Apple][Computer Information ¢ The Woz Pak][¢ 15 November 1979

Source: Apple Computer, Inc. + Call-A.P.P.L.E. Magazine Page 0001 of 0138

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK II

INTRODUCTION

At last the mythical WOZPAK] [is here.

For those who have waited a long, long time — it finally does exist. A note of appreciation
to the people who contributed to this project:

First to KEN SMITH who worked long hours editing both the text and programs, and with
his Diablo Printer produced the final copy of this baok:

To BOB CLARDY and RALPH THIERS for editorial assistance;

To STU BRUMMETT, for entering into the word processor many pages of text;

To DICK SEDOWICK, and DAVE McINTOSH for the “Sweet 16" compendium.

Many thanks to STEVE WOZNIAK (“WO2"”) and APPLE COMPUTER for all the other
untitied articles in this volume.

Finally to the publishers of MICRO and DR. DOBBS JOURNAL for permission to reprint
their articles.

The optional WOZPAK Cassette contains the programs in this volume. The first program on
the cassette is an index giving the address instructions for all the machine language programs.
All programs are recorded twice on the tape.

The second set are recorded with a different recorder and a short voice input separates the
two recordings.

Dick Hubert — November 15, 1979

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0002 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

APPLE PUGETSOUND PROGRAM LIBRARY EXCHANGE
6708 39TH Avenue Southwest
Seattle, Washington 98136
(206) 932-6588

presents

WOZPAK Il
(DOCUPAK Volume 1)

Table of Contents

TED . o e e 3
Line Number CrossReference ivnn... 9
Symbol Cross Reference.covimiinnnenenennnnnn. 13
Renumber/Append it e, 23
Pack&Load. i i e 37
Machine Code Relocation Notes.ccovvun... 45
Tape Verify . ..o e 57
High Resolution Graphics Subroutines. e 61
Shape Generator.ititinin et et 79
SWEET 16 Introduction.t 85
SWEET 16 The 6502 Dream Machine 89
Lazarus. o i i e 99
Floating Point Routinesuiiiein e 107
Auto Repeat for MONITORCommands 117
Integer Basic Subroutine Calls 00cvenun... 119
STARTREK ... e e e 121
HI-RES Color Modification 129
Color Killer Modificationcouuunvun... 135

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0003 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

BLANK PAGE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0004 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

TED II+ EDITOR/ASSEMBLER
a Beginning Review

of a Beginner's Assembler
by Ken Smith (a Beginner)

3

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0005 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

BLANK PAGE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0006 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK (I

From the stories I've heard, this is
probably the 697th version of the TED II
ASSEMBLER. Hopefully 1t 1is as good or
better than the previous versions. This
review of TED II+ is the result of a great
deal of trial and error, and a Little bit
of luck!

The version of TED II ASSEMBLER that
I have used was designed to be used on a
48K APPLE 1L with DOS 3.2. However, it
now works on 32K or 36K APPLE I1[s, and
it can be used on systems without disk.
Source files can be saved to tape from
within TED II+ ditself <(see LOAD & SAVE
commands).

There are two modes of operation used
in TED II+, EXEC and TED (for EXECutive
and Text EDitor). The prompt character for
EXEC is '%'. ':' is the prompt character
for TED mode. The EXEC mode provides the
interface for all disk functions. The
followina 1is a summary of EXEC commands.

C :DISK CATALOG
Displays disk cataloa. Source files
are saved by TED II+ as <NAME>.S" The
".8§" subscript allows TED II+ to id-
entify source files. Hit any key to
return to EXEC menu.

D sDIRECT COMMAND TO DISK

Allows direct access to DOS without
leaving program. This can be used to
rename or delete files. load printer
routines, or specify a drive# for
subsequent L & S commands. For
example, "CATALOG,D2" will set drive
#2 as the specified disk drive. Add
the “.S" subscript for commands, if
applicable.

L t:LOAD FILE FROM DISK
Loads existing source file from disk.
<NAME> should not dinclude ".S", as
TED II+ will provide it for a Load.

S :SAVE FILE TO DISK
Source file will be saved to disk with
<NAME> provided by user. TED II+
will provide ".S" subscript.

A :APPEND FILES (CREATES '-A' FILE)

Loads two existing disk files, puts
them toagether, and saves the new file
to disk in one operation. VUser is
asked for 'ORIGINAL FILE' and 'FILE

TO APPEND'. The new file created will
be ‘'<ORIGINAL FILE NAME>-A', and the
other files will be unchanged. The
new file will also be 1in memory.

T tENTER TED II+ EDITOR/ASSEMBLER
This shifts operation from EXEC mode
to TED mode. TED mode commands are
covered in detail in the next section.

Q tQUIT TED II+

This exits the program when 'Q' is
entered in EXEC mode. A 'Q' entered
while 1in TED mode will return control
to EXEC mode. Should you accidently
exit the program, 'RUN' [RETURNI will
restart without losing the source file
in memory.

Should you change your mind, the D,L,
S, and A commands can be aborted with a
carriage return.

After entering TED mode, the following
commands apply. These are direct com-
mands. Note the upper and lower case
letters of the commands. Those letters in
upper case are required; the lower case
letters optional. An example of command
syntax 1is included, where needed.

Add

Puts user into 'Add Lines® mode. If a
source file is in memory, 'Add' will start
with the next available line number. If
not, it will start with 'Lipe 1'. Add
is terminated with a CONTROL-D as the
first character on the Lline.

Insert I<lLine#>

Operates Like 'Add', except lines are
inserted 1into source starting at <line#>.
Also terminated with a CONTROL-D. Lines
after the insertion line are automatically
renumbered. Lines may be inserted before
any existing line.

The following commands allow the user
to specify the range or ranges of lines
upon which the command will act. If no
range is specified, the entire file will
be acted upon. A range may be a single
<line#> or '<line#>,<line#>'. In ad-
dition, multiple ranges may be specified
as '<range>/<range>' using "/" as a delim-
iter.

5

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0007 of 0138 |

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

WOZPAK I

Delete D<line#> or D<range>

Deletes Lline or lines specified. The
remaining Lines are renumbered by TED II+.
Because of this, be sure to specify the
ranges from highest to lowest. Otherwise,
the wrong Llines will be deleted! ‘'Delete'
requires a <line#> or a <range> as part of
the command.

Find F<range>'"<string>"

Locates and prints all lines in which
<string> occurs. If a <range> is spec-
ified, only that range will be searched.

Change C<range>''<s1>"<s2>"
Provides selective substitution of
<s2> for <si1>. when Change command is

entered, wuser 1is asked if '"ALL OR SOME
(A/S)" occurrences are to be changed. If
'ALL' dis chosen, <s2> Wwill be substituted
for <s1> at every occurrence of <s1> with-
in the range, if specified. I have found
it better to wuse the 'Some' choice since
it allows the user to monitor the changes.
Each line 1is displayed as it will appear
with the change made. If the user hits
the 'ESC' key, the change will NOT be made
in that Line. Any other key will allow
the change to be made. Be sure to enter
the " as shown in the example.

COPY COPYLL#1>,<L#2> TO <L#3>

Copies the range of Lines specified
by <L#1>,<L#2> to BEFORE <L#3>. After the
move is made, the original lines (while
possibly renumbered) are not deleted. The
user must do this seperatly.

Edit E<range> or E<line#>

This is where we fix the mistakes!
Each Line to be edited is printed on the
screen with the cursor at the beginning.
Editing of lines is accomplished with the
following controls:

CRETURN] Accept the Line as it appears on
the screen.

CTRL-D Deletes the character under the
cursor.

CTRL-1I Inserts character(s) 1into the
line at the cursor position.
Terminated with a space, a for-
ward arrow or a [RETURN].

CTRL-F Moves the cursor to character
entered after *CTRL-F'. (find)

CTRL-Q accept Line from beginning to
cursor position.

CTRL-R Restart editing of current Lline
with previous changes deleted.

gTRL-X Exit editing mode.

The forward and back
used to position the cursor on the Lline
being edited. CTR-U and CTRL-H can be
used for cursor moves, also.

arrows can be

List L<line#> or L<range>

Lists the Lline(s) specified. If no
<range> is specified, the entire file will
be Llisted. The Listing can be stopped at
any time by hitting the space bar. The
list will advance one Lline each time that
the space bar is hit. Any other key will
continue the Llisting. CTRL-C will abort.

General TED II+ Housekeeping commands:

HImem: HI:<decimal#>
Sets highest memory limit for source
and symbol tables.

LOmem: LO:<decimal#>

Sets Llowest memory
table and performs a NEW. Normally set to
7424 . If LOMEM: is set below this point,
TED II+ may overwrite itself.

Limit for source

NEW
Deletes existing source file. NEW does
not reset memory limits.

IN#

Same as Basic IN#, but pretty much
useless. A CTRL-C exit from Listing or
an 'END ASSEMBLY' resets to IN#O.

PR#

Same as Basic PR#. Quitting to EXEC
resets to PR#D. This command is used for
hard copy listing of the source file. PR#
is also a 'PSEUDO-OP', as discussed 1in
that section, and is used as such for hard

copy assembly Listings.
LEN

Provides display of size of source
table and remaining memory available.
TABS TABS<col>/<col>/<col>"

This seems to be the one command most
tikely to bomb the program if incorrectly
entered. TABS 1is used to set tab stops
for Listing the source file. <col> is the

decimal column of the stop. The quotes
are used to define the tab character, (a
space).
LOAD

This Lload command s available for
non-disk systems. It loads a source file
from Tape.

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0008 of 0138 |

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

WOZPAK Il

SAVE
Saves source file to Tape.

non-disk users: TED II+ can be

tape as a machine-language pro-
After loading and running this
Integer Basic version, exit the program
and go into Monitor. Save it to tape
with "800.1CFFW". Tape files can be saved
and transferred to disk later. The Cold
Start entry 1is $800; warm Start is $803.
(A warm start does not reset source point-
ers, thus source is not erased on reentry)

Note for
saved to
gram.

An instruction Lline entered into the
source file consists of four parts:
LABEL....OPERATOR....OPERAND....COMMENT
If the Llabel field is not used on a Lline,
a space must be entered in this field. The
remaining fields are seperated from each
other by a space each. An asterisk 'x!'
entered into the label position on a Lline
is used for Title or Comment lines. On
single byte op-codes (i.e. ROL,.ROR,etc),
a '";'" can be used in the operand field so
that comment 1Jndexing is maintained. No
space is needed between ';' and <comment>.

PSEUDO-OPS

TED II+ supports all 6502 Mnemonics,
Sweet-16 operators, and it's own Pseudo-
Operator set:

.ea-ORG....$<addr>

Sets address where final program will
run. Object code may be actually written
elsewhere, but 1is written to run at the
specified address.

~»..0BJ....$<addr>

Specifies starting address where ob-
ject code is actually written. The de-
fault address of OBJ and ORG is $7000 on

a 48K APPLE JL. ($5000 on a < 48K APPLE).

<label>....EQU....<expr>

Assigns value of <expr> to <label>.
<expr> 1is wused for a decimal value <256.
'$<expr>' 1is used for Hex addresses or
constants. Zero-page addresses may be

expressed in decimal, if desired.

e---DS....<expr>

low byte first, then high byte.

wen-DW....<expr>

Stuffs hex equivalent of <expr> into
memory. <expr> may be any legal type of
expression.

....HEX....<hex bytes>

Writes Llisted hex bytes into memory.
Only first 3 bytes will be listed during
assembly. Use 2-digit numbers (3A01FF)etc.

.e.ASC...."'<string>"'

Writes ASCII characters of <string>
into memory. If <string> 1is delimited
by ', then high bit of character is clear.
If ' is wused, high bit is set. Only the
first three bytes stored will be printed
during Assembly, but all characters are
written into memory.

or "<string>"

eenaDCI...."<string>' or "<string>"
Similar to ASC, except the last char-

acter will have the high bit clear or set

OPPOSITE of that set by choice of ' or ".

--.-.PAG....
Clears screen or Form—-Feeds printer.

----LST.<ON> or <OFF>

Turns assembly Llisting on or off as
specified. Any portion or all of the
listing may be turned on or off with this
command. Default is 'ON'.

.-.-PR#.<expr> or $<addr>

Sends assembly Llisting to Slot #<expr>
=1-7. If '$<addr>, listing will be sent
to routine at <addr>.

----END....
Optional operator signaling End of
source file. Assembler will stop at END.

If target labels or EQUs are located after
END, errors will occur.

TED II+ also accepts:
..«.BLT....<label>, branch less than.

Same as BCC operator.
..=.BGE....<label>, branch greater than/

equal. Same as BCS operator.

Legal Immediate Operands are:
('#' is used to signal Immediate)

Reserves <expr> number of bytes at the #<LABEL Low byte of LABEL adress.
location of DS in the program. <expr> may H>LABEL High byte of LABEL address.
be decimal or Hex ($<expr>). #"<chr> ASCII of <chr> High bit set.
#'<chr> ASCII of <chr> High bit clear.
....DA....<label> #$<num> Hex number.
Stuffs address of <label> into memory, #<num> decimal number.]
| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0009 of 0138

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

Operands may be modified with the to the File name, so that TED II+ can find

arithmetic operators:'+','-', and 'x'. the file when the program

is re-run.

These are one-byte modifiers only. The symbol table, which 1is created

just above the end of

the source, can

ASM is the direct command given to be overwritten if the O0BJ location is
TED II+ to start the assembly process. set too low. This usually js indicated by
If the Llist option 1is on, the assembler an 'UNDEFINED LABEL' error, when you KNOW
will halt at any errors detected. It stops that you used that label somewhere!
at the line BEFORE the line with the error The SET operator (SWEET 16) does not
in it. Hitting the space bar will advance recognize an immediate mode label. For
one line each time it is hit. Any other this operator to work, the value to be
key will allow the assembler to continue assigned to a SWEET 16 register must be
running. A CTRL-C will exit the assembler assigned a label, and that Llabel en-
at any time. Also, during assembly, the tered as the register assignment (see the
space bar may be used to temporarily halt LAZARUS source Llisting, for example).
the listing for examination. Any other Wwhen creating a 'Title Box' using the
key will continue assembly. asterisk, it's a good idea to keep the box

Any errors detected during LST OFF as narrow as possible. I have found that
will not halt the assembler and will be a wide title box has an annoying habit of
displayed. A CTRL-C will exit the assemb- bombing the EDITOR.
ler at any time. That's all, folks! I think that I

At the completion of assembly, the included all of the features of TED II+
number of errors (in Dec.) will be shown, The best way to Llearn to use thi;
as well as the number of Bytes generated. assembler is to USE IT! A Little practice
This number does NOT include memory saved will make dits use almost automatic. I

with the DS op-code, so take that into think you'll

I generally put a 'NOP' at the very end of
the source, and use the address to figure

the length of the program. HIMEM @¢——— ¢
After assembly, the user is in TED II+ EXEC PROGRAM
Mode for editing or whatever. HIMEM-400 @

While not perfect, TED II+ js probably
the easiest assembler to use, especially
for a beginner. There are occasions when SYM
it bombs for no apparent reason. The only TABLE
thing to do then is to try to recover the SOURCE
source file and save it. RESET will get
you out. Re-entering BASIC often does not $1000
work, since some pointers may have been $ICFF
destroyed. I have found that 'EFECG'(the TgpiI
BASIC run entry point) in monitor will 3

‘ OBJECT

) . find it an easy and effect-
consideration when saving the object code. ive program development tool Y ect

$7000 for 48K -

$5000 for 48K

restart the EXEC program. Save the file %300 PAGE 3 SCRATCH PAD
to disk and then COMPLETELY restart the $300
whole thing over. This generally will
take care of any problems when everything MEMORY MAP
else fails. For some reason, TED II+
syntax errors occasionally write over the CREDIT WHERE CREDIT IS DUE DEPT:
assembler itself.

Non-disk wusers can examine locations This version of the Editor/Assembler
$0A-0F to find the source table pointers. represents a major overhaul of earlier

$0A-0B contain the LOMEM (start of source) versions of TED 1II, due to the efforts
address, low byte first. $0C-0D is HIMEM. of Gary Shannon, Andy Hertzfeld, and Neil

$0E-OF is the ‘'end of source' pointer. Konzen. I take the blame for the Integer
Thus, even if the assembler is totally Basic EXECUTIVE part of the program.
destroyed, the source can be recovered It was based on some routines from an
using these pointers. With a little fig- EXEC program written by Andy Hertzfeld,
uring, the disk user can BSAVE the source added to, subtracted from, and ended up
to disk using these pointers. In this as the EXEC front end that is presented

case, the user MUST add the ".S" subscript here.
8

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0010 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

LINE NUMBER CROSS REFERENCE

for APPLE JLC
Integer BASIC Programs

9

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0011 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

BLANK PAGE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0012 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK I}

LINE NUMBER CROSS REFERENCE (LINE X- SLIST
REF) generates a cross reference listing 5 GOSUB 10: GosuB 10
of all line numbers in an APPLE][Integer 10 IF I=1 THEN GOTO S
BASIC program. This routine scans a pro- 15 PRINT
gram, displays each Line number that is 20 GOTO I
referenced by statements in other Llines, 25 PRINT
and displays those line numbers. Complex 30 GOTO Ix10
line number references such as “GOTO 100 35 PRINT
+X" are flaaged, notifying the user of 40 GOTO 5: GOTO S5: GOTO I+S
possible renumbering conflicts. 45 PRINT

50 GOTO 10%1

Because LINE X-REF will flag complex 100 LIST 5,100
line references, it should be used to
check a program before renumbering (using >CALL2048
RENUMBER/APPEND) . A flagged Lline can be LINE 10 references LINE 5
noted, and then hand-patched after the
program is renumbered. 5-0 100

To wuse LINE XREF, simply Lload the 10~ 5 S [504
routine ($800.%8F6), make sure the pro-
gram to be checked is in memory, and call 100- 100 LINE 50 references LINE 10*I
the routine. An output slot may be spec- (note the '*' flag)
ified, 1if desired, before the routine is *kkkk 20 30% 40%
called. >

References such as 'GOTO X' or 'GOTO X+10'

LINE XREF contains no absolute memory are displayed on last Line. (note 5 '%')

references, so it may be moved without
modification. CAUTION: you should not be
in "AUTO LINE NUMBER' mode when LINE XREF

is called. 0800~ A6 CA LDX $CA
0802~ A5 CB LLDA 3CB
References to non-existant lLines are 0804- AD 00 LDY #3$00
not flagged. 'RUN <line number>' ref- 0806~ 84 0OC STY $0C
erences are not flagged as it is very 0808- FO 0A BEQ $0814
unlikely that such a statement exists in 080A- 88 DEY
a program. Hand-patched delete statements 080B- A5 06 LDA 306
(DEL 0,40) are flagged. 080p- 18 CLC
080E~ 71 06 ADC (306),Y
A source listing for LINE XREF was un- 0810- AA TAX
available, but an APPLE disassembled List- 0811- 98 TYA
ing of LINE XREF appears on the following 0812- 65 07 ADC 307
page. 0814- 86 06 STX $06
0816- 85 07 STA 307
0818~ E4 4cC CPX $4C
081A- E5 4D SBC $4D
081¢c- 90 07 BCC $0825
An example of the output from LINE 081E- A5 OC LDA $0C
XREF is shown below. An asterisk is used 0820- FO 01 BEQ $0823
to flag Lline numbers that may provide 0822- 60 RTS

renumbering conflicts.

11

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0013 of 0138 |

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

0823~
0825~
0826-
0828-
082A~
082c-
082p-
082F-
0831~
0833-
0835-
0836~
0838=
083A~
083c-
083e-
0840~
0842-
0844~
0845-
0847~
0849-
0848~
084D~
084E-
0850-
0851~
0853-
0855-
0857~
0859-
085B-
085D~
085F-
0860~
0861~
0863~
0864~
0866~
0868-
086A-
0868~
086D~
086F-
0871-
0873~
0875~
0877-
0879~
G878~
0870~
087F-
0881~
0883~
0886~
0888~
12

)
€8
84
B1

85
c8
B1

85
A6
A5
88
86
85
E4
ES
B0
B1

85
c8
B1
85
84

c8
B1
c8
€5
DO
B1
c5
FO
AS
FO
EA
EA
E6
C8
81
c9
90
c8
B1
30
c9
80
cé
FO
c9
FO
€9
FO
c9
A2
5D
FO
CA

0c

OE
06
08

06
09
CA
cs

04
05
4C
40
CA

0A

04
;]
oo
14

04

08
06
04
09
06
0c
04

op

04
c1
05

04
F8
80
DA
00
50
28
EF
50
EB8
02
a7
EF
04

08

INC
INY
STY
LDA
STA
INY
LDA
STA
LDX
LDA
DEY
STX
STA
CPX
sBC
BCS
LDA
STA
INY
LDA
STA
STY
BCC
INY
LDA
INY
cmp
BNE
LDA
CMP
BEQ
LDA
BEQ
NOP
NOP
INC
INY
LDA
CMP
BCC
INY
LDA
BMI
CMP
BCS
DEC
BEQ
CmP
BEQ
cmp
BEQ
cmp
LDX
EOR
BEQ
DEX

$0C

$0E
(806),Y
$08

(306),Y
$09
S$CA
$C8B

$04

$05

$4cC

$40
$080A
(304),Y
$0A

(204) .Y
$08

$0D
$0861

($04),Y

$08
$0858
($04),Y
$09
$0861
$0C
$0863

$0D

(304),Y
#3C1
$086F

(804).,Y
$086A
#3$B0
$0840
$00
$0804
#3528
$086A
#3$50
$086A
#302
#3807
$08EF, X
$088cC

WOZPAK II

0889-
0888-
088¢-
088E-
0890-
0892-
0894~
0896-
0898-
0899-
089A-
089¢-
089D~
089F-
08A1-
08A3-
08A6-
08A8-
08AB-
08AD-
08AF-
0881-
0883~
0886~
0888-
0888~
088D-
- 08BF-
08c2-
08¢3-
08C4-
08C6-
08c8-
08ca-
08cc-
08CE-
08p1-
0802~
0804~
08D5-
08p7-
0809-
08pC-
08DF-
08E1-
08E3-
08ES-
08E7-
08EA-
08E8-
08ED-
08EF-
08F2-
08F4-
08F5-
08F6-

10
8A
05
85
BO
AD
AS

AA
98
65
c8
DO
A6
A5
20
AS
20
A2
AS
€9
90
20
A2
20
A6
A5
20
68
48
c9
90
c9
FO
A9
20

10
48
€6
DO
20
20
AS
FO
A2
A9
20
CA
DO
FO
0b
01
78
03
5F

0c
0o

0o
04
04

05

97
08
09
1B
AD
ED
01
24
21
05
8E
07
4A
0A
0B
18

09

G5
AA
ED

ES

FD

FD

F9

ES

FD

FD
FD

FD

7C

BPL
TXA
ORA
STA
BCS
LDY
LDA
ADC
TAX
TYA
ADC
INY
BNE
LDX
LDA
JSR
LDA
JSR
LDX
LDA
Cmp
BCC
JSR
LDX
JSR
LDX
LDA
JSR
PLA
PHA
CmpP
BCC
cmp
BEQ
LDA
JSR
PLA
8PL
PHA
DEC
BNE
JSR
JSR
LDA

‘BEQ

LDX
LDA
JSR
DEX
BNE
BEQ
ORA
ORA
SEI
77
2?7

$0883

$0C

$0D
$0863
#%00
$04
(804),Y

305

$0836
$08
$09
$E518B
HSAD
$FDED
#$01
324
#3$21
$08B8
$FDBE
#3807
$FO4A
$0A
$08
$E51B

#308
$08D1
#375
$08p1
HSAA
$FDED

$0877

$0E
$08A8
$FD8E
$FD8E
$0c
$089F
#305
HSAA
$FDED

$08ES
$08AB
$7c03
($50,%)

| Source: Apple Computer, Inc.

» Call-A.P.P.L.E. Magazine

Page 0014 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

SYMBOL CROSS REFERENCE
for APPLE 1L
Integer BASIC Programs

13

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0015 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

BLANK PAGE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0016 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK 1l

SYMREF 1is a wuseful aid for APPLE 1[
Integer BASIC Program development. It
provides a complete listing of all vari-
ables that appear in the program, as well
as all of the Lline numbers in which that
variable appears. SYMREF can be used by
the programmer to find misspellings, extra
variables, and unassigned variable names.
This routine will flag a FOR statment
that has no corresponding NEXT statment.
SYMREF also provides extra documentation
for the proarammer's records to assist
later modifications to the program.

>LIST
10 FOR UNDEFINED=1 TO 100
15 FOR DEFINED=1 TO 100

TO USE SYMREF: 20 A=1
Load BASIC program into memory. 25 PRINT I: PRINT I
Set LOMEM to '2560' 30 PRINT A: PRINT A: PRINT I
Load SYMREF (800.9E5) 35 NEXT DEFINED
Select printer, if desired. 40 A$="12345"
'CALL 2048'{RETURN} 45 INPUT “INPUT VAR',INPUTVARS

(or 3$800G in monitor)
50 PRINT A$: PRINT I$

Be sure to set LOMEM before calling

SYMREF, as the routine creates a table of >CALL2048
variable names above LOMEM. 1If LOMEM is
not set above SYMREF, the routine will
overwrite itself. A- 20 30 30
ALl variable es used in the BASIC
r e names u in e AS- 40 50

program will be printed +in alphabetic
order on the left edge of the output dev-
ice. Each is followed by a Llist of all
of the Lline numbers 1in which it appears.
in ascending sequence. If the name is
never assigned a value, an asterisk (%)
is printed with the name as an “Undefined
Variable" warning. Input variables are
considered as being "undefined", unless
the name is defined elsewhere in the BASIC
program.

If there 1is idnsufficient memory for
SYMREF to create its name table, the mess-
age '"MEM FULL' s displayed and SYMREF
halts and returns control to the user.

SYMREF can be relocated by changing
the 'JMP & JSR' destinations in Llines
140,220, and 320 of the assembled Llisting.

The following 1is a sample Integer
BASIC Program to illustrate the operation
of SYMREF:

DEFINED- 15 35
Ix- 25 25 30
I$%x- 50
INPUTVARS*~ 45

UNDEFINED*- 10
>

15

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0017 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK Il
2 AhkhkkkhkkkkkkhkrrAhkkkhkrrkkkkkkkhkkkhkkhkhkkhkrhkhhhhkkk
3 * *
4 * APPLE J[INTEGER BASIC *
5 * SYMBOL CROSS-REFERENCE *
6 * *
7 * APPLE PUGET SOUND PROGRAM LIBRARY EXCHANGE *
8 * 6708 39TH AVE. SW SEATTLE, WA 98136 *
9 * *
10 * SOURCE CODE FROM 'THE WOZPAK' *
1 * COURTESY OF S. WOZINIAK APPLE COMPUTER CO. *
12 * *
13 * DECIPHERED AND ASSEMBLED *
14 * (AND SLIGHTLY MODIFIED BY) *
15 * KEN SMITH TACOMA, WA JUNE 10, 1979 *
16 * *
17 Kkkkkhkhkhkhhkkkkrhhkhhhkhkhkhkkhhhkhkhkhhhhihikhkkkddkihkk

18 IBEGL EQU $4
19 IBEGH EQU %5
20 NENDL EQU $6
21 NENDH EQU &7
22 IENDL EQU 38
23 IENDH EQU 39
24 NBEGL EQU $A
25 NBEGH EQU 3B

26 PL EQU $C

27 PH EQU 3D

28 PO EQU $E

29 PN EQU $F

30 IL EQU $10
31 IH EQU 811
32 JL EQU $12
33 JH EQU 313
34 KL EQU $14
35 KH Eau 315
36 LL EQU 816
37 LH gQu 317
38 ML EQU 318
39 MH EQu $19
40 MODE EQU $1A
41 REF EQU 318

42 HIMEML EQU $4C
43 HIMEMH EQU $4D

44 PPL EQU 3CA
45 PPH EQU SCB
46 *

47 CH EQU $24

48 MEMFULL EQU $E36B
49 PRDEC EQU S$SES1B

50 PRBL EQU $F94A
51 CROUT EQU $FD8E
52 couT EQU $FDED
53 *
54 ORG %800
55 * INIT SYMBOL TABLE POINTERS
56 * PPL,H (BASIC 'START
57 * OF PROGRAM)
58 *
0800: A2 03 59 SYMREF LDX H3 -> IBQGL,H AND IENDL,H
0802: BS CA 60 INIT LDA PPL,X PVL,H ('END OF
0804: 95 04 61 STA IBEGL,X VARIABLES)

16

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0018 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WO0ZPAK II

0806: 95 D8 63 STA IENDL,X => NBEGL,H AND NENDL,H
0808: CA 64 DEX . THEN SCAN PROGRAM WITH
0809: 10 F7 65 BPL INIT MODE $FP TO FILL
08oB: 30 39 66 BMI SCANPROG SYMBOL TABLE
080Db: 20 8E FD 67 PRSYM JSR CROUT
0810: 20 8E FD 68~ JSR CROUT OUTPUT 2 CAR RET'S
0813: AD 00 69 LDY #$0
0815: B1 18 70 LDA (ML),Y ML,H POINTS TO NAME TABLE
0817: 18 71 cLc . INDEX —-RELATIVE TO
0818: 65 DA 72 ADC NBEGL NBEGL ,H- FOR CURRENT
081A: 85 16 73 STA LL - XREF SYMBOL
081c: (€8 74 INY
081p: B1 18 75 LDA (ML),Y CALC POINTER TQ FIRST
081F: 65 0B 76 ADC NBEGH CHAR OF NAME TABLE
p821: 85 17 77 STA LH ENTRY IN LL.,H
0823: 88 78 DEY
0824: 38 79 SEC
0825: B1 16 80 PRNAME LDA (LL),Y NAME TABLE BYTE IN FORM

81 * ASCII * 2 +(NOT LAST)
0827: 6A 82 ROR
0828: 08 83 PHP
0829: €9 cO 84 cmMp #3CO SUBSTITUTE ASCII 'S’
0828: DO 02 85 BNE PRNAM1 FOR STRING TOKEN
082D: A9 A4 86 LDA HIAL
082F: 20 ED FD 87 PRNAM1 JSR cout OUTPUT CHAR OF NAME
0832: 28 88 PLP
0833: (8 89 INY . INCREMENT INDEX
0834: BO EF 90 BCS PRNAME LOOP IF NOT LAST CHAR
0836: B1 16 91 LDA L),y
0838: FO 05 92 8EQ PRNAM2 IF ATTRIBUTE BYTE (FOLLOWING
083A: A9 AA 93 LDA #3AA NAME) IS NON ZERO THEN
083C: 20 ED FD 94 JSR couTt QUTPUT '+' AS UNDEFINED
083F: A9 AD 95 PRNAM2 LDA #SAD SYMBOL WARNING
0841: 20 ED FD 96 JSR couT ouTPUT *-!
0844: A2 00 97 LDX #30
0846: 86 1A 98 SCANPROG STX MODE MODE IS NONZERO FIRST
0848: A6 CA 99 LDX PPL TIME ONLY (AFTER INIT)
084A: A5 CB 100 LDA PPH BASIC "START OF PROGRAM'
084C: 86 0OC 101 NXTLINE STX PL
084E: 85 0D 102 STA PH INIT PROGRAM SCAN POINTER
0850: E4 4C 103 CPX HIMEML (POINTS TO START OF LINES)
0852: ES 4D 104 SBC HIMEMH IF <'END OF PROGRAM' THEN
0854: 90 1C 105 BCC SCANLIN CONTINUE-—(SCAN THIS LINE)
0856: A4 04 106 LDY IBEGL
0858: A5 05 107 LDA IBEGH FIRST TIME--(MODE NON ZERO)
085A: A6 1A 108 LDX MODE SET 'CURRENT SYMBOL POINTER'
085c: DO 09 109 BNE NEXTSYM ML, MH TO 'START OF SYMBOL
D85E: A5 18 110 LDA ML INDICES' IBEGL,H
0860: 69 01 111 ADC #%1
0862: A8 112 TAY . AFTER--ADD 2 TO ML,H
0863: A5 19 113 LDA MH TO ADVANCE ONE SYMBOL
0865: 69 00 14 ADC #30 INDEX (2 BYTES EACH)
0867: 84 18 115 NEXTSYM STY ML
0869: 85 19 116 STA MH IF 'CURRENT SYMBOL POINTER'
0868: C4 08 117 CPY IENDL ML,H < 'END OF INDICES'
086b: E5 09 118 SBC IENDH (IENDL,H) THEN BEGIN SCAN
086F: 90 9¢C 119 BCC PRSYM FOR THIS SYMBOL
0871: 60 120 RTS ; ELSE, DONE

121 *
0872: A0 00 122 SCANLIN LDY #30 LINE SCAN INDEX REL TO PL,H

17

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0019 of 0138 |

Apple][Computer Information The Woz Pak][

* 15 November 1979

WOZPAK Il
0874: 98 124 TYA .
0875: (8 125 CONST INY .
0876: (8 126 INY
0877: 85 18 127 ITEM STA REF
0879: 8 128 ITEMT INY
087Aa: B1 OC 129 LDA (PLY,Y
087Cc: 30 27 130 BMI NOTOKN
087e: (€9 28 131 Ccmp #$28
0880: FO 04 132 BEQ SKPASC
0882: (9 5D 133 CMp #$5D
0884: DO 05 134 BNE TOKN1
0886: 8 135 SKPASC INY .
0887: B1 OC 136 LDA (PL)Y,Y
0889: 30 fB 137 BMI SKPASC
088B: (9 02 138 TOKN1 cmp #%2
088D: A2 09 139 LDX #39
088F: 5D DC 09 140 REFTST EOR REFTB,X
0892: FO E3 141 BEQ ITEM
0894: CA 142 DEX .
0895: 10 F8 143 BPL REFTST
0897: BO DE 144 BCS ITEM
0899: A0 00 145 LDY #30
0898: A5 OC 146 LDA PL
089p: 71 Oc 147 ADC (PLY,Y
089F: AA 148 TAX .
08A0: 98 149 TYA
08A1: 65 0D 150 ADC PH
08A3: 90 A7 151 BCC NXTLINE
08A5: (€9 cO 152 NOTOKN cmp #%C0
08A7: 90 ccC 153 BCC CONST
08A9: 84 QOE 154 STY PO
08AB: 84 OF 155 NAMESCAN STY PN
08AD: (8 156 INY -
08AE: B1 OC 157 LDA (PLY,Y
0880: 30 F9 158 BMI NAMESCAN
08B2: (€9 40 159 Cmp #340
08B4: FO F5 160 BEQ NAMESCAN
08B6: A5 04 161 SEARCH LDA IBEGL
08B8: A6 05 162 LDX IBEGH
08BA: 85 12 163 STA JL
088C: 86 13 164 STX JH
088E: A5 08 165 LDA IENDL
08C0: A6 09 166 LDX IENDH
08C2: 85 14 167 NEWK STA KL
08C4: 86 15 168 STX KH
08C6: E4 13 169 XTEST CPX JH
08c8: 0O 04 170 BNE KPLUSJ
(08cA: €5 12 171 cmp JL
08CC: FO 52 172 BEQ ADDSYM
08CE: 29 FE 173 KPLUSJ AND HSFE
0800: 18 174 CLC -
08D1: 65 12 175 ADC JL
08D3: 29 FD 176 AND H$FD
08b5: 85 10 177 STA IL
08p7: E6 10 178 INC IL
08D9: 8A 179 TXA .
08DA: 65 13 180 ADC JH
08DC: 6A 181 ROR
08pD: 85 1M 182 STA IH
08DF: 66 10 183 ROR IL

18

START OF LINE. CLR REF.
SKIP 2 BYTE CONSTANT

SET REF (0='ASSIGN MODE')

NEXT ITEM OF BASIC PROGRAM
IF NEG, THEN CONST OR NAME.
'STRCON'

'REM'

IF $STRCON OR REM TOKENS
THEN SKIP ALL SUBSEQUENT
NEG (ASCII) BYTES

CLEARS CARRY ONLY IF EOL

IF COLON, THEN, FOR, LET,
INPUT, STRING INP,INP COMMA,
OR STRINCOM, THEN SET

REF=0 TO INDICATE THAT

NEXT (IMMEDIATE) NAME

IS ASSIGNED A VALUE

AT EOL, ADD LENGTH BYTE
TO LINE POINTER PL,H

(ALWAYS TAKEN)

IF <$CO THEN FOLLOWED BY
2-BYTE CONSTANT.

SCAN NAME (NEG ASCII)
WITH PO AND PN INDICES
TO FIRST, LAST CHARS.

INCLUDE '$' TOKEN IN NAME
IBEGL,H -> JL,H
LOW POINTERS

IENDL,H => KL,H
HIGH POINTERS

IF JL,H = KL,H THEN
EXIT WITH CARRY SET
(NOT FOUND)

(JL,H+KL,H) /2 => IL,H

IL,H FORCED ODD OR EVEN
TO AGREE WITH JL,H
AND KL,H

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0020 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

08E1:
08E2:
08E4:
08E6:
08E7:
08E9:
08EA:
08EB:
08ED:
O8EF:
08FO0:
08r2:
08F4:
08F5:
08F7:
08fF9:
08FB:
08FD:
08FF:
0900:
0902:
0904
0906:
0908:
0%0A:
090cC:
090E :
090F:
0911:
0913:
0915:
0917:
0919:
091A:
0v18:
091D:
0920:
0922:
0923:
0925:
0927:
0929:
092B:
0920:
092F:
0931:
0933
0935:
0937:
0938:
093A:
093C:
093€E:
0940:
0941:
0943:
0945
0947:
0949:
094B:

AO

00

CE

0A
16

10
0]

FF
17
0E
OF
oc

01
16
13
10
B8

12

i}
13
14
15
AD

09

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

SYMSCN

MATCH

ADDSYM

WOZPAK I
TAX

LbY #30
LDA aw.,y
SEC

SBC PO
PHP

CLC -

ADC NBEGL
STA LL
INY

LDA (ILy,Y
ADC NBEGH
PLP

ADC HEFF
STA LH
Loy PO
CPY PN
LDA (PL),Y
ROL

EOR #%1
cmp (LLd Ly
BEQ MATCH
LDA IL
8CC NEWK
ADC #%1
STA JL
TXA -

ADC #30
STA JH
LDA KL
LDX KH
a8cc XTEST
INY .

LSR

BCS SYMSCN
Jmp FOUND
LDA PN
SEC

s8C PO
ADC NENDL
STA LL
LDA NENDH
ADC #30
STA LH
LDA IBEGL
STA IL
sBC #31
STA KL
TAY .

LDA IBEGH
STA IH
sBC #30
STA KH
TAX

CPY LL
SBC LH
B8CC MFULLX
STY IBEGL
STX IBEGH
LDY #3$0

NBEGL,H + INDEX (IL,H)L,H
=P0 -> LL,H FOR BASE

ADDR TO NAME TABLE ENTRY
CORRESPONDING TO IL,H

INDEX FOR NAME SCAN
SET CARRY IF LAST CHAR
OF USER SYMBOL

FORM ASCII * 2 + (NOT LAST)

IL,H => KL,H IF USER SYMBOL
LOWER (ALPHABETICALLY)
THAN NAME TABLE ENTRY

IL,H -=> JL,H IF USER SYMBOL

GREATER (ALPHABETICALLY)
THAN NAME TABLE ENTRY

(ALWAYS TAKEN)
INCR INDEX IF CHAR MATCH
LOOP IF NOT LAST CHAR, ELSE

EXIT WITH CARRY CLEAR (FOUND)

NENDL ,H + PO + PN+1 -> LL,H
(NEW NEND)

IBEGL,H —-> IL,H

IBEGL,H -2 -> KL,H AND Y,X
(NEW IBEG)

IF NEW IBEG < NEW NEND
THEN EXIT WITH CARRY
CLEAR (MEM FULL)

NEW IBEG -> IBEG

19

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0021 of 0138

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

094D: A5 10 246
094F: C5 12 247
0951: A5 M 248
0953: ES5 13 249
0955: B8O 12 250
0957: B1 10 251
0959: 91 14 252
0958: E6 10 253
0950: 0O 02 254
095F: E6 11 255
0961: €6 14 256
0963: DO E8 257
0965: E6 15 258
0967: 90 E4 259
0969: A5 06 260
096B: E5 DA 261
096D: 91 14 262
096F: A5 07 263
0971: €5 0B 264
0973: 8 265
0974: 91 14 266
0976: A5 16 267
0978: 85 06 268
097Aa: 18 269
0978: E5 OF 270
097D0: 85 16 271
097F: A5 17 272
0981: 85 07 273
0983: E9 00 274
0985: 85 17 275
0987: A4 OE 276
0989: C4 OF 277
0988: B1 OC 278
098D: 2A 279

280
098E: 49 01 281
0990: -91 16 282
0992: €8 283
0993: 4A 284
0994: B0 F3 285
0996: A5 06 286
0998: C5 04 287
099A: A5 07 288
099C: E5 05 289
099€: E6 06 290
09A0: DO 02 291
09A2: E6 07 292
09A4: A5 1B 293
09A6: 90 07 294
09A8: 4C 6B E3 295
09AB: A5 1B 296
09AD: 0O 02 297
09AF: 91 16 298
0981: A2 FF 299
09B3: B5 19 300
09B5: 55 11 301
g987: 05 1A 302
0989: 0O 1¢C 303
098B: E8 304
098C: FO F5 305

20

SPREAD

SPRD2

ADDNAME

ADDCHR

ADDREF

MFULLX
FOUND

FOUND1
FOUND?2
SYMTST

WOZPAK I

LDA IL

cmp JL

LDA IH

SB8C JH

BCS ADDNAME
LDA (ILy,y
STA (KLY ,Y
INC IL

BNE SPRD2
INC IH

INC KL

BNE SPREAD
INC KH

BCC SPREAD
LDA NENDL
SB8C NBEGL
STA (KLY, Y
LDA NENDH
sec NBEGH
INY

STA (KL),Y
LDA LL

STA NENDL
CcLC

SBC PN

STA LL

LDA LH

STA NENDH
S8C #30
STA LH

LDY PO

CPY PN

LDA (PLY,Y
ROL

EOR #3$1
STA (Ll ,y
INY

LSR

BCS ADDCHR
LDA NENDL
CwmpP IBEGL
LDA NENDH
s8c IBEGH
INC NENDL
BNE ADDREF
INC NENDH
LDA REF
BCC FOUND1
JMP MEMFULL
LDA REF
BNE FOUND?2
STA (LLd,y
LDX HSFF
LDA MH, X
EOR IH, X
ORA MODE
BNE TOITEM
INX -

BEQ SYMTST

IF IL,H = JL,H THEN
DONE SPREADING INDEX
TABLE FOR INSERT

MOVE BYTE OF INDEX TABLE
2 LOCATIONS LOWER

INCR IL,H AND KL,H

(ALWAYS TAKEN)

NENDL ,H - NBEGL,H ->(KL,H)
(NEW INDEX)

NEW NENDL,H ~-> NENDL,H

OLD NEND - PO TO LL,H

ADD CHAR TO NAME TABLE
ENTRY. USE ASCII * 2
+(NOT LAST). SCAN FROM
(PL) ,PO TO (PL),PN

SET CARRY IF NENDL,H
= IBEGL,H (NO ROOM
FOR ATTRIBUTE BYTE)

INCR 'NAME TABLE END'
POINTER NENDL,H

REF AS ATTRIBUTE
(0O=UNASSIGNED)

—ERROR~-

IF REF=0 (UNASSIGNED)
THEN SET ATTRIBUTE
BYTE TO O

IF NOT CURRENT SYMBOL
(IL,H NOT = TO ML,H)
OR MODE = NONZERO
THEN DON'T PRINT REF
LINE NUMBER

(LEAVES X=1)

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0022 of 0138 |

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

09BE: AS
09¢0: <9
09c2: 90
09C4: 20
09C7: A2
09¢c9: 20
09cc: AD
09CE: B1
0900: AA
0901: ¢8
0902: 81
09p4: 20
09D7: A4
09D9: 4C
o9pc: 01
09DF: 0A
09e2: 26
09E4: 55

24
21
05
8E
06
4A
01
0c

oc
18
OF
79

75
08

58

FD

F9

E5
08

06
70

307
308
309
310
31
312
313
314
315
316
317
318
319
320
321
322
323
324
325

WOZPAK 11
LDA CH
CMP #3$21
BCC PREF
JSR CROUT
LDX #3$6
PREF JSR PRBL
LDY #31
LDA (PL),Y
TAX -
INY -
LDA (PL),Y BY ML, H)
JSR PRDEC
TOITEM LDY PN
JMP ITEM1
*
REFTB HEX 017506
HEX (0ADBT0
HEX 2603
HEX 5558

——=— END ASSEMBLY ---

TOTAL ERRORS: 0O

486 BYTES OF OBJECT CODE
WERE GENERATED THIS ASSEMBLY.
:PRAO

:ASM

IF CURSOR BEYOND COL#32
THEN OUTPUT CARR RET
AND TAB 6 SPACES

ELSE, OUTPUT SINGLE SPACE

PRINT CURRENT LINE
NUMBER (POINTED TO

RESTORE LINE SCAN
GET NEXT BASIC ITEM

INT BASIC TOKENS
TO IDENTIFY VARIABLES

2

Source: Apple Computer, Inc. + Call-A.P.P.L.E. Magazine
\,

Page 0023 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

BLANK PAGE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0024 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

RENUMBERING AND APPENDING BASIC PROGRAMS

23

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0025 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

BLANK PAGE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0026 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK I
The answer to the question "What do 5, The APPLE 1[Basic user now has a solution
11, 36, 150, 201, and 588 have in common?" to these needs in the form of a hand- or
is given as "Adjacent rooms in the Warsaw tape-loadable program, RENUM/APPEND, des-
Hilton"(1) but might just as well be "Ad- cribed herein. The CALL command is used
jacent Lline numbers in my last BASIC pro- to activate 1 of 3 machine level programs
gram." The laws of entrophy insure that The renumber operation (RENUM) requires
the line numbers of a debugged and operat- user specification of the original Line
ional BASIC program give the appearance of number range over which renumbering is
having been selected by a KENO machine.* to occur, the new initial line number to
Many a time I have spent an extra hour to be applied to the range, and the new
retype a finished program while spacing line number increment to use. The example
the Lline numbers evenly just to make it below specifies that Llines 200 to 340 be
"look good". renumbered starting with 100 and spaced by
10's.

Another difficulty which I have experienc-

ed is joining two BASIC programs into a START 100

single, larger one. This 'append' operat-

ion 1is easier to accomplish by hand than STEP 10

renumbering. The sophistocated user can

examine the BASIC memory map and perform FROM 200

some manual manipulations to join the pro-

grams providing that the line numbers do TO 340

not overlap. Still, the manual append

operation 1is highly prone to error. A second RENUM entry renumbers the entire

proaram, relieving the user of the need to
specify the range of begin and end para-
meters. The append operation (APPEND)
reads the second user (BASIC) program off
tape with the first in memory.

Renumber and Append error conditions
(memory full and Line number overlap) are
detected just as in BASIC. 1In case of
error, the user is notified and no program
alteration occurs.

Ced. notel RENUM/APPEND has been relo-
cated to eliminate DOS pointer conflicts.
It is necessary to set Basic LOMEM: to
2304 (or higher) to prevent the routine
from overwriting itself. The user is re-
(1) The Official Polish/Italian Joke Book, minded to convert the addresses given in

L. Wilde, Pinnacle Books, New York, the text for entry points.

N.Y., 1973, p. 17

OLD ENTRY NEW ENTRY

* In fact, while several texts detail
how the boundary conditions of a KENO CALL 768 CALL 2048
game Llead to predictable outcomes, CALL 776 CALL 2056
finished programs seldom exhibit this CALL 999 CALL 1255
property. CALL 1016 CALL 1272

25

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0027 of 0138 |

4.

26

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979
WOZPAK 11
USING RENUM/APPEND ERRORS
Load RENUM/APPEND (*x 300.3FF R) 1. If not enough free memory exists to
contain the Lline number table during
Note that the '*' is generated by the pass 1 of RENUM, then the message
MONITOR, not the user. ' (beep) *** MEM FULL ERR' js displayed
and no renumbering occurs. The same
message 1is displayed if not enough
free memory exists to hold the prod-
Load a BASIC program. uct of an APPEND. In the case of

To renumber an entire program.

APPEND, the user will have to type the
BASIC command CALL 1016 to recover his
original program. The user can free
additional memory by eliminating all
active BASIC varjables with the CLR

> CLR (clears variable table) command.
- 2. If renumbering results in a line num-
> START = expr : .
P ber overlap (detected during pass 1 of
- RENUM) then the message '(beep) ***
> STEP = expr -
xp RANGE ERR' is displayed, and no renum-
> CALL 768 bering occurs. This error may mean
that one or more parameters were not
Note: START and STEP must be specified specified or were incorrectly specifi-
in the order shown. ed.
CAUTIONS
1. Wwhen appending a program, always load
To renumber a range of the program. the one with the greater line numbers
first.
> CLR (clears variable table)
2. The wuser must be aware that branch
> START = expr target expressions may not be renum-
bered. For example, the statement GO
> STEP = expr TO ALPHA will not be modified by
RENUM. The statement, GOTO 100 +
> FROM = expr ALPHA, will be modified only to re-
flect the new line number assigned to
> T0 = expr the old Line 100.
> CALL 776
APPLE 1L BASIC STRUCTURE
To append program #2 (larger Lline num- An understanding of the internal repre-
bers) to program #1 (smaller Lline num- sentation of a BASIC program is necessary
bers). in order to develop RENUMBER and APPEND

algorithms. Figure 1 illustrates the sig-

(a) Load Program #2 nificant pointers for a program in memory.
Variable and symbol table assignment be-

(b) CALL 999 gins at the location whose address is con-
tained 1in the pointer LOMEM ($4A and $4B

Be sure you are running the tape where '$' stands for hex). This is $800

of proaram #1 as this command (2048) on the APPLE 1[unless changed by

will load it. the wuser with the LOMEM: command. a sec-

ond pointer, PV (Variable Pointer, at $CC

(¢) If you get a memory full error, and $CD) contains the address of the lo-
then use the command CALL 1016 cation 1immediately following the last Llo-

to recover the original program.

cation allocated to variables. PV 1is equal

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0028 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK II

to LOMEM if no variables are actively as- minated by a token which is recognizable
signed as is the case after a NEW, CLR, or by a clear high-order bit. The '$' in
LOMEM: command. As variables are assigned string names such as A% is treated as a
PV increases. token.

The BASIC program is stored beginning with String constants are stored as a token of
the lowest numbered Line at the location value $28 followed by ASCII text (with
whose address is contained in the pointer high-order bits set) followed by a token
PP (Proaram Pointer, at $CA and $CB). The of wvalue $29. REM statements begin with
pointer HIMEM ($4C and $4D) contains the the REM token (35D) followed by ASCII
address of the location immediately fol- text (with high-order bits set) followed
lowing the Llast byte of the last line of by the 'end-of-line' token.

the proaram. This is normally the top of
memory unless changed by the user with the
HIMEM: command. As the proaram grows, PP
decreases. PP is equal to HIMEM if there
is no proaram in memory. Adequate checks
in the BASIC insure that PV never exceeds
PP. This, in essence, says that varjables
and proaram are not permitted to overlap. FIGURE 1 - MEMORY MAP
Lines of a BASIC program are not stored as
they were orginally entered (in ASCII)
on the APPLE 1[due to a pre—translation
stage. Internally each line begins with a
lenath byte which may serve as a Link to
the next Line. The length byte is immed-
jately followed by a two-byte line number
stored in binary, Llow-order byte first.
Line numbers range from 0 to 32767. The
line number is followed by ‘'items' of var-
ious types, the final of which is an 'end-
of-line' token ($01). Refer to Figure 2.

--------------- LOMEM (START OF VARIABLES)
($4A, 4B)
BASIC
VARIABLES

PV (Variable Pointer, end
of variables) ($CC, CD)

- PP (Program Pointer, start

Sinale hytes of value less than $80 (128) of program) ($CA, CB)

are 'tokens' aenerated by the translator.
Each token stands for a fixed unit of text
as required by the syntax of the langquage
BASIC. Some stand for keywords such as
PRINT or THEN while others stand for pun-
ctuation or operators such as ',' or '+'.

First Line
BASIC
PROGRAM
Last Line

* HIMEM (End of program)

Inteqe tant e d > -
aer constants are stored as three con ($4C.4D)

secutive bytes. The first contains $BO-
$89 (ASCII *D'-'9') signifying that the
next two contain a binary constant stored
low-order byte first. The Lline number
itself is not preceded by $80-3%89. ALl
constants are in this form including Line
number references such as 500 in the
statement GOTO 500. Constants are always
followed by a token. Although one or both
bytes of a constant may be positive (less FIGURE 2 - LINE REPRESENTATION
than $80) they are not tokens.

Variable names are stored as consecutive Low Hicghh &# m @ &8 = $01
ASCII characters with the high-order bit

set. The first character is between $C1 Length Line Number Items 'End-
and $DA (ASCII 'A'-'72"), distinguishing of-line
names from constants. ALl names are ter- Token

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0029 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

28

WOZPAK 11
T -—
2 Bytes Trace
FIGURE 3 - ITEMS PTR on/0ff
1 (0/1)|LOW|HIGH
Constant Low High T
Contains absolute Name Value
$B0-89 Value Positive address of next (negative
variable ASCII)
Name (ABC): |$C1 $C2 $C3
For each simple variable, 3 bytes
Negative Positive plus the number of characters in
ASCII Token the variable name precede it's
value.
String Location of values for first 4 var-
Constant: |$28| [$81 s82| [8B3| |$29 jables START, STEP, FROM, AND TO as
("123") used by RENUM.
Quote Negative Quote
Token ASCII Token
VARIABLE VALUE AT
REM: $5D $01 START LOMEM + 308 ($ For Hex)
Rem Negative 'End- STEP LOMEM + $11
Token ASCII of-Lline
Token FROM LOMEM + $1A
Tokens: $00-%7F TO LOMEM +$21
GOTO - $5F _
GOSUB - $5¢ RENUMBER THEORY OF OPERATION
THEN Ln - $24
tig; : 2;2 EzskEEZU:;EE) Because of the rigid internal representat-
ion of APPLE 1C BASIC programs (insured by
STR CON - $28 h K) .y .
REM - $50 the translator syntax chec wr1t1ng a
renumber program was a somewhat easier
EOL - 301 X
DEL - $09 task than it would have been on many smagl
DEL - $OA BASICS. Fortuqately. aLL. constants in
RUN Ln - $07 APPLE 1L BASIC (inctuding line number ref-
erences) are preconverted to binary.
The normal renumber subroutine entry point
INTEGER BASIC is RENUM ($308). The RENX entry convient-
VARIABLE STORAGE ly sets the renumber range for the user
such that the entire program will be re-
numbered. RENUM extensively uses SWEET 16
VAR #1 | VAR #2 | VAR #3 | * » » | VAR #N the code-saving 16-bit interpretive mach-
ine built into the APPLE JC.(1) Occas-
ional 6502 code is interspersed through-
LOMEM ($4A,4B) PV (3$CC,CD) out RENUM for even greater code effi-
'Start of Vars' 'End of Vars' ciency.

| Source: Apple Computer, Inc.

Call-A.P.P.L.E. Magazine

Page 0030 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK Il

RENUM scans the entire program from beg- APPEND - THEORY OF OPERATION
inning to end twice. Puring pass 1 a line
number table is built containing all Lline

numbers of the program found to be within When APPEND dis called, the user program
the renumber range. This table begins at with larger Lline numbers will be in memory
the address specified by the BASIC var- and the one with the smaller line numbers
iable pointer, PV, and is Llimited in ~ will be read off tape. The current pro-
length by the program pointer, PP. Each aram resides between pointers, PP and
entry 1is two bytes long. A memory full HIMEM. HIMEM is preserved and set to the
error occurs if not enough free memory is value contained in PP.

available for the table.
This 'hides' the original program and pre-
pares to load a new one immediately above
it in memory.

The BASIC load subroutine is called and a
normal memory full error condition will
result if not enough free memory is avail-
able to contain both programs. If this
error occurs then the original program
will still be hidden. Fortunately, it can
be recovered by calling the tail end of
APPEND AT $3CD, which simply restores
HIMEM. If the Lload is successful then
HIMEM s restored to it's final value and
both programs will be joined. No Lline
number overlap check 4is performed.

As Lline numbers are entered in the table,
corresponding new Line numbers are gener-—
ated, and both new and old are displayed.
Should the new Lline numbers result in an
'out of ascending sequence' condition,
then a range error occurs and renumbering
is terminated. It 1is assumed that the
line numbers of the original program are
in ascending sequence.

The purpose of pass 2 is to scan the en-
tire BASIC program while updating all ref-
erences of Lline numbers found in the table
to new assianments. Aside from the line
numbers themselves, the line number ref-
erences sought are identified as constants
immediately preceded by one of the follow-
ing tokens:

GOTO In
GOSUB Ln
THEN Ln Original After Load HIMEM
LIST Ln Program Restored
LIST In, Ln
DEL Lp e
DEL tn, Ln PP PP
RUN ln Prog #1 Prog #1
No other statement normally permitted - -
within an APPLE J[BASIC program may PP HIMEM
contain a line number reference. No Prog #2 Prog #2 Prog #2
errors will occur during pass 2. (Hidden)
Exceptions such as empty line number table HIMEM HIMEM

and null programs are properly considered
by both passes. of RENUM.

(1) Byte magazine, Nov. 1977 29

Source: Apple Computer, Inc. + Call-A.P.P.L.E. Magazine Page 0031 of 0138 |
\,

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

WOZPAK 11
RENUMBER EXAMPLE
Original Renumber lines 100-110
to start at 150
>LIST spaced by 10
1 GOTO 100
2 GosuB 103 >CLR
3 IF TRUE THEN 170 >START=150
4 LIST 109,110 >STEP=10
100 REM >FROM=100
103 REM >T0=110
107 REM >CALL 776
109 REM 100->150
110 REM 103->160
200 FOR I=1 TO 10 107->170
210 PRINT I 109->180
220 NEXT I 110->190
230 GOTO 1
SLIST
1 GOTO 150
2 GOsSuB 160
3 IF TRUE THEN 170
4 LIST 180,190
150 REM
160 REM
170 REM
180 REM
190 REM
200 FOR I=1 TO 10
210 PRINT I
220 NEXT I
230 GOTO 1
30

RENUMBER EXAMPLE (Cont.)

Renumber

all lines to

start at 10 spaced by S

>CLR

>START=10
>STEP=5

>CALL
1->10
2->15
3->20
4=>25

768

150->30
160->35
170->40
180->45
190->50
200->55
210->60
220->65
230->70

GOTO 30

GOsuB 35

IF TRUE THEN 40
LIST 45,50
REM

REM

REM

REM

REM

FOR I=1 TO 10
PRINT I

NEXT I

GOTO 10

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0032 of 0138 |

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

WOz

WOZPAK

APPLE 1C BASIC RENUMBER/APPEND SUBROUTINES

APPL

dekedkhkdhkhkhhhhkhhkhkhkkhkhkhkikhhhhkkkhkhhhkikhkhkhhhkhkkiikkk

VERSION 2

RENUMBER:
>CLR
>START=
>STEP=
>CALL 2048

OPTIONAL:
>FROM=
>To=
>CALL 2056

USE RENX ENTRY
FOR RENUMBER ALL

APRIL 12, 1978
E COMPUTER, INC.

¥ % ok 3k ok H % % Ok %k % % % % % ok F % * % % ¥

26 khkkhkhhhkhkkkkhkkhkhkhkdhhhkkhkhkhhkhkhkihkhhhhkhkdhkhhhhhihk

3

A *

5 *

6 *

7 *

8 *

Q9 *

10 *

11 *

12 *

13 *

14 *

15 *

16 %

17 *

18 *

19 *

20 %

21 *

22 *

23 *

24 *

25 *

27 *

28 ROL

29 ROH

30 R11L

31 R11H

32 HIMEM
33 PPL

34 PVL

35 MEMFULL
36 PRDEC
37 RANGERR
28 LOAD

39 SW16

40 CROUT
41 couT

42 *

43 * SWEET
44 *

45 ACC

46 NEWLOW
47 NEWINCR
48 LNLOwW
49 LNHI

50 TBLSTRT
51 TBLNDX1
52 TBLIM
53 SCR8

54 HMEM

55 SCR9

56 PRGNDX
57 PRGNDX1
58 NEWLN
59 NEWLN1
60 TBLND
61 PRGNDX2
62 CHRO

EQU
EQU
EQU
EQU
EQU
EQU
EQu
EQU
EQu
EQU
EQU
EQU
EQU
EQU

$0

$1
$16
$17
$4C
$CA
$CC
SE368B
SE51B
$EELS8
$FODF
$F689
$FD8E
$FDED

16 EQUATES

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$0
$1
$2
$3
$4
$5
$6
$7
$8
$8
$9
39
$A
$B
$C
$6
$7
$9

LOW~-ORDER SW16 RO BYTE.
HI-ORDER.

LOW-ORDER SW16 R11 BYTE.
HIGH-ORDER.

BASIC HIMEM POINTER.
BASIC PROGRAM POINTER.

BASIC VARIABLES POINTER.

BASIC MEM FULL ERROR.

BASIC DECIMAL PRINT SUBR.

BASIC RANGE ERROR.

BASIC TAPE LOAD SUBR.
SWEET-16 ENTRY.

CARRIAGE RETURN SUBR.
CHARACTER OUT SUBR.

SWEET 16 ACCUMULATOR.
NEW INITIAL LNO.

NEW LNO INCR.

LOW LNO OF RENUM RANGE.
HI LNO OF RENUM RANGE.
LNO TABLE START.

PASS 1 LNO TBL INDEX.
LNO TABLE LIMIT.
SCRATCH REG.

HIMEM (END OF PROGRAM).
SCRATCH REG.

PASS 1 PROGRAM INDEX.
ALSO PROG INDEX..

NEXT "NEW LNO"

PRIOR "NEW LNO'' ASSIGN.
PASS 2 LNO TABLE END.
PASS 2 PROG INDEX.
ASCII "o"

31

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0033 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

0800:
0803:
0804:
0805:
0806:
0808:
0808B:
080E:
0811:
0812:
0813:
0814:
0815:
0816:
0817:
0818:
0819:
081A:
081B:
081c:
0810D:
081E:
081F:
0820:
0821:
0822:
0824
0825:
0826:
0827:
0828:
0829:
082A:
0828:
082c:
0820:
082E:
082F:
0832:
0833:
0834

0835:
32

89 Fé6

06

89 F6
01 00
4E 00

0B

Ce 00

112
13
114
15
116
117
118
119
120
121
122
123

WOZPAK I
CHRA EQU 3A
MODE EQU $C
TBLNDX2 EQU $B
OLDLN EQU $D
STRCON EQU $B
REM EQU $C
R13 EQU $D
THEN EQU $D
LIST EQU $D
DEL EQU $D
SCRC EQU $C
*
ORG $800

*

khkhkhkhkhkhhkhkhkhkhkhkhhkhkkhkkhkkhkhkhkhkhkhkkhkhkhkkhkhhhkhkhkhkhkhkkhkk

* APPLE J[INTEGER BASIC RENUMBER SUBROUTINE-PASS 1
*khkkkkkhhhhhkkkhhhkhkhhhhkkhhkhkkihhkkkhkhkhhkkiikk

*

RENX JSR
sus
ST
ST
BR

RENUM JSR
SET

RNUM2 SET
POPD
ST
POPD
ST
LDD
LDD
LbD
LDD
LDD
ST
LDD
LDD
LDD
LD
LDD
ST
DCR
BM1
LDD
LDD
LoD
Lb
LDD
ST
LDD
LDD
LD
LDD
ST

RNUM3 SET
POPD
ST
ST
LD

SW16
ACC
LNLOW
LNHI
RNUM2
SW16
LNHI 1

SCR9 HIMEM+2

aSCRY
HMEM
aSCR9
SCR9
ASCRY
aSCRY
aSCR9
aSCR9
ASCR9
NEWLOW
aSCRY
aSCR9
aSCRY
aSCR9
asSCr9
NEWINCR
LNHI
RNUM3
aSCR9
aASCRY9
aSCRY
aSCR?
ASCR9
LNLOW
aSCR9
ASCRY
aSCR9
aSCR9
LNHI
SCRY,PVL+2
@SCRY
TBLSTRT
TBLNDX1
NEWLOW

ASCII "A"

CONST/LNO MODE.

LNO TBL INDX FOR UPDATE.
OLD LNO FOR UPDATE.
BASIC STR CON TOKEN.
BASIC REM TOKEN.

SWEET 16 REG. 13 (CPR REG).
BASIC THEN TOKEN.

BASIC LIST TOKEN.

BASIC DEL TOKEN.

SCRATCH REG. FOR APPEND.

RENUMBER ALL ENTRY

OPTIONAL RANGE ENTRY.

BASIC HIMEM POINTER TO HMEM.
BASIC START OF VARS.

SKIP NAME 'START' (8 BYTES)
OF FIRST BASIC VAR. IN SYmM. TBL.
(VALUE OF 'START')

SKIP NAME 'STEP' (7 BYTES)

(VALUE OF °'STEP')
DECREMENT 'TO' TO -1 IF 'ACC'.

SKIP NAME 'FROM' (7 BYTES)

(VALUE OF 'FROM')

SKIP NAME 'TO' (5 BYTES).

(VALUE OF 'TO")

BASIC VAR PNTR TO

TBLSTRT AND TBLNDX1.

COPY NEWLOW (INITIAL)

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0034 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

0836:
0837:
0838:
0839:
083A:
0838:
083cC:
083pD:
083F:
0840:
0841:
0842:
0843:
0845:
0846:
0847:
0848:
0849:
084A:
084cC:
084D:
084F:
0851:
0852:
0853:
0855:
0857:
085A:
085¢C:
085F:
0861:
0864:
0866:
0868:
0868:
086E:
0871:
0872:
0873:
0874:
0875:
0876:
0877
0879:
087A:
087D:
087E:
0881:
0882:
0883:

0885:
0888:
088B:
088cC:
088D

3B
3c
c9
37
39
29
D8
03
3A
26
€0
07
03
4A
A9
39
6A
D3
02
D4
02
07
76
00
A5
A6
20
A9
20
A9
20
AS
A6
20
20
20
2B
3C
A2
3B
0D
D1
02
00
4C
00
4C
EC
DC
02

19
1A
27
D8
03

46

38

2A

02

01
00
18
AD
ED
BE
ED
17
16
1B
8E
8C

c2
68

6B

F&4

BO
c1

6F

ES
FD
FD
ES

FD
Fé

EE

E3

00
00

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

177

179
180
181
182
183
184

ST
ST
POPD
ST
ST
PASS1 LD
CPR
BC
ST
LD
INR
CPR
BC
LD
ADD
ST
LDD
CPR
BNC
CPR
BNC
BNZ
P1A STD
RTN
LDA
LDX
JSR
LDA
JSR
LDA
JSR
LDA
LDX
JSR
JSR
JSR
LD
ST
ADD
ST
HEX
P1B CPR
BNC
RERR RTN
JMP
MERR RTN
JMP
P1C INR
CPR

BNC
*

WOZPAK II

NEWLN
NEWLN1
aSCR9
TBLIM
PRGNDX
PRGNDX
HMEM
PASS2
PRGNDX1
TBLNDX1
ACC
TBLIM
MERR
dPRGNDX1
PRGNDX
PRGNDX
APRGNDX1
LNLOW
P18
LNHI
P1A

P1C
aTBLNDX1

ROH
ROL
PRDEC
#SAD
couTt
#$BE
couTt
R11H
R11L
PRDEC
CROUT
SW16+3
NEWLN
NEWLN1
NEWINCR
NEWLN
ao
NEWLOW
PASS1

RANGERR

MEMFULL
NEWLN1
NEWLN1
RERR

TO NEWLN.
BASIC PROG. PNTR
TO TBLIM AND PRGNDX.

IF PRGNDX >= HMEM
THEN DONE PASS 1.

IF < TWO BYTES AVAIL IN

LNO TABLE THEN RETURN

WITH 'MEM FULL' MESSAGE.
ADD LENGTH BYTE TO PROG INDEX.

LINE NUMBER.
IF <LNLOW THEN GOTO P1B.

IF >LNHI THE GOTO P1C.

ADD TO LNO TABLE.
*kkk 6502 CODE **xx

PRINT OLD LNO *=>" NEW LNO
(RO,R11) IN DECIMAL.

**x%x%x END 6502 CODE **%%*

COPY NEWLN TO NEWLN1 AND INCR
NEWLN BY NEWINCR.

'NULL' (WILL SKIP NEXT INSTR.
IF LOW LNO < NEW LNO THEN RANGE ERR.

7PRINT "RANGE ERR' AND RETURN.
sPRINT '"MEM FULL" AND RETURN.

IF HI LNO <= MOST RECENT NEWLN
THEN RANGE ERROR.

Fkkkkkkkhhhkhkhhhkddkkhhhkhkrkkrkkkkkkkhkhhhhkkkkkkkhk

* APPLE][BASIC RENUMBER/APPEND SUBROUTINE - PASS 2
ok ke dk ke ke de ok Ak ok k kg gk ko ko ke ko Ak ke ko ke ok ok ok ok ok ok

*

PASS2 SET CHRO,BO ASCII "O".
SET CHRA,C1 ASCII "A".

P2A LD PRGNDX2
CPR HMEM IF PROG INDEX=HIMEM THEN DONE PASS
BC DONE

33

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0035 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

34

088F:
0890:
0891:
0892:
0893:
0894:
0895:

0896:
0897:
0898
0899:
089A:
0898:
089D:
089¢€:
089F
08A1:
08A2:
08A3:
08A4:
08A7:

08A8:
08A9:
08AA:
08AC:
08AD:
O8AE:
0880:
08B1:
08B3:
08B4:
0885:
08B7:
08B8:
0889:
08BA:
08BC:
08BF:
08c0:
08c2:
08Cé4:
08CS:
08Cé6:
08c8:
08cB:
08ccC:
08CE:
O8CF:
0801:
0804
08D5:
0807:
0809:
08DA:
080B:
08pD:
08E0:
08E1:

E7
67
3D
25
3B
21
1C

2¢C
A2
3C
2B
86
03
68
BD
ov
g
2c
44
1B
1C

67
FC
08
47
D9
02
DA
02
F9
67
05
F7
47
DB
06
1c
DC
06
08
FD
FD
06
10
DD
06
FO
06
1D
DD
08
06
ED
ED
08
10
BD
09

00 00

07

F5

28 00
00 00

ES

09

FS

FC

F7
50 00

F1
1F
18
24 00
15

BA
09 00

0c
0A
06
74 00

01

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

UPDATE

ub2

uo3

GOTCON

ITEM

SKPASC

CHKTOK

WOZPAK 11

INR
LDD
ST
LD
ST
LD
SET
ORG
LD
ADD
ST
LD
sSuB
BC
LDD
SuB
BNZ
POPD
LD
STD
SET
SET
ORG
LDD
DCR
BM1
LD
CPR
BNC
CPR
BNC
DCR
LDD
BM
DCR
LD
CPR
BZ
SET
CPR
BZ
BM1
DCR
DCR
BZ
SET
CPR
BZ
DCR
BZ
SET
CPR
BM1
BZ
INR
INR
BM1
SET
suB
BNM1

PRGNDX2
APRGNDX2
OLDLN
TBLSTRT
TBLNDX2
NEWLOW
NEWLN1,0
*=2
NEWLN1
NEWINCR
NEWLN1
TBLNDX2
TBLND
un3
ATBLNDX2
OLDLN
U2
APRGNDX2
NEWLN1
APRGNDX2
STRCON, 28
MODE, 0
*=2
APRGNDX2
MODE
UPDATE
APRGNDX2
CHRO
CHKTOK
CHRA
GOTCON
PRGNDX
APRGNDX2
SKPASC
PRGNDX2
APRGNDX2
STRCON
SKPASC
REM,5D
REM
SKPASC
CONTST
R13

R13
CONTST
THEN, 24
THEN
CONTST
ACC

P2A
DEL,9
DEL
CONTST
CONTST
R13

R13
CONTST
LIST,74
LIST
CONTS2

SKIP LENGTH BYTE.
LINE NUMBER.

SAVE OLD LNO.

INIT LNO TABLE INDEX.

INIT NEWLN TO NEWLOW.
(WILL SKIP NEXT 2 INSTRUCTIONS)

ADD INCR TO NEWLN1.

IF LNO TBL IDX=TBLND THEN DONE
SCANNING LNO TABLE.

NEXT LNO FROM TABLE.
LOOP TO UDZ2 IF NOT SAME AS OLDLN.

REPLACE OLD LNO WITH CORRESPONDING
NEW LINE. '

STR CON TOKEN.
(SKIPS NEXT TWO INSTRUCTIONS)
IF MODE=0 THEN UPDATE LNO REF.
BASIC TOKEN.
CHECK TOKEN FOR SPECIAL.
IF >= "0" AND < "A" THEN SLIP CONST
OR UPDATE.
SKIP ALL NEG. BYTES OF STR CON,
REM, OR NAME.
STR CON TOKEN?
YES, SKIP SUBSEQUENT BYTES.
REM TOKEN?
YES, SKIP SUBSEQUENT LINE.
GOSUB, L.OOK FOR LINE NUMBER.

(TOKEN $5F IS GOTO)

'THEN' LNO, LOOK FOR LNO.
EOL (TOKEN 01)

'DEL" OR 'DEL X,X', LOOK FOR LNO.
(TOKENS %9, $A)

(RUN LN= TOKEN 7)

SET MODE=0 IF LIST OR LIST COMM
(TOKENS $74, $75)

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0036 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

08E3:
08E4:
08ES5:

08E7:
08EA:
08ED:
O8EE:
08EF:
08F2:
08F3:
08F4:
08F5:
08F8:
08rB:
08FC:
08FD:
08FE:
0O8FF:

=10)
3C
01

20
1C
cc
38
19
69
7C
0o
20
20
cc
28
7C
00
60

cs

89
4LE

CA

DF
8¢9

Fé
0o

0o

FO
Fé6

247
248
249
250

252

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

WOZPAK II

CONTST SUB ACC
CONTS2 ST MODE
BR ITEM

CLEAR MODE FOR LNO.
UPDATE CHECK.

*
hhhkhhkhkhkkhkrkhkkhkkhhkhkikhkhAhkkkhhkhkhkhkhhkkrhkkhkhkkdhkhkikhkhkhkhhkkt
* APPLE][BASIC APPEND SUBROUTINE
ek e e e ke ke ke ke ke ok e o ke e ok e e g de g e e e ek ok e ek ke gk ek ok ke e ok ek ok ke ke ok ok
*
APPEND JSR SW16
SET SCRC,HIMEM+2
POPD @SCRC SAVE HIMEM
ST HMEM
SET SCR9,PPL
LDD @SCR9
STD @SCRC SET HIMEM TO PRESERVE PROGRAM.
RTN
JSR LOAD LOAD FROM TAPE.
JSR SW16
POPD QSCRC RESTORE HIMEM TO SHOW BOTH
LD HMEM PROGRAMS (OLD AND NEW)
STD @SCRC
DONE RTN
RTS

=== END ASSEMBLY =~~~
TOTAL ERRORS: O

260 BYTES GENERATED THIS ASSEMBLY

35

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0037 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

BLANK PAGE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0038 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

APPLE JLC INTEGER BASIC
SUBROUTINE PACK and LOAD
by
Richard F. Suitor

37

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0039 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

BLANK PAGE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0040 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK I

Led. notel This routine was written by
Richard F. Suitor and published in MICRO
#6. Apple Pugetsound Program Library Ex-
change wishes to thank Dick Suitor and
MICRO magazine for their permission to
reprint this article.

The first issue of CONTACT, the APPLE
newsletter, gave a suggestion for loading
assembly Llanguage routines with a BASIC
program. Simply summarized, one drops the
pointer of the BASIC beginning below the
assembly portion, adds a BASIC statment
that will restore the pointer and SAVEs.
The procedure is simple and effective, but
has two Llimitations. First, 14t is in-
convenient if BASIC and the routines are
widely seperated (and is very tricky if
the routines start at $800, just above the
display portijon of memory). Second, a
program so saved cannot be used with an-
other HIMEM and 1is thus inconvenient to
share or to submit to a software exchange.

The subroutine presented here avoids
these difficulties at the expense of the
effort to implement it. It is completely
position independent; it may be moved from
place to place in core with the monitor
move command and used at the new location
without modification. It makes extensive
use of SWEET 16, the 16 bit interpreter
supplied as part of the Apple Monitor ROM.

To wuse the routine from Apple Integer
BASIC, CALL MKUP, where MKUP is 128 (dec-
imal) plus the first address of the rou-
tine. The prompt shown is "a". Respond
with the hex Llimits of the routine to be
stored, as BBBB.EEEE (BBBB js the begin-
ning address, EEEE js the ending; the same
format that the monitor uses). Several
groups may be specified on one line sep-
erated by spaces, or several Llines. Type
'S' after the Llast group to complete the
pack and return to BASIC. The program can
now be saved.

To Lload, enter BASIC and LOAD. When
complete, RUN. The first RUN will move
all routines back to their original Llo-
cation and return control to BASIC. It
will not RUN the program; subseguent RUNs
will. (*1)

A LIST of the program after calling
MKUP and before the first RUN will show
one BASIC. statment <(which initiates the
restoration process) and gqibberish. If
this is done, RESET followed by CTRL-C
will return control to BASIC.

WARNING #1: The routine must be placed
in core where it will not overwrite jt-
self during the Pack. The start of the
routine must be above HIMEM (e.g. in the
high resolution display region), or $17A+
4*N+W below the start of the BASIC program
where N s the number of routines stored
and W s the total number of words in all
of these routines. Also, those routines
that are highest in memory should be pack-
ed first to avoid overwriting during pack
or restore. Otherwise it is not necessary
to worry about overwriting during the re-
store process; only $1A words just below
the BASIC program are used.

WARNING #2: Do not attempt to edit the
program after calling MKUP. If editing is
necessary, RUN once to unpack, then edit
and call MKUP again.

The routine works as follows. It first
packs the restore routine just below the
BASIC program. It then packs other rou-
tines as requested, with the first address
and the number of bytes (words). When §
is given, it packs itself with the infor-
mation to restore LOMEM and the beginning
of the BASIC program. The first $46 words
of the routine form a BASIC statment which
will initiate the restoration process when
RUN is typed.

If a particular HIMEM jis needed by the
program (e.g. for high resolution pro-
grams) it must be entered before LOADing.
The LOMEM will be reset by the restoration
process to the value it had when MKUP was
called.

I do not have a SWEET 16 assembler,
hence all of those op codes are Listed as
tables of data.(*2) 1In the listing, com-
ments indicate where constants and rel-
ative displacments are differences between
Llabels in the routine.

Some convenient load and entry points are:

BASO (load) MKUP (entry)
hex hex decimal
800 880 2176
A90 B10 2832

104C 10cc 4300
2050 2000 8400
3054 3004 12500

Led. notes]

(*1) Since this article was written,
the RUNning entry to basic has been added,
allowing only one RUN to be required. See
assembly listing.

(x2) Listing has been rewritten on TED
II+ showing SWEET 16 op-codes. 39

Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0041 of 0138 |
\

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

0800:
0803:
0806:
0809:
080cC:
080E:
0811:
0814:
0816:
0819:

40

46
64
00
4C
64
02
38
B2
00
B7

00
01
BY
03

65
3F

12
00

WOZPAK I
*

*INT BASIC SUBR PACK & LOAD
*CALL BASO+128(DEC)

CONTAINS SW16 MACRO DEFS

SEE MICRO#6 OR BEST OF MICRO

CHANGE LAST INST. TO
JMP BRUN TO UNPACK&RUN

POSITION INDEPENDENT PROG.

$3000
$800

$00
$02
$04
$06
$08
$0A
$0C
$0E
$10
$12
$14
$16
$18
$31
$34
$33
$4A
$4C
$CC
$CA
$CE
$E003 BASIC
$EFEC RUN BASIC
$0200
$F689
$FFA7
SF4A
$FDED
$FF3A

*
* CONVERTED 5/17/79
*
*
*
* FOR DOC.
*
*
*
* IN ONE STEP
*
*
0BJ
ORG
*
ACCL EQU
BSOL EQU
TABL EQU
TBCL EQU
HIMS EQU
LMRT EQU
BPRG EQU
FRML EQU
NBYT EQU
BPR2 EQU
PTLL EQU
XTAB EQU
SKPL EQU
MODE EQU
YSAV EQU
PRMP EQU
LMML EQU
HIML EQU
LMWL EQU
BBSL EQU
JSRL EQU
BSC2 EQU
BRUN EQU
BUFF EQU
Swi1é EQU
GTNM EQU
PBL2 EQU
cout EQU
BELL EQU
GTLN EQU

*

$FD67

*BASIC INST. TO RESTORE

BASO HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX
HEX

460000
64B101
006587
4C0003
64B2

020065
382E3F
B2CA

007212
B74600

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0042 of 0138 |

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

081¢C:
081E:
0821:
0824:
0826:-

082C:
082E :
0831:
0834:
0836:
0839:
083C:
D83E:
0841:
0844 :

0846:
0847:
0849:
084B:
0840p:
084F:
0851:
0852:
0854:
0857:
085A:
0850p:
085E:
085F:
0860:
0861:
0862:
0863:
0864:
0865+
0866
0869:
086A:
086B:
086cC:
086D:
086E:

0870:
0872:
0874:
0876
0878:
087A:
0878:
087D:

0880:
0882:
0884:
0886:
0888:
088A:

0829:

72

B6
36
1A
BA
3A
67
33
0o
A2

B5
95
95
B5
95
CA
10
6C

A2
B5
95
BS
95
95

01
CA
02
4C
08

F5
89
52
57

"

01

0A
4A
cC
oc
CA

F3
14

01
4A
0A
CA
12
0c

o1
B3

2E
]

2E
CA

46

03
01

Fé6
01
01

00

00

104
105
106
107
108
109
110
11
12
13
114
115
116
117
118
119
120
121
122

WOZPAK I

HEX 721F

HEX B20001

HEX 0364B3

HEX 0300

HEX 65382E

HEX 3FB2CB

HEX 0072

HEX 12382E

HEX 3FB2CA

HEX 0072

HEX 12B746

HEX 007215

HEX B200

HEX 017203

HEX 4DB101

HEX 0001
*INIT. RESTORE OP
PTBK CLd

Lbx #1
PTOZ2 LDA BBSL,X

STA BSOL,X

LDA HIML,X

STA HIMS,X

DEX

BPL PTO2

JSR Sw16

SET 0, (PTLP-BASD)

SET 8, (PTLP+5-BASO)

ADD 1

ST 7

LoD a7

ST 5

LDD a7

ST 6

Lo 4

suB 6

ST 6

SET 10, (ST16+1-PLP1)

sus 10

ST 10

Lob a7

ST 3

RTN

LbX #1
*SET LOMEM & BASIC PROG START
PTO4 LDA LMRT,X

STA LMML,X

STA LMwL,X

LDA BPRG,X

STA BBSL,X

DEX

BPL PTO4

JMP (PTLL) TO RESTORE LP
*SUBR TO SET UP PACK
MKUP Lbx #
MK21 LDA LMML,X

STA LMRT,X

LDA BBSL,X

STA BPRZ2,X

STA BPRG,X

41

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0043 of 0138 |

Apple][Computer Information ¢ The Woz Pak][-

088cC:
088E:
0890:
0892:
D894:
0895:

0897:
089A:
0898:
089C:
089D:
08A0:
08A1:
08a2:
D8A3:
08A6:
08A7:
08A8:
08AB:
0O8AC:
08AD:
0O8AE:
0881:
08B3:
08B4:

08B6:
08B8:
08BA:
08BC:
08BF:
08C1:
08¢3:
08C6:
08c8:
08CA:
08CDh:
08CF:
0801
08n2:
08D3:
08bé6:
0808:
08bB:
O8DE:
08DF:
08E1:
08E3:

08E6:
08E9:
08EB:
O8EE:
O8EF:
08F0:
08F1:

08F2:
42

BS
95
B5
95
CA

20
24
B?
39

22
B1
31
10
Al
32
18
A8
33
E3
1C
oc
00
A9

85
AS
85

86
AD
B89
c9
FO
20
c9
FO
98
AA
20
A9
20
20
18
90
E6
20

20
01
18
68
32
68
33
B2

80

52

18

50
42

co

33
00
31

16
00

D3
68
A7
A7
10

4A
DE
ED
3A

D3
3
A7

89
1E
3C

F6

00

01

0o

00

FD

02

FF

F9

FD
FF

FF

Fé

00

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

WOZPAK I
LDA JSRL,X
STA TABL,X
LDA HIML,X
STA HIMS,X
DEX
BPL MK21
*INIT & PACK RESTORE LP
JSR SW16
LD 4
sus 9
ST 9
SET 1, (MKUP-BASO)
LD 2
suB 1
ST 1
SET 0, (PTLP-BASO)
ADD 1
ST 2
SET 8,(ST16-PTLP)
ADD 8
ST 3
INR 3
SET 12,($50) *SW16 STACK
8S mMvse
MK22 RTN
MKO1 LDA #3C0
*GET LIMITS & PACK PROGS
STA PRMP
LDA #0
STA MODE
JSR GTLN
STX XTAB
LDY #0
LDA BUFF,Y
CMP #$D3 S
BEQ MK10
mMKOé JSR GTNM
CMP #$A7 F(.) (SEE MON.)
BEQ MKO2
MERR TYA
TAX
JSR PBLZ2 ERROR INDICATOR
LDA HSDE '™
JSR cout
JSR BELL
MKO5 cLe
BCC MKO1
mMKO2 INC MODE
JSR GTNM
*A1 & A3 NOW HAVE 1ST #,A2 2D

*SET UP MOVE TO JUST BELOW (BBSL)
*AND LOWER BBSL

JSR SW16
BR sMO2
MV51 SET 8,($3C)

LoD @8

ST 2

LDD a8

ST 3

suB 2

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

15 November 1979

Page 0044 of 0138 |

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

08F3:
08F4:
08fF5:
08F6:
08F7:
08F8:
08F9:
08FB:
08FC:
08FD:
0%900:
0901:
0902:
0903:
0904
0905:
0906:
0907:
0908:
0909:
090B:
090cC:
090E:
0910:
0912:
0914:
0916:
0918:
091A:
091B:
091E:
0920:
0922:
0924:
0926:
0928:
092A:
092cC:
092E:
0930:

0932:
0935:
0936:
0937:
093A:
093B:
093cC:
093D:
093E:
093F:
0940:
0941:
0942:
0943:
T 0944
0946:
0947:
0948:
0949:

38
E3
83
96
23
D2
07
28
33
18
88
96
88
96
88
96
88
96
0B
ac
00
c9
FO
co
FO
c9
FO
DO
c8
B9
C4
B0
c9
FO
c9
FO
co
FO
cé
FO

20
21
32
18
A8
37
25
77
29
77
21
77
27
33
0c
66
66
0o
AS

FA

08 00

€0

EC
22
cé
AD
99
03
B7

16
92
AD
F4
8D
8A
D3
04

98

89 F6

52 01

AF

0c

185
186
187
188
189
190
19
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
21
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

WOZPAK 1|

MV52

sM02
SMO3
mMK09

MK11
MK12

*PACK 1ST PART

MK10

SM04

ST

INR
POP
STP
LD

CPR
BNZ
LD

ST

SET
POP
STP
POP
STP
pop
STP
POP
STP
RS

BS

RTN
Cmp
BEGQ
cmp
BEQ
cMP
BEQ
BNE
INY
LDA
CPY
BCS
CmMp
BEQ
CMP
BEQ
Ccwp
BEQ
DEC
BEQ

JSR
LD
ST
SET
ADD
ST
LD
S$TD
LD
STD
LD
STD
LD
ST
BS
LDD
LbD
RTN
LDA

8,8
a8
a6
28
a6
a8
a6
a8
aé

MV51

HSEC F(S)

MK10

H#$C6 F(CR)
mMK01

#$99 F()

MK12

MERR

BUFF,Y

XTAB

MKO1

#3A0 BLANK
MK11

#38D

MKO1

#$D3 S

MK10

MODE

MKO6 ALWAYS
& CLEAN UP
Sw1é

1

2

8, (PTLP-BASD)
8

7
5
a7z
9
a7
1
ar
7
3
mvs52
26
aé

BPRG

43

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0045 of 0138 |

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

094B:
094D:
094F:
0951:

0952:
0955:
0956:
0957:
0958:
0959:
095A:
095D:
095€E:
095F:
0960:
0962:
0963:
0964:
0966:
0967:

096A:

44

CA
0D
cB

89 F6

89 Fé

FB

EF

03 EO

TOTAL ERRORS: 00

WOZPAK I

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

~-- END ASSEMBLY -—-

*RESTORE
PTLP
PLPO

PLP1
MV60

PLP2

* OR JMP
ST16

363 BYTES OF OBJECT CODE
WERE GENERATED THIS ASSEMBLY.

STA
LDA
STA
RTS
LooP
JSR
LDD
ST
LDD
ST
RTN
JSR
LD
ST
DCR
BP
LD
CPR
BM
RTN
JMP
BRUN
HEX

BBSL
BPRG+01
BBSL+01

SW16
a1

3

a1

8

SW16
a1
a3

8
MVé60
1

6
PLPO

BSC2

00

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0046 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

APPLE 1IC MACHINE CODE RELOCATION

45

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0047 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

BLANK PAGE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0048 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK It
Quite frequently I have encountered APPLE 1L (or other) computer.

situations calling for relocation of

machine Llanguage (not BASIC) programs on

my 6502-based APPLE J[computer. Relo- (6) Due to operating system variable as-
cation means that the new version must signment differences either the page-
run properly from different memory loca- zero or non-page-zero variable al-
tions than the original. Because of the location for a specific program may
relative branch instruction, certain have to be modified when moving the
small 6502 programs need simply be moved program from one make of computer to
and not altered. Others require only another.

minor hand modification, which is sim-
plified on the APPLE 1[by the built=in

disassembler which pinpoints absolute (7) A program exists as several chunks
memory reference instructions such as strewn around memory which must be
JMPs and JSRs. However, most of the combined in a single, contiguous
situations which I have encountered in- block.

volved rather lenathy programs contain-
ing multiple data segments interspersed

with code. For example, I once spent (8) A program has outgrown the available
over an hour to hand-relocate the 8K memory space and must be relocated to
byte APPLE 1L monitor and BASIC to run a larger 'free' space.

from RAM addresses and at least one er-
ror probably went by undetected. That

relocation can now be accomplished in a (9) A program insertion or deletion re-
couple of minutes using the relocation quires a chunk of the program to move
proaram described herein. a few bytes up or down.

The following situations call
for program relocation:

(1) Two programs which were written to

run in identical Llocations must now It s easy to visualize relocatijon as
reside and run in memory concurrent- taking a program which resides and runs
ly. in a 'source block' of memory and creat-

ing a modified version in a 'destination

(2) A program currently runs from ROM. block'
In order to modify its operation ex- dictates
perimentally, a version must be gen- formed
erated which runs from RAM (differ- program
ent addresses). blocks.

being performed because this is impos-

sible. For example, a program written
(3) A program currently running in RAM to begin at Llocation $400 on the APPLE-I
must be converted to run from EPROM (3 stands for hex) falls in the APPLE 1[
or ROM addresses. screen memory range. It must be loaded
elsewhere on the APPLE][prior to re-
location.
(4) A program currently running on a 16K
machine must be relocated in order to
run on a 4K machine. Furthermore, A more versatile program model is as
the relocation may have to be per- follows. A program or section of a pro-
formed on the smaller machine. gram runs in a memory range termed the
'source block' and resides in a range
termed the ‘'source segments'. Thus, a
(5) Due to memory mapping differences, a program written to run at location $400
program running on an APPLE-I (or may reside at Llocation $800. The pro-
other 6502-based computer falls in- gram is to be relocated so that it will
to the wunusable address space on an run in a range termed the 'destination

W

.i

PROGRAM MODEL

hich runs properly. This model
that the relocation must be per-
n an environment in which the
may, 1in fact, reside in both
In many cases the relocation is

47

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0049 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

block'
termed

WOZPAK I

although it will reside in a range
'destination segments' <(not ne-

cessarily the same). Thus a program may
be relocated such that it will run from
location $D000 (a ROM address) yet reside
beginning at location $C00 prior to being

saved

on tape or used to burn EPROMs (ob-

viously, the relocated program cannot im-
mediately reside at locations reserved
for ROM). In some cases the source and
destination segments may overlap.

BLOCKS AND SEGMENTS EXAMPLE

Location
During
Relocation
$800
Program runs from
location $400
on APPLE-I
$887
Relocation
$c00
Relocated version
runs from
location $D000
on APPLE JC
$F87
SOURCE BLOCK: $400-%787

DEST BLOCK: $D000-3%D387

SOURCE

SEGMENTS: $800-3%B87

DEST SEGMENTS: $CO0-3%F87

a8

THE RELOCATION ALGORITHM

(1) Set SOURCE PTR to beginning of source
segment and DEST PTR to beginning of
destination segment.

(2) Copy 3 bytes from source seqgment
(using SOURCE PTR) to temp INST area.

(3) Determine dinstruction length from op-
code (1,2, or 3 byte).

(4) If two byte instruction with non-
zero-page addressing mode (immedi-
ate or relative) then go to (7).

(5) If two byte dnstruction then clear
3rd byte so address field is 0-255
(zero page).

(6) If address field (2nd and 3rd bytes
of INST area) falls within source
block, then substitute.

ADR-SOURCE BLOCK BEGIN + DEST BLOCK BEGIN

(7) Move 'length' bytes from INST ares
to dest segment (using DEST PTR).
Update SOURCE and DEST PTRs by lenqgth.

(8) If SOURCE PTR is less than or equal
to SOURCE SEGMENT END then goto (2),
else done..

DATA SEGMENTS

The problem with relocating a large
program all at once is that data (tables,
text, etc.) may be interspersed through-
out the code. Thus data may be 'relo-
cated' as though it were code or might
cause some code not to be relocated due
to boundary uncertainty introduced when
the data takes on the multi-byte attri-
bute of code. This problem is circum-
vented by considering the ‘source seg-
ments' and ‘'destination segments' sec-
tions to contain both code and data seg-
ments.

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0050 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK 11
* DEST BLOCK BEG < SOURCE
CODE AND DATA SEGMENTS EXAMPLE
BLOCK BEG . END Yc¢ *
$800 Code Segment
$800-$892 Note that the syntax of this command
closely resembles that of the MONITOR
'MOVE' command. The initial '*' is
Data Segment . generated by the MONITOR, not typed
$893-$992 by the user.
Code Segment 4. Move all data segments and relocate
$993-3ABF all code segments in sequential (in-
creasing address) order.
Data Segment
SACO-SACF First Seament (if CODE)
* DEST SEGMENT BEG < SOURCE
Code Segment SEGMENT BEG . END Yc.
$B87 SACF-$B87
First Seament (if DATA)
The source code seqments are relocat- * DEST SEGMENT BEG < SOURCE
ed to the 'destination seaments' area and SEGMENT BEG . END M
the source data segments are moved. Note :
that several commands will be necessary Subsequent segments (if CODE)

"to accomplish the complete relocation. -
* SOURCE SEGMENT END Yc
(Relocation)
USAGE
Subsequent segments (if DATA)
1. Load RELOC by hand or off tape into
memory locations $3A6-$3FA. note that * SOURCE SEGMENT END M (Move)
locations $3FB-$3FF are not disturbed

by tape Lload versions to insure that

the APPLE JC interrupt vectors are not Note that it 1is wise to prepare a
clobbered. The Monitor user function, list of segments (code and data) prior
Control-Y, will now call RELOC as a to relocation.

subroutine at location $3F8.

If the relocation is performed 'in

2. Load the source program into the place’ (SOURCE and DEST SEGMENTS
'source segments' area of memory if reside 1in didentical Llocations) then
it is not already there. Note that the SOQURCE SEGMENT BEG parameter may
this need not be where the program be ommitted from the first segment
normally runs. relocate (or move).

3. Specify the source and destination
block parameters, remembering that EXAMPLES
the blocks are the locations that the
program normally runs from, not the

locations occupied by the source and 1. Straightforward Relocation

destination segments during the re-

location. If only a portion of a Program A resides and runs in loca-
program is to be relocated then that tions $800-$97F. The relocated version
portion alone is specified as the will reside and run in Llocations
block. $A00-397F.

49

Source: Apple Computer, Inc. + Call-A.P.P.L.E. Magazine Page 0051 of 0138
\,

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK 1]
2.
SOURCE SEGMENTS DEST SEGMENTS
$800 CODE $A00 CODE
$800-388F $A00-3A8F
DATA DATA
$890-$8AF $AG0-SAAF
CODE CODE
$8B0-$90F $ABO-$BOF
DATA DATA
$910-393F $B10-$B3F
CODE CODE
$97F| $940-397F $B7F | $B40-$B7F
SOURCE BLOCK $800-397F
DEST BLOCK $A00-$B7F
SOURCE SEGMENTS $800-3%97F
DEST SEGMENTS $A00-$B7F
(a) Load RELOC
(b) Define blocks 3.

+ AOO < 800 . 97F Yc *
(c) Relocate first segment (code).
* AOO < 800 . 88F Yc

(d) Move and relocate subsequent seg-
ments in order.

* . 8AF M (data)
. 90F Yc¢ (code)
* . 93F M (data)
* . 97F Yc (code) 4.

Note that step (d) illustrates
abbreviated versions of the
following commands:
* A90 < 890 . 8AF M (data)
* ABO < 880 . 90F Yc (code)
* B10 < 910 . 93F M (data)

* B40 < 940 . 97F Yc (code)
50

Index into block

Assume that the program of example 1
uses an indexed reference into the
data segment at $890 as follows:

LDA 780,X
The X-REG 1is presumed to contain $EO-
$FF. Because $780 1is outside the
source block, it will not be relo-
cated. This may be handled in one

of two ways.

(a) The exception 1is fixed by hand,
or

(b) The block specifications begin
one page lower *than the address-
es at which the original and re-
located programs begin to account
for all such ‘early references’'.
In step (b) of example (1) change
to:

* 900 < 700 . 97F Yc*

Note that program references to
the ‘'prior page' (in this case
the $7XX page) which are not in-
tended to be relocated, will be.

Immediate Address References

Assume that the program of example
(1) has an immediate reference which
is an address. For example,

LDA #33F
STA LOCO
LDA #%08
STA LOC1
JMP (LOCO)

In this example, the LDA #3%08 will
not be changed during relocation and
the user will have to hand-modify it
to $0A.

User function (Yc) programs

Relocating programs such as RELOC
introduces another irregularity. Be-
cause RELOC wuses the MONITOR user
function command Control-Y (Yc), its
entry point must remain fixed at $3F8.
The rest of RELOC may be relocated
anywhere in memory (references other
than the JMP at $3F8). The user must
leave the JMP at $3F8 undisturbed or
find some way other than Yc to pass
parameters.

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0052 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK I

5. Unusable block ranges
A program was written to run from lo~
cations $400-$78F on an APPLE-I. A
version which will run in ROM loca-
tions $D000-$D38F must be generated.
The source (and destination) seg-
ments may reside 1in locations $800-
$B8F on the APPLE II where relocation
is performed.
SEGMENTS, SOURCE AND DEST
Locations
during
relocation
$800 CODE Runs from Llocations
$800-$97F $400-%$78F on APPLE-I
but must be relocated
DATA to run from locations
$980-%9FF $D000-3D38F on the
APPLE 1]L.
CODE
$B8F| $A00-3$BS8F

SOURCE BLOCK $400-$78F

DEST BLOCK $D000-%$D38F

SOURCE SEGMENTS $800-$BS8F

DEST SEGMENTS $800-$B8F

A)

(b)

(c)

()

Load RELOC

Load original program into locations
$800-3B8F (despite the fact that it
doesn't run there).

Specify block parameters (i.e. where
the original and relocated versions
will run).

*D000 < 400 . 78F Yc *

Move and relocate all segments in or-
der.

* 800 < 800 . 97F Yc (first seg-
ment, code)

* . 9FF M (data)
* . B8F Y¢ (code)

Note that because the relocation is

(c)

7.

done 'in place' the SOURCE SEGMENT
BEG parameter 1is the same as the DEST
SEG BEG parameter ($800) and need not
be specified. The initial segment re-
location command may be abbreviated:

* 800 <. 97F Yc
The program of example (1) need not
be relocated but the page zero vari-
able allocation is from $30 to $3F.
Because these Llocations are reserved
for the APPLE 1L system monitor, the
allocation must be changed to loca-
tions $80-$8F. The source and des-
tination blocks are thus not the pro-
gram but rather the variable area.
SOURCE BLOCK $20-$2F
DEST BLOCK $80-%$8F
SOURCE SEGMENTS $800-3%97F
DEST SEGMENTS $800-%$97F
(a) Load RELOC
(b) Define blocks
*80 < 20.2F Yc =«

Relocate code segments and move data
segments in place.

* 800 <.88F Yc (code)

* _8AF M (data)
* _90F Yc (code)
* _93F M (data)
* _97F Yc (code)

Split blocks with cross-referencing

Program A resides and runs in loca-
tions $800-$8A6. Program B resides
and runs 1in locations $900-39F1. A
single, contiguous program is to be
generated by moving program B so that
it immediately follows program A.
Each of the programs contains memory
references within the other. It is
assumed that the programs contain no
data segments. 51

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0053 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK 1t
SOURCE DEST SEGMENTS SOURCE SEGMENTS
$800—> P —»
rogram A $800 Program A $800 CODE
$800-$8A6 $800-$8A6 $800-388F
DATA
$8A6 —> $8A6
$8A7 o $890-$8AF
U
nused Program B Remove & CODE
$900 —> bytes here —p| $8B0-3$90F
Program B ($8C0-38C3)
N DATA
$9F1—>| $900-$9F1 $910-$93F
CODE
$97F $940-%97F
SOURCE BLOCK $8C4-397F
SOURCE BLOCK $900-%9F1
SOURCE SEGMENTS $800-%88F (code)
DEST BLOCK $8A7-$998 $890-%8AF (data)
$8B0-3$88F (code)
SOURCE SEGMENTS $800-$8A6 (A) $8C4-$90F (code)
$900-%9F1 (B) $910-393F (data)
$940-397F (code)
DEST SEGMENTS $800-$8A6 (A}
$8A7-8998 (B) DEST SEGMENTS
$800 CODE
$800-$88F
(a) Load RELOC
DATA
(b) Define blocks (program B only) $890-$8AF
* 8A7 < 900 . 9F1 Y¢ * CODE
$8B0-$90B
(¢) Relocate each of the two programs
individually. Program A must be DATA
relocated even though it does not $90C-$938
move.
. . CODE
* 800 <. 8A6 Yc (program A, ‘in place') $97B $93C-$978
* 8A6 < 900 . 9F1 Yc (program 8, not
'in place") DEST BLOCK $8C0-$97B
Note that any data segments with- DEST SEGMENTS $800-$88F (code)
in the two programs would neces- $890-$8AF (data)
sitate additional relocation and $880-$8BF (code)
move commands. $8C0-3$90B (code)

$90C-3$938 (data)
$93C-$978 (code)
8. Code deletion.
(a) Load RELOC
4 bytes of code are to be removed
from within a program and the pro- (b) Define blocks

gram is to contract accordingly. * 8CO < 8C4 . 97F Ye *
52 :

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0054 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK Il

(c) Relocate code segments and move (c) Segments
data segments in ascending ad-
dress sequence.
* 800 < F800 . F961 Y (first seg-

* 800 <. 88F Yc (code, 'in place') ment, code)
* . 8AF M (data)
* . 8BF Yc (code) , * . FA42 M (data)
* 8C0 < 8C4 . 90F Yc (code, not
'in place") * . FB18 Y (code)
* . 93F M (data)
* . 97F Yc (code) * . FBID M (data)
* _ FFCB Y (code)
(d) Relative branches crossing the
deletion boundary will be incor- * . FFFF M (data)
rect since the relocation pro-
cess does not modify them (only (c) Immediate address references
zero—page and absolute memory
references). The user must patch * FBF : E (was $FE)

these by hand.
* EA8 : E (was $FE)
9. Relocating the APPLE 1L MONITOR ($F800

~$FFFF) to run in RAM ($800-$FFF). OTHER 6502 SYSTEMS

SOURCE BLOCK $F700-$FFFF The following details illustrate fea-
(see example (2)) tures specific to the APPLE 1[which are
used by RELOC. If adapted to other sys-
SOURCE SEGMENTS $F800-$F961 (code) tems, the convenient and flexible para-
$F962-8FA42 (data) meter passing capability of the APPLE 1L
$FA43-$FB18 (code) monitor may be sacrificed.
$FB19-$FB1D (data)

$FB1E-SFFCB (code)

$FFCC-SFFFF (data) 1. The APPLE 1L monitor command

* A1 < A2 . A3 Y¢

(A1, A2, and A3 are addresses)
vectors to location $3F8 with the
value A1 in Llocations $3C (low) and
$30 (high), A2 in locations $3E (low)
and $3F (high), and A3 in Locations
$42 (low) and $43 (high). Locaton $34
(YSAV) holds an index to the next
character of the command buffer (after

DEST BLOCK $700-3FFF

DEST SEGMENTS $800-3%961 (code)
$962-3A42 (data)
$A43-818 (code)
$819-%B1D (data)
$B1E-$FCB (code)
$FCC-3FFF (data)

the Yc). The command buffer (IN)
IMMEDIATE ADDRESS REFS (see example (3) begins at $200.
$FFBF
2. If Yc is not followed by an '+!'
$FEA8

then the block parameters are simply

. . preserved as follows:
(more if not relocating to page

boundary) SWEET16
Parameter Preserved at Reg Name

(a) Load RELOC DEST BLOCK BEG $8, $9 TOBEG
(b) Block parameters SOURCE BLOCK BEG $2, $3 FRMBEG
* 700 < F700 . FFFF Yc * SOURCE BLOQOCK END $4, $5 FRMEND 3
5

Source: Apple Computer, Inc. + Call-A.P.P.L.E. Magazine Page 0055 of 0138
\,

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

54

WOZPAK I1

If Yc is not followed by am *i} 5. The code from XLATE TO SW16RT ($3D9-
then a segment relocation is initi- $3E6) wuses the APPLE 1[16-bit inter-
ated at RELOCZ ($3BB). Throughout, A1 pretive machine, SWEET16. The target
(83C, $3D) s the source segment address of the 6502 instruction being
pointer and A4 (342, $43) is the des- relocated (locations $C Llow and $D
tination segment pointer. high) occupies the SWEET16 register

named ADR. If ADR is between FRMBEG
INSDS2 is an APPLE 1C monitor sub- and FRMEND (inclusive) then it is re-
routine which determines the Length placed by ADR-FRMBEG + TOBEG.

of a 6502 idnstruct
able LENGTH (locat
opcode in the A-REG.

Instruction type LENGTH ment index). If A1 exceeds A2 (source
. segment end) then the carry is set,
Invalid 0 otherwise it is cleared.
1 byte 0
2 byte 1
3 byte 2

ion in the vari-
ion $2F) given the

6. NXTA4 1is an APPLE JC monitor subrou-
tine which increments A1 (source seg-
ment index) and A4 (destination seg-

NOTE: MACHINE CODE RELOCATION was orig-
inally written to run at $3A6 to $3FA.
Because this wipes out DOS entry points,
the routine 1is reassembled at $1000. The
first part of the routine (lines 54-60 of
the assembly Llisting) writes the CONTROL-Y
vector at $3F8. '1000G' entered at the
start of using RELOC will write the vector
to allow the routine to operate properly.

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0056 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

1000: A9 4C 54
1002: 8D F8 03 55
1005: A9 10 56
1007: 8D F9 03 57
100A: A9 10 58
100C: 8D FA 03 59
100F: 60 60

de e d e e ek e ek kok ok ke ok ok ke ke ek ke ke ke ok

1.

woz

KEN S

% Ok ok % % 3k ok 3k ok % ok Ok % % ¥ ¥ N F % ¥ * ¥ *

khkkdkkkhkhkhkhhkhhkhkhkkkhkkhkkikik

*

*RELOCATION SUBROUTINE EQUATES

*
RIL
INST
LENGTH
YSAV
AL
A4L

IN
CTRLY
Sw1é6
INSDS2
NXTA4
FRMBEG
FRMEND
TOBEG
ADR

*

dodededede oo do oo e dede do e e e oo oo o dedede e e e o e e o e dededede sk sk ek ke ok e ek

TO RELOC SETUP
Fkkddkhdkkkhkkkddkdddkdokkkkihhhhhkhkhkkkikihkikk

* CONT

*
INITY

WOZPAK I

6502 RELOCATION

SUBROUTINE

DEFINE BLOCKS
*AL<AT A2 Y

"y IS

CTRL-Y)

FIRST SEGMENT
*AL<AT1.A2 Y

(IF

*A4<AT.

CODE)

A2 M

(IF MOVE)

3. SUBSEQUENT SEGS

* A2 "Y OR *_ A2 M

MITH

EQU
EQU
EQU
EQu
EQU
EQU
EQU
EQu
EQU
EQU
EQU
EQU
EQU
EQU
EQU
08J
ORG

ROL-Y

LDA
STA
LDA
STA
LDA
STA
RTS

JMP

11-10-77

APPLE COMPUTER CO.INC.

(SLIGHTLY MODIFIED BY)

TACOMA WA

$2

$B
$2F
$34
$3C
$42
$200
$3F8
$F689
SF88E
$FCB4
$1

$2

$4

$6
$7000
$1000

#$4C
CTRLY
H<RELOC
CTRLY+1
#>RELOC
CTRLY+2

% 3k Ok % % % % O % ok X ¥ % % F * F F ¥ % % * *

FSWEET16 REG. 1.

;3-BYTE INST. FIELD
;LENGTH CODE.

;CMND BUF POINTER.

SAPPLE 1L MON PARAM AREA.
;APPLE 1L MON PARAM REG 4.
;MON CMND BUF.

;CONTROL-Y VECTOR ADR.
;SWEET16 ENTRY.
;DISASSEMBLER ENTRY.
;POINTER INCR SUBR.
;SOURCE BLOCK BEGIN.
;SOURCE BLOCK END.

;DEST BLOCK BEGIN.

;ADR PART OF INST.

;'JMP' FOR CONTROL-Y ENTRY.
+sGET ROUTINE ADDRESS AND

SJWRITE INTO $3F98A FOR
;CONTROL-Y JMP DESTINATION.

55

Source:
\

Apple Computer, Inc

» Call-A.P.P.L.E. Magazine

Page 0057 of 0138

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

1010: A4
1012: B89
1015: €9
1017: 0O
1019: €6
1018: A2
1010: BS
101F: 95
1021: CA
1022: 10
1024: 60
1025: AD
1027: B1
1029: 99
102C: 88
102D0: 10
102F: 20
1032: A6
1034: CA
1035: DO
1037: AS
1039: 29
1038: FO
103D: 29
103F: DO
1041: 85
1043: 20
1046: 22
1047: D6
1048: 02
104A: 26
104B: B1
104C: 02
104E: A4
104F: 36
1050: 00
1051: A2
1053: BS
1055: 91
1057: E8
1058: 20
1058: Cé6
105b: 10
105F: 90
1061: 60

56

34
00
AA
]y
34

3C
02

F9
02

3c
0B

F&.

8E
2F

0c
08
0D
14
08
10
0o

06

02

0o
0B
42

B4
2F
Fé
(WA

02

00

F8

Fé6

FC

63

65
66
67
68
69
70
71
72
73

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

Khkkhkkkhkkhkhkhkkhkhkhkhkkhkkhkhkhkhhkhhkhhkkhhkkkhkhkkkhhkhkkkhk

* 6502 RELOCATION SUBROUTINE
Fkk KKk d AR AR R I kI Ak Rk ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ook ok ok ok ok ok ok ok

*
RELOC

INIT

RELOC2
GETINS

XLATE

SW16RT
STINST
STINS2

LDY
LDA
Cmp
BNE
INC
LDX
LDA
STA
DEX
BPL
RTS
LDY
LDA
STA
DEY
BPL
JSR
LDX
DEX
BNE
LDA
AND
BEQ
AND
BNE
STA
JSR
LD

CPR
BNC
LD

suB
BNC
ADD
ST

RTN
LDX
LDA
STA
INX
JSR
DEC
BPL
BCC
RTS

WOZPAK Il

YSAV
IN,Y
HBAA
RELOC2
YSAV
#H$7
A1L,X
R1L,X

INIT

#$2 .
(ATL),Y
INST,Y

GETINS
INSDS2
LENGTH

XLATE
INST
H3D
STINST
#38
STINST
INST+2
SW16
FRMEND
ADR
SW16RT
ADR
FRMBEG
SW16RT
TOBEG
ADR

#30
INST, X
(A4L) Y

NXTA4

LENGTH
STINSZ2
RELOC2

-—— END ASSEMBLY ---

TOTAL ERRORS:

98 BYTES GENERATED THIS ASSEMBLY

0

;CMND BUF POINTER.
sNEXT CMND CHAR.
’.l*l?

;NO, RELOC CODE SEG.
;ADVANCE POINTER.

;MOVE BLOCK PARAMS
;FROM APPLE J[MON
JAREA TO SW16 AREA.
;R1=SOURCE BEG, R2=
;SOURCE END, R4=DEST BEG.

;COPY 3 BYTES TO
;SW16 AREA.

;CALCULATE LENGTH OF
;INST FROM OPCODE.
;0=1 BYTE, 1=2 BYTE,
;2=3 BYTE.

JWEED OUT NON ZERO-PAGE
;2 BYTE INSTS. (IMMED)
;IF ZERO~PAGE ADR
;THEN CLEAR HIGH BYTE.

;1F ADR OF ZERO-PAGE
;OR ABS IS IN SOURCE
; (FRM) BLOCK THEN
;SUBSTITUTE ADR-
;SOURCE BEG+DEST BEG.

;COPY LENGTH BYTES
;OF INST FROM
;SW16 AREA TO
;DEST SEGMENT. UPDATE
;SOURCE, DEST SEGMENT
;POINTERS. LOOP IF NOT
;BEYOND SOURCE SEG END.

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0058 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

APPLE 1C TAPE VERIFY ROUTINE

for Integer Basic
and Machine Language Programs

57

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0059 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK 11
This routine provides a method of If no errors are detected, the APPLE 1[
checking programs saved on tape against a will 'BEEP' and the appropriate prompt
program in memory. Errors can occur due character will reappear at the end of the
to a number of reasons, including defects verify.
in manufacture of the tape or improper
operation of the tape recorder. With this Should an error be found, the memory
routine, a program can be checked immed- location which does not agree with the
iately after it is saved to verify that a tape will be displayed. Next the byte in
good SAVE was accomplished. The TAPE memory Will be displayed, and then the
VERIFY routine will read the program saved byte which was read from the tape will be
on tape and check it byte for byte against shown in parenthesis.
the program in memory.
NOTE: The routine will return control
The routine s assembled to run at to the wuser after the first error is
memory location $1000, so that there is a found. After the corrections is made,
minimum of interference with other rou- the routine should be rerun to check for
tines that may need to be verified. Thus, any other errors.
it does not destroy DOS, eijther HIRES
screen, HIRES routines, or most other To observe the operation of the rou-
routines. tine, first call the routine and verify
a tape against an unchanged program. Then,
TO VERIFY AN INTEGER BASIC PROGRAM: change ONE character in the program. Call
Make sure that the program to be ver- the routine, and it will find and display
ified is in memory. the non-matching byte.
'CALL 4096' (do not hit CRETURN] yet)
Start tape in 'Play' mode. TO RELOCATE THE ROUTINE:
Hit C[RETURNJ.
Change the JSR addresses in lines 52
TO VERIFY MACHINE LANGUAGE PROGRAM: and 55 of the assembled listing. Also
Enter Monitor (CALL -151) .change the high and low address bytes
Type '1076G [RETURN]. This activates that are written into the CONTROL-Y vector
'"CONTROL=-Y"'. (33F9-83FA) as written in lines 104 and
Enter the range to be verified, I.E. 106 of the assembly listing.

'C00.C85 (CONTROL=-Y)"'.
Start tape in 'Play' mode.
Hit CRETURN]

58
| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0060 of 0138 |

N
Apple][Computer Information ¢ The Woz Pak][* 15 November 1979
WOZPAK II
2 Fedede e e e e o e ke e e ok ek ek ok ok ke e e e de ke ok ok ok ke sk e de ok ok e e ok e e e ek ok
3 * *
4 * APPLE 1L TAPE VERIFY ROUTINE *
5 * *
6 * APPLE PUGET SOUND PROGRAM LIBRARY EXCHANGE *
7 * 6708 39TH AVE. SW SEATTLE, WA 98138 «
8 * *
9 * SOURCE CODE FROM 'THE WOZPAK' *
10 * COURTESY OF S. WOZNIAK APPLE COMPUTER CO. *
1M * *
12 = DECIPHERED AND ASSEMBLED *
13 * (AND SLIGHTLY MODIFIED BY) *
14 % KEN SMITH TACOMA, WA JUNE 14,1979 *
15 * *
16 **
17«
18 CHKSUM EQU $2E
19 AL EQU $3C
20 HIMEMH EQU $4D
21 XSAVE EQU $D8
22 PPH EQU $CB
23 LSTOR EQU S$CF
26
25 BASHDR EQU $F11E
26 BASREAD EQU $F12¢C
27 HEADR EQU $FCCY
28 RDBYTE EQU $FCEC
29 RDBIT EQU S$FCFD
30 RD2BIT EQU $FCFA
31
32 NXTAT EQU SFCBA
33 CHKSUMOK EQU $FF26
34 PRERR EQU $FF2D
35 PRA1 EQU $FD92
36 couT EQU $FDED
37 PRBYTE EQU SFDDA
38 *
39 ORG $1000
40 o+
**
1000: 86 D8 42 VFYBSC STX XSAVE PRESERVE X-REG
1002: 38 43 SEC
1003: A2 FF 44 LDX #SFF
1005: B5 4D 45 GETLEN LDA HIMEMH,X CALC PROGRAM LENGTH
1007: F5 CB 46 SBC PPH,X AND STORE ($CE,$CF)
1009: 95 CF 47 STA LSTOR,X
1008: E8 48 INX
100C: FO F7 49 BEQ GETLEN
50 o«
100E: 20 1€ F1 51 JSR BASHDR SET ADRESSES FOR BASIC
1011: 20 1F 10 52 JSR TAPEVFY HEADER READ
1014: A2 01 53 LDX #301
1016: 20 2¢ F1 54 JSR BASREAD SET ADDRESSES FOR BASIC
1019: 20 1F 10 S5 JSR TAPEVFY PROGRAM READ
101C: A6 D8 56 LDX XSAVE
101E: 60 57 RTS
**
101F: 20 FA FC 59 TAPEVFY JSR RD2BIT
1022: A9 16 60 LDA #$16 SYNCRONIZE ON
1024: 20 €9 FC 61 JSR HEADR TAPE HEADER 9
| Source: Apple Computer, Inc. + Call-A.P.P.L.E. Magazine Page 0061 of 0138

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

60

1027:
1029:
102C:
102¢:
1031:
1033:
1036:
1038:
1038:
103D:
103F:
1041:
1044 :
1046:
1048

1048B:
104cC:
1040

104E :
1050:

1052:
1053:
1056:
1059:
1058B:
105€:
1060:
1063:
1065:
1068:
1069:
106C:
106E:
1071:
1073:

1076:
1078:
1078:
107D
1080:
1082:
1085:

85
20
AO
20
BO
20
AO
20
FO
45
85
20
AQ
90
4C

EA
EA
EA

c1
FO

48
20
20
81
20
A9
20
A9
20
68
20
A9
20
A9
4C

A9
8D
A9
8D
A9
8D
60

3C
EB

2D
92
3¢
DA
A0
ED
A8
ED

DA
A9
ED
8D
ED

4¢C
F8
1F
F9
10
FA

FC

FC

FC

FC

FC

FF

FF
FD

FD

FD

FD

FD

FD

FD

03

03

102
103
104
105
106
107
108

WOZPAK 1
STA CHKSUM
JSR RDZBIT
VRFY2 LDY #%24
JSR RDBIT
BCS VRFY2
JSR RDBIT
LDY #$38
VRFY3 JSR RDBYTE READ A BYTE FROM TAPE
BEQ EXTDEL (ALWAYS TAKEN)
CKSUM EOR CHKSUM UPDATE RUNNING CHECKSUM
STA CHKSUM INC A1, COMPARE TO
JSR NXTA1 A2 (CARRY SET IF >=)
LDY #$34
BCC VRFY3 LOOP UNTIL A1>A2
JMP CHKSUMOK SOUND BELL AFTER CKSUM VFY
*
EXTDEL NOP . EXTRA DELAY TO
NOP . EQUALIZE TIMING
NOP - (12 USEC)
*
CMP (A1L,X)
BEQ CKSUM BYTE MATCHES!
ek deddedededede e e e dede e ded e e ok e ek ok ok ko ke ok o e e ke ok ok A ke sk ok
PHA
JSR PRERR OUTPUT 'ERR'
JSR PRA1 OUTPUT '(AT)-!
LDA (A1L),Y
JSR PRBYTE OUTPUT CONTENTS OF A1
LDA #$A0
JSR couT OUTPUT A SPACE
LDA #SA8
JSR couTt OUTPUT ' (!
PLA
JSR PRBYTE OUTPUT BYTE FROM TAPE
LDA HSA9
JSR couT ouTPUT ")°
LDA #38D
JMP couTt OUTPUT CAR RTN AND RETURN
Kk dkdkkkhkdeddkdkkhhhkhkdkdkkhkhhhkhkdkkhkhhdkokkhhh ko kkkikkkk
CTLYINIT LDA #$4C INITIALIZE CONTROL
STA $3F8 'Y' ENTRY FOR USE WITH
LDA H<TAPEVFY MACHINE LANGUAGE
STA $3F9 ROUTINES
LDA H>TAPEVFY
STA $3FA
RTS

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0062 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

APPLE JC HI-RES GRAPHICS SUBROUTINES

61

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0063 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK I

The APPLE 1L computer comes with a
high-resolution color araphics display
mode of 280 horizontal by 192 vertical
resolution. Because 8K Bytes of RAM are
dedicated soley to maintaining the HI-RES
display, a minimum 12K system (configured
for HI-RES) 1is required to use this mode.
For practical reasons, 16K Bytes is the
strongly recommended minimum. A 6502
machine Llanguage subroutine package has
been developed to simplify efficient use
of the APPLE 1L HI-RES display for assem-
bly language and BASIC programmers. The
routines for initializing the HI-RES dis-
play, plotting points, drawing lines, and
drawing shapes are described herein.

USING THE HI-RES SUBROUTINES

Despite the fact that HI-RES graphics
commands are not built into APPLE 1L
BASIC, a convenient scheme for referencing
the subroutines and their parameters by
name has been devised.

The first statment of a program using
the HI-RES subroutines should be as fol-
lows:

0 X0=Y0=COLR=SHAPE=ROT=SCALE

The purpose of this statment is to
enter the first 6 BASIC variable names
into the variable table in a fixed se-
quence. wWwhen executed, each of the 6
parameters will be assigned storage at
fixed locations relative to the address
contajned in the BASIC ‘'start of vari-
ables' pointer (LOMEM), making them read-
ily accessable by the HI-RES subroutines.

Different parameter names may be used
provided that they retain the same number
of characters. This is necessary to in-
sure that the storage locations for each,
relative to LOMEM, do not change. For
example, the name XX could be used in
place of X0, but XCOORD could not.

The parameters SHAPE, ROT, and SCALE
are used only by the HI-RES shape draw
subroutines and may be ommitted from
programs wusing only the PLOT and LINE
features. Omitting unnecessary variable
definitions is one method of enhancing the
overall performance of some BASIC programs
on the APPLE 1L and is thus desirable.

FIRST LINE OF PROGRAMS NOT USING

THE SHPAE DRAW SUBRROUTINES

0 X0=YO=COLR

After the parameter names have bee.
defined, the HI-RES subroutine names them-
selves may be defined and assigned corres-
ponding subroutine entry addresses as
values. Calling subroutines by name is
preferable to calling them by entry ad-
dress because the entry addresses may vary
in future versions of the HI-RES sub-
routines, and names are better self doc-
umenting.

Absolute CALL CALL by name
) 5 INIT=2048

100 CALL 2048 100 CALL.INIT

200 CALL 2048 200 CALL INIT

In the above CALL by name example,
should the INIT subroutine entry address
change to -12288, only line 5 need be
changed. In the absolute call example,
lines 100 and 200 (and any others ref-
erencing the INIT subroutine) will have to
be changed. The self documenting advan-
tage of the CALL by name example should
be apparent.

The following statment lists all HI-
RES subroutine entry initializations
available to BASIC programs. Other names
may be used.

5 INIT=2048:CLEAR=2062:BKGND=2865:
POSN=2809:PLOT=2830:LINE=2836:
DRAW=2871:DRAW1=2874: XDRAW=2884:
XDRAW1=2887:FIND=2556

The allowable color specification
values may also be referenced by name, if
the initialization statment below is
incuded 1in your program. Note that GREEN
is preceeded by LET to avoid a syntax
error due to confusion with the 'GR'
command.

7 BLACK=0:LET GREEN=42:VIOLET=85:
WHITE=127

If your APPLE 1[has been modified for
additional HI-RES colors, the following
assignments are also valid.

8 ORANGE=170:BLUE=213:BLACK2=128:
WHITEZ2=255

Unnecessary variable definitions in
the program should be avoided as they will
slow some programs. Therefore, a program

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0064 of 0138 |

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

WOZPAK II

should not define VIOLET=85 unless it uses
the color VIOLET. The example given below
illustrates condensed initialization stat-
ments for a proaram using only the INIT,
PLOT, and DRAW subroutines, and the colors
GREEN and WHITE.

0 X0=Y0=COLR=SHAPE=ROT=SCALE
5 INIT=2048:PLOT=2830:DRAW=2871
7 LET GREEN=42:WHITE=127

In extreme cases, any of the following
techniques will further enhance program
performance.

color and subroutine name
Refer to colors and

(1) Omit the
initializations.

subroutines by value, not name. This
does not apply to the parameter ref-
erences.

(2) Define the most frequently used pro-
gram variable names PRIOR to the sub-
routine and color name initjalizations
(Lines 5 & 7 in the prior examples).
The example below will speed up pro-
grams extensively referencing vari-
ables I, J, and K.

0 XO0=YO=COLR=SHAPE=ROT=SCALE
2 I=J=K
5 INIT=2048:CLEAR=2062:BKGND=2865:
POSN=2809........ etc.
7 BLACK=0:LET GREEN=42:........ etc.
(3) Use the parameter names as program
variables when possible, the param-

eters are the most quickly accessed

BASIC variables.

INITIALIZATION SUBROUTINES

The normal HI-RES display consists of
a 280 horizontal by 160 vertical grid
above 4 Llines of text and is initiated
with the BASIC command:

> CALL INIT

The INIT
HI-RES display
RES subroutines.
programmer may
display, extending
a 192 Line vertical
following command:

subroutine also clears the
and initializes other HI-
After calling INIT, the
eliminate the 4 Line text
the HI-RES display to
resolution, with the

> POKE -16302,0

The 4-line text display may be re-

stored at any time as follows:
> POKE -16301,0

Valid X-coordinates vary from 0 (left-
most) to 279 (rightmost). Valid Y-coord-
inates vary from 0 (topmost) to 159 or 191
(bottommost), depending on whether or not

-the 4 Line text display is enabled.

At any time after INIT is called, the
entire HI-RES display may be cleared with
the CLEAR subroutine as shown below.

> CALL CLEAR

The HI-RES display may be quickly set
to any background color with the BKGND
subroutine. BKGND expects a color spec-
ification in the BASIC variable COLR.
The example below turns the entire HI-
RES display green.

0 X0=YO=COLR

5 INIT=2048:BKGND=2865:LET GREEN=42
10 CALL INIT

20 COLR=GREEN
30 CALL BKGND

40 END

Only the colors previously mentioned
(BLACK, GREEN, VIOLET, and WHITE)* may be
specified in COLR. Do not make up your
own. For example, COLR=YELLOW 1is not
allowed.

If COLR is greater than 255 when BKGND
is called, a range error will occur. The
message '"***RANGE ERR" will be displayed
and the program will halt.

POINTS AND LINES

The PLOT subroutine is used to plot a
single point of the HI-RES display in a
specified color. COLR must be less than
255, X0 must be 0 to 279, YO must be 0 to
191 when PLOT is called or a range error
will result and the program will halt.
The proaram below plots one white dot at
X-coordinate 35, and Y-coordinate 55 (35,
55) and one at (85,90).

0 X0=YO=COLR

5 INIT=2048:PLOT=2380:WHITE=127
10 CALL INIT

20 COLR=WHITE
30 X0=35:Y0=55:CALL PLOT
40 X0=85:Y0=90:CALL PLOT

50 END
63

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0065 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK 11
Connecting any two coordinates with a

straight Lline 1is almost as easy as plot-
ting points. After plotting one end point
as shown in the example above, the other
end point 1is specified 1in X0 and YO and
the LINE subroutine dis called. As with
the PLOT subroutine, COLR must be Lless
than 256, X0 must be 0 to 279, and YO
must be 0 to 191 or a range error will
result and the program will halt. The
following example draws a white Line from
(35,40) to (170,100), a green line from
(270,10) to (5,145), and a violet line
from (20,70) to (190,110).

0
5

10
20
25
30
35
40
45
50

X0=Y0=COLR
INIT=2048:PLOT=2830:LINE=2836:
LET GREEN=42:VIOLET=85:WHITE=127
CALL INIT
COLR=WHITE:X0=35:Y0=40:CALL PLOT
X0=170:Y0=100:CALL LINE
COLR=GREEN:X0=270:Y0=10:CALL PLOT
X0=5:Y0=145:CALL LINE
COLR=VIOLET:X0=20:Y0=70:CALL PLOT
X0=190:Y0=110:CALL LINE

END

The following example illustrates that

the parameter variables may be used as FOR
loop indices. Horizontal violet Llines are
drawn on a green background at every tenth
vertical coordinate.

0
5

10
20
30
40
50
60

X0=Y0=COLR
INIT=2048:BKGND=2865:PLOT=2830:
LINE=2836:LET GREEN=42:VIOLET=85
CALL INIT

COLR=GREEN:CALL BKGND

COLR=VIOLET

FOR Y0=5 TO 155 STEP 10
X0=10:CALL PLOT:X0=270:CALL LINE
NEXT YO:END

Multiple Llines which are connected

endpoint to endpoint may be drawn without
intervening PLOT calls. In the example
below, a white Lline connects (10,20) to
(250,70), and a green line connects (250,
70) to (20,150), and a violet line con-
nects (20,150) to (260,30).

0
5

10
20
30
40
50
60
64

X0=Y0=COLR
INIT=2048:PLOT=2830:LINE=2836:

LET GREEN=42:VIOLET=85:WHITE=127
CALL INIT
COLR=WHITE:X0=10:Y0=20:CALL PLOT
X0=250:Y0=70:CALL LINE
X0=20:Y0=150:COLR=GREEN:CALL LINE
X0=260:Y0=30:COLR=VIOLET:CALL LINE
END

CAUTION

Do not attempt to draw a Line prior to
the first PLOT. Because the first end-
point has not been defined, the Line may
be drawn in random memory locations, not
necessarily restricted to the screen
memory.

DRAWING SHAPES

Up to 255 different shapes may be
defined, edited, and saved with the SHAPE-
GEN program, avajlable from APPLE. (See
HIRES Shape Generator program-next sect.)
After loading the HI-RES subroutines such
a 'shape tape' (containing a shape table)
may be read as follows:

1. Position shape tape in recorder.

2. Load shape tape with the BASIC
COMMAND: >CALL 3001

3. Start the recorder (PLAY). The
above command immediately begins
reading tape.

4. Wait for two beeps.

Shape tables always load at address
$C00 with the HI-RES subroutines located
at $800-3BFF. Upon loading a shape table,
the BASIC 'start of variables' pointer
(LOMEM) is set to contain the address of
the Llocation immediately following the
Llast shape table byte.

If not enough free memory is avail-
able to contain the shape table then the
message '***MEM FULL ERR' will be given.
If no beep is heard when loading a shape
table then something is probably wrong
with the tape connection and you will
have to hit RESET and re-enter BASIC. 1If
you hear a single beep and then the system
hangs, it means your shape tape is prob-
ably bad, and after hitting RESET and
re-entering BASIC, you may have to restore
the LOMEM setting to $C00 (3072) with the
command: >LOMEM:3072.

The DRAW subroutine is used to display
any of the predefined shapes included in
the current shape table. The origin, or
'beginning point', of the shape is spec-
ified in X0 and Y0, and the color is
specified in COLR, as with PLOT. The
shape number desired 1is specified in
SHAPE. For example, SHAPE=3 specifies
that the third shape of the current shape
table is to be drawn. A scale factor is
specified in the variable SCALE and a
rotation 1in ROT. A scale factor of 4
implies a shape 4 times the defined size.

Source: Apple Computer, Inc. + Call-A.P.P.L.E. Magazine Page 0066 of 0138 |
\,

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK 1I
A scale factor of 0 is always interpreted 0 XO0=Y0=COLR=SHAPE=ROT=SCALE
as 256. 5 INIT=2048:XDRAW=2884
ROT=0 (no rotation) 10 CALL INIT
20 X0=140:Y0=80:SHAPE=3:SCALE=2
30 R=0:GO0TO 60:REM DRAW FIRST SHAPE
ROT=48 /’:;\ ROT=16 40 R=PDL(0):IF R=ROT THEN GOTO 30
(270 deg.CW) \\~,/ (90 DEG.CwW) 50 CALL XDRAW:REM ERASE AT OLD ROT
60 ROT=R:CALL XDRAW:REM DRAW AT NEW ROT
- 70 GOTO 40:REM CHECK FOR ROT CHANGE
ROT=32 (180 deg.CW) 80 END
COLR must be O to 255, X0 must be O DRAWT and XDRAW1 are identical to DRAW

to 279, YO must be O to 191, ROT must be and XDRAW respectively, except that the
0 to 255 (due to MOD 64 arithmetic, ROT=64 most recently plotted (or drawn) point

is equivalent to ROT=0), SCALE must be O serves as the shape origin and the current

to 255, and SHAPE must be greater than color is not updated. Thus, X0,Y0, and

zero and less than or equal to the current COLR are not specified.

number of shape table shapes, or else a

range error will result when DRAW is If you draw a shape and then wish to

called and the program will halt. 1In draw a Lline from the final plot position

other words, the programmer will always of that shape to a fixed coordinate, you

be notified 1if HI-RES subroutines are may do so. After drawing the shape, you

called with any invalid parameters. must call FIND prior to calling LINE. The
FIND subroutine determines the X-Y co-

The following program example draws ordinates of the final shape plot position

shape number 3 in white at a 90 degree (or current plot position if used after

clockwise rotation and a scale factor of other subroutines) and uses it as the

2. The origin is at (140,80). It is beginning endpoint of the following call

assumed that a shape table with at Lleast to LINE. The following program example

3 shape definitions has been loaded. draws a shape and then a violet Line from
the final plot position of the shape to

0 X0=YO=COLR=SHAPE=ROT=SCALE (10,25).

5 INIT=2048:DRAW=2871

7 WHITE=127 0 X0=Y0=COLR=SHAPE=ROT=SCALE

10 CALL INIT 5 INIT=2048:LINE=2836:DRAW=2871:

20 X0=140:Y0=80:COLR=WHITE FIND=2556

30 SHAPE=3:ROT=16:SCALE=2 7 VIOLET=85:WHITE=127

40 CALL DRAW 10 X0=140:Y0=80:COLR=WHITE : SHAPE=3

50 END ROT=0:SCALE=1:CALL DRAW

20 CALL FIND
The XDRAW subroutine is identical in 30 X0=10:Y0=25:COLR=VIOLET:CALL LINE
operation to the DRAW subroutine except 40 END
that the defined shape is exclusive-ORed

onto the screen. The EX~0R operation

complements all screen memory bits of the COLLISIONS

shape, 0's become 1's and vice-versa. Overlapping shapes define points of
No color need be specified. A unigue 'collision'. The DRAW and XDRAW sub-
property of XDRAW 1dis that 2 successive routines return a collision count in the
calls with identical parameters will first absolute Llocation $32A (810 decimal).
cause a shape to be drawn (in white) and The collision count will be constant for
then erased. The following program ex- a fixed shape, rotation, scale, and back-
ample causes the rotation of shape number ground, provided that no collisjons with
3 to track paddle O. XDRAW is used for other shapes are detected. The difference
both the draw and erase operations. Al- between the 'standard' collision value and
though the color is optional, the variable the encountered value (while drawing a
COLR may not be omitted from the parameter shape) is a true collision indicator.
declarations (line 0), or the SHAPE, ROT,

and SCALE parameters will not be assigned 100 CALL DRAW

storage in their standard locations rel-

ative to LOMEM. 1710 COUNT=PEEK (810)

65

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0067 of 0138 |

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

WOZPAK It

The HI-RES subroutines may be append-

ed to an INTEGER BASIC program, using the
PACK&LOAD routine that appears elsewhere
in this book, making a two-step loading
unnecessary.
SUMMARY
SUBROUTINE CALL-ADDRESS PARAMETERS
INIT 2048
CLEAR 2062
BKGND 2865 COLR
POSN 2809 X0, YO, COLR
PLOT 2830 X0, YO, COLR
LINE 2836 X0, YO, COLR
DRAW 2871 X0, YO, COLR
SHAPE, ROT, SCALE
DRAW1 2874 SHAPE, ROT, SCALE
XDRAW 2884 X0, YO, COLR
SHAPE, ROT, SCALE
XDRAW1 2887 SHAPE, ROT, SCALE
FIND 2556
SHAPE LOAD 3001
For NO TEXT display————-——--——- POKE -16302,0
For mixed GRAPHICS/TEXT-—~--- POKE -16301,0

Select secondary screen display—-—-——------
- POKE -16299,0
Select primary screen display=========c=-~
POKE -16300,0
Select secondary screen plotting——=-===—---
POKE 806,64

Select primary screen plotting——-—-——=====-
POKE 806,32

(Defaults are: GRAPHICS/TEXT, primary
screen display., and primary screen
plotting)

Collision Detect (shape draw only)-=-—-----
PEEK (810)

HIGH-RES SUBROUTINES SEGMENT MAP
CODE $800-$9E8
DATA $9E9-39FB
CODE $9FC-$BFF

HI-RES PARAMETER LOCATIONS
(beyond LOMEM)

PARAMETER Locations beyond LOMEM
X0 $05, $06
YO $0C, 30D
COLR $15, $16
SHAPE $1F, $20
ROT $27, $28
SCALE $31, %32
Note: Each parameter is two bytes in
Llength. The Llow-order byte is
stored in the Llesser of the two

locations assigned.
66

HCOLOR

COLOR EVEN HNDX ODD HNDX

BLACK 00000000 000O0O0O0O0O

GREEN 00101010 01010101

VIOLET 01010101 00101010

WHITE 01111111 01111111

BLACK?2 170000000 10000000

ORANGE 170101010 11010101

BLUE 171010101 10101010

WHITE? 171111111 11111111

HI-RES INTERNAL VARIABLES

SHAPEL, SHAPEH ($1A, $1B) On-the-fly
shape pointer.

HCOLOR1 ($10) on-the-fly color byte.

COUNTH ($1D) High-order byte of step
count for LINE.

HBASL, HBASH ($26, $27) On-the-fly base
address.

HMASK ($30) On-the-fly BIT MASK.

QDRNT ($53) 2 LSB's are rotation quad-
rant for DRAW.

XOL, XOH ($320, $321) Most recent X-
coordinate. Used for 1initial end-
point of LINE. Updated by PLOT,
LINE, and FIND; not DRAW.

YO ($322) Most recent Y-coordinate (see
XOL, XOH).

BXSAV ($323) Saves 6502 X-Register dur-

ing HI-RES calls from BASIC.

HCOLOR ($324) color specification to
PLOT, POSN.

HNDX ($325) On-the-fly byte index from
BASE ADDRESS.

HPAG ($326) Starting page of plot mem-
ory. Normally $20 for plotting in
primary HI-RES display memory ($2000-
$3FFF).

SCALE ($327) On-the-fly scale factor for
DRAW.

SHAPXL, SHAPXH ($328, $329) 'Start of

shape table' pointer.

COLLSN ($32A) Collision count for DRAW
and XDRAW.

NOTES:

this article was written, APPLE

Company made a production change
APPLE 1L. Only the early APPLE 1C
computers displayed 2 HI-RES colors (be-
sides Black and White). See the HI-RES
Color Modification article for information
on the additional colors available on the
later models.

(x) Since
Computer
in the

The APPLESOFT programming manual has
further information on the creation of
SHAPE TABLES and SHAPE TAPES. Refer to
Chapter 9 for further information.

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0068 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK Hl
2 Fe vk s e Fe e v e ok e e ok ok sk e ok ok vl o e g ek ok e e e ek o
3 * *
4 * APPLE JC HI-RESOLUTION *
5 * GRAPHICS SUBROUTINES *
6 * *
7 * BY wW0Z 9/13/77 *
8 * *
9 * ALL RIGHTS RESERVED *
10 * : *
11 oo dede e e A et e de g e de sk e sk g e de de de de ok o e e e de e ek
12 *
13 * HI-RES EQUATES
14 *
15 SHAPEL EQU $1A POINTER TO
16 SHAPEH EQU $18 SHAPE LIST.
17 HCOLOR1 EQU $1C RUNNING COLOR MASK.
18 COUNTH EQU $1D
19 HBASL EQu $26 BAS ADR FOR CURRENT
20 HBASH EQU $27 HI-RES PLOT LINE.
21 HMASK EQU $30
22 AL EQU $3C MONITOR A1l.
23 A1TH EQU $30
24 A2L EQU $3E MONITOR A2.
25 AZH EQU $3F
26 LOMEML EQU $4A BASIC 'START OF VARS'.
27 LOMEMH EQU $4B
28 DXL EQU $50 DELTA-X FOR HLIN, SHAPE.
29 DXH EQU $51
30 SHAPEX EQU $51 SHAPE TEMP.
31 DY EQU $52 DELTA-Y FOR HLIN, SHAPE.
32 QDRNT EQU $53 ROT QUADRANT (SHAPE).
33 EL EQU $54 ERROR FOR HLIN.
34 EH EQU $55
35 PPL EQU 3CA BASIC 'START OF PROG'.
36 PPH EQU $CB
37 PVL EQU $CC BASIC 'END OF VARS'.
38 PVH EQU $CD
39 ACL EQU $CE BASIC ACC.
40 ACH EQU $CF
41 XoL EQU $320 PRIOR X-COORD SAVE
42 XOH EQU $321 AFTER HLIN OR HPLOT.
43 YO EQU $322 HLIN, HPLOT Y-COORD SAVE.
44 BXSAV EQU $323 X-REG SAVE FOR BASIC.
45 HCOLOR EQU $324 COLOR FOR HPLOT, HPOSN.
46 HNDX EQU $325 HORIZ OFFSET SAVE.
47 HPAG EQU $326 HI-RES PAGE (320-NORM).
48 SCALE EQu $327 SCALE FOR SHAPE, MOVE.
49 SHAPXL EQU $328 START OF
50 SHAPXH EQU $329 SHAPE TABLE.
51 COLLSN EQU $32A COLLISION COUNT.
52 SHSTRT EQU $C00 START OF SHAPE TABLE.
53 HIRES EQU $C057 SWITCH TO HIRES SCREEN.
54 MIXSET EQU $C053 SELECT TEXT/GRAPHICS.
55 TXTCLR EQU $¢050 SELECT GRAPHICS MODE.
56 MEMFULL EQU $E36B BASIC 'MEM FULL ERR'.
57 RANGERR EQU $EEH8 BASIC 'RANGE ERR'.
58 ACADR EQU $F11E 2-BYTE TAPE READ SETUP.
59 RD2BIT EQU $FCFA TWO-EDGE TAPE SENSE.
60 READ EQU $FEFD TAPE READ (A1.A2).
61 READX1 EQU $FF02 READ WITHOUT HEADER.

67

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0069 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

0800:
0802:
0805:
0808:
080B:
080E =
0810:
0812:
0815
0817:
0819:
0818B:
081D:
081F:
0822:
0823:
0825:
0827:
0829:
0828B:
082D:

082E:
0831:
0834:
0837:
0838:
083A:
083C:
083D:
083E:
0840:
0842:
0843:
0845:
0846:
0847:
0848:
084A:
0848B:
084D:
084E:
0850:
0852:
0854:
0857:
0859:
085A:

085cC:
68

A9
8b
AD
AD
AD
A9
85
AD
85
AQ
84
A5
91
20
c8
DO
E6
AS
29
DO
60

20
26 03
57 cO
53 cO
50 co
00
1c
26 03
18

1A
1C
1A
A2 08

Fé
18
18
1F
EE

22 03
20 03

co
26

26
26

27

27
27

26
27
1F
26 03
27

00
05

93

95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

WOZPAK II
Fkdokddededhkdkokk ko dh gk ke kokok ook ke dkk ko ok ko ke ke k ok
* HIGH RESOLUTION GRAPHICS INITS
* RAM VERSION $800 TO $BFF
Fkkkdkkkdkkhdhhhhkhkhkkhkkkhhhhkkdkdkhhrhkkkhkkkkhhkk
*

ORG $800
*

SETHRL LDA #$20 INIT FOR $2000-3FFF

STA HPAG HI-RES SCREEN MEMORY.

LDA HIRES SET HIRES DISPLAY MODE

LDA MIXSET WITH TEXT AT BOTTOM.

LDA TXTCLR SET GRAPHICS MODE.
HCLR LDA #30

BKGNDO STA HCOLOR1 SET FOR BLACK BKGND.
BKGND LDA HPAG

STA SHAPEH INIT HI-RES SCREEN MEM
Loy #3%0 FOR CURRENT PAGE, NORMALLY
STY SHAPEL $2000-3FFF OR $4000-5FFF.

BKGND1 LDA HCOLOR?
STA (SHAPEL),Y

JSR CSHFTZ2 (SHAPEL ,H) WILL SPECIFY
INY ; 32 SEPERATE PAGES

BNE BKGND1 THROUGHOUT THE INIT.
INC SHAPEH

LDA SHAPEH

AND H#31F TEST FOR DONE.

BNE BKGND1

RTS

*
Fhkkdkkkkhkkhkhkhkkhhhhhkhkhhkkrkhkkhhkhkkhkdkkhkkhkkkkhhhk
* HI-RES GRAPHICS POSITION AND PLOT SUBRS
FhhhkhkkkhhkhkkhhkhkhhkhhkkhhhhAkdkkkhhhkdkkkrrkkdkkk
*

HPOSN STA YO ENTER WITH Y IN A-REG,
STX XOL XL IN X-REG,
STY XOH AND XH IN Y-REG.
PHA
AND #$C0
STA HBASL FOR Y-COORD=00ABCDEF
LSR ; CALCULATES BASE ADDR
LSR ; IN HABSL,HBASH FOR
ORA HBASL ACCESSING SCREEN MEMORY
STA HBASL VIA (HBASL),Y
PLA ; ADDRESSING MODE.
STA HBASH
ASL ; CALCULATES
ASL ; HBASH=PPPFGHCD,
ASL ; HBASL=EABABOOO
ROL HBASH
ASL ; WHERE PPP=001 FOR $2000
ROL HBASH SCREEN MEM RANGE AND
AsSL ; PPP=010 FOR $4000-7FFF
ROR HBASL GIVEN Y-COORD=ABCDEFGH
LDA HBASH
AND #31F
ORA HPAG
STA HBASH
TXA ; DIVIDE XO BY 7 FOR
CPY #30 INDEX FROM BASE ADR
BEQ HPOSN2 (QUOTIENT) AND BIT

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0070 of 0138 |

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

085e: AO
0860: 69
0862: 8
0863: E9
0865: B8O
0867: 8C
086A: AA
086B: BD
086E: 85
0870: 98
0871: 4A
0872: AD
0875: 85
0877: BO
0879: 60
087A: 20
087D: AS
087F: 51
0881: 25
0883: 51
0885: 91
0887: 60
0888: 10
088A: A5
088C: 4A
088p: BO
088F: 49
0891: 85
0893: 60
0894: 88
0895:. 10
0897: AD
0899: A9
0898: 85
089D: 8¢
08A0: AS
08A2: DA
08A3: (9
08A5: 10
08A7: AS
08A9: 49
08AB: 85
08ap: 60
08AE: A5
0880: O0A
0881: 49
0883: 30
08B5: A9
0887: (8
0888: cO
088A: 90
088C: AD
08BE: BO
08c0: 18

23
04

07
FB8
25

EA
30

24
1C
29

2E
1c
26
30
26
26

24
30

05
co
30

02
27
€0
30
25
1c

co
06
1c
7F
1c

30

80
nC
81

28
DF
00
DB

03

08

03

08

03

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

149

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

HPOSN1
HPOSN2

HPOSN3

HPLOT
HPLOT1

*
*

WOZPAK II

LDY #%23

ADC #34

INY

SeC Hs7

BCS HPOSN1
STY HNDX

TAX ;

LDA MSKTBL-%F9,X
STA ~ HMASK

TYA

LSR

LDA HCOLOR
STA HCOLOR1
BCS CSHFT2
RTS H

JSR HPOSN

LDA HCOLOR1
EOR (HBASL),Y
AND HMASK

EOR (HBASL) , Y
STA (HBASL) ,Y
RTS :

r

WITHIN SCREEN MEM BYTE
(MASK SPEC'D BY REM'DR,

SUBTRACT OUT SEVENS.

WORKS FOR X0 FROM

0 TO 279, LOW-ORDER
BYTE IN X-REG, HIGH
IN Y-REG ON ENTRY.

IF ON ODD BYTE (CARRY SET)
THEN ROTATE (%)
BIT FOR 180 DEGREE SHIFT
PRIOR TO COPY TO (*)

CALC BIT POSN IN HBASL,H
HNDX, AND HMASK FROM
Y-COORD IN A-REG,
X~COORD IN X,Y-REGS.

FOR ANY '1' BITS OF H(*)
SUBSTITUTE CORRESPONDING

BIT OF HCOLORT.

Fhkhkkkkkkhkkhhkhkhhhkhhkkkhkrhkkkhkrhhkhkikhhkikrkikkkk

* HI-RES GRAPHICS L,R,U,D SUBRS
dkk kg gk dodedekdkdedededk sk dede ko ke ok ko ok ok e dede e sk o ok e oo ok ok ok ok

*

LFTRT
LEFT

LR1
LEFT1
LEFT2
NEWNDX

CSHIFT
CSHFT2

RTS1
RIGHT

LRUDX1

BPL
LDA
LSR
BCS
EOR
STA
RTS
DEY
BPL
LDY
LDA
STA
STY
LDA
ASL
CMP
BPL
LDA
EOR
STA
RTS
LDA
ASL
EOR
BMI
LDA
INY
CPY
BCC
LDY
BCS
cLe

RIGHT
HMASK

r
LEFT1
#3$C0
HMASK

LEFT2
#$27
#$C0
HMASK
HNDX
HCOLOR1

r

#3$CO
RTS1
HCOLOR1
HSTF
HCOLOR1

HMASK

#3380
LR1
#$81

#328
NEWNDX
#30
NEWNDX

r

USE SIGN FOR LFT/RT SUBR.

SHIFT LOW-ORDER
7 BITS OF HMASK
ONE BIT TO LSB.

DECR HORIZ INDEX.
WRAP AROUND SCREEN.
NEW HMASK, RIGHTMOST
DOT OF BYTE.
UPDATE HORIZ INDEX.
ROTATE LOW-ORDER
7 BITS OF HCOLOR1
ONE BIT POSN.

ZXYXYXYX —> ZYXYXYXY

SHIFT LOW ORDER

7 BITS OF HMASK
ONE BIT TO MSB.

NEXT BYTE.
WRAP AROUND SCREEN IF

ALWAYS TAKEN.
NO 90 DEG ROT (X-QR).

(%)

69

| Source: Apple Computer, Inc.

» Call-A.P.P.L.E. Magazine

Page 0071 of 0138

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK I
08C1: A5 51 185 LRUDX2 LDA SHAPEX
08C3: 29 04 186 AND #3$4 IF B2=0 THEN NO PLOT.
08C5: Ff0 27 187 BEQ LRUD4
08C7: A9 7F 188 LDA HSTF FOR EX-OR INTO SCREEN (%)
08C9: 25 30 189 AND HMASK
08cB: 31 26 190 AND (HBASL),Y SCREEN BIT SET?
08Cb: DO 18 191 BNE LRUD3
08CF: EE 2A 03 192 INC COLLSN
08p2: A9 7F 193 LDA #S$7F
08D4: 25 30 194 AND HMASK
08p6: 10 12 195 BPL LRUD3 ALWAYS TAKEN.
08p8: 18 196 LRUD1 cLC ; NO 90 DEG ROT.
0809: A5 51 197 LRUD2 LDA SHAPEX
08bB: 29 04 198 AND #S$4 IF B2=0 THEN NO PLOT.
08bb: FO OF 199 BEQ LRUD4
08DF: B1 26 200 LDA (HBASL) , Y
08E1: 45 1cC 201 EOR HCOLOR1 SET HI-RES SCREEN BIT
08E3: 25 30 202 AND HMASK TO CORRESPONDING HCOLOR.
08E5: DO 03 203 BNE LRUD3 IF BIT OF SCREEN CHANGES,
08E7: EE 2A 03 204 INC COLLSN THEN INCR COLLSN DET.
08EA: 51 26 205 LRUD3 EOR (HBASL) ,Y
08EC: 91 26 206 STA (HBASL) ,Y
08EE: A5 51 207 LRUD4 LDA SHAPEX ADD QUADRANT TO
08F0: 65 53 208 ADC QDRNT SPECIFIED VECTOR
08F2: 29 03 209 AND #$3 AND MOVE LFT, RT,

210 EQ3 EQU *-1 UP, OR DOWN BASED
08F4: (€9 02 211 P H$2 ON SIGN AND CARRY.
08F6: 6A 212 ROR
08F7: BO 8F 213 LRUD BCS LFTRT
08F9: 30 30 214 UPDWN BMI DOWN& SIGN FOR UP/DOWN SELECT.
08FB: 18 215 UP CLC
08FC: AS 27 216 LDA HBASH CALC BASE ADDRESS
O8FE: 2C EA 09 217 BIT EQ1C (ADR OF LEFTMOST BYTE)
0901: DO 22 218 BNE UP4 FOR NEXT LINE UP
0903: 06 26 219 ASL HBASL IN (HBASL,HBASH)

0905: BO 1A 220 BCS uP2 WITH 192-LINE WRAP AROUND.
0907: 2C F3 08 221 BIT EQ3

090A: FO OS5 222 BEQ UP1

g90C: 69 1F 223 ADC H31F *kkk BIT MAP k%

090e: 38 224 SEC

090F: B0 12 225 BCS UP3 FOR ROW = ABCDEFGH

0911: 69 23 226 UP1 ADC #$23

0913: 48 227 PHA

0914: A5 26 228 LDA HBASL HBASL=EABABOOO

0916: 69 BO 229 ADC #$80 HBASH=PPPFGHCD

0918: 80 02 230 BCS UPS

091A: 69 FO 231 ADC #$FO WHERE PPP=001 FOR PRI (%)
091c: 85 26 232 UPS STA HBASL HI-RES PAGE ($2000-3FFF).
091e: 68 233 PLA

091F: BO 02 234 BCS UP3

0921: 69 1F 235 uP2 ADC H$1F

0923: 66 26 236 UP3 ROR HBASL

0925: 69 FC 237 UP4 ADC HS$FC

0927: 85 27 238 UPDWN1 STA HBASH

0929: 60 239 RTS

092A: 18 240 DOWN CLC

0928: A5 27 241 DOWN4& LDA HBASH -

092D: 69 04 242 ADC #%4 CALC BASE ADR FOR NEXT (%)

243 EQ4 EQU *-1 DOWN TO (HBASL ,HBASH).
092F: 2C EA 09 244 BIT EQ1C

70

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0072 of 0138 |

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

0932:
0934
0936:
0938:
093A:
0938:
093E:
0940:
0942:
0944 :
0946:
0948:
094A:
094C:
094F:
0951:
0953:
0955:

0957:
0958:
095A:
095D:
0960:
0963:
0964:
0965:
0966:
0969:
096A:
0968:
096E:
0970:
0972:
0973:
0975:
0977:
0978:
097A:
097cC:
097E:
0980:
0981:
0983:
0985:
0986:
0989:
098C:
098D:
098E:
0991:
0993:
0995:
0997:
0999:
099¢C:

48
A9
8D
8D
8D
68
48
38
ED
48
8A
ED
85
80
68
49
69
48
A9
ES
85
85
68
85
85
68
&b
8E
98
18
ED
90
49
69
85
8C
66

2E 09

26 03

00

20 03
21 03
22 03

20 03

21 03
53
0A

FF
01

0o
53
51
55

50
54

20 03
21 03

22 03
04
FF
FE
52
22 03
53

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

266

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

DOWN3

DOWN1
DOWNZ2

*

hhkkkkhkkkhkkkhkhkkhkhkhkhkhkhhkhkkhkhkkkhkhkhkhkkhkkkkhkkkhkkhkikkk

* HI-RES GRAPHICS LINE DRAW SUBRS
Fkkdkkkhkkkdkkkhkhhkhkhkhhkhkhhhkhhkkhkhkrrrhhkkkrhhkhkk

*
HLINRL

HLIN

HLINZ

HLIN3

WOZPAK (I

BNE
ASL
BCC
ADC
cLC
BIT
BEQ
LDA
ADC
EOR
BEQ
EOR
STA
LDA
BCC
ADC
ROR
BCC

PHA
LDA
STA
STA
STA
PLA
PHA
SEC
SBC
PHA
TXA
SBC
STA
BCS
PLA
EOR
ADC
PHA
LDA
sS8C
STA
STA
PLA
STA
STA
PLA
STA
STX
TYA
CLC
SBC
BCC
EOR
ADC
STA
STY
ROR

UPDWN1
HBASL
DOWN1
#3EQ

EQ4
DOWNZ2
HBASL
#350
#$FO
DOWN3
#3$FO0
HBASL
HPAG
DOWN2
H$EOD
HBASL
UPDWN1

#30
XoL
XOH
YO

N DK N N
(=
r

XOH
QDRNT
HLINZ

HSFF
#%$1

#$0
QDRNT
DXH
EH
DXL
EL

XoL
XOH

YO
HLIN3
HSFF
HSFE
DY

Yo
QDRNT

WITH 192-LINE WRAPAROUND.

SET (XOL,XOH) AND

ON ENTRY:

CALC ABS(X-X0)

X DIR TO SIGN BIT

INIT (EL,EH) TO

CALC -ABS(Y-Y0)-1

ROTATE Y DIR INTO

YO TO ZERO FOR
REL LINE DRAW
(bX,DY).

XL: A-REG
XH: X-REG
Y: Y-REG

IN (DXL,DXH).

OF QDRNT.
0=RIGHT (DX POS)
1=LEFT (DX NEG)

ABS (X-X0)

IN DY.

QDRNT SIGN BIT

(0=UP, 1=DOWN)
"

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0073 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK I
099€E: 38 307 SEC
099F: ES5 50 308 SBC DXL INIT (COUNTL, COUNTH)
09A1: AA 309 TAX TO -(DELTX, DELTY+1)
09A2: A9 FF 310 LDA H#SFF -
09A4: ES 51 311 SBC DXH
09A6: 85 1D 312 STA COUNTH
09A8: AC 25 03 313 LDY HNDX HORIZ INDEX.
09AB: BOD 05 314 BCS MOVEX2 ALWAYS TAKEN.
09AD: OA 315 MOVEX ASL MOVE IN X-DIR. USE
09AE: 20 88 08 316 JSR LFTRT QDRNT B6 FOR LFT/RT SET.
0981: 38 317 SEC
09B2: A5 S4 318 MOVEX2 LDA EL ASSUME CARRY SET.
09B4: 65 52 319 ADC DY (EL,EH)-DELTY TO (EL,EH)
09B6: 85 54 320 STA EL NOTE: DY IS (-DELTY)-1
09B8: A5 55 321 LDA EH CARRY CLR IF (EL,EH)
09BA: E9 00 322 SBC #3%0 GOES NEG.
09BC: 85 55 323 HCOUNT STA EH
09BE: B1 26 324 LDA (HBASL),Y SCREEN BYTE.
09C0: 45 1C 325 EOR HCOLOR1 PLOT DOT OF HCOLOR1.
09C2: 25 30 326 AND HMASK CURRENT BIT MASK.
09C4: 51 26 327 EOR (HBASL),Y
09Cc6: 91 26 328 STA (HBASL),Y
09c8: ES8 329 INX DONE (DELTX+DELTY)
09C9: DO 04 330 BNE HLIN4 DOTS?
09cB8: E6 1D 331 INC COUNTH
09cd: FO 6B 332 BEQ@ RTS2 YES, RETURN.
09CF: A5 S3 333 HLING LDA QDRNT FOR DIRECTION TEST.
0901: B0 DA 334 BCS MOVEX IF CAR SET, (EL,EH) PLOT
09D3: 20 F9 08 335 JSR UPDWN IF CLR, NEG, MOVE (%)
09D6: 18 336 cLC
09p7: AS S4 337 LDA EL (EL,EH)+DELTX
09p9: 65 S0 338 ADC DXL TO (EL,EH).
09pB: 85 54 339 STA EL
09DD: A5 S5 340 LDA EH CAR SET IF (EL,EH) GOES
09DF: 65 51 341 ADC DXH (%)
09E1: 50 D9 342 BVC HCOUNT ALWAYS TAKEN.
09E3: 81 82 84 343 MSKTBL HEX 818284
09E6: 88 90 AD 344 HEX 8890A0
09€9: O 345 HEX €O
09EA: 1C 346 EQIC HEX 1C -
09EB: FF FE FA 347 (COS HEX FFFEFA
09EE: F4 EC E1 348 HEX F4ECE1
09F1: D4 C5 B4 349 HEX D4C5B4
09F4: A1 8D 78 350 HEX A18D78
09F7: 61 49 31 351 HEX 614931
09FA: 18 FF 352 HEX 18FF

353 *

khkkhkkkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkkkhhkhkhkhkhkkhkkhkhkhkhkhkkk

355 * HI-RES GRAPHICS COORDINATE RESTORE SUBR
Kddhkkdkdkk ok dekdk ke dek ok dek ok ok ke ke k ko ok ek ok ok ok ok ke ok ok

357 %

09FC: A5 26 358 HFIND LDA HBASL CONVERTS BASE ADDR
09FE: DA 359 ASL
09FF: AS 27 360 LDA HBASH TO Y-COORD.
0AD1: 29 03 361 AND #$3
0AD3: 2A 362 ROL FOR HBASL=EABABOOO
0AO4: 05 26 363 ORA HBASL HBASH=PPPFGHCD
DAO6: OA 364 ASL T
0AG7: OA 365 ASL GENERATE

1 0AD8: O0A 366 ASL Y-COORD=ABCDEFGH

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0074 of 0138 |

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

0AQ9:
0AOC:
OAOQE :
0AOQF:
0A10:
0A12:
0A15:
0A18:
0A1B:
0A1C:
OA1F:
0A20:
0A21:
0A22:
OA24:
0A26:
OA27:
0A28:
0A2A:
OA2D:
0OA2E:
OA2F:
0A32:
0A34:
0A37:
0A3A:

0A3B:
0A3D:
OA3F:
0A40:
0A41:
0A42:
0A43:
OA44:
OA46:
0A47:
0A49:
OA4A:
0A4D:
OA4F:
OA51:
0AS2:
0A55:
0AS6:
0AS58:
0ASB:
OAS5D:
0A60:
OA62:
0Ab4:
0A66:
0A68:
OAbA:
0A6D:
0A6F:

8D
AS
4A
4A
29
0o
8D
AD
0A
6D
0A
AA
CA
A5
29
E8
4A
DO
8D
8A
18
6D
90
EE
8D
60

86
84
AA
4A
4A
4A
4A
85
8A
29
AA
BC
84
49
AA
BC
c8
84
AC
A2
8E
A1
85
A2
86
86
AE
AS
38

22 03 368
27 369
370
37
07 372
22 03 373
22 03 374
25 03 375
376
25 03 377
378
379
380
30 381
7F 382
383
384
FC 385
21 03 386
387
388
25 03 389
03 390
21 03 391
20 03 392
393
394
396
398
1A 399
1B 400
401
402
403
404
405
53 406
407
OF 408
409
EB 09 410
50 411
OF 412
413
EC 09 414
415
52 416
25 03 417
00 418
2A 03 419
1A 420
51 421
80 422
54 423
55 424
27 03 425
54 426
427

WOZPAK (I

STA YO

LDA HBASH

LSR H

LSR 3

AND He7

ORA YO

STA YO

LDA HNDX

ASL ;

ADC HNDX

ASL ;

TAX ;

DEX

LDA HMASK

AND HETF
HFIND1 INX

LSR

BNE HFIND1

STA XOH

TXA

CLC ;

ADC HNDX

BCC HFINDZ2

INC XOH
HFIND2 STA XoL
RTS2 RTS

*

(PPP=SCREEN PAGE,
NORMALLY 001 FOR
$2000-$3FFF
HI-RES SCREEN)

CONVERTS HNDX (INDEX
FROM BASE ADR)
AND HMASK (BIT
MASK) TO X-COORD
IN (XOL,XO0H)
(RANGE $0-133)

CALC HNDX*7 +
LOG(BASE 2) HMASK.

Khkkokdkdkkokdkdkdkkkdkokkokkdkdkhdkkkkkhhhkkhkikkkikhkkkkikkkikk

* HI-RES GRAPHICS SHAPE

DRAW . SUBR

Fhkkhkkkhkdkdhkkkkhkhkhkhhdkhkhkhkkdkkhhkkdihkkkkkkkkkkkk

*

DRAW STX SHAPEL
STY SHAPEH
DRAW1 TAX
LSR ;
LSR
LSR H
LSR H
STA QDRNT
TXA
AND HSF
TAX
LbY C0S,X
STY DXL
EOR #H3F
TAX
LDy COS+1,X
INY
STY DY
DRAW?2 LDY HNDX
LDX #30
STX COLLSN
LDA (SHAPEL,X)
DRAW3 STA SHAPEX
LDX #$80
STX EL
STX EH
LDX SCALE
DRAW& LDA EL
SEC H

DRAW DEFINITION
POINTER.

ROT ($0-$3F)

QDRNT 0=UP,1=RT,
2=DWN, 3=LFT.

SAVE COS AND SIN
VALS IN DXL AND DY.

BYTE INDEX FROM
HI-RES BASE ADDR.
CLEAR COLLISION COUNT.

1ST. SHAPE DEF BYTE.

EL,EH FOR FRACTIONAL
L,R,U,D VECTORS.
SCALE FACTOR.

IF FRAC COS OVRFL 1

| Source: Apple Computer, Inc.

Call-A.P.P.L.E. Magazine

Page 0075 of 0138 |

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

0A70: 65
0A72: 85
OA74: 90
0A76: 20
0A79: 18
OA7A: AS
OA7C: 65
OA7E: 85
0A80: 90
0A82: 20
0A85: CA
0A86: DO
0A88: AS
OABA: 4A
OA8B: 4A
OA8C: 4A
0A8D: DO
OA8F: E6
0A91: DO
0A93: E6
0A95: A1
0A97: DO
0A99: 60
0A9A: 86
0A9C: 84
OAGE: AA
0A9F: 4A
0AAQ: 4A
OAA1: 4A
OAA2: 4A
0AA3: 85
OAAS: 8A
DAA6: 29
0AA8: AA
0AA9: BC
OAAC: 84
OAAE: 49
0ABD: AA
‘OAB1: BC
0AB4: (8
0ABS: 84
0AB7: AC
0OABA: A2
0ABC: 8E
OABF: A1
OAC1: 85
0AC3: A2
OACS: 86
OAC7: 86
DAC9: AE
OACC: AS
CACE: 38
DACF: 65
0AD1: 85
0AD3: 90

74

50
54
04
D8

55
52
55
03
D9

ES
51

D3
1A
02
1B
1A
c9

1A
1B

53
OF

EB
50
OF

EC

52
25
00
2A
1A
51
80
54
55
27
54

50
54
04

08

08

09

a9

03

03

03

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
4bs
445
446
447
448
449
450
451
452

454

456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488

WOZPAK I

DRAWS

DRAW6

DRAW?

*

dhkkkdkhkkdkhkkhkkkhkdkkkkhhkkdkhhkhkhkhkkhkhkhkhkhkkkhkdkkkdhkkkhkhkhk

* HI-RES GRAPHICS SHAPE EX-OR SUBR
IhhRKAKKIARK Ik Ak khkkkhhkhhkkkhk Ak Ak kkkkhkhkhkkkkkkkk

*
XDRAW

XDRAW1

XDRAW?2

XDRAW3

XDRAW4

ADC
STA
BCC
JSR
CcLC
LDA
ADC
STA
8CC
JSR
DEX
BNE
LDA
LSR
LSR
LSR
BNE
INC
BNE
INC
LDA
BNE
RTS

STX
STY
TAX
LSR
LSR
LSR
LSR
STA
TXA
AND
TAX
LDY
STY
EOR
TAX
LDY
INY
STY
LDY
LDX
STX
LDA
STA
LDX
STX
STX
LDX
LDA
SEC
ADC
STA
BCC

DXL
EL
DRAWS
LRUD1

EH

DY

EH
DRAW6
LRUDZ
’
DRAW&
SHAPEX

4

r

DRAW3
SHAPEL.
DRAW?Y
SHAPEH
(SHAPEL ,X)
DRAW3

SHAPEL
SHAPEH

QDRNT
HSF

€0s.,X
DXL
HSF

COS+1,X

DY
HNDX
#30
COLLSN
(SHAPEL ., X)
SHAPEX
#3$80
EL

EH
SCALE
EL

;

DXL

EL
XDRAWS

THEN MOVE IN
SPECIFIED VECTOR
DIRECTION.

IF FRAC SIN OVRFL
THEN MOVE IN
SPECIFIED VECTOR
DIRECTION+90 DEG.

LOOP ON SCALE
FACTOR.

NEXT 3-BIT VECTOR
OF SHAPE DEF.

NOT DONE THIS BYTE.

NEXT BYTE OF
SHAPE DEFINITION.

DONE IF ZERO.

SHAPE DEFINITION
POINTER.

SAVE COS AND SIN
VALS IN DXL AND DY.

INDEX FROM HI-RES

BASE ADR.
CLEAR COLLISION DETECT.
1ST SHAPE DEF BYTE.

EL,EH FOR FRACTIONAL
L,R,U,D VECTORS.
SCALE FACTOR.

IF FRAC COS OVRFL
THEN MOVE IN
SPECIFIED VECTOR
DIRECTION.

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0076 of 0138 |

Apple][Computer Information The Woz Pak][

* 15 November 1979

WOZPAK Ii

0ADS: 20 CD 08 490 JSR LRUDX1
0AD8: 18 491 CLC
0AD9: AS 55 492 XDRAWS LDA EH IF FRAC SIN OVRFL
0ADB: 65 52 493 ADC DY THEN MOVE IN
0ADD: 85 55 494 STA EH SPECIFIED VECTOR
0ADF: 90 03 495 BCC XDRAW6 DIRECTION+90 DEG
OAE1: 20 D9 08 496 JSR LRUDZ2
OAE4: CA 497 XDRAWG DEX H LOOP ON SCALE
OAE5: DO E5 498 BNE XDRAWS FACTOR.
OAE7: AS 51 499 LDA SHAPEX
OAE9: 4A 500 LSR
OAEA: 4A 501 LSR
OAEB: 4A 502 LSR
OAEC: DO D3 503 BNE XDRAW3
OAEE: E6 1A 504 INC SHAPEL
0AFQ: 0O 02 505 BNE XDRAW7 NEXT BYTE OF
OAF2: E6 1B 506 INC SHAPEH SHAPE DEF.
OAF4: A1 1A 507 XDRAWY LDA (SHAPEL ,X)
0AF6: DO C9 508 BNE XDRAW3 DONE IF ZERO.
OAF8: 60 509 RTS

510 *

**

512 % HI-RES GRAPHICS ENTRY POINTS

513 = FROM APPLE JC INTEGER BASIC
**
515 *
OAF9: 20 90 0B 516 BPOSN JSR PCOLR POSN CALL, COLOR FROM
OAFC: 8D 24 03 517 STA HCOLOR BASIC.
OAFF: 20 AF 08B 518 JSR GETYO YO FROM BASIC.
0802: 48 519 PHA
0B03: 20 9A 0B 520 JSR GETXO X0 FROM BASIC.
0BO6: 68 521 PLA
0B07: 20 2E 08 522 JSR HPOSN
0BOA: AE 23 03 523 LDX BXSAV
0BOD: &0 524 RTS
OBOE: 20 f9 DA 525 BPLOT JSR BPOSN PLOT CALL (BASIC).
0B11: 4C 7D 08 526 JMP HPLOT1
0B14: AD 25 03 527 BLIN1 LDA HNDX SET HCOLOR1 FROM
0B17: 4A 528 LSR
0B18: 20 90 0B 529 JSR PCOLR BASIC VARI COLR.
0B1B: 20 75 08 530 JSR HPOSN3
0B1E: 20 9A 0B 531 BLINE JSR GETX0 LINE CALL, GET X0
0B21: 8A 532 TXA H FROM BASIC.
0B22: 48 533 PHA
0B23: 98 534 TYA
0B24: AA 535 TAX
0B25: 20 AF 0B 536 JSR GETYO YO FROM BASIC.
0828: A8 537 TAY
0829: 68 538 PLA
0OB2A: 20 64 09 539 JSR HLIN
0B2D: AE 23 03 540 LDX BXSAV
0B830: 60 541 RTS
0B31: 20 90 0B 542 BGND JSR PCOLR BACKGROUND CALL.
0B34: 4C 10 08 543 JMP BKGNDO
544 *

**

546 % HI-RES GRAPHICS DRAW SUBRS

**

548 x
0B37: 20 F9 OA 549 BDRAW1 JSR BPOSN

75

Source: Apple Computer, Inc. + Call-A.P.P.L.E. Magazine
\,

Page 0077 of 0138 |

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

0B3A: 20
0B3p: 20
0B40: AE
0B43: 60
0B44: 20
0B47: 20
0B4A: 20
0B4D: AE
0B50: 60
0B51: 8E
0B54: AO
0B56: 20
0B59: 8D
0B5C: AOQ
OB5E: 20
0B61: 48
0B62: AD
0B65: 85
0B67: AD
0B6A: 85
0B6C: AO
OB6E: 20
0B71: FO
0B73: A2
0B75: €1
0B77: FO
0B79: BO
0B7B8: O0OA
0B7Cc: 90
OB7E: E6
0B80: 18
0B81: A8
0B82: B1
0B84: 65
0B86: AA
0B87: 8
0B88: B1
0B8A: 6D
0B8D: A8
OB8E: 68
0B8F: 60
0890: A0
0B92: 81
0B94: DO
0B96: 88
0897: B1
0B99: 60
0B9A: 8E
0B9D: AD
0B9F: B1
0BAT1: AA
0BA2: (8
0BA3: B1
0BAS: A8

51
3B
23

F9
51
9A
23

23
32
92
27
28
92

28
1A
29
1B
20
92
39
00
1A
02
31

03
1B

1A
1A

1A
29

16
4A
16

4A
23

05
4A

4A

03

0B
03

08
03

03

0B

03

03

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592

594
595

597
598
599
600
601
602
603
604
605
606
607
608
609
610

WOZPAK il
BDRAW JSR BDRAWX DRAW CALL FROM BASIC.
JSR DRAW
LDX BXSAV
RTS
BXDRW1 JSR BPOSN
BXDRAW JSR BDRAWX EX-OR DRAW
JSR XDRAW FROM BASIC.
LDX BXSAV
RTS
BDRAWX STX BXSAV SAVE FOR RTS TO BASIC.
LDY #3$32
JSR PBYTE SCALE FROM BASIC.
STA SCALE
LDY #3$28
JSR PBYTE ROT FROM BASIC &
PHA ; SAVE ON STACK.
LDA SHAPXL
STA SHAPEL START OF
LDA SHAPXH SHAPE TABLE.
STA SHAPEH
LDY #$20
JSR PBYTE SHAPE FROM BASIC.
BEQ RERR1
LDX #30
CmP (SHAPEL ,X) > NUMBR OF SHAPES?
BEQ BDRWX1
BCS RERR1 YES, RANGE ERROR.
BDRWX1 ASL
BCC BDRWX2
INC SHAPEH
CLC
BDRWX2 TAY ; SHAPE# * 2.
LDA (SHAPEL) ,Y
ADC SHAPEL
TAX ; ADD 2-BYTE INDEX
INY ; TO SHAPE TABLE
LDA (SHAPEL),Y START ADDRESS
ADC SHAPXH (X LOW, Y HI).
TAY
PLA ; ROT FROM STACK.
RTS

*

hkkkhkhhkhkhkhkhkhhkhkhkhkhkhkkhkhkdkhhhhkhkkhkkkkkkkkkhkhkhkhkkkkkkk

*
*

khkhhkhkhkhkhdkhkkkhkhkhkhkkhkhkhkhkhkhkkhkkhkkkhkkhkhhkhkhkhkkkkrhkkk

*

PCOLR
PBYTE

RTSB
GETXO

HI-RES GRAPHICS BASIC
PARAMETER FETCH SUBRS

LDY
LDA
BNE
DEY
LDA
RTS
STX
LDY
LDA
TAX
INY
LDA
TAY

#3%16

(LOMEML) , Y

RERR1 GET BASIC PARAM.

; (ERR IF >255)
(LOMEML) , Y

BXSAV SAVE FOR RTS TO BASIC.
#$5

(LOMEML) ,Y XO LOW-ORDER BYTE

(LOMEML),Y XO HI-ORDER BYTE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0078 of 0138 |

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

0BA6:
0BAS8:
0BAA:
OBAC:
OBAF:
0BB1:
0BB4;
0BB6:
0BBS8:

0BB9:
0BBC:
0BBF:
0Bc2:
0BC4:
0BC6:
0BC9:
0BCA:
0BCC:
0BCD:
08CF:
0BD1:
0BD4:
0BD6:
0BD8:
0BDA:
0BDB:
0BOD:
0BDE :
OBEOQ:
DBEZ:
OBE4:
0BES:
OBE7:
0BE9:
0OBEB:
OBED:
OBEF:
OBF1:
0BF4:
0BFé6:
0BF9:
0BFC:
0BFD:

EQ
E9
90
4C
AO
20
€9
BO
60

23
1E
FD
oo
3C
28

CE

0c
3D
29
CF
25
CA

cB

03
F1
FE

03

03

FC

FF
03

E3

612

614
615
616
617
618
619
620
621

623
624

626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651

653
654
655
656
657
658
659
660

WOZPAK I
CPX #%18
sBC #31 RANGE ERR IF >279.
BCC RTSB
RERR1 JMP RANGERR
GETYO LDY #%D OFFSET TO YO FROM LOMEM.
JSR . PBYTE GET BASIC PARAM YO.
CMP #3C0 (ERR IF >191).
BCS RERR1
RTS

*
Fhkkhhhkhhdhkkhhdkkhhhhrhhhhhhkhhhkhkhrkddhhxkhihdkk
* HI-RES GRAPHICS SHAPE

* TAPE LOAD SUBR.
Fhkkdkdkkkdkhhdhdhhhhh Rk hdkhkiekdkhdhsdkkhikhiokkkhhkhk
*

SHLOAD STX BXSAV SAVE FOR RTS TO BASIC.
JSR ACADR READ 2-BYTE LENGTH INTO
JSR READ BASIC ACC ($CE,CF).
LDA H<SHSTRT
STA A1L
STA SHAPXL
CLC
ADC ACL
TAY
LDA H#>SHSTRT
STA A1H
STA SHAPXH
ADC ACH
BCS MFULL1 NOT ENOUGH MEMORY!
CPY PPL
PHA
SBC PPH
PLA
BCS MFULL?

STY A2L
STA AZH
INY

BNE SHLOD1
ADC #31

SHLOD1 STY LOMEML
STA LOMEMH
STY PVL
STA PVH
JSR RDZBIT
LDA #$3 -5 SEC HEADER
JSR READX1
LDX BXSAV
RTS

MFULL1 JMP MEMFULL

n

Source: Apple Computer, Inc. + Call-A.P.P.L.E. Magazine
\,

Page 0079 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

BLANK PAGE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0080 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

PRODUCING AND USING SHAPE TABLES

by Robert C. Clardy

79

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0081 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

BLANK PAGE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0082 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK 11

One of the most versatile graphics HIMEM:8192 or LOMEM:16384 so your program
capabilities of the APPLE I[is provided does not interfere with the HIRES display.

by the use of the DRAW and XDRAW routines With the HIRES routines loaded, you
in the HIRES graphics package provided by can load a shape table from cassette by
the APPLE company. Each of these two typing CALL 3001, starting your recorder,
functions can be used to draw (virtually and pressing return. To load from disk,
instantaneously) a predefined shape onto simply BLOAD <fijlename>,A<address>. You
the HIRES screen. The XDRAW function has must then store the table's starting ad-
the additional characteristic that each dress in Llocations 808 and 809 by doing:
point is exclusive-ORed to points already POKE 808,<address> MOD 256 and POKE 809,
on the screen at that location. Each dot <address> / 256.
has it's previous color reversed. A dot If you do not have an existent shape
which was previously white becomes black, table, you can make one with the program
orange becomes green, etc, listed below. The program is completely
The exclusive-OR feature has several self prompting, allowing the user to draw
useful effects. A shape can be XDRAWN up to 255 shapes per shape table. Each
once, then erased by XDRAW'H"IQ it aga'in at shape is produced point by point. The
the same Llocation. Further, a shape can total bytes used by each shape and the
be XDRAWN on a background picture and total number of memory locations used by
then erased, Leaving the original picture the entire table is constantly displayed.
intact. This feature can be used to move Make certain that the table does not go
cars/tanks/spaceships across a background beyond location 4150 (LOMEM for the pro-
display without disturbing it. A good aram as written).
example that many have seen is the STAR The program, as is, will run on a
WARS program; the crosshairs are not dis- 16K APPLE. The room allocated for shapes
turbed even when a fighter moves over is, however, rather small (see Table 1),
them. If additional shape storage is required,
To usé the draw functions, the fol- it can be obtained by deleting Lines 1630
lowing steps must be taken: through 1700 and Lline 0. As can be seen
(1) Load the HIRES graphics routines in the table, this gives 710 additional
(2) Obtain a shape file (255 shapes bytes for shapes. If your system has
max) by: more than 16K, delete Lines 0 and 1.
(a) Loading existent shape table
(b) Creating a shape table WARNING: Because of the nature of the HIRE
(3) Initjalize the HIRES variables routines, you cannot move the HIRES cursor
properly (see previous section). up more than 2 units with the plot turned
(4) Specify SHAPE, COLR, XO, Y0, and off. If this 1is done, the shape will be
SCALE as required (see previous terminated at that point.
section).
(5) Draw the shape (Use CALL 2871 or TABLE 1

CALL 2884. See previous section).
Each of these steps will be discussed

in greater detail below. OPTION SYSTEM HIMEM LOMEM SHAPE BYTE
There are several versions of the 1 16K 8192 4150 1078
HIRES graphics routines available. The 2 16K 8192 4860 1788
easiest to use are found in the HIRES 3 >16K *k 16384 %k
SUBROUTINES program appearing in the pre- -
vious sectijon. These routines can be ** Limited by system size.
appended to an INTEGER BASIC program using
the PACK & SAVE routine also appearing in (ed.note) This program contains 'illegal!
this issue. Once run, it stores the HIRES commands. If the user is unfamiliar with
routines in memory locations 2048-3071 the methods to enter 3 'LOMEM: "' into a
(3800-$8FF) and sets LOMEM to 3072. Re- program, the reguired LOMEM: must be
member that the HIRES screen 1is stored entered before the program is run. (The

in locations 8192-16383 ($2000-$3FFF). Set version on the tape is as listed)

Page 0083 of 0138 |

Source: Apple Computer, Inc. + Call-A.P.P.L.E. Magazine
\,

;
Apple][Computer Information ¢ The Woz Pak][* 15 November 1979
WOZPAK Il
0 LOMEM:4150: HIMEM:8192: GOTO 1000 F=0:D=D+1:D(D)=A: IF D<3 THEN
8 RETURN
1 LOMEM:4860: HIMEM:8192: GOTO 1005 IF D(3)#0 THEN 1010
8 1006 F=1: GOTO 1030
2 LOMEM:16384 1010 IF D(3)<4 THEN 1030
8 X0=Y0=COLR=SHAPE=ROT=SCALE: 1020 @=D(3):D(3)=0
SHAPE=1: POKE 808,0: POKE 809 1030 Z=D (1)+D (2) *8+D (3) %64
,12: GOTO 1615 1035 BYTE=BYTE+1: VTAB 22: PRINT
10 V= PEEK (-16384): IF V<128 THEN “BYTES=";BYTE: PRINT "LOC ="
10: POKE -16368,0: RETURN ;LoC
11 CALL -936: PRINT : TAB 15: RETURN 1040 POKE LOC,Z:LOC=LOC+1: IF LOC>
LOW-2 THEN 1490: IF F=1 THEN
31 BYTE=0: CALL INIT:PFLAG=0:Y0= 1050
79:X0=139:COLR=255: GOSUB 800 1045 IF Q=0 THEN 1070
1050 IF D(2)#0 THEN 1060
36 PT=3072+2*SHAPE:L0C=3072+ PEEK 1055 D(1)=0:D(2)=Q:D(3)=0:0=0:D=
(PT)+256% PEEK (PT+1):LOC1= 2: RETURN
Loc 1060 D(1)=@:D(2)=0:D(3)=0:Q=0:D=
38 VTAB 22: TAB 34: PRINT "ON " 1: RETURN
;: POKE 50,63: PRINT "OFF": 1070 FOR I=1 TO 3:D(I)=0: NEXT I:
POKE 50,255 D=0: RETURN
50 GOsuB 10 1090 Z=D (1)+D(2) *8+D (3)*64: POKE
100 IF V=213 THEN 200: IF V=196 Loc,z
THEN 250: IF v=210 THEN 300 1100 IF z=0 THEN 1120
. IF V=204 THEN 350: IF V=208 1110 LOC=LOC+1: POKE LOC,0
THEN 400: IF V=134 THEN 1090 1120 PRINT "VECTOR TABLE: FROM
: IF V=151 THEN 31 ;LOCT;" TO ";LOC
150 GOTO S0 1300 COLR=255:X0=139:Y0=79:SCALE=
200 YO=0LDY-1:A=4: IF PFLAG=0 THEN 1: CALL INIT: CALL DRAW
A=0: GOTO 360 1310 PRINT "IS THIS THE SHAPE THAT YO
250 YO=OLDY+1:A=6: IF PFLAG=0 THEN U WANT (Y/N)?": GOSUB 10: IF
A=2: GOTO 360 V#206 THEN 1320: GOSUB 11: PRINT
300 X0=OLDX+1:A=5: IF PFLAG=0 THEN "TRY AGAIN.": GOTO 31
A=1: GOTO 360 1320 GOSUB 11: PRINT "ANOTHER SHAPE (
350 X0=0LDX-1:A=7: IF PFLAG=0 THEN Y/N)?": GOSUB 10: CALL -936
A=3 : IF V=206 THEN 1500
360 GOSUB 1000: GOSUB 800: GOTO 1330 GOSUB 11: PRINT “SHAPE # ";
50 SHAPE+1:SHAPE=SHAPE+1
400 PFLAG= NOT PFLAG: IF PFLAG= 1340 IF SHAPE>SH THEN 1490:L0C=LOC+
0 THEN 410 1: POKE 3072+2xSHAPE, (LOC MOD
402 VTAB 22: TAB 34: POKE 50,63 256): POKE 3073+2%SHAPE, (LOC/
+ PRINT "ON";: POKE 50,255: 256)-12: GOTO 31
PRINT " OFF": GOTO 50 1490 GOSUB 11: PRINT "SORRY, SHAPE TA
410 VTAB 22: TAB 34: POKE 50,255 BLE IS FULL."
: PRINT "ON ";: POKE 50,63: 1500 PRINT '"SAVE SHAPE TABLE TO TAPE
PRINT "OFF": POKE 50,255: GOTO (Y/N)?": GOSUB 10: IF v#217
50 THEN 1550: PRINT "START RECORDE
800 IF YO<O THEN Y0=0: IF Y0>159 R AND PRESS RETURN": GOSUB
THEN Y0=159: IF X0<0 THEN 10
X0=0: IF X0>279 THEN X0=279 1510 POKE 4140, (LOC-3071) MOD 256
: POKE 4141,(LOC-3071)/256:
805 IF PFLAG=0 THEN 820:COLR=255 POKE 60,44: POKE 61,16: POKE
62,45: POKE 63,16: CALL -307
810 CALL PLOT: GOTO 840
820 COLR=0:T1=X0:T2=Y0:X0=0LDX: 1520 POKE 60,0: POKE 61,12: POKE
YO=OLDY: CALL PLOT:X0=T1:Y0= 62,L0C MOD 256: POKE 63,LOC/
T2 256: CALL -307
830 COLR=255: CALL PLOT
82 840 OLDX=X0:0LDY=YO: RETURN
| Source: Apple Computer, Inc. < Call-A.P.P.L.E. Magazine Page 0084 of 0138)

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

1550

1560

1601

1615

1620

1625
1630

1640

1650

1660

PRINT "SAVE SHAPE TABLE TO DISC
(Y,N)?'": GOSUB 10: IF V#217
THEN END : INPUT "FILE NAME "
,F$
PRINT "BSAVE'";F$;",A3072,L"
;LOC-3072+45: END
POKE 808,0: POKE 809,12: POKE
3072,50: POKE 3074,102: POKE
3075,0
DIM F$(20),D(3):INIT=2048:CLEAR=
2062:PLOT=2830:DRAW=2871
TEXT : CALL -936: VTAB 10: TAB
6: PRINT ""HIRES SHAPE TABLE GENE
RATOR": PRINT : TAB 10: PRINT
"BY ROBERT C. CLARDY"
FOR I=1 TO 1000: NEXT I
VTAB 14: PRINT “THIS PROGRAM WAS
ADAPTED FROM A SIMILAR ROUTINE
WRITTEN BY GARY D. HAWKINS AS IT
PRINT "APPEARED IN THE JULY, 197
8 ISSUE OF CREATIVE COMPUTIN
G. THE PROGRAM WAS"
PRINT "MODIFIED TO RUN WITH THE
UPDATED HIRES ROUTINES AND TO A
LLOW DIFINITION, OF"
PRINT "MULTIPLE SHAPES. TO USE T
HE PROGRAM, USE THE FOLLOWING
COMMANDS = "

WOZPAK 1

1670

1680

1690

1700

1705

1710

PRINT : TAB 6é: PRINT "U = MOVE U
P ONE SPACE': TAB 6: PRINT

"D = MOVE DOWN ONE SPACE": TAB
6: PRINT "R = MOVE RIGHT ONE SPA
CE"

TAB 6: PRINT "L = MOVE LEFT ONE
SPACE": TAB 6: PRINT "P = INVERT
POINT STATUS': TAB 6: PRINT
"CONTROL W = START OVER (WIPE)"
: TAB 6

PRINT "CONTROL F = SHAPE IS FINI
SHED'": PRINT : PRINT “IF POINT S
TATUS IS 'ON', A POINT wILL"

PRINT "BE PLOTTED. IF IT IS 'OFF
', IT WON'T. PRESS ANY KEY TO
BEGIN.";: GOSUB 10: POKE 34

,21: CALL -936

INPUT "HOW MANY SHAPES DO YOU WA
NT (LIMIT 255)",SH: IF SH<O

OR SH>255 THEN 1705: POKE
808,0: POKE 809,12: POKE 3072
»SH

POKE 3074, (2%SH+2) MOD 256:

POKE 3075, (2%SH+2)/256:L0W=
256% PEEK (75)+ PEEK (74): CALL
-936: GOTO 31

83

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0085 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

BLANK PAGE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0086 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK 11
SWEET 16 Introduction A.P.P.L.E. Group is available to hand-hold
by Dick Sedgewick and counsel your adventures with Sweet 16.
Sweet 16 1is probably the least used and The demonstration program s written to
least understood seed in the Apple 1L. be introductory and simple, consisting of

three parts:
In exactly the same sense that Integer and

Applesoft Basics are languages, Sweet 16 1. Integer Basic Program

is a language. Compared to the Basics, 2. Machine Language Subroutine

however, it would be classed as a Llow 3. Sweet 16 Subroutine

level Llanguage, with a strong likeness to

conventional 6502 Assembly Llanguage. The task of the program will be to move
data. Parameters of the move will be ent-

To wuse Sweet 16, you must learn the lang- ered in the Integer Basic Program.

uage - and to quote "WOZ", "The op code

list 1is short and uncomplicated. "woz", The "CALL 768" ($300) at Line 120, enters

of course is Mr. Apple, and the creator a 6502 machine language subroutine having

Sweet 16. the single purpose of entering a Sweet 16

subroutine and subsequently returning to
Sweet 16 1is ROM based in every Apple 1L Basic (addresses $300,%$301,%302, and $312

from $F689 to $F7FC, and is listed in the respectively). The Sweet 16 subroutine of
Red Book on pages 96-99. it has its own course performs the move, and is entered
op codes and instruction sets, and uses at hex locations $303 to $311 (see list-

the SAVE and RESTORE routines from the ing Number 3).
Apple Monitor to preserve the 6502 regis-

ters when in use, allowing Sweet 16 to be After the move, the screen will display
used as a subroutine. three lines of data, each 8 bytes long,
and await entry of a new set of para-
It uses the first 32 locations on zero meters. The three lines of data displayed
page to set up its 16 double byte regis- on the screen are as follows:
ters, and is therefore not compatible with
Applesoft Basic without some additional Line 1: The first 8 bytes of data start-
efforts. ing at $800, which is the fixed
source of data to be moved (in
The original article, "Sweet 16: The 6502 this case, the string a$%).
Dream Machine', first appeared in Byte
Magazine, November 1977 and later in the Line 2: The first 8 bytes of data start-"’
original '"WOZ PAK". this article is ing at the hex addrss entered as
included again as text material to help the destination of the move (high
understand the wuse and implementation of order byte only).
Sweet 16.
Line 3: The first 8 bytes of data start-
Additionally, a trivial introductory pro- ing at $0000 (the first four Sweet
gram is included to encourage the timid 16 registers).
to dive in, and then Andy Hertzfeld's
program ‘'Lazarus' s reprinted from Dr. The display of 8 bytes of data was chosen
Dobbs, Volume 3, Issue 6. Lazarus is an to simply the illustration of what goes
exceptional program written to resurrect on.
lost Integer Basic programs, and Andy's
outstanding commentary allows Lazarus to Integer Basic has it's own way of record-
do double duty as text material. ing the string A$ (see page 35 in the
"Red Book"). Because the name chosen for
More recent examples of the use of Sweet the string "A$" i3 stored in 2 bytes, a
16 are found in the Programmer's Aid #1. total of © housekeeping bytes precedes the
in the Renumber, Append, and Relocate pro- data entered as A%, Lleaving only 3
grams. The Programming Aid Operating Man- additional bytes available for display.
ual contains complete source assembly Integer Basic also adds a housekeeping
listings, indexed on page 65. byte at the end of a string, known as the
"string terminator". Consequently, for
Finally, the friendly help of the CALL- the purposes of the convience of the dis-
85

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0087 of 0138 |

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

WOZPAK I

play, and to to see the string terminator
as the 8th byte, the string data entered
via the keyboard should be limited to two
characters, and will appear as the 6th and
7th bytes. Additionally, parameters to be
entered include the number of bytes to be
moved. A useful range for this demonstra-
tion would be 1-8 inclusive, but of course
1-255 will work.

Finally, the starting address of the dest-
ination of the move must be entered.
Again, for simplicity, the high order byte
only is entered, and the program allows a
choice between Decimal 9 and the H.0.8. of
program pointer 1, to avoid unnecessary
problems (in this demonstration enter a
decimal number betweeen dec 9 and 144 for
a 48K APPLE).

The 8 bytes of data displayed from $00
will enable one to observe the condition
of the Sweet 16 registers after a move has
been accomplished, and thereby understand
how the Sweet 16 program works.

From the text article “Sweet 16: The
6502 Dream Machine", it will be remember-

ed that Sweet 16 can establish 16 double
byte registers, starting at $00. That
means that Sweet 16 can use the first 32

addresses on zero page.

The "events'" occurring in this demonstrat-
ion program can be studied in the first &
Sweet 16 registers, therefore the 8 byte
display starting at $0000 is large enough,
for this purpose. These &4 registers are
established as RO, R1, R2, and R3:

RO $0000 & 0001--Sweet 16 accumulator
R1 $0002 & 0003--Source address

RZ $0004 & 0005--Destination address
R3 $0006 & 0007--No. of bytes to move

R14 $001C & 001D--Prior result register
R15 $001E & O001F--Sweet 16 prgm counter

Additionally, an examination of registers
R14 and R15 will extend an understanding
of Sweet 16, being fully explained in the
"w0Z" text. Notice that the HOB of R14,
(located at $1D) contains 306, which is
the doubled register specification (3X2
$06). R15, the Sweet 16 program counter
contains the address of the next operat-
jon, (as it did for each step during
execution of the program), which was $0312
86

when execution ended, and 6502 machine
code resumes.

To try a sample run, enter the Integer
basic program as shown 1in Listing #1.

0f course, REM statements can be omitted,
and line 10 is only helpful if the machine
code is to be stored on disk.

The Listing #2 must also be entered start-
ing at $300.

Note that a 6502 disassembly does not Look
like Listing #3, but Andy Hertzfeld's
Sweet 16 disassembler would create a cor-
rect disassembly.

Enter RUN and RETURN

Enter 12 and hit RETURN (A$ - A$ string
data)
Enter 8 and hit RETURN (number of bytes

to be moved)
and hit RETURN (high order byte
’ of destination)

Enter 10

The display should appear as follows:
$0800-C1 40 00 10 08 B1 B2 1E (SOURCE)
$0A00-C1 40 00 10 08 B1 B2 1E (DEST.)

$0000-1€ 00 08 08 08 0OA 00 00 (Sweet 16)

Note that the 8 bytes stored at $0A00 are

identical to the 8 bytes starting at
$0800, 1indicating an accurate move of 8
bytes Llength has been made. It will be

seen that they were moved one byte at a
time starting with token C1 and ending
with token 1E (if moving Lless than 8
bytes, the data following the moved data
would be whatever exists at those locat-
ions before the move).

The bytes have the following significance,
as defined on page 35 of the "Red Book':

A Token$ 1 2

€1 40 00 10 08 B1 B2 1E

L LT T e

VN DSP NVA DATA DATA TERMINATOR

The Sweet 16

registers are shown:

Llow high lLow high Low high Low high

$000 1€ 00 08 08 08 0OA 00O 00
| | | [

register register register register
RO R1 R2 R3

(acc) (source) (dest) (#bytes)

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0088 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK 11

The Llow order byte of RO, the Sweet 16
accumulator, bhas $1E in it, which was the
last byte moved, (the 8th).

The low order byte of the source register
R1 started as 300 and was incremented
eight times, one for each byte of moved
data.

The high order byte of the destination
reaister R2 contains $0A, which was ent-
ered as 10 (the variable A) and poked into
the Sweet 16 code. The LOB of R2 was
incremented exactly like R1.

Finally, register R3, the register that
stores the number of bytes to be moved
had been poked to 8 (the variable B) and
decremented 8 times as each byte got
moved, there by ending up $0000.

By enterina character strings and varying
the number of bytes to moved, the Sweet 16
reqisters can be observed and in fact, the
contents predicted.

Working with this demonstration proaram.
and study of the text materjal will soon
enable the writing of Sweet 16 programs to
perform additional 16 bit manipulations.
The unassiagned op codes mentioned in the
WOZ "Dream Machine" article should present
a most interestina opportunity to "nlay".

Sweet 16 as a lanquage-—-or tool-~-opens a
new direction to Apple 1L owners without
spending a dime, and it's been there all
the time.

For "Appelites'" who desire to learn mach-
ine Llanguage programming, Sweet 16 can be
used as a starting point. Having less op
codes to learn and excellent text material
to use, one could be effective very soon.
Enjoy....

10
20
30
40
50

70

80

90
100
110
120
130
140
150
160
170

Enter

300:20 89 F6 11 00 08 12 00 [00 1341 52

F3 07 FB 00 60

Sweet
$300
$303
$306
$309
$30C
$30D
$30€
$30F
$311

$312

LISTING #1

PRINT "BLOAD SWEET"

CALL -936: DIM AZ(C10)

INPUT "ENTER STRING A$";AS$
INPUT "ENTER # BYTES ";B

IF B=0 THEN 40: REM AT LEAST 1
POKE 778,B: REM POKE LENGTH
INPUT "ENTER DESTINATION";A

IF A>PEEK (203)-1 THEN 70

IF A<PEEK (205)+1 THEN 70
POKE 776,A: REM POKE DESTINATION
M=8: GOSUB 160: REM DISPLAY
CALL 768: REM GOTO $0300

M=A: GOSUB 160: REM DISPLAY
mM=0: GOSUB 160: REM DISPLAY
PRINT: PRINT: GOTO 30

POKE 60,0: POKE 61,M

CALL-605: RETURN

LISTING #?2
code as follows:

A B

LISTING #3
16
20 89 F6 JSR $F689
11 00 08 SET R1 source address
12 O SET RZ destination address

A
13 (00l 00 SET R3 Lenqth
B

41 LD @ R1
52 ST a R2
F3 DCR R3
07 fB BNZ $30C
00 RTN

60 RTN

Data will be poked from the Integer
Basic proaram - "A" from Line 100

"B" from Line 60
87

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0089 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

BLANK PAGE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0090 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

SWEET 16 - THE 6502 DREAM MACHINE

89

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0091 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

BLANK PAGE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0092 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK 11

while writing APPLE BASIC for a 6502
microprocessor I repeatedly encountered a
variant of MURPHY'S LAW. Briefly stated,
any routine operating on 16-bit data will
require at least twice the code that it
should. Programs making extensive use of
16-bit pointers (such as compilers, edit-
ors, and assemblers) are included in this
category. In my case, even the addition
of a few double~byte instructions to the
6502 would have only slightly alleviated
the problem. What I really needed was a
6502/RCA 1800 hybrid - a powerful 8-bit
data handler complemented by an easy to
use processor with an abundance of 16-bjt
registers and excellent pointer capabil-
ity. My solution was to implement a non-
existent (meta) 16-bit processor in soft-
ware, interpreter style, which I call
SWEET 16.

SWEET 16 1is based on sixteen 16-bit reg-
isters (RO-R15), actually 32 memory Lloc-
ations. RO doubles as the SWEET 16 accu-
mulator (ACC), R15 as the program counter
(PC), and R14 as the status register. R13
holds compare instruction results and R12
is the subroutine return stack pointer if
SWEET 16 subroutines are used. ALl other
SWEET 16 registers are at the user's unre-
stricted disposal.

SWEET 16 dnstructions fall into register
and non-register categories. The register
ops specify one of the sixteen registers
to be wused as either a data element or a
pointer to data in memory depending on the
specific instruction. For example INR RS
uses R5 as data and ST @aR7 uses R7 as a
pointer to data in memory. Except for the
SET dinstruction, register ops take 1 byte
of code each. The non-register ops are
primarily 6502 style branches with the
second byte specifying a +/-127 byte dis-
placement relative to the address of the
following instruction. Providing that the
prior reagister op result meets a specified
branch condition, the displacement is add-
ed to SWEET 16 PC, effecting a branch.

SWEET 16 is intended as a 6502 enhancement
package, not a stand-alone processor. A
6502 program switches to SWEET 16 mode
with a subroutine call and subsequent code
is interpreted as SWEET 16 instructions.
The non-register op RTN returns the user
program to 6502 mode after restoring the
internal register contents (A, X, Y, P,
and S). The following example illustrates
how to use SWEET 16.

300 B9 00 02 LDA IN,Y get a char.

303 c9 CD CMP '"M" "M" for move

305 DO 09 BNE NOMOVE No, skip

move

307 20 89 Fé6 JSR SW16 Yes, call
SWEET 16

30a 41 MLOOP ‘LD aR1 R1 holds
source addr.

308 52 ST @aRr2 R2 holds
dest. addr.

30C fF3 DCR R3 Decr. length

300 07 FB BNZ MLOOP Loop until
done

30F 00 RTN Return to
6502 mode.

310 €9 C5 MLOOP CMP "E" “"E'" char?

312 DO 13 BEQ@ EXIT Yes, exit

314 C8 INY No, cont.

Note: Registers A, X, Y, P, and S are not
disturbed by SWEET 16.

INSTRUCTION DESCRIPTIONS

The SWEET 16 opcode list is short and un-
complicated. Excepting relative branch
displacements, hand assembly is trivial.
ALl register opcodes are formed by combin-
ing two hex digits, one for the opcode and
one to specify a register. For example,
opcodes 15 and 45 both specify register RS
while codes 23, 27 and 29 are all ST ops.
Most register ops are assigned in comple-
mentary pairs to facilitate remembering
them. Thus LD and ST are opcodes 2N and
3N respectively, white LD @ and ST @ are
codes 4N and SN.

Opcodes 0 to C (hex) are assigned to the
thirteen non-register ops. Except for RTN
(opcode 0), BK (0A), and RS (B), the non-
register ops are 6502 style branches.
branches. The second byte of a branch in-
struction contains a +/-127 byte displace-
ment value (in two's complement form) rel-
ative to the address of the instruction
immediately following the branch. if a
specified branch condition is met by the
prior register op result, the displacement
is added to the PC effecting a branch.
Except for BR (Branch always) and BS (
Branch to Subroutine), the branch opcodes
are assigned in complementary pairs, rend-
ering them easily remembered for hand

coding. For example, Branch if Plus and
Branch 1if Minus are opcodes 4 and 5 whilﬁ
9

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0093 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK [}
Branch if Zero and Branch if NonZero are
opcodes 6 and 7.

SWEET 16 OPCODE SUMMARY

REGISTER OPS

1n SET Rn, Constant (Set)

Zn LD Rn (Load)

3n ST Rn (Store)

4n LD ARn (Load Indirect)

5n ST @Rn (Store Indirect)

6n LDD @aRn (Load Double Indirect)
7n STD @aRn (Store Double Indirect)
8n POP aRn (Pop Indirect)

9n STP @Rn (Store Pop Indirect)
An ADD Rn (Add)

Bn SUB Rn (Sub)

Cn POPD aRn (Pop Double Indirect)
Dn CPR Rn (Compare)

En INR Rn (Increment)

fFn DCR Rn (Decrement)

NON-REGISTER OPS

00 RTN (Return to 6502 mode)
D1 BR ea (Branch always)

N2 BNC ea (Branch if No Carry)
33 8C ea (Branch if Carry)

D& 8P ea (Branch if Plus)

05 Bm ea (Branch if Minus)

D6 BL ea (Branch if zero)

07 BNZ ea (Branch if NonZero)
92

NON-REGISTER OPS
(continued)

08 BM1 ea (Branch if Minus 1)

09 BNM1 ea (Branch if Not Minus 1)
0A 8K (Break)

0B RS (Return from Subroutine)

0c BS ea (Branch to Subroutine)

(¢])] (Unassianed)
(0] (Unassianed)
OF (Unassigned)

REGISTERS OPS

SET Rn, Constant 1n j{Low] |Hiahf (Set)

The 2-byte constant is loaded into Rn
(n=0 to F, hex) and branch conditions
set accordingly. The carry is clear-
ed.

EXAMPLE
15 34 AQ SET R5,A034 R5 now con-
tains AD34
LD Rn 2n (Load)

The ACC (RO) is loaded from Rn and
branch conditions set according to
the data transferred. The carry is
cleared and contents of Rn are not
disturbed.

EXAMPLE
15 34 AO SET R5,A034
24 LD RS ACC now con-—
tains AQ34
ST Rn 3n (Store)

The ACC is stored into Rn and branch
conditions set according to the data
transferred. The carry is cleared
and the ACC contents are not disturb-
ed.

EXAMPLE
25 LD RS Copy the contents of
36 ST Ré6 of R5 to R6.

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0094 of 0138

Apple][Computer Information e

The Woz Pak][¢ 15 November 1979

LD

ST

aRn 4n (Load indirect)

The low-order ACC byte is loaded from
the memory location whose address re-
sides in Rn and the high-order ACC
byte is cleared. Branch conditions
reflect the final ACC contents which
will always be positive and never
minus 1. The carry is cleared.
After the transfer, Rn is increment-
ed by 1.

EXAMPLE

15 34 A0 SET R5,A034

45 LD QRS ACC is loaded
from memory
Location AO034
R5 is incre-

mented to A034
arRn 5n (Store indirect)

The Llow-order ACC byte is stored into
the memory location whose address re-
sides in Rn. Branch conditions re-
flect the 2-byte ACC contents. The
carry is cleared. After the transfer
Rn is incremented by 1.

EXAMPLE

15 34 AO SET RS5, A034 Load point-
ers R5 & R6

16 22 90 SET Ré, 9022 with AO34
and 9022.

45 LD @aRS Move a byte
from AO34
to 9022.

56 ST @aRé Both point-
ers are in-
cremented.

LDD aRn 6n (Load double-byte
indirect)

The low order ACC byte is loaded from
the memory location whose address re-
sides in Rn and Rn is then increment-
ed by 1. The high order ACC byte is
loaded from the memory Location whose
address resides in the incremented Rn
and Rn is again incremented by 1.
Branch conditions reflect the final
ACC contents. The carry is cleared.

EXAMPLE
15 34 AD SET R5, AO034
65 LDD AR5 The Low-order

WOZPAK 1

ACC byte is
loaded from
location AD34,
the high-order
byte from A035.
R5 is incr. to
AD36.

STD aRn n (Store double-byte
indirect)

The Low=-order ACC byte is stored into
memory location whose address resides
in Rn and Rn is then incremented
by 1. The high-order ACC byte is
stored into the memory location whose
address resides in the incremented Rn
and Rn ds again incremented by 1.
Branch conditions reflect the ACC
contents which are not disturbed.

The carry is cleared.

EXAMPLE

15 34 AO SET R5, A034 Load point-
ers RS & Ré6

16 22 90 Set R6, 9022 with A034
and 9022.

65 STD aRé6 Move double
byte from

76 STD aR6 AO034 & AO35
to 9022 and
9023. both
pointers
are incr.
by 2.

POP &Rn 8n (Pop indirect)

The Llow order ACC byte is loaded from
the memory Location whose address re-
sides in Rn after Rn is decremented
by 1 and the high order ACC byte is
cleared. Branch conditions reflect
the final 2-byte ACC contents which
will always be positive and never
minus 1. The carry 1dis cleared.
Because Rn s decremented prior to
loading the ACC, single byte stacks
may be implemented with the ST aRn
and POP 3Rn ops (Rn 1is the stack

pointer).

EXAMPLE

15 34 AQ SET R5, A0O34 1Init stack
pointer

10 04 00 SET RO, 4 Load 4 into
ACC

35 ST aR5 Push 4 onto
stack.

Source: Apple Computer, Inc. + Call-A.P.P.L.E. Magazine Page 0095 of 0138
\,

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK I
10 05 00 SET RO, 5 Load 5 into (RO) to 70B6
ACC with carry
35 ST aR5 Push 5 onto set.
stack
10 06 00 SET RO, 6 Load 6 into
ACC SUB Rn Bn (Subtract)
35 ST aRS Push 6 onto
stack The contents of Rn are subtracted
85 POP aR5 Pop 6 off from the ACC contents by performing
stack into a two's complement addition:
ACC
85 POP AR5 Pop 5 off ACC = ACC + Rn +1
stack
85 POP AR5 Pop &4 off The Llow order 16 bits of the sub-
stack traction are restored in the ACC.
The 17th sum bit becomes the carry
STP @Rn 9n (STORE POP indirect) and other branch conditions reflect
the final ACC contents. If the 16-
The Low order ACC byte is stored into bit unsigned ACC contents are greater
the memory location whose address re- than or equal to the 16-bit unsigned
sides in Rn after Rn is decremented Rn contents then the carry is set,
by 1. Then the high-order ACC is otherwise it 1is cleared. Rn is not
stored into the memory location whose disturbed.
address resides in Rn after Rn is
again decremented by 1. Branch con- EXAMPLE
ditions will reflect the 2-byte ACC 10 34 76 SET RO, 7634 1Init ROCACC)
contents which are not modified. 11 27 42 SET R1, 4227 and R1
STP aRn and POP @Rn are used together A1l SuB R1 Subtract R1
to move data blocks beginning at the (diff = 340D
greatest address and working down. with carry
Additionally, single-byte stacks may set)
be implemented with the STP aRn ops. AOQ SUB RO Clears ACC
(RO
EXAMPLE
14 34 AO SET R4, A034 1Init pntrs.
15 22 90 SET R5, 9022 POPD aRn Cn (Pop Double-byte
84 POP QR4 Move byte indirect)
from A033
95 STP aRS to 9021 Rn is decremented by 1 and the high-
84 POP QR4 Move byte order ACC byte 1is Lloaded from the
from A032 memory location whose address now
95 STP @RS to 9020 resides 1in Rn. Rn is again decre-
mented by 1 and the low-order ACC
byte is loaded from the corresponding
ADD Rn An (Add) memory location. Branch conditions
reflect the final ACC contents. The
The contents of Rn are added to the carry is cleared. Because Rn is dec-
contents of the ACC (RO) and the low- remented prior to loading each of the
order 16 bits of the sum restored in ACC halves, double-byte stacks may be
ACC. The 17th sum bit becomes the implemented with the STD 8Rn and
carry and other branch conditions POPD aRn ops (Rn is the stack point-
reflect the final ACC contents. er).
EXAMPLE EXAMPLE
10 34 76 SET RO, 7634 1Init RO(CACO) 15 34 AD SET R5, A034 Init stack
11 27 42 SET R1, 4227 and R1 pointer
A1l ADD R1 Add R1 (sum= 10 12 AA SET RO, AA12 Load AA12
B85B, carry into ACC
clear) 75 STD aR5 Push AA12
AO ADD RO Double ACC onto stack

94

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0096 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

10 34 BB SET RO, BB34 Load BB34
into ACC
75 STD aR5S Push BB34
onto stack
10 56 cC SET RO, CC56 Load CC56
into ACC
(o) POPD @RS Pop CC56
off stack
CPR Rn Dn (Compare)

The ACC (RO) contents are compared to
Rn by performing the 16-bit binary
subtraction ACC-Rn and storing the
low order 16 difference bits in R13
for subsequent branch tests. If the
16-bit unsigned ACC contents are
greater than or equal to the 16-bit
unsigned Rn contents then the carry
is set, otherwise it is cleared. No
other registers, including ACC and Rn
are disturbed.

EXAMPLE

15 34 AO SET R5, A034 Pointer to
memory.

16 BF AOD SET R6, AOBF Limit
address.

10 00 00 LOOP SET RO, O lero data.

75 STD ARS Clear 2
locs, incr
R5 by 2.

25 LD RS Compare
pointer RS

D6 CPR R6 to Limit
R6.

02 fF8 BNC LOOP Loop if
carry
clear.

INR Rn [::] (Increment)

The comtents of Rn are incremented by
1. The carry is cleared and other
branch conditions reflect the incre-
mented value.

EXAMPLE

15 34 AOD SET R5, A034 (Pointer)

10 00 00 SET RO, O Zero to RO

55 ST AR5 Clears Lloc
A034 and
incrs RS
to A034

ES INR RS Incr RS to
AO36.

55 ST @RS Clears loc
A036 (not
A035)

DCR Rn Fn

RTN

BR

(Decrement)

The contents of Rn are decremented by
1. The carry is cleared and other
branch conditions reflect the decre-~
mented value.

EXAMPLE (Clear 9 bytes beginning at
location AD34)

15 34 A0 SET R5, A034 Init point-
er.

14 09 00 SET R4, 9 Init count.

10 00 00 SET RO, O Zero ACC

55 LOOP ST @RS Clear a mem
byte.

F& DCR R4 Decr.count.

07 FC BNZ LOOP Loop until
zero.

NON-REGISTER INSTRUCTIONS

00 (Return to 6502 mode)

Control 1is returned to the 6502 and
program execution continues at the
location immediately following the
RTN instruction. The 6502 registers
and status conditions are restored to
their original contents (prior to en-
tering SWEET 16 mode).

ea 01 d (Branch always)

An effective address (ea) is calcu-
lated by adding the signed displace-
ment byte (d) to the PC. The PC con-
tains the address of the instruction
immediately following the BR, or the
address of the BR op plus 2. The
displacement is a signed twos comple-
ment value from -128 to +127. Branch
conditions are not changed.

Note that the effective address cal-
culation 1is identical to that for
6502 relative branches. The hex add
& subtract features of the APPLE 1I[
monitor may be used to calculate dis-
placements.

d = $80 ea = PC + 2 - 128
d = $81 ea = PC + 2 - 127
d=3%FF ea=PC+2-1
d=8%800 ea=PC+2+0

d = $01 ea = PC +2 + 1

d = $7E ea = PC + 2 +126
d = $7F ea = PC + 2 +127

95

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0097 of 0138 |

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

BC

BP

BM

BZ

96

BNC ea 021l d

WOZPAK 11

EXAMPLE

$300: 01 50 BR $352

(Branch if No Carry)

A branch to the effective address 1is

taken only 1if the carry is clear,
otherwise execution resumes as normal
with the next dinstruction. Branch
conditions are not changed.

ea 03{l d |(Branch if Carry set)

effected only if the
Branch conditions are

A branch is
carry 1is set.
not changed.

ea 04]l d (Branch 1f Plus)

if the
recently
positive.
not changed.

A branch 1is effected only
prior ‘'result' (or most
transferred data) was
Branch conditions are

EXAMPLE (Clear mem from A034 to AO3F)

15 34 AO SET RS, A034 Init
pointer
14 3F AO SET R4, AQ3F Init
limit.
10 00 00 LOOP SET RO, O
55 ST @aRS Clear
mem
byte,
incr RS
24 LD Ré& Compare
Limit
D5 CPR RS to ptr.
04 F8 BP LOOP Loop
until
done.
ea 05 "d (Branch if Minus)

A branch 1is effected only if prior
'result' was minus (negative, MSB=1).
Branch condtions are not changed.

ea 06| d (Branch if Zero)

A branch is effected only 1if the
prior 'result' was zero. branch con-
ditions are not changed.

BNZ ea 07|l d |(Branch if NonZero)
A branch is effected only 1if the
prior ‘'result' was non-zero. Branch

BNM1 ea 091l d

BRK 0A

RS

BS

conditions are not changed.

"BM1 ea 081l d |(Branch if Minus 1)
A branch 1is effected only if the
prior ‘'result' was minus 1 ($FFFF
hex). Branch conditions are not
changed.

(Branch if Not Minus 1)

A branch is effected only if the
prior 'result' was not minus 1 ($FFFF
hex). Branch conditions are not
changed.

(break)

A 6502 BRK (break) dnstruction is
execution. SWEET 16 may be reenter-
ed nondestructively at SW16D after
correcting the stack pointer to its
value prior to executing the BRK.

08 (Return from SWEET 16
subroutine)

RS terminates execution of a SWEET 16
subroutine and returns to the Sweet
16 calling program which resumes exe-—
cution (in SWEET 16 mode). R12,
which 1is the SWEET 16 subroutine re-
turn stack pointer, 1is decremented
twice. Branch conditions are not
changed.

ea 0C|] d (Branch to SWEET 16

Subroutine)

A branch to the effective address
(PC +2 +d) is taken and execution is
resumed 1in SWEET 16 mode. The cur-
rent PC dis pushed onto a 'SWEET 16
subroutine return address' stack
whose pointer 1is R12, and R12 is
incremented by 2. The carry is
cleared and branch conditions set to
indicate the current ACC contents.

EXAMPLE (Calling a 'memory move' sub-
routine to move A034-A03B

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0098 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK 1]
specification is doubled to account for
the 3-byte SWEET 16 registers and placed
in the X-reg for indexing. Then the in-

to 3000-3007)

300: 14 34 AD SET R5, A034 Init

ptr 1. struction t i i i
. A ype 1is determined. Register
303: 14 38 AD SET R4f AO38 {?;gt 1 ops place the doubled register specifi-
. - . cation in the high order byte of R14 in-
306: 16 00 30 SET R6, 3000 ;Z;tz dicating the ‘'prior result register' to
. : subsequent branch dinstructions. Non-
309: 0C 15 BS MOVE Call register ops treat the register specifi-
mo;et cation (right-hand half-byte) as their op-
subrin. code, increment the SWEET 16 PC to point
° at the displacement byte of branch instr-
- uctions, Load the A-reg with the 'prior'
- result register' dindex for branch condi-

320: 45 MOVE LD @RS Move one . H -

321: 56 ST aRb byte tion testing, and clear the Y-reg.

322: 24 LD R4

323: D4 CPR RS rest if WHEN IS AN RTS REALLY A JSR?

one.

324: 04 FA BP MOVE Return.

326: 08 RS Each dinstruction type has a corresponding
subroutine. The subroutine entry points
are stored in a table which is directly
indexed dinto by the opcode. By assigning

THEORY OF OPERATION all the entries to a common page, only a

. .] single byte of address need be stored per

SWEET 16 execution mode begins with a sub- routine. The 6502 indirect jump might
routine call to Sf163 The user must in- have been used as follows to transfers
sure that the 6502 is in hex mode upon control to the appropriate subroutine.
entry. ALL 6502 registers are saved at
this time, to be restored when a SWEET 16 LDA #ADRH High-order byte.
RTN- instruction returns control to the STA IND+1)
6502. If you can tolerate indefinite 6502 LDA OPTBL,X Low-order byte.
register contents upon exit, approximately STA IND
30 usec may be saved by entering at SW16 JMP (IND)
+ 3. Because this might cause an inad-
vertant switch from hex to decimal mode., To save code the subroutine entry address
it is advisable to enter at SW16 the first (minus 1) is pushed onto the stack, high-
time through. order byte first. A 6502 RTS (ReTurn from

. . Subroutine) 1is used to pop the address off
After saving the 6502 registers, SWEET 16 ¢he srack and into the 6502 PC (after in-

initializes its PC (R15). with the sub- crementing by 1). The net result is that
routine return address off the 6502 stack. the desired subroutine is reached by ex-
SWEET 16's PC points to the location pre- ecuting a subroutine return instruction!
ceding the next instruction to be ex-

ecuted. Following the subroutine call are

1-, 2-, and 3-byte SWEET 16 instructions, OPCODE SUBROUTINES

stored 1in ascending memory locations Llike

6502 instructions. The main loop at SW16B

repeatedly calls the 'execute instruction' The register op routines make use of the
routine at SW16C which examines on opcode 6502 'zero page indexed by X' and 'indexed
for type and branches to the appropriate by X indirect' addressing modes to access
subroutine to execute it. the specified registers and indirect data.
The 'result' of most registers ops is left

Subroutine SW16C increments the PC (R15) in the specified register and can be
and fetches the next opcode, which is sensed by subsequent branch instructions
either a register op of the form OP REG since the register specification is saved
with OP between 1 and 15 or a non-register in the high-order byte of R14. This sp-
op of the form 0 OP with OP between 0 and ecification is changed to dindicate RO
13. Assuming a register op, the register (xcc) for ADD and SUB instructions and R13
97

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0099 of 0138 |

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

WOZPAK Il

for the CPR <(compare) instruction.
Normally the high—-order R14 byte holds the
'prior result register' index times 2 to
account for the 2-byte SWEET16 registers
and thus the LSB is zero. If ADD, SUB, or
CPR dinstructions generate carries, then
this dindex 1is incremented, setting the
LSB.

The SET dinstruction increments the PC
twice, picking up data bytes in the spec-
ified register. In accordance with 6502
convention, the Llow-order data byte pre-
cedes the high-order byte.

Most SWEET 16 nonregister ops are relative
branches. The corresponding subroutines
determine whether or not the 'prior
result' meets the specified branch cond-
ition and if so update the SWEET 16 PC by
adding the displacement value (-128 to
+127 bytes).

The RTN op restores the 6502 register con-
tents, pops the subroutine return stack
and jumps dindirect through the SWEET 16
PC. this transfers control to the 6502 at
the dinstruction immediately following the
RTN instruction.

The BK op actually executes a 6502 break
instruction (BRK), transferring control to
the interrupt handler.

Any number of subroutine levels may be im-
p!omented within SWEET 16 code via the BS
(Branch to Subroutine) and RS (Return from
Subroutine) instructions. The user must

98

initialize and otherwise not disturb R12
if the SWEET 16 subroutine capability is
used since it is utilized as the automatic
subroutine return stack pointer.

MEMORY ALLOCATION

The only storage that must be allocated
for SWEET 16 variables are 32 consecutive
locations 1in page zero for the SWEET 16
registers, four locations to save the 6502
register contents, and a few levels of the
6502 subroutine return address stack. If
you don't need to preserve the 6502
register contents, delete the SAVE and RE-
STORE subroutines and the corresponding
subroutine calls. This will free the four
page zero locations ASAV, XSAV, YSAV, and
PSAV.

USER MODIFICATIONS

You may wish to add some of your own in-
structions to this implementation of SWEET
16. If you use the unassigned opcodes $0E
and $0F, remember that SWEET 16 treats
these as 2-byte instructions. you may
wish to handle the break instruction as a
SWEET 16 call, saving two bytes of code
each time you transfer into SWEET 16 mode.
Or you may wish to use the SWEET 16 BK
(Break) op as a 'CHAROUT' call in the int-
errupt handler. You can perform absolute
jumps within SWEET 16 by Lloading the ACC
(RO> with the address you wish to jump to
(minus 1) and executing a ST R15 inst-
ruction.

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0100 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

LAZARUS

A Program to Resurrect BASIC Programs
on the APPLE 1L Computer

By Andy Hertzfeld
Reprinted from Dr. Dobb's ‘Journal of
Computer Calisthenics & Orthodontia,
Box E, Menlo Park, CA 94025

99

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0101 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

BLANK PAGE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0102 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK Il

Many unfortunate souls have exper- The BASIC "workspace™ is the area
jenced the frustration which occurs when of memory used to store the currently
you realize that you have just accidently active BASIC program and its associated
erased the program that you were working variables. On the APPLE 1L, it is de-
on. Kicking the computer may provide some fined by two =zero—page pointers: LOMEM,
emotional satisfaction, but it won't bring which points to the Llowest address's
your program back. This article describes byte 1in the workspace and HIMEM, which
Lazarus, a short machine lLanguage program points one past the highest. Program
which c¢an resurrect inadvertantly erased statements are placed into memory start-
BASIC programs on the APPLE 1L computer. ing at HIMEM, and are pushed down as
when an APPLE][BASIC program is -.each successive statement is entered.
erased, it is usually not destroyed. It Another pointer called PP (for program
is probably still sitting around some- pointer) s wused to point to the first,
where in memory; however, the BASIC inter- lowest numbered statement. PP decreases
preter no longer knows where to find as the program grows; a program is erased
it, so it is effectively lost. Lazarus by setting PP to HIMEM. Thus, all
scans through memory trying to find the Lazarus has to do dis scan memory from
largest valid BASIC program that it can. LOMEM to HIMEM and isolate the beginning
If it finds one it resets the inter- and end of the Llongest BASIC program
preter's pointers to point to the found residing there. To accomplish the res-
program, thereby resurrecting it. If urrection, it simply stores the address
no valid program can be found an error of the start of the program into HIMEM.
message 1is printed. In either case, As each line of the BASIC program is
control is returned to the BASIC inter- entered, it 1is translated into a compact
preter. internal form consisting of four parts.
0f course, things are not guite First there 1is a length byte indicating
this simple. If there are many program the total Length of the statement. It
fragments floating around the workspace, is followed by a 2-byte Lline number,
Lazarus might not resurrect the one you low order byte first. Next comes a
are interested in. If you had performed string of code syllables or tokens which
some deletions of Low-numbered statements make up the body of the statement. Fin-
prior to the erasure, Lazarus may restore ally, there is a special end-of-statement
the deleted Llines along with the rest of token ($01) at the end of every statement.
the program. If your program was located Knowing this information, it is not
in an unusual part of memory, Lazarus too hard to find a BASIC program segment;
may not know where to Llook for it. simply scan through memory searching for
Finally, it is possible but unlikely that an end-of-statement token. when one is
Lazarus could introduce spurious state- found, we can check if 1t ends a state-
ments at the beginning and end of the ment by examining length bytes. The fact
resuscitated program. In practice these that the statement's Lline numbers must
problems are rare; Lazarus should be be 1in ascending order is used to perform
successful most of the time. an additional validity check. The program
segment ends as soon as this structure

THE DETAILS is violated.

To understand how Lazarus works, you

must first know something about the in- There may be valid fragments
ternal representation of an APPLE JC floating around the workspace (like pieces
integer BASIC program. We will examine of the Star Trek program you played an
this briefly here; for a more detailed hour ago); Lazarus will resurrect the
exposition, see Steve Wozniak's article largest one, since that 1is usually the
in Dr. Dobb's #23 (vol. 3, issue 3) or one we are interested din. Since that
the APPLE reference material, when they is not always the one we want, another
finally get around to putting it out entry point s provided that causes the
(the current reference manual isn't very last segment (which tends to be the most
helpful). recent program worked on) to be chosen.

101

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0103 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK 11

Lazarus was implemented using SWEET
16, a very wuseful little 16-bit virtual
machine that is interpreted by the APPLE-

1€ firmware. SWEET 16 saves a lot of
code at the expense of a significantly
longer execution time. Since Lazarus

does a Llot of 16-bit operations, SWEET
16 was able to spare me a large amount
of tedious coding. (See Wozniak's article
elsewhere in this volume for a detailed
description of SWEET 16).

USING LAZARUS

The code for Lazarus is relocatable
since all of 1dits branches are relative
and the only local storage it uses is in
page zero. 3$300 seems to be a convenient
place to load it. You can load it for
the first time by going into the monitor
mode and typing:

300: A9 FF DO 02 A9 00 85 FO
308: 85 F1 20 89 F6 BO 3A EO
310: 35 13 04 00 16 4A 00 17
318: 4C 00 66 36 32 67 37 22
320: D7 03 59 42 D5 07 F8 22
328: FO 38 39 E8 48 D3 02 18
330: A9 34 44 DS 07 12 27 D&
338: 05 OE 24 FO 39 68 31 E4
340: 64 D1 05 04 29 38 01 E3
348: 22 FO 34 D9 06 D1 F4 Fé&
350: F4 11 05 00 84 D1 06 OD
358: E1 10 FF 00 D1 02 CO 24
360: D6 05 BC 01 EF 29 32 E2
368: B4 31 18 FO 00 68 06 04
370: 21 DA 02 AB 21 3A 24 3B
378: 29 3C 01 A3 2A 06 11 11
380: CA 00 28 71 11 4C 00 2¢C
388: EO 71 00 20 3A FF 4C 03
390: €0 00 20 2D FF 4C 03 EO

102

Once it has been manually loaded,
it can be saved by typing "300.3A0W"
and then subsequently loaded back in by
typing "300.3A0R". (Editor's note: For
disk save and Lload, use "BSAVE LAZARUS,
A$300,L$A0" and "BLOAD LAZARUS", respect-
ively).

Lazarus is very easy to use. After
cursing yourself out a few times for ac-
cidently erasing your program, return to
monitor and load Lazarus. Then return
to BASIC and type "CALL 768" or "CALL
772", The former will cause the longest
proaram seagment 1in the workspace to be
restored; the Llatter will cause the Llast
to be selected. When it returns, do a
"LIST" to see what is found. If nothing
could be dredged up, an error message is
printed. If both entry points recover
the wrong program, you can adjust LOMEM
and HIMEM accordingly and try again. If
all else fails, you can still always kick
the computer.

A useful extension to Lazarus would
be to recover the variable table along
with the program, which could be very
important in some cases. I would Llike
to thank Bruce Tognazzini for providing
the 1dinitial idea for this program.

A complete source listing follows...

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0104 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

0300: A9
0302: 00
0304: A9
0306: 85
0308: 85

030A: 20
030p: BO
030E: 3A
030F: €0
0310: 35
0311: 13
0314: 16
0317: 17
031A: 66
031B8: 36
031C: 32
0310: 67
031e: 37

031F: 22
0320: b7
0321: 03
0323: 42

FF
02

FO
F1

89 Fé6

04 00
4A 00
4C 00

59

~

WOZPAK II

dhkkkhkhhkhkhkkhhkhhkhkhkkhhkhkhkkkkkkkhkkhhhkhhhhhkhhkkhkhkhkkkk

* LAZARUS SOURCE LISTING
Ll s 2 e T

LOMEM EQU
HIMEM EQU
PP EQU
BASIC EQU
BELL EQU
ERR EQU
W16 EQuU
*kk%k SWEET 16
4 EQu
5 EQU
FO EQU
FF EQU
RO EQU
R1 EQU
R2 EQu
R3 EQU
R4 EQU
RS EQu
R6 EQU
R7 EQu
R8 EQu
R9 EQU
R10 EQU
R11 EQU
R12 EQu
*

ORG
*

LDA

BNE

LDA
STORE STA

STA

*

* INITIALIZE REGISTERS, ETC.

*

JSR
sus
ST
INR
ST
SET
SET
SET
LoD
ST
ST
LDD
ST

*

*

*

*

MAINLOOP LD
CPR
BC
LD

$4A
$4C
$CA
$E£000
$FF3A
$FF2D
$F689

EQUATES *ix

4
5
$FO
SFF
$0
$1
$2
$3
$4
$5
$6

$300

HSFF
STORE
#300
$FO
$F1

SW16

RO

R10

RO

RS

R3,4

R6 ,LOMEM
R7 ,HIMEM
aré

R6

R2

ar7

R7

THE MAIN LOOP STARTS HERE. WE
SCAN FOR AN END-OF-STATMENT TOKEN ($01).

R2

R7
ALLDONE
ar2

SWEET 16 ENTRY

AUXILIARY

MAIN SCAN POINTER

CONTAINS $4 FOR COMPARISON
AUXILARY; BACKWARDS SCAN POINTER
CONTAINS $1 FOR COMPARISONS
LOMEM

HIMEM

USED IN FORWARD SCAN

USED IN FORWARD SCAN
MAXIMUM SIZE FOUND SO FAR
PP OF MAX SEGMENT

HIMEM OF MAX SEGMENT

SET FLAG TO ALL ONES
ALWAYS TAKEN.
SET FLAG TO ALL ZEROS.

SET THE SWITCH AT $FO

ZERO THE ACCUMULATOR
ZERO MAX SIZE.

SET R5 TO 1.
SET R3 TO 4.
GET ADDRESS OF LOMEM.
HIMEM, TOO.

SET R6 TO LOMEM.
INITIALIZE SCAN PTR. THERE, TO0O.

SET R7 TO HIMEM.

TEST TO SEE IF WE'RE PAST
HIMEM; IF WE ARE, WE ARE
FINALLY DONE.

PICK UP THE NEXT BYTE.
103

Source:
\

Apple Computer, Inc.

» Call-A.P.P.L.E. Magazine

Page 0105 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

104

0324:
0325:
0327:
0328:
0329:
032A:

0328:
032c:
032D:
032E:
0330:
0331:
0332:
0333:
0334:

0336:
0337:
0338:
033A:
0338:
033cC:
033D:
033E:
033F:
0340:
0341:
0342:
0344
0345:
0346:

0348:
0349:
034A:
034B:
034¢C:
034E:
034F:
0350:
0351:

D5
07 F8
22
FO
38
39

E8
48
D3
02 18
A9
34
44
D5
07 12

27
D4
05 CE
24
FO
39
68
31
E4
64
D1
05 04
29
38
01 E3

22

FO

34

b9

06 D1

Fé

F4

F4

11 05 00

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

*
*
*
*
*
*
*
*
c

* % % o * *

WOZPAK I
CPR R5 IS IT THE EOS TOKEN?
BNZ MAINLOOP IF ITS NOT, CONTINUE THE SCAN.
LD R2 INITIALIZE R8 & R9
DCR RO TO POINT TO THE
ST R8 END-OF-STATMENT TOKEN.
ST R9

AT THIS POINT A CANDIDATE FOR A STATMENT

HAS BEEN FOUND. THE FOLLOWING LOOP PERFORMS

VALIDITY CHECKS ON SUCCESSIVE STATMENTS

UNTIL AN INVALID ONE IS FOUND OR HIMEM IS

REACHED. R9 POINTS TO THE LAST BYTE OF

THE MOST RECENT VALID STATMENT.

HKLOOP INR RS8 BUMP R8 TO THE NEW LENGTH BYTE

LD aR8 PICK UP THE LENGTH BYTE.
CPR R3 MAKE SURE ITS GREATER THAN 4.
BNC INVALID IF ITS NOT, ITS INVALID.
ADD R9
ST R4 R4 NOW HOLDS THE END ADDRESS.
LD R4 PICK UP THE LAST BYTE OF STATMENT.
CPR R5 IT BETTER BE AN EOS TOKEN.

BNZ INVALID IF ITS NOT, ITS INVALID.

AT THIS POINT, R8 POINTS ONE PAST THE BEGINNING OF A
VALID STATMENT AND R4 POINTS TO THE START OF THE NEXT,
POSSIBLY VALID ONE. WE PERFORM LINE NO. VALIDITY CHECKS
AND TEST AGAINST HIMEM,

LD R7 PICK UP HIMEM AND SEE IF

CPR R4 WE'VE PASSED IT.

BM INVALID IF WE HAVE, ITS INVALID.

LD R&

DCR RO ITS VALID, SO MARK IT

ST R9 IN R9.

LDD QR8 PICK UP THE LINE NUMBER OF THE

ST R1 OLD LINE AND SAVE IN R1.

INR R4

LDD 3R4 PICK UP THE NEWER LINE NUMBER

CPR R1 AND COMPARE IT WITH THE OLDER ONE.

B8M INVALID IF NEW IS LESS THAN OLD, ITS NO GOOD.

LD R9 THE STATMENT'S OK SO

ST R8 UPDATE R8 WITH R9Y.

BR CHKLOOP GO EXAMINE THE NEXT STATMENT.

AT THIS POINT, WE HAVE REACHED THE END OF A VALID
PROGRAM SEGMENT;
R9 POINTS TO THE LAST BYTE OF THE LAST VALID STATMENT
R2 POINTS ONE PAST THE LAST BYTE OF THE FIRST VALID STATMENT
IF R2%R9+1, WE DIDN'T FIND ANYTHING
NVALID LD R2 POINT R4 TO THE LAST BYTE OF
DCR RO OF THE LAST VALID STATMENT.
ST R4
CPR R9 IF R9=R4& THEN NOTHING WAS FOUND
Bz MAINLOOP SO FORGET IT AND GO CONTINUE SCAN.
DCR R4
DCR R4 SUBTRACT 3 FROM R4 TO PREPARE
DCR R4 FOR THE BACKWARD SCAN.
SET R1,5 R1 WILL HOLD THE TENTATIVE LENGTH.

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0106 of 0138 |

\
Apple][Computer Information ¢ The Woz Pak][* 15 November 1979
WOZPAK 1l

125 *
126 * IN THE FOLLOWING LOOP WE SCAN BACK, SEARCHING FOR THE
127 * BEGINNING OF THE SEGMENT'S INITIAL STATMENT.
128
0354: 84 129 SCANLOOP POP @Ré4 PICK UP THE NEXT BYTE.
0355: D1 130 CPR R1 COMPARE WITH THE LENGTH COUNT.
0356: 06 0D 131 BZ DONE IF THEY'RE EQUAL, WE'RE DONE,
0358: E1 132 INR R1 INCREMENT R1 FOR THE NEXT ITERATION.
0359: 10 FF 00 133 SET RO,FF TEST IF WE'VE GONE 256 BYTES.
035C: D1 134 CPR R1 IF WE HAVE, ITS TOO LONG
035D: 02 €O 135 BNC MAINLOOP SO GIVE UP THE SEGMENT.
035F: 24 136 LD R4 MAKE SURE LOMEM ISN'T PASSED.
0360: D6 137 CPR R6
0361: 05 BC 138 BM MAINLOOP IF IT HAS, GIVE UP.
0363: 01 EF 139 BR SCANLOOP GO CHECK THE NEXT BYTE.
140 *
141 % AT THIS POINT, WE HAVE FOUND A VALID PROGRAM SEGMENT. R4
142 * POINTS TO THE FIRST BYTE OF THE SEGMENT; R9 POINTS TO
143 % THE LAST BYTE.
144 *
0365: 29 145 DONE LD R9 MAKE R2 POINT PAST THE RECENTLY
0366: 32 146 ST R2 FOUND SEGMENT TO CONTINUE THE
0367: E2 147 INR R2 SCAN IN THE MAIN LOOP.
0368: B4 148 SUB R4 COMPUTE THE LENGTH OF THE SEGMENT
0369: 31 149 ST R1 AND SAVE IT IN R1.
036A: 18 FO 00 150 SET R8,FO GET THE ADDRESS OF THE FLAG.
036D: 68 151 LDD @QR8 LOAD THE FLAG.
036E: 06 04 152 BZ UPDATE IF FLAG=0, ALWAYS DO IT.
0370: 21 153 LD R1 RESTORE THE SIZE
0371: DA 154 CPR R10 AND COMPARE WITH THE MAX SO FAR.
0372: 02 AB 155 BNC MAINLOOP IF ITS SMALLER, WE DON'T WANT IT.
0374: 21 156 UPDATE LD R1 RESTORE THE SIZE
0375: 3A 157 ST R10 AND UPDATE THE MAX SIZE WITH IT.
0376: 24 158 LD R4
0377: 38 159 ST R11 UPDATE THE MAX PP,
0378: 29 160 LD R9
0379: 3cC 161 ST R12 UPDATE THE MAX HIMEM.
037A: 01 A3 162 BR MAINLOOP GO FIND THE NEXT SEGMENT.
163 *
164 x WE REACH THIS POINT WHEN THE MAIN LOOP HAS RUN ITS COURSE
165 * (I.E., THE MAIN SCAN POINTER HAS REACHED HIMEM). SET PP AND
166 * HIMEM APPROPRIATELY AND THEN RETURN TO THE BASIC
167 * INTERPRETER. PRINT "ERR' IF NOTHING FOUND.
168 *
037C: 2A 169 ALLDONE LD R10 GET THE SIZE OF WHAT WE FOUND.
037D: 06 12 170 BZ ERROR IF ITS ZERO, SIGNAL AN ERROR.
037F: 11 CA 00 171 SET R1,PP GET THE ADDRESS OF PP,
0382: 28 172 LD R11
0383: 71 173 STD aR1 SET PP TO START OF PROGRAM.
0384: 11 4C 00 174 SET R1,HIMEM GET THE ADDRESS OF HIMEM.
0387: 2C 175 LD R12
0388: EO 176 INR RO INCREMENT IT BY 1.
0389: 71 177 STD @R1 SET HIMEM TO POINT ONE PAST PROGRAM.
038A: 00 178 RTN RETURN TO 6502 MODE.
0388: 20 3A FF 179 JSR BELL RING THE BELL TO WAKE UP USER.
038E: 4C 03 EO 180 JMP BASIC+3 JUMP BACK TO INTERPRETER.
0391: 00 181 ERROR RTN RETURN TO 6502 MODE.
0392: 20 20 FF 182 JSR ERR PRINT THE ERROR MESSAGE (& RING BELL)
0395: 4C 03 E0 183 JMP BASIC+3 RETURN TO THE BASIC INTERPRETER. 105
| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0107 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

BLANK PAGE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0108 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

FLOATING POINT PACKAGE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0109 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

BLANK PAGE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0110 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK II
The mantissa-exponent, or 'floating point' 00.XXXXXX Unnormalized mantissa,
numerical representation is widely used by 11.XXXXXX Exponent = -128.
computers to express values with a wide
dynamic range. wWith floating point repre- 2. Exponent.
sentation, the number 7.5 x 10°22 requires The exponent is a binary scaling factor
no more memory to store than the number 75 (power of two) which 1is applied to the
does. We have allowed for binary float- mantissa. Ranging from -128 to +127, the
ing point arithmetic on the APPLE 1L exponent is stored in standard two's comp-
computer by providing a useful subroutine lement representation except for the sign
package 1in ROM, which prforms the common bit which is complemented. This repre-
arithmetic functions. Maximum precision sentation allows direct comparison of ex-
is retained by these routines and overflow ponents, since they are stored in increas-
conditions such as ‘'divide by zero' are ing numerical sequence. The most negative.
trapped for the user. The 4-byte float- exponent, corresponding to the smallest
ing point number representation is comp- magnitude, -128, is stored as 300 (% means
atible with future APPLE products such as hexidecimal) and the most positive, +127,
floating point BASIC. o is stored as $FF (all ones).
A small amount of memory in Page Zero is EXPONENT STORED AS
dedicated to the floating point workspace,
including the two floating-point accumul- +1 10000001 ($81)
ators, FP1 and FP2. After placing oper- +2 10000010 ($82)
ands in these accumulators, the user calls +3 10000011 ($83)
subroutines din the ROM which perform the
desired arithmetic operations, leaving -1 01111111 ($7F)
results in FP1. Should an overflow cond- -2 01111110 ($7E)
ition occur, a jump to location $3F5 is -3 01111101 ($7D)

executed, allowing a user routine to take

appropriate action.
The smallest magnitude which can be repre-
sented js 2°-150.

FLOATING POINT REPRESENTATION 0 0 0 1
HIGH LOw
HI LOW EXP MANTISSA
Exponent Signed Mantissa The Llargest positive magnitude which can

be represented js +2°128-1. -
1. Mantissa
The floating point mantissa is stored in

two's complement representation with the $7F| ($7F] [$FF FF
sign at the most significant bit (MSB) -
position of the high-order mantissa byte. EXP MANTISSA

The mantissa provides 24 bits of pre-
cision, dincluding sign, and can represent

24-bit integers precisely. Extending pre- FLOATING POINT REPRESENTATION EXAMPLES
cision dis simply a matter of adding bytes
at the low order end of the mantissa. DECIMAL HEX HEX

NUMBER EXPONENT MANTISSA

Except for magnitudes Lless than 2°-128

(which Lose precision) mantissa are norm- + 3 81 60 00 00
alized by the floating point routines to + 4 82 40 00 00
retain maximum precision. That is, the + 5 82 50 00 00
numbers are adjusted so that the upper two + 7 82 70 00 00
high-order mantissa bits are unequal. +12 83 60 00 00
+15 83 78 00 00

HIGH-ORDER MANTISSA BYTE +17 84 44 00 00
01.XXXXXX Positive mantissa. +20 84 SC 00 00
10.XXXXXX Negative mantissa. +60 85 78 00 00

109

Page 0111 of 0138 |

Source: Apple Computer, Inc. + Call-A.P.P.L.E. Magazine
\,

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK 11
-3 81 A0 00 00 point form.
- 4 81 80 00 00 Entry: The two addends are in FP1 and
-5 82 BO 00 00 FP2 respectively. For maximum
-7 82 90 00 00 precision, both should be norm-
=12 83 A0 00 00 alized.
-15 83 88 00 00 Uses: SWPALGN, ADD, NORM, RTLOG.
-17 84 8C 00 00 exit: The normalized sum is Lleft in
=20 84 80 00 00 FP1. FP2 contains the addend of
-60 85 88 00 00 greatest magnitude. E is altered
but sian 1is not. The A-REG is
altered and the X-REG is cleared.
FLOATING POINT SUBROUTINE DESCRIPTIONS The sum mantissa is truncated to
: 24 bits.
FCOMPL subroutine (address $F4A4) Caution: Overflow may result if the sum is
Lless that -2°128 or greater than
Purpose: FCOMPL is used to negate floating +2°128 -1. 1If so, a jump to lo-
point numbers. cation $3F5 1is executed leavina
Entry: A normalized or unnormalized value 0 in X1, and twice the proper sum
is in FP1 (floatina point accum- in the mantissa M1. The sign bit
ulator 1). is left in the carry, 0O for pos-
Uses: NORM, RTLOG. itive, 1 for negative.
Exit: The value in FP1 is negated and then
normalized to retain precision. The
3-byte FP1 extension, €, may also be FP1: 0 X.YYY...
altered but FP2 and SIGN are not
disturbed. The 6502 A-REG is alter- X1 M1
ed and the X-REG 1is cleared. The (For carry=0, true sum=+X.YYY...x 27128)
Y-REG is not disturbed. Example: Prior to calling FADD, FP1 con-
Caution: Attempting to negate -2°128 will tains +12 and FP2 contains =5.
result 1in an overflow since +2°
128 is not representable, and a FP1: $83 $60 0 0 (+12)
jump to location $3FS5 will be ex-
ecuted, with the following con- X1 m1
tents in FP1.
FP2: $82| |$80 0 0 (-5)
FP1: 4] $80 0 0 X2 M2
X1 M1 After calling FADD, FP1 contains

+7 (FP2 contains +12).
Example: Prior to calling FCOMPL, FP1 con-

tains +15. FP1 $82] [$70 0 0 +7)
X1 M1
FP1: [$83 $78 0 0 (+15)
X1 M1 FSUB subroutine (address $F468)

Purpose: To subtract two floating point
After calling FCOMPL as a sub- numbers.
routine, FP1 contains -15.
Entry: The minuend is in FP1 and the sub-
trahend 1is in FP2. Both should be
FP1: |$83 $38 0 0 -15) normalized to retain maximum pre-
cision prior to calling FSUB.

X1 M1
Uses: FCOMPL, ALGNSWP, FADD, ADD, NORM,
FADD subroutine (address $F46E) RTLOG.
Purpose: To add two numbers in floating Exit: The normalized differnce is in FP1

110

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0112 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK il
with the mantissa truncated to 24 Cautions: An exit to Llocation $3F5 is
bits. FP2 holds either the minued taken if the product is less
or the negated subtrahend, which- than -2"128 or greater than
ever is of greater magnitude. E js +2°128~1.

altered but SIGN and SCR are not.
the A~REG 1is altered and the X~REG Notes: FMUL will run faster 4§f the ab-

is cleared. The Y-REG is not dis- solute value of the multiplier man-
turbed. tissa contains fewer '1's than the
absolute value of the multiplicand
Cautions: An exit to Llocation $3FS is mantissa.
taken if the result is less than
=27128 or greater than +27128-1, Example: Prior to calling FMUL, FP1 con-
or if the subtrahend is -27128. tains +12 and FP2 contains -5.
Example: Prior to calling FSUB, FP1 con-
tains +7 (minuend) and FP2 con- FP1: [$83| [s60 o 0 +12)
tains -5 (subtrahend).
X1 M1
FP1: $82{ [$70 0 0 (+12)
FP2: $82| [$BO 0 0 -5
X1 M1
X2 M2
After calling FMUL, FP1 contains
FP2: 382 |80 0 0 =5 60 and FP2 contains +5.
X2 M2
FP1: $85] 1888 0 0 -6
After calling FSUB, FP1 contains
+12 and FP2 contains +7. X1 M1
FP1: $83] [$60 0 0 (+12) FP2: $82| [$50 0 0 (+ 5)
X1 M1 X2 M2

FDIV subroutine (address $F4B2)
FMUL subroutine (address $F48C)

Purpose: To perform division of floating

Purpose: To multiply floating point numb- point numbers.
ers.
Entry: The normalized dividend is in FP2
Entry: The multiplicand and multiplier and the normalized divisor 4is in
must reside in FP1 and FP2 respec- EP1.
tively. Both should be normalized :
prior to c?l¥ing FMUL to retain Exit: The signed normalized floating point
maximum precision. quotient is left in FP1. The man-
tissa (M1) is truncated to 24 bits.
Uses: MD1, MD2, RTLOG1, ADD, MDEND. The 3-bit M1 extension (E) contains
the absolte value of the divisor
Exit: The signed normalized floating point mantissa. MD2, SIGN, and SCR are
product is left in FP1. M1 is trun- altered. The A~ and X-REGs are alt-
cated to contain the 24 most signi- ered and the Y-REG is cleared.
ficant mantissa bits (including
sign). The absolute value of the Uses: MD1, MD2, MDEND.
multiplier mantissa (M2) is Lleft in
FP2. E, SIGN, and SCR are altered. Cautions: An exit to location $3F5 is ta-
The A- and X-REGs are altered and ken if the quotient is less than
the Y-REG contains $FF upon exit. =-2°128 or greater than +2°128-1

m

Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0113 of 0138 |
\

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK I
Notes: MD2 contains the remainder mantissa to calling FLOAT and increase
(equivalent to the MOD function). throughput.

The remainder exponent is the same
as the quotient exponent, or 1 less

if the dividend mantissa magnitude *
is less than the divisor mantissa * LOW-ORDER INT. BYTE IN A-REG
magnitude. * HIGH-ORDER BYTE IN Y-REG
*
Example: Prior to calting FDIV, FP1 con- 85 FA XFLOAT STA M1#1
tains =60 (dividend), and FP2 84 F9 STY M1 INIT MANT1
contains +12 (divisor). AO 00 LDY #30
84 FB STY M1+2
_ 05 D9 ORA M1 CHK BOTH
FP1: $85 $80 0 0 (-60» BYTES FOR
D0 03 BNE TOFLOAT ZERO
X1 M1 85 F8 STA X1 IF SO CLR X1
60 RTS AND RETURN
4C 51 F4 TOFLOAT JMP FLOAT ELSE FLOAT
FP2 $83 $60 0 0 (+12) INTEGER
X1 M1 Example: Float +274 ($0112 hex)

CALLING SEQUENCE
After calling FMUL,FP1 contains

-5 and M2 contains 0. AD 01 LDY #$01 HIGH-ORDER
INTEGER BYTE
FP1: $82 $80 0 0 (-5 A9 12 LDA #%$12 LOW-ORDER
INTEGER BYTE
X1 M1 84 F9 STY M1
85 FA STA M1+
A9 00 LDA #300
FLOAT Subroutine (address $F451) 85 F8 STA M1+42
20 51 F&4 JSR FLOAT

Purpose: To convert integers to floating
point representation.

Upon returning from FLOAT, FP1

Entry: A signed (two's complement) 2-byte contains the floating point rep-
integer is stored in M1 Chigh- resentation of +274.
order byte) and M1+1 (low-order
byte). M142 must be cleared by FP1 |$88] |344| [$80 0 (+274)
user prior to entry.

X1 M1
Uses: NORM1.
FIX subroutine (address $F640)

Exit: The normalized floating point
equivalent is left in FP1. E, FPZ, Purpose: To extract the integer portion of
SIGN, and SCR are not disturbed. a floating point number with
The A-REG contains a copy of the truncation (ENTIER function).
high-order mantissa byte upon exit
but the X- and Y-REGs are not dist- Entry: A floating point value is in FP1.
urbed. The carry is cleared. It need not be mnormalized.

Notes: To float a 1-byte integer, place Uses: RTAR.
it in M1+1 and clear M1 as well as

M1+2 prior to calling FLOAT. Exit: The two-byte signed two's complement

' representation of the integer port-
FLOAT takes approximately 3 msec. jon is Lleft in M1 (high-order byte)
Llonger to convert zero to floating and M1+1 (lLow-order byte). The
point form than other arguments. floating point values +24.63 and
The user may check for zero prior -61.2 are converted to the integers

112

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0114 of 0138
7

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK 11

+24 and -61 respectively. FP1 and E NORM1 subroutine (address $F455)
are altered but FP2, E, SIGN, and

SCR are not. The A- ?nd X~REGs are Purpose: To normalize a floating point
altered but the Y-REG is not. value in FP1 when it is known
the exponent 1is not =128 (X1

Example: The floating point value +274 is =0) upon entry.

in FP1 prior to calling FIX.

Entry: An unnormalized number is in FP1.
FP1: $88 $44 380 0 (+274) The exponent byte should not be O
for normal use.

X1 M

Exit: The normalized value i3s in FP1.
After calling FIX, M1 (high-order E, FP2, SIGN, and SCR are not not
byte) and M1+1 (lLow-order byte) disturbed. The A-REG is altered
contain the dJnteger represent- : but the X- and Y-REGs are nrot.
ation of +274 ($0112).

FP1: |38E $01 $12 0 ADD Subroutine (address $F&25)

X1 M1 Purpose: To add the two mantissas (M1

and M2) as 3-byte integers.
Note: FP1 contains an unnormal-
ized representation of +274 upon Entry: Two mantissas are in M1 (throuah
exit. M1+2) and M2 (through M2+2). They
should be aliagned, that is with
identical exponents, for use in

NORM Subroutine (address $F463) the FADD and FSUB subroutines.
Purpose: To normalize the value in FP1, Exit: the 24-bit dnteger sum s in M1
thus insuring maximum precision. (high-order byte in M1, Low-order
byte {in M1+2). FP2, X1, E, SIGN
Entry: A normalized or unnormalized value and SCR are not disturbed. The
is in FP1. A-REG contains the high-order byte
of the sum, the X-REG contains $FF
Exit: The value in FP1 is normalized. and the Y-REG s not altered. The
A zero mantissa will exit with carry 1is the '25th' sum bit.
X1=0 (2 exponent). If the ex-
ponent on exit is -128 (X1=0) then Example: FP1 contains +5 and FP2 contains
the mantissa (M1) 4is not necess- +7 prior to calling ADD.

arily normalized (with the two
hiagh-order mantissa bits unequal).

E, FP2, SIGN, AND.SCR are not dis- FP1: [ss2] fsso| [o ol +5)
tubed. The A-REG is disturbed but
the X- and Y-REGs are not. The X1 M1
carry is set.
FP2: $82 $70 0 0 +7)
Example: FP1 contains +12 in unnormalized
form (as .0011 x 2). Upon exit, M1 contains the over-
flow value for +12. Note that
FP1: 386 $0c 0 0 +12) the sign bit is incorrect. This
is taken care of with a call to
x1 M1 _ the right shift routine.
Upon exit from NORM, FP1.con- FP: $82 $C0 0 0 (+12)
tains +12 in normalized form

(as 1.1 x 2).

ABSWAP Subroutine (address $F437)
FP1: $83 $60 0 0 (+12)
Purpose: To take the absolute value of
X1 M1 FP1 and then swap FP1 with FP2.

113

Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0115 of 0138 |
\

Apple][Computer Information ¢ The Woz Pak][-

15 November 1979

Entry:

Exit:

Entry:

Exit:

Uses:

FP1

114

Purpose: To

Caution:

Example:

WOZPAK 1l

Note that two sequential calls to
ABSWAP will take the absolute
values of both FP1 and FP2 in
preparation for a multiply or
divide.

FP1 and FP2 contain floating point
values.

The absolute value of the original

FP1 contents are 1in FPZ2 and the
original FP2 contents are in FP1.
The least siagnificant bit of SIGN

is complemented if a negation takes
place (if the original FP1 contents
are negative) by means of an incre-

ment. SCR and E are used. The
A-REG contains a copy of X2, the
X-REG is cleared, and the Y-REG is

not altered.

RTAR Subroutine (address $F47D)

shift M1 right one bit pos-
ition white incrementing X1 to
compensate for scale. This is
roughly the opposite of the NORM
subroutine.

unnormalized
is in FP1.

A normalized or
floating point value

The 6-byte field MANT1 and E is
shifted right one bit arithmetical-
ly and X1 1is incremented by 1 to
retain proper scale. The sign bit
of MANT1 (MSB of M1) is unchanged.
FP2, SIGN, and SCR are not disturb-
ed. The A-REG contains the least
significant byte of E (E+2), the
X-REG is cleared, and the Y-REG
is not disturbed.

If X1 increments of 0 (overflow)
then an exit to location $3F5 is
taken, the A-REG contains the
high-order MANT1 byte, M1 and X1
is cleared. FP2, SIGN, SCR, and
the X- and Y-REGs are not dist-
urbed.

RTLOG

to calling RTAR, FP1 con-
the normalized value -7.

Prior
tains

$83 $A0 0 0 -7

X1 M1

FP1

RTLOG

Purpose: To

Entry:

After calling RTAR, FP1 contains
the unnormalized value -7 (note
that precision 1is lost off the
low-order end of M1).

$84 $00 0 0 -7
X1 M1
Note: M1 sign bit is unchanged.
subroutine (address $F480)

shift the 6-byte field MANT1
and E one bit to the right (to-
ward the least significant bit).
The 6502 carry bit 1is shifted

into the high-order M1 bit.
is wuseful 1in
sum overflows.

This
correcting binary

A normalized or unnormalized float-
ing point value 1is 1in FP1. The
carry must be cleared or set by the
user since it is shifted into the
sign bit of M1.

Exit: Same as RTAR except that the sign of
M1 is not npreserved (it is set to
the value of the carry bit on entry)

Caution: Same as RTAR.

Example: Prior to calling RTLOG, FP1 con-
tains the normalized value -12
and the carry is clear.

FP1: $83 $A0 0 0 (-12)
X1 M1
After calling RTLOG, M1 is shift-
ed one bit to the right and the
sign bit is clear. X1 is incr-
emented by 1.
FP1: $84 $50 0 0 (+20)
X1 M1
Note: The bit shifted off the end

of MANT1 1is rotated into the

high-order bit of the 3-byte ex-
tension E. The 3-byte E field is
also shifted one bit to the
right.

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0116 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK Il

Exit: The 3 bytes of M1 are cleared (or Entry: M1 and E contain a 6-byte unsigned

all set to the contents of the X-REG field. E is the 3-byte low-order
on Entry) and the Y-REG is loaded extension of MANT1.

with $17. The sign bit of the A-REG .

is complemented and a copy of the A- Exit: Same as RTLOG except that X1 is not
REG is stored in X1. FP2, SIGN, altered and an overflow exit cannot
SCR, and the X-REG are not dis- occur.

turbed.

Uses: NORM. MD2 subroutine (address $F4E2)

Caution: Exponent overflow results in an Purpose: To clear the 3-byte MANT1 field
exit to location $3F5. Exponent for FMUL and FDIV, check for in-
underflow results in an early ital result exponent overflow (
return from the calling sub- and underflow), and initialize
routine (FDIV or FMUL) with a the X-REG to $17 for loop count-
floating point zero in FP1. Be- ing.
cause MD2 pops a return address
off the stack, it may only be Entry: the X-REG 1is cleared by the user
called by another subroutine. since it is placed in the 3 bytes

of MANT1. The A-REG contains the

RTLOG1 subroutine (address $F484) result of an exponent addition

(FMUL) or subtraction (FDIV). The

Purpose: To shift MANT1 and E right one carry and sign status bits should
bit without adjusting X1. This be set according to this addition
is used by the multiply Lloop- or subtraction for overflow and
The carry is shifted into the underflow determination.

sign bit of MANT1.

115

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0117 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

BLANK PAGE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0118 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

AUTO-REPEAT FOR
APPLE 1L MONITOR COMMANDS

117

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0119 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK I

It 4s occasionally desirable to auto-
matically repeat a MONITOR command or
command sequence on the APPLE J[computer.
For example, intermittently bad RAM bits
in the $800-3FFF address range ($ stands
for hex) may be detected by verifying
those locations with themselves using the
MONITOR verify command:

*800<800.FFFVLr] (Crd is RETURN)

Because this type of problem may be
intermittent, multiple verifications may
be necessary before the problem is detec-
ted. Typing the verify command over and
over is a tedious chore which may not
even catch the bug, since the RAMs are
not fully exercised while the wuser is
typing.

The APPLE J[MONITOR command input
buffer begins at Llocation %200 and is
scanned from beginning to end after the
user finishes typing a Lline by typing a
carriage return. An index to the next
executable character of the buffer resides
in location $34 while any function is
beina executed. By adding the command
'34:0' to the end of a MONITOR command
sequence, the wuser causes scanning to

118

resume at the beginning. Because the
'34:0' command leaves the MONITOR in a
'store' mode, an 'N' command should begin
the line. The following is an example of
a command sequence which verifies the Lo-
cations $800-$FFF with themselves, auto-
matically repeating:

*N800<800.FFFV 34:0 [r]

(Note that the space between the final
command and Creturn] is necessary for this
feature to work properly)

Multiple command sequences accepted
by the APPLE 1L MONITOR may also be auto-
matically repeated. For example, the
following command sequence clears all bits
in the address range $400-35FF, verifies
all of these Llocations with themselves,
sets them all to ones, verifies them
again, and repeats:

*N400:0 N401<400.5FEM 400<400.5FFV 400:FF
N401<400.5FEM 400<400.5FFV 34:0 [r]

Because this example uses screen mem-
ory locations, it 1is observable on the
display. The repeating command may be
halted by hitting RESET. Since the cursor
is only generated for keyboard entry, it
will disappear while the example repeats.

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0120 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

DIRECT CALLS TO APPLE 1f
INTEGER BASIC FUNCTIONS

19

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0121 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK H

The following APPLE 1L Integer BASIC
entry points are directly callable:

LIST —— JSR $E048 CALL -8117
RUN -- JSR S$EFEC CALL -4116
RUN* -- JSR SE836 CALL -6090
SAVE -— JSR $F140 CALL -3776
LOAD —- JSR $FODF CALL -3873

The random number function may be ac-—
cessed directly as follows:

1. Place the modulus (RND argument) in
locations S$CE (low) and SCF (high).

2. LDX #$20 (may use other values—-X-REG
used as BASIC stack pointer.)

3. JSR $EF51

L. X-REG will now be one less and the
random value returned is in locations
$6F (low) and $BF (high).

NOTE: If X were Less (or greater) than

$20, then the correspondingly lower
(or higher) locations.

% This RUN entry does NOT delete the BASIC
Variables.

120

PRINT DECIMAL
(2-byte integer 0 to 65535)

1. Specify Lleading character option in
location $FA.
0 = no leading characters
(normal BASIC mode)
"0" = leading zeros, 5-char. field

"blank” = leading blanks

"“(char)'" = leading (char)
2. LDX Low byte
3. LDA high byte
4. JSR $ES1B

CAUTIONS:

a. Location 3F8 should be positive when
PRINT DEC 4s called, or the printed
characters will also be added to the
BASIC dnput buffer ($200-32FF) using
the Y-REG as an index (as in AUTO LINE
NUMBER mode).

b. Locations $C9, $F2, $F3, $F9 are used
as temporaries.

c. Exit conditions:

A-REG contains last char printed.

"X-REG contains $FF.

Y-REG undisturbed (unless caution (a)
ignored)

Negative flag is set.

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0122 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

APPLE 1L TREK

By Wendell Sander

121

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0123 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

BLANK PAGE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0124 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK II

APPLE 1L TREK 1is a sophisticated PH TORPS are considered as energy in
space war game in which the player, as determining the maximum allowable energy
Captain of the Starship ENTERPRISE is aboard the ENTERPRISE. Also, PH TORPS
sent on a search and destroy mission can be converted directly into energy or
against the KLINGON Empire Fleet. The formed from eneragy. The transformation
APPLE 1L computer creates the game en- consumes enerqy.
vironment, operates the KLINGON Cruisers The ENTERPRISE receives new energy
in combat and transforms the APPLE 1L from contact with restocking bases and
keyhoard and display into a spaceship from on-board Dilithium Crystals. In
command console. addition, energy reallocation between

available eneray. shield enerqy, and
PH TORPS may be directed by the captain.
THE GALAXY Rendezvous with a restocking base brings
the ENTERPRISE back to maximum and repairs

APPLE 1L TREK is played in a galaxy all sub-systems. The restocking base is
which is represented by a grid of 64 depleted by this action and can not be
quadrants charted as an 8 by 8 array. used again. The on-=board Dilithium Cry-
Each quadrant contains 64 sectors, again stals generate energy at a rate of 50
in an 8 by 8 array. The sector is the units per 0.1 stardate.
elemental location 1in the universe and
may be occupied by only one of a star, a KLINGON BATTLE CRUISERS
KLINGON, or the ENTERPRISE. The galaxy
is a closed space 1in which the opposite The Klingon Battle Cruiser is some-
edaes are actually adjacent to each what less powerful than the ENTERPRISE
other. Moving to Galactic East of the but usuvally runs 1in squadrons of several
Eastmost quadrant, the ENTERPRISE will ships at a time and therefore may have
enter the Westmost gquadrant. At the greater joint firepower than the ENTER-
start of a mission, the APPLE places all PRISE in a battle. Each Klingon has 800
stars, Klinaons, bases, and your ship at units of energy and 3 Photon Torpedoes
randonm. (PH TORPS) at the beginning of a battle.

The KlLingon eneragy may be used for Phasor
THE STARSHIP ENTERPRISE fire, movement, or to absorb hits from
the ENTERPRISE. when the Klingon energy

The ENTERPRISE 1is a powerful craft is reduced to zero, the Klingon is des-
with somewhat more firepower and energy troyed.
capacity than the battle cruisers of the The Klingons have both Phasors and
Klingon fleet. However, the ENTERPRISE PH TORPS which operate the same as the
is usually heavily outnumbered and is ENTERPRISE (see below) except that the
easily destroyed unless good maneuvering Klingons cannot Llock PH TORPS, or con-
and firing strategies are used. vert hetween PH TORPS and ENERGY.

The ENTERPRISE has two forms of Klingon's can move one sector dis-
weaponry; Photon Torpedoes (PH TORPS) tance per turn during a battle. They may
and Phasers. The ENTERPRISE normally retreat 1into adjacent quadrants and be-
carries 10 PH TORPS which may be re- come restocked at that time.

stocked through energy conversion or by
visiting a base.

The ENTERPRISE carries energy in
three forms; available energy, shield

enerqy, and PH TORPS. The available CONSOLE DISPLAY
energy 1s used for Phasers, propulsion,
and to operate the ship's sensory and The console display for the APPLE
display subsystems. TREK mission 1is presented in four display
Shield energy 1is carried in ship's segments. The top third of the screen
shields to absorb hits from attacking displays the Galactic Record, the lower
Klingons. If the FNTERPRISE receives an left of the screen contains a detailed
enemy hit that reduces 4its shield energy display of the current quadrant, the
too low, then the ENTERPRISE may sustain lower right of the screen 4is a status
damage to its subsystems (see damage re- display, and the center of the screen is
port). reserved for command 1/0.

123

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0125 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK I

THE GALACTIC RECORD

The Galactic Record is displayed at
the beginnina of the game or whenever any
naviaation command 1is entered. The Gal-
actic Record is an 8 by 8 array of
numbers representing a summary of the
number of Klingons, Bases, and stars in
each quadrant of the agalaxy that have
been observed during the game. Figure

1 shows a typical Galactic Record. The
number shown in a square of the Galactic
Record should be interpreted digit by
diqit. The ones digit is the number of

stars in that guadrant, the tens digit is
the number of bases, and the hundreds
digit is the number of Klingons. Some
examples would be:

305 3 Klinaons, no bases, 5 stars
13 1 base, 3 stars
4 4 stars

The Galactic Record contains data
for each aquadrant that the ENTERPRISE has
occupied. In addition, the data for the
8 surrounding quadrants are presented if
the Lona Ranage Sensor is operational.

The Galactic Record display area is
also used for several other utility dis-
plays such as the Probe and Damage Report.

THE QUADRANT DISPLAY
The Quadrant Display presents a de-
tailed picture of the quadrant currently

occupied by the ENTERPRISE. Figure 2
illustrates a typical Quadrant Display.
The display is in 1inverse video. The

locataion of the ENTERPRISE is indicated
an "E", Klingons are shown as "K', stars
as "*", and bases as "B'".

THE STATUS DISPLAY

The Status Display presents a brief
summary of the current status of the
ENTERPRISE. The displtay includes current
sector location, years remaining in the
mission, current stardate, conditior
code (areen = no problems, yellow = low
on enerqgy, and red = Klingons present),
shields (percentage of total energy that
will ao to shields), shield energy,
available energy, number of PH TORPS,

124

number of Klingons, and number of bases.
The last Lline of the Status Display in-
dicates the course coordinates set by the
on-board computer to permit fire and move
seguences.

The Status Display area is also used
to display the- list of possible commands
whenever a non-legal command is entered.

FIGURE 1
SAMPLE GALACTIC RECORD

:3 1104:4
12 :8 :21 : :

3 :312:104:4
11 2 3 16
:202:4 5

es as w3 e»
-
se s es uw

Note: The quadrant that the ENTER-
PRISE is in will appear in
inverse video.

FIGURE 2
SAMPLE QUADRANT DISPLAY

* *

Fal
m
oO~NOTWVNT W -

123456738

Note: Display is in inverse video.

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0126 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK II
COMMANDS 2 - SET SHIELD ENERGY
The ENTERPRISE maintains a certain
The ENTERPRISE 1is controlled by en- portion of its available energy in the
tering the following commands from the shields to absorb blows from Klingon
keyboard:) fire. If the shield energy goes below
10 units, damage may be sustained to the
1 - Navigation operating systems of the ENTERPRISE.
2 - Set Shield Energy The Set Shield parameter sets the per-
3 - Damage Report centage of total energy that goes to
4 - Phasers shields. This value is initjally 50%.
5 - Ph Torps
6 - Load Ph Torps 3 - DAMAGE REPORT
7 - Computer Command 3 will cause the top portion
8 - Probe of the screen to display the current
9 - Self Destruct status of all of the ENTERPRISE systems
such as Phasers, PH TORPS, Computer, etc.
The request for a command appears in If the subsystem is operational, the dis-
the Lleft center display area. The commands play will indicate O0OK. If damage has
operate as described below. occurred, the display will indicate the
estimated time required to repair the
1-NAVIGATION subsystem.
The Navigation comménd is wused to 4 - PHASERS
m?ve.the ENTERPRISE to d1fferent_sectors Firing the Phasers will cause a
within a °9adfa”t' or to different blast of energy to be shot at all targets
quadr§nts “wlth1n the q?laxy. . Af?ez within the quadrant. The energy s
pressing 1", the Gala?t1c.Record is dis equally divided among the targets and
played. If Warp Drive is not damaged, . AP .
the. question WARP OR ION (W OR 1)? will is diminished by the distance between
. . d for movement the ENTERPRISE and the target. The
appear. Warp Drive is use - available energy of the ENTERPRISE isg
between quadrants. A warp factor will decreased by the amount of Phaser fire
be requested. Movement will occur to a -

Hits on the Klingons will decrease their
energy by a Like amount. Phasers can
be locked on to one or more targets
using the computer (see below). In that
case, the energy is spread evenly between
the selected targets. Phaser fire is not

guadrant that is that many units distant.
Similarly, with Ion Drive, duration will
be requested and will specify the number
of sectors to move within the guadrant.
With both warp and dion drive, a course
is also requested. This s simply the
anale or direction that you wish the
ENTERPRISE to travel in. Galactic North
(up on your screen) is 0 degrees, East
(to the right) 4is 90 degrees, etc. Any
number between 0 and 359 may be entered.

125

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0127 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK i
blocked by stars or Klingons. 7 - COMPUTER
The captain of the ENTERPRISE has an
5 - PH TORPS APPLE-81 computer at his disposal, giving
Photon Torpedoes may be fired under him a major advantage over his Klingon
manual or automatic control. Under man- opponents. The computer has 7 command
uval control, only a single TORP may be options which will be displayed whenever
fired. A trajectory must be input (angle a non-legal dnput 1is made (such as O or
is similar to course discussed above). 8). These options allow you to compute
Under automatic control, you can use the a course angle to any given set of sector
computer to lock-on to any number of tar- or guadrant coordinates, compute a
gets (see computer section). The com— trajectory to a Klingon, lock Phasers or
puter then directs the PH TORPS to their PH TORPS to any number of targets, lock
targets. The only disadvantage to auto- in a course, or display ship's status.
matic fire dis that the Klingons then get Control can be returned to command mode
to shoot first. by entering the return command (option
Photon Torpedoes will cause 500 7 while in Computer mode).

eneray units of damage if a hit is made.
The torpedo will hit the first object 8 - PROBE

that it encounters on the given trajec- The Probe command is used to assess

tory, be that a Klingon, a star, or a the strength of Klingons that are in the

base. same guadrant as the ENTERPRISE. The

command will display the coordinates,

é - LOAD PH TORPS energy Llevels, number of PH TORPS, and
Photon Torpedoes can be converted to "lock" status of all Klingons 1in the

or from energy using this command. You current quadrant. The '"lock" status

will be asked how many TORPS to load. A specifies whether or not the Klingon's

positive number response will convert Phasers or PH TORPS are locked-on to

energy to PH TORPS at a rate of 500 units the ENTERPRISE or not. The Probe infor-

of energy each. A negative input will

convert PH TORPS to energy at the same

rate.

126

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0128 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK |

mation is displayed in the Galactic Record
display area.

9 - SELF DESTRUCT

The Self Destruct command should be
reserved until there 4is no hope of the
survival of the ENTERPRISE. It will
cause the ENTERPRISE to explode, hope-
fully taking any nearby Klingons with it.

END OF A MISSION

A mission will end when one of three

events occurs. If all Klingons are
destroyed, the ENTERPRISE has success-
fully completed its mission. If the

time allotted for the mission runs out,
the mission ends with the Klingons still
threatening the empire. Finally, if the
ENTERPRISE is destroyed, the mission is
considered a failure. Your performance
will be rated under each of these cir-
cumstances and an appropriate dispatch
from Star Fleet Command will be sent.
Your rating will depend on the overall
success of your mission, on the number
of bases used up, the amount of time
required, and the amount of energy and
PH TORPS used.

127

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0129 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

BLANK PAGE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0130 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

APPLE 1L
HI-RES COLOR MODIFICATION

129

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0131 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

BLANK PAGE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0132 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK Il
The High Resolution Color Graphics Now that your APPLE 1L is in piece§,
capability of the APPLE 1L computer is there are two wiring methods for this
one of 1its features that set it apart modification. It 1is HIGHLY recommended
from most other personal computers. Early that you choose the second (below the

versions of the APPLE 1J[C had the ability
to display four colors: Black, White,
Green, and Violet. A production change
was made, and the ability to display Blue
and Orange was added. The modification
presented here allows those early APPLEs
to be updated to 6 color capability.

PLEASE NOTE: This modification will
VOID the warranty (if still in effect) on
the APPLE 1L.

(1) Remove the ten

screws securing the

plastic top piece to the metal bottom
plate. Six of these are flat-head
screws around the perimeter. of the

bottom plate, and four are round head
screws located at the front Llip of the
computer. ALl are Phillips screws.
Do not remove the screws securing the
power supply or the nylon PC board
standoffs.

(2) Lift the plastic top piece from the
bottom plate, taking care not to dam-
age the ribbon cable connecting the
keyboard to the main PC board. This
cable must be disconnected from one
end or the other. o

(3) Disconnect the power supply from the
PC board.

(4) Remove the #8 nut and lockwasher that
secures the center of the PC board.
This may not be found on the earlier
APPLE 1L computers.

(5) Carefully disengage each of the 6
nylon 1dnsulating standoffs from the
PC board. (7 on earlier versions)

(6) Carefully Lift the PC board from the
bottom plate.

board method), since the final result will
have a much more professional appearance.
It will not be visible when the APPLE 1L
is reassembled. (Now that's professionall)
The wiring itself is much easier to keep
track of if you use small pieces of tape
(with the Integrated Circuit numbers writ-
ten on them) on the bottom of the board.

"In the following instructions, the
connections required are designated by:
(<chip number> - <pin number>)
See the APPLE Red Manual for IC number
designations.

ABOVE THE BOARD WIRING METHOD

(1) Lift the followina IC pins from their
sockets. This requires bending the
pins (careful!).

(A8-1)
(A9-1)

(A8-6)
(A9-2)

(A8-13)
(A9-9)

(2) Mount a 74LS74 (dual C-D flip-flop)
and a 74LS02 (gquad NOR gate) in the
APPLE 1L breadboard area (A11 to Al4
region).

(3) wire the circuit as shown if Fig. 1.
(x dindicates a connection to a pin
which is out of its socket)

131

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0133 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK Il
BELOW THE BOARD WIRING METHOD removed from their sockets. Don't
A forget to hook up VCC (+5Volts), and
(1) Remove 1CH A8 (74LS257). ~Desolder ground, to the ICs that you added.
socket A8. Lift the socket from the Be sure to double and triple check
board taking care not to damage it. your work at this point.
In most cases, it is possible to re-
move the plastic part of the socket
without desolderina the pins. This
is the easier way to do it if you can.
Cut the trace between pins 6 and 13
of A8 on the top side of the board, Reassemble the APPLE][, remembering
using a small, sharp knife. Also to connect the keyboard, power supply, and
~ cut the trace between pins 13 and 15 speaker connectors. Check to see if it
of AS8. Reinsert socket A8 and the still works. If not, take it apart again
74LS257. BE CAREFUL! and recheck the added wiring VERY CARE-
(2) Cut the foil traces to the following FULLY. It is easy to get the ICs mixed
IC pins on the bottom of the APPLE 1L up when Llooking at the bottom of the
board. Each pin should have a single board. Make sure the chips are properly
trace going to it. oriented in their sockets.
(A8-1) (A8-6) (A9-1) The following color values are now
(A9-2) (A9-9) applicable to the HI-RES subroutines.
(3). Connect (A8-15) to around; (A7-8) on BLACK2=128 ORANGE=170
the keyboard socket is a close ground. WHITE2=255 BLUE=213

(4) Mount the 74LS74 and 74LS02 as per
step 2 of the above the board method.
(5) wire the circuit as shown in Fig.1.
ALl wires are on the bottom of the
APPLE 1 board and no IC pins need be

FIGURE | HI-RES COLORS (A9-9)*

SOFT5
(A10-1)—H op vce [Jvee vce

A9-15¢— p9-2*—»ID

14M >
(A10-11) ¢

(B11-4)(]

L]

B
[i
&3 P 0
(49-1)"e—(]q sF) 0
e QP]
GND 1G Q
K (63%)) QJ(TS’—l)* GND [D)
74LS74 74LS02
(B8-14) ——p- (A8-6)%
132 (B8-7) ———wp- (A8-13)*

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0134 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

APPLE 1L
COLOR KILLER MODIFICATION

133

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0135 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

BLANK PAGE

| Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine

Page 0136 of 0138 |

Apple][Computer Information ¢ The Woz Pak][* 15 November 1979

WOZPAK i1

The APPLE 1['s color graphics are
great, but there are times when color
is not needed. Printing a page of text
on the screen is a situation when it
is not desirable to have color on the
screen. The early APPLEs did not dis-
able the burst signal (the signal that
tells the color television to turn on
the color circuits), so the color was
on all the time.

This simple modification will provide
this 'color on/color off! switching in
the APPLE to make the screen display color
or black & white as necessary.

PARTS NEEDED:
3K to SK 1/4 watt resistor
NPN transistor (2N222 or equavilent)

Wire the circuit as shown in fiqure 1.
Be sure to unplug your APPLE J[C whenever
making ANY connections or modifications.

PLEASE NOTE: This, or any other, modif-
cation will VOID the warranty on your
APPLE JL, if it dis still in effect.

APPLE — Il COLOR KILLER MOD

CHIP ‘F9’ (F14)
iminiuininininis (May be 9334)
‘/

(kills color burst)
74L8259

LTI IT

(“text” mode)

(ground) X

APPLE — 1|

Add R1and Q1 as shown pictorially COLOR TRIM
ADJUSTMENT

135

Source: Apple Computer, Inc. + Call-A.P.P.L.E. Magazine
\,

Page 0137 of 0138 |

Apple][Computer Information ¢ The Woz Pak][¢ 15 November 1979

Source: Apple Computer, Inc. « Call-A.P.P.L.E. Magazine Page 0138 of 0138

