUFHI-1
1240 LDA #$3A
1250 STA bUFHI
1260 LOOP JSRWRITE
1278 DEC BUFH!1
1280 LDA BUFHI
1290 CMP #$8
1300 BCS LOOP
1316 LDA #$3
1320 STA BUFHI
1330 JSRWRITE
1340 LDA #$77
1350 STA BUFHI
1360 JSRWRITE
1370 LDA #$71
1380 STA BUFHI
1390 WRITE LDA #2
1400 STA COMMAND
1419 LDA #$B7
1420 LDY #$E8
1430 JSR $B7B5
1440 DEC SECTOR
1450 BPL RTS1
1460 LDA #$F
1470 STA SECTOR
1480 DEC TRACK
1490 LDA TRACK
1500 CMP #$3
1510 BNE RTS1
1520 LDA #1
1530 STA TRACK
1549 RTS1 RTS

¥

The Book Of Softkeys Volume II

—
Sensible Speller 4*

*Sensible Speller Version 4.0c & 4.1¢
Sensible Software

More On Sensible Speller 4
by Lamont Cranston
(Hardcore COMPUTIST # 10, page 6)

Requirements:
Apple 1[, Apple Il Plus
Blank disk
Bit Copy program
Sector Editor

Editors Note: The previous Sensible Speller Softkey was based
upon revision 4.0d of the program. We verified the softkey
using that revision. Several readers however reported that the
softkey would not work on their version of the program.
Apparently there are at least six different revisions, each having
a different menu entry point. We are trying to gather
information on the different versions, but as yet we do not
have a verified procedure that will work on anything other
than 4.0d.

Because of the interest in Sensible Speller we are publishing
a softkey for revisions 4.0c and 4.1d. This method has not
been verified by our staff.

The protection scheme on Sensible Speller 4 is based upon the
disks having a very strange and complicated boot. The complexity
of the boot requires a lot of extra code which apparently exists solely
to handle the disk’s odd format.

Tracks $0—$1 and $4—$5 are used.

Tracks $2—3$3 and $6—$22 are all normal DOS 3.3 format (Track
$3 is technically CP/M, but COPYA will still copy it).

The title picture resides on Tracks $6—$7 and is loaded on hi-res
page 2 at $4000—$5FFF.

Track $8—$B contain the S main menu routines.

82 The Book Of Softkeys Volume II

Other routines, such as the spelling checker itself, are loaded later
by the menu module.

Knowing this, all we have to do is load the menu program with
its associated support routines and fix its expected environment.

Since the useful program exists on normal DOS 3.3 tracks, we
will write Track $0 (on a copy of the SS disk) with the DOS 3.3
BOOTI1 and RWTS sectors, then rewrite the DOS BOOT2 (Track
$0, Sector $1) routine that’s loaded at $B700 as part of RWTS so
that it loads in the Sensible Speller menu.

A couple of routines also have to be added to BOOT2 so that the
main menu will work properly once loaded.

BOOT?2 is called from BOOT1 after the RWTS has been loaded.
The SS menu program loads and runs at $800—$47FF. The BOOT?2
code needed for SS has to do the following things:

|j] Load the SS menu program in memory at $800—$47FF.
E Load Track $2, Sectors SE—$F in memory at $800—$9FF.

[3] store a $00 in the prompt register at $33.

E Copy the Motherboard F8 Monitor ROM into a language
card if it is present.

E] Set normal 1/O.
E Exit to the entry point of the SS menu.

Step 3 is necessary because Sensible Speller does not seem to work
correctly if a prompt is found at $33.

Step 4 is needed becuase SS will crash if a language card without
a monitor image is found in slot .

The DOS BOOT? loader is well documented in the book: Beneath
Apple DOS. Essentially it is designed to load a specified number
of sectors into memory from consecutive disk sectors into
consecutive pages of memory. The Input/Output Block (IOB) and
Device Control Table (DCT) are present at the end of the BOOT2
sector.

What version?

I 'have used this patch on Sensible Speller version 4.0c and 4.1c.
The source code listing is for version 4.1c (the PFSWrite-compatible
version). The 4.0c version (the Pascal-compatible version) menu
has a different entry point ($33B8), so the JMP in BOOT2 at $B790
(lines 1070 and 1790 in source code) must be changed accordingly.

If you have an earlier version of Sensible Speller you can use the
Inspector to search for the entry. To do this, boot up the Inspector,
set the buffer to $800 and read Track $8, Sector $0 and then continue
holding down the (I] key until you have filled memory from
$800—$47FF with consecutive sectors from the disk. Search the

The Book Of Softkeys Volume II 83

buffer for a likely entry point and use it to put into the modified
BOOT?2 code. A conspicuous feature of the entry is that it will store
its address into $3E—$3F.

The modified BOOT2 code will not load the hi-res Sensible Speller
logo because this would make the code longer than one sector,
although it could be rewritten to load in a second sector.

Sectors $E—$F of Track $2 are loaded over the menu code
because this is where SS stores its configuration data. These sectors
can be read by any sector editor.

The VTOC on the copied disk can be altered to free up Track
$1 and Track $4—$5 for data since they are not used by Sensible
Speller. If you wish to implement an extended boot to load DOS
or the hi-res picture, the extra data can be stored on these sectors
or on the unused sectors of Track $0.

The Necessary Steps

[1] Boot up DOS 3.3 and INIT a slave disk:

PR#6
FP
INIT HELLO

lj_l Use a bit copier to copy Tracks $2—$3 and $6—$22 from
the Sensible Speller original onto the disk initialized in Step 1.

I_j_l Use a sector editor to write the modified BOOT?2 code onto
Track $0, Sector $1 of the copied disk. Do not forget to change
the entry point if you have a version other than 4.1c.

IE That’s all. Now start misspelling!

I was motivated to deprotect Sensible Speller because of Sensible
Software’s heavy protection of this utility program (probably soon
to get heavier), its serial numbering and restrictive licensing
agreement.

Other factors which motivated me were Sensible Speller’s refusal
to boot on an Apple //c (the computer rightly says there is something
wrong with the disk) and Sensible Speller’s withdrawal of Pascal
support with the release of version 4.1c. To me, it seems as if
dropping an entire operating system in favor of Word Handler or
Cameo seems to be a ploy to get those coveted serial number
registration cards. All in all, they should have spent the money they
spent on copy-protection on some extra features for the program.

I did not find the program particularly difficult to crack (about
6 hours work all told). I want to emphasize that I did buy the original
program and do not condone piracy. However, nobody locks me
out of a program I have purchased, either.

84 The Book Of Softkeys Volume II

object code for...

BOOT2

B700:
B708:
B718:
B718:
B720:
B728.
B730:
B738:
B740:
B748:

B750:
B758:
B764:
B768:
B778:
B778:
B780:
B788:
B798:
B798:

B7A8:
B7A8:
B784:
B7B8:
B7CG:
B7C8:
B7D@:
B7D8:
B7E®:
B7ES:

B7FQ:
B7F8:

8E E9 B7 8E F7 B7 A9 01
8D F8 B7 8D EA B7 AD Eg
B7 8D E1 B7 A9 0B 8D EC
B7 A9 OF 8D ED B7 A@ 48
88 8C F1 B7 A9 01 8D F4
B7 8A 4A 4A 4A 4A AA AS
@0 85 33 9D F8 04 9D 78
@4 20 93 B7 A9 041 8D F8
B7 8D EA B7 A9 92 8D El
B7 A9 @2 8D EC B7 A9 @F

8D ED B7 A@ OA EA 88 8C
F1 B7 A9 @1 8D F4 B7 8C
F1 B7 AS @1 8D F4 B7 20
93 B7 A2 FF EA 8E EB B7
20 93 FE 20 89 FE AD 81
Cd AD 81 C@ A9 F8 Ad FF
84 3E 84 3F C8 84 42 84
3C 85 43 85 3D 20 2C FE
4C 17 35 AD E5 B7 AC E4
B7 26 B5 B7 AC ED B7 88

10 87 A9 OF EA EA CE EC
B7 8C ED B7 CE-F1 B7 CE
El B7 D@ DF 6@ 08 78 20
@0 BD B@ 03 28 18 60 28
38 60 AD BC B5 8D F1 B7
A9 @0 8D F@ B7 AD F9 B5
49 FF 8D EB B7 60 A9 00
A8 91 42 C8 DJ FB 60 0@
40 00 OA 1B E8 B7 90 B6
@1 60 01 00 @0 00 FB B7

@0 47 00 FF 01 00 FE 60
@1 00 00 00 01 EF D8 00

The Book Of Softkeys Volume 11

BOOT2 Source code

1000 MEM1

1010 MEM2

1920 READ.PGS
183 SETVID
1046 SETKBD
1850 LANG.CARD@

1960 WOVE

1080 RWTS
1099 FM.PRM
1100 FM.VOL
11108 STACK
1120

1130

1148

1150

1160

117¢

1186

1198

1200

1210

1220

1230

1240

1250

1260

1270

1280

1299

1300

1318

1320

1330

1340

1350

1360

1378

1380

1396

1400

1410

1420

1430

.EQ $04F8
-EQ 50478
.EQ $B793
.EQ $FE93
.EQ SFE89
-EQ $Ca8Q

Last Track read by DOS
Next Track to be read

START OF MAGIC MEMORY LOCAT IONS THAT

AFFECT EXTRA 16K OF MEMORY IN SLOT @
.EQ $FE2C MON!TOR "M" SUBROUT INE
1070 START.SPELL .EQ $3517

.EQ $BDAG

ENTRY TO RWTS

.EQ $B5BB FILE MANAGER PARAMETER L IST

.EQ $B5F9

FILE MANAGER VOL NUMBER COMPL | MENTED

.EQ $108 STACK AREA

-OR $B700
.TF SSB00T2

STX RWTS . PRM+1
STX RWTS. PRM+15
LDA #1

STA RWTS. PRM+16
STA RWTS. PRM+2
LDA SECND. PRM
STA SECND . PRM+1
LDA #$0B

STA RWTS . PRM+4
LDA #30F

STA RWTS . PRM+5
LDY #$48

DEY

STY RWTS . PRM+9
LDA #1

STA RWTS . PRM+12
TXA

LSR

LSR

LSR

LSR

TAX

LDA #0

STA $33

STA MEM1, X

STA MEM2, X

JSR READ. PGS
LDA #1

NEXT SLOT
LAST SLOT

NEXT DRIVE

LAST DRIVE
NUMBER OF PAGES
NUMBER OF SECTORS

TRACK NUMBER

SECTOR NUMBER

BUFFER MSB

COMMAND CODE

A<=SLOT NUMBER FOUND*16
DIVIDE SLOT

NUMBER BY

16

CORRECT OFFSET

LAST TRACK READ WAS PHASE §
DON'T MOVE HEAD ANY

The Book Of Softkeys Volume II

1449
1450
1460
1470
1480
1490
1500
1518
1520
1538
1540
1550
1560
1578
1580
1590
1600
1610
1620
1630
1640
1650
1660
1679
1680
1690
1700
1718
1720
1730
1740
1758
1760
1776
1780
1798
1800
1818
1820
1830
1840
1850
1860
1870
1886
1890
1900
1918
1928
1930

The Book Of Softkeys Volume II

NXT . SECT

NXT.TRK

STA RWTS .PRM+16
STA RWTS . PRM+2
LDA #2

STA SECND.PRM+1
LDA #2

STA RWTS . PRM+4
LDA #$0F

STA RWTS .PRM+5
LDY #$0A

NOP

DEY

STY RWTS . PRM+9
LDA #1

STA RWTS.PRM+12
STY RWTS . PRM+9
LDA #1

STA RWTS . PRM+12
JSR READ. PGS
LDX #$FF

NOP

STX RWTS .PRM+3
JSR SETVID

JSR SETKBD

LDA LANG . CARDS+1
LDA LANG.CARD@+1
LDA #$F8

LDY #$FF

STY $3E

STY $3F

INY

STY $42

STY $3C

STA $43

STA $3D

JSR MOVE

JMP START .SPELL
LDA SECND.PRM+5
LDY SECND . PRM+4
JSR RWTS1

LDY RWTS . PRM+5
DEY

BPL NXT.TRK

LDY #$0F

NOP

NOP

DEC RWTS.PRM+4
STY RWTS . PRM+5
DEC RWTS . PRM+9
DEC SECND.PRM+1
BNE NXT.SECT

LAST DRIVE
LAST DRIVE

NUMBER OF SECTORS
TRACK NUMBER

SECTOR NUMBER

BUFFER MSB

COMMAND CODE
BUFFER MSB

COMMAND CODE

VOLUME EXPECTED = 255
PR#0
IN#@

F80B<F800 . FFFFM

RWTS POINTER MSB
RWTS POINTER LSB

SECTOR NUMBER

DONE WITH TRACK?

NO, BRANCH

NEXT TRACK, SECTOR 15

TRACK NUMBER
SECTOR NUMBER
BUFFER MSB
NUMBER OF SECTORS

87

1940

1950 RWTS!
1960

1970

1980

1994

2000

2010

2020 RWTS.ERR
2030

2040

2050 SET.WRIT
2060

2070

2080

2090

2100

2119

2120

2130 ZERO.BUF
2140

2150 .1

2160
2179
2180
2190

2208 SECND.PRM

2219 RWTS.PRM

RTS

PHP

SEl

JSR RWTS

BCS RWTS . ERR
PLP

CLC

RTS

PLP

SEC

RTS

LDA FM.PRM+1
STA RWTS. PRM+9
LDA #0

STA RWTS . PRM+8
LDA FM.VOL

EOR #$FF

STA RWTS . PRM+3
RTS

LDA #8

TAY

STA ($42) Y

INY
BNE .1
RTS
.HS 00

SET RWTS
FOR WRITING

RWTS BUFFER LSB

VOLUME EXPECTED
ZERO CURRENT BUFFER

LOCATION $42 HOLDS THE
POINTER TO CURRENT BUFFER

UNUSED

.HS 40Q0B@A1BEBB700B6

DOS SECOND STAGE BOOT LOADER
PARAMETER LIST

-HS 016001000000FBB7004700FFO100FEGHDL
2220 * RWTS.PRM IS THE RWTS PARAMETER LIST

2230 .HS gog0 UNUSED
2240 DCT .HS 00@1EFDS DEVICE CHARACTERISTICS
TABLE
2250 .HS 00 UNUSED
88 The Book Of Softkeys Volume II

The Spy Strikes Back

Penguin Software

Backing-Up The Spy Strikes Back
by Clay Harrell
(Hardcore COMPUTIST # 8, page 6)

Requirements:
48K Apple with old style F8 Monitor ROM
One disk drive with DOS 3.3
Initialized 48K DOS 3.3 slave disk
The Spy Strikes Back

Penguin Software has started what I consider to be the best idea
since canned beer: inexpensive software!

It is at the point where backing up software is not really necessary
since the cost of Penguin’s games are under 20 dollars!

But there is a catch to The Spy Strikes Back: Penguin has a contest
in which the first person in each state who can solve their puzzle
will win $100 in software. This means code-snooping is a must (I'm
lazy I guess) and deprotection is along this line.

Upon booting The Spy disk, I notice that the boot is very short.
It seems to load only six or seven tracks before the game starts.
The game has some disk access within it for high scores and the
like, and to discourage the Wildcard/Replay Card crowd from getting
easy copies.

After loading the game and hitting (RESET), I notice that both hi-
res pages are being used for the graphics (therefore, no code exists
there).

Keeping in mind the short load, snoop through memory looking
for a starting location. The typical starting location for a game that
uses both hi-res pages is $800 or $6000.

Sure enough, a 6800G from the Monitor starts the game up with
the disk spinning to load the hi-scores.

Further examination of memory reveals that $1800—$1FFF is
the code to draw the pictures for the demo and that the two hi-res
pages do not have to be saved. Locations $6000—$9A00 seem to
be the actual code for the game.

The Book Of Softkeys Volume II 89

Note: a good way to see what part of memory is being used is
to zero-out all of memory and then boot the program and see what
is used.

For example, from Monitor type:

800:0 N 801<800.BFFFM

This will wipe out memory from $800 to $BFFF with zeroes. This
was the method used to determine what areas of memory The Spy
Strikes Back used. (I assumed that RWTS lived at it’s normal location
of $B700).

Now that we know where The Spy lives, we must clear the way
for a slave disk boot.

Recall that a slave disk does not destroy memory at $990—$95FF.
Also recall that we do not have to save the two hi-res pages (locations
$2000—$5FFF) since the game re-draws these for us using the data
at $1800—$1FFF.

This means we can move the code at $9600—$9A00 to $1000
so not to destroy it when we boot our slave disk.

Another thing to consider is the disk access in the game. I have
done the work for you and have found the locations to change to
remove this pesty protection.

With these things in mind, the exact procedure for backing-up
The Spy Strikes Back is as follows:

[II Boot the original disk The Spy Strikes Back:
PR#6

[zl into the monitor when the demo starts.

[31] Move the code at $9600—$9A00 to $1000 where it is safe
during a slave boot:

1000<9600.9A00M

E Bypass the disk access routines:
101F:EA EA EA

[5] Boot a 48K DOS 3.3 slave disk:
PR#6

[6] Set MAXFILES to 1:
MAXFILES1

I__71 Enter the Monitor:
CALL -151

90 The Book Of Softkeys Volume II

Move the code saved in step 3 back to $9600:
9600<1000.1400M

[Q BSAVE the first portion of code:
BSAVE SPY2,A$6000,LS3A00

BSAVE the second portion of code:
BSAVE SPY1,A$1800,L5800

IE Re-enter BASIC:
3DeG

I:L__ﬂ Clear any Applesoft program in memory:
FP

@ Create the following Applesoft program:

10 HIMEM:24576

20 DS = CHRS(4)

30 PRINT D$;''‘MAXFILES1"

40 PRINT DS$;‘‘BLOAD SPY2"

50 PRINT D$;‘‘BLOAD SPY1"

60 FORI = 0 to 14: POKE 768 + 1,32: NEXT:
FOR I = 15 to 254: POKE 768 + I,0: NEXT

70 CALL 24576

SAVE the Applesoft program:
SAVE SPY STRIKES BACK

Final notes: The code that you changed at location $101F takes out
the disk access in the game. The POKE statements at location 768
set up the high scores as zero with no one’s initials.

Good luck in finding the hints to the puzzle (you didn’t expect
me to tell you how to find them, did you??).

¥

The Book Of Softkeys Volume II 921

Visible Computer: 6502

Software Masters

Softkey for The Visible Computer: 6502
by Jared Block and Bob Bragner
(Hardcore COMPUTIST # 9, pa§L26)

Requirements:
Super IOB program
Blank disk
The Visible Computer program

The Visible Computer 6502 is an excellent educational program
designed to teach 6502 machine language to those would-be Bill
Budges among us. The program allows the user to step and trace
through machine language programs, displaying the effects upon
registers and memory in hi-res graphics. The package comes with
very good documentation but unfortunately, the disk is copy-
protected. With the following procedure The Visible Computer 6502
can be copied and modified to work with normal DOS 3.3.

The Visible Computer uses a modified DOS as its primary form
of protection. In addition to the DOS marks being altered and the
encoding manner, most of the DOS commands have been obliterated.
Because of a few mistakes by the creators of The Visible Computer,
we can easily capture its strange RWTS and use it to copy the disk.
Once a copy has been made, the main program needs a few
modifications in order to- work with DOS 3.3.

Getting Turned On

Start by turning ON your computer. Next, place your original
version of Visible Computer in the disk drive but DO NOT CLOSE
THE DRIVE DOOR.

Press:

and then shut the door. In a few seconds you will get a BREAK
message and a prompt.

92 The Book Of Softkeys Volume 11

Right away I thought I was ‘“in’ The Visible Computer. But the
RUN flag gets set during The Visible Computer’s boot process.
Therefore, anything you type will execute the program in memory
(never to give control back to you).

This is where we take advantage of their first mistake. We type:

FP
which clears the program in memory but more importantly, clears
the RUN flag.

Making The Invisible Visible

Now you are ‘in’ The Visible Computer. Sure the DOS commands
have been obliterated, but you can still call them directly. Try a

CALL 42350
to see the CATALOG.
What we have to do now is save the RWTS portion of the DOS
in memory so that Super IOB can use it. This is accomplished by
the Monitor command

1900<B800.BFFFM
Next, boot your Super IOB disk and save the RWTS with

BSAVE VISICOMP.RWTS,A$1900,1.5800

With this file, all you have to do is use the Super IOB controller.

Once the copy has been made, there are a couple of modifications
and deletions that must be made to the main Applesoft program
called The VC so that it will work properly with DOS 3.3.

The first deletion is line 1 of the program. This line is a REM
statement containing a a and the DOS command FP.
This has the effect that if the line 1 is listed, DOS will process the
FP command and delete the program. This problem is easily rectified
by deleting Line 1.

So Long SOREN

The BSAVE command in The Visible Computer’s DOS has been
changed to SOREN. The only place this command appears is in
Line 13910. Of course, the normal DOS 3.3 command BSAVE must
be restored to this line.

Line 18000 determines whether the program can Read and Write
to normal DOS 3.3, depending upon the setting of The Visible
Computer’s ‘MASTER’ command. This line contains two CALLs
to The VC’s modified DOS which need to be removed. With these
two CALLSs removed, the ‘MASTER’ command will still function
normally except that the program will not be able to read files from
the original Visible Computer program disk.

Finally, and most importantly, Line 20730 contains a CALL that
will INIT the disk if the program is used under normal DOS. The
INIT command has been removed from The Visible Computer’s

The Book Of Softkeys Volume II 93

DOS, so the CALL is harmless until the program is run under DOS
3.3. This nasty little line must be completely deleted.
Here’s how to deprotect The Visible Computer.

Revealing The Visible Computer

II' Turn on the computer and tell it to break:

IZI Insert The Visible Computer disk and shut the drive door.

E] Clear the RUN flag:
FP

E Enter the Monitor:
CALL-151

|__§l Move the RWTS to a safe place:
1900<B800.BFFFM

E Boot a 48K slave disk with a short HELLO program:
C600G

Save the RWTS:

BSAVE VISICOMP.RWTS,A$1900,L.5800

Load Super IOB and type in the controller, then:
SAVE SUPER IOB.VISICOMP

EI Copy The Visible Computer:
RUN

Load the main program from the copied disk:
LOAD VC

@ Delete Line 1 so the program can be listed normally:
1

[(12] LIST Line 13910. It should read:

13910 VTAB 20: PRINT D$"SOREN"P2$Z$

Change this line so it has a normal BSAVE command:

13910 VTAB 20: PRINT D$"BSAVE"P25Z$

94 The Book Of Softkeys Volume II

E?i_—] Line 18000 contains some CALLSs to The VC’s DOS which
must be removed. This line now reads:

18008 PV =T: CALL47741: |F P2$ = "OFF" THEN PV =F: CALL 47741: REM
SET NRML, PRTCT DOS'S

Change this line so it reads:
18000 PV =T: IF P2$ = "OFF" THEN PV = F: REM SET MASTER ON/OFF

Line 20730 contains a CALL which will INIT normal DOS
3.3 disks. It reads:

20730 CALL PEEK (4@222) + PEEK(40223) * Q4 + !
Be sure to get rid of it by typing:
20730

I_E’ If you wish you can also have the program set the Reset
Vector so that the program does not reRUN itself when the
key is pressed. For instance, if you want to enter the Monitor when
is pressed change line 2 to read:

2 POKE 110,89 POKE 1811,255: CALL-1169

Finally SAVE the modified program back to the copied disk
SAVE VC

As a CATALOG shouid reveal, this disk is completely broken
and can be copied with COPYA or even FID. Frequent sessions with
The VC are recommended for aspiring bit-brains. Good luck!

Super 10B Controller...
SPELLER.CON

1900 REM SWAP CONTROLLER (VISIBLE COMPUTER)

1010 TK=3:ST=0:LT=35:CD=WR

1926 T1 = TK: GOSUB 498: GOSUB 360

1030 GOSUB 430: GOSUB 180:ST = ST + 1: IF ST < DOS THEN 1030

1944 |F BF THEN 1060

1950 ST=0:TK=TK+1: IF TK < LT THEN 1030

10960 GOSUB 490:TK = T1:ST = 8. GOSUB 360

1870 GOSUB 43@: GOSUB 10@:ST = ST + 1: {F ST < DOS THEN 1070

1980 ST=0:TK=TK + i {F BF = @ AND TK < LT THEN 1070

1090 IF TK < LT THEN 1020

1100 HOME : PRINT "EVERYTHING" 0.K.*D0OS* NOT* COP{ED" : END

10810 |F PEEK (6408)<> 162 THEN PRINT CHR$ (4)"BLOAD
VISICOMP.RWTS, A$1900"

The Book Of Softkeys Volume II 95

Visidex

Visicorp

Backing up Visidex
by Anthony Barnett
(Hardcore COMPUTIST # 9, page 7)

Requirements:
48K Apple
One disk drive with DOS 3.3
Visidex
One blank disk
COPYA

Visidex is a key-word index program which has some data storage
and retrieval procedures which I have not seen in any other program
for the Apple. Its retrieval of data by keyword is very fast.

In Hardcore COMPUTIST # 3 page 6 (see the Book Of Softkeys
volume I) in my softkey for Visitrend / Visiplot, 1 explained the
problems in obtaining backups from Visicorp when overseas. I notice
in Hardcore COMPUTIST # 5 that Bob Bragner describes similar
problems in his softkey for Visifile (also see the Book Of Softkeys
Volume 1). The same problems apply to Visidex.

Though I have been able to copy Visidex using the long list of
Locksmith parameters, I decided that an unprotected backup would
be more convenient. For one thing, the disk could also be used to
store other files instead of being wasted on one 17K file.

During the course of my examination of the Visidex disk, 1
discovered that unless the DOS from the original disk is present,
Visidex data disks may become corrupted. I glso noticed that apart
from the dummy serial number, there appeared to be only two very
short binary files, namely VISIDEX and VISIO. 8. It turns out that
VISIDEX is a loader file which uses an RWTS routine to load the
whole program into memory.

After some experimentation, I found the following procedure to
work.

EI Use COPYA to make a copy of Visidex.

96 The Book Of Softkeys Volume II

[2] UNLOCK and DELETE the file VISIDEX on the copy.
|:3_—| Boot the copy and wait for the FILE NOT FOUND message.
|:4_—| Insert the original and:
BLOAD VISIDEX
|_—£] With the original still in drive 1, enter the Monitor with:
CALL -151
E From the Monitor type:

60A3:69 FF
6000G

When the drive stops, you should still be in the Monitor.
Remove the original and insert the copy.

Type:

INIT VISIDEX

[E When initialization is complete, type:

DELETE VISIDEX
BSAVE VISIDEX,AS$803,L54404

The disk so produced, if booted, will run Visidex. Steps 1 to 3
enable you to get Visidex’s DOS into memory. Step 4 gets the
program loader into memory. Steps 5 and 6 cause a jump to the
monitor before the Visidex program is run. The technique here is
the same as used with boot code tracing. At $60A2 is the jump out
from the loader to the Visidex program at $1803. Step 6 alters this
to a jump to $FF69 which is the Monitor entry address.

During the course of the load, the file VISIO.8 is loaded at $4C00.
The essence of this file is 6 NOP’s and one RTS. Thus, the effective
program begins at $803 and ends at $4C06.

Step 8 is necessary because a DISK FULL message is received
if you attempt to BSAVE the program at this point. Be careful not
to INIT the original. It is a good idea to keep a write protect tab
on original program disks.

Step 9 prevents a FILE TYPE MISMATCH error when BSAVEing
the program.

The only difference between this version and the original that I
can detect is the response to a (RESET]). In the original, this usually
took you to a BOOT FROM SLOT 6 message. In the copy,
dumps you back to Applesoft. For those of you who want to make
patches to the program, be warned. The program makes extensive
use of ‘funny jumps’, i.e. pushing an address onto the stack and
then doing an RTS to get there. That’s it!

%

The Book Of Softkeys Volume II 97

Visiterm

Visicorp

Short Softkey For Visiterm
by B. Baker
(Hardcore COMPUTIST # 9, page 8)

Requirements:
Apple Il family with 48K
One blank disk
COPYA
A sector editing program

IZI Copy the disk, using COPYA.

E Use the sector editor to read Track $15, Sector $0E of the
backup disk.

I__ii_l Change Byte $DF from $B0 to $90 and write the sector
back to the disk.

Donald Oliveau’s APT for...

Wizard and the Princess

Return To Life

If the player ‘dies’ in this game, there’s a way to revive
him or her. When the computer asks you DO YOU WISH TO
PLAY AGAIN? after the ‘death’ has occurred, answer ‘N’ for
NO and then press TWICE. This restores you to life
at the spot you were ‘killed” with all your inventory intact.

98 The Book Of Softkeys Volume II

—
- Z.axxon

Datasoft,Inc.

Deprotecting Zaxxon
by Clay Harrell
(Hardcore COMPUTIST # 7, page 8)

Requirements:
48K Apple or Apple Il Plus
One disk drive and DOS 3.3
COPYA from 3.3 System Master
A sector editor such as Zap
Two blank disks
Original Zaxxon disk

One of my favorite arcade games of all time is Zaxxon. The game
was the first to use realistic appearing three-dimensional graphic
effects that played well. I've spent a great deal of time (and tokens)
playing the game, so naturally, when it was available for the Apple,
I bought it.

The only complaint I have about Zaxxon is that there are only
three planes given for each game. The arcade Zaxxon I had always
played had five. I felt cheated! With this in mind, I decided to dig
into the code that made Zaxxon fly.

(Please note: There has been a new release of Zaxxon from
Datasoft. This is the one I will be primarily discussing, although
the same protection was used on both versions. You can tell if you
have the new version because it has an option to use the
Mockingboard with it. If your Zaxxon boots and asks
MOCKINGBOARD IN SLOT 4 Y/N?, you have the new version.
In addition, I have seen two different protections used on the newer
versions of Zaxxon. I will give details on the deprotection of all
versions, including the older version of the game).

The first thing to notice is the boot of Zaxxon. Listen to your disk
drive as the game boots and you can hear the drive arm swing out
to an outside track and then swing back in and read the game in.
This is what is loosely known as a ‘nibble count’ or a ‘checksum’
routine.

The Book Of Softkeys Volume II 99

If a byte doesn’t match the benchmark like it should when the
outside track is read, the game will clear memory and reboot.
Usually, the only thing involved in deprotecting a program that isn’t
a single load and that has a ‘nibble count’ is to find the routine that
does the check and jump around it. Usually, too, about the only
way to find this routine is to (yech!) trace the boot.

Boot Code Tracing

Boot code tracing is a method of tracing how a program gets from
your disk to memory. It does not magically happen all at once but
in stages which we can trace and examine and, hopefully,
understand. Hence, the name ‘boot code tracing.’

The theory of boot code tracing suggests that you should follow
the boot process one step at a time to see where it takes you, by
altering the code to prevent it from running away from you. Yes,
it is advisable that you understand Assembly language, since the
code that boots the disk is, in many cases, intentionally misleading.

This process is based upon the law that Track $0, Sector $0, must
always be read by the disk controller card into page 8 ($800—$8FF)
of memory. After this, depending on the complexity of the
protection, it is sometimes difficult to understand what goes on in
the rest of the load.

In a normal slave disk boot, there are three stages of a boot,
starting with the code at $C600—S$CO6FF in the disk controller card.
This controller card code loads in Track $@, Sector $0, into
$800—$8FF, which, in turn, loads in Track $0, Sectors $0—$9,
into $B600—S$BFFFE. This new code loads in Track $0, Sector $C
through Track $2, Sector $4, into $9D0O—$BSFF and finally your
Hello program is run.

Boot Stages

Boot Stage Code Location Final Location Jumps to
0 $C600-C6FF $0800-08FF $0801
1 $0801-08FF $B600-BFFF $B700
2 $B6QQ-BFFF $9DBO-BSFF RUN

Now, in order to change the code in the boot so that it doesn’t

run away from us, we can either alter memory or alter (a copy of)
the disk.

Check Routines

If you defeat the DOS (Disk Operating System) error-checking
routines, you can copy the Zaxxon disk with COPYA. Of course,
it won’t run because of the ‘check’ routine and because of some
. of the other incompatibilities with normal DOS 3.3, but you can
read and write to the copy easily.

100 The Book Of Softkeys Volume II

To defeat the error-checking, enter the Monitor:
CALL-151

and type:
B942:18

Whenever DOS encounters an error, it jumps to a routine at $B942
which sets the carry bit and returns. The carry bit is a flag to DOS
that there was an error and directs it to stop whatever it was doing.
It then prints out a worthless message to the user.

If you defeat this routine, you can fool DOS and read the entire
Zaxxon disk. Then copy the disk and examine the data on it. So,
put your DOS 3.3 System Master in the drive and:

RUN COPYA

When the prompt for source drive is asked, hit:

This will break you into BASIC. Now, type the following:

CALL-151
3A1:18
302:17
35F:17
3DOG

70

RUN

This will make some changes to COPYA. OBJ@ so that it ignores
errors and only copies Tracks $0—$16. Line 70 of the Applesoft
part of COPYA is also deleted to prevent loading in COPYA. OBJO
and writing over the change just made. Now, select the desired drives
and copy Zaxxon.

Note: Zaxxon only lives at Track $0—$16 (Tracks $0—$13 on
some versions). If COPYA tries to read an unformatted track your
drive will recalibrate (‘grind’) for every sector that the program tries
to read. Do not interrupt this process. After the copy is made, make
another copy of the duplicate of Zaxxon, which you had just made.
Label the first copy WORK ZAX and the second copy COPYA ZAX.

Put these two copies aside for a moment. The next step is to trace
the boot. First, enter the Monitor:

CALL-151

and clear out memory with this command:
800:0 N 801<800.95FFM

To start the boot you need to run the code in the disk controller
card, but we stop it before it runs away. You cannot change the
code in ROM (Read Only Memory), but you can copy it down to

The Book Of Softkeys Volume I1 101

RAM (Random Access Memory) and change it. Use the following
command from monitor to do this:

9600<C600.C6FFM

Having done this, you can change the boot code so that it loads
in Track $0, Sector $0, but does not execute it. At location $96F8
you will see a JMP $801. This starts the next boot process (see Boot
Stages chart). Change this to JMP $FF59, which will jump to the
Monitor. From the Monitor, type:

96F8:4C 59 FF

Now, put the WORK ZAX disk in drive one and execute the code
with:

9600G

The drive will spin, the Apple-will beep and you will see the
asterisk (*) prompt.

From the table, you can see that this code is loaded into $801.
(To stop the drive from spinning, enter COE8[RETRY from the
Monitor. Also, to turn off the hi-res page, enter C054[RETURY and
C051 (ReTRy)). Now, examine the code at $801 with the command:

801L

Upon examining the code, you will find that it is fairly normal,
with some exceptions:

p801- A5 27 LDA $27 b
g803- C9 09 CMP £$09 !

@8¢5- DO 18 BNE $081F !

#807- A5 2B LDA $2B ! N
g809- 4A LSR !

g8oA- 4A LSR ! 0
g8gB- 4A LSR !

@8aC- 4A LSR ' R
g8eD- 09 Co ORA #3C@ !

g8gF- 85 3F STA $3F ! M
g8l1- A9 5C LDA #$5C !

@813- 85 3E STA $3E ! A
#815- 18 CLC !

@816- AD FE 08 LDA $@8FE ! L
@819- 6D FF 08 ADC $08FF !

@81C- 8D FE 08 STA $08FE !

@81F- AE FF 08 LDX $08FF !

g822- 30 15 BMI $0839 ! D
§824- BD 4D 28 LDA $0384D X !

9827- 85 3D STA $3D ! 0
#829- CE FF 08 DEC $08FF !

@82C- AD FE 28 LDA $@8FE ! S

102 The Book Of Softkeys Volume II

@82F- 85 27 STA §27

!
p831- CE FE 08 DEC $O8FE !
0834- A6 2B LDX 2B !
p836- 6C 3E 00 JMP ($003E) !
@839- EE FE 08 INC $08FE R —
@83C- AD 55 C@ LDA $C@55 ! TURN ON
@83F- AD 50 CO LDA $C@50 ! HI-RES 2
0842- AD 57 CO LDA $C@57 e
p845- A2 7D LDX #$7D ! see
@847- 9A TXS I article
g848- 4C B4 08 JMP $08B4 oo

. . . |

i

- !
08B4- A9 20 LDA #320 !
08B6- 85 1B STA $1B !
@8B8- AD 52 C@ LDA $C@52 !
08BB- A9 60 LDA #%60 !
@8BD- 8D @6 07 STA $706 R
08Co- 6C F.8 08 JMP ($08FD) I JUMP TO $8000

How it Works

The first part of the code, at $801—$83B, is lifted verbatim from
a DOS 3.3 Slave disk. This code loads in Track $0, Sector $0,
through Track $0, Sector $09, into $7FOP—S$88FF. This is revealed
from location $8FE, which is one higher than the first page loaded
into. The byte at $8FF is one less than the number of sectors to
be loaded.

The next piece of code turns on the hi-res screen. The last part
of code, before the jump to $8B4, looks innocent, but really isn’t.
It loads the X-register with $7D and transfers it to the stack pointer.

To understand the implications of this, you must understand how
the computer keeps track of its return position after an RTS (Return
from Sub-routine).

When the 6502 encounters a JSR (Jump Sub-Routine), it stores
the present address on the stack so it knows where to return to when
an RTS is encountered.

This can be used to obscure code from unwanted eyes. For
example, say we want to go to $9600. You can load the stack with
$95 and then $FF, by using the PHA op-code (PusH Accumulator
on Stack). When an RTS is encountered, the two last bytes are pulled
from the stack, incremented by one (to $9600), and jumped to.

Alternatively, you can change where the pointer on the stack is
pointing to and make it point to the desired location. Keep this in
mind when you find an RTS.

The Book Of Softkeys Volume II 103

At $8B4, a few zero page locations are loaded and then there is
an indirect jump to $8000 (through $8FD). To see the code at $3000
load the next stage of the boot but stop it before it can execute. To
do this, run your sector editor and change Track $0, Sector $0, byte
$CO, to 4C 59 FF on the disk labeled WORK ZAX.

This will jump you to the monitor before it can execute the code
at $8000. Now, write the sector back out to the disk and boot the
disk. After a moment the computer will beep and stop in the Monitor.
You can now examine the code at $8000. Do this with the command:

8000L

and the code will look like this:

8000- Ad 09 LDY #3509 e
8002- A2 00 LDX #$00 !

8604- 8A TXA ! M

8005- EE 0D 80 INC $800D ! E M
8008- EE 19 80 INC $8018 t M0
8geB- BD 18 7F LDA $7F18 X ! 0 v
80Q0E- 9D 7E 00 STA $007E X ', R E
8011- CA DEX ! A

8012- DO F9 BNE $800B !

8014- 88 DEY !

8015- DO EE BNE $8005 o
8017~ 6@ RTS I JUMP THRU STACK

Notice the RTS at $8017. Remember: you jumped (JMP), not
jumped sub-routine (JSR), to all the routines, so there is nothing
on the stack to return to!

Well, yes there is! The memory move relocates the memory at
$7F19 through $8718, down to $7F through $087E. This moves
memory across page $1, which is the stack!

Remember too, that the stack pointer is set to $7D in Bootl. After
the memory move, an RTS is executed. The stack is pointing at
$17D, which is now $07 and $65 after the memory move. This will
be the next jump (plus one) for the final stage of the boot!

The manufacturer, Datasoft, has added a final bit of protection
in that the next jump is across the text page which, of course, changes
when you exit the program in any manner. But you can simply move
memory to, say, $107E and examine it to see what the next load
does.

To do this, change $8010 to 10 and execute the memory move.
Do this as follows:

8010:10 N 8000G

104 The Book Of Softkeys Volume II

Now, $1766 is equivalent to $766. So type:

1766L
and examine the code. It should look as follows:
1766- A5 2B LDA $2B !
1768- 8D OE @2 STA $@20E ! G ¢
176B- A9 20 LDA #$20 ! 0 0
176D- EA NOP ! 0 D
176E- A6 2B LDX $2B ! D E
1770- 20 IF @92 JSR $021F .
1773- AD 20 LDY #$20 |
o ! NIBBLE
' COUNT/CHECK
!
ol L L
17D4- A9 16 LDA #5316 ! G C
17D6- 8D 11 @2 STA $0211 ! 0 0
1709- A9 DO LDA #3D0 ! 0 D
17DB- 8D 16 @2 STA $0216 ! D E
17DE- 4C 9A 01 JMP $019A R e ——

If you take time to look at this code you will find that the offending
‘nibble count’ or ‘checksum’ starts at $1773 and goes to $17D3!
This is all you need to know to defeat it.

What you have to do, next, is jump around this. Do it by typing:

1773:4C D4 07

The other loads and stores of the accumulator are parameters for
their loader. For further understanding, here are the parameters:

$211 - high track # to start from.
$212 - high sector # to start from.
$21E - # of pages (sectors) to load.
$21B - starting page to load at.
JSR $1E9 - start the load.

The last thing to do is to find the ‘nibble count’ code on the disk
code and change it. Most good sector editors (like The Inspector)
have LOCATE routines enabling you to find a pattern of bytes on
a disk.

One final note: Now that you know where the check routine lives,
we can defeat it. But you also must change the epilog bytes to normal
DOS 3.3.

Datasoft uses $CC for their epilogue bytes where normal DOS
uses $DE. If you are familiar with loaders and RWTS, you can find
it in their loader. The table is on page $4 (page $14).

Stepwise
With this information in hand, here is a step-by-step procedure

The Book Of Softkeys Volume II 105

for the deprotection of Zaxxon (Mockingboard version only):
II] Get out your DOS 3.3 System Master disk and run it:
RUN COPYA

E When COPYA asks for the slot number of the original disk,
stop the program:

E Enter the Monitor:
CALL -151

I__ﬂ Patch DOS and COPY. OBJ@ so that they ignore read errors
and only Tracks $0—$16 are copied
B942:18
3A1:18
302:17
35F:17

IE Re-enter Applesoft and delete Line 70 of COPYA so that
COPY.OBJ@ is not reloaded

3D0G
70

E Run COPYA to copy Zaxxon:
RUN

If you have two disk drives you can leave the room during
the copy process; otherwise, you may have to put up with your drive
making some horrible grinding noises. Don’t worry. This will not
harm the disks or your drives.

Run your sector editor and make the following changes
depending on which version of Zaxxon you have. (Note: you may
have to try all of these changes, depending on the release date of
your Zaxxon. One of them should work, though):

For Mockingboard Versions

Track Sector Byte From To
$00 $04 $4F $CC $DE
$00 $04 $50 $DO $EA
$00 $04 $51 $AE $EA
$00 $07 $0D $A0 $4C
$00 $07 $0E $20 $D4
$00 $07 $OF $84 $07

106 The Book Of Softkeys Volume II

For Mockingboard Versions
for which the first method does not work

Track Sector Byte From To
$00 $07 $00 $A9 $4C
$00 $07 $01 $01 $Co
$00 $07 $02 $48 $08

$00 $04 $4F $CC $DE

For the older non-Mockingboard Versions

Track Sector Byte From To
$00 $07 $1F $A9 $4C
$00 $07 $20 $00 $CO
$00 $o07 $21 $85 $08

$00 $04 $4F $cc $DE
$00 $04 $50 $DO $EA
$00 $04 $51 $AE $EA

E Don’t forget to write the sectors you have altered back to
the deprotected Zaxxon disk.

Clay Harrel’s APT for...

Z.axxon

More Planes

The Zaxxon in the arcades gives you five planes and our
Zaxxon only three! If you want more planes, change Byte $17
on Track $09, Sector $08 with your sector editor to the number
of planes you want (between $00 and $FF). I chose to change
this byte to $03. This gave me four planes, which is a nice

compromise. This modification applies to all versions of
Zaxxon.

The Book Of Softkeys Volume II 107

Hayden Software

Hayden

Softkey For Hayden Software
by Floyd Splidnik
(Hardcore COMPUTIST # 8, page 6)

Requirements:
Apple 1l Plus with 48K
Integer card or some means to into the Monitor
One disk drive with DOS 3.3
DEMUFFIN PLUS (see the How To Make DEMUFFIN PLUS
article)
A DOS 3.3 slave disk with a null HELLO program
Any of several original program disks from Hayden

I have found that the following procedure will work on a number
of releases from Hayden such as Shuttle Intercept, Alibi, Kamikaze,
etc. Unfortunately, this procedure will NOT work on Sargon II or
Sargon III.

The technique works because the Hayden disks I mentioned use
a 13-sector DOS that has been modified but still has the normal
routines intact and in their proper locations. DEMUFFIN PLUS is
used to read the original disk with the Hayden DOS and then write
with normal 3.3 DOS.

If you don’t already have DEMUFFIN PLUS, you'll have to create
it following the instructions in the How To Make DEMUFFIN
PLUS article in this Book Of Softkeys.

EI INITialize one or more disks with a ‘null” HELLO program:

FP
INIT HELLO

I__TI Boot up with one of the Hayden Disks:
PR#6

Izl As soon as Applesoft prompt ““] ** appears on the screen,
hit to enter the Monitor.

108 The Book Of Softkeys Volume II

[:Zl] To test if this technique will work on your disk, do a call
to the CATALOG entry point:

AS56EG

If a CATALOG is displayed, then this technique should work for
the disk in question.

E’»] Now move the Hayden RWTS out of the way so it is not
destroyed when normal DOS is booted:

6000<B800.BFFFM

[6] Next, boot up with one of the disks INITialized in step 1:
6[JP)

Load, but do not run, DEMUFFIN PLUS:
BLOAD DEMUFFIN PLUS

Enter the Monitor:

CALL -151

IE Move the Hayden RWTS back into position so that
DEMUFFIN PLUS can utilize it:

B800<6000.67FFM

Start execution of DEMUFFIN PLUS:
803G

IILI Transfer all the files from the original disk to an initialized
3.3 disk using the wildcard character (=). The HELLO file on
the 3.3 disk should be replaced with the HELLO file from the
Hayden disk.

The above technique not only works on the Hayden disks but also
on a number of other disks which display an Integer (<) prompt
when booting. It is not always quite so easy as with the Hayden
disks however, as nibble counts and/or other protection sometimes
need to be eliminated.

The Book Of Softkeys Volume II 109

Sierra On-Line

Software**

Softkey For Sierra On-Line Software
by Doni G. Grande & Clay Harrell
(Hardcore COMPUTIST # 9, page 24)

**Includes the following software packages:
Screenwriter II V2.2
The Dic *tion *xary
Sammy Lightfoot
Time Zone V1.1
Apple Cider Spider
Oil’s Well
Cannonball Blitz

Requirements:
Apple with 48K
COPYA
A Sector editing program such as Disk Zap
A blank disk for each of the above programs

The folks at Sierra On-Line have come to a very realistic view
on copy-protection. Some of their earlier releases such as Lunar
Leepers used elaborate protection schemes like spiral tracking (uses
Y tracks spiraled along the disk). The problem with this kind of
protection is that it is expensive, and it doesn’t work on all flavors
of Apples (//e, etc.). On-Line probably also had to send out to have
the copies made because you can’t exactly run COPYA to make
thousands of commercial copies of a spiral disk.

With competition increasing, and the high awareness to cut internal
costs, On-Line has chosen not to use elaborate protection schemes
on their newer releases (Oil’s Well, Sammy Lightfoot, Screenwriter
II, ver 2.2, etc.). Instead, they use a good basic scheme that will
often deter those equipped with- Locksmith or Nibbles Away, and
even discourage those who try to deprotect their programs altogether.
This protection scheme is interesting in that one can usually use
COPYA to copy the disk, but the copy will not run. Somehow, the
programs know that an original disk is not in the drive.

110 The Book Of Softkeys Volume I1

Counting Nibbles

The basis of Sierra On-Line’s protection scheme is called a ‘nibble
count’. When the master disk is copied at On-line, the copy program
counts the number of bytes on a certain track and then stores this
value on the disk. This value is different for each copy of the
program because miniscule changes in the disk drive speed can cause
extra or fewer bytes to be put on a track when it is written. Normal
DOS does not care about this, since it uses a certain byte (FF) as
a filler. When a disk is booted, it reads that track and compares
the number of bytes read to the number stored on the disk. If they
don’t match, the program bombs out! Locksmith and several other
bit copy programs allow you to do nibble counting when making
a copy. However, if you have ever attempted this, you know how
very difficult it is and how long it takes to get a reliable copy. Though
the disk drive speed is highly regulated, it only takes a fraction of
a turn to make a difference of a few bytes on the track.

The best way around the problem is to find the protection code
and disable it. Fortunately for us, Sierra On-line uses the same
technique on a number of their disks, so if you figure out how to
copy one, you can copy a number of them. If you are interested
in how they implement nibble counting, read on. Otherwise, skip
the next section and go on to the The Steps.

Real Men Write Self-Modifying Code

The protection code used by Sierra On-line is a great example
of hiding the true function of machine code! Read on, and you will
see examples of code within code within code. A typical disassembly -
of the protection code might start out:

@9g@ CE @309 DEC $0903

@903 EF m
0904 03 m
@995 @9 AD28 ORA #$AD
@907 28 PLP

#9088 @9 49 ORA #$49

It looks like there really isn’t anything there. But notice that the
first instruction decrements the very next byte! If we look at this
same code after the first statement executes, we see:

§900- CE@309 DEC $0903
@903~ EE@3 689 INC $0903
@9@6- AD 2899 LDA $0928
#909- 49 8A EOR #$8A

#90B- D@01 BNE $090E
g9gD- 208D28 JSR $288D
g91e- 0918 ORA #$18

It doesn’t even look like the same code! Notice, too, that the

The Book Of Softkeys Volume II 111

‘new’ instruction at $0903 restores $¢903 to its original value of
$EF so that the program hides itself again.

From there, a simple sequence of instructions first gets a byte
from $0928 (which happens to be $60), EORs it with $8A (giving
$EA) and then executes a branch instruction.

As I have shown, the accumulator is not zero, so this branch
is taken...right into the middle of another statement! $090E is in
the middle of the following JSR! However, by listing from $090E,
the following code is revealed:

@90E- 8D 2899 STA $0928
g911- 18 CLC
#912- D@01 BNE $0915
#914- 4CAB29 JMP $29A0
g917- 98 TYA

Ah ha! There is really a STA hiding there, and it stores the
accumulator back to $0928. Then a Clear Carry is done to set up
the carry flag to be used in a moment. The branch is always done
since the accumulator doesn’t end up being zero (it is $EA, from
above). Once again, this branch is to the middle of another
instruction! Listing from $0915, you see the following:

g915- A@ 29 LDY #$29
@917- 98 TYA
@918- 9001 BCC $p91B
@91A- 265908 JSR $00859
g91D- 0999 ORA #$99

So, another bit of hidden code! The Y-register is loaded with the
value $29, copied into the accumulator, and a branch is made
(remember the carry flag that was cleared above?).

Again, the branch is to the middle of another instruction (are you
beginning to get the picture?). Disassembling the program from
$091B gives:

@91B- 590009 EOR $0940,Y
@91E- 990009 STA $0900,Y

@921- C8 INY
@922- D@F3 BNE $0917
0924- 88 DEY

#925- 3001 BMI $0928
@927- ACEAE1 JMP SELEA

Here at last is the core of the code (no pun intended). This section
does an Exclusive OR of a memory location with the accumulator
and then stores the number back into memory.

The Y register (used as the index) is incremented and the branch
to the top of the loop is taken until Y is zero (it counts from $29
to $FF). When the Y-register is zero it is decremented, and since
it is now negative, the branch is made into the middle of another
instruction. You notice that this is at $0928, our old friend from

112 The Book Of Softkeys Volume II

above which was converted from a $60 (RTS) to an $SEA (NOP).
Once all the EOR’s have been executed on memory from
$0929—$09FF, the following code is revealed.

§928- EA NOP

9929- (8 INY

#92A- 8CF4B7 STY $B7F4
@92D- 8DECB7 STA $B7EC
@930- A9B7 LDA #$B7
#932- AOE8 LDY #$E8
@934- 26D303 JSR $43D9
#937- BD89CA LDA $CP89,X
@93A- A9 @5 LDA #3$05
@93C- 8D@PBB STA $BBOO
#93F- 289009 JSR $0990
@942- 1901 BPL $0945
@944- 26C8CP JSR $CHC8
@947- 305D BMI $09A6
@949- 8CCO98 STY $90CO
#94C- F8 SED

@94D- BDS8CCA LDA $CO8C,X
9950~ 10 0A BPL $095C
@952- C9C9 CMP #$C9
#954- D@ @D BNE $0963
§956- BD88CP LDA $CO88,X
@959- 4C 00609 JMP $0900

This is the start of On-line’s infamous ‘nibble count’ routine which
reads Track @ and counts the bytes on the track. If the count is not
correct, then the program proceeds to wipe out the computer’s
memory. If the count is correct, a jump is made to $0900 which
is the start of the entire routine. The EOR operations are performed
all over again and the result is that the valid code is returned to its
original, obscured state. Pretty sly those On-line people!

How does the routine ever stop? Remember that the program first
EORed location $0928 ($60) with $8A and then stored the result
($EA) back into $0928, which was later branched to? The second
time the program is executed, the contents of $0928 ($EA) are
EORed with $8A, giving a value $60 (the original value) which is
then put back into $0928. When the branch to $0928 is later
executed, it encounters $60, which just happens to be the machine
code for RTS!

As you can see, the people who write the protection schemes are
clever. However, sometimes they are so clever that they fool
themselves, and that is their downfall. Apparently, they believed
that the above code was so clever, and that it was so well hidden
that they relied totally on IT protecting their software. In other
words, it is the only check done to see if the disk in the drive is
an original. Also, probably since Sierra On-line publishes software
written by a number of authors, this protection program is called

The Book Of Softkeys Volume II 113

as a stand-alone subroutine, returning no values! The result is that
it can usually be easily defeated just by changing the first byte to
$60 to keep it from executing at all!

I mentioned above that usually the protection scheme could be
defeated by changing the first byte of the protection code to $60.
One case where this won’t work is in Time Zone. Time Zone does
a checksum on the protection code several times before it actually
executes the protection code (Sammy Lightfoot also does a checksum
between loading each level after the first!). The checksum code for
Time Zone, whose nibble count routine lives at $1700, looks
something like the following:

Initalize Pointer to $1700
50AC- A9 00 LDA #$00

5@AE- 85 FE STA $FE

50Bg- A917 LDA #$17

50B2- 85 FF STA $FF

Initialize all registers
50B4- A9 00 LDA #$00
50B6- AQ 00 LDY #3080
50B8- A2 0@ LDX #$00

Ready Carry for ADD
50BA- 18 CLC

Add memory byte
5@BB- 71FE ADC ($FE),Y

Multiply by 2

50BD- @A ASL
Increment index

50BE- C8 INY
Decrement counter (256 times)

50BF CA DEX

Loop until done
5@C0- D@ F9 BNE $50BB;

Compare Checksum to $1E
50C2- C9 1E CMP #$1E;
50C4- EA NOP

Branch if equal
50C5- F@ @3 BEQ $50CA

$09CB contains JMP $69CB
50C7- 4CCB@9 JMP $69CB

Return to calling routine
50CA- 60 RTS

The above assumes the protection code is located at $1700, which
it is in Time Zone. The easiest way to foil this checksum routine
is to change the first byte of the nibble count routine to a $60 (RTS)
and also to alter the next byte of the routine so that the checksums
will be identical even though the code has been changed. By
experimenting with the code listed above, it turns out that the second

114 The Book Of Softkeys Volume II

byte of the nibble count routine should be changed to a $EO.
However, this will only work on Time Zone because the other
programs seem to use a different checksum routine. For these other
programs (Oils Well, Sammy Lightfoot, etc.) it turns out that the
second byte needs to be changed to a $AD. Screenwriter Il ver. 2.2
and The Dic xtion xary do not have the checksum routines, so you
can get away with just changing the first byte of the nibble count

routine to a $60.
The Steps

In a step-by-step fashion, here is what you need to do to make
a copyable version of many of Sierra On-line’s programs:

[1] copy4 the original disk:
RUN COPYA

I—_7_| Run your sector editor. Examine each sector for the values
$CE $03. If you have an editor such as Disk Zap from Bag of Tricks,
or Tricky Dick with The Tracer you can automatically search for
this sequence. I have found that this sequence of bytes is usually
at the very beginning of a sector.

Note: Sometimes this code appears more than once, as in

Screenwriter II, so be sure to search the entire disk to find all
occurences!

[3] Change the $CE to $60 and the $03 to an $AD ($EO for
Time Zone) and rewrite the sector, and that’s all there is to it!

Screenwriter II ver. 2.2 Track Sector Byte From To

1A OE o0 CE 60
08 OF o0 CE 60
oC OF 00 CE 60
17 OF 00 CE 60

Dic*tion*ary Track Sector Byte From To
10 0D 00 CE 60

Sammy Lightfoot Track Sector Byte From To

05 0E 00 CE 60
05 OE 01 03 AD

Time Zone ver. 1.1 Track Sector Byte From To

03 OF 00 CE 60
03 OF o 03 EO

Apple Cider Spider Track Sector Byte From To

12 01 00 CE 60
12 01 01 03 AD

‘The Book Of Softkeys Volume II 115

Oil’s Well Track Sector Byte From To

10 OF 00 CE 60
10 OF 01 03 AD

Cannonball Blitz Track Sector Byte From To

18 06 00 CE 60
18 06 00 03 AD

An Alternate Method

An alternate method which worked for Sammy Lightfoot and Time
Zone involves disabling the code which does a JSR to the nibble
count routine. This technique may also work on other SOL disks
which directly JSR or JMP to the nibble count routine. Apple Cider
Spider and Oil’s Well apparently do an indirect JMP or JSR to their
nibble count routines so this alternate technique will not work on
them.

[1] copyA the disk:
RUN COPYA

EI Use a sector editor to search the disk for a byte sequence
of $CE $03 which is usually found at the beginning of a sector.

I:zl When you find this sequence, look at the byte which lies
eight bytes past the $CE. This byte is the high order byte of the
address where the nibble count routine runs.

Write down the value of this byte. For example, if the $CE is
found at the beginning of the sector and the eighth byte is 09, then
the protection code is located at $0900.

Now search the disk for a JSR $0900 (20 00 09). This will be
the call to the protection code.

Note: There may be more than one call to this code, so be sure to
search the entire disk!

[4] Change the JSR XXXX you find to EA EA EA, rewrite
the sector, and you are done!

For Time Zone and Sammy Lightfoot, here are the sector edits
which are needed.

Sammy Lightfoot Track Sector Byte From To

oD 00 9B 20 EA
oD 00 9C 00 EA
oD 00 9D 9E EA

116 The Book Of Softkeys Volume II

Time Zone ver. 1.1 Track Sector Byte From To

03 0B FO 20 EA
03 0B F1 00 EA
03 0B F2 17 EA

Hint: If you try the first method and everything seems to work fine
up to a point and then the program just hangs, try the alternate

method.

Screenwriter 2.2 update

by Andrew Reiffenstein

The article on Softkey For Online Software did not have a complete
softkey for Screenwriter version 2.2 as it only deprotects the
RUNOFF (Printout) and not the EDITOR. The complete softkey is
as follows:

Using a disk editor (Disk Fixer 3.3,Zap etc), read in Track $OE,
Sector $03. Locate the sequence 20 88 6E (byte offset of rest of
49). Change it to EA EA EA. The EDITOR will now work.

The rest of the softkey was correct as published, that is: read in
Track $0F, Sector $07. Locate the sequence 20 80 7F (byte offset
of 90). Change it to EA EA EA. The RUNOFF part will now work.

Plese note that it is advisable to make these changes on a
COPY Aed copy of the original Screenwriter 2.2 disk. You should
NEVER change the original. '

The Book Of Softkeys Volume I1 117

How To Make...

DEMUFFIN PLUS

(Hardcore COMPUTIST # 8, page 15)

[1] Boot DOS 3.3 Master to load Integer BASIC.

El Enter the other BASIC, load MUFFIN, then enter the
Monitor:

INT
BLOAD MUFFIN
CALL -151

E Initialize the ‘Programmer’s Aid’ relocation feature:
D4D5G

E Tell the Monitor what is being moved and where it is going:
1900<B800.BFFF Y]

E Relocate the first chunk of code:
1900<B800.BA10{=0Y] *

I__QI Move the data segment:
.BC57M

D:l Relocate the rest of the code:
.BFFF=Y]

Make the following modifications to MUFFIN and the
relocated RWTS subroutine:

1155:00 1E

115B:D9 @3

1197:A0 20

15A0:A0 D2 C5 D3 C9 C4 C5 CE
15A8:D4 A@ C4 AE CF AE D3 AE
15F7:C4 C5

20A0:A9 1E 8D B9 B7 20 FD AA
20A8:48 A9 BD 8D B9 B7 68 60

IE Save this new code:
BSAVE DEMUFFIN PLUS,A$803,L.51900

Instructions on its use can be found in the following softkey articles:
Data Factory 5.0

Hayden Software
118 The Book Of Softkeys Volume II

Super
1.0.8B.

version 1.5

by Ray Darrah

Requirements:
Apple) Plus, //e or //c
One DOS 3.3 disk drive

Somewhere near the beginning of time, as Hardcore
COMPUTIST knows it, an Applesoft program called JOB was
written by ‘Bobby.” This program was designed to deprotect disks
by interfacing directly with a machine language program in DOS
called the Read/Write Track Sector program (RWTS). IOB was
so named because it modified a parameter list in DOS called the
Input/Output control Block (IOB). At first, quite a bit of confusion
was generated due to the fact that the Applesoft program had the
same name as the parameter list used by the RWTS.

Not quite as long ago (a few short eons in the evolution of
Hardcore COMPUTIST) a program with the same concept as /OB
was introduced. This new program was called Super IOB because
of the several advantages it offered over the original JOB. Perhaps
the most notable of these is the controller concept in which a short
subprogram is keyed into the main portion of the Super IOB program
thus changing it adequately to allow it to copy many disks with varied
protection schemes. Although OB incorporated this same concept,
due to the structure of the program, it was often necessary to change
other lines of the program in addition to keying in a controller.

When you get right down to it, Super IOB’s power is derived
primarily from a small collection of Applesoft subroutines. These
subroutines are called by the inserted subprogram (the Super IOB
controller) in a particular sequence to allow deprotection of

The Book Of Softkeys Volume II 119

individual programs. The concept of Super IOB is simple, but only
by understanding the function of the subroutines in Super IOB can
an Applesoft programmer learn to create a controller for a specific
disk.

Since the introduction of Super IOB, Hardcore COMPUTIST has
used this flexible program to deprotect (or partially deprotect) dozens
of commercial programs. In addition, Hardcore COMPUTIST has
printed several utilities designed to aid the programmer in his use
of Super IOB. These included ‘CSaver’ (Hardcore COMPUTIST
13), a machine language program which helps in the merging of
the controller.

Presented here is the second update to Super IOB. Because of
an addition to the machine language portion of Super IOB and the
inclusion of a new subroutine this new version of Super IOB now
can copy a disk up to 350% faster than its predecessors.

Keying in Super I0B
for the First Time

If you don’t already have Super IOB, you will have to use
the procedures outlined in the What Is A Softkey article to
key in the Applesoft and machine language portions of the
program. Save the Applesoft portion with:

SAVE SUPER IOB
Save the new machine language portion with:
BSAVE I0B.OBJ0O, AS300, LSAS8

The Function Of Super 10B

Super IOB de-protects disks by pushing the RWTS subroutine
in DOS to its upper-most limits. Because of this, it only copies disks
with sectors that somewhat resemble normal sectors.

Before a disk can be softkeyed, the sector alterations must be
determined. The easiest way to do this is to use a nibble editor
program (like Bag of Tricks, or The Nibbler or CIA’s Linguist)
which shows these sector differences.

Once the protection has been discovered, a controller program
(Lines 1000—9999) designed to deprotect such a scheme must be
inserted into Super IOB. Here is a list of the protection schemes
Super IOB was designed to softkey:

1) Altered address, data, prologue, or epilogue marks
2) Strangely numbered sectors or tracks

3) Modified RWTS (with same entry conditions)

4) Half tracks for any of the above

5) 13- or 16-sector base format for ‘any of the above

120 The Book Of Softkeys Volume I

A Little Briefing

The following is a short discussion of the protection scheme and
how each relates to Super IOB. Keep in mind that often more than
one scheme is used at a time. This has the effect of complicating
the Super IOB controller.

Altered Marks

DOS looks for specific marks when trying to read a sector.
Changing these is a common practice, especially on older releases.
DOS puts certain reserved bytes on the disk (during INITialization)
so it can determine where a sector begins and ends.

For example, a normal 16-sector disk has the bytes D5 AA AD
designating the Start of the Data Field which contains the 256 bytes
of a sector in encoded form. When a standard RWTS tries to find
a sector, it looks for these marks. If they are not found, (either
because they don’t exist or they have been changed to something
else) DOS returns with the dreaded /0 ERROR.

The sequences of the four reserved-byte marks (Start of
Address, End of Address, Start of Data, End of Data) are
handled by subroutines in Super IOB. These subroutines change the
marks that the current RWTS looks for when reading.

Strangely Numbered Sectors

Within an address field, there are 8 bytes which alert the RWTS
to which sector is about to pass under the read/write head. On some
disks, these are not standard. These disks are easily softkeyed with
Super I0B. The controller instructs Super IOB to read the sectors
using the strange sector numbers and then write them using the
correct numbers. This works because the RWTS merely compares
the sector number found on the disk with the one the controller is
looking for (even if it is higher than 15 and therefore illegal).

Modified RWTS

The disk-protectors will often rearrange and/or modify the
standard RWTS subroutine. If this is the case, you must first save
the strange RWTS onto a normal DOS disk and then use a controller
which reads the protected disk using the strange RWTS and then
writes via the normal 3.3 RWTS.

Such a controller is included in this article. It is called the Swap
controller. This is because of its use of the ‘Swap RWTS at $1900
with the one at $B800’ routine in Super I0OB.

Since the RWTS of a protected disk will be modified to read any
altered DOS marks, this is an easy method to use if you are unable
to determine the protection scheme.

The Book Of Softkeys Volume II 121

The Stepper Motor

There is a motor inside your disk drive that is responsible for
moving the disk head to the various tracks.

Known as the ‘Stepper Motor’, it has four electromagnets
(numbered 0 to 3) that can be turned ‘on’ or ‘off’ by referencing
memory locations. When one of these magnets is turned ‘on’, the
permanent magnets in the motor are attracted to it and the motor
shaft turns until the permanent magnets are aligned with the
electromagnets.

To obtain continuous motion, a program would:

IE Turn a magnet (called phase) ‘on.’

[z_l Wait for the motor to get aligned (it doesn’t take much
time).

El Turn ‘off’ the magnet.

E Turn ‘on’ the next adjacent magnet (the next magnet differs
depending on whether you want to go to a higher or lower track).

[El Go to Step 2.

Odd Phases = Half Tracks

Because of the resolution of the disk head combined with the
accuracy of the stepper motor, normal DOS tracks are placed only
on the even phases.

This means that for every track DOS moves, it references two
magnets. As a result, the disk head never stops at any of the odd
phases (i.e. aligned with magnets 1 or 3).

Therefore, the odd phases are commonly called half-tracks. The
disk-protectors will often put information on these phases that are
inaccessible to normal DOS.

A routine called ‘Move S Phases’ (in Super IOB) handles the job
of getting to these so-called half-tracks and can also be used (by
a controller) to get to tracks that have been marked as other tracks.

A complete discussion of how to use this routine appears later
in this article.

Anatomy Of A Controller

Before we attempt to write a controller, let’s look at the
subroutines at the controller’s disposal. During this explanation, it
would be wise to refer to the Super IOB Applesoft BASIC listing
of Super IOB to see how each is accomplished.

122 The Book Of Softkeys Volume II

The New Routine

There has only been one routine added to Super IOB to arrive
at Version 1.5. The explanation of its workings follows.

Name: R/W A RANGE
Line Number(s): 610 — 620
Entry Conditions:
TK, ST = first sector to read or write
LT, LS = last sector (minus one MOD 16) to read or write
MB = maximum buffer page
CD = command code

Function: Quickly reads or writes a'range of sectors by calling a
machine language program. To be faster, this subroutine stores
the sectors in memory in a decreasing manner. That is: Sector
$OF is followed by Sector $OE and Sector $0D and so on.

Storing the sectors in memory in a different sequence than
ascending is O.K. as long as 1) the sectors are written in the same
order they are read, and 2) “The Sector Editor’ routine knows that
the sectors were stored in descending order by setting the variable
FAST equal to 1.

The Older Routines

The following is an explanation of the remainder of the routines
found in Super IOB Version 1.5. These routines were included in
the older Super IOB programs as well.

Name: START UP
Line Number(s): 10 to 60
Entry Conditions: Not Applicable

Function: The first few lines merely identify the program; however,
Line 60 sets HIMEM and LOMEM so that they fit the memory
usage requirements (see ‘Memory Allocation Table’). It then
goes to ‘CONFIGURATION TIME'.

Name: INITIAL I0B SETUP .
Line Number(s): 80
Entry Conditions:

DV = drive to be accessed
VL = volume of disk to be accessed
SO = slot to be accessed

Function: Normally GOSUBed via ‘TOGGLE READ/ WRITE’. Its
purpose is to reset the buffer page and set the drive, slot and
volume number to the disk to be accessed next.

The Book Of Softkeys Volume II 123

Name: R/W SECTOR
Line Number(s): 100 — 110
Entry Conditions:
TK = Track to be accessed
ST = Sector to be accessed
CD = Command code for the RWTS

Function: GOSUBed directly from the controller. It reads or writes
(depending upon CD) at the specified track and sector.

Name: MOVE S PHASES
Line Number(s): 130 — 149
Entry Conditions:
SO = Slot of drive to move
DV = Drive number of drive to move
PH = Phase number that the disk head is currently over
S = Number of phases to move

Function: Moves the disk Read Head the number of phases specified
by S (one phase equals one half-track) and is capable of moving
in either direction up to 128 phases (or 64 tracks). Care should be
taken that PH + S isn’t greater than 255 or less than @ or an error
will occur.

Name: ALTERED ENDING MARKS

Line Number(s): 170

Entry Conditions: Proper DATA pointers

Function: Changes the Address Field and Data Field Epilogue
markers in the normal RWTS. The values to change these to
should be contained in a DATA statement. Because normal DOS
only checks the first two bytes of these markers, only four values
are required. The Address Field is changed first and should
appear first in the DATA statement.

Name: ALTERED ADDRESS MARKS

Line Number(s): 199

Entry Conditions: Proper DATA pointers
Function: This routine modifies the RWTS (via POKE) so that
it looks for a different sequence of Address Field Prologue
marks. The decimal values of the marks to look for should be
stored as the next DATA elements.

Name: ALTERED DATA MARKS

Line Number(s): 210

Entry Conditions: Proper DATA pointers

Function: Same as previous subroutine except for Data Field
Prologue marks.

124 The Book Of Softkeys Volume II

Name: NORMALIZER
Line Number(s): 230 — 250
Entry Conditions: None

Function: Restores the values in the RWTS subroutine that are
changed by any routine in Super IOB. This routine should be
called just before writing in order to fix the RWTS so that it
can access normal DOS disks.

Name: IGNORE ADDRESS CHECKSUM
Line Number(s): 270
Entry Conditions: none

Function: Modifies the RWTS subroutine so that it doesn’t examine
the checksum byte of the address field. This routine has been
incorporated in many previous controller.

Name: ALTERED DATA CHECKSUM
Line Number(s): 290
Entry Conditions: Proper DATA pointers

Function: Alters the starting checksum byte that the RWTS
subroutine will use when reading a DATA field. The normal
value for the RWTS is 8. The value to change the checksum
to should be the next DATA element.

Name: THE SECTOR EDITOR

Line Number(s): 310 — 340

Entry Conditions: Proper DATA pointers and Elements
T1 = lowest track in buffer
TK = highest track in buffer

Function: Automatically performs sector edits as the copy process
goes on. It must be called (via GOSUB) just after reading a
range of tracks. To indicate how many sector edits are to be
performed, you must have a DATA element that has the number
of sector edits followed by the word CHANGES. For example:

1100 DATA 7 CHANGES,1,1,3,4

would tell the sector editor that the next 28 DATA elements
are sector edits. This is because each sector edit is defined in
four DATA elements. The location of the ‘x CHANGES’
element in the DATA string does not matter because the sector
editor will search it out and use the elements immediately
following it.

The format for the four bytes that define a sector edit is:
TRACK, SECTOR, BYTE, CHANGE TO. Each element is
decimal and should be within the correct ranges since no error
checking is done.

The Book Of Softkeys Volume II 125

If you use the ‘R/W A Range Quickly’ routine and you wish
to perform some sector edits, you must set FAST equal to 1
so that this routine will be able to locate the specified sector
in memory.

Name: EXCHANGE RWTS’s
Line Number(s): 360
Entry Conditions: A RWTS at $1900

Function: This is the standard swap RWTS’s routine. It uses a
routine in JOB.OBJO to exchange the RWTS at $1900 with that
which is located at $B80@, the normal location for an RWTS.
To tell the machine language swap routine (invoked by a CALL
832) what to exchange, a few POKE’s must be executed. They
are:

POKE 253, start of first location

POKE 255, start of second location

POKE 224, number of pages to exchange (a standard RWTS
is eight pages long)

Name: FORMAT DISK
Line Number(s): 380 — 410
Entry Conditions:
S2= slot of disk to format
D2= drive number of disk to format

Function: Formats the target disk. It was meant to be used before
the controller takes hold of Super IOB (and is GOSUBed by
‘Configuration Time’) but can be called by the controller should
the need arise.

Name: PRINT TRACK & SECTOR #
Line Number(s). 430
Entry Conditions:
TK= The track number to display
ST= The sector number to display

Function: Puts the current track and sector number at the top of
the screen in hexadecimal during the softkey operation. It should
be invoked just before reading or writing each sector.

Name: CENTER MESSAGE
Line Number(s): 450
Entry Conditions: A$= The message

Function: Prints a message in the center of the screen at the current
VTAB position. Care should be taken that the message to print
is not longer than 40 characters. If so, an error will occur.

126 The Book Of Softkeys Volume II

Name: PRINT MESSAGE AND WAIT
Line Number(s): 470
Entry Conditions:

A$= The message

Function: Uses ‘Center Message’ to print the intended message at
a VTAB 11 where it prints PRESS ANY KEY TO CONTINUE.
It waits for a keypress before RETURNing.

Name: TOGGLE READ/WRITE
Line Number(s): 490 — 530
Entry Conditions:

CD= current command code

Function: Toggles the state of CD (from ReaD to WRite and vice
versa) and prints the current mode in flashing letters at the very
top of the screen. In addition, if the user has only one drive,
it asks him to swap disks. It then exits via ‘INITIAL IOB
SETUP,’ thus making the sector buffer ready for the next
operation.

Name: IGNORE UNREADABLE SECTORS
Line Number(s): 550 — 590
Entry Conditions: Not Applicable

Function: If the controller should pay no attention to unreadable
sectors, then somewhere in the beginning of it should be an
ONERR GOTO 550. This is used usually with RWTS.13
(since DOS 3.2 sectors are unreadable until they have been
written to) but can be used with any disk that has unreadable
sectors which should be ignored.

Note that this routine will not function correctly if you are using
‘R/W A Range Quickly’. To ignore errors when using this
routine, insert a POKE 775,96 into the beginning of your
controller.

The Remainder Of The Program

Lines 1000—9999 are meant for the controller and all DATA
statements it contains. All lines greater than 9999 are used by the
error trapper or the configurer which consists of all the prompts
when the program is run.

The error-trapper will print a disk error and stop the program.
If the error wasn’t a disk error, the error-trapper will let it occur.

The Book Of Softkeys Volume 11 127

Memory Usage

Before actually looking at some controllers, let’s say a few words
about memory usage.

Following is a memory allocation table for the various parts of
Super IOB. It is extremely important to stay within the boundaries
when writing a controller. If not, horrible things may happen (the
least of which would be the production of an incorrect copy).

Memory Allocation Table

$0800.$18FF.................... (2048 — 6399)
intended for the Applesoft part of Super IOB

$1900.920FF.................... (6400 — 8447)
space allocated for a moved RWTS.

$2100.826FF.................... (8448 — 9983)
Super IOB Applesoft variable space

$2700.896FF (9984 — 38655)
enough space for 7 tracks, this is the sector buffer

First, notice the amount of space available for the BASIC
program. In view of the space requirement, the end of program
should be checked by typing:

PRINT PEEK(175) + PEEK(176) x 256

Before a controller with an alternate RWTS (Swap controller,
etc.) is used. If it has exceeded the 6399 limit, I suggest DELeting
all subroutines not referenced by the controller and all REM lines
until it fits within the allocated space.

Second, observe the 1534 bytes for variables. This should be
enough space for the simple softkey procedure. It is impossible to
allocate more memory for variables and use an alternate RWTS file.
If you find that you need more memory and the program does not
use RWTS.13 or some other moved RWTS, the LOMEM: 8448
command may be removed from Line 6@. This will allocate what
isn’t used (by the BASIC program) of the 2K area reserved for the
relocated RWTS as variable space.

Never omit the ‘HIMEM:’ statement!

This could cause variables to overflow into the sector buffer, thus
making a faulty copy.

128 The Book Of Softkeys Volume II

With all this new knowledge, we are finally ready to scrutinize
some sample controller programs. Keep in mind that protection
schemes can be used with one another. Therefore, a more
sophisticated controller for Super IOB will probably be required
for most softkeys. Even so, developing new controllers isn’t difficult.

The New Standard

If you were to install any of the previous controllers printed by
Hardcore COMPUTIST into the new Super IOB, they would work
fine, but would be considerably slower than a controller designed
for v1.5. To take advantage of the new subroutines in Super IOB
v1.5, a new standard controller (the building block controller that
only copies normal disks) is necessary. This new controller has been
named The Fast Controller. The Fast Controller, as well as a
description of its operation, follows.

Fast Controller

10006 REM FAST CONTROLLER

1816 TK=0 :LT=35:ST=15:LS=15:CD=WR :FAST =1
1920 GOSUB 490 : GOSUB 618

1430 GOSUB 490 : GOSUB 619 : IF PEEK (TRK) = LT THEN 1050
1940 TK = PEEK (TRK) :ST = PEEK (SCT) : GOTO 1020

1050 HOME : PRINT "COPYDONE" : END

Line Explanation

1000 identifies the controller:
1010 initializes variables:
TK = @, ST = 15 sets the starting sector to be copied at
Track @, Sector 15.
LT = 35, LS = 15 sets the last sector to be copied at Track
34, Sector 0.
CD = WR sets the command code to write.
FAST = 1 tells the sector editor subroutine that the sectors
are stored in memory in a decreasing order.

1020 the read routine: toggles read/write to read, Then reads a
chunk of sectors

1030 The write routine: toggles read/write to write, then writes
a chunk of sectors. If the last track was written then go to exit
routine.

1840 update track and sector number for next read and go to read
routine

1050 The exit routine clears the screen, prints ending message and
exits to Applesoft

The Book Of Softkeys Volume II 129

How About a NewSwap?

By adding a couple of GOSUB’s to Fast Controller you can derive
The NewSwap Controller which is a controller that reads with one
RWTS and writes with the normal RWTS. This controller is very
handy and is used frequently by articles which appear in Hardcore
COMPUTIST.

NewSwap Controller

1000 REM NEW SWAP CONTROLLER

1010 TK=0 :LT=35:ST=15:LS=15 :CD=WR :FAST =1

1020 GOSUB 360 : GOSUB 490 : GOSUB 610

1030 GOSUB 360 : GOSUB 499 : GOSUB 618 : IF PEEK (TRK) = LT THEN 1050
1040 TK = PEEK (TRK) :ST = PEEK (SCT) : GOTO 1020

1850 HOME : PRINT "COPYDONE" : END

10010 PRINT CHR$ (4) "BLOAD RWTS. insert name here,A$1900"

Note that the filename of the BLOAD command in line 10010
will need to be changed to the name you’ve given the RWTS of
the protected disk.

Saving the Controller

It is recommended that you have easily accessible copies of both
of these controllers because controllers printed for other disks will
be very similar to these controllers.

Closing Notes

Every controller printed by Hardcore COMPUTIST so far, will
work with Super IOB v1.5. However, controllers printed in the
future may not work with older versions of Super IOB.

Now, go out there and break some disks!

¥

130 The Book Of Softkeys Volume II

IOB Variables List

General temporary usage, scrambled by ‘Move S Phases’ and ‘The
Sector Editor.’

holds message to pass to the user via ‘Center Message’ and ‘Print
Message And Wait’ and is scrambled by ‘Toggle Read/Write.’

scrambled by ‘Altered Address Marks’, ‘Altered Data Marks’,
“The Sector Editor’, ‘Altered Ending Marks’ and ‘Altered Data
Checksum’ these are READ from DATA statements and POKEd
into the appropriate RWTS to change it.

altered only by ‘Configuration Time.’

Buffer Full holds the status of the sector buffer and is set to 1
if the buffer is either full or empty and @ if neither. Is changed
only by ‘R/W SECTOR.’

BUFfer constant holds the address where the RWTS is expecting
to find the page number of the sector and is used by ‘Initial IOB
Setup’ and ‘R/W Sector’. A PEEK (BUF) will return the current
sector buffer page number.

CommanD code is used by the controller, ‘Toggle Read/Write’
and ‘R/W Sector’ and holds the current RWTS command code
(see RD, WR, and INIT).

CoMmanD code constant holds the address where the RWTS is
expecting to find the previously stated command code and is used
by ‘R/W Sector’. A POKE CMD,CD will change the IOB
command.

Drive 1, set during configuration to the drive number of the source
drive, is used by ‘Toggle Read/Write.’

Drive 2, same as above except for target drive.

Disk Operating System specifies the number of sectors to read
or write and is initialized to 16.

DRiVe constant holds the address where the RWTS is expecting
to find the drive number of the drive to be accessed and is used
by ‘Initial IOB Setup’. A PEEK (DRV) will return the drive last
accessed.

The Book Of Softkeys Volume II 131

132

current DriVe, used by ‘Initial IOB Setup’, ‘“Toggle Read/Write’,
and ‘Move S Phases’, holds the drive number of the drive to be
accessed next.

ERRor code is used by ‘Disk Error’ to determine the error that
has just occurred.

used by “The Sector Editor” to calculate the correct addresses of
specified sectors if set to 8. The “The Sector Editor” then assumes
that all sectors are stored in consecutive memory pages in an
ascending order. If set to a 1, “The Sector Editor” routine assumes
that the sectors are stored in a decreasing order (see the section
describing the operation of ‘R/W A Range of Sectors’).

INITialize command code. A CD = INIT will set the command
code to format the diskette.

Input/Qutput constant holds a 768 (set during configuration) and
is CALLed by ‘R/W Sector’ to induce the RWTS subroutine.

Last Sector number is used to tell ‘R/W A Range Quickly’ what
sector is the last sector to be read.

Last Track number is used to tell ‘R/W A Range Quickly’ the
last track to be read or written.

Maximum Buffer page holds the last page of memory for the sector
buffer, is used by ‘R/W Sector’, is initialized (during configuration)
to 151 and should be changed to 130 only when a 13-sector disk
is read or written.

Old VoLume constant. A PEEK (OVL) will return the volume
number of the previously accessed diskette.

current PHase. If ‘MOVE § PHASES’ is referenced (by the
controller), this variable must contain the disk arms current phase
number (PH = 2 *x TK).

ReaD command code. A CD = RD will set the command to read
the disk.

Step is used to tell ‘Move S Phases” how many phases to step
through (-120 to 120).

Slot 1 sets the slot number of the source drive during configuration
and is used by ‘Toggle Read/Write’.

The Book Of Softkeys Volume II

Slot 2. Same as above except for target drive.

SeCTor number constant holds the address where the RWTS is
expecting to find the sector to be accessed and is used by ‘R/W
Sector’ to tell the RWTS which sector is to be read or written.
A PEEK (SCT) will return the last accessed sector number.

SLoT number constant holds the address where the RWTS is
expecting to find the slot number of the disk to be accessed next
and is used by ‘Initial IOB Setup’. A PEEK (SLT) will return
the last accessed disk slot number.

S10t numbser is used by ‘Toggle Read/Write’ and ‘Initial IOB
Setup’ and holds the slot number of the disk to be accessed next.

SecTor numbser is used by the controller to tell ‘R/W Sector’ which
sector number is to be read or written next and is also used to
tell ‘R/W A Range Quickly’ the starting sector to be read or written.

TracK number is used by the controller to tell ‘R/W Sector’ which
track is to be accessed next and is also used to tell ‘R/W A Range
Quickly’ the starting track to read or write.

TRacK number constant holds the memory location where the
RWTS is expecting to find the track to be accessed. A PEEK
(TRK) will return the last accessed track number.

VoLume number is used by the controller to tell ‘Toggle
Read/Write’ (which passes it to ‘Initial IOB Setup’) the volume
number of the disk to be accessed next.

altered only by ‘Format Disk’.

VOLume number constant holds the memory location where the
RWTS is expecting to find the volume to be accessed. A PEEK
(VOL) will return the volume number last used by the controller.

WRite command code. A CD = WR will set the command to
write.

The Book Of Softkeys Volume II 133

Super I0B Applesoft BASIC Listing

lﬂ REM IR R R R R R R R R])]

20 REM *** SUPER 10B 1.5 ¥rk

30 REM *** BY RAY DARRAH b

4ﬂ REM LR E 2 R R R R RS R R R R R R RS R R R S R R 2 2]

50 REM SET HIMEM BELOW BUFFER AND SET LOMEM ABOVE THE BLOADED RWTS

60 LOMEM: 8448 : HIMEM: 9983 : GOTO 10010

70 REM INITIAL IOB SETUP

80 POKE BUF, 39 : POKE DRV, DV : POKE VOL, VL : POKE SLT, SO * 16 : RETURN

90 REM R/W SECTOR

100 BF = @ : POKE TRK, TK : POKE SCT, ST : POKE CMD, CD : CALL 10 : POKE
BUF, PEEK (BUF) +1 : IF PEEK (BUF) =>MB THENBF =1

110 RETURN

120 REM MOVE S PHASES

130 POKE 49289 + SO * 16 + DV, @ : POKE 49289 + SO % 16, 0 :A=PH -
INT(PH/4) x4 : POKE 1144, 128 + A : POKE 811, 128 + S+ A :
POKE 813, SO * 16 : CALL 810 : POKE 49288 + SO * 16, # :PH = PH
+S: IFPH<@THENPH=0

149 RETURN

150 REM 16 SECTOR RWTS ALTERATIONS

160 REM ALTERED ENDING MARKS

179 READ A1, A2, A3, A4 : POKE 47505, Al : POKE 47515, A2 : POKE 47413,
A3 : POKE 47423, A4 : RETURN

180 REM ALTERED ADDRESS MARKS

199 READ A1, A2, A3 : POKE 47445, Al : POKE 47455, A2 : POKE 47466, A3
: RETURN

20@ REM ALTERED DATA MARKS

219 READ AL, A2, A3 : POKE 47335, Al : POKE 47345, A2 : POKE 47356, A3
: RETURN

220 REM NORMALIZER

230 POKE 47585, 222 : POKE 47515, 170 : POKE 47413, 222 : POKE 47423, 176

240 POKE 47445, 213 : POKE 47455, 170 : POKE 47466, 150 : POKE 47335, 213

250 POKE 47345, 170 : POKE 47356, 173 : POKE 47360, # : POKE 47498, 183
: RETURN

260 REM IGNORE ADDRESS CHECKSUM

270 POKE 47498, 8 : RETURN

280 REM ALTERED DATA CHECKSUM

290 READ Al : POKE 47360, Al : RETURN

300 REM THE SECTOR EDITOR

310 READ A$: IF RIGHTS (AS$, 7) <> "CHANGES” THEN 310

320 FORA=1TOVAL (A$) : READ AL, A2, A3, A4

330 IF A1 < T1 OR Al > TK THEN NEXT : RETURN

340 POKE 9984 + (A1 -T1) * 4096 + ABS (FAST % 15 - A2) * 256 + A3,
A4 : NEXT : RETURN

350 REM SWAP RWTS AT $198 WITH THE ONE AT $B396

360 POKE 253, 25 : POKE 255, 184 : POKE 224, 8 : CALL 832 : RETURN

370 REM FORMAT DISK

134 The Book Of Softkeys Volume 11

380 A$ = "VOLUME“ NUMBER" FOR* COPY“ =>254" : HOME : GOSUB 458 : HTAB 32
: INPUT "" ;VLS :VL = VAL (VL$) : IFVL$ = "" THEN VL = 254

390 |F VL > 255 OR VL < @ THEN 380

400 POKE CMD, INIT :S0 = S2 :DV = D2 :A$ = "INSERT BLANK* DISK* IN*
SLOT* " +STR$ (S2) +",“DRIVE“ " +STR$ (D2) : GOSUB 470

410 GOSUB 80 : HOME :A$ = "FORMATTING" : FLASH : GOSUB 45@ : NORMAL :
CALL 10 :VL =0 : RETURN

420 REM PRINT TRACK & SECTOR

430 VTAB 3 : HTAB 10 : PRINT "TRACK“$"MID$ (HX$, TK % 2 + 1, 2) "*»
SECTOR“ $" MID$ (HX$,ST %2 +1, 2) "**" : RETURN

440 REM CENTER MESSAGE

450 HTAB 21 - LEN (A$) / 2 : PRINT A$; : RETURN

460 REM PRINT MESSAGE AND WAIT

470 HOME : VTAB 11 : GOSUB 458 : VTAB 13 :A$ = "PRESS* ANY* KEY* TO*
CONTINUE" : GOSUB 45@ : WAIT - 16384, 128 : GET A$: RETURN

480 REM TOGGLE READ/WRITE

490CD=(CD=1) +1: IFCD=RDTHEN A$ = "INSERT“ SOURCE“DISK." : S0
=81 :DV=D1 : GOTO 518

500 A$ = " INSERT* TARGET*DISK." :S0=S2 :DV=D2

510 IF D1 = D2 AND S1 = S2 THEN GOSUB 470 : HOME

520 VTAB L : HTAB1 : PRINT SPC(39); : FLASH :A$ = "READING" : IFCD =
WR THEN A$ = "WRITING"

53¢ GOSUB 450 : NORMAL : GOTO 80

540 REM ONERR IGNORE UNREADABLE SECTORS

550 CALL 822 :ERR = PEEK (222)

560 |F ERR = 255 OR ERR = 254 OR CD < > RD THEN 10230

570 IF ERR > 15 THEN POKE 216, @ : RESUME

580 PRINT CHRS (7); : POKE BUF, PEEK (BUF) +1 : IF PEEK (BUF) = > MB
THEN BF = 1

590 RETURN

600 REM R/W A RANGE QUICKLY

610 PR# @ : IN# @ : POKE 860, MB : POKE 861, LT : POKE 862, LS

620 POKE CMD, CD : POKE TRK, TK : POKE SCT, ST : GOSUB 430 : CALL 863 :
CALL 1082 : RETURN

10000 REM CONFIGURATION TIME

10610 REM BLOAD RWTS HERE

10920 |F PEEK (768) * PEEK (769) = 57 THEN 10060

10030 HOME :A$ = " x“ SUPER |0B* *": GOSUB 458 : PRINT : PRINT :A$ =
"CREATED" BY“ RAY“ DARRAH" : GOSUB 450

10049 VTAB 10 :A$ = " INSERT* SUPER* 10B* DISK" : GOSUB 458 : T : PRINT :
PRINT :A$ = "PRESS* ANY* KEY* TO* CONTINUE" : GOSUB 450 : WAIT -
16384, 128 : GET A$

10050 PRINT : PRINT CHRS (4) "BLOAD* 10B.0BJ @,A$300"

10060 TK=ST=VL=CD=DV=S0:RD=1:WR=2: INIT=4 : ONERRGOTO 16220

19079 10=1768 :SLT=779 :DRV =780 :VOL = 781 : TRK = 782 :SCT =783 : BUF
=787 :CMD = 798 :OVL = 792

19080 HOME :DOS = 16 :MB = 151 :HX$ = "000102030405060708090A0B0
CODPEAF101112131415161718191A1B1CIDIEIF262122"

1899 VTAB 8 : PRINT :A$ = "ORIGINAL" :S2=6 :D2 =1 : GOSUB 10140 :SI
=82 :D1=D2

The Book Of Softkeys Volume II 135

10100 PRINT : PRINT : PRINT :D2=(D2=1) +1 :A$ = "DUPLICATE" : GOSUB
18140

10110 A$ = "FORMAT“ BACK" UP“ FIRST?“ N" + CHRS (8) : HOME : VTAB 12 :
GOSUB 450 : GET A$: [F A$ = "Y" THEN GOSUB 380

19120 HOME :A$ = "INSERT“DISKS* IN“PROPER*DRIVES. " : GOSUB 478 : HOME
: GOTO 1008

14130 REM GET SLOT AND DRIVE

18149 GOSUB 45@ : PRINT : PRINT : PRINT TAB(18) "SLOT=>" S2 SPC(8)
"DRIVE=>" D2;

18150 HTAB 16 :B$ = "7" : GOSUB 10180 :S2 = VAL (A$)

19160 HTAB 32 :B$ = "2" : GOSUB 10180 :D2 = VAL (A$) : RETURN

10170 REM GET A KEY

19189 GET A$: iF (A$<"1" ORA$ >B$) ANDA$ <> CHR$ (13) THEN 10180

10190 IF A$ = CHR$ (13) THEN A$ = CHR$ (PEEK (PEEK (40) + PEEK (41)
* 256 + PEEK (36)) - 128)

182069 PRINT A$; : RETURN

10210 REM DISK ERROR

18220 ERR=PEEK (222) : IFERR> 15 ANDERR < 254 THENPOKE 216, @ : CALL
822 : RESUME

19230 |F ERR = 254 THEN PRINT "TYPE“ AGAIN® PLEASE: " : PRINT : RESUME

18248 |F ERR = 255 THEN STOP

18250 IF ERR = @ THEN A$ = "INITIAL|ZATION* ERROR"

10260 |F ERR = 1 THEN A$ = "WRITE“ PROTECTED"

10270 |F ERR = 2 THEN A$ = "VOLUME* M| SMATCH" ERROR"

10280 IF ERR = 4 THEN A$ = "DRIVE* ERROR"

18290 |F ERR = 8 THEN A$ = "READ" ERROR"

19300 VTAB 12 : GOSUB 450 : PRINT CHRS$ (7) : END

Super 10B v1.5 Hex Dump

@300: A9 @3 AD OA 20 D9 @3 BP
@308: 16 60 @1 60 01 00 00 00
@31@: 1B 03 00 27 04 00 20 00
§318: 00 60 @1 0@ @1 EF D8 AD
0320: 17 83 4A 4A 4A 4A AA 4C
@328: 12 D4 A9 00 A2 08 4C AQ
@330: B9 A6 DE 4C 12 D4 68 A8
@338: 68 A6 DF 9A 48 98 48 60
#340: AQ 00 84 FC 84 FE Bl FC
@348: 48 B1 FE 91 FC 68 91 FE
@350: C8 D@ F3 E6 FD E6 FF C6
§358: E@ D@ EB 6@ 97 35 @F A9
@360: 00 85 28 A9 05 85 29 AS
¢368: 10 85 24 AD OE 03 20 DA
@370: FD A9 1C 85 24 AD @F 03
@378: 20 DA FD 20 @0 03 CE 03
@380: 03 10 @8 A9 OF 8D OF 43
(¢388: EE OFE @3 EE 13 03 AD 13
@390: @3 CD 5C @3 BO C5 AD OF
#398: @3 CD 5E 03 D@ C9 AD OF
@3A0: @3 CD 5D 83 90 C1 BO B3

136 The Book Of Softkeys Volume Il

Super IOB v1.5 Source Code

Super IOB machine routines
BY RAY DARRAH
B3D9- RWTS.B8OG .EQ $3D9 ENTRY POINT TO RWTS @$B80#
D412- [NVOKERROR .EQ $D412 ROUTINE THAT CAUSES BASIC TO DO THE ERROR
CONTAINED INX
1E@P- RWTS.1900 .EQ $1E0D ENTRY POINT TO THE RWTS AT $1900
BOAG- SEEKABS .EQ $BYAJ ENTRY POINT TO THE SEEKABS ROUT INE AT $B8606

fODE- BAS.ERR .EQ222 BASIC ON ERR ERROR CODE

BFC- SWFRM EQ$FC EXCHANGE FROM PARAMTER

@OFE- SWTO EQ$FE EXCHANGE RWTS 'TO" PARAMETER

PPEA- PAGES .EQ $E0 NUMBER OF PAGES OF MEMORY TQ EXCHANGE
pp24- CH .EQ $24 CURSOR X POSITION

FDDA- PRNTBYTE .EQ $FDDA PRINTS HEXADECIMAL BYTE
.OR $0300 STARTS AT PAGE THREE

* TF 10B.0BJ8 *
CALL RWTS

0300 A9 B3 10 LDA /TABLETYP ENTRY POINT FOR CALLING THE RATS
THROUGH BAS1C

p302: ABOA LDY 4TABLETYP A,YPOINT TO THE 0B TABLE

g3p4: 26D9 03 JSRRATS.B8BO GO TO THE RATS AT $88g0

g3p7: BO16 BCS DOS. ERR CAUSE BASIC ERROR {F CARRY SET

0309 of RTS OTHERWISE, ALL ISWELL SO RETURN

p3pA: a1 TABLETYP .HSf1 TYPE OF TABLE (1=10B)

p308: 6@ SLT HS 60 NEXT ACCESSED SLOT (VIA POKESLT,S0)

g3ec. a1 DRV Kol ORIVE T0 BE ACCESSED NEXT (1 OR 2)

p3en: 0@ VoL HS 00 VLUME TO BE ACCESSED (B=ANYTHING)

D3ge: 00 TRK HS 06 TRACK TO ACCESS

B3gF: 00 SCT HS 08 SECTOR TO ACCESS

319: 1843 DCTPTR .DADCT DEVICE CHARACTERISTICS TABLE POINTR

6312: 20 BUFFERLO .HS @0 ALWAYS MAKE LSB OF BUFFER POINTER 8!

g313. 27 BUF HS 27 SECTOR BUFFER PAGE POINTER

g314: 00 NOTHING .HS 80 NOT USED

p315: 09 BYTCOUNT ~ .HS 06 PARTIAL SECTOR BYTE COUNT (8=256
BYTES)

p316: 0@ oD HS 08 COMMAND CODE (@=SEEK)

317 o8 RATS.ERR .HS 08 ERROR CODE THAT RWTS.BBAG RETURNED

318: 06 ovL HS 08 VOLUME NO. OF LAST ACCESSED DISK

p319: 6o OLDSLT HS 60 SLOT PREVIQUSLY ACCESSED

p31A: 61 OLDDRV HS Ol DRIVE PREVIOUSLY ACCESSED

p3e: e DeT HS 08 TYPE OF DEVICE CHARACTERISTICS
TABLE

p3c: o PHASES HS 01 PHASES-1 PER TRACK, (8 0R 1)

p3ID: EFD8 HOTORCNT ~ .HSEFDS8 HOTOR-ON TIME COUNT

O31F: AD1703 DOS.ERR LDARWTS.ERR DOSHAD AN ERROR, GET THE ERROR CODE

0322: 4A LSR DIVIDE IT8Y 16

The Book Of Softkeys Volume II 137

323: 4A LSR

p324: 4A LSR

p325: 4A LSR

p326: M TAX TRANSFER 1T TO X S0 BASIC WLL NDUCE
THE FALSE ERROR CODE

p327: 4C12D4 JMP INVOKERROR CAUSE A BASIC ERROR

MOVE THE DISK ARM

p32A: A9 00 HOVPHASES LDA #5008 ROUTINE TO SET UP REG1STERS BEFORE
CALLING SEEKABS
g32C: A200 LDX #$00 X AND A HAVE DUMMY NUMBERS THAT WiLL

BE POKED INTO BY "MOVE S PHASES"
P32E: 4CABBY JMP SEEKABS

CAUSE ERROR IN CONTROLLER

B331: AGDE BASICERR LDXBAS.ERR BASIC HAS MADE AN ERROR SO CAUSE THE
ERROR NUNBER AT 222
p333: 4C1204 JHP INVOKERROR

POP OFF RETURN

§336: 68 PoP PLA ROUTINE TO POP OFF ONE RETURN
(BASIC) ADDRESS

p33r. A8 TAY

B338: 68 PLA

§339: A6DF LDX BAS.ERR+1 ~ GET WHAT STACK WOULD BE |F GOSUB
WASN'T THERE

f33B8: 9A TXS PUT THAT AS THE STACK POINTER

p33c. 48 PHA

g33D: 98 TYA RESTORE THE LAST RETURN ADDRESS

P33E: 48 PHA

f33F: 60 RTS

EXCHANGE RWTS’s

340 AQ D0 LDY 40 ZERO THE LSB's

f342: 84FC STY SHFRM AND HAVE Y AT ZERO FOR START

344 B4FE STY SHTO

p346: BIFC MOVE.PAGE LDA (SWFRM)Y GETABYTE

g348: 48 PHA . AND SAVE 1T

f349: BIFE LDA (SKTO),Y GET THE BYTE WHERE THE SAVED ONE GOES
p348: 91FC STA (SHFRM) Y~ AND STORE IT WHERE THE SAVED ONE WAS
p34D: 68 PLA GET THE SAVED BYTE

B34E: 9IFE STA (SWTO),Y ~ AND STORE IT WHERE T GOES

0350: C8 INY DONE WiTH A PAGE

351: DOF3 BNE MOVE.PAGE NO KEEP WORKING ON {T

138 The Book Of Softkeys Volume II

#353;
#355:
§357:

$359:
§358:

#35C:
#350:
{i35€E:
@35F:
0361:
0363:
{365:
367:
#369:
(368:
@36E
fan:
#373:
0375:
#378:
#378:
§37E:
g381:
(#383:
{#1385:
#1388:
(#388:
@38E:
#391:
{#394:
f1396:
#399:
$39C:
B39E:
g3Al:
#3M4:
#3A6:

E6 FD
E6 FF
Co Ef

D EB
60

RTSI

INC SHFRM+ 1
INC SHTO+1
DEC PAGES

BNE MOVE . PAGE
RTS

GET NEXT NSB's

DECREMENT THE NUMBER OF PAGES T0
NOVE

[F NOT DONE,, MOVE ANOTHER PAGE
FINISHED, RTS

READ OR WRITE THE ENTIRE BUFFER

97

3

oF

A9 08
8528
A9 85
8529
A9 19
8524
AD 0E 03
20DAFD
A9 1C
85 24
AD OF 83
28DAFD
2090 83
CE 0F 03
1008
A9 F
8D 6F 83
EE BE 23
EE1303
AD 1363
(D5C a3
B C5
AD 0F 83
CD 5E 23
D C9
AD GE 93
(D50 83
99 C1

BA B3

L
LT
LS

NEWTRK

NXT.PG

HS 97

HS 35

HS OF

LDA #9

STA $28
LDA #5
STA$29
LDA #16
STACH

LDA TRK
JSR PRNTBYTE
LDA #28
STACH

LDA SCT
JSR PRNTBYTE
JSR10

DEC SCT
BPL NXT.PG
LDA #15
STASCT
INC TRK
INC BUF
LDA BUF
CHP HB

BCS RTS!
LDA SCT
CWP LS

BNE NEWTRK
LDA TRK
CHP LT

BOC NEWTRK
BCS RTSI

HIGHEST BUFFER PAGE+1

LAST TRACK TO GET+1

(LAST SECTOR TO GET-1)MOD16
DO A VTAB3

HTAB

PRINT IT
HTAB

GET A SECTOR
NEXT SECTOR

RESTORE TO SECTOR 15
NEXT TRK
NEXT PAGE OF MEMORY

BUFFER FULL, RETURN
LAST SECTOR?

END OF DISK

¥

The Book Of Softkeys Volume II 139

Using ProDOS
on a Franklin Ace

Hardcore COMPUTIST # 9, page 18

The March 1984 issue of Assembly Lines showed how to boot
ProDOS on a Franklin Ace computer by NOPping two bytes in the
ProDOS system file after it had been loaded into memory. However,
this method would not work for the ProDOS file dated 1-JAN-84.

The ProDOS system file contains a checksum-like subroutine
which returns a value of $0C if a genuine Apple is detected and
a $00 otherwise. If a non-Apple is detected, ProDOS will just hang
and not load in the BASIC.SYSTEM interpreter. A disassembly of
this routine from this ProDOS file looks like:

2639- 18 CLC 2652- @A ASL
263A- AC 31 26 LDY $2631 2653- QA ASL
263D- Bl 0A LDA ($2A) .Y 2654- QA ASL
263F- 29 DF AND #DF 2655- A8 TAY
2641- 6D 31 26 ADC $2631 2656- 4D 31 26 EOR $2631
2644- 8D 31 26 STA$2631 2659- 69 @B ADC #$0B
2647- 2E 31 26 ROL $2631 2658- D@ 03 BNE $2660
264A- C8 INY 265D- A5 0C LDA #$0C
264B- CC 34 26 CPY $2634 265F- 60 RTS
264E- DO ED BNE $263D 2660- A9 00 LDA #$00
2650- 98 TYA 2662- 60 RTS
2651- QA ASL

In order for this routine to always return with a value of $00,
the branch to the code which loads the accumulator with $00 (LDA
#$00) needs to be removed. This can be done by replacing the BNE
$2600 (DO 03) instruction with two NOPs (EA EA).

The easiest way to do this is to use a sector editor and zap the
change directly to the disk. Any sector editor can be used on ProDOS
disk because the formatting has not been changed from DOS 3.3.
On the ProDOS USERS DISK change bytes $5B and $5C of track
$01, sector $09 from DO 03 to EA EA and rewrite the sector.

If you have a sector editor with search capability, such as ZAP,
you should search for a byte sequence of 69 0B DO 03, since the
sequence of DO 03 is a fairly common one.

Once you have made this change, ProDOS should boot and operate
on Franklin’s and other compatibles that have their monitor ROM
routines in the proper locations.

¥

140 The Book Of Softkeys Volume II

Crunchlist 11

by Ray Darrah

This is a compilation of two articles by Ray Darrah
Crunchlist from Hardcore COMPUTIST #6, page 26.
Crunchlist Il from Hardcore COMPUTIST #10, page 26.

The machine language program (hex and source code) is
for Crunchlist II, the updated version of Crunchlist.

Crunchlist is an ‘Ampersand’ (&) utility designed for maximum
disk-space utilization when creating EXECable text files.

An EXECable text file is one in which part (or all) of a program
has been saved as keystrokes instead of the usual way, as Applesoft
tokens. When done properly, EXECing the file (i.e. typing EXEC
filename) makes the computer think you are typing in the program
lines and so they are inserted between (or replace) the existing lines
of the program in memory.

The usual way to capture an EXECable file is to add a line to
the program to be captured. This line often looks something like this:

1 NMS$ = "CAPTURED" :D$ =CHR$ (4) : PRINT D$"OPEN" NM$: PRINT D$ "WRITE"
NM$: POKE 33,33: LIST 1068 - 999: PRINT D$"CLOSE": TEXT: END

Notice the LIST 1000 - 9999 statement. When the Applesoft
interpreter comes across this, it does a regular LISTing. As you
probably have already noticed, a lot of spaces are inserted into a
regular listing to make it more readable. When you capture a
program in this manner, all those spaces are saved on the disk.

Since these spaces aren’t required when typing line numbers in
(even via EXEC), why have them lying around on your disk just
taking up space?

Crunchlist eliminates this diskette waste by listing specified line
numbers without unnecessary spaces! In addition to the disk storage
gained because of this, the captured programs take less time to
capture and less time to EXEC back in.

Using Crunchlist, the above capture line would look like this:

1 NM$ = "CAPTURED" :D$ =CHR$ (4) : PRINTD$"OPEN" NM$: PRINT D$"WRITE"
NM$: & 1008, 999: PRINT D$"CLOSE" : END

Notice that LIST is replaced by the ampersand (&) and a comma
() replaces the dash (-). This is because Crunchlist can not only
list lines by numbers, it can also list a collection of lines by specifying
an expression such as 999 + 1. The dash will be interpreted as a

The Book Of Softkeys Volume I 141

’minus’ sign! The POKE 33,33 and TEXT statements have been
entirely removed because Crunchlist, as opposed to LIST, doesn’t
indent lines. Try Crunchlisting some long lines in immediate
execution for a good example.

Now you are ready to start capturing EXECable files and conserve
disk space at the same time. This is great for saving lines that appear
in a lot of your creations (like a title page or REMarks stating who
wrote it). I'm sure you can think of a hundred other uses for it also
(maybe something with a printer).

Using Crunchlist

First, type in the Hexdump for CRUNCHLIST II and:
BSAVE CRUNCHLIST,A$300,L$98

Whenever you wish to install Crunchlist, simply type:
BRUN CRUNCHLIST

Now, use & instead of LIST on those lines you wish to capture.

Hexdumg for CRUNCHLIST 11

@300: A9 4C 8D F5 03 A9 10 8D
@308: F6 03 A9 03 8D F7 93 60
@310: 20 A4 83 20 1A D6 A5 9B
@318: 48 A5 9C 48 20 B7 04 FO
@320: 06 20 BE DE 26 A4 @3 68

@328 85 9C 68 85 9B A5 50 @5
@336: 51 D@ 96 A9 FF 85 50 85
#338: 51 A@ @1 Bl 9B F@ 36 C8
@340 Bl 98 AA C8 Bl 9B C5 51
#348: DO 04 E4 50 FO 02 BP 25
0350: 84 85 20 24 ED A4 85 4C
@358: 5F 63 09 80 20 ED FD C8
@360: Bl 9B DB 12 20 8E FD Ag
#368: 00 Bl 9B AA C8 Bl 9B 86
@378: 98 85 9C D& C4 60 14 E2
@378: E9 7F AA 84 85 Ag DO 84
@380: 9D A@ CF 84 9E AD FF CA
9388: FO 07 26 2C D7 10 FB 30
@390: F6 20 2C D7 30 08 99 80
@398: 20 ED FD 4C 91 63 28 ED

@3AB: FD 4C 55 63 20 7B DD 20
@3A8: F2 EB A5 A0 85 51 A5 Al
g3B0: 85 50 60

142 The Book Of Softkeys Volume II

Source Code for CRUNCHLIST II

1000 2k 3 %k %k %k %k %k 5k %k %k %k %k %k 3k 5k %k %k 5k %k Xk %k 5k %k %k Kk k %k 5k 5k %k %k %k %k %k %k

1616 * *
1020 * CRUNCHLIST *
1030 * BY RAY DARRAH | || *
1040 * *
1050 sk % % % % 5 %k % % * % % %k %k ok % 3k % % 5k % %k % % %k % % % % % % %k *k *k %
1150 % APPLESOFT ROUT INES/LOCAT |ONS *
1160

117 FINDLIN EQ $D61A

1188 LINPRT .EQ $ED24 ROUT INE THAT PRINTS X, A IN DECIMAL

1196 TOKTABL .EQ $D0DO TABLE OF TOKENS SPELLED OUT

1208 GETCHR .EQ $D72C ROUT INE THAT GETS NEXT CHARACTER OF COMMAND
WORD

1219 FRM.EVAL .EQ $0D7B EVALUATES AN EXPRESSION AND PUTS ITIN THE FAC

1220 INT.CONV .EQ $EBF2 CONVERTS VALUE [N //C TO INTEGER AND STORES

IT IN $A8.$AL
1236 CHKCOM .EQ $DEBE
1240
1250 * *
1268 * MONITOR ROUT INES *
1278 * *
1280
1299 COUT .EQ SFOED PRINT AASASCI |
1306 CROUT .EQ $FD8E PRINT A CARRIAGE RETURN
1316
1320 * *
1330 * ZERO PAGE LOCATONS *
1349 * *
1350
1360 CHRGOT .EQ $B7 RETRIEVE LAST CHARACTER FROM BASIC
1370 CHRGET .EQ $B1 GET A NEW BASIC CHARACTER
1380 LINNUM EQ $50 NUMBER OF LAST LINUMBER TO L1ST
1390 LOWTR .EQ $9B POINTER TO CURRENT L INE THAT WE ARE LISTING
1486 FORPNT .EQ $85 TEMPORARY STORAGE OF THE OFFSET FOR THIS LINE
1416 FAC .EQ $9D USED BY GETCHR SHOULD POINT TO WHICH TOKEN
YOU ARE GETTING
1420
1430 * *
1440 * PAGE THREE LOCATIONS *
1456 * *
1460
1478 AMPER .EQ $3F5 AMPERSAND JMP LOCAT ION
1480

The Book Of Softkeys Volume II 143

1490 *
1500 *
1518 *
1520

1530

1540

1550

1560

1579

1586

1590

1600

1619

1628 START
1630

1640

165¢

1660

1678

1680

1690

1700

1719

1726 MAINLST
1738

1740

1750

1760

1778

1780

1799

1800

1818

1828 NXLST
1830

1840

1850

1860

1870

1880

1890

1900

1919

1920

1930

1944 LSTD
195¢ LSTILIN
1960

1974 LISTLOOP
1980

144

.OR $300

TF

LDA #$4C

STA ANPER
LDA #START
STA AMPER+1
LDA /START
STA

RTS

JSR LINGET
JSRFINDLIN
LDA LOWTR
PHA

LDA LOWTR+1
PHA

JSR CHRGOT
BEQ MAINLST
JSR CHKCOM
JSR LINGET
PLA MOVE

STA LOWTR+1
PLA

STA LOKTR
LDA LINNUM
ORA LINNUM+1
BNE NXLST
LDA #$FF

STA LINNUM
STA LINNUM+1
LDY #1

LDA (LOWTR) Y
BEQ FINISHED
INY GET

LDA (LOWTR) .Y
TAX

INY

LDA (LOKTR) Y
CMP L INNUM+1
BNE LSTD

CPX L INNUM
BEQ LSTILIN
BCS FINISHED
STY FORPNT
JSR

LDY FORPNT
JWP PRINTI

START OF PROGRAM *

SQUEEZE IT IN TO PAGE THREE
CRUNCHL ST .0BJ
MAKE AMPERSAND JWP TO START

AMPER+2

HOOKUP COMPLETE

SET LINNUM TO START OF RANGE
POINT LOWTR TO 1ST LINE
SAVE POINTER

RANGE SPECIFIED?

YES, LISTIT

SKIP THE COMMA

SET LINNUM TO END RANGE
LOWTR BACK

S THE END NUMBER A NULL?

[FNO, START LISTING
YES [T IS, SO SET THE END NUMBER T0 65535

LIST AN ENTIRE LINE

[S HIGH BYTE OF LINK ZERO
YES, DONE LISTING

L INE NUMBER

LINPRT

The Book Of Softkeys Volume II

1999 SENDCHR
2000

2019 PRINTI
2020

2030

2040

2050

2060

2070

2080

2090

2109

2119

2120

2139 FINISHED
2148 TOKENCHP
2150

2160

2178

2189

2190

2200

2210

2220

2230

2240 SKPTK
2250

2260 TOKLP
2270

2280

2290 PRTOK
2300

2319

2320

2330

2340 TOKDONE
2350

2360

2376 LINGET
2380

2399

2400

2419

2420

2430

2440

ORA 4588

JSR COUT

INY

LDA (LOWTR) ,Y
BNE TOKENCHP
JSR CROUT

LDY #8

LDA (LOWTR) Y
TAX

INY

LDA (LOWTR) ,Y
STX LOWTR

STA LONTR¢1
BNE NXLST

RTS

BPL SENDCHR
SEC

SBC #$7F

X A
STY FORPNT

NOT END OF LINE SO SEE [F TOKEN
EVERY LINE TERMINATED BY A CARRIAGE RETURN
AT END OF LINE TO GET NEXT LINK

POINT TO NEXT LINE

BRANCH [F NOT AT END OF PROGRAM
COMPLETELY DONE L|STING SO RETURN
[F NOT A TOKEN, JUST PRINT IT

MAKE IT A INDEX NUMBER FOR THE TABLE

SAVE LINE POIINTER

LDY ATOKTABL-$100

STY FAC

POINT FAC TO TABLE

LDY /TOKTABL-$100

STY FAC+1
LDY #$FF
DEX

BEQ PRTOK
JSR GETCHR
BPL TOKLP
BMI SKPTK
JSR GETCHR
BMI TOKDONE
ORA #$80
JSR COUT
JWP PRTOK
JSR COUT
JUP LISTLOOP

JSR FRM.EVAL
JSR INT.CONV
LDA $A9

STA LINNUM+1
LDA $A1

STA LINNUM
RTS

COUNT TOKENS VERSA X

GET A CHARACTER OF THE TOKEN

SEND LAST CHARACTER OF TOKEN
;GO DO NEXT THING IN LINE

EVALUATE FORMULA
CONVERT 1T TO INTEGER
MOVE [NTEGER VALUE

The Book Of Softkeys Volume II

%

145

The Controller Saver

by Ray Darrah

Hardcore COMPUTIST # 10, page 11

Just when you thought changing controllers in Super IOB wasn’t
worth the effort (or the disk space), along comes the Controller
Saver.

How it works

The Controller Saver (named SAVE CONTROLLER) extracts
the controller portion of Super IOB and saves it to disk as a text
file. Once this is done, softkeying a disk is as easy as loading Super
10B and EXECing the controller of your choice.

Saving a controller as a text file (denoted by T on the left side
of the CATALOG) takes up 1/5 the space that a different Super
IOB program for each new controller would. SAVE
CONTROLLER extracts Lines 1000—9999 as well as any other lines
you may have added or inserted into Super 10B.

SAVE CONTROLLER uses CRUNCHLIST (see the Crunchlist
article). If you haven’t typed CRUNCHLIST in yet, do so
immediately.

Once CRUNCHLIST has been BSAVEd, type in the Applesoft
listing of MAKE SAVER and:

SAVE MAKE SAVER

on the same disk. Next:
RUN MAKE SAVER

This will put a file on the disk called SAVE CONTROLLER which
is an EXECable image of Lines 50000-50220 in the MAKE SAVER
program. If you wish to alter the Controller Saver, you should make
the alterations to these lines and then RUN the program and it will
put the image of the new program on the disk.

146 The Book Of Softkeys Volume II

How Do I Use It?

Hence forth, when you wish to save a controller, simply type
EXEC SAVE CONTROLLER

After some disk spinning and lots of prompts rolling up the screen,
the computer will ask:

DELETE ANY LINES?

This is asking if you had to eliminate any line numbers of Super
IOB in order for it to fit in the allocated space. If you press (¥,
the computer will then ask which lines you DELeted. You must reply
with a range of line numbers separated by a comma. If you only
DELeted one line then you must type the same number twice (still
separated by a comma). When you are finished, type:

0,0
Now, upon the EXECing of this controller, those lines specified

will be DELeted from Super 10B.
Next you are asked:

SAVE ANY EXTRA LINES?

If your controller occupies more area than Lines 1000—9999, then
you must press (¥) and enter the other range(s) (just like the
deletions) to be saved (besides the usual 1000 through 9999). Again,
you exit this routine by typing:

0,0
The final prompt is:
CONTROLLER FILENAME =>

This is merely a request for the entry of the filename. I usually
append a .CON to the end of the name to designate it as a controller.

BASIC listing for: MAKE SAVER

10 D$ = CHRS (13) + CHRS (4) :NM$ = "SAVE" CONTROLLER" : HOME

20 VTAB 12: PRINT TAB(11) "ONE* MOMENT* PLEASE ."

3@ PRINT D$"NOMONC|0"D$ "BRUNCRUNCHL ST .0BJ"

44 PRINT D$"OPEN"NM$D$ "DELETE"NMD "OPEN"NMSDS "WR 1 TE "NM$

5@ PRINT "DEL50000,59999" : & 5000@,59999: PRINT "RUN50000" ;

60 PRINT D$"CLOSE" : HOME : PRINT "CONTROLLER® SAVER" F | LE* COMPLETE" :
END

50000 TEXT : HOME : VTAB 5: PRINT "SUPER* |0B* CONTROLLER® SAVE"

50610 PRINT : PRINT : PRINT CHRS (4) "BRUNCRUNCHL IST.0BJ": DIMX(1@,3)

5@02@ PRINT "DELETE“ ANY“LINES?*N" CHRS (8) ; : GETA$: IFA$ <> "Y" THEN
50050

50@30 HOME : PRINT"ENTER® THE* LINE” NUMBERS* TO* DELETE": VTAB3

50040 P$ = "DELETE" " :X=0: GOSUB 50200:ND=A-1

The Book Of Softkeys Volume II 147

50050 HTAB 1: VTAB 18: PRINT"SAVE" ANY* EXTRA LINES?*N" CHRS (8) ; :
GET A$: IF A$ <> "Y" THEN 50080

50060 HOME : PRINT"ENTER® THE® LINE“ NUMBERS® TO* SAVE" : VTAB 3

50070 X = 2:P$ = "SAVE* ": GOSUB 50200 : NI =A-1

50080 PRINT : PRINT : INPUT "CONTROLLER® FILENAME=>" ;NM$: D$ = CHR$
(13) + CHRS (4)

50098 PRINT D$ "NOMONC10" : HOME : VTAB 12: PRINT "SAVING* " NM$

50100 PRINT D$ "OPEN" NM$ D$ "DELETE" NM$ D$ "OPEN" NM$ D$ "WRITE" NM$

50119 1F ND = @ THEN 50130

50126 FORA =1 TOND: PRINT "DEL" X(A,8) "," X(A,1): NEXT

50130 PRINT "DEL1028,9999": & 1008,9999

50140 IF NI = @ THEN 50160

50150 FORA =1 TONI: PRINT "DEL"X(A,2)","X(A,3): & X(A,2) ,X(A,3):
NEXT

50160 FORA=1TOLEN (NM$): IF MID$ (NM$,A, 1) <> "." THEN NEXT : GOTO
50180

50170 NM$ = LEFT$ (NM$,A - 1)

50180 PRINT "7:7" CHR$ (34)NM$"“ CONTROLLER* ENTERED.";

58190 PRINT D$"CLOSE" : HOME : VTAB 5: PRINT "CONTROLLER® SAVED" : DEL
50008, 59999

50200 FORA =1TO 18: PRINT : PRINT P$;

50210 [NPUT "";X(A,X) ,X(A,X + 1): IF X(A,X) = @ THEN RETURN

50220 NEXT : RETURN

Dan Rosenburg’s & Paul Anderson’s APT for...

Miner 2049er

The following is an easier method of entering Miner 2049er
on any level than the one that was printed earlier:

When the game asks HOW MANY PLAYERS?, type (#] and
a number corresponding to the level (1] - (9] or (0] for level
10) you wish to start on.

148 The Book Of Softkeys Volume II

Making
Liberated Backups
That Retain Their

Copy-Protection

by Thomas Dragon
(Hardcore COMPUTIST # 7, page 12)

The following is a reasonably efficient procedure for backing-up
certain protected disks that are NOT easily copied by either
Locksmith 4.1 or 5.0.

The ‘rub’ is that you must retain a certain portion of the copy-
protection. That is, your copies still can’t be duplicated by Locksmith
or other bit-copy programs. However, it does provide a procedure
for backing-up the disks as well as ‘liberating’ them for study.

Freeing the Disks

|_T_| First, you must have an Apple 1l with 48K. It is especially
convenient if you have an old Integer card living in your Apple,
but if you don’t, this procedure will still work on a number of
protected commercial software programs.

Let us assume that you have an old Integer card. I'll get back
to Applesoft later. The switch on the Integer card should be down
so that Applesoft is the boot-up language.

What’s this ? You say that you don’t use your Integer card
anymore because you have an expansion card in slot ? Well, clean
that old Integer card off because, for our purposes, it will work in
ANY slot which allows the switch to stick out of the back of the
Apple (slot 9, 2 or 4).

EI Now, pull out the old DGS 3.3 System Master and boot up
your Apple

PR#6

"I'he Book Of Softkeys Volume II 149

Place a blank disk into the drive and INITialize it.
INIT HELLO

DELETE the HELLO program after you have INITialized the
disk.

DELETE HELLO

This slave disk will serve a very special purpose. Later, we will
want to boot the system with it. Unlike a System Master, when
booting with a slave disk, much of the Apple memory
($4000—3$9600) is left undisturbed.

Using the Integer Card
Boot the protected disk and watch the screen very carefully during
the boot process. If you see the Applesoft prompt for even a fraction
of a second the chances are very good that this procedure will liberate
the disk.
Flip the Integer switch up after the boot process is complete.
Press and you are instantly into the Monitor.

Note that you will always jump into the Monitor no matter where
the Integer card is located. This is another well-kept Apple secret.

No Integer Card?

If you don’t have an Integer card, make like Woody Woodpecker
on the key until the disk drive stops.

Then type:

CALL -151

and you should be in the Monitor. If the drive doesn’t stop after
10 or 20 rapid (RESET)s, then this procedure WON’T work on your
Apple. You might want to see if there is some old-timer who might
be willing to sell his useless old Integer card for $15 or $25. There
are a number of old Integer cards around that appear not to work.
Surprisingly, many of these old cards will still work in terms of
Jforcing a jump to the Monitor. If the old timer has one that doesn’t
work, just ask him if you can have it to ‘study’.

[{I Now that you are in the Monitor, typei
ASBBEG

This will activate the CATALOG function if the protected disk has
a reasonably intact DOS. You should then see a CATALOG of the
disk contents.

If you only get a ‘honking’, then this procedure won’t work. Don’t
despair. You will very seldom get a honking if you see the Applesoft
prompt when you boot.

E] Next, we will move part of the protected RWTS into an area
of the Apple memory that will remain intact during the boot process.

150 The Book Of Softkeys Volume II

In order to accomplish this, we will use the Monitor memory move.
Enter:

4800<B800.BFFFM
This will move the special DOS routines to $4800.

E Remove the protected disk from the drive and replace it with
the slave disk that you previously initialized.

Flip the Integer card switch down if you are using an Integer card
and boot the slave disk by typing:

6P}

(assuming slot 6 is the boot slot). Don’t worry about the FILE NOT
FOUND error. At this point, I am always extra cautious because
I don’t want to accidentally lose the protected DOS information..

Take out any disk with a bit of space on it and enter the following
command from the keyboard -

BSAVE PROTECTED DOS,A$4800,L5800

IE Place the System Master into the drive and enter:
BLOAD FID

Everyone reading this little note must know about FID. If you
don’t, let me just say that it is a DOS-less copy program. It does
not carry its own DOS like most other variations of Apple copy
routines, but ‘sucks’ up the DOS that is living in memory when it
is activated. However, we have not activated FID. We have only
loaded it into memory.

It is now time to move the protected DOS back into the
regular DOS 3.3 memory area. Enter:

CALL -151
to get into the Monitor. Then enter:
B800<4800.4FFFM

Now you have modified DOS 3.3. The modified DOS is neither
regular DOS 3.3 nor the true protected DOS. It is a hybrid of regular

DOS 3.3 that employs the protection scheme that is on the protected
disk.

Return to Applesoft by pressing:
&0
Now INITialize a slave disk by typing:
INIT HELLO

If all has gone well, the slave disk will now become a slave disk
that retains the copy-protection of the original protected disk. After
the drive stops, be sure to:

DELETE HELLO

The Book Of Softkeys Volume II 151

In case of Error

If you have made an error in moving DOS, just re-boot the slave
disk and then go back to Step 7. If you have somehow managed
to destroy the memory image, re-boot the system and reLOAD your
new DOS:

PR#6
BLOAD PROTECTED DOS

as saved in Step 6 and then go to Step 7.

The final step is to activate FID. You have the protected
disk and you have a blank disk with the same DOS. Either enter:

CALL 2051

or type:
CALL -151
803G

Either CALL will essentially activate FID and allow it to use the
protected DOS.

Em From this point, you should be able to transfer the files from
the protected disk to your special slave with the use of FID.

The programs are now essentially liberated from the point of view
that they can be LISTed, modified and SAVEd. It may be that the
protected HELLO program sets the Reset vector when it is run. If
you wish to study the programs, simply load and look at them. To
be sure, you should place a write-protect notch on your copied disk
if the original copy was write-protected. The disks are still protected
in the sense that any copy procedures that failed with the original
disk will also fail with the liberated disk.

This procedure works well with the Microzine disks, the Videx
pre-boot disks, Micro Power and Light disks, HIRES Secrets from
Avant Garde, and an incredible collection of other disks that have
either binary or Applesoft programs on them. Disks on which the
procedure doesn’t work include the Human Systems Dynamics
(HSD) disks and E-Z Draw. It doesn’t work for E-Z Draw because
its disk uses a 32K DOS and this discussion deals with a 48K DOS.
It doesn’t work for the HSD disks because they have an incredibly
complex protection system.

152 The Book Of Softkeys Volume II

Examining
Copy-protected

Applesoft BASIC
Programs

(Hardcore COMPUTIST # 10, page 24)
By Clay Harrell

Many protected programs are written in Applesoft. Of course,
most publishers are sly enough to protect against breaking out of
their program with E2C) or (FESET). Also, most protect against re-
entering BASIC from the monitor by changing the typical BASIC
re-entry point (at $3D0) so that it points to disaster. Many programs
also set the autorun flag at $D6 so if you manage to break out of
the program into BASIC, anything you type will RUN their BASIC
program. I will describe how to beat all these protection schemes,
assuming you have an old style F8 Monitor ROM or some means
to enter the Apple’s Monitor at will.

Is It BASIC?

First, we must determine if the protected program is written in
Applesoft. If after you boot the program a BASIC prompt appears,
this is a good indication that at least parts of the program are written
in BASIC. Furthermore, if the program prints a lot of text on the
screen, or requires a good deal of user input it is likely that the
program is written in BASIC. The reason for this is that PRINTing
text on the screen and INPUTing data from the keyboard is easily
accomplished from BASIC using PRINT and INPUT statements.
Doing this from assembly language however, requires a great deal
more work. Also, we should realize why a programmer uses
Assembly language. The only real advantage to Assembly language

is speed. If speed is not critical, most non-sadistic programmers will
use BASIC.

The Book Of Softkeys Volume II 153

With this in mind, take note of how the program runs and displays
information on the screen. If it runs at about the same speed as the
BASIC programs you have written, it is probably written in BASIC.
Remember, Assembly language is considerably faster than BASIC
in every respect.

Finally, read the package the program came in. The package may
say what language it was written in. If it doesn’t, a dead give away
is in the hardware requirements. If the program requires Applesoft
in ROM, then at least part of the program is undoubtedly written
in Applesoft. '

Viewing the Code

Now that you have figured out that your protected program is
written in BASIC, it is time to LIST their code. The first step is
to into the monitor after the program has started running.

Now you can try to enter the immediate BASIC mode by typing:
3DeG

The code at $3D0 normally jumps to the BASIC warm start routine
but, if the protection scheme is worth anything, this will not work.

Try Again
Assuming that didn’t work, reload the program and into

the monitor again.
The next thing is to try typing:

9D84G
or typing:

9DBFG
These are the DOS ‘cold’ and ‘warm’ start routines, respectively.
If you are lucky enough to get a BASIC prompt, you have done
well. Most of the time, however, you will not.

If in either case you succeed in getting a BASIC prompt, try
LISTing the program or CATALOGing the disk.

Try, Try Again

If anything you type starts the program running again, the
protection has changed the RUN flag at $D6. So into the
monitor again.

RESET,

The RUN flag is a zero page location (at $D6) which will
automatically RUN the BASIC program in memory if $D6 contains

154 The Book Of Softkeys Volume II

a value of $80 or greater (128 or greater in decimal). This is easy
to defeat after you have into the Monitor by typing:

D6:00

This resets the RUN flag to normal. Now if 3D0G, 9D84G or
9DBFG previously rewarded you with a BASIC prompt, this will
solve the problem of the program re-running when you type a
command.

For debugging efforts, the RUN flag can be changed from within
a BASIC program by issuing the code:

10 POKE 214,255

or by POKEing location 214 with anything greater than 127. From
Assembly language, the code would most likely look like this:

800- A9 FF LDA #$FF
802- 85D6 STA $D6

or by loading a register with $80 or greater and storing it at $D6.

Try, Try, and Try Again?

Now if 3D0G, 9D84G or 9DBFG did not produce a BASIC
prompt, then the DOS in use is more elaborate. So re-load the
program and into the monitor after it is running.

Saving the Program

Now come the final steps in trying to examine a BASIC program.
If you are using a ROM card in slot zero with an old style F8 Monitor
ROM to into the Monitor, turn on the mother board ROMs
and turn off the ROM card Integer ROMs by typing:

coes1

Now reset the RUN flag to normal, just to be sure. Type:
D6:00

Finally, enter Applesoft the sure fire way by pressing:

&0

You should see an Applesoft prompt. Now type:
LIST

and your Applesoft program should now appear.

Strategic Simulation’s RDOS

Applying this to a real world example, try this method with one
of Strategic Simulation’s (SSI) releases. SSI uses a highly modified
DOS called RDOS for their protection. SSI uses all the tricks
mentioned to prevent you from LISTing their programs but, using

The Book Of Softkeys Volume II 155

the above procedure, you can LIST their BASIC programs.

In addition, the DOS used by SSI (RDOS) uses the ampersand
(&) in all of its DOS commands. So if you see any ampersands
from within their BASIC program, you know it is a DOS command.
For example, to CATALOG a SSI disk, after you follow the above
procedure and you are in BASIC, type:

&CAT

This will display SSI's catalog. Very different, eh!
Well, back at the ranch. If you want to SAVE your a protected
Applesoft program to a normal DOS disk, follow these steps:

III into the Monitor after the program is running.

Iz] If you are using a ROM card in Slot @, disable its ROMs
by typing:
co81

El Next turn off the Auto-run Flag and move Page $08 to Page
$95 where it will be safe

D6:00
9500<800.8FFM

E] Check where the Applesoft program ends by typing:
AF.B0O

Izl Write down the two bytes that are displayed.

[6] Boot a 48K normal DOS 3.3 slave disk with no HELLO
program.

PR#6

Enter the Monitor by typing:
CALL -151

Restore the Applesoft program by typing:

800<9500.95FFM
BCD: enter the two bytes you recorded in step 4,
separated by spaces.

EI Enter BASIC and save the program by typing:

3DOG
SAVE program name

What you have done is to move $800—$8FF out of the way so
you can boot a slave disk. After normal DOS is up, you restore
$800—$8FF from $9500—$95FF, and then restore the end of
Applesoft program pointers so DOS knows how big your BASIC
program is. Finally, you just SAVEQ it to your disk!

156 The Book Of Softkeys Volume II

Of course there are other more automated ways of getting
programs to a normal DOS 3.3 disk (such as DEMUFFIN PLUS),
but this is a ‘quick and dirty’ method that will often work. Keep
in mind that the program may not run from normal DOS because
of secondary protection within the BASIC program itself. Any
curious CALLs, POKEs or PEEKs to memory above 40192 (this
is memory where DOS resides) or below 256 (Zero Page memory)
should be examined closely.

CATALOGing

Another thing to keep in mind is that the protected disk may have
more than one file on it. If the protected DOS’s commands have
been modified you may not be able to CATALOG the disk directly
to see how many files are on it. If this is the case, you can try to
execute the CATALOG command handler at $AS6E. To do this,
boot up with the protected disk and into the Monitor.

Then type:
AB6EG

With any luck at all, the disk’s directory should be displayed.
If there is more than one file you will probably want to transfer
all the files to normal DOS with the use of a program such as
DEMUFFIN PLUS.

If you experiment with the techinques I have described in this
article I think you will be surprised at the number of programs whose
copy protection can be fairly easily removed.

%

The Book Of Softkeys Volume II 157

ERRATA FOR...

The Book O SU[H\U'\\ Volume |

This figure (omitted in The Book Of Softkeys Volume I} is
for paragraph 3 of ‘Getting On The Right Track’ by Robert
Linden (Book Of Softkeys Volume I, page 99).

Figure 1

DRIVE

The editorial staff of SoftKey Publishing would like to extend
our apologies. We sincerely regret any inconvenience this
omission may have caused you.

158 The Book Of Softkeys Volume II

We are NOT

PIRATES!

but we’re not fools, either.

We’re serious programmers and software users who just
want to have backup copies of any software we own.
COMPUTIST magazine shows us HOW TO MAKE
BACKUPS OF COMMERCIAL SOFTWARE regardiess of
the maker’s attempt to stop us from having legal copies.
Don’t let them stop you from protecting your own rights.

Remove
Copy-protection

from your valuable library of expensive software. The publisher
of COMPUTIST has been showing subscribers how to unlock and
modify commercial software for the past 5 years. Don’t be one
of the users abused by user-FIENDLY locked-up software.
Subscribe to:

COMPUTIST

6 issue SUBSCRIPTION RATES:
U.S.: $20 U.S. First Class: $24 Canada, Mexico: $34¢ Foreign Air: $60

SAMPLE COPY: U.S.: $4.75 Foreign: $8.00

[0 NEwW subscriber [0 Renew my subscription

Name ID#

Address

City State Zip

Country. Phone.

. i i Exp.

Signatuwre BSK2

US funds drawn on U.S. bank. Send check or money order to:
COMPUTIST PO Box 110937-BK Tacoma, WA 98411

The Book Of Softkeys Volume 11 159

YESI

We still have

Volume I of

The Book Of Softkeys

YES, I want Volume 1 of The Book Of Softkeys. I have enclosed $12.95 per book. For
shipping, ing per book, add $2 for domestic orders and $5 for foreign orders. U.S. funds
drawn on U.S. banks. Washington State orders add 7.8% sales tax. Send your orders to:
SoftKey Publishing PO Box 110937-BK Tacoma, WA 98411

Name

Address

City State Zip
Country. Phone
. r
: . : e
Signature BSK2

The Book Of Softkeys Volume I

contain softkeys for:

Akalabeth, Ampermagic, Apple Galaxian, Aztec,
Bag of Tricks, Bill Budge's Trilogy, Buzzard Bait,
Cannonball Blitz, Casino, Data Reporter, Deadline,
Disk Organizer II, Egbert II Communications Disk,
Hard Hat Mack, Home Accountant, Homeword,
Lancaster, Magic Window II, Multi-disk Catalog,
Multiplan, Pest Patrol, Prisoner II, Sammy
Lightfoot, Screen Writer II, Sneakers, Spy's
Demise, Starcross, Suspended, Ultima II, Visifile,
Visiplot, Visitrend, Witness, Wizardry, Zork I, Zork
II, Zork III...
plus how-to articles

and program listings of need-to-have programs
used to make deprotected backups.

160 The Book Of Softkeys Volume 11

	01-cover.tif
	page-001.tif
	page-002.tif
	page-003.tif
	page-004.tif
	page-005.tif
	page-006.tif
	page-007.tif
	page-008.tif
	page-009.tif
	page-010.tif
	page-011.tif
	page-012.tif
	page-013.tif
	page-014.tif
	page-015.tif
	page-016.tif
	page-017.tif
	page-018.tif
	page-019.tif
	page-020.tif
	page-021.tif
	page-022.tif
	page-023.tif
	page-024.tif
	page-025.tif
	page-026.tif
	page-027.tif
	page-028.tif
	page-029.tif
	page-030.tif
	page-031.tif
	page-032.tif
	page-033.tif
	page-034.tif
	page-035.tif
	page-036.tif
	page-037.tif
	page-038.tif
	page-039.tif
	page-040.tif
	page-041.tif
	page-042.tif
	page-043.tif
	page-044.tif
	page-045.tif
	page-046.tif
	page-047.tif
	page-048.tif
	page-049.tif
	page-050.tif
	page-051.tif
	page-052.tif
	page-053.tif
	page-054.tif
	page-055.tif
	page-056.tif
	page-057.tif
	page-058.tif
	page-059.tif
	page-060.tif
	page-061.tif
	page-062.tif
	page-063.tif
	page-064.tif
	page-065.tif
	page-066.tif
	page-067.tif
	page-068.tif
	page-069.tif
	page-070.tif
	page-071.tif
	page-072.tif
	page-073.tif
	page-074.tif
	page-075.tif
	page-076.tif
	page-077.tif
	page-078.tif
	page-079.tif
	page-080.tif
	page-081.tif
	page-082.tif
	page-083.tif
	page-084.tif
	page-085.tif
	page-086.tif
	page-087.tif
	page-088.tif
	page-089.tif
	page-090.tif
	page-091.tif
	page-092.tif
	page-093.tif
	page-094.tif
	page-095.tif
	page-096.tif
	page-097.tif
	page-098.tif
	page-099.tif
	page-100.tif
	page-101.tif
	page-102.tif
	page-103.tif
	page-104.tif
	page-105.tif
	page-106.tif
	page-107.tif
	page-108.tif
	page-109.tif
	page-110.tif
	page-111.tif
	page-112.tif
	page-113.tif
	page-114.tif
	page-115.tif
	page-116.tif
	page-117.tif
	page-118.tif
	page-119.tif
	page-120.tif
	page-121.tif
	page-122.tif
	page-123.tif
	page-124.tif
	page-125.tif
	page-126.tif
	page-127.tif
	page-128.tif
	page-129.tif
	page-130.tif
	page-131.tif
	page-132.tif
	page-133.tif
	page-134.tif
	page-135.tif
	page-136.tif
	page-137.tif
	page-138.tif
	page-139.tif
	page-140.tif
	page-141.tif
	page-142.tif
	page-143.tif
	page-144.tif
	page-145.tif
	page-146.tif
	page-147.tif
	page-148.tif
	page-149.tif
	page-150.tif
	page-151.tif
	page-152.tif
	page-153.tif
	page-154.tif
	page-155.tif
	page-156.tif
	page-157.tif
	page-158.tif
	page-159.tif
	page-160.tif

