
NOTES - MICRODOT MANUAL UPDATE - August, 1989

New MULTI Module Version

The MULTI module is now 1.3. Version 1.3 fixes a bug which could cause
MicroDot to lose its place if you were reading a directory, then opened another
directory and read from it, then returned to reading the first directory.

New GARB Module Version

GARB version 1.2 collects garbage quite well. It collects it so well that it
trashes most of your strings -- OUCH! The GARB module has been updated to
version 1.3 to fix this bug. For you assembly-language hackmeisters out there,
the problem was that I left off the ",x" on an instruction that was supposed to be
indexed. A one-byte change was all that was needed to fix the problem.

New Program Writer Adapter

MicroDot's Program Writer Adapter is now version 1.2. The change was made
to support Beagle Bros' new version of Program Writer, which comes on a disk
named /PROGRAM.WRITER/ rather than /EDITOR/. The Adapter now asks
you what slot and drive the Program Writer disk is in. It also asks you what slot
and drive to save the patched Program Writer files to -- there's no longer room
on the MicroDot master disk to hold the patched Program Writer.

The new PW.ADAPTER also fixes an obscure bug which sometimes caused the
computer to crash after editing a program with Program Writer. The bug was
caused by mis-set zero-page variable pointers.

Other Stuff

All other MicroDot files other than , MULTI, GARB, & PW.ADAPTER are
unchanged from version 1.2. This INCLUDES MICRODOT.SYSTEM, which
is still version 1.2.

NOTES - MICRODOT MANUAL UPDATE - March, 1989
(1.2 notes also apply to 1.3, except as detailed above)

New MicroDot Version

MicroDot is now version 1.2. Previous versions of MicroDot had bugs in the
&.BO command that caused a ?SYNTAX ERROR. The problem was that
&.BO was looking for an extra comma before the number. For example, you
might type &.BO,F$,#1000 but MicroDot would issue an error because it
wanted another comma after the # sign: &.BO,F$,#,1000. This has been fixed.
Accordingly, MicroDot's page 3 version number now stands at 2.

&.BO Enhancement

Since I was fixing &.BO anyway, I decided to enhance it to better support
libraries of commonly used subroutines. On page 38 of the manual, I said:
"WARNING: THE &.BO COMMAND DOES NOT CHANGE THE END OF
PROGRAM POINTER! YOU WOULD HAVE TO DO THIS MANUALLY IF
YOU USE THIS TECHNIQUE." Well, you don't have to anymore. When you
use the # option of &.BO to attach an overlay to a program in memory,
MicroDot will adjust Applesoft's end-of-program pointer to include the loaded
overlay. When you type &.S to save your program, the new module will be
saved with it. This is the case whether you use &.BO from immediate mode or
in a program.

If you type &.BO in immediate mode, the LOMEM pointer will be moved to the
end of the newly loaded module; if you use &.BO in a program, LOMEM will
stay where you left it. Remember, LOMEM is where your variables are, not
necessarily where your program ends. (MicroDot does it in immediate mode to
keep your variables from accidentally overwriting part of your program; in a
program, you still need to manually set LOMEM so that there's enough room for
your modules below the variables. MicroDot assumes you know what you're
doing, so it doesn't try to outguess you.)

CAT80 Enhancement

CAT80 has been enhanced to better handle the creation and modification time
fields in the directory listing. Times are now shown in AM/PM format, and
times with hours of zero are now correctly interpreted to be midnight. Times
with minutes of zero are now correctly shown in the listing.

CLOCK.FIX Enhancement

If you use a IIgs, you don't need the CLOCK.FIX module. The new
CLOCK.FIX automatically detects the IIgs; if a IIgs is found, CLOCK.FIX is
not installed.

If you don't have a clock in your system, CLOCK.FIX will automatically install
a "phantom clock." This "clock" doesn't keep real time; it simply advances one
minute each time you issue an &.S or &.BS (or &.IS) command. This will at
least allow you to tell which files on your disk are the most recent. Be sure to
use the SET.DATE program to set the proper date.

The phantom clock is actually installed into ProDOS and remains installed even
if you quit MicroDot. It will not cause any compatability problems with other
programs, but other programs might not cause the clock to advance properly.

Bugs Fixed in Disk Formatter (HFORMAT)

Hyper.FORMAT, the disk formatter upon which MicroDot's disk format
routines are based, requires the use of memory addresses $6710 to $800F as a
track buffer. (This is fundamental to the design of Hyper.FORMAT and could
not easily be changed.) To allow you a little more freedom in how you arrange
your programs' memory, the MicroDot formatters save this area of memory
elsewhere before formatting a disk, then restore before exiting. For example,
FORMAT.1 saves the contents of the track buffer to $2800 before formatting,
then restores that memory after formatting is complete. This allows you to put
something else important at $6700 and up (such as your BASIC program!).
(And that's the reason, by the way, why you shouldn't hit reset while formatting
a disk!)

However, due to a programming oversight, MicroDot's formatters (under
MicroDot 1.0 and 1.1) only saved $6800 through $7FFF. Thus, there are 256
bytes which are trashed by the formatter: $6710-$67FF, and $8000-$800F. The
new programs, HFORMAT.1 and HFORMAT.2, on the version 1.2 disk, fix
this. However, due to memory conflicts, I had to use the keyboard buffer to
save the extra 256 bytes during formatting. This means that every time you
format a disk using HFORMAT.1 or HFORMAT.2, the keyboard buffer will be
trashed, which means that you can't format a disk from immediate mode with
HFORMAT.1 or HFORMAT.2.

The memory conflicts with FORMAT.3 (the version which resides at $6000)
were unsolvable since part of the program lies inside the area which is trashed.
Therefore, there is no HFORMAT.3 on this disk.

New Disk Formatter (QFORMAT)

A completely different disk formatter which neatly solves the memory problems
associated with Hyper.FORMAT's huge track buffer is included on the disk as
QFORMAT. QFORMAT is short for Quick's Format, which has nothing to do
with its speed -- it was written by Shawn Quick of QuickSoft. In fact,
QFORMAT is about the same speed as Apple's disk formatter, which means it is
somewhat slower than HFORMAT. It also takes up a little more space on the
disk. However, since QFORMAT doesn't need a large memory buffer, it's
actually more compact than HFORMAT. QFORMAT is completely self-
contained and uses no memory outside the program itself, except for $2E0-
$2FF, the very tail-end of the keyboard buffer.

In addition, QFORMAT verifies each track as it is written, so that disk drives
which are too slow or too fast can be detected. HFORMAT doesn't do any such
verification, which is one of the reasons it's so fast. QFORMAT can also be
Reset with no ill effects.

QFORMAT is actually a hybrid program: the 5.25" disk formatting routine is by
Shawn Quick; the rest of the program is the same as HFORMAT. Please note
that QFORMAT only affects the formatting of 5.25" disks; formatting of 3.5"
disks remains the same.

You can substitute QFORMAT into existing MicroDot BASIC programs with
no changes to the program itself. Since QFORMAT is more reliable and uses
less memory, I encourage its use instead of HFORMAT.

SoftWorks Included!

The MicroDot disk now includes Mark Munz' SoftWorks 4.1, an ampersand-
driven program which allows you to add AppleWorks-style screens, filecards,
and menus to your BASIC programs. It runs under MicroDot OR
BASIC.SYSTEM. The docs are on disk in an AppleWorks Word Processor file.
SoftWorks is freeware, but is copyrighted.

Compatibility with 1.1

MicroDot 1.2 is completely compatible with MicroDot 1.1. All the 1.1 modules
will work with MicroDot 1.2, and vice versa. However, all of the modules have
been changed a little bit (the changes generally don't affect their function, only
their size, which is smaller, partly due to an improved relocation routine), so I
would reccommend using 1.2 version modules.

Manual Errors

There are a couple of errors in the MicroDot manual. The table beginning at the
bottom of page 55 (and ending on page 56) has incorrect PEEKs. They should
be:

640 Storage Type/Name Length
641-655 Filename as returned by &.G
656 Type as returned by &.G
657-658 Pointer to key block
659-660 Number of blocks used by file
661-662-663 Length of file in bytes
664-665 Creation date
666-667 Creation time
668 Version of ProDOS which created file
669 Minimum version of ProDOS which can access file
670 Access control bits ($C3/195= unlocked, $01 = locked)
671-672 Auxtype as returned by &.G
673-674 Modification date
675-676 Modification time

On the back of the command summary sheet, the formats for all the date and
time fields are shown as YYYYYYYMMMMDDDDD. Obviously this is
incorrect for time fields. The correct format for a time field is
HHHHHHHHMMMMMMMM as shown in the manual on pages 55 and 56.

Note that HHHHHHHHMMMMMMMM does not mean that the hour is in the
first byte and the minute is in the second byte. Since the 6502-series
microprocessors used in the Apple II store the low order byte of a number before
the high order byte, the minute is in the first byte while the hour is in the second.
The order of date fields is likewise reversed. This isn't an error in the manual
but a result of the way ProDOS and the Apple do things.

NOTES - MICRODOT MANUAL UPDATE - December, 1988
(1.1 notes also apply to 1.2, except as detailed above)

New MicroDot Version

MicroDot is now version 1.1. Some minor changes were made to the way
memory is allocated for optional modules. This was done to make it easier to
write more MicroDot modules in the future. The result of this is that 1.0
modules will not work with MicroDot 1.1 and vice versa. Also, the value of
VERSION (in MicroDot's page-3 area) is now 1, not 0 as it was previously.

Startup Menu

As stated in the manual, the startup program on the MicroDot disk automatically
installs CLOCK.FIX (if you have a clock installed) and CAT40 (or CAT80 if
you have 80-column capability). However, if you press the space bar while
booting the MicroDot disk, a menu will appear to allow you to install your
choice of modules with a single keypress. You can also run the disk formatter,
execute the Program Writer patch program, and install the line editor from this
menu.

Fast Garbage Collector

The standard Applesoft garbage collector is notoriously sluggish. Since
BASIC.SYSTEM has a built-in fast garbage collector, we decided to include
one with MicroDot in the form of an optional module called GARB. GARB can
be installed like any other module with the &.BX command (see the Optional
Modules secion in the manual). GARB is based on Bill Basham's public-
domain garbage collection routine, which was included with Diversi-DOS and
was published in Open-Apple in March, 1985.

Once GARB has been installed, its operation is fully automatic. To force
garbage collection, include a statement like X = USR (0) in your program. Like
X = FRE (0), X = USR (0) collects garbage and tells you the amound of unused
memory, except that USR uses the fast garbage collection routine. (Also,
GARB's USR always returns a positive number of bytes, unlike FRE, which
returns a negative number if you have more than 32K free.)

MicroDot's garbage collector is not quite as fast as the one in BASIC.SYSTEM,
although it is a great improvement over naked Applesoft. BASIC.SYSTEM's
FRE requires a 1K memory buffer besides the actual garbage collection
routines; MicroDot's routine requires fewer than 700 bytes.

Program Writer Patcher

A new version of the Program Writer patcher is also included with this version
of MicroDot. It's faster than the old one, taking at most a minute to patch
Program Writer. It also prompts you to insert the correct disk at the proper time,
in case you happen to be stuck with one disk drive. In addition, you can now
use the Program Writer configuration program on patched versions of Program
Writer with the new patch program. There's no need to configure a unpatched
version of Program Writer and re-patch it.

You should NOT try to use MicroDot 1.0 versions of Program Writer with
MicroDot 1.1 because of the differences in memory allocation

