MicroDot

The logical replacement for BASIC.SYSTEM

For Apple //+(w/64k), e, C, gs
-ProDOS based -

Uses standard ProDOS files

Less Than 4K In Size
Replaces BASIC.SYSTEM (10.6K long)

You Gain 7K+ of Extra Program space!

KITCHEN SINK
SOFTWARE, Inec. :

Special features: Y
Westerville, OH 43081
* Automatic BASIC overlays. (614) 891-2111

* ProDOS disk formatter.
* Pack HiRes graphic screens direct to disk,
* Access Auxtype bytes.

* Works with Program Writer

* Much more!

MicroDot

The logical replacement for BASIC.SYSTEM

By: Jerry Kindall

Copyright notice: All materials in the Kitchen Sink Software, Inc. manuals and on
all disks are copyrighted and cannot be reproduced, stored, transmitted or used as
text material or for any other use by the purchaser or his successors or assigns
either within or without their organizations without the express written consent of
Kitchen Sink Software. All rights reserved.

This program has no protection on it. We add no protection for your benefit.
Please respect our attempts to provide quality software at a reasonable price.
Please do not give away copies of this program.

Inexpensive licenses are available. Write for details.

This software is sold "as is.” The buyer assumes all risk as to quality or fitness
for a particular purpose. We warrant to the original purchaser that our software
products will perform as advertised and are free from defects in manufacturing. At
no time will Kitchen Sink Software, Inc. or anyone involved in the creation,
production or distribution of our software bae liable for incidental or consequential
damages resulting from the use of our software; and, in any case, our liability is
limited to the purchase price. This warranty gives you specific rights and/or is
superseded by iaw in some states.

Programs and Manual copyright 1988 Kitchen Sink Software, Inc.

If you do not already have one...

KITCHEN SINK
SOFTWARE, Inc.

SEND FOR OUR
FREE CATALOG!

903 Knebworth Ct.
Westerville, OH 43081
(614) B91-2111)

Special thanks to Mark deJong & Alan Bird of Beagle Bros. for assisting with the Program
Whiter patch and also to David Ely of Palace Productions for extensive Lesting.

MicroDot Is a trademark of Kitchen Sink Software, Inc.

Kichen Sink s a trademark of Kikchen Sink Soliware., Inc
Apple Is a registered Irademark of Apple Computer Company, inc.
mbmﬁ.m*m.-ﬁ: _.1rr-._-...

rk of Apple Computer Co., Inc.

T EF T EEEEEREN

Micr oDot 1

T TABLE of CONTENTS |

GETTING STARTED: UPRRTER. .. oo R p. 2
LICENSES.....creesnsonensssssibaniisssisnniosss p.2
WELCOME TO MICRODOT..........c..e... P. 3
MICRODOT COMMANDS:
ISSUING COMMANDS.......ccocoieeeeeeeniierienncna P 9
COMMANDS SYNTAX ...oovviiiniirnirannsmneeeaaens p.6
RESIDENT COMMANDS................ p- 6
OPTIONAL MODULES:
INTRODUGTION.oeeveveiesiseenensnanenie P 19
CATALOG DISKeoveoeeeeeeeeeeeeieeseieaneenns p. 20
HIRES PACKER/UNPACKER...........cccvuvmvnnneen p. 21
RANDOM ACCESS FILEScoeviriecrinins p. 22
MULTIPLE FILESocceeiiienmransoreaminssansannns p. 27
BEORIE o oo i e ATy p. 30
ProDOS CLOCK FIXPATCHccvviieecininanns p. 31
PROGRAMMING TIPS
MIICRODOT EXEC FILES.........ccocooimieiinnnnn. p. 33
PROGRAMMING WITH OVERLAYS p. 37
PROGRAMS ON THE DISK.......cooovmrieeceneae p. 40
IV/O COMMANDS: PR# / IN#.........coovveeeeeee p. 42
THREE BONUS ROUTINES:
FLOPPY DISK FORMATTER.......ccoccoiivinainiana p. 43
LINE EDITOR . .oovoeoeeecveeeseeeeiis e p. 45
PROGRAMWRITERPATCH ..., p. 47
TECHNICAL INFORMATION:
AMPERSAND (&) COMPATIBILITY p. 49
MicroDot STARTUP PROCEDURE.................. p. 49
MicroDot RESET HANDLING..........coccvviinee p. 50
MicroDot ERROR HANDLINGcoceveeeiiinnnnn p. 51
MicroDot PEEKS and POKEScccccovvvenies p. 54
MicroDot GLOBAL LOCATIONS ._............ocuveee p. 56
ProDOS FILE TYPEScicciiiviesaniiisimainie p. 59
HELP L. i mmmmsmssntsmmsesiy s p. 60
INNDEYALo ssmonsmssnemeneomnsi s sua A S SR A TS TSR T A S p. 61

MicroDat 2

Getting Started

Undates

Naturally, we will always be looking for ways to improve all of our
software products, including MicroDot. To get an update, send us
the original disk and a small fee. Call us for the current cost when
you want to update .

Licensing MicroDot

Having purchased MicroDot, you can use it all you want for your
personal use. If you wish to distribute or sell disks that use
MicroDot, it 1s easy to get a license to do so. Just write to us for
details. There is a small one time fee for the license.

Routines others wrote and we Licensed (after modiiying)

The FORMAT programs are based on Jerry Hewelt's public domain

HyperFORMAT routine, which s distributed on Misk Disk #1 from Living
Legends Software.

The Hires Packer/unpacker is based on Polarware's packer. Though we
modifled it a lot we wish to give credit where credit is due:

Graphics routines from The Complete Graphics System by
Polarware were written by Mark Pelczarskl, Steven Meuse, David Lubar, and
David Shipiro, and are copyrighted 1984 by Polarware. All rights reserved.

The Complete Graphics System and Polarware/Penguin Software are
trademarks of Polarware.

Apple Computer, Inc. makes no warrantles, either express or
Implied, regarding the enclosed software package, Its
merchantabllity or Its fitness for any particular purpose. The
exclusion of Implled warranties Is not permiited by some slates.
The above exclusion may not apply to you. This warranty provides
you with specific legal rights. There may be other rights that you
may have ____Eo: vary from state to state.

~ ProDOS 8 is a copyrighted program of Apple Computer, Inc. licensed to Kitchen
Sink Software, Inc. to distribute for use only in combination with MicroDot. Apple
Software shall not be copied onto another diskette (except for archival purposes|
or into memory unless as part of the execution of MicroDot. When MicroDot has
completed execution Apple Software shall not be used by any other program.

Micr oDot 3

WELCOME TO MICRODOT!

Welcome to MicroDot, the compact programming environment for
the Apple I computer. Before we dive in to MicroDot and explain
how everything works, we'd like to take the time to make clear to
you what MicroDot is. This Is a difficult task because the only
other program that's anything like it is BASIC.SYSTEM.

Many people don't realize it, but BASIC.SYSTEM 1s not part of
ProDOS. ProDOS does not understand BASIC commands at all.
ProDOS is a disk operating system and as such it deals primarily
with disk drives, but it also handles interrupts, memory allocation,
and processes commands given through its MLI, the machine
language interface. ProDOS does not collect garbage, manage
Applesoft variable and program storage, or process commands such
as LOAD THIS or PRINT CHR$(4),"OPEN THAT." The only
commands ProDOS understands are numbers -- a pretty unfriendly
way to communicate with a computer. Parsing BASIC commands is
the job of BASIC.SYSTEM, and admittedly, it's pretty good at it. In
short, then, BASIC.SYSTEM is an interface between Applesolt
BASIC and the cold, hard reality of ProDOS. BASIC.SYSTEM takes
what you type and converts it to a serles of numbers that ProDOS
can understand. In addition, BASIC.SYSTEM also handles garbage
collection, BASIC memory allocation, and a variety of other things
that ProDOS doesn't.

BASIC.SYSTEM Is a program whose main job is to convert what
you type (for example, LOAD NUMBERS) to the machine-language
commands that ProDOS understands. These types of programs are
called shells. BASIC.SYSTEM is unique in that it allows you o
program in BASIC and use these commands in your programs.
Well, it was unique, until now.

MicroDot is a replacement for BASIC.SYSTEM. Like
BASIC.SYSTEM, its primary job is to facilitate communication
between BASIC and ProDOS. MicroDot, like BASIC.SYSTEM, 1s (In
computer jargon) a ProDOS command shell for BASIC
programmers, or, if you like, a programming environment. Unlike
BASIC.SYSTEM, which processes commands by watching the
output streams for a control-D character. MicroDot communlicates

Micr oDot 4

direclly with Applesoft. When you send it a command, it uses
Applesoll subroutines to figure out which command you are talking
about and to determine the parameters of each command, instead
ol having to watch what you put in a PRINT statement. Thus
MicroDot requires much less code to do BASIC.SYSTEM's primary
Job: comprehend your commands.

Instead of supporting a collection of powerful commands with
many oplions, as does BASIC.SYSTEM, MicroDot has a set of
simple commands which can be used together to perform tasks. It's
a bullding-block approach. You can put the commands together in
almost infinite combinations. MicroDot has twenty-six most-used
commands bullt-in; others can be installed if they are needed. .

MicroDot gives you almost direct access to ProDOS, instead of
Insulating you from it as BASIC.SYSTEM does. You have almost
limitless power over your disks and files. You'll feel like you're
“:w_an your programs, instead of on the outside looking in. And
recause of the ideas behind MicroDol, it's over 6K shorter th

BASIC.SYSTEM. S

MicroDot has bullt-in commands for loading and saving BASIC
and binary (machine language) programs and files, for
manipulating files (create, rename, delete), for handling
pathnames and prefixes, for reading and wriling sequential text
fles, and for reading directories.

You can also install additional commands (called modules) when
they are needed to display a directory listing, to handle multiple
open [iles at once, to randomly access text and binary files, to
directly call the MLI, and to pack and unpack hi-res En—qum
directly to and from disk. In addition you will find a fast disk
formatter, a simple BASIC line editor and a Program Writer patch.

This manual describes MicroDot's commands and options. There's
a lot of power at its heart. There are also some example programs
on the MicroDot disk which you can load, print out, and study in
conjunction with the text. .

Mict oDat S

MICRODOT COMMANDS

ISSUING COMMANDS

MicroDot is ampersand-driven; therefore, all commands start with
an ampersand (&). MicroDot has been designed so that you can use
other ampersand routines with it, so you don't actually lose the use
of the ampersand. See the section entitled "Ampersand
Compatibility" (p. 49) for details. You can, instead, use CALLs il you
want. See Global Location ALTENT.

After the ampersand comes the MicroDot attention character, the
period (also known as a dot, hence the name MicroDof). This tells
MicroDot that it should decode and execute this command. (If there
is no period, MicroDot passes the command on to any other
ampersand routines which are installed.) After the period comes
the actual command, which is one or two letters In length, and is
followed by any parameters needed by the command, such as
pathname, address, and so on.

Commands may be issued from immediate mode or in a program.
In both cases the format of the command is exactly the same: first
an ampersand, then a period. next the name of the command, and
finally, any parameters. You may also put multiple commands on
a line, or mix MicroDot commands with regular Applesoll
commands on the same line. Commands are issued the same way
regardless of whether they are built-in MicroDot commands or
optional modules loaded from disk.

If you are issuing MicroDot commands from immediate mode, you
should not enter lines longer than 128 characters. This is because
MicroDot uses part of the keyboard buffer for parsing commands.

MicroDot 6

COMMAND SYNTAX

In the command syntax descriptions on the following pages, a few
special terms and symbols are used to describe parameters. These
should not be typed as part of the command; Instead, substitute an
appropriate variable or expression.

var A numeric variable; may be either integer or real.

var$ A string variable.

exp A numeric expression; can be a constant, a function, a
MMMMEMM._ E_.nmm%ﬂa—u__:mﬂc: using arithmetic symbols. In
oac-m.mmww. g pplesoft numeric expression, with a value

exp$ A string expression; can be a literal (enclosed in quotes), a

string function, or a concatenation. In short, any legal
Applesoft string expression up to 63 characters in length.

1 Brackets around a parameter indicate that it is optional. If it
is not supplied, a default value will be used, or the function of
the command will be changed in some way.

RESIDENT COMMANDS

MicroDot has twenty-six built-in commands. These are all
described in detall in the pages that follow, in alphabetical order.

&.A
(Append Data To File)

Syntax: &.A
Example: &A

e & A command moves the position-in-file pointer to the end of a
file. This Is most useful when adding new Information to the end ol
a sequential data file. The next data written to the file will be added
lo the end of the file instead of overwriting existing data. The
command requires that a file be open (see & Q). The command does
nol enter write mode after moving to the end of the file (see & W).

MicroDot Z

&.BL
(Load a Binary File Into Memory)

Syntax: &.BL,exp$[.exp]

Examples: & BL,"PICTURE" 8192

&.BL,"ML.PROGRAM"
The & BL command is very similar to the BASIC.SYSTEM BLOAD
command. Like BLOAD, & BL loads data from a binary (type BIN)
file on the disk to an address in memory. The first parameter is the
pathname of the file to load. The second parameter is optional; it is
the address at which to load the file. If a load address is not
specified, the file is loaded at the address from which it was saved.
The file must be a BIN file. If it is not, MicroDot will issue an error.
Unlike BASIC.SYSTEM's BLOAD command, the & BL command
does not provide a way to load part of a file, or start reading
somewhere other than the beginning of the file, or load files other
than BIN filles. To do this, you can use the RANDOM module
discussed later in this manual.

&.BO
(Overlay a BASIC Program)

Syntax: &.BO,exp$,[#]exp
Examples: &.BO,"MODULE.1"#10000
&.BO,"ACCESSORY.1",16385

The & BO command is a powerful command that allows great
flexibility in writing Applesoft programs. It provides an easy way
to swap parts ("modules”) of your BASIC program in and out from
disk, which means that you can write programs which are too large
to fit into memory at once. The first parameter is the pathname of
the module to load. It must be a BAS file. The second parameter can
be either a line number or an absolute address, depending on the
presence or absence of the number symbol.

If a number symbol is present, as in the first example above,
MicroDot loads the module on top of the specified line. This means
that all lines from 10000 through the end of the program will be
deleted, and the module will replace the deleted lines. All variables
will remain intact unless the module overwrote them
inadvertently. If a number sign is not present, as in the second
example, MicroDot loads the module at the specified absolute
address. This can be used for loading half of a program below the
hi-res pages, while loading the other half above. (The first half
would use &.BO to load the second half.) It can also be used to load
an independent subprogram (like a desk accessory) at a certain
address. By changing Applesoft's start-of-program pointer at 103-

Iviicr oot 8

104, the "desk accessory" can be run and then return to the main
program.

If you use & BO with an absolute address (i.e., no number sign),
make sure that the memory address before the loading address
contains a zero. This is an Applesoft requirement. In the second
example, you might POKE 16384,0 before issuing the & .BO
command. The &.BO command is like a cross between the &.L
(Load) command and the &.BL (BLOAD) command. Like &.BL, it
does not adjust the Applesoft pointers; like &.L, it relocates the
program so that it will work correctly at the new address. &.BO
does not turn off the current ONERR GOTO; you should make sure
that ONERR GOTO still makes sense with a different module in
memory.

See the chapter "Programming With Overlays" for more detailed
instructions on performing overlays.

&.BS

Syntax: &.BS,exp$,exp.exp
(Save Binary File From Memory)

Example: &.BS,"PIC.1",8192,8192

The &.BS command is like BASIC.SYSTEM's BSAVE command. It
creates a BIN file and saves an image of the memory range specified
into this file. (You may also use an existing file, as long as it is of
type BIN.) The first parameter is the pathname of the file. The
second parameter is the memory address at which to start, and the
third parameter is the number of bytes (length) to save. Both
parameters are required, even if saving to an existing file. If you
are saving a range of memory to an existing file, and the new data is
shorter than the existing data, the file will be truncated (cut off) at
the end of the new data. The address specified will be put into the
fle's AUXTYPE.

The & BS command is much like the & .BL command in that you
cannot use it to perform random-access writes on a file. You can
use the RANDOM module for this.

»
.

MicroDot 9
&.BX Syntax: &.BX,exp$[,exp]
(Execute a Binary File) Examples: &.BX,"ML.PROGRAM"
&.BX,"ML.PROGRAM", 768

&.BX is analogous to BASIC.SYSTEM's BRUN command. It loads a
BIN file into memory and then jumps to its starting address. The
syntax and parameters of the & BX command are identical to those
of the &.BL command.

Remember, not every BIN flle is an executable program. Attempting
to execute a non-executable BIN flle can cause your computer to
hang, crash, or have a fit.

&.C Syntax: &C
(Close an Open File) Example: &.C
&.C, like the BASIC.SYSTEM CLOSE command, closes the

currently open data flle. (Unless you are using the MULTI module,
only one file may be open at a time.) Any data which has been
written to the file but has not been updated to the disk will be saved
to disk at this time. If no files are open, no error will occur. This
means that it is safe for you to issue &.C just to make sure the file is
closed.

You should always close your file before your program ends.
MicroDot will not warn you if you forget to close the file, but you
may lose some data, and there is a chance that your disk might be
damaged. See the discussion of the &.0 (Open) command for more
Information about data files.

To close all open files, issue: POKE 46047,0 : POKE 49044,0 : &.C
&.D

(Delete a file)

Syntax: &.Dexp$
Example: &.D,"JUNK"

&.D is the DELETE command. The specified file will be removed
from the disk. &.D will not allow you to delete a locked file, or a
subdirectory which contains other files.

MicroDot 10

m..._u . Syntax: &.F,exp$[,exp]
(Find File & Verify Type) Examples: &.F,"DATAFILE"
& F"TEXTFILE" 4

The &.F command checks for the existence of a file. (The first
parameter is the file's pathname.) If the file does not exist, an error
will be generated. This usage is similar to BASIC.SYSTEM's
VERIFY command, which simply checks to see If a file exists. If the
second parameter (the flletype) is not used, MicroDot does not check
the filetype of the specified file. If, however, a filetype is specified,
MicroDot will check the flle's actual type to make sure it matches

the desired type. If the filetypes do not match, a file type mismatch
error will occur.

Thus, the first example simply checks to make sure that DATAFILE
is on the disk. It does not matter what type the flle is. The second
example makes sure that TEXTFILE exists, and, furthermore, that
it is of type 4. (Type 4 is a TXT file. See "ProDOS Filetypes".)

&.G Syntax: &.G[var$var,var]
(Get Directory Entry) Examples: &.G
&.G ,NAMES$, TYPE AUX
& .G ,NAME$, TYPEY%,AUX%

MicroDot does not have a command for displaying a disk directory
(unless you install the CAT40 or CAT80 modules). However, it does
have commands for reading a directory from a BASIC program, so
it's very simple to add custom directory listings to your programs.
If & G iIs used by itself, as in the first example, MicroDot sets up the
directory and gets ready to read it. You should always use &.G by
itsell after opening (&.0) a directory for reading, and before trying
to get an entry. If &.G is used with parameters, as in the second

example, MicroDot reads the directory and passes a directory enl
back to the variables specified. s R > n

In this example, the file's name is passed back to NAMES, its type (o
the variable TYPE, and its auxtype to AUX. The auxtype will
consider the first auxtype byte as the low byte of the number and the
second auxtype byte as the high byte of the number passed. The
varlables can be reals or Integers or any combination.

The auxtype contains useful Information about certain types ol
files. For BAS and BIN files, the auxtype contains the address [rom

Micr oDot Ll

which the file was saved. For TXT files, the auxtype contains the
default record length. If you design your own data files, the auxtype
can be used for whatever you like.

In addition to the information passed back by the &.G command,
you can also use certain PEEKSs to get more information about the
files, or about the volume. See "Peeks and Pokes." The &.G
command uses an algorithm which is compatible with the
AppleShare network. When you reach the end of the directory file,
an error 77 will be issued. When reading the /RAM disk on 128K
machines, you will get an error #76 instead. Just one more off-the-
wall way that /RAM is different from other ProDOS volumes.

&.1G Syntax: &.IG,exp$,var,var
(Get File Info) Example: &.1G,"BINFILE", TYPE AUX

The &.1G command gets a file's attributes. They are passed back In
exactly the same order as with the & G command. The &.IG
command gets the file type and auxtype for a given file. As with
&.G, the numeric variables may be either integers or reals. See
"Peeks and Pokes" to see how you can get more information with
PEEKs. See &.G for auxtype format.

&.IS Syntax: &.1S,exp$,exp,exp
(Set File Info) Example: &.S,"PICFILE",6,16384

&.1S allows you to change a file's type and auxtype. The first
parameter, as usual, is the pathname of the flle. The second
parameter is the flletype (see "ProDOS Filetypes" for more about
filetypes), and the third parameter is the auxtype. See &.G for
auxtype format.

You should always do an &.1G before doing an &IS, even Il you are
changing both of the values that &.IS changes. This is because &.15
can set more than just the filetype and the auxtype; with the use of
POKESs, it can also set other file information such as the access
(lock/unlock) status of the file and the last modlification date.
Dolng an &.IG before the &.IS makes sure that you don't
accidentally change something that you didn't mean to change. See
"Peeks and Pokes" for information on changing other file
attributes, such as the lock/unlock byte.

Micr oDot 12

&.K Syntax: &K
(Kill To End Of File) Example: &K

The & K command can be used whenever you are writing
Information into an existing data file. If the new data Is shorter
than the old data, the & K command will "cut off"' any data in the
ftle beyond the current position-in-file pointer. This prevents you
from wasting disk space with old data. To use &.K in this way,
simply issue the command after writing new data to the file and
helore closing it. This eliminates the rather clunky standard
BASIC.SYSTEM practice of deleting a file before opening it to write
new data to it.

&.L Syntax: &.L,exp$[,exp]
(Load BASIC Program) Examples: &L,"STARTUP"
&.L,"MAIN.MENU" 8193

This command loads a BAS file into memory. (If the file Is not a
BAS flle MicroDot will 1ssue an error.) If the second parameter is
not given, the program will be loaded at the current location
specified by the Applesoft start of program pointer (103,104). If a
second parameter Is specified, the program will be loaded at that
address and 103,104 will be changed to point to that location.

The lowest that a program should be loaded Is 2049. This is also the
default address when Applesoft Is [irst started up. It is up to you to
make sure that the memory location just below the program
contains a zero. This is an Applesoft requirement. For example,
you might type POKE 8192,0 before issuing the & L command in the

second example. &.L turns off any ONERR GOTO which may be in
ellect.

&M Syntax: & M.exp$.exp
(Make a New File) Examples: &M, "SUBDIR",15
& M,"TEXTFILE",4

The & M command makes (creates) a file. If the file already exists, a
duplicate filename error will occur. The second parameter is the
desired filetype. The first example creates a subdirectory named
"SUBDIR" (type 15). the second example creates a text file (type 4).
See "ProDOS Filetypes" for a list of filetypes supported by ProDOS.

Micr Dot 13

When a file is created, its access (lock/unlock) bits are setl to $C3
(unlocked), and the current time is read from the ProDOS clock (if a
clock 18 Installed) to stamp the creation and modlification
date/time flelds. The auxtype of the file is set to zero. The file Is
completely empty.

&.N Syntax: &.N,exp$,exp$
(Rename a File) Example: &.N,"OLDNAME","NEWNAME"

The & N command renames a file. If complete pathnames are
specified (such as /DISK/SUBVOL/OLDNAME), they must be the
same up to the last fllename in the path. (You could not rename
/DISK/THIS1/OLDNAME to /DISK/OTHER/NEWNAME, for
example, because it would involve moving the file to a different
directory.) A file may not be renamed {f it is locked.

&.0 Syntax: &.0,exp$

(Open Data File) Examples: &.O,"TEXTFILE"
&.0,"SUBDIR"
& .O,"BINFILE"

The &.0 command is used to open a data file for reading or writing.
The flle must already exist on the disk; &.0 will NOT create files.
(Use &.T or &M to create files.) &.O does not care what type of file it
uses; to check the file type, use &.F, & T, or &.IG. After opening a
directory file, use &.G to read entries. With any other type of file,
use & R and & W to read or write data from the data flle. (You
cannot write to a directory.)

MicroDot is equipped for sequential file access only. To do random
access processing, use the RANDOM module on the MicroDot
system disk. Sequential access data flle commands Include & 0,
&R, & W, &.Z & A, &K, and &.C.

MicroDot normally can handle only one open file at a time, unless
you are using the MULTI module. Opening a file with &.O while
another file is still open will result in the first file being closed
before the new file is opened. If the MULTI module is installed &.O
will have an additional possible parameter. It is explained in the
MULTI module section.

_Micr Dot 14

&.PG Syntax: &.PG[var$]
(Get Prefix) Examples: & PG
& PG PRE$

The &.PG command gets the current ProDOS prefix and returns it to
the specified variable. The prefix is ProDOS's way of keeping track
of which disk (or subdirectory) it is working with at a particular
time. The & PG command allows you to easily find out what
directory ProDOS is defaulting to, much like the PREFIX command
under BASIC.SYSTEM. If you do not specify a string variable,
MicroDot will print the current prefix on the screen. This feature is
useful mainly from immediate mode.

&.PS . Syntax: &.PS,exp$
(Set Prefix) Example: &.PS,"/DISK/SUBDIR/”

& PS changes ProDOS's default directory to the specified directory.
If the disk or directory 1s not found, MicroDot will return an error.
If you set the prefix to a null string, you will have to fully qualify all
pathnames (i.e., all pathnames will need to start with a slash to tell
ProDOS what disk to find them on). A null prefix means that
ProDOS is not keeping track of a default directory at all and that
you will need to specify the complete pathname of every file you
access. In general it is a good idea to avoid null prefixes. Remember
that ProDOS only understands prefixes, not slot/drive
specifications. Use the &.V command to get the name of a
particular disk volume.

&.Q Syntax: &.Q[exp$]
(Quit MicroDot System) Examples: &.Q

&.Q,"APLWORKS.SYSTEM"

&.Q allows you to leave MicroDot and run another system program.
Although we hope you'll never want to leave MicroDot, we are
realistic enough to realize that some people will want to use other
programs occasionally. Issuing &.Q by itself quits to the standard
ProDOS quit prompt. (You know, the unfriendly ENTER PREFIX OF
NEXT APPLICATION message.) If you have a program selector such
as ProSEL, Squirt, Better Bye, or the Finder, it will run at this time
to allow you to select another application. Any applications of

importance that you write should allow the user to quit in this
manner.

_MicroDot 15

If you Issue & Q with a pathname, as in the second example,
MicroDot will run the specified SYS program. (It must be a SYS
program.) MicroDot can quit to very large system programs.
BASIC.SYSTEM, on the other hand, cannot execute some system
programs because they are too large. If an error occurs while trying
{o run a system program, a normal &.Q will be executed.

&R Syntax: &R
(Read from Data File) Example: &R

& R allows you to read from a data file. When you execute this
command, MicroDot hooks itself up to the 1/0 hooks so that all
GETs and INPUTs will come from the disk flle. This (and during the
& W command) is the only time MicroDot hooks itsell up to the 1/0
hooks. An out-of-data error will occur when the end of the file Is
reached. Since MicroDot hooks itsell up to the 1/0 hooks during
reads, you should not use the IN# or PR# commands while reading
is In progress. These commands will disconnect the read mode
partially or totally. Use PR# or IN# before entering read mode, or
issue &.Z first and then issue the commands.

While you are reading from a file, you cannot print anything to the
screen. MicroDot does this so that you'd don't see the "?" prompls
generated by the INPUT statement and so that the characters which
are read from the disk are invisible. If you want to prini
something, issue &.Z first.

You can turn off read mode in several ways. First, you can use the
&.7Z command. Second, you can activate write mode (& W): this
automatically turns off read mode first. Third, you can close the
file (&.C). Finally, MicroDot automatically turns off read mode Il
you get a disk error or if you press control-reset. If you turn off read
mode with &.Z (or by switching to write mode with & W), you can re-
activate read mode by Issuing & R again. The input characters will
be read from the current position-in-file pointer.

After GETting a character from a file, its full 8-bit value can be
obtained by PEEKing 1004. This allows you to read all possible byte
values from any type of file.

MicroDot 16
&.S Syntax: &.Sexp$
(Save a BASIC Program) Example: &.S,"MY.PROGRAM"

This command saves the current BASIC program to disk in a BAS
file. (If the file already exists, it must be a BAS flle.) The auxtype of
the file is set to the address from which the file was saved.
(MicroDot does not use the auxtype when loading files; this feature
was included for compatibility with BASIC.SYSTEM, which does
use the auxtype to determine how to relocate the program.) The flle
can then be used as a stand alone program, or as a module with the
&.BO command (see the description of the & BO command).

&.T Syntax: &.T,exp$.exp
(Test and Create File) Example: &.T,"TEXTFILE" 4

The &.T command checks for the existence of the specified file. If
the file exists, the file type is checked to make sure that it matches
the specified type. (If the type does not match, an error Is
generated.) If the file does not exist, it is created.

When used just before the &.0 command, this command makes &.0
act like the BASIC.SYSTEM OPEN command. (If the file does not
exist, it is created, etc.) The &.F, & M, and & T commands give you
tremendous flexibility in creating files.

&.V Syntax: &.V,exp,exp[,var$]
(Get Volume Name) Examples: &.V,6,1
&.V,6,1,VOLS$

Since ProDOS doesn't understand slots and drives, only pathnames
and prefixes, this command was included so that you can easily
convert slot/drive numbers to volume names. This allows you (o
ask the user what device his disk is in, and then access data files on
it. This way the user does not need to know the name of each and
every one of his disks. (AppleWorks operates similarly.)

The first two parameters are the slot and drive, respectively, of the
desired disk device. The final parameter is the string variable (o
which MicroDot will pass the volume's name. The volume name
will be in a format like this: /DISK/ (with slashes before and after
the name).

MicroDot 17

If you don't specify a string variable, MicroDot will print the
volume name on the screen. This is useful mainly from immediate
mode, while programming.

&W Syntax: &W
(Write to a Data File) Example: &W

& W allows you to write to a data fille. When you execute this
command, MicroDot hooks itself up to the I/O hooks so that all
PRINTSs go to the disk file. This (and during the & R command) Is
the only time MicroDot hooks itself up to the I/O hooks. Since
MicroDot hooks itself up to the /0O hooks during writes, you should
not use the IN# or PR# commands while reading is in progress.
These commands will disconnect the read mode partially or
totally. Use PR# or IN# before entering read mode, or Issue &.Z firsi
and then issue the commands.

Naturally, while you are writing to a file, you cannot print
anything to the screen. If you want to print something, issue &.Z
first. You can, however, use GET or INPUT to get data from the user;
the only drawback Is that the characters typed will not be echoed to
the screen, but will go to the disk file, as will any prompts. Once
again, issue &.Z first.

You can turn off write mode in several ways. First, you can use the
&.Z command. Second, you can activate read mode (&.R); this
automatically turns off write mode first. Third, you can close the
file (&.C). Finally, MicroDot automatically turns off read mode 1f
you gel a disk error or if you press control-reset.

If you turn off write mode with &.Z (or by switching to read mode
with & R), you can re-activate read mode by issuing & W again. The
output characters will be written at the current position-in-file
pointer.

_MicroDot 18

&.X Syntax: &.X,exp$[,exp]
(Execute BASIC Program) Examples: &.X,"STARTUP"
& X,"MAIN" 16385

The & X command loads the specified BASIC program, clears
ONERR GOTO and all variables, and then RUNSs the program, just
like the RUN command under BASIC.SYSTEM.

Like MicroDot's & L. command, &.X allows you to specify a location
In memory to load the program. If no address is specified, the
program is loaded at the current address specified by the start-of-
program pointer (103-104). Also like &.L, you must make sure that
the location before the program contains a zero for Applesoft.

From immediate mode, you can still use the RUN command to run
the program currently in memory.

&2 Syntax: &Z
(Zap (Deactivate) Read/Write) Example: &.Z

&.Z is used to turn off either read mode (activated with &.R) or write
mode (activated with & W). You need to do this before issuing a PR#
or IN# (or a GET or INPUT from the keyboard, or a PRINT to the
screen) since MicroDot hooks itselfl up to the 1/0 hooks in zero page
during read and write rmode,

It does not hurt to issue this command even if you're not in read or
write mode. You can use it at any time to make sure that what you
print isn't going to the disk and what you input isn't coming from it.
It's an especially good Idea to include the &.Z command In your
error handling subroutine.

Not Quite the End

With the basic commands above, you have the control over ProDOS
that you need for most of your programs. If you only need the basic
commands there s no need to load the modules that follow. The
basic commands only occupy a little over 3K of memory! You still
have almost 43K of space for your BASIC program and variables!
Read on though. You may need some of the following modules at
times. In addition, you find information about the blank disk
lormatter and technical information on PEEKs and POKEs that add
power Lo the basic commands above.

Micr oDot 19

OPTIONAL MODULES

Introduction

MicroDot has a great deal of built-in power. Many types ol
programs can be written using only MicroDot's built-in commands.
Some applications, however, will need abilitlies which MicroDot
doesn't have. MicroDot has a number of optional modules for
performing these functions.

These optional modules are stored on disk in standard BIN files
and are installed with the normal &.BX command. Once a module
Is Installed, you can use its commands as if it were a part ol
MicroDot, with the usual &. syntax. If you have been paying close
attention, you might realize that flve letters are unused by
MicroDot commands. These letters are E, H, J, U, and Y. The
optional modules hook themselves up to these letters. These lelters
are pretty much "leftovers," so there Is unfortunately not much
correspondence between a module’'s letter and what the module
does.

Module Letter Function

CAT40 E Displays directory listings in 40 columns
CAT80 E Displays directory listings in 80 columns
PACK H Hi-res packer; packs/unpacks directly to disk
RANDOM J Random-access flle commands
MULTI U Use more than one flle at once
SYSCALL Y Perform ProDOS MLI calls

To install a module, simply use the & BX command. For example,
to install CAT40, you would enter & BX,"CAT40". A sign-on message
will appear on the screen and the module will be ready for use. You
can Install modules from immediate mode or from a program.

If you try to install the same module more than once, you will get an
error message. This error message does not stop a running
program, however. (This means that you can safely put a group ol
&.BX commands at the beginning of a program to load the modules
used by that program. If you then re-run the program, you will get
error messages from trying to load the modules, but the program
will continue (o run.) You can install modules in any order, excepl

MicroDot 20

for the MULTI module, which is best installed last. (See the MULTI
Instructions for special memory management considerations.)

Modules relocate themselves to high memory, setting HIMEM
below their code to protect themselves. This means that installing
a module will trash your string variables. Furthermore, modules
initially load at 8192 ($2000), which could, in some cases, be on top
of your program. For these reasons, you might want to write a short
program which does nothing but load the optional modules which

your main program uses, and then ends by running your main
program.

Module: Catalog Disk

Name of module to & BX: CAT40 or CATS0

&.E Syntax: &.E[,exp$]
(Catalog 40 or 80 column) Examples: &.E

&.E,"/APPLEWORKS/"

MicroDot doesn't have a built-in command for displaying the
contents of a disk directory. (Remember, though, it does have a
command that lets BASIC programs read the contents of a
directory.) The programs CAT40 and CATS80 on the MicroDot disk
are two optional command modules which allow you to get a
directory listing of a disk with a 40 or 80 column display,
respectively. The modules are most useful when programming, but
can also come in handy anytime you need a quick-and-dirty
directory listing in a program.

The two modules function identically except for the format of the
Information displayed on the screen. You cannot have both the
CAT40 and CAT80 modules in memory at the same time.

To produce a directory listing, simply issue an & E command. If
you don't specify a directory (as in the first example above), the
current prefix directory will be cataloged. If you do specify a
directory (second example), that directory will be cataloged.

The display of the CAT80 module is very similar to the display ol
the BASIC.SYSTEM CATALOG command, except that a few

MicroDot 21

columns have been moved around and have different formats.
First, the asterisk denoting a locked file is between the filename
and the flletype, not to the left of the filename. Secondly, the
AUXTYPE and END.FILE columns have been moved to the left of
the date columns. And finally, the dates are shown in the form
MM/DD/YY instead of BASIC.SYSTEM's DD-MMM-YY format.

The top of the file listing displays the name of the directory and the
column headings; the bottom line shows the total number of blocks
on the disk, the number used and the number that are free.

The CAT40 module's display is similar, except that it does not
display the creatlon and modification dates of files.

Module: Hi-Res PACKER/UNPACKER

Name of module to & BX: PACK

Introduction

The hi-res packer module allows you to pack and unpack hi-res
pictures, which means that they take up less disk space. If you are
developing a graphics-intensive program, the PACK module might
come in quite handy.

Unlike other hi-res packers, MicroDot's packer does not require a
large memory buffer to hold the packed picture. Instead, the packer
packs and unpacks pictures directly to and from the disk.
Unfortunately, this means that the program is somewhat slower al
loading and displaying pictures than other packers, but it does give
you more usable memory.

The PACK module is a specially modified version of the packer used
by Polarware (Penguin Software), also published in "Graphically
Speaking” by Mark Pelczarski, and is used by permission. This
also means that if you create a packed plcture using a
Polarware/Penguin product such as The Complete Graphlcs
System, you should be able to unpack it with the PACK module.

MicroDot 22

& .HP
(Hi-res Pack)

Syntax: &HP
Example: &.HP

This command packs a hi-res picture to disk. You must open a file
before issuing this command, and you must close it afterward. This
allows you to store more than one packed picture in a file (or both
banks of a double Hi-Res picture).

& HP packs the screen specified by location 230, an Applesoft
pointer which is also used to determine the drawing page. If you
have issued an HGR or HGR2 command this location is
automatically set to the correct value for that hi-res page. You can
also POKE 230 to tell & HP which hi-res page to pack; POKE 230,32
for page 1, and POKE 230,64 for page 2.

&.HU
(Hi-res Unpack)

Syntax: &HU
Example: &HU

This command is the reverse of the & HP command. Like & HP, you
must open and close the file yourself. The hi-res page used Is
determined by location 230.

Module:

RANDOM ACCESS FILES

Name of module to &.BX:

Introduction

RANDOM

MicroDot has, built-in, the ability to read and write sequential data
files. For many programs, that's all you will need. If, however, you

do need random-access flle capabilities, the RANDOM module can
provide them for you.

A random-access file is a file with fixed-length records. For
example, each record might be defined as 100 bytes. This allows
you to easily access any desired record; since each record is the
same length, it is easy to move the position-in-file pointer to any

s N

EEEEED

Micr oDot 23

given record. The records do not need to be accessed sequentially;
they can be accessed In any order.

Here is a brief overview of how to use the RANDOM module;
command syntax is covered after the overview.

CREATING A NEW RANDOM-ACCESS FILE

Creating a new random-access flle involves only a little more work
{han creating an ordinary sequential file. First, you use &M to
create the new file. Then, to maintain compatibility with
BASIC.SYSTEM, you should store the file's record length in its
auxtype. In fact, this will come in handy if you ever forget what the
record length is; all you have to do is check the file's auxtype to find
oul.

To put the file's record length in Tts auxtype, first use the &.1G
command to get the file's current attributes. Remember, you should
always perform an &.IG before an &.IS to avold inadvertently
changing a file's attributes. Then issue an &.1S with the desired
record length as the auxtype parameter. That's all there is to it.

You can open a random-access file with the standard &.0
command. As usual, you might want to include an &.F or &IG
before the &.0 to make sure the file is of the correct type.

You might also want to get the file's default record length from lts
auxtype with the &.1G command.

ACCESSING THE RECORDS IN THE FILE

Before you can read or write a record, you must first move to thal
position In the file. The RANDOM module includes a command
which allows you to move the position-in-file pointer to any given
byte in the file. To access a particular record, simply multiply the
record number times the record length to get the byte number. You
may also add a byte offset to access a particular byte in the record.
In terms of the R, L, and B parameters used with BASIC.SYSTEM's

MicroDot 24

OPEN and READ commands, the formula you need to know isR* L +
B.

Once you have moved the position-in-file pointer to the appropriate
location, you can use &.R and &.W to read or write data, just as with
an ordinary sequential file.

ANOTHER POWERFUL RANDOM FEATURE

The RANDOM module also allows you to move groups of bytes en
masse between the Apple memory and the disk, Coupled with the
abllity to move the position-in-file pointer to an arbitrary byte in
the file, this feature allows you to do random-access memory reads
and writes from any slze file, much as the BLOAD and BSAVE
commands of BASIC.SYSTEM do when used with the B parameler.
You will notice that since MicroDot requires you to open the file
only once, it is faster than BASIC.SYSTEM which requires you to
open the file every time you issue a BLOAD or BSAVE.

&.JF
(Skip Fields)

Syntax: &.JF.exp
Example: &.JF3

& JF is similar to BASIC.SYSTEM's POSITION command, or to the
F parameter on the BASIC.SYSTEM READ command. Starting at
the current file position, &.JF skips over the specified number of
carrlage returns, moving the position-in-file pointer past the
specified number of fields.

The maximum number of fields you can skip is 255. If you specify
zero, no flelds will be skipped.

This command can be used with sequential text files to skip to a
certain line of the file, but its real use is with random-access tex!
files to read a particular field of a record. If the file has a carriage
return between each field of each record, you can use &.JP (o
position the file pointer to the beginning of the record, then use
& JF to position the pointer to a specific field within that record.

mi
.__

MicroDot 25

&.JG

(Get File Pointer)

Syntax: &.JG,var
Example: &.JG,PTR

The &.JG command tells you, In bytes, exactly where the file
pointer is right now. This allows you to, among other things, move
the pointer forward or backward from the current position. For
example, you might do an & .JG,PTR then do an & JP,PTR-1 to move
back one byte In a file. There are a number of other uses for this
command as well.

The variable you specify must be a real variable. A file may be up to
sixteen megabytes in length; an integer variable is too small to hold
a number that large.

&.JP

(Position Flle Pointer)

Syntax: &.JP.exp
Examples: &.JP,10000
&JP10*L

The & .JP command allows you to move the position-in-flle pointer
to any arbitrary byte within the file. ProDOS files may be up to
sixteen megabytes in length, and the &.JP command can handle
filles that large. The first byte of a file is byte zero, and Lhe
maximum byte number is 16,777,215. If you specify a byte that is
beyond the end of the file, the file will automatically be extended.

The &.JP command works with bytes, not records. To converl a
record number to a byte number, simply multiply the record
number by the record length, as in the second example above.
(Remember, most MicroDot parameters can be expressions.) The
first record of a file is record zero, not one. You can also add a byte
offset to this calculation. Note that this means you can start
reading or writing at any byte within any record.

This command works on any open file. ProDOS and MicroDot
don't care If the file is TXT or not, or if it was originally created as a
sequential or random-access file.

If you use record numbers to access a flle, it is up to you to keep
track of the appropriate record lengths. This isn't so bad when
you're working with just one file, but if you're using the MULTI

Micr Dot 26

module in conjunction with the RANDOM module, you might want
to use an array to hold all the information about each file. At the
very least, use a variable to hold the record length. Then, if you
decide to change the record length during programming, you need
only change the value for the variable, not dozens of lines of code.

&.JR
(Read From File)

Syntax: &.JR.exp,exp
Examples: &.JR,AD,LN
&.JR,8192,8192

The &.JR command is very similar to the & BL command, in that 1l
reads bytes from a file on disk directly into memory. However,
unlike &.BL, &.JR does not open the flle nor does it close the file
when done reading, and It doesn't require a BIN file. You must open
the file yourself before issuing &.JR, you must close it yoursell
afterward, and you must check the file's type yourself (if you wish)
with the &.1G or &.F commands. This makes the &.JR command a
flexible tool.

When used with the & JP command, &.JR can be used to emulate the
abllities of BASIC.SYSTEM's BLOAD command, i.e., randomly
accessing any portion of a large file and loading that portion into
memory. You might use this command to read through a sequence
of hi-res pictures stored in one file, or to load first one half of a
double-hi-res picture followed by the second half.

If you attempt to read more data than Is left in the flle, you will not
get an error. This Is not a bug; BASIC.SYSTEM works the same
way. You can check the length of the last BLOAD (see "Peeks and
Pokes") to make sure that you got all the data you asked for.

&.JW
(Write memory to File)

Syntax: &.JW,exp,exp
Examples: &JW,AD,LN
&.JW,8192,8192

The & JW command is to the & BS command as &.JR is to &.BL. |t
requires that the file be open. The flle may be of any type. You are
responsible for opening and closing the file yourself. See the
discussion of the &.JR command for more Information.

=i
|
i
-

MicroDot 27

Module: Multiple Files

Name of module to &.BX:

Introduction

’

MULTI

e MULTI module is used when you need more than one open file
al once, Normally MicroDot only allows one file open at once, but
the MULTI module can handle up to 8 files.

You open and close flles with MULTI in exactly the same way you do
normally, with the &.0 and &.C commands. With MULTI installed,
these two commands do a lot more than open and close files, but
that doesn't matter, since the end result is the same.

All existing programs will work filne with MULTI installed, as long
as they use standard MicroDot commands (or ML entry points) Lo
nccess flles,

Some method 1s needed to tell the MULTI module which of the open
files you wish to use at a given time. For example, if you have five
flles open, you need to be able to tell MULTI to switch to #2, then #4,
etc. This is accomplished by using the reference numbers which
ProDOS assigns to files when they are opened. These numbers are
assigned starting with number 1 and go up to 8.

Unless you issue a global close at the beginning of your program,
though, you cannot assume that the first file you open will be
reference number 1. The previous program might have left a flle
open, or an exec file could be running. For this reason, you should
always either issue a global close at the beginning of your
programs, or use a special enhancement of the &.0 command,
explained next.

MicroDot 28

Enhancement of &.0 command from standard
MicroDot commands

&.0
(Open a data file)

Syntax: &.0.exp
Example: &O,RN

When MULTI Is installed, the &.0 command has a facility to return
the reference number of the file just opened to a variable, Simply
place a comma and a numeric variable after the pathname in the
&.0 command: &.0,"ACCUDRAW" RN. This example will put the
file's reference number into the variable RN. Naturally you are free
to use any legal real or integer variable name. You will use this
number to select which file to work with at a given time.

IMPORTANT NOTE

You should not install other modules while more than one file
buffer is available. It will seem to work, but if you then change the
number of buffers, you will de-allocate the memory used for the
newly installed modules, and the system will crash as these
modules are overwritten by flle data and/or strings.

The solution is simple. You can either make sure that MULTI is
always the last module installed. Or, alternately, you can close all
files and then issue an & UB,1 command to de-allocate all buffers,
then install any other desired modules, and then re-allocate the
buffers with the &.UB command.

BUFFER ALLOCATION

Buffers are allocated in the following order: first, the standard
MicroDot buffer at $BB0O0 is allocated. Then the buffer
immediately below MicroDot (usually at $AD00, if MULTI is the
only module installed) is allocated, and so on, using buffers further
and further down in memory. Note that unlike BASIC.SYSTEM,
MicroDot does NOT move your string variables down when opening
files. Instead, you tell it how many files you will be using, and it
reserves enough memory for that many bulffers.

=l
=l

MicroDot 29

Il you have only one buffer allocated (&.UB,1), the standard
MicroDot policy of closing the current file when another one is
opened remains in effect. When you have allocated more than one
bifler, MULTT will not know which file to close to make room for
{he new one, In this case, If you try to open more files than there are
bullers allocated, you will get an error.

&.UB
(Sel Number of Bullers)

Syntax: &.UB.exp
Example: &.UB3

Use the & UB command to tell MicroDot how many files this
program will be using. The MULTI module will allocate the desired
amount of memory by lowering HIMEM. This means that you
should always use &.UB before defining any string variables. If you
remember DOS 3.3 at all you should recognize this command as
being similar to MAXFILES.

He sure to use & UB,1 at the end of a program which uses more than
one fille, (After closing all the files, of course.) This will release the
memory used by that program's file buffers and make it available to
Applesolt again.

Altempting to use the & UB command while files are open will
result in an error.

&.US
(Select File to Use)

Syntax: &.US[,exp]
Examples: &.US,1
&US

This command tells MicroDot that you want all file input and
output to use the specified file. You must specify the file's reference
number, as passed back by the &.0 command. The &R, & W, & K,
& A, and all of the RANDOM commands (if you have RANDOM
installed) will use the specified file. When you open a file using &.0,
that file Is automatically selected for use.

McroDot 30

Module: SYSCALL

Name of module to & BX: SYSCALL

Introduction

The SYSCALL module is the simplest of the MicroDot modules (also
the smallest in terms of bytes used), but it's one of the most
powerful, as well. SYSCALL allows you to directly access the
ProDOS MLI from BASIC.

We strongly suggest getting a ProDOS reference book such as Apple's
manual or Quality Software's "Beneath Apple ProDOS" if you
intend to use the SYSCALL module. It is definitely not for people
who don't know what they're doing.

&.Y Syntax: &.Y,exp,expl,var]
(System Call To ProDOS MLI) Examples: &.Y,130,0
&.Y,128,768,ERR

The first parameter of the &Y command is the MLI call number.
Remember that this number must be specified in decimal, not in
hexadecimal as it is described in most ProDOS references.

The next parameter is the address of the parmlist for this MLI call.
This parmlist can be set up via POKEs. It is beyond the scope of this
manual to describe the formats of the various parmlists; check
your ProDOS reference.

The final, optional parameter is a variable which, if present, will
contain the error code resulting from the MLI call, or zero if no
error occurred. If the final parameter is present, the error code will
be passed back to the variable; if the final parameter is not present,
any errors will be passed back through MicroDot's standard error
handling routines and can be trapped with ONERR GOTO.

This feature allows you to check for an error without having to use
ONERR GOTO. Simply put a statement like IF ERR THEN... after an
&.Y command to check for errors.

- Micr Dot 31

By the way, the first example is a ProDOS GET_TIME call, which
updiates the ProDOS global page date/time locations with the
ourrent date and time (if a clock card is installed). You do not need
to mel up a parameter list for this call.

The second example is a READ_BLOCK call, using the parmlist at
768, See your ProDOS reference for more information on
READ_BLOCK and the format of the parameter list.

SYSCALL can be very useful for performing AppleShare network
calls. Unfortunately, information on these calls was not available
at this writing. Contact Apple Technical Support for further
Information.

ProDOS CLOCK FIX PATCH

If you have a clock in your computer, you may have a few problems
issuing MicroDot commands from immediate mode. You may get a
?SYNTAX ERROR message for a syntactically correct command, or
the command may execute but give you a ?SYNTAX ERROR
afterward, This is a problem which is caused by your computer's
clock; this bug can be fixed with the CLOCK.FIX module.

The official ProDOS clock protocol allocates memory locations
$200-$27F (5612-639) for use by the clock card. ProDOS calls the
clock driver whenever a MLI command such as OPEN, READ, eic. is
issued. In other words, whenever the disk is accessed (or a ProDOS
call of any type 1s performed), $200-$27F may get trashed.
Unfortunately, this is where Applesoft stores your immediate mode
commands, so if you have a clock in your system, it Is possible that
ProDOS will turn your command into garbage even as MicroDol
altempts to execute it.

The CLOCK.FIX module is the solution. It hooks itsell up to
ProDOS's clock routines so that whenever ProDOS needs (he
current time and date, it calls CLOCK.FIX instead of the regular
clock driver. CLOCK.FIX saves the contents of $200-$27F in a sale
location, calls the clock driver, and then restores the saved byles
back to $200-$27F. The result is that there is no net change in the

MicroDot 32

contents of the keyboard buffer, so immediate mode commands
work correctly.

CLOCK.FIX is only needed when you are developing programs and
are issuing commands from immediate mode. MicroDol
commands always work fine in programs even if you have a clock
installed.

The STARTUP program on the MicroDot system disk
automatically installs CLOCK.FIX when you boot the disk. (If your
computer doesn't have a clock, CLOCK.FIX will print "NO CLOCK IN
SYSTEM" and will not install itself.) Some clocks (such as the one
bullt into the Iigs) do not use $200-$27F and therefore there is no
conflict with MicroDot; you won't need the CLOCK.FIX module for
those clocks.

CLOCK_FIX also hooks itself up to the ProDOS quit routines to de-
install itself when you quit MicroDot. If it didn't do this,
CLOCK.FIX would quickly be overwritten by other routines when
the next SYS program was executed and your system would then
crash or lock up when ProDOS tried to get the current date and time.

MicroDot 33

PROGRAMMING TIPS

MicroDot EXEC FILES
Introduction

MicroDot does not directly support a command similar to
BASIC.SYSTEM's EXEC command. It is, however, possible (o
perform a similar function with the & O and & R commands, since
all MicroDot commands can be issued from immediate mode.

The basic idea of an exec file is that instead of input coming from
the keyboard, as usually happens, all input comes from a text file
on the disk. Everything in the disk file is accepted as Input as il you
had typed it yourself. This includes Applesoft immediate mode
commands, Applesoft program lines, MicroDot commands, and
Monitor commands.

You might have already guessed how to get MicroDot to do this,
based on the hints given in the first paragraph of this section.
Simply open the exec file with &.0, from immediate mode, and then
issue &.R, also from immediate mode. You can even do this as a
one-line command, by separating the two commands with a colon,
like this:

&.0,"EXECFILE" : &R

Exec files created with BASIC.SYSTEM can be executed this way,
except of course if they contain BASIC.SYSTEM commands such as
LOAD, SAVE, etc. Applesoft program listings typically exec fine.
When the end of the file is reached, you will see ERR 76, and the
Applesoft prompt will re-appear. MicroDot does not automatically
close EXEC files, so you should close it yourselfl with &.C.

When execing a file, MicroDot does not echo anything to the screen,
not even the Applesoft bracket prompts. If a PRINT stalement is
executed, for example, it won't appear on the screen. Nothing will
be printed until the end of the file is reached, and the error message

Micr oDot 34

is printed. Don't worry, there are ways to print things on the screen
from within an exec file (You'll read how in a few paragraphs).

CAPTURING APPLESOFT LISTINGS IN TEXT FILES

A procedure closely related to exec files is the technique of putting
Applesoft program listings into text files. With BASIC.SYSTEM,
this required adding a line to your program and running it. With
MicroDot, it can be done from immediate mode. All you need to do
is Issue a command like this:

& M,"CAPTURE"4 : & O,"CAPTURE" : & W : LIST : &C

This creates the capture file, then opens it, sets MicroDot up to write
to the file, and issues a LIST command. The listing will be printed
to the flle instead of the screen. Then the file is closed by the &.C
command.

Coupled with the exec file technique described above, this trick
allows you to edit your Applesoft programs using a word processor.

WRITING EXEC FILES FOR MICRODOT

The above examples make MicroDot's exec flle capability seem a
little imited, especially the fact that nothing can be printed to the
screen. However, MicroDot is really quite flexible. Certain
MicroDot commands can, when included in an exec file, give Il
extra flexibility. We are now talking, of course, about going beyond
simple program listings and Into more powerful and Imaginative
uses of exec files.

Avoiding error statements at the end of the flle

The first refinement to MicroDot's exec file capability would be (o
include an &.C command at the end of the exec file. This way, the
file closes itself before you get the ERR 76 message.

To cause the EXEC file to echo on the screen, include the following
immediate mode line in your exec file:

POKE 54,PEEK(996) : POKE 55,PEEK(997)

All input will still come from the exec flle, except that now
everything will be echoed to the screen (or whatever output device
was active when you executed the file). These POKEs restore the
output hooks to what they were when the & R command was issued.
To go back to no-echo mode somewhere in your exec file, simply
include another & R command. DOS 3.3 users will recognize this
trick as the equivalent of MON O, and NOMON O\I. You can also use
it when debugging to see what is really in those text files you're
reading, or to write a "read and show text file" utility.

The &.Z command can also be useful. Consider the following line:
&.Z : PRINT "HI THERE!" : &R

When this is executed, the & Z command will turn off exec mode.
Then the message HI THERE! will be printed on the screen. Then
exec mode will be re-enabled, and off we go again. You could also
use a line like the following:

&.Z : PRINT "TYPE & R TO CONTINUE"

When this is executed, the message will be printed on the screen and
the Applesoft prompt will appear. At this point, you can Issue
Applesoft commands or do whatever else you would like. Then you
can issue &.R and the exec file will take off again right where It left
off. If you want to permanently quit the exec file, type &.C when the
prompt comes back.

MicroDot 36

RANDOM module tricks

With the RANDOM module installed, you can include &.JP.0 to
cause an exec file to start over again at the beginning. You can also
use &.JF to skip over the next lines In the exec file (most useful with
an IF statement in the exec file).

Several quick tricks

You can use the WAIT -16384,128 : POKE-16368,0 sequence to walil
for a keypress within an exec file.

You can have an exec file type in a little program which turns off
exec mode with &.Z, runs, and then turns exec mode back on with
& R

But... You canNOT do this

Unfortunately, you can't issue any MicroDot commands which
open a file (This includes & L, &.8, &.BL, and &.BS) from within an
exec [lle because MicroDot only allows ONE open file at a time
UNLESS you install the MULTI module. (Well, you can use these
commands, but they will close the exec flle to open the other file.) If
the MULTI module is installed, you CAN open files from within an
exec file. Or... you can have one exec flle chain to another one by
closing the current flle, opening the new file, and issuing an &.R (all
on the same command line, of course).

Not the end yet!

I hope that this has demonstrated to you some of the interesting
things you can do with exec files with MicroDot. MicroDot Is as
flexible with exec files as it is with everything else; the possibilities
are wide open. By the way, MicroDot can automatically exec a f[ile
on startup; just make sure that the text file to exec Is named
STARTUP on the disk.

MicroDot 37

PROGRAMMING WITH OVERLAYS
Introduction

MicroDot's & .BO command is a powerful tool for creating programs
that are larger than your Apple's memory. With it, you can break
your program up into overlays (modules) which are loaded from
disk when needed. &.BO does away with the clumsy binary-file
overlays that you may remember from the DOS 3.3 days. (It's still
used some under ProDOS, although not as much, because
BASIC.SYSTEM has a CHAIN command that works.)

Here, in a nutshell, is what the overlay technique is all about.
Typically, you have a main menu for your program which stays in
memory at all times (the "core”). In addition, you also might have
some subroutines which are used throughout the program. In a
normal program, you might then have a several subroutines which
are activated from the main menu; in a program that uses the
overlay technique, only one such subroutine is resident in memory
at a time. The main menu and shared subroutines remain In
memory at all times; the routines which are called from the main
menu are called into memory only when needed.

HOW TO MAKE OVERLAYS

With MicroDot, making overlays is very easy, because you can
make modifications to the core of the program without fear of
messing up your overlays. Under DOS 3.3 making overlays
required you to compute the location where the overlay was to
occur. The overlay modules had to be BSAVEd from that location.
If the core part of the program was modified, you had to re-compule
your overlay location and then re-do all of the BSAVEd modules.
With MicroDot, all of this Is automatic. And you don't save your
modules as binary files, you save them as BASIC files. You don'l
even have to have the core sectlon of the program in memory as you
write the overlay (until you are ready to start testing).

If you think about the above paragraph you will soon realize that
once you write a BASIC module you can use it with ANY BASIC
program you write in the future. Now imagine that you save all of

Micr oDof 38

your favoite subroutines as small modules. You can load those
modules into any program at any time. This could significantly
reduce your programming time once you have "cropped” and saved
your favorite routines out of old programs. WARNING: The &.BO
command does NOT change the End of Applesoft program pointer
(178, 176)! You would have to do that manually if you use this
technique. You could load it into an overlay area without worrying
about the End of Applesoft pointer. Simply renumber your routines
to high line numbers. Alter loading (&.BO) onto your new prograrm,
renumber the module to place it where you want it in your new
program. Program Writer makes this operation a plece of cake.
Hmmm... I feel a "Quality BASIC Subroutines” disk coming on...

Here are some tips for implementing the overlay technique using
MicroDot's & BO command. First, the overlays should be standard
BAS type Applesoft program files. The overlays should all use line
numbers higher than the highest line of the main program. For
example, the main program might have lilne numbers less than
20000, and the overlays would have line numbers greater than or
equal to 20000. The overlays may all have the same line numbers if
you like (in fact, this makes the main menu routine easier to write;
Jjust load the appropriate overlay and GOTO or GOSUB 20000).

You must use the LOMEM command at the beginning of the main
program to make sure that your variables are out of the way of your
overlays. Simply check the PRGEND pointer ($AF-$BO or 175-176)
for the end of the main program and then add to that address the
length of the longest overlay. You can even do this from within
your main program so that you don't have to change the LOMEM
statement each time you modify your program. To do this, get the
address of the end of the program into a variable, use &.IG and a
couple of PEEKs (see "PEEKs and POKEs") to get the length of the
longest module.

You must take string literals into account when writing your
overlays. A string literal is a statement such as A$ = "HELLO". This
kind of string is not moved to the string pool just below HIMEM; the
string's descriptor points instead to a location within the program.
If you define a string like this in one of your overlays, and then load
a different overlay, the string will become garbage. If you want

MicroDot 39

strings like this to be permanent, force Applesoft to move them (o
the string pool with a statement like A$ = "HELLO" + ™.

There's one last thing you should be aware of, and thal's error
trapping. Applesoft's ONERR GOTO statement works in a prelty
weird fashion. When you're getting ready to load an overlay, you
should make sure that if there is an ONERR GOTO In effect, the
ONERR GOTO statement is not within the overlay which is about to
be replaced. The ONERR GOTO statement also should not point to a
line in the overlay. These considerations are only necessary when
you're about to load a new overlay; otherwise, you can use ONERR as
usual.

You should of course use the # parameter of the & BO command to
load your overlays on top of a specific line number, such as 20000
in our example. This will delete all lines after 20000 and replace
them with the overlay from the disk.

Follow these guidelines and you'll find that the overlay technique
is a powerful way to write large programs without overflowing your
computer's memory.

MicroDot 40
Programs on the Disk

The files are on the MicroDot disk are so numerous that when you
catalog the disk, about half of the files will scroll off the screen
unless you're careful and hit Control-S quickly.

The listing below is a reproduction of the MicroDot directory
listing, except that we've added comments for each file instead of
the standard directory information. All of the BASIC programs on
the disk can be loaded into memory with &.L and listed with LIST.
The example programs cover many of the finer points of
programming with MicroDot and are well-commented. Print them
out and study them; you'll learn a lot. The files with lots of periods
after their names (type $00 or NUL when In the directory of the
disk) are simply dividers that separate the directory listing into
sections. They serve no purpose other than decoration.

/MICRODOT/

PRODOSPTODOS 8 Version 1.6.

MICRODOT.SYSTEM.... The MicroDot shell.

STARTUR.ccoconiiiassies BASIC program which loads CLOCK.FIX
and CAT40 or CAT80 upon boothing.

MODULES......cccceses veesee-(Optional add-on MicroDot commands.)

CAT40........c.ccccecvvenn....40-column directory listing module.

CATBOcevueevenn...80-column directory listing module.

MULTI..............ee......... Buffer management module; allows up to 8
files to be open at once.

RANDION couvmvisssmivicamass Allows random-accessing of data files.

PACK..........cccceeeveneneen.. Direct-to-disk hi-res packer/unpacker.

SYSCALLPerforms ProDOS MLI calls from BASIC.

UTILITIES.....ccco0teennnnene (Other programs that work with MicroDot)

EDITccovvvvvenenennnn.....Simple page-3 resident line editor.

PW.ADAPTERAdapt Software Touch's Program Writer for
use with MicroDot.

FORMATTERc.c....... BASIC program to format disks.

FORMAT.1ccoevenevinnns Uses $2000-$3FFF (Hi-res page 1)

FORMATZ2Uses $4000-$5FFF (Hi-res page 2)

6210 PG R ——— Uses $6000-$7FFF (Hi-res page 3)

MicroDot 41

EXAMPLES.........ccceoe..(List and learn)

LOAD.MODULES

DATE.TIME
READ.DIR.............

LOCK.UNLOCK

OPENFILES:.....icconcu

FILE.TYPES

LISTDISKS.. .ooveemennosns

PACK.UNPACK.......

FLUSH:...cicci0iia

CHANGE.STARTUP.

DISK.SCAN.................

PEEK.POKE..........
COPY.FILE

ERROR.HANDLER....
SET.DATE ..o

.One way to load modules from your own
BASIC programs.

.......Prints the date and time of the last ProDOS

call (usually disk access).

.. Demonstrates how to read a directory from

BASIC.

vi.... HOW to lock and unlock files.
...How to open new and existing files.
.c......A brute-force routine to convert file type

numbers to three letter codes.
.Another brute force routine; converis
ProDOS /MicroDot error codes to English.

...Displays the slot, drive, and name of the

last disk accessed.

...Lists all online volumes by slot, drive, and

name.

......BASIC subroutines demonstrating use of

the PACK module.

......How to emulate BASIC.SYSTEM's FLUSH.
.....Change the startup program run by

MicroDot (and other programs) on boot.

...How to scan a disk for bad blocks using the

SYSCALL module.

...... PEEKINgG and POKEINng two-byte values.
woeere..COpy any file from one directory lo

another.

.....A better way to fix Applesoft's ONERR bugs.
...Sets ProDOS's date on systems without a

clock.

McroDot 42

I/0 COMMANDS: PR# / IN#

MicroDot does not hook itself up to the 1/0 hooks except when a
read or write mode (&.R or & W) is active. Thus, the standard, pre-
disk drive commands IN# and PR# work fine with MicroDot.

Do NOT precede these commands with an ampersand. Instead, use
the commands in the same fashion as follows:

10 PR#3 : PRINT CHR$(25); : REM Activate 80 column card
20 IN#2 : REM Get input from modem

You can also redirect input and output by POKEing the KSW/CSW
vectors In page zero. Location 54 and 55 ($36-$37) hold the address
of the curent output routine; locations 56 and 57 ($38-$39) hold the
address of the current input routine. As usual, the addresses are
stored in low-high order.

Do NOT use PR# or IN# (or the above POKEs) while & R or & W is in
effect. Instead Issue &.Z first, then use IN# or PR#. Resume the read
or write mode with & R or & W,

Use POKE 54,07 : POKE 55,195 to re-activate 80 column output after
printing on a printer or other device. This is the equivalent to the
BASIC.SYSTEM PR#A$3C07 command.

You might notice that screen output is a little faster under MicroDol
than is was under BASIC.SYSTEM as MicroDot does not intercep!
each character as it is output.

MicroDot 43

THREE BONUS ROUTINES!

FLOPPY DISK FORMATTER
Introduction

It is a real drag that Apple charges a yearly fee to license their
formatter. It is still another drag that even public domain (and
other) formatters require you to quit your application, format a
disk, then reboot your application. Not any more! We have made
some changes to Jerry Hewett's public domain program
HyperFORMAT from Living Legends Software. To be specific, we
have relocated it to a "handler" location; your choice of three
different locations in fact. And we have changed it so you can call
the routine from within any BASIC program and it will return to
your BASIC program just like you would want it to.

The formatter will format 5.25"disks and 3.5" disks. It will NOT
format RAM disks or hard disks. We "locked out" these devices as a
safety measure. If you really want to format these devices, use the
finder or the system utilities. A disk formatted by the formatter
can be made "bootable” by copying PRODOS and MICRODOT -
SYSTEM (or any SYS file) to the new disk.

Using the Formatter

There are three versions of the FORMAT utility on the MicroDot
disk. They differ only In their loading address/entry point. The
versions are:

Filename Memory used
FORMAT.1 $2000 (8192)- $3FFF (16383)
FORMAT.2 $4000 (6384) - $5FFF (24575)
FORMAT.3 $6000 (24576) - $7FFF (32767)

McroDot 44

To format a disk, first load the disk formatting program into
memory with the & BL command. Then call the disk formatter
with the following command:

CALL 8192,S,D /N$
CALL 16384,S,D,N$
CALL 24576,5,D,N$

(for FORMAT.1)
(for FORMAT.2)
(for FORMAT.3)

where S Is the slot of the drive to use, D is the drive number, and N$
Is the name desired for the new volume. The name should not
include the slashes (e.g., "BLANK" instead of */BLANK/"). FORMAT
checks to be sure that you have specified a valid slot and drive but
does not check to make sure that the volume name is legal.
FORMAT also does not check to make sure the disk is blank or
unformatted; you will can to do that from BASIC using &.V .

Both of the FORMAT routines use exactly 8K of memory. This
means that they fit snugly inside the hi-res pages. The programs on

the disk are quite a bit shorter than 8K, but they need a large
additional workspace.

IMPORTANT ... IMPORTANT ... IMPORTANT ... IMPORTANT

NEVER reset the computer while disk formatting is going on. It will
trash the disk, of course, but it will also mess up the computer's
memory. The programs need to move quite a few things around in
memory and they are careful to put everything back where it
belongs when the formatting is complete, but if you press reset
while the disk is spinning they will not have a chance to restore
everything to normal and your computer's memory will be addled
(which means worse than scrambled), particularly if your programi
uses memory In the $6800-$7FFF range.

If an error occurs during formatting, an error code $14 (20) will be
returned via the normal error-handling mechanism. See the
BASIC program FORMATTER on the disk for an example of how to

use FORMAT from a BASIC program, and also as an example of a
driver.

McroDot 45

LINE EDITOR

Most commercially avallable program editors (such as GPLE, Edit
Pro, etc.) were designed for use with BASIC.SYSTEM and do nol
work with MicroDot. Program Writer DOES work with MicroDot.
See page 47 for a patch. We are currently investigating ways (o
modlfy other editors so that they can be used with MicroDot, but In
the meantime, we have included a special version of a public-
domain line editor called LIGHT (written by Jerry Kindall), to help
you out a little. This program is on the disk as EDIT.

EDIT is not a full-featured program editor. It does not have global
find and replace, macros, or renumber/merge. It does, however,
make the task of making minor changes to program lines a lol
easler.

To Install EDIT, use the command & BX,"EDIT". EDIT will load and
connect itself to the ampersand hook. EDIT's use of the ampersand
does not in any way interfere with MicroDot's use of it. Once EDIT
is Installed, you can activate it by simply typing an ampersand.
EDIT will connect itself to the Apple's KSW and CSW vectors in page
zero and its edit keys will become "ltve" at all times.

EDIT's edit keys are:
Control-1 (Tab): Insert a blank space at the cursor.
Control-D: Delete character under the cursor.
Control-O: Enter normally-illegal control character.
Delete: Delete character to the left of the cursor.

To edit an existing line, use the LIST command to list it on the
screen. Then use the standard escape keys to move the cursor to the
first digit of the line number. Now press <ESC.>. Next, use lhe
right-arrow key to move to the first error and use the edit keys to
correct it. You can use the left-arrow and right-arrow keys to go to
any remaining errors and correct them with the edit keys. When
you have made all your changes, use the right arrow key to trace to
the end of the line and press the return key.

&XX: What about all those excess spaces Applesoft always Inseris
in program listings? Well, you could do a manual POKE 33,33 (and

McroDot 46

that works best for editing REM and DATA statements) or you could
use EDIT's compressed listing mode. To use that, simply type &
followed by a line number, like this: &10. EDIT will do an
automatic POKE 33,33 and list out the line with all non-quoted
spaces compressed from the listing. This makes editing long lines
much easier. Try it and see how it looks.

EDIT displays all control characters in listings (except control-M
[return], control-H [backspace], and control-G [bell]) as inverse
letters, so that you can trace over them in a listing and they will
still be there. You can also use control-O to insert a control
character into any line. The cursor will stop blinking and the next
control character you type will be entered directly into the input
buffer.

EDIT resides in page 3 of RAM, which means that it doesn't take any
memory away from your BASIC workspace. Unfortunately, page 3
is a popular place for utllity programs. EDIT can also cause
problems if it remains connected through a program's GET or
INPUT statements. For this reason, you should always disconnect
EDIT before running a program.

The easlest way to disconnect EDIT is to press control-reset. PR# O :
IN# O : TEXT will also do the trick. Once you're back in immediate
mode, you can re-connect EDIT simply by typing an ampersand,
unless your program has used page 3, in which case you should re-
execute EDIT from disk. If you don't want to use the ampersand
command, or if you are using the ampersand for something else,
you can use EDIT via the CALL command. CALL 771 is the same as
typing & by itself, and CALL 768 ,number is the same as typing &XX.
If you want to use EDIT in this manner, you don't need to install it
with &.BX; a simple & .BL will do fine.

EDIT also supports 80-column mode on the Ilc, IIgs, and enhanced
lle. (Non-enhanced Ile's are not supported.) To use EDIT in 80-
column mode, first enter PR#3. This will disconnect EDIT, so enter
& to re-connect it. You can then use PR#3 instead of control-reset
or PR# 0: IN# O: TEXT to disconnect EDIT. In 80-column mode,
EDIT does not show control characters in inverse. It does, however,
set a 72-column wide window when doing a compressed listing.

1
ml
il
T
L

mm
)

McroDot 47
PROGRAM WRITER PATCH

The Software Touch's Program Writer, by Alan Bird, is, in our
opinion, absolutely the best BASIC program editor available. In
case you haven't seen it, it's a full-screen editor as opposed to a line
editor like GPLE or the EDIT program included on this disk. You
can scroll backwards and forward through the program, changing
lines simply by putting your cursor where you want to make a
change and typing the correction. It's like AppleWorks' Word
Processor, for BASIC programs. It also has built-in auto line
numbering, renumbering, variable cross reference, macros, and
mouse support. If you don't have it already we recommend it
highly.

If you do already have it, though, you're probably wondering If it
can be used with MicroDot. Well, the standard version of Program
Writer doesn't work with MicroDot, but there's a utility on the
MicroDot disk called PW.ADAPTER that patches Program Wrlter (o
work with MicroDot.

PATCHING PROGRAM WRITER

1) Boot the MicroDot system disk. When the Applesoft prompl
appears, enter & X,"PW.ADAPTER" and press the return key.

2) Put a copy of your original Program Writer disk In any drive and
enter the number of the editor to patch, as displayed on the
screen. These editors are EDITOR, the main-memory version of
Program Writer; EDITOR.LC, the aux-mem language-card
version (requires 128K), and EDITOR.SMALL, the stripped-down
main memory version. NOTE: In order for PW.ADAPTER to
work, the name of your Program Writer disk must be /EDITOR/,
which is how it is supplied by The Software Touch (which is now
part of Beagle Bros.).

3) Afler you have chosen an editor to patch, the appropriate file will
be loaded into memory and patched. PW.ADAPTER Is written in
BASIC and is designed to work with ALL versions of Program
Writer, even those that haven't been released yel, so it will take a

MicroDot 48

Micr oDt 49

few minutes to search through the editor and change everything
that needs changing.

4) When patching is completed, the patched editor will be saved onto
the MicroDot disk as PW, PW.LC, or PW.SMALL, depending on
which editor you were patching. These PW files work only with
MicroDot and not with BASIC.SYSTEM.

5) If you only have one disk drive, you will naturally have to
remove the MicroDot disk, Insert the Program Writer disk to
load the editor, then re-insert the MicroDot disk to save the
patched verslon of Program Writer. You aren't prompted to do
this. Simply remove the MicroDot disk and insert the Program
Writer disk before selecting an editor, then, after the editor has
been loaded, put the MicroDot disk back in the drive. You have
plenty of time to do this while patching is in progress.

USING PROGRAM WRITER

To install Program Writer, simply enter & BX,"PW" (or use "PW.LC"
or "PW.SMALL" as appropriate). Then, to invoke Program Writer,
just type && at the Applesoft prompt as usual. To leave Program
Writer and retumn to immediate mode, enter OA-Q as usual.

The OA-G (Get Macros) and OA-S (Save Macros) commands are
disabled in the MicroDot version of Program Writer. This is
because Program Writer calls BASIC.SYSTEM routines which don't
exist in MicroDot. You should not use the OA-Z command to
remove Program Writer from memory, either; instead, re-execute
MICRODOT.SYSTEM.

The configuration program supplied with Program Writer will not
work with the patched versions of Program Writer. You should
configure only standard, Software Touch supplied versions of
Program Writer, then patch them with PW ADAPTER. (The
conflguration program is used to install a default macro set Into
Program Writer, among other things.) Be sure to save the
configured editor back onto the Program Writer disk using the
standard editor name.

TECHINICAL
INFORMATION

AMPERSAND COMPATIBILITY

Since MicroDot uses the ampersand to intercept its commands, it
might seem that you can't use ampersand routines with MicroDot.
But MicroDot does provide a way to hook In other ampersand
routines. At locations $3E8-$3E9 (1000-1001) is MicroDot's new
ampersand vector. If you are writing a new ampersand routine (o
work with MicroDot, you can hook it into these two bytes. Unlike
Applesoft's usual ampersand vector, which Is a three-byte jump
statement (a $4C followed by a two byte address), MicroDol's
ampersand vector is simply a two byte address.

It should also be possible to modify existing ampersand routines (o
work with MicroDot, as long as they do not call any
BASIC.SYSTEM routines. Simply look through the code searching
for instructions that address locations $3F5, $3F6, and $3F7 (the
normal ampersand vector). Remove (by replacing with NOP's, $EA)
any references to $3F5, and change references to $3F6 and $3F7 (o
$3E8 and $3E9, respectively.

Many ampersand routines call BASIC.SYSTEM to get an area of

memory for the program, or for some other purpose. These will nol
work with MicroDot without extensive modification.

MICRODOT STARTUP PROCEDURE

Here's a step-by-step description of what MicroDot goes through
when it is executed.

First, if the computer has an 80-column card, MicroDot deactivales
it by sending a control-U character to the card.

McroDot 50

Next, Applesoft BASIC is started up by entering it at $E000.

MicroDot regains control by attaching itself to the I/O hooks, CSW
and KSW.

Then the video display is set to default conditions. Keyboard input,
screen output, text mode, full-screen display, and normal (as

opposed to inverse) display mode are activated. The screen is
cleared.

The MicroDot program itself is then moved to $B300-$BAFF, and
the ampersand vector and reset vector are set to point to MicroDot.
HIMEM is lowered to protect MicroDot and the page 3 locations are
Initialized. The stack pointer is set to $FF.

The ProDOS memory map is altered to protect pages 0, 1, 4-7, $B3-
$BA, and $BF. All other memory pages are left unprotected.

The title screen is printed.

If a null prefix exists, the prefix is set to the volume name of the
current disk.

Finally, the startup program is executed. Supported filetypes
include BAS, BIN, SYS, and TXT (exec files). If no startup program
exists, MicroDot simply exits to Applesoft BASIC.

MICRODOT RESET HANDLING

When you press control-reset, MicroDot gets control of the
computer. Usually it simply passes control back to BASIC, but you

can change this by storing a new address in MicroDot's reset vector
at $3EA-$3EB (1002-1003).

To make reset pass control to an ONERR GOTO routine in your
program, simply store the address $E30B in the reset vector. (POKE
1002, 11: POKE 1003,227.) This will cause MicroDot to Issue an
Applesoft ?ILLEGAL DIRECT ERROR (code 149) when reset Is
pressed. This error can never occur naturally within a running
program, so if you get an error code 149 in your ONERR :m:a::w

il
L

MecroDat S|

routine, you know reset has been pressed. You cannol simply
RESUME to your program when reset is pressed; too many things In
Applesoft get changed to allow this. Instead you should use a GOTO
statement to get back to your main program loop. Also remember
that pressing reset turns off graphics mode, the 80-column card,
and any other peripherals that are turned on, so you may need to
take some special steps to re-initialize the display.

MicroDot usually jumps to location $D43F when RESET Is pressed.
To turn off reset trapping, just store this address back into the
MicroDot reset vector. (POKE 1002,63: POKE 1003,212.) If you
would like RESET to re-RUN the program from the first program
line use POKE 1002,102 : POKE 1003, 213.

MICRODOT ERROR HANDLING

MicroDot, for the most part, uses standard and Applesoft ProDOS
MLI error codes. A few nonstandard error codes were implemented
for use by MicroDot itself to indicate errors which are not
supported by ProDOS. All errors can be trapped by ONERR GOTO.

COMMAND PARSING ERRORS

If an error is encountered while parsing (i.e., figuring out what Is
meant by) a command, MicroDot will issue a normal Applesoft
error like 2SYNTAX ERROR, ?ILLEGAL QUANTITY ERROR, ?TYPE
MISMATCH ERROR, and ?STRING TOO LONG ERROR. These error
messages Indicate that something is wrong with the command
itself. The standard error numbers will be placed in location 222,
the usual error-number location.

COMMAND EXECUTION ERRORS

The rest of MicroDot's errors occur when it tries to complete a
command but is prevented from doing so by a ProDOS error. For
example, if you tried to load a program and there was a bad block In
the disk file, you would get one of these errors.

MicroDot b YA

Standard MLI error codes are passed back via MicroDot's error
handling routine. These error codes are much more specific than
BASIC.SYSTEM's. This is because BASIC.SYSTEM's goal is to be
easy to understand. On the other hand, MicroDot gives you much
more flexibility in handling errors because you know exactly what
happened.

When an error occurs, the number one (1) is placed in location 222.
If your ONERR handling routine encounters this value in
PEEK(222), it knows that a MicroDot error occurred. The actual
error number can then be obtained by PEEKIing location 993. Here
is a list of the errors you can encounter:

Hex Dec Error

$01 001 Invalid MLI function code number. You will get this if
you pass an invalid MLI function code to the SYSCALL
module.

$04 004 Incorrect parameter count in parameter list. This may be
a result of a bad parameter list In a SYSCALL (&.Y)
command.

$10 016 File type mismatch. The file is of the wrong type.

$11 017 Program too large to fit into memory.

$12 018 No buffer available for this file. (MULTI module.)

$13 019 Files still open; cannot change buffer allocation. (MULTI
module.)

$14 020 Unable to format disk properly. (FORMAT utility.)

$25 037 The interrupt table is full. You will get this if you attempt
to install more than four interrupt handlers. You cannot
do this from MicroDot, but SYSCALL will do it.

$27 039 1/0 error. Could be anything from an open drive door to a
bad disk, or, with floppy drives, no disk in the drive.

$28 040 No device connected for the unit number given.

$2B 043 The disk 1s write-protected; unable to write to the disk.

$2E 046 A diskette for which there were open files has been
removed from a drive. Some blocks on the new volume
may be damaged.

$40 064 Invalid pathname syntax. May also indicate a null
prefix.

H7 No Oisk indrive mw.\w: Qs_;\ v

EREEEEEEE

MicroDot 53

Hex Dec Emror

Eight files are already open and no more can be opened.
You will never get this ProDOS error; the MULTI module
will return an out-of-buffers ($12/18) error instead.

$43 067 The reference number specified does not denote an open
file.

$44 068 The pathname specified could not be followed.
Subdirectory not found.

$45 069 The volume specified could not be found.

$46 070 The file specified could not be found.

$47 071 The file already exists. (&.M or &.N error.)

$48 072 The disk is full. No more information can be stored on it.

$49 073 The volume directory is full. It can hold a maximum of
51 files. Note this is different from disk full.

$4A 074 Version of ProDOS too old to access this file.

$4B 075 Bad storage type. The directory is probably damaged.

$4C 076 Unable to read past the end of the file.

$4D 077 Unable to move the file pointer past the end of the file.

$4E 078 File is locked, or error in access bits.

$50 080 The file specified is already open. Multiple OPENs on the
same file are allowed only if the file is locked.

$51 081 File count in error; directory is probably damaged.

$52 082 Not a ProDOS disk.

$53 083 One of the parameters for an MLI call is out of range.
(SYSCALL module.)

$55 085 More than eight volumes cannot be mounted at once.

$56 086 Bad disk buffer address.

$57 087 Two volumes with the same name are online.

$5A 090 The volume bit map of the disk is damaged.

When using an AppleShare network, additional error codes may be
valld. Unfortunately, information about these additional errors
are not available at the time of this writing. Contact Apple Il
Developer Technical Support.

McroDot 54
MICRODOT PEEKS AND POKES

This Is a list of PEEKs and POKEs which you may find useful in
conjunction with MicroDot.

|GENERAL | =_

PEEK (46018) + PEEK (46019) * 256.......Address of last BLOAD .-_
PEEK (46022) + PEEK (46023) * 256.......Length of last BLOAD _
PEEK (996) + PEEK (997) * 256............... CSW Vector (Seve area during & F)

PEEK (998) + PEEK (999) * 256.............. KSW Vector (Save arca during&W

PEEK (45885)... Reference number of last file opened ..

PEEK (1004).....Last character read by &R (See &.R)
PEEK (992)....... MicraDot version number (0 is first version)

PEEK (993)....... MicroDot error code number -.

POKE 46047,0 : POKE 49044,0: & C...........Perform global close (p. 9)

POKE 1000,LOW : POKE1001,HIGH Ampersand (&) Vector (p. 49) :

POKE 1002,LOW : POKE1003,HIGHReset Vector (p.50) :

POKE 54, LOW : POKE 55, HIGH.................. Qutput Vector (p.42)

POKE 56, LOW : POKE 57, HIGH.................. Input Vector (p.42)

POKE 54,PEEK(996) : POKE 55,PEEK(997)...Echo READs to screen (p.35) '.
Valid immediately after &.1G,NAMES$,TYPE,AUX -

Can also be POKEd immediately before &.1S, NAME$, TYPE,AUX

PEEK (46001)..Access Byte - In general 195 ($C3)= Unlock, 1=Locked -.

.................. Bit 7 =1 Allows file to be deleted
.................. Bit 6 =1 Allows file to be renamed
.................. Bit 5 =1 File needs to be backed up -.
.................. Bit 1 =1 Allows file to be written to __
verererreennnnenBit 0 = 1 Allows file to be read
.................. Bits 4, 3, and 2 are Unused -..

PEEK (46002)Filetype (Same as retumed by &.1G)

Micr oDot b))

[FILE ATTRIBUTES (conf'd)

.................. 1 = seedling file (no index blocks)
.................. 2 = sapling file (one index level)
.................. 3 = tree file (two Index levels)
.................. 13 = directory file (linked)

PEEK (46003) + PEEK (46004)
PEEK (46003) + PEEK (46004)

PEEK (46006) + PEEK (46007)
PEEK (46006) + PEEK (46007)

PEEK (46008) + PEEK (46009)
PEEK (46010) + PEEK (46011)
PEEK (46012) + PEEK (46013)

PEEK (46014) + PEEK (46015)

2258 i Auxtype (same as returned by &.1G)
256 . # of Blocks on Volume
If &.IG a Volume Directory
* 256# of Blocks used by file
* 258 ... # of Blocks used on Volume
If &.1G a Volume Directory
L T Modification Date
(format: YYYYYYYMMMMDDDDD)
=288l Modification Time
(format: HHHHHHHHMMMMMMMM|
*288. s Create Date (Can't be POKEd)
(format: YYYYYYYMMMMDDDDD)
* 256.,.....Create Time (Can't be POKEd)
(format: HHHHHHHHMMMMMMMM|

[FILE ATTRIBUTES — (Direcfory Enfries)

Valid immediately after &.G,NAMES TYPE,AUX

PEEK (640).......cccovvveeririeeccrirerensennene ... Storage Type / Name Length

(Format: SSSSNNNN)
PEEK (6471655)::.c:0050ai50mcussammsranmumronansrns Filename (Samc as returned by & G)
PEEK (656) + PEEK (657) * 256...............Pointer to key block
PEEK (658) + PEEK (659) * 256............... # of Blocks used by file
PEEK (660) + PEEK (661) * 256 + PEEK (662) * 65536.......

Length of file in bytes (EOF)

PEEK (663) + PEEK (664) * 256............... Create Date

(format: YYYYYYYMMMMDDDDD)
PEEK (665) + PEEK (666) * 256............... Create Time

(format: HHHHHHHHMMMMMMMM)

MicroDot 36

[FILE ATTRIBUTES (Direclory Files) cont'd]
PEEK (672) + PEEK (673) * 256............... Modification Date
(format: YYYYYYYMMMMDDDDD)
PEEK (674) + PEEK (675) * 256............... Modification Time

(format: HHHHHHHHMMMMMMMM)
PEEK (667) Version of ProDOS which created file

PEEK (668)...... Minimum version of ProDOS which can access file
PEEK (669)......See access bits definition above [PEEK (46001)]

PEEK (670) + PEEK (671) * 256............ Auxtype (Same as returncd by &.G)
PEEK (676) + PEEK (677) * 256............ Header (Pointer to file's parent directory)

MICRODOT GLOBAL LOCATIONS

This section details the MicroDot global locations. These addresses
are most useful from machine language subroutines, but some may
be useful from BASIC; they are a complete set of tools for
development of ML routines that work with MicroDot.

MicroDot Entry Points

AMPENT......$B300 Standard entry to MicroDot when & Is
entered.

ALTENT$B303 CALL entry to MicroDot. CALL instead of &.
CALL 45827 ,cmd,parms
MAKE............$B306 Make a flle; pathname at $280; type at $1A
FIND............... $B309 Find existing file; path at $280; type at $1A
i % (- 7 $B30C Test for/make file; path at $280; type at $1A
REARII ...ouniiavs $B30F Read one byte into accumulator & loc $3EC
RERE s $B312 Read many bytes; uses PRW parmlist
WRITEL$B315 Write one byte from accumulator
WRITE$B318 Write many bytes; uses PRW parmlist
GETMARK......$B31B Get position in file, returned to PPOS
parmlist
SETMARK.....$B31E Set position in file; froon PPOS parmlist
GETEOF.......... $B321 Get end-of-file; returned to PPOS parmlist
SETEOF.......... $B324 Set end-of-file; from PPOS parmlist
OPEMN ..o $B327 Open flle; uses POPEN parmlist and path at
$280

Micr oDot 57

CLOSE $B32A
IOREAD...........$B32D
IOWRITE...... $B330
IOSTOP.... $B333
SETDIR....... $B336
GETDIR........ $B339
GETINFO........$B33C
SETINFO........$B33F
DELETE....... $B342
RENAME.........$B345
KILL.... .$B348
APPEND......... $B34B
GETPFX $B34E
SETPFX .iivis $B351
VOLUME.........$B354
QUIT.........on.:.. 98357
GOSYS............8B35A
CHKERR.......... $B35D
SETNUM........ $B366
GETSTR..........$B369
FUTURE.......... $B372
MLI Parmlists
PPOS.............. $B3A9
PINFO$B3AE
PRW5B3CO
PONLINE........$B3C8
PCREATE$B3CC
POPEN............ $B3D8
PCLOSE..........$B3DE
PDEST$B3EO

Close flle; uses PCLOSE

Hook read up to input; same as & R

Hook write up to output; same as & W

Turn off &.R or & W mode

Set up to begin reading directory

Read next directory entry to $280

Get file attributes; uses PINFO

Set file attributes; uses PINFO

Delete file; pathname at $280

Rename file; current path at $2C0, new al
$280

Kill to end of file (same as &.K)

Move position-in-file to eof

Get current prefix to $280

Set prefix to path at $280

Get name of volume In unit in PONLINE
parmlist

Normal ProDOS bye

Execute system file; path at $280

Check carry for error after MLI call

Force MicroDot error processing

Parse a 2-byte number into A/X & $1A/$18
Pass a 2-byte number back to variable

Get a string (path) to $280

Pass string back from $280 to variable
Adjusts link bytes of the program starting
at the adress pointed to by $1A, $1B

For future expansion

Used by GETMARK, SETMARK, GETEOF,
SETEOF

Used by GETINFO, SETINFO

Used by READ, WRITE

Used by VOLUME

Used by MAKE

Used by OPEN

Used by CLOSE

Used by DELETE

Micr Dot 58

PPFX $B3ES8
PRWE oot $B3EB
Variables

CMDLO$B375
CMDHI $B38F
VERSION$3E0
ERRCODE$3E1
HIGHEST$3E2
XCSW $3E4
NEWAMP$3E8

NEWRES amE,

Used by RENAME
Used by GETPFPX, SETPFX
Used by READ1, WRITE1

Table of lo-bytes of command handlers
Table of hi-bytes of command handlers
MicroDot version, first version is zero
MicroDot error code

Highest legal HIMEM (Used by modules
during Installation)

Previous CSW before & R/& W

Previous KSW before & R/& W

New ampersand vector for MicroDot
New reset handling vector for MicroDot
Current directory entry, or current
character

User error flag; If > 128 errors will go to
EXTERR

Address of user error handler

If an error occurs when executing one of the $B3xx routines, it will
be passed back to BASIC as usual unless you set the EXTFLG and

EXTERR locations properly.

If you hook up your own error

trapping, be sure to save the stack pointer on entry to your routine
and restore it before RTSing to BASIC. Also, make sure you furn ofl
EXTFLG on exit. When your error handler receives control, the MLI
error code will be in the Accumulator.

Turn on External:
Error Handling

Turning ofl External:

Error Handling

LDA# HIBYTE ; of user handler

STA ... EXTERR + 1

LDA. ...# LOBYTE ; of user error handler
STA ... EXTERR

SEC

ROR.....EXTFLG

LSR.... EXTFLG

MicroDot 39

PRODOS FILE TYPES

This is a semi-complete listing of file types defined under
ProDOS. Types not listed are reserved for future use, or were used In
the past by SOS, the now-extinct Apple /// DOS. Types denoted
"Iigs"” or "ProDOS 16" are used only by ProDOS 16 or GS/OS the ligs

operating system. Notations in parentheses may denote alternate
uses for a given filetype.

Type Hex Dec Desciption

NUL $00 0 Null file (unused)

BAD $01 1 Bad Block or file

TXT $04 4 Standard Text File

BIN $06 6 Standard Binary File

DIR $OF 15 Subdirectory File

ADB $19 25 AppleWorks Data Base

AWP $1A 26 AppleWorks Word Processor
ASP $1B 27 AppleWorks Spreadsheet

SRC $B0 176 APW Source File (Iigs)

OBJ $Bl1 177 APW Object File (Iigs)

LB 178 APW Library (ligs)

S16 179 ProDOS 16 System Program (lIgs)
RTL 180 APW Runtime Library (Iigs)
EXE 181 APW Shell program (Ilgs)

PIF 182 ProDOS 16 permanent init file

183 ProDOS 16 temporary init file
184 New Desk Accessory (lIgs)

185 Classic Desk Accessory (ligs)
186 ProDOS 16 Tool Set

187 ProDOS 16 Device Driver
ProDOS 16 Document

192 Packed SHR Picture (IIgs)

193 Unpacked SHR picture (lIgs)
ProDOS 16 Font

201 ProDOS 16 FINDER data
ProDOS 16 Icon

221 Reserved (DDD Packed File)
Reserved (Floyd Zink's new BLU?)
ATINIT - AppleTalk Init File?

ZERECOREREREZERRRANER

PAS 239 Pascal partition on disk
CMD 240 ProDOS 8 command file
USR $F1 241 ProDOS 8 User Defined (ProBASIC Program)

ProDOS 8 User Defined (ProBASIC Module)

1|

MicroDot 60

USR
USR
USR
USR
USR
USR
P16

INT

VAR

8YS

Got a technical question? Give us a call at (614) 891-2111. If we
can't answer your question, we'll give you the author's phone
number. He will be able to answer your questions. If you use GEnie

$F4

1|
il
1
||
1|
|
"

ProDOS 8 User Defined

ProDOS 8 User Defined

ProDOS 8 User Defined

ProDOS 8 User Defined

ProDOS 8 User Defined

ProDOS 8 User Defined (Merlin LNK)
ProDOS 16 Operating System

Int. BASIC Program (Beagle Compiler COM)
Int. BASIC Variables (Beagle Compiler CVR)
AppleSoft BASIC Program

AppleSoft BASIC Variable

EDASM Relocatable Code Module

ProDOS 8 System Program

HELP !

you can write directly to the author (address: J.KINDALL).

MicroDot 61
INDEX
&.BL &.X MLI
7-9, 26, 36, 44, 46 18, 47 4,19, 30, 31, 40,
&.BO &Y 51-53, 56-58
7.8, 16, 37-39) Nmo. 52 b
&.BS ;
8, 26, 36 13, 15, 17, 18, 35, vo?%_ 21, 22, 40,
h-va.A ._w..NM. Mﬂ_ 30 bsﬁmqmman m..m. 12,15, 17,18,
45, 46, 48 . 49, 50, 54, 58 mmmmmw. “mw 50, 53,
&.C i vo_m:rma_
9, 13, 15, 17, 27, 6,8, 10, 11, 13, sl
3 _Wm.mm BASIC.SYSTEM Program Writer
9 3, 4,7-10, 12, 14, 4, 38, 40, 45-48
5 15, dm_ 18, 20, 21, i
. 23, 24, 26, 28, 33, ename
11318, 23,26 34,37, 41, 42, 45, 4, 13,54, 57, 58
& HU 48, 49, 52 Reset
22 Binary file 15, 17, 44, 46, 50,
&.JG 7-9, 37, 59
25 i Stack
& JW Create 50. 58
0 3.8, 12,13, 16, Text File
p 21, 23, 25, 33, 34,
8, 12, 18, 36, 40 55-57 4,12, 24, 33-36,
&M CSW 59
m ?w. .—@. dm. Nw. wh- _&N. bm. mo. m&.. mm ::—UNOW
"3, 53 Belete 4,19, 21, 22, 40,
&PG 4
14 Directory
&.PS 4
a.._"“ y Echo
13, 15, 17, 18, 24, 17,33, 35, 54
29, 33, 35, 36,42, FORMAT
&S 2,4,5 11, 40, 43
.—m. mm et] ' ' '
&T Global
13, 16 5, 27, 31, 45, 54,
&.UB
28, 29 Hewett
&.US 2,43
3 &m KSW

6,13, 15, 17, 18,

42, 45, 50, 54, 58

