
BIND 9 Administrator Reference
Manual

Copyright c© 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Internet Systems Consortium, Inc. (”ISC”)

Copyright c© 2000, 2001, 2002, 2003 Internet Software Consortium.

Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is
hereby granted, provided that the above copyright notice and this permission notice appear in all

copies.

THE SOFTWARE IS PROVIDED ”AS IS” AND ISC DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER

TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Internet System Consortium
950 Charter Street

Redwood City, California
USA

http://www.isc.org/

Contents

1 Introduction 1
1.1 Scope of Document . 1
1.2 Organization of This Document . 1
1.3 Conventions Used in This Document . 1
1.4 The Domain Name System (DNS) . 2

1.4.1 DNS Fundamentals . 2
1.4.2 Domains and Domain Names . 2
1.4.3 Zones . 2
1.4.4 Authoritative Name Servers . 3

1.4.4.1 The Primary Master . 3
1.4.4.2 Slave Servers . 3
1.4.4.3 Stealth Servers . 3

1.4.5 Caching Name Servers . 4
1.4.5.1 Forwarding . 4

1.4.6 Name Servers in Multiple Roles . 4

2 BIND Resource Requirements 5
2.1 Hardware requirements . 5
2.2 CPU Requirements . 5
2.3 Memory Requirements . 5
2.4 Name Server Intensive Environment Issues . 5
2.5 Supported Operating Systems . 6

3 Name Server Configuration 7
3.1 Sample Configurations . 7

3.1.1 A Caching-only Name Server . 7
3.1.2 An Authoritative-only Name Server . 7

3.2 Load Balancing . 8
3.3 Name Server Operations . 9

3.3.1 Tools for Use With the Name Server Daemon . 9
3.3.1.1 Diagnostic Tools . 9
3.3.1.2 Administrative Tools . 9

3.3.2 Signals . 13

4 Advanced DNS Features 15
4.1 Notify . 15
4.2 Dynamic Update . 15

4.2.1 The journal file . 15
4.3 Incremental Zone Transfers (IXFR) . 16
4.4 Split DNS . 16

4.4.1 Example split DNS setup . 17
4.5 TSIG . 19

4.5.1 Generate Shared Keys for Each Pair of Hosts . 20
4.5.1.1 Automatic Generation . 20
4.5.1.2 Manual Generation . 20

4.5.2 Copying the Shared Secret to Both Machines . 20
4.5.3 Informing the Servers of the Key’s Existence . 20
4.5.4 Instructing the Server to Use the Key . 21
4.5.5 TSIG Key Based Access Control . 21
4.5.6 Errors . 21

4.6 TKEY . 21
4.7 SIG(0) . 22
4.8 DNSSEC . 22

i

CONTENTS

4.8.1 Generating Keys . 22
4.8.2 Signing the Zone . 23
4.8.3 Configuring Servers . 23

4.9 DNSSEC, Dynamic Zones, and Automatic Signing . 25
4.9.1 Converting from insecure to secure . 25
4.9.2 Dynamic DNS update method . 25
4.9.3 Fully automatic zone signing . 26
4.9.4 Private-type records . 26
4.9.5 DNSKEY rollovers . 27
4.9.6 Dynamic DNS update method . 27
4.9.7 Automatic key rollovers . 27
4.9.8 NSEC3PARAM rollovers via UPDATE . 27
4.9.9 Converting from NSEC to NSEC3 . 28
4.9.10 Converting from NSEC3 to NSEC . 28
4.9.11 Converting from secure to insecure . 28
4.9.12 Periodic re-signing . 28
4.9.13 NSEC3 and OPTOUT . 28

4.10 Dynamic Trust Anchor Management . 28
4.10.1 Validating Resolver . 28
4.10.2 Authoritative Server . 29

4.11 PKCS #11 (Cryptoki) support . 29
4.11.1 Prerequisites . 30

4.11.1.1 Building OpenSSL for the AEP Keyper on Linux 31
4.11.1.2 Building OpenSSL for the SCA 6000 on Solaris 31

4.11.2 Building BIND 9 with PKCS#11 . 32
4.11.2.1 Configuring BIND 9 for Linux . 32
4.11.2.2 Configuring BIND 9 for Solaris . 32

4.11.3 PKCS #11 Tools . 32
4.11.4 Using the HSM . 33
4.11.5 Specifying the engine on the command line . 34
4.11.6 Running named with automatic zone re-signing . 34

4.12 IPv6 Support in BIND 9 . 35
4.12.1 Address Lookups Using AAAA Records . 35
4.12.2 Address to Name Lookups Using Nibble Format . 35

5 The BIND 9 Lightweight Resolver 37
5.1 The Lightweight Resolver Library . 37
5.2 Running a Resolver Daemon . 37

6 BIND 9 Configuration Reference 39
6.1 Configuration File Elements . 39

6.1.1 Address Match Lists . 40
6.1.1.1 Syntax . 40
6.1.1.2 Definition and Usage . 41

6.1.2 Comment Syntax . 41
6.1.2.1 Syntax . 41
6.1.2.2 Definition and Usage . 42

6.2 Configuration File Grammar . 42
6.2.1 acl Statement Grammar . 43
6.2.2 acl Statement Definition and Usage . 43
6.2.3 controls Statement Grammar . 43
6.2.4 controls Statement Definition and Usage . 44
6.2.5 include Statement Grammar . 44
6.2.6 include Statement Definition and Usage . 45
6.2.7 key Statement Grammar . 45
6.2.8 key Statement Definition and Usage . 45
6.2.9 logging Statement Grammar . 45
6.2.10 logging Statement Definition and Usage . 46

6.2.10.1 The channel Phrase . 46

ii

CONTENTS

6.2.10.2 The category Phrase . 48
6.2.10.3 The query-errors Category . 50

6.2.11 lwres Statement Grammar . 51
6.2.12 lwres Statement Definition and Usage . 52
6.2.13 masters Statement Grammar . 52
6.2.14 masters Statement Definition and Usage . 52
6.2.15 options Statement Grammar . 52
6.2.16 options Statement Definition and Usage . 55

6.2.16.1 Boolean Options . 59
6.2.16.2 Forwarding . 64
6.2.16.3 Dual-stack Servers . 65
6.2.16.4 Access Control . 65
6.2.16.5 Interfaces . 66
6.2.16.6 Query Address . 67
6.2.16.7 Zone Transfers . 69
6.2.16.8 UDP Port Lists . 71
6.2.16.9 Operating System Resource Limits . 71
6.2.16.10 Server Resource Limits . 72
6.2.16.11 Periodic Task Intervals . 72
6.2.16.12 Topology . 73
6.2.16.13 The sortlist Statement . 74
6.2.16.14 RRset Ordering . 75
6.2.16.15 Tuning . 75
6.2.16.16 Built-in server information zones . 77
6.2.16.17 Built-in Empty Zones . 78
6.2.16.18 Additional Section Caching . 79
6.2.16.19 Content Filtering . 80

6.2.17 server Statement Grammar . 81
6.2.18 server Statement Definition and Usage . 81
6.2.19 statistics-channels Statement Grammar . 83
6.2.20 statistics-channels Statement Definition and Usage 83
6.2.21 trusted-keys Statement Grammar . 83
6.2.22 trusted-keys Statement Definition and Usage . 83
6.2.23 managed-keys Statement Grammar . 84
6.2.24 managed-keys Statement Definition and Usage . 84
6.2.25 view Statement Grammar . 85
6.2.26 view Statement Definition and Usage . 85
6.2.27 zone Statement Grammar . 86
6.2.28 zone Statement Definition and Usage . 89

6.2.28.1 Zone Types . 89
6.2.28.2 Class . 90
6.2.28.3 Zone Options . 90
6.2.28.4 Dynamic Update Policies . 93

6.3 Zone File . 95
6.3.1 Types of Resource Records and When to Use Them 95

6.3.1.1 Resource Records . 95
6.3.1.2 Textual expression of RRs . 98

6.3.2 Discussion of MX Records . 98
6.3.3 Setting TTLs . 99
6.3.4 Inverse Mapping in IPv4 . 99
6.3.5 Other Zone File Directives . 100

6.3.5.1 The @ (at-sign) . 100
6.3.5.2 The $ORIGIN Directive . 100
6.3.5.3 The $INCLUDE Directive . 100
6.3.5.4 The $TTL Directive . 101

6.3.6 BIND Master File Extension: the $GENERATE Directive 101
6.3.7 Additional File Formats . 102

6.4 BIND9 Statistics . 103
6.4.0.1 The Statistics File . 103

iii

CONTENTS

6.4.1 Statistics Counters . 104
6.4.1.1 Name Server Statistics Counters . 104
6.4.1.2 Zone Maintenance Statistics Counters . 105
6.4.1.3 Resolver Statistics Counters . 105
6.4.1.4 Socket I/O Statistics Counters . 106
6.4.1.5 Compatibility with BIND 8 Counters . 107

7 BIND 9 Security Considerations 109
7.1 Access Control Lists . 109
7.2 Chroot and Setuid . 110

7.2.1 The chroot Environment . 110
7.2.2 Using the setuid Function . 110

7.3 Dynamic Update Security . 110

8 Troubleshooting 113
8.1 Common Problems . 113

8.1.1 It’s not working; how can I figure out what’s wrong? 113
8.2 Incrementing and Changing the Serial Number . 113
8.3 Where Can I Get Help? . 113

A Appendices 115
A.1 Acknowledgments . 115

A.1.1 A Brief History of the DNS and BIND . 115
A.2 General DNS Reference Information . 116

A.2.1 IPv6 addresses (AAAA) . 116
A.3 Bibliography (and Suggested Reading) . 116

A.3.1 Request for Comments (RFCs) . 116
A.3.2 Internet Drafts . 120
A.3.3 Other Documents About BIND . 120

A.4 BIND 9 DNS Library Support . 120
A.4.1 Prerequisite . 121
A.4.2 Compilation . 121
A.4.3 Installation . 121
A.4.4 Known Defects/Restrictions . 121
A.4.5 The dns.conf File . 122
A.4.6 Sample Applications . 122

A.4.6.1 sample: a simple stub resolver utility . 122
A.4.6.2 sample-async: a simple stub resolver, working asynchronously 123
A.4.6.3 sample-request: a simple DNS transaction client 123
A.4.6.4 sample-gai: getaddrinfo() and getnameinfo() test code 123
A.4.6.5 sample-update: a simple dynamic update client program 124
A.4.6.6 nsprobe: domain/name server checker in terms of RFC 4074 125

A.4.7 Library References . 125

B Manual pages 127
B.1 dig . 127
B.2 host . 132
B.3 dnssec-dsfromkey . 134
B.4 dnssec-keyfromlabel . 136
B.5 dnssec-keygen . 138
B.6 dnssec-revoke . 142
B.7 dnssec-settime . 143
B.8 dnssec-signzone . 145
B.9 named-checkconf . 149
B.10 named-checkzone . 150
B.11 named . 153
B.12 named-journalprint . 156
B.13 nsupdate . 156
B.14 rndc . 160

iv

CONTENTS

B.15 rndc.conf . 162
B.16 rndc-confgen . 164
B.17 ddns-confgen . 165
B.18 arpaname . 167
B.19 genrandom . 167
B.20 isc-hmac-fixup . 168
B.21 nsec3hash . 169

v

Chapter 1

Introduction

The Internet Domain Name System (DNS) consists of the syntax to specify the names of entities in the
Internet in a hierarchical manner, the rules used for delegating authority over names, and the system
implementation that actually maps names to Internet addresses. DNS data is maintained in a group of
distributed hierarchical databases.

1.1 Scope of Document

The Berkeley Internet Name Domain (BIND) implements a domain name server for a number of oper-
ating systems. This document provides basic information about the installation and care of the Internet
Systems Consortium (ISC) BIND version 9 software package for system administrators.

This version of the manual corresponds to BIND version 9.7.

1.2 Organization of This Document

In this document, Chapter 1 introduces the basic DNS and BIND concepts. Chapter 2 describes resource
requirements for running BIND in various environments. Information in Chapter 3 is task-oriented in its
presentation and is organized functionally, to aid in the process of installing the BIND 9 software. The
task-oriented section is followed by Chapter 4, which contains more advanced concepts that the system
administrator may need for implementing certain options. Chapter 5 describes the BIND 9 lightweight
resolver. The contents of Chapter 6 are organized as in a reference manual to aid in the ongoing mainte-
nance of the software. Chapter 7 addresses security considerations, and Chapter 8 contains troubleshoot-
ing help. The main body of the document is followed by several appendices which contain useful refer-
ence information, such as a bibliography and historic information related to BIND and the Domain Name
System.

1.3 Conventions Used in This Document

In this document, we use the following general typographic conventions:

To describe: We use the style:
a pathname, filename, URL, hostname, mailing
list name, or new term or concept

Fixed width

literal user input Fixed Width Bold
program output Fixed Width

1

1.4. THE DOMAIN NAME SYSTEM (DNS) CHAPTER 1. INTRODUCTION

The following conventions are used in descriptions of the BIND configuration file:

To describe: We use the style:
keywords Fixed Width
variables Fixed Width
Optional input [Text is enclosed in square brackets]

1.4 The Domain Name System (DNS)

The purpose of this document is to explain the installation and upkeep of the BIND (Berkeley Internet
Name Domain) software package, and we begin by reviewing the fundamentals of the Domain Name
System (DNS) as they relate to BIND.

1.4.1 DNS Fundamentals

The Domain Name System (DNS) is a hierarchical, distributed database. It stores information for map-
ping Internet host names to IP addresses and vice versa, mail routing information, and other data used
by Internet applications.

Clients look up information in the DNS by calling a resolver library, which sends queries to one or more
name servers and interprets the responses. The BIND 9 software distribution contains a name server,
named, and a resolver library, liblwres. The older libbind resolver library is also available from ISC as
a separate download.

1.4.2 Domains and Domain Names

The data stored in the DNS is identified by domain names that are organized as a tree according to or-
ganizational or administrative boundaries. Each node of the tree, called a domain, is given a label. The
domain name of the node is the concatenation of all the labels on the path from the node to the root node.
This is represented in written form as a string of labels listed from right to left and separated by dots. A
label need only be unique within its parent domain.

For example, a domain name for a host at the company Example, Inc. could be ourhost.example.com,
where com is the top level domain to which ourhost.example.com belongs, example is a subdomain
of com, and ourhost is the name of the host.

For administrative purposes, the name space is partitioned into areas called zones, each starting at a
node and extending down to the leaf nodes or to nodes where other zones start. The data for each zone
is stored in a name server, which answers queries about the zone using the DNS protocol.

The data associated with each domain name is stored in the form of resource records (RRs). Some of the
supported resource record types are described in Section 6.3.1.

For more detailed information about the design of the DNS and the DNS protocol, please refer to the
standards documents listed in Section A.3.1.

1.4.3 Zones

To properly operate a name server, it is important to understand the difference between a zone and a
domain.

As stated previously, a zone is a point of delegation in the DNS tree. A zone consists of those contigu-
ous parts of the domain tree for which a name server has complete information and over which it has
authority. It contains all domain names from a certain point downward in the domain tree except those

2

CHAPTER 1. INTRODUCTION 1.4. THE DOMAIN NAME SYSTEM (DNS)

which are delegated to other zones. A delegation point is marked by one or more NS records in the
parent zone, which should be matched by equivalent NS records at the root of the delegated zone.

For instance, consider the example.com domain which includes names such as host.aaa.example.
com and host.bbb.example.com even though the example.com zone includes only delegations for
the aaa.example.com and bbb.example.com zones. A zone can map exactly to a single domain, but
could also include only part of a domain, the rest of which could be delegated to other name servers.
Every name in the DNS tree is a domain, even if it is terminal, that is, has no subdomains. Every subdomain
is a domain and every domain except the root is also a subdomain. The terminology is not intuitive and
we suggest that you read RFCs 1033, 1034 and 1035 to gain a complete understanding of this difficult
and subtle topic.

Though BIND is called a ”domain name server”, it deals primarily in terms of zones. The master and
slave declarations in the named.conf file specify zones, not domains. When you ask some other site
if it is willing to be a slave server for your domain, you are actually asking for slave service for some
collection of zones.

1.4.4 Authoritative Name Servers

Each zone is served by at least one authoritative name server, which contains the complete data for the
zone. To make the DNS tolerant of server and network failures, most zones have two or more authori-
tative servers, on different networks.

Responses from authoritative servers have the ”authoritative answer” (AA) bit set in the response pack-
ets. This makes them easy to identify when debugging DNS configurations using tools like dig (Sec-
tion 3.3.1.1).

1.4.4.1 The Primary Master

The authoritative server where the master copy of the zone data is maintained is called the primary
master server, or simply the primary. Typically it loads the zone contents from some local file edited by
humans or perhaps generated mechanically from some other local file which is edited by humans. This
file is called the zone file or master file.

In some cases, however, the master file may not be edited by humans at all, but may instead be the result
of dynamic update operations.

1.4.4.2 Slave Servers

The other authoritative servers, the slave servers (also known as secondary servers) load the zone con-
tents from another server using a replication process known as a zone transfer. Typically the data are
transferred directly from the primary master, but it is also possible to transfer it from another slave. In
other words, a slave server may itself act as a master to a subordinate slave server.

1.4.4.3 Stealth Servers

Usually all of the zone’s authoritative servers are listed in NS records in the parent zone. These NS
records constitute a delegation of the zone from the parent. The authoritative servers are also listed in the
zone file itself, at the top level or apex of the zone. You can list servers in the zone’s top-level NS records
that are not in the parent’s NS delegation, but you cannot list servers in the parent’s delegation that are
not present at the zone’s top level.

A stealth server is a server that is authoritative for a zone but is not listed in that zone’s NS records.
Stealth servers can be used for keeping a local copy of a zone to speed up access to the zone’s records or
to make sure that the zone is available even if all the ”official” servers for the zone are inaccessible.

3

1.4. THE DOMAIN NAME SYSTEM (DNS) CHAPTER 1. INTRODUCTION

A configuration where the primary master server itself is a stealth server is often referred to as a ”hidden
primary” configuration. One use for this configuration is when the primary master is behind a firewall
and therefore unable to communicate directly with the outside world.

1.4.5 Caching Name Servers

The resolver libraries provided by most operating systems are stub resolvers, meaning that they are not
capable of performing the full DNS resolution process by themselves by talking directly to the authori-
tative servers. Instead, they rely on a local name server to perform the resolution on their behalf. Such
a server is called a recursive name server; it performs recursive lookups for local clients.

To improve performance, recursive servers cache the results of the lookups they perform. Since the
processes of recursion and caching are intimately connected, the terms recursive server and caching server
are often used synonymously.

The length of time for which a record may be retained in the cache of a caching name server is controlled
by the Time To Live (TTL) field associated with each resource record.

1.4.5.1 Forwarding

Even a caching name server does not necessarily perform the complete recursive lookup itself. Instead,
it can forward some or all of the queries that it cannot satisfy from its cache to another caching name
server, commonly referred to as a forwarder.

There may be one or more forwarders, and they are queried in turn until the list is exhausted or an
answer is found. Forwarders are typically used when you do not wish all the servers at a given site
to interact directly with the rest of the Internet servers. A typical scenario would involve a number
of internal DNS servers and an Internet firewall. Servers unable to pass packets through the firewall
would forward to the server that can do it, and that server would query the Internet DNS servers on the
internal server’s behalf.

1.4.6 Name Servers in Multiple Roles

The BIND name server can simultaneously act as a master for some zones, a slave for other zones, and
as a caching (recursive) server for a set of local clients.

However, since the functions of authoritative name service and caching/recursive name service are
logically separate, it is often advantageous to run them on separate server machines. A server that
only provides authoritative name service (an authoritative-only server) can run with recursion disabled,
improving reliability and security. A server that is not authoritative for any zones and only provides
recursive service to local clients (a caching-only server) does not need to be reachable from the Internet
at large and can be placed inside a firewall.

4

Chapter 2

BIND Resource Requirements

2.1 Hardware requirements

DNS hardware requirements have traditionally been quite modest. For many installations, servers that
have been pensioned off from active duty have performed admirably as DNS servers.

The DNSSEC features of BIND 9 may prove to be quite CPU intensive however, so organizations that
make heavy use of these features may wish to consider larger systems for these applications. BIND 9 is
fully multithreaded, allowing full utilization of multiprocessor systems for installations that need it.

2.2 CPU Requirements

CPU requirements for BIND 9 range from i486-class machines for serving of static zones without caching,
to enterprise-class machines if you intend to process many dynamic updates and DNSSEC signed zones,
serving many thousands of queries per second.

2.3 Memory Requirements

The memory of the server has to be large enough to fit the cache and zones loaded off disk. The max-
cache-size option can be used to limit the amount of memory used by the cache, at the expense of
reducing cache hit rates and causing more DNS traffic. Additionally, if additional section caching (Sec-
tion 6.2.16.18) is enabled, the max-acache-size option can be used to limit the amount of memory used
by the mechanism. It is still good practice to have enough memory to load all zone and cache data into
memory — unfortunately, the best way to determine this for a given installation is to watch the name
server in operation. After a few weeks the server process should reach a relatively stable size where
entries are expiring from the cache as fast as they are being inserted.

2.4 Name Server Intensive Environment Issues

For name server intensive environments, there are two alternative configurations that may be used.
The first is where clients and any second-level internal name servers query a main name server, which
has enough memory to build a large cache. This approach minimizes the bandwidth used by external
name lookups. The second alternative is to set up second-level internal name servers to make queries
independently. In this configuration, none of the individual machines needs to have as much memory
or CPU power as in the first alternative, but this has the disadvantage of making many more external
queries, as none of the name servers share their cached data.

5

2.5. SUPPORTED OPERATING SYSTEMS CHAPTER 2. BIND RESOURCE REQUIREMENTS

2.5 Supported Operating Systems

ISC BIND 9 compiles and runs on a large number of Unix-like operating systems and on Microsoft
Windows Server 2003 and 2008, and Windows XP and Vista. For an up-to-date list of supported systems,
see the README file in the top level directory of the BIND 9 source distribution.

6

Chapter 3

Name Server Configuration

In this chapter we provide some suggested configurations along with guidelines for their use. We sug-
gest reasonable values for certain option settings.

3.1 Sample Configurations

3.1.1 A Caching-only Name Server

The following sample configuration is appropriate for a caching-only name server for use by clients
internal to a corporation. All queries from outside clients are refused using the allow-query option.
Alternatively, the same effect could be achieved using suitable firewall rules.

// Two corporate subnets we wish to allow queries from.
acl corpnets { 192.168.4.0/24; 192.168.7.0/24; };
options {

// Working directory
directory "/etc/namedb";

allow-query { corpnets; };
};
// Provide a reverse mapping for the loopback
// address 127.0.0.1
zone "0.0.127.in-addr.arpa" {

type master;
file "localhost.rev";
notify no;

};

3.1.2 An Authoritative-only Name Server

This sample configuration is for an authoritative-only server that is the master server for ”example.
com” and a slave for the subdomain ”eng.example.com”.

options {
// Working directory
directory "/etc/namedb";
// Do not allow access to cache
allow-query-cache { none; };

7

3.2. LOAD BALANCING CHAPTER 3. NAME SERVER CONFIGURATION

// This is the default
allow-query { any; };
// Do not provide recursive service
recursion no;

};

// Provide a reverse mapping for the loopback
// address 127.0.0.1
zone "0.0.127.in-addr.arpa" {

type master;
file "localhost.rev";
notify no;

};
// We are the master server for example.com
zone "example.com" {

type master;
file "example.com.db";
// IP addresses of slave servers allowed to
// transfer example.com
allow-transfer {

192.168.4.14;
192.168.5.53;

};
};
// We are a slave server for eng.example.com
zone "eng.example.com" {

type slave;
file "eng.example.com.bk";
// IP address of eng.example.com master server
masters { 192.168.4.12; };

};

3.2 Load Balancing

A primitive form of load balancing can be achieved in the DNS by using multiple records (such as
multiple A records) for one name.

For example, if you have three WWW servers with network addresses of 10.0.0.1, 10.0.0.2 and 10.0.0.3,
a set of records such as the following means that clients will connect to each machine one third of the
time:

Name TTL CLASS TYPE Resource Record (RR) Data
www 600 IN A 10.0.0.1

600 IN A 10.0.0.2
600 IN A 10.0.0.3

When a resolver queries for these records, BIND will rotate them and respond to the query with the
records in a different order. In the example above, clients will randomly receive records in the order 1,
2, 3; 2, 3, 1; and 3, 1, 2. Most clients will use the first record returned and discard the rest.

For more detail on ordering responses, check the rrset-order sub-statement in the options statement, see
RRset Ordering.

8

CHAPTER 3. NAME SERVER CONFIGURATION 3.3. NAME SERVER OPERATIONS

3.3 Name Server Operations

3.3.1 Tools for Use With the Name Server Daemon

This section describes several indispensable diagnostic, administrative and monitoring tools available
to the system administrator for controlling and debugging the name server daemon.

3.3.1.1 Diagnostic Tools

The dig, host, and nslookup programs are all command line tools for manually querying name servers.
They differ in style and output format.

dig The domain information groper (dig) is the most versatile and complete of these lookup tools. It has
two modes: simple interactive mode for a single query, and batch mode which executes a query
for each in a list of several query lines. All query options are accessible from the command line.

Usage
dig [@server] domain [query-type] [query-class] [+query-option]

[-dig-option] [%comment]

The usual simple use of dig will take the form

dig @server domain query-type query-class

For more information and a list of available commands and options, see the dig man page.

host The host utility emphasizes simplicity and ease of use. By default, it converts between host names
and Internet addresses, but its functionality can be extended with the use of options.

Usage
host [-aCdlnrsTwv] [-c class] [-N ndots] [-t type] [-W timeout] [-R

retries] [-m flag] [-4] [-6] hostname [server]

For more information and a list of available commands and options, see the host man page.

nslookup nslookup has two modes: interactive and non-interactive. Interactive mode allows the user
to query name servers for information about various hosts and domains or to print a list of hosts
in a domain. Non-interactive mode is used to print just the name and requested information for a
host or domain.

Usage
nslookup [-option...] [host-to-find | - [server]]

Interactive mode is entered when no arguments are given (the default name server will be used)
or when the first argument is a hyphen (‘-’) and the second argument is the host name or Internet
address of a name server.

Non-interactive mode is used when the name or Internet address of the host to be looked up is
given as the first argument. The optional second argument specifies the host name or address of a
name server.

Due to its arcane user interface and frequently inconsistent behavior, we do not recommend the
use of nslookup. Use dig instead.

3.3.1.2 Administrative Tools

Administrative tools play an integral part in the management of a server.

named-checkconf The named-checkconf program checks the syntax of a named.conf file.

9

3.3. NAME SERVER OPERATIONS CHAPTER 3. NAME SERVER CONFIGURATION

Usage
named-checkconf [-jvz] [-t directory] [filename]

named-checkzone The named-checkzone program checks a master file for syntax and consistency.

Usage
named-checkzone [-djqvD] [-c class] [-o output] [-t directory] [-w

directory] [-k (ignore|warn|fail)] [-n (ignore|warn|fail)] [-W
(ignore|warn)] zone [filename]

named-compilezone Similar to named-checkzone, but it always dumps the zone content to a specified
file (typically in a different format).

rndc The remote name daemon control (rndc) program allows the system administrator to control the
operation of a name server. Since BIND 9.2, rndc supports all the commands of the BIND 8 ndc
utility except ndc start and ndc restart, which were also not supported in ndc’s channel mode. If
you run rndc without any options it will display a usage message as follows:

Usage
rndc [-c config] [-s server] [-p port] [-y key] command [command...]

The command is one of the following:

reload Reload configuration file and zones.

reload zone [class [view]] Reload the given zone.

refresh zone [class [view]] Schedule zone maintenance for the given zone.

retransfer zone [class [view]] Retransfer the given zone from the master.

sign zone [class [view]] Fetch all DNSSEC keys for the given zone from the key direc-
tory (see key-directory in Section 6.2.16). If they are within their publication period, merge
them into the zone’s DNSKEY RRset. If the DNSKEY RRset is changed, then the zone is
automatically re-signed with the new key set.

This command requires that the auto-dnssec zone option to be set to allow, maintain,
or create, and also requires the zone to be configured to allow dynamic DNS. See Sec-
tion 6.2.28.4 for more details.

loadkeys zone [class [view]] Fetch all DNSSEC keys for the given zone from the key
directory (see key-directory in Section 6.2.16). If they are within their publication period,
merge them into the zone’s DNSKEY RRset. Unlike rndc sign, however, the zone is not
immediately re-signed by the new keys, but is allowed to incrementally re-sign over time.

This command requires that the auto-dnssec zone option to be set to maintain or create,
and also requires the zone to be configured to allow dynamic DNS. See Section 6.2.28.4 for
more details.

freeze [zone [class [view]]] Suspend updates to a dynamic zone. If no zone is speci-
fied, then all zones are suspended. This allows manual edits to be made to a zone normally
updated by dynamic update. It also causes changes in the journal file to be synced into the
master and the journal file to be removed. All dynamic update attempts will be refused while
the zone is frozen.

10

CHAPTER 3. NAME SERVER CONFIGURATION 3.3. NAME SERVER OPERATIONS

thaw [zone [class [view]]] Enable updates to a frozen dynamic zone. If no zone is spec-
ified, then all frozen zones are enabled. This causes the server to reload the zone from disk,
and re-enables dynamic updates after the load has completed. After a zone is thawed, dy-
namic updates will no longer be refused.

notify zone [class [view]] Resend NOTIFY messages for the zone.

reconfig Reload the configuration file and load new zones, but do not reload existing zone files
even if they have changed. This is faster than a full reload when there is a large number of
zones because it avoids the need to examine the modification times of the zones files.

stats Write server statistics to the statistics file.

querylog Toggle query logging. Query logging can also be enabled by explicitly directing the
queries category to a channel in the logging section of named.conf or by specifying query-
log yes; in the options section of named.conf.

dumpdb [-all|-cache|-zone] [view ...] Dump the server’s caches (default) and/or zones
to the dump file for the specified views. If no view is specified, all views are dumped.

secroots [view ...] Dump the server’s security roots to the secroots file for the specified
views. If no view is specified, security roots for all views are dumped.

stop [-p] Stop the server, making sure any recent changes made through dynamic update or
IXFR are first saved to the master files of the updated zones. If -p is specified named’s process
id is returned. This allows an external process to determine when named had completed
stopping.

halt [-p] Stop the server immediately. Recent changes made through dynamic update or IXFR
are not saved to the master files, but will be rolled forward from the journal files when the
server is restarted. If -p is specified named’s process id is returned. This allows an external
process to determine when named had completed halting.

trace Increment the servers debugging level by one.

trace level Sets the server’s debugging level to an explicit value.

notrace Sets the server’s debugging level to 0.

flush Flushes the server’s cache.

flushname name Flushes the given name from the server’s cache.

status Display status of the server. Note that the number of zones includes the internal bind/CH
zone and the default ./IN hint zone if there is not an explicit root zone configured.

recursing Dump the list of queries named is currently recursing on.

validation [on|off] [view ...] Enable or disable DNSSEC validation. Note dnssec-enable
also needs to be set to yes to be effective. It defaults to enabled.

11

3.3. NAME SERVER OPERATIONS CHAPTER 3. NAME SERVER CONFIGURATION

addzone zone [class [view]] configuration Add a zone while the server is running.
This command requires the allow-new-zones option to be set to yes. The configuration
string specified on the command line is the zone configuration text that would ordinarily be
placed in named.conf.

The configuration is saved in a file called hash.nzf, where hash is a cryptographic hash
generated from the name of the view. When named is restarted, the file will be loaded into
the view configuration, so that zones that were added can persist after a restart.

This sample addzone command would add the zone example.com to the default view:

$rndc addzone example.com ’{ type master; file "example.com.db"; };’

(Note the brackets and semi-colon around the zone configuration text.)

delzone zone [class [view]] Delete a zone while the server is running. Only zones that
were originally added via rndc addzone can be deleted in this matter.

A configuration file is required, since all communication with the server is authenticated with
digital signatures that rely on a shared secret, and there is no way to provide that secret other than
with a configuration file. The default location for the rndc configuration file is /etc/rndc.conf,
but an alternate location can be specified with the -c option. If the configuration file is not found,
rndc will also look in /etc/rndc.key (or whatever sysconfdir was defined when the BIND
build was configured). The rndc.key file is generated by running rndc-confgen -a as described
in Section 6.2.4.

The format of the configuration file is similar to that of named.conf, but limited to only four
statements, the options, key, server and include statements. These statements are what associate
the secret keys to the servers with which they are meant to be shared. The order of statements is
not significant.

The options statement has three clauses: default-server, default-key, and default-port. default-
server takes a host name or address argument and represents the server that will be contacted if no
-s option is provided on the command line. default-key takes the name of a key as its argument,
as defined by a key statement. default-port specifies the port to which rndc should connect if no
port is given on the command line or in a server statement.

The key statement defines a key to be used by rndc when authenticating with named. Its syntax
is identical to the key statement in named.conf. The keyword key is followed by a key name,
which must be a valid domain name, though it need not actually be hierarchical; thus, a string like
”rndc key” is a valid name. The key statement has two clauses: algorithm and secret. While the
configuration parser will accept any string as the argument to algorithm, currently only the string
”hmac-md5” has any meaning. The secret is a base-64 encoded string as specified in RFC 3548.

The server statement associates a key defined using the key statement with a server. The keyword
server is followed by a host name or address. The server statement has two clauses: key and
port. The key clause specifies the name of the key to be used when communicating with this
server, and the port clause can be used to specify the port rndc should connect to on the server.

A sample minimal configuration file is as follows:

key rndc_key {
algorithm "hmac-md5";
secret

"c3Ryb25nIGVub3VnaCBmb3IgYSBtYW4gYnV0IG1hZGUgZm9yIGEgd29tYW4K";
};
options {

default-server 127.0.0.1;
default-key rndc_key;

};

12

CHAPTER 3. NAME SERVER CONFIGURATION 3.3. NAME SERVER OPERATIONS

This file, if installed as /etc/rndc.conf, would allow the command:

$rndc reload

to connect to 127.0.0.1 port 953 and cause the name server to reload, if a name server on the local
machine were running with following controls statements:

controls {
inet 127.0.0.1

allow { localhost; } keys { rndc_key; };
};

and it had an identical key statement for rndc key.

Running the rndc-confgen program will conveniently create a rndc.conf file for you, and also
display the corresponding controls statement that you need to add to named.conf. Alternatively,
you can run rndc-confgen -a to set up a rndc.key file and not modify named.conf at all.

3.3.2 Signals

Certain UNIX signals cause the name server to take specific actions, as described in the following table.
These signals can be sent using the kill command.

SIGHUP Causes the server to read named.conf and reload the database.
SIGTERM Causes the server to clean up and exit.
SIGINT Causes the server to clean up and exit.

13

Chapter 4

Advanced DNS Features

4.1 Notify

DNS NOTIFY is a mechanism that allows master servers to notify their slave servers of changes to a
zone’s data. In response to a NOTIFY from a master server, the slave will check to see that its version of
the zone is the current version and, if not, initiate a zone transfer.

For more information about DNS NOTIFY, see the description of the notify option in Section 6.2.16.1
and the description of the zone option also-notify in Section 6.2.16.7. The NOTIFY protocol is specified
in RFC 1996.

NOTE

As a slave zone can also be a master to other slaves, named, by default, sends
NOTIFY messages for every zone it loads. Specifying notify master-only; will
cause named to only send NOTIFY for master zones that it loads.

4.2 Dynamic Update

Dynamic Update is a method for adding, replacing or deleting records in a master server by sending it
a special form of DNS messages. The format and meaning of these messages is specified in RFC 2136.

Dynamic update is enabled by including an allow-update or an update-policy clause in the zone state-
ment.

If the zone’s update-policy is set to local, updates to the zone will be permitted for the key local-ddns,
which will be generated by named at startup. See Section 6.2.28.4 for more details.

The tkey-gssapi-credential and tkey-domain clauses in the options statement enable the server to ne-
gotiate keys that can be matched against those in update-policy or allow-update.

Updating of secure zones (zones using DNSSEC) follows RFC 3007: RRSIG, NSEC and NSEC3 records
affected by updates are automatically regenerated by the server using an online zone key. Update au-
thorization is based on transaction signatures and an explicit server policy.

4.2.1 The journal file

All changes made to a zone using dynamic update are stored in the zone’s journal file. This file is auto-
matically created by the server when the first dynamic update takes place. The name of the journal file is

15

4.3. INCREMENTAL ZONE TRANSFERS (IXFR) CHAPTER 4. ADVANCED DNS FEATURES

formed by appending the extension .jnl to the name of the corresponding zone file unless specifically
overridden. The journal file is in a binary format and should not be edited manually.

The server will also occasionally write (”dump”) the complete contents of the updated zone to its zone
file. This is not done immediately after each dynamic update, because that would be too slow when a
large zone is updated frequently. Instead, the dump is delayed by up to 15 minutes, allowing additional
updates to take place. During the dump process, transient files will be created with the extensions .jnw
and .jbk; under ordinary circumstances, these will be removed when the dump is complete, and can
be safely ignored.

When a server is restarted after a shutdown or crash, it will replay the journal file to incorporate into the
zone any updates that took place after the last zone dump.

Changes that result from incoming incremental zone transfers are also journalled in a similar way.

The zone files of dynamic zones cannot normally be edited by hand because they are not guaranteed to
contain the most recent dynamic changes — those are only in the journal file. The only way to ensure
that the zone file of a dynamic zone is up to date is to run rndc stop.

If you have to make changes to a dynamic zone manually, the following procedure will work: Disable
dynamic updates to the zone using rndc freeze zone. This will also remove the zone’s .jnl file and
update the master file. Edit the zone file. Run rndc thaw zone to reload the changed zone and re-enable
dynamic updates.

4.3 Incremental Zone Transfers (IXFR)

The incremental zone transfer (IXFR) protocol is a way for slave servers to transfer only changed data,
instead of having to transfer the entire zone. The IXFR protocol is specified in RFC 1995. See [Proposed
Standards].

When acting as a master, BIND 9 supports IXFR for those zones where the necessary change history
information is available. These include master zones maintained by dynamic update and slave zones
whose data was obtained by IXFR. For manually maintained master zones, and for slave zones obtained
by performing a full zone transfer (AXFR), IXFR is supported only if the option ixfr-from-differences is
set to yes.

When acting as a slave, BIND 9 will attempt to use IXFR unless it is explicitly disabled. For more
information about disabling IXFR, see the description of the request-ixfr clause of the server statement.

4.4 Split DNS

Setting up different views, or visibility, of the DNS space to internal and external resolvers is usually
referred to as a Split DNS setup. There are several reasons an organization would want to set up its DNS
this way.

One common reason for setting up a DNS system this way is to hide ”internal” DNS information from
”external” clients on the Internet. There is some debate as to whether or not this is actually useful.
Internal DNS information leaks out in many ways (via email headers, for example) and most savvy
”attackers” can find the information they need using other means. However, since listing addresses
of internal servers that external clients cannot possibly reach can result in connection delays and other
annoyances, an organization may choose to use a Split DNS to present a consistent view of itself to the
outside world.

Another common reason for setting up a Split DNS system is to allow internal networks that are behind
filters or in RFC 1918 space (reserved IP space, as documented in RFC 1918) to resolve DNS on the
Internet. Split DNS can also be used to allow mail from outside back in to the internal network.

16

CHAPTER 4. ADVANCED DNS FEATURES 4.4. SPLIT DNS

4.4.1 Example split DNS setup

Let’s say a company named Example, Inc. (example.com) has several corporate sites that have an
internal network with reserved Internet Protocol (IP) space and an external demilitarized zone (DMZ),
or ”outside” section of a network, that is available to the public.

Example, Inc. wants its internal clients to be able to resolve external hostnames and to exchange mail
with people on the outside. The company also wants its internal resolvers to have access to certain
internal-only zones that are not available at all outside of the internal network.

In order to accomplish this, the company will set up two sets of name servers. One set will be on the
inside network (in the reserved IP space) and the other set will be on bastion hosts, which are ”proxy”
hosts that can talk to both sides of its network, in the DMZ.

The internal servers will be configured to forward all queries, except queries for site1.internal,
site2.internal, site1.example.com, and site2.example.com, to the servers in the DMZ.
These internal servers will have complete sets of information for site1.example.com, site2.example.
com, site1.internal, and site2.internal.

To protect the site1.internal and site2.internal domains, the internal name servers must be
configured to disallow all queries to these domains from any external hosts, including the bastion hosts.

The external servers, which are on the bastion hosts, will be configured to serve the ”public” version
of the site1 and site2.example.com zones. This could include things such as the host records for
public servers (www.example.com and ftp.example.com), and mail exchange (MX) records (a.mx.
example.com and b.mx.example.com).

In addition, the public site1 and site2.example.com zones should have special MX records that
contain wildcard (‘*’) records pointing to the bastion hosts. This is needed because external mail servers
do not have any other way of looking up how to deliver mail to those internal hosts. With the wildcard
records, the mail will be delivered to the bastion host, which can then forward it on to internal hosts.

Here’s an example of a wildcard MX record:

* IN MX 10 external1.example.com.

Now that they accept mail on behalf of anything in the internal network, the bastion hosts will need
to know how to deliver mail to internal hosts. In order for this to work properly, the resolvers on the
bastion hosts will need to be configured to point to the internal name servers for DNS resolution.

Queries for internal hostnames will be answered by the internal servers, and queries for external host-
names will be forwarded back out to the DNS servers on the bastion hosts.

In order for all this to work properly, internal clients will need to be configured to query only the internal
name servers for DNS queries. This could also be enforced via selective filtering on the network.

If everything has been set properly, Example, Inc.’s internal clients will now be able to:

• Look up any hostnames in the site1 and site2.example.com zones.

• Look up any hostnames in the site1.internal and site2.internal domains.

• Look up any hostnames on the Internet.

• Exchange mail with both internal and external people.

Hosts on the Internet will be able to:

• Look up any hostnames in the site1 and site2.example.com zones.

• Exchange mail with anyone in the site1 and site2.example.com zones.

Here is an example configuration for the setup we just described above. Note that this is only configu-
ration information; for information on how to configure your zone files, see Section 3.1.

Internal DNS server config:

17

4.4. SPLIT DNS CHAPTER 4. ADVANCED DNS FEATURES

acl internals { 172.16.72.0/24; 192.168.1.0/24; };

acl externals { bastion-ips-go-here; };

options {
...
...
forward only;
// forward to external servers
forwarders {

bastion-ips-go-here;
};
// sample allow-transfer (no one)
allow-transfer { none; };
// restrict query access
allow-query { internals; externals; };
// restrict recursion
allow-recursion { internals; };
...
...

};

// sample master zone
zone "site1.example.com" {

type master;
file "m/site1.example.com";
// do normal iterative resolution (do not forward)
forwarders { };
allow-query { internals; externals; };
allow-transfer { internals; };

};

// sample slave zone
zone "site2.example.com" {

type slave;
file "s/site2.example.com";
masters { 172.16.72.3; };
forwarders { };
allow-query { internals; externals; };
allow-transfer { internals; };

};

zone "site1.internal" {
type master;
file "m/site1.internal";
forwarders { };
allow-query { internals; };
allow-transfer { internals; }

};

zone "site2.internal" {
type slave;
file "s/site2.internal";
masters { 172.16.72.3; };
forwarders { };
allow-query { internals };
allow-transfer { internals; }

};

18

CHAPTER 4. ADVANCED DNS FEATURES 4.5. TSIG

External (bastion host) DNS server config:

acl internals { 172.16.72.0/24; 192.168.1.0/24; };

acl externals { bastion-ips-go-here; };

options {
...
...
// sample allow-transfer (no one)
allow-transfer { none; };
// default query access
allow-query { any; };
// restrict cache access
allow-query-cache { internals; externals; };
// restrict recursion
allow-recursion { internals; externals; };
...
...

};

// sample slave zone
zone "site1.example.com" {

type master;
file "m/site1.foo.com";
allow-transfer { internals; externals; };

};

zone "site2.example.com" {
type slave;
file "s/site2.foo.com";
masters { another_bastion_host_maybe; };
allow-transfer { internals; externals; }

};

In the resolv.conf (or equivalent) on the bastion host(s):

search ...
nameserver 172.16.72.2
nameserver 172.16.72.3
nameserver 172.16.72.4

4.5 TSIG

This is a short guide to setting up Transaction SIGnatures (TSIG) based transaction security in BIND. It
describes changes to the configuration file as well as what changes are required for different features,
including the process of creating transaction keys and using transaction signatures with BIND.

BIND primarily supports TSIG for server to server communication. This includes zone transfer, notify,
and recursive query messages. Resolvers based on newer versions of BIND 8 have limited support for
TSIG.

TSIG can also be useful for dynamic update. A primary server for a dynamic zone should control access
to the dynamic update service, but IP-based access control is insufficient. The cryptographic access

19

4.5. TSIG CHAPTER 4. ADVANCED DNS FEATURES

control provided by TSIG is far superior. The nsupdate program supports TSIG via the -k and -y
command line options or inline by use of the key.

4.5.1 Generate Shared Keys for Each Pair of Hosts

A shared secret is generated to be shared between host1 and host2. An arbitrary key name is chosen:
”host1-host2.”. The key name must be the same on both hosts.

4.5.1.1 Automatic Generation

The following command will generate a 128-bit (16 byte) HMAC-SHA256 key as described above.
Longer keys are better, but shorter keys are easier to read. Note that the maximum key length is the
digest length, here 256 bits.

dnssec-keygen -a hmac-sha256 -b 128 -n HOST host1-host2.

The key is in the file Khost1-host2.+163+00000.private. Nothing directly uses this file, but the
base-64 encoded string following ”Key:” can be extracted from the file and used as a shared secret:

Key: La/E5CjG9O+os1jq0a2jdA==

The string ”La/E5CjG9O+os1jq0a2jdA==” can be used as the shared secret.

4.5.1.2 Manual Generation

The shared secret is simply a random sequence of bits, encoded in base-64. Most ASCII strings are valid
base-64 strings (assuming the length is a multiple of 4 and only valid characters are used), so the shared
secret can be manually generated.

Also, a known string can be run through mmencode or a similar program to generate base-64 encoded
data.

4.5.2 Copying the Shared Secret to Both Machines

This is beyond the scope of DNS. A secure transport mechanism should be used. This could be secure
FTP, ssh, telephone, etc.

4.5.3 Informing the Servers of the Key’s Existence

Imagine host1 and host 2 are both servers. The following is added to each server’s named.conf file:

key host1-host2. {
algorithm hmac-sha256;
secret "La/E5CjG9O+os1jq0a2jdA==";

};

The secret is the one generated above. Since this is a secret, it is recommended that either named.conf
be non-world readable, or the key directive be added to a non-world readable file that is included by
named.conf.

At this point, the key is recognized. This means that if the server receives a message signed by this key,
it can verify the signature. If the signature is successfully verified, the response is signed by the same
key.

20

CHAPTER 4. ADVANCED DNS FEATURES 4.6. TKEY

4.5.4 Instructing the Server to Use the Key

Since keys are shared between two hosts only, the server must be told when keys are to be used. The
following is added to the named.conf file for host1, if the IP address of host2 is 10.1.2.3:

server 10.1.2.3 {
keys { host1-host2. ;};

};

Multiple keys may be present, but only the first is used. This directive does not contain any secrets, so
it may be in a world-readable file.

If host1 sends a message that is a request to that address, the message will be signed with the specified
key. host1 will expect any responses to signed messages to be signed with the same key.

A similar statement must be present in host2’s configuration file (with host1’s address) for host2 to sign
request messages to host1.

4.5.5 TSIG Key Based Access Control

BIND allows IP addresses and ranges to be specified in ACL definitions and allow-{ query | transfer |
update } directives. This has been extended to allow TSIG keys also. The above key would be denoted
key host1-host2.

An example of an allow-update directive would be:

allow-update { key host1-host2. ;};

This allows dynamic updates to succeed only if the request was signed by a key named ”host1-host2.”.

See Section 6.2.28.4 for a discussion of the more flexible update-policy statement.

4.5.6 Errors

The processing of TSIG signed messages can result in several errors. If a signed message is sent to a non-
TSIG aware server, a FORMERR (format error) will be returned, since the server will not understand the
record. This is a result of misconfiguration, since the server must be explicitly configured to send a TSIG
signed message to a specific server.

If a TSIG aware server receives a message signed by an unknown key, the response will be unsigned
with the TSIG extended error code set to BADKEY. If a TSIG aware server receives a message with a
signature that does not validate, the response will be unsigned with the TSIG extended error code set
to BADSIG. If a TSIG aware server receives a message with a time outside of the allowed range, the
response will be signed with the TSIG extended error code set to BADTIME, and the time values will
be adjusted so that the response can be successfully verified. In any of these cases, the message’s rcode
(response code) is set to NOTAUTH (not authenticated).

4.6 TKEY

TKEY is a mechanism for automatically generating a shared secret between two hosts. There are several
”modes” of TKEY that specify how the key is generated or assigned. BIND 9 implements only one of
these modes, the Diffie-Hellman key exchange. Both hosts are required to have a Diffie-Hellman KEY
record (although this record is not required to be present in a zone). The TKEY process must use signed
messages, signed either by TSIG or SIG(0). The result of TKEY is a shared secret that can be used to sign
messages with TSIG. TKEY can also be used to delete shared secrets that it had previously generated.

21

4.7. SIG(0) CHAPTER 4. ADVANCED DNS FEATURES

The TKEY process is initiated by a client or server by sending a signed TKEY query (including any
appropriate KEYs) to a TKEY-aware server. The server response, if it indicates success, will contain a
TKEY record and any appropriate keys. After this exchange, both participants have enough information
to determine the shared secret; the exact process depends on the TKEY mode. When using the Diffie-
Hellman TKEY mode, Diffie-Hellman keys are exchanged, and the shared secret is derived by both
participants.

4.7 SIG(0)

BIND 9 partially supports DNSSEC SIG(0) transaction signatures as specified in RFC 2535 and RFC
2931. SIG(0) uses public/private keys to authenticate messages. Access control is performed in the
same manner as TSIG keys; privileges can be granted or denied based on the key name.

When a SIG(0) signed message is received, it will only be verified if the key is known and trusted by the
server; the server will not attempt to locate and/or validate the key.

SIG(0) signing of multiple-message TCP streams is not supported.

The only tool shipped with BIND 9 that generates SIG(0) signed messages is nsupdate.

4.8 DNSSEC

Cryptographic authentication of DNS information is possible through the DNS Security (DNSSEC-bis)
extensions, defined in RFC 4033, RFC 4034, and RFC 4035. This section describes the creation and use of
DNSSEC signed zones.

In order to set up a DNSSEC secure zone, there are a series of steps which must be followed. BIND 9
ships with several tools that are used in this process, which are explained in more detail below. In all
cases, the -h option prints a full list of parameters. Note that the DNSSEC tools require the keyset files
to be in the working directory or the directory specified by the -d option, and that the tools shipped
with BIND 9.2.x and earlier are not compatible with the current ones.

There must also be communication with the administrators of the parent and/or child zone to transmit
keys. A zone’s security status must be indicated by the parent zone for a DNSSEC capable resolver to
trust its data. This is done through the presence or absence of a DS record at the delegation point.

For other servers to trust data in this zone, they must either be statically configured with this zone’s
zone key or the zone key of another zone above this one in the DNS tree.

4.8.1 Generating Keys

The dnssec-keygen program is used to generate keys.

A secure zone must contain one or more zone keys. The zone keys will sign all other records in the zone,
as well as the zone keys of any secure delegated zones. Zone keys must have the same name as the zone,
a name type of ZONE, and must be usable for authentication. It is recommended that zone keys use a
cryptographic algorithm designated as ”mandatory to implement” by the IETF; currently the only one
is RSASHA1.

The following command will generate a 768-bit RSASHA1 key for the child.example zone:

dnssec-keygen -a RSASHA1 -b 768 -n ZONE child.example.

Two output files will be produced: Kchild.example.+005+12345.key and Kchild.example.+
005+12345.private (where 12345 is an example of a key tag). The key filenames contain the key
name (child.example.), algorithm (3 is DSA, 1 is RSAMD5, 5 is RSASHA1, etc.), and the key tag
(12345 in this case). The private key (in the .private file) is used to generate signatures, and the public
key (in the .key file) is used for signature verification.

22

CHAPTER 4. ADVANCED DNS FEATURES 4.8. DNSSEC

To generate another key with the same properties (but with a different key tag), repeat the above com-
mand.

The dnssec-keyfromlabel program is used to get a key pair from a crypto hardware and build the key
files. Its usage is similar to dnssec-keygen.

The public keys should be inserted into the zone file by including the .key files using $INCLUDE
statements.

4.8.2 Signing the Zone

The dnssec-signzone program is used to sign a zone.

Any keyset files corresponding to secure subzones should be present. The zone signer will generate
NSEC, NSEC3 and RRSIG records for the zone, as well as DS for the child zones if ’-g’ is specified. If
’-g’ is not specified, then DS RRsets for the secure child zones need to be added manually.

The following command signs the zone, assuming it is in a file called zone.child.example. By
default, all zone keys which have an available private key are used to generate signatures.

dnssec-signzone -o child.example zone.child.example

One output file is produced: zone.child.example.signed. This file should be referenced by named.
conf as the input file for the zone.

dnssec-signzone will also produce a keyset and dsset files and optionally a dlvset file. These are used
to provide the parent zone administrators with the DNSKEYs (or their corresponding DS records) that
are the secure entry point to the zone.

4.8.3 Configuring Servers

To enable named to respond appropriately to DNS requests from DNSSEC aware clients, dnssec-enable
must be set to yes. (This is the default setting.)

To enable named to validate answers from other servers, the dnssec-enable and dnssec-validation op-
tions must both be set to yes (the default setting in BIND 9.5 and later), and at least one trust anchor
must be configured with a trusted-keys or managed-keys statement in named.conf.

trusted-keys are copies of DNSKEY RRs for zones that are used to form the first link in the cryptographic
chain of trust. All keys listed in trusted-keys (and corresponding zones) are deemed to exist and only
the listed keys will be used to validated the DNSKEY RRset that they are from.

managed-keys are trusted keys which are automatically kept up to date via RFC 5011 trust anchor
maintenance.

trusted-keys and managed-keys are described in more detail later in this document.

Unlike BIND 8, BIND 9 does not verify signatures on load, so zone keys for authoritative zones do not
need to be specified in the configuration file.

After DNSSEC gets established, a typical DNSSEC configuration will look something like the following.
It has one or more public keys for the root. This allows answers from outside the organization to be
validated. It will also have several keys for parts of the namespace the organization controls. These are
here to ensure that named is immune to compromises in the DNSSEC components of the security of
parent zones.

managed-keys {
/* Root Key */
"." initial-key 257 3 3 "BNY4wrWM1nCfJ+CXd0rVXyYmobt7sEEfK3clRbGaTwS

JxrGkxJWoZu6I7PzJu/E9gx4UC1zGAHlXKdE4zYIpRh
aBKnvcC2U9mZhkdUpd1Vso/HAdjNe8LmMlnzY3zy2Xy
4klWOADTPzSv9eamj8V18PHGjBLaVtYvk/ln5ZApjYg
hf+6fElrmLkdaz MQ2OCnACR817DF4BBa7UR/beDHyp

23

4.8. DNSSEC CHAPTER 4. ADVANCED DNS FEATURES

5iWTXWSi6XmoJLbG9Scqc7l70KDqlvXR3M/lUUVRbke
g1IPJSidmK3ZyCllh4XSKbje/45SKucHgnwU5jefMtq
66gKodQj+MiA21AfUVe7u99WzTLzY3qlxDhxYQQ20FQ
97S+LKUTpQcq27R7AT3/V5hRQxScINqwcz4jYqZD2fQ
dgxbcDTClU0CRBdiieyLMNzXG3";

};

trusted-keys {
/* Key for our organization’s forward zone */
example.com. 257 3 5 "AwEAAaxPMcR2x0HbQV4WeZB6oEDX+r0QM6

5KbhTjrW1ZaARmPhEZZe3Y9ifgEuq7vZ/z
GZUdEGNWy+JZzus0lUptwgjGwhUS1558Hb
4JKUbbOTcM8pwXlj0EiX3oDFVmjHO444gL
kBOUKUf/mC7HvfwYH/Be22GnClrinKJp1O
g4ywzO9WglMk7jbfW33gUKvirTHr25GL7S
TQUzBb5Usxt8lgnyTUHs1t3JwCY5hKZ6Cq
FxmAVZP20igTixin/1LcrgX/KMEGd/biuv
F4qJCyduieHukuY3H4XMAcR+xia2nIUPvm
/oyWR8BW/hWdzOvnSCThlHf3xiYleDbt/o
1OTQ09A0=";

/* Key for our reverse zone. */
2.0.192.IN-ADDRPA.NET. 257 3 5 "AQOnS4xn/IgOUpBPJ3bogzwc

xOdNax071L18QqZnQQQAVVr+i
LhGTnNGp3HoWQLUIzKrJVZ3zg
gy3WwNT6kZo6c0tszYqbtvchm
gQC8CzKojM/W16i6MG/eafGU3
siaOdS0yOI6BgPsw+YZdzlYMa
IJGf4M4dyoKIhzdZyQ2bYQrjy
Q4LB0lC7aOnsMyYKHHYeRvPxj
IQXmdqgOJGq+vsevG06zW+1xg
YJh9rCIfnm1GX/KMgxLPG2vXT
D/RnLX+D3T3UL7HJYHJhAZD5L
59VvjSPsZJHeDCUyWYrvPZesZ
DIRvhDD52SKvbheeTJUm6Ehkz
ytNN2SN96QRk8j/iI8ib";

};

options {
...
dnssec-enable yes;
dnssec-validation yes;

};

NOTE

None of the keys listed in this example are valid. In particular, the root key is not
valid.

When DNSSEC validation is enabled and properly configured, the resolver will reject any answers from
signed, secure zones which fail to validate, and will return SERVFAIL to the client.

Responses may fail to validate for any of several reasons, including missing, expired, or invalid signa-
tures, a key which does not match the DS RRset in the parent zone, or an insecure response from a zone

24

CHAPTER 4. ADVANCED DNS FEATURES4.9. DNSSEC, DYNAMIC ZONES, AND AUTOMATIC SIGNING

which, according to its parent, should have been secure.

NOTE

When the validator receives a response from an unsigned zone that has a signed
parent, it must confirm with the parent that the zone was intentionally left un-
signed. It does this by verifying, via signed and validated NSEC/NSEC3 records,
that the parent zone contains no DS records for the child.

If the validator can prove that the zone is insecure, then the response is accepted.
However, if it cannot, then it must assume an insecure response to be a forgery;
it rejects the response and logs an error.

The logged error reads ”insecurity proof failed” and ”got insecure response; par-
ent indicates it should be secure”. (Prior to BIND 9.7, the logged error was ”not
insecure”. This referred to the zone, not the response.)

4.9 DNSSEC, Dynamic Zones, and Automatic Signing

As of BIND 9.7.0 it is possible to change a dynamic zone from insecure to signed and back again. A
secure zone can use either NSEC or NSEC3 chains.

4.9.1 Converting from insecure to secure

Changing a zone from insecure to secure can be done in two ways: using a dynamic DNS update, or the
auto-dnssec zone option.

For either method, you need to configure named so that it can see the K* files which contain the public
and private parts of the keys that will be used to sign the zone. These files will have been generated by
dnssec-keygen. You can do this by placing them in the key-directory, as specified in named.conf:

zone example.net {
type master;
update-policy local;
file "dynamic/example.net/example.net";
key-directory "dynamic/example.net";

};

If one KSK and one ZSK DNSKEY key have been generated, this configuration will cause all records
in the zone to be signed with the ZSK, and the DNSKEY RRset to be signed with the KSK as well. An
NSEC chain will be generated as part of the initial signing process.

4.9.2 Dynamic DNS update method

To insert the keys via dynamic update:

% nsupdate
> ttl 3600
> update add example.net DNSKEY 256 3 7 AwEAAZn17pUF0KpbPA2c7Gz76Vb18v0teKT3EyAGfBfL8eQ8al35zz3Y I1m/SAQBxIqMfLtIwqWPdgthsu36azGQAX8=
> update add example.net DNSKEY 257 3 7 AwEAAd/7odU/64o2LGsifbLtQmtO8dFDtTAZXSX2+X3e/UNlq9IHq3Y0 XtC0Iuawl/qkaKVxXe2lo8Ct+dM6UehyCqk=
> send

25

4.9. DNSSEC, DYNAMIC ZONES, AND AUTOMATIC SIGNINGCHAPTER 4. ADVANCED DNS FEATURES

While the update request will complete almost immediately, the zone will not be completely signed until
named has had time to walk the zone and generate the NSEC and RRSIG records. The NSEC record at
the apex will be added last, to signal that there is a complete NSEC chain.

If you wish to sign using NSEC3 instead of NSEC, you should add an NSEC3PARAM record to the
initial update request. If you wish the NSEC3 chain to have the OPTOUT bit set, set it in the flags field
of the NSEC3PARAM record.

% nsupdate
> ttl 3600
> update add example.net DNSKEY 256 3 7 AwEAAZn17pUF0KpbPA2c7Gz76Vb18v0teKT3EyAGfBfL8eQ8al35zz3Y I1m/SAQBxIqMfLtIwqWPdgthsu36azGQAX8=
> update add example.net DNSKEY 257 3 7 AwEAAd/7odU/64o2LGsifbLtQmtO8dFDtTAZXSX2+X3e/UNlq9IHq3Y0 XtC0Iuawl/qkaKVxXe2lo8Ct+dM6UehyCqk=
> update add example.net NSEC3PARAM 1 1 100 1234567890
> send

Again, this update request will complete almost immediately; however, the record won’t show up until
named has had a chance to build/remove the relevant chain. A private type record will be created to
record the state of the operation (see below for more details), and will be removed once the operation
completes.

While the initial signing and NSEC/NSEC3 chain generation is happening, other updates are possible
as well.

4.9.3 Fully automatic zone signing

To enable automatic signing, add the auto-dnssec option to the zone statement in named.conf. auto-
dnssec has two possible arguments: allow or maintain.

With auto-dnssec allow, named can search the key directory for keys matching the zone, insert them
into the zone, and use them to sign the zone. It will do so only when it receives an rndc sign <zone-
name> or rndc loadkeys <zonename> command.

auto-dnssec maintain includes the above functionality, but will also automatically adjust the zone’s
DNSKEY records on schedule according to the keys’ timing metadata. (See dnssec-keygen(8) and
dnssec-settime(8) for more information.) If keys are present in the key directory the first time the zone
is loaded, it will be signed immediately, without waiting for an rndc sign or rndc loadkeys command.
(Those commands can still be used when there are unscheduled key changes, however.)

Using the auto-dnssec option requires the zone to be configured to allow dynamic updates, by adding
an allow-update or update-policy statement to the zone configuration. If this has not been done, the
configuration will fail.

4.9.4 Private-type records

The state of the signing process is signaled by private-type records (with a default type value of 65534).
When signing is complete, these records will have a nonzero value for the final octet (for those records
which have a nonzero initial octet).

The private type record format: If the first octet is non-zero then the record indicates that the zone needs
to be signed with the key matching the record, or that all signatures that match the record should be
removed.

algorithm (octet 1)
key id in network order (octet 2 and 3)
removal flag (octet 4)
complete flag (octet 5)

26

CHAPTER 4. ADVANCED DNS FEATURES4.9. DNSSEC, DYNAMIC ZONES, AND AUTOMATIC SIGNING

Only records flagged as ”complete” can be removed via dynamic update. Attempts to remove other
private type records will be silently ignored.

If the first octet is zero (this is a reserved algorithm number that should never appear in a DNSKEY
record) then the record indicates changes to the NSEC3 chains are in progress. The rest of the record
contains an NSEC3PARAM record. The flag field tells what operation to perform based on the flag bits.

0x01 OPTOUT
0x80 CREATE
0x40 REMOVE
0x20 NONSEC

4.9.5 DNSKEY rollovers

As with insecure-to-secure conversions, rolling DNSSEC keys can be done in two ways: using a dynamic
DNS update, or the auto-dnssec zone option.

4.9.6 Dynamic DNS update method

To perform key rollovers via dynamic update, you need to add the K* files for the new keys so that
named can find them. You can then add the new DNSKEY RRs via dynamic update. named will then
cause the zone to be signed with the new keys. When the signing is complete the private type records
will be updated so that the last octet is non zero.

If this is for a KSK you need to inform the parent and any trust anchor repositories of the new KSK.

You should then wait for the maximum TTL in the zone before removing the old DNSKEY. If it is a KSK
that is being updated, you also need to wait for the DS RRset in the parent to be updated and its TTL to
expire. This ensures that all clients will be able to verify at least one signature when you remove the old
DNSKEY.

The old DNSKEY can be removed via UPDATE. Take care to specify the correct key. named will clean
out any signatures generated by the old key after the update completes.

4.9.7 Automatic key rollovers

When a new key reaches its activation date (as set by dnssec-keygen or dnssec-settime), if the auto-
dnssec zone option is set to maintain, named will automatically carry out the key rollover. If the key’s
algorithm has not previously been used to sign the zone, then the zone will be fully signed as quickly as
possible. However, if the new key is replacing an existing key of the same algorithm, then the zone will
be re-signed incrementally, with signatures from the old key being replaced with signatures from the
new key as their signature validity periods expire. By default, this rollover completes in 30 days, after
which it will be safe to remove the old key from the DNSKEY RRset.

4.9.8 NSEC3PARAM rollovers via UPDATE

Add the new NSEC3PARAM record via dynamic update. When the new NSEC3 chain has been gener-
ated, the NSEC3PARAM flag field will be zero. At this point you can remove the old NSEC3PARAM
record. The old chain will be removed after the update request completes.

27

4.10. DYNAMIC TRUST ANCHOR MANAGEMENT CHAPTER 4. ADVANCED DNS FEATURES

4.9.9 Converting from NSEC to NSEC3

To do this, you just need to add an NSEC3PARAM record. When the conversion is complete, the NSEC
chain will have been removed and the NSEC3PARAM record will have a zero flag field. The NSEC3
chain will be generated before the NSEC chain is destroyed.

4.9.10 Converting from NSEC3 to NSEC

To do this, use nsupdate to remove all NSEC3PARAM records with a zero flag field. The NSEC chain
will be generated before the NSEC3 chain is removed.

4.9.11 Converting from secure to insecure

To convert a signed zone to unsigned using dynamic DNS, delete all the DNSKEY records from the zone
apex using nsupdate. All signatures, NSEC or NSEC3 chains, and associated NSEC3PARAM records
will be removed automatically. This will take place after the update request completes.

This requires the dnssec-secure-to-insecure option to be set to yes in named.conf.

In addition, if the auto-dnssec maintain zone statement is used, it should be removed or changed to
allow instead (or it will re-sign).

4.9.12 Periodic re-signing

In any secure zone which supports dynamic updates, named will periodically re-sign RRsets which
have not been re-signed as a result of some update action. The signature lifetimes will be adjusted so as
to spread the re-sign load over time rather than all at once.

4.9.13 NSEC3 and OPTOUT

named only supports creating new NSEC3 chains where all the NSEC3 records in the zone have the
same OPTOUT state. named supports UPDATES to zones where the NSEC3 records in the chain have
mixed OPTOUT state. named does not support changing the OPTOUT state of an individual NSEC3
record, the entire chain needs to be changed if the OPTOUT state of an individual NSEC3 needs to be
changed.

4.10 Dynamic Trust Anchor Management

BIND 9.7.0 introduces support for RFC 5011, dynamic trust anchor management. Using this feature
allows named to keep track of changes to critical DNSSEC keys without any need for the operator to
make changes to configuration files.

4.10.1 Validating Resolver

To configure a validating resolver to use RFC 5011 to maintain a trust anchor, configure the trust anchor
using a managed-keys statement. Information about this can be found in Section 6.2.24.

28

CHAPTER 4. ADVANCED DNS FEATURES 4.11. PKCS #11 (CRYPTOKI) SUPPORT

4.10.2 Authoritative Server

To set up an authoritative zone for RFC 5011 trust anchor maintenance, generate two (or more) key
signing keys (KSKs) for the zone. Sign the zone with one of them; this is the ”active” KSK. All KSK’s
which do not sign the zone are ”stand-by” keys.

Any validating resolver which is configured to use the active KSK as an RFC 5011-managed trust anchor
will take note of the stand-by KSKs in the zone’s DNSKEY RRset, and store them for future reference.
The resolver will recheck the zone periodically, and after 30 days, if the new key is still there, then the
key will be accepted by the resolver as a valid trust anchor for the zone. Any time after this 30-day
acceptance timer has completed, the active KSK can be revoked, and the zone can be ”rolled over” to
the newly accepted key.

The easiest way to place a stand-by key in a zone is to use the ”smart signing” features of dnssec-keygen
and dnssec-signzone. If a key with a publication date in the past, but an activation date which is unset
or in the future, ” dnssec-signzone -S” will include the DNSKEY record in the zone, but will not sign
with it:

$ dnssec-keygen -K keys -f KSK -P now -A now+2y example.net
$ dnssec-signzone -S -K keys example.net

To revoke a key, the new command dnssec-revoke has been added. This adds the REVOKED bit to the
key flags and re-generates the K*.key and K*.private files.

After revoking the active key, the zone must be signed with both the revoked KSK and the new active
KSK. (Smart signing takes care of this automatically.)

Once a key has been revoked and used to sign the DNSKEY RRset in which it appears, that key will
never again be accepted as a valid trust anchor by the resolver. However, validation can proceed using
the new active key (which had been accepted by the resolver when it was a stand-by key).

See RFC 5011 for more details on key rollover scenarios.

When a key has been revoked, its key ID changes, increasing by 128, and wrapping around at 65535. So,
for example, the key ”Kexample.com.+005+10000” becomes ”Kexample.com.+005+10128”.

If two keys have ID’s exactly 128 apart, and one is revoked, then the two key ID’s will collide, causing
several problems. To prevent this, dnssec-keygen will not generate a new key if another key is present
which may collide. This checking will only occur if the new keys are written to the same directory which
holds all other keys in use for that zone.

Older versions of BIND 9 did not have this precaution. Exercise caution if using key revocation on keys
that were generated by previous releases, or if using keys stored in multiple directories or on multiple
machines.

It is expected that a future release of BIND 9 will address this problem in a different way, by storing
revoked keys with their original unrevoked key ID’s.

4.11 PKCS #11 (Cryptoki) support

PKCS #11 (Public Key Cryptography Standard #11) defines a platform- independent API for the control
of hardware security modules (HSMs) and other cryptographic support devices.

BIND 9 is known to work with two HSMs: The Sun SCA 6000 cryptographic acceleration board, tested
under Solaris x86, and the AEP Keyper network-attached key storage device, tested with Debian Linux,
Solaris x86 and Windows Server 2003.

29

4.11. PKCS #11 (CRYPTOKI) SUPPORT CHAPTER 4. ADVANCED DNS FEATURES

4.11.1 Prerequisites

See the HSM vendor documentation for information about installing, initializing, testing and trou-
bleshooting the HSM.

BIND 9 uses OpenSSL for cryptography, but stock OpenSSL does not yet fully support PKCS #11. How-
ever, a PKCS #11 engine for OpenSSL is available from the OpenSolaris project. It has been modified
by ISC to work with with BIND 9, and to provide new features such as PIN management and key by
reference.

The patched OpenSSL depends on a ”PKCS #11 provider”. This is a shared library object, providing a
low-level PKCS #11 interface to the HSM hardware. It is dynamically loaded by OpenSSL at runtime.
The PKCS #11 provider comes from the HSM vendor, and and is specific to the HSM to be controlled.

There are two ”flavors” of PKCS #11 support provided by the patched OpenSSL, one of which must be
chosen at configuration time. The correct choice depends on the HSM hardware:

• Use ’crypto-accelerator’ with HSMs that have hardware cryptographic acceleration features, such
as the SCA 6000 board. This causes OpenSSL to run all supported cryptographic operations in the
HSM.

• Use ’sign-only’ with HSMs that are designed to function primarily as secure key storage devices,
but lack hardware acceleration. These devices are highly secure, but are not necessarily any faster
at cryptography than the system CPU — often, they are slower. It is therefore most efficient to use
them only for those cryptographic functions that require access to the secured private key, such as
zone signing, and to use the system CPU for all other computationally-intensive operations. The
AEP Keyper is an example of such a device.

The modified OpenSSL code is included in the BIND 9.7.0 release, in the form of a context diff against
the latest OpenSSL.

NOTE

The latest OpenSSL version at the time of the BIND release is 0.9.8l. ISC will
provide an updated patch as new versions of OpenSSL are released. The ver-
sion number in the following examples is expected to change.

Before building BIND 9 with PKCS #11 support, it will be necessary to build OpenSSL with this patch
in place and inform it of the path to the HSM-specific PKCS #11 provider library.

Obtain OpenSSL 0.9.8l:

$ wget http://www.openssl.org/source/openssl-0.9.8l.tar.gz

Extract the tarball:

$ tar zxf openssl-0.9.8l.tar.gz

Apply the patch from the BIND 9 release:

$ patch -p1 -d openssl-0.9.8l \
< bind-9.7.0/bin/pkcs11/openssl-0.9.8l-patch

30

CHAPTER 4. ADVANCED DNS FEATURES 4.11. PKCS #11 (CRYPTOKI) SUPPORT

NOTE

(Note that the patch file may not be compatible with the ”patch” utility on all
operating systems. You may need to install GNU patch.)

When building OpenSSL, place it in a non-standard location so that it does not interfere with OpenSSL li-
braries elsewhere on the system. In the following examples, we choose to install into ”/opt/pkcs11/usr”.
We will use this location when we configure BIND 9.

4.11.1.1 Building OpenSSL for the AEP Keyper on Linux

The AEP Keyper is a highly secure key storage device, but does not provide hardware cryptographic
acceleration. It can carry out cryptographic operations, but it is probably slower than your system’s
CPU. Therefore, we choose the ’sign-only’ flavor when building OpenSSL.

The Keyper-specific PKCS #11 provider library is delivered with the Keyper software. In this example,
we place it /opt/pkcs11/usr/lib:

$ cp pkcs11.GCC4.0.2.so.4.05 /opt/pkcs11/usr/lib/libpkcs11.so

This library is only available for Linux as a 32-bit binary. If we are compiling on a 64-bit Linux system,
it is necessary to force a 32-bit build, by specifying -m32 in the build options.

Finally, the Keyper library requires threads, so we must specify -pthread.

$ cd openssl-0.9.8l
$./Configure linux-generic32 -m32 -pthread \

--pk11-libname=/opt/pkcs11/usr/lib/libpkcs11.so \
--pk11-flavor=sign-only \
--prefix=/opt/pkcs11/usr

After configuring, run ”make” and ”make test”. If ”make test” fails with ”pthread atfork() not found”,
you forgot to add the -pthread above.

4.11.1.2 Building OpenSSL for the SCA 6000 on Solaris

The SCA-6000 PKCS #11 provider is installed as a system library, libpkcs11. It is a true crypto accelerator,
up to 4 times faster than any CPU, so the flavor shall be ’crypto-accelerator’.

In this example, we are building on Solaris x86 on an AMD64 system.

$ cd openssl-0.9.8l
$./Configure solaris64-x86_64-cc \

--pk11-libname=/usr/lib/64/libpkcs11.so \
--pk11-flavor=crypto-accelerator \
--prefix=/opt/pkcs11/usr

(For a 32-bit build, use ”solaris-x86-cc” and /usr/lib/libpkcs11.so.)

After configuring, run make and make test.

Once you have built OpenSSL, run ”apps/openssl engine pkcs11” to confirm that PKCS #11 support
was compiled in correctly. The output should be one of the following lines, depending on the flavor
selected:

31

4.11. PKCS #11 (CRYPTOKI) SUPPORT CHAPTER 4. ADVANCED DNS FEATURES

(pkcs11) PKCS #11 engine support (sign only)

Or:

(pkcs11) PKCS #11 engine support (crypto accelerator)

Next, run ”apps/openssl engine pkcs11 -t”. This will attempt to initialize the PKCS #11 engine. If it is
able to do so successfully, it will report “[available]”.

If the output is correct, run ”make install” which will install the modified OpenSSL suite to /opt/
pkcs11/usr.

4.11.2 Building BIND 9 with PKCS#11

When building BIND 9, the location of the custom-built OpenSSL library must be specified via configure.

4.11.2.1 Configuring BIND 9 for Linux

To link with the PKCS #11 provider, threads must be enabled in the BIND 9 build.

The PKCS #11 library for the AEP Keyper is currently only available as a 32-bit binary. If we are building
on a 64-bit host, we must force a 32-bit build by adding ”-m32” to the CC options on the ”configure”
command line.

$ cd ../bind-9.7.0
$./configure CC="gcc -m32" --enable-threads \

--with-openssl=/opt/pkcs11/usr \
--with-pkcs11=/opt/pkcs11/usr/lib/libpkcs11.so

4.11.2.2 Configuring BIND 9 for Solaris

To link with the PKCS #11 provider, threads must be enabled in the BIND 9 build.

$ cd ../bind-9.7.0
$./configure CC="cc -xarch=amd64" --enable-threads \

--with-openssl=/opt/pkcs11/usr \
--with-pkcs11=/usr/lib/64/libpkcs11.so

(For a 32-bit build, omit CC=”cc -xarch=amd64”.)

If configure complains about OpenSSL not working, you may have a 32/64-bit architecture mismatch.
Or, you may have incorrectly specified the path to OpenSSL (it should be the same as the –prefix argu-
ment to the OpenSSL Configure).

After configuring, run ”make”, ”make test” and ”make install”.

4.11.3 PKCS #11 Tools

BIND 9 includes a minimal set of tools to operate the HSM, including pkcs11-keygen to generate a new
key pair within the HSM, pkcs11-list to list objects currently available, and pkcs11-destroy to remove
objects.

32

CHAPTER 4. ADVANCED DNS FEATURES 4.11. PKCS #11 (CRYPTOKI) SUPPORT

In UNIX/Linux builds, these tools are built only if BIND 9 is configured with the –with-pkcs11 option.
(NOTE: If –with-pkcs11 is set to ”yes”, rather than to the path of the PKCS #11 provider, then the tools
will be built but the provider will be left undefined. Use the -m option or the PKCS11 PROVIDER
environment variable to specify the path to the provider.)

4.11.4 Using the HSM

First, we must set up the runtime environment so the OpenSSL and PKCS #11 libraries can be loaded:

$ export LD_LIBRARY_PATH=/opt/pkcs11/usr/lib:${LD_LIBRARY_PATH}

When operating an AEP Keyper, it is also necessary to specify the location of the ”machine” file, which
stores information about the Keyper for use by PKCS #11 provider library. If the machine file is in /
opt/Keyper/PKCS11Provider/machine, use:

$ export KEYPER_LIBRARY_PATH=/opt/Keyper/PKCS11Provider

These environment variables must be set whenever running any tool that uses the HSM, including
pkcs11-keygen, pkcs11-list, pkcs11-destroy, dnssec-keyfromlabel, dnssec-signzone, dnssec-keygen(which
will use the HSM for random number generation), and named.

We can now create and use keys in the HSM. In this case, we will create a 2048 bit key and give it the
label ”sample-ksk”:

$ pkcs11-keygen -b 2048 -l sample-ksk

To confirm that the key exists:

$ pkcs11-list
Enter PIN:
object[0]: handle 2147483658 class 3 label[8] ’sample-ksk’ id[0]
object[1]: handle 2147483657 class 2 label[8] ’sample-ksk’ id[0]

Before using this key to sign a zone, we must create a pair of BIND 9 key files. The ”dnssec-keyfromlabel”
utility does this. In this case, we will be using the HSM key ”sample-ksk” as the key-signing key for
”example.net”:

$ dnssec-keyfromlabel -l sample-ksk -f KSK example.net

The resulting K*.key and K*.private files can now be used to sign the zone. Unlike normal K* files,
which contain both public and private key data, these files will contain only the public key data, plus an
identifier for the private key which remains stored within the HSM. The HSM handles signing with the
private key.

If you wish to generate a second key in the HSM for use as a zone-signing key, follow the same pro-
cedure above, using a different keylabel, a smaller key size, and omitting ”-f KSK” from the dnssec-
keyfromlabel arguments:

$ pkcs11-keygen -b 1024 -l sample-zsk
$ dnssec-keyfromlabel -l sample-zsk example.net

Alternatively, you may prefer to generate a conventional on-disk key, using dnssec-keygen:

33

4.11. PKCS #11 (CRYPTOKI) SUPPORT CHAPTER 4. ADVANCED DNS FEATURES

$ dnssec-keygen example.net

This provides less security than an HSM key, but since HSMs can be slow or cumbersome to use for
security reasons, it may be more efficient to reserve HSM keys for use in the less frequent key-signing
operation. The zone-signing key can be rolled more frequently, if you wish, to compensate for a reduc-
tion in key security.

Now you can sign the zone. (Note: If not using the -S option to dnssec-signzone, it will be necessary to
add the contents of both K*.key files to the zone master file before signing it.)

$ dnssec-signzone -S example.net
Enter PIN:
Verifying the zone using the following algorithms:
NSEC3RSASHA1.
Zone signing complete:
Algorithm: NSEC3RSASHA1: ZSKs: 1, KSKs: 1 active, 0 revoked, 0 stand-by
example.net.signed

4.11.5 Specifying the engine on the command line

The OpenSSL engine can be specified in named and all of the BIND dnssec-* tools by using the ”-E
<engine>” command line option. If BIND 9 is built with the –with-pkcs11 option, this option defaults
to ”pkcs11”. Specifying the engine will generally not be necessary unless for some reason you wish to
use a different OpenSSL engine.

If you wish to disable use of the ”pkcs11” engine — for troubleshooting purposes, or because the HSM
is unavailable — set the engine to the empty string. For example:

$ dnssec-signzone -E ’’ -S example.net

This causes dnssec-signzone to run as if it were compiled without the –with-pkcs11 option.

4.11.6 Running named with automatic zone re-signing

If you want named to dynamically re-sign zones using HSM keys, and/or to to sign new records inserted
via nsupdate, then named must have access to the HSM PIN. This can be accomplished by placing the
PIN into the openssl.cnf file (in the above examples, /opt/pkcs11/usr/ssl/openssl.cnf).

The location of the openssl.cnf file can be overridden by setting the OPENSSL CONF environment vari-
able before running named.

Sample openssl.cnf:

openssl_conf = openssl_def
[openssl_def]
engines = engine_section
[engine_section]
pkcs11 = pkcs11_section
[pkcs11_section]
PIN = <PLACE PIN HERE>

This will also allow the dnssec-* tools to access the HSM without PIN entry. (The pkcs11-* tools access
the HSM directly, not via OpenSSL, so a PIN will still be required to use them.)

34

CHAPTER 4. ADVANCED DNS FEATURES 4.12. IPV6 SUPPORT IN BIND 9

WARNING

Placing the HSM’s PIN in a text file in this manner may reduce the security ad-
vantage of using an HSM. Be sure this is what you want to do before configuring
OpenSSL in this way.

4.12 IPv6 Support in BIND 9

BIND 9 fully supports all currently defined forms of IPv6 name to address and address to name lookups.
It will also use IPv6 addresses to make queries when running on an IPv6 capable system.

For forward lookups, BIND 9 supports only AAAA records. RFC 3363 deprecated the use of A6 records,
and client-side support for A6 records was accordingly removed from BIND 9. However, authoritative
BIND 9 name servers still load zone files containing A6 records correctly, answer queries for A6 records,
and accept zone transfer for a zone containing A6 records.

For IPv6 reverse lookups, BIND 9 supports the traditional ”nibble” format used in the ip6.arpa domain,
as well as the older, deprecated ip6.int domain. Older versions of BIND 9 supported the ”binary label”
(also known as ”bitstring”) format, but support of binary labels has been completely removed per RFC
3363. Many applications in BIND 9 do not understand the binary label format at all any more, and will
return an error if given. In particular, an authoritative BIND 9 name server will not load a zone file
containing binary labels.

For an overview of the format and structure of IPv6 addresses, see Section A.2.1.

4.12.1 Address Lookups Using AAAA Records

The IPv6 AAAA record is a parallel to the IPv4 A record, and, unlike the deprecated A6 record, specifies
the entire IPv6 address in a single record. For example,

$ORIGIN example.com.
host 3600 IN AAAA 2001:db8::1

Use of IPv4-in-IPv6 mapped addresses is not recommended. If a host has an IPv4 address, use an A
record, not a AAAA, with ::ffff:192.168.42.1 as the address.

4.12.2 Address to Name Lookups Using Nibble Format

When looking up an address in nibble format, the address components are simply reversed, just as in
IPv4, and ip6.arpa. is appended to the resulting name. For example, the following would provide
reverse name lookup for a host with address 2001:db8::1.

$ORIGIN 0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa.
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 14400 IN PTR (

host.example.com.)

35

Chapter 5

The BIND 9 Lightweight Resolver

5.1 The Lightweight Resolver Library

Traditionally applications have been linked with a stub resolver library that sends recursive DNS queries
to a local caching name server.

IPv6 once introduced new complexity into the resolution process, such as following A6 chains and
DNAME records, and simultaneous lookup of IPv4 and IPv6 addresses. Though most of the complexity
was then removed, these are hard or impossible to implement in a traditional stub resolver.

BIND 9 therefore can also provide resolution services to local clients using a combination of a lightweight
resolver library and a resolver daemon process running on the local host. These communicate using a
simple UDP-based protocol, the ”lightweight resolver protocol” that is distinct from and simpler than
the full DNS protocol.

5.2 Running a Resolver Daemon

To use the lightweight resolver interface, the system must run the resolver daemon lwresd or a local
name server configured with a lwres statement.

By default, applications using the lightweight resolver library will make UDP requests to the IPv4 loop-
back address (127.0.0.1) on port 921. The address can be overridden by lwserver lines in /etc/resolv.
conf.

The daemon currently only looks in the DNS, but in the future it may use other sources such as /etc/
hosts, NIS, etc.

The lwresd daemon is essentially a caching-only name server that responds to requests using the lightweight
resolver protocol rather than the DNS protocol. Because it needs to run on each host, it is designed to
require no or minimal configuration. Unless configured otherwise, it uses the name servers listed on
nameserver lines in /etc/resolv.conf as forwarders, but is also capable of doing the resolution
autonomously if none are specified.

The lwresd daemon may also be configured with a named.conf style configuration file, in /etc/
lwresd.conf by default. A name server may also be configured to act as a lightweight resolver dae-
mon using the lwres statement in named.conf.

37

Chapter 6

BIND 9 Configuration Reference

BIND 9 configuration is broadly similar to BIND 8; however, there are a few new areas of configuration,
such as views. BIND 8 configuration files should work with few alterations in BIND 9, although more
complex configurations should be reviewed to check if they can be more efficiently implemented using
the new features found in BIND 9.

BIND 4 configuration files can be converted to the new format using the shell script contrib/named-
bootconf/named-bootconf.sh.

6.1 Configuration File Elements

Following is a list of elements used throughout the BIND configuration file documentation:

acl name The name of an address match list as defined by the acl
statement.

address match list A list of one or more ip addr, ip prefix, key id, or
acl name elements, see Section 6.1.1.

masters list A named list of one or more ip addr with optional key id
and/or ip port. A masters list may include other
masters lists.

domain name A quoted string which will be used as a DNS name, for exam-
ple ”my.test.domain”.

namelist A list of one or more domain name elements.
dotted decimal One to four integers valued 0 through 255 separated by dots

(‘.’), such as 123, 45.67 or 89.123.45.67.
ip4 addr An IPv4 address with exactly four elements in

dotted decimal notation.
ip6 addr An IPv6 address, such as 2001:db8::1234. IPv6 scoped ad-

dresses that have ambiguity on their scope zones must be
disambiguated by an appropriate zone ID with the percent
character (‘%’) as delimiter. It is strongly recommended to
use string zone names rather than numeric identifiers, in or-
der to be robust against system configuration changes. How-
ever, since there is no standard mapping for such names and
identifier values, currently only interface names as link iden-
tifiers are supported, assuming one-to-one mapping between
interfaces and links. For example, a link-local address fe80::1
on the link attached to the interface ne0 can be specified as
fe80::1%ne0. Note that on most systems link-local addresses
always have the ambiguity, and need to be disambiguated.

ip addr An ip4 addr or ip6 addr.

39

6.1. CONFIGURATION FILE ELEMENTS CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

ip port An IP port number. The number is limited to 0 through 65535,
with values below 1024 typically restricted to use by processes
running as root. In some cases, an asterisk (‘*’) character can
be used as a placeholder to select a random high-numbered
port.

ip prefix An IP network specified as an ip addr, followed by a slash
(‘/’) and then the number of bits in the netmask. Trailing
zeros in a ip addr may omitted. For example, 127/8 is the
network 127.0.0.0 with netmask 255.0.0.0 and 1.2.3.0/28 is net-
work 1.2.3.0 with netmask 255.255.255.240.
When specifying a prefix involving a IPv6 scoped address the
scope may be omitted. In that case the prefix will match pack-
ets from any scope.

key id A domain name representing the name of a shared key, to be
used for transaction security.

key list A list of one or more key ids, separated by semicolons and
ending with a semicolon.

number A non-negative 32-bit integer (i.e., a number between 0 and
4294967295, inclusive). Its acceptable value might further be
limited by the context in which it is used.

path name A quoted string which will be used as a pathname, such as
zones/master/my.test.domain.

port list A list of an ip port or a port range. A port range is
specified in the form of range followed by two ip ports,
port low and port high, which represents port numbers
from port low through port high, inclusive. port low
must not be larger than port high. For example, range
1024 65535 represents ports from 1024 through 65535. In
either case an asterisk (‘*’) character is not allowed as a valid
ip port.

size spec A number, the word unlimited, or the word default.
An unlimited size spec requests unlimited use, or the
maximum available amount. A default size spec uses
the limit that was in force when the server was started.
A number can optionally be followed by a scaling factor: K
or k for kilobytes, M or m for megabytes, and G or g for gi-
gabytes, which scale by 1024, 1024*1024, and 1024*1024*1024
respectively.
The value must be representable as a 64-bit unsigned integer
(0 to 18446744073709551615, inclusive). Using unlimited is
the best way to safely set a really large number.

yes or no Either yes or no. The words true and false are also ac-
cepted, as are the numbers 1 and 0.

dialup option One of yes, no, notify, notify-passive, refresh
or passive. When used in a zone, notify-passive,
refresh, and passive are restricted to slave and stub zones.

6.1.1 Address Match Lists

6.1.1.1 Syntax

address_match_list = address_match_list_element ;
[address_match_list_element; ...]

address_match_list_element = [!] (ip_address [/length] |

40

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.1. CONFIGURATION FILE ELEMENTS

key key_id | acl_name | { address_match_list })

6.1.1.2 Definition and Usage

Address match lists are primarily used to determine access control for various server operations. They
are also used in the listen-on and sortlist statements. The elements which constitute an address match
list can be any of the following:

• an IP address (IPv4 or IPv6)

• an IP prefix (in ‘/’ notation)

• a key ID, as defined by the key statement

• the name of an address match list defined with the acl statement

• a nested address match list enclosed in braces

Elements can be negated with a leading exclamation mark (‘!’), and the match list names ”any”, ”none”,
”localhost”, and ”localnets” are predefined. More information on those names can be found in the
description of the acl statement.

The addition of the key clause made the name of this syntactic element something of a misnomer, since
security keys can be used to validate access without regard to a host or network address. Nonetheless,
the term ”address match list” is still used throughout the documentation.

When a given IP address or prefix is compared to an address match list, the comparison takes place in
approximately O(1) time. However, key comparisons require that the list of keys be traversed until a
matching key is found, and therefore may be somewhat slower.

The interpretation of a match depends on whether the list is being used for access control, defining
listen-on ports, or in a sortlist, and whether the element was negated.

When used as an access control list, a non-negated match allows access and a negated match denies ac-
cess. If there is no match, access is denied. The clauses allow-notify, allow-recursion, allow-recursion-
on, allow-query, allow-query-on, allow-query-cache, allow-query-cache-on, allow-transfer, allow-
update, allow-update-forwarding, and blackhole all use address match lists. Similarly, the listen-on
option will cause the server to refuse queries on any of the machine’s addresses which do not match the
list.

Order of insertion is significant. If more than one element in an ACL is found to match a given IP
address or prefix, preference will be given to the one that came first in the ACL definition. Because of
this first-match behavior, an element that defines a subset of another element in the list should come
before the broader element, regardless of whether either is negated. For example, in 1.2.3/24; ! 1.2.3.13;
the 1.2.3.13 element is completely useless because the algorithm will match any lookup for 1.2.3.13 to the
1.2.3/24 element. Using ! 1.2.3.13; 1.2.3/24 fixes that problem by having 1.2.3.13 blocked by the negation,
but all other 1.2.3.* hosts fall through.

6.1.2 Comment Syntax

The BIND 9 comment syntax allows for comments to appear anywhere that whitespace may appear in
a BIND configuration file. To appeal to programmers of all kinds, they can be written in the C, C++, or
shell/perl style.

6.1.2.1 Syntax

/* This is a BIND comment as in C */

// This is a BIND comment as in C++

41

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

This is a BIND comment as in common UNIX shells
and perl

6.1.2.2 Definition and Usage

Comments may appear anywhere that whitespace may appear in a BIND configuration file.

C-style comments start with the two characters /* (slash, star) and end with */ (star, slash). Because
they are completely delimited with these characters, they can be used to comment only a portion of a
line or to span multiple lines.

C-style comments cannot be nested. For example, the following is not valid because the entire comment
ends with the first */:

/* This is the start of a comment.
This is still part of the comment.

/* This is an incorrect attempt at nesting a comment. */
This is no longer in any comment. */

C++-style comments start with the two characters // (slash, slash) and continue to the end of the phys-
ical line. They cannot be continued across multiple physical lines; to have one logical comment span
multiple lines, each line must use the // pair. For example:

// This is the start of a comment. The next line
// is a new comment, even though it is logically
// part of the previous comment.

Shell-style (or perl-style, if you prefer) comments start with the character # (number sign) and continue
to the end of the physical line, as in C++ comments. For example:

This is the start of a comment. The next line
is a new comment, even though it is logically
part of the previous comment.

WARNING

You cannot use the semicolon (‘;’) character to start a comment such as you
would in a zone file. The semicolon indicates the end of a configuration state-
ment.

6.2 Configuration File Grammar

A BIND 9 configuration consists of statements and comments. Statements end with a semicolon. State-
ments and comments are the only elements that can appear without enclosing braces. Many statements
contain a block of sub-statements, which are also terminated with a semicolon.

The following statements are supported:

acl defines a named IP address matching list, for access control
and other uses.

controls declares control channels to be used by the rndc utility.
include includes a file.
key specifies key information for use in authentication and autho-

rization using TSIG.

42

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

logging specifies what the server logs, and where the log messages are
sent.

lwres configures named to also act as a light-weight resolver dae-
mon (lwresd).

masters defines a named masters list for inclusion in stub and slave
zone masters clauses.

options controls global server configuration options and sets defaults
for other statements.

server sets certain configuration options on a per-server basis.
statistics-channels declares communication channels to get access to named

statistics.
trusted-keys defines trusted DNSSEC keys.
managed-keys lists DNSSEC keys to be kept up to date using RFC 5011 trust

anchor maintenance.
view defines a view.
zone defines a zone.

The logging and options statements may only occur once per configuration.

6.2.1 acl Statement Grammar

acl acl-name {
address_match_list

};

6.2.2 acl Statement Definition and Usage

The acl statement assigns a symbolic name to an address match list. It gets its name from a primary use
of address match lists: Access Control Lists (ACLs).

Note that an address match list’s name must be defined with acl before it can be used elsewhere; no
forward references are allowed.

The following ACLs are built-in:

any Matches all hosts.
none Matches no hosts.
localhost Matches the IPv4 and IPv6 addresses of all network interfaces on

the system.
localnets Matches any host on an IPv4 or IPv6 network for which the system

has an interface. Some systems do not provide a way to determine
the prefix lengths of local IPv6 addresses. In such a case, localnets
only matches the local IPv6 addresses, just like localhost.

6.2.3 controls Statement Grammar

controls {
[inet (ip_addr | *) [port ip_port]

allow { address_match_list }
keys { key_list };]

[inet ...;]

43

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

[unix path perm number owner number group number
keys { key_list };]

[unix ...;]
};

6.2.4 controls Statement Definition and Usage

The controls statement declares control channels to be used by system administrators to control the
operation of the name server. These control channels are used by the rndc utility to send commands to
and retrieve non-DNS results from a name server.

An inet control channel is a TCP socket listening at the specified ip port on the specified ip addr, which
can be an IPv4 or IPv6 address. An ip addr of * (asterisk) is interpreted as the IPv4 wildcard address;
connections will be accepted on any of the system’s IPv4 addresses. To listen on the IPv6 wildcard
address, use an ip addr of ::. If you will only use rndc on the local host, using the loopback address
(127.0.0.1 or ::1) is recommended for maximum security.

If no port is specified, port 953 is used. The asterisk ”*” cannot be used for ip port.

The ability to issue commands over the control channel is restricted by the allow and keys clauses.
Connections to the control channel are permitted based on the address match list. This is for simple IP
address based filtering only; any key id elements of the address match list are ignored.

A unix control channel is a UNIX domain socket listening at the specified path in the file system. Access
to the socket is specified by the perm, owner and group clauses. Note on some platforms (SunOS and
Solaris) the permissions (perm) are applied to the parent directory as the permissions on the socket itself
are ignored.

The primary authorization mechanism of the command channel is the key list, which contains a list of
key ids. Each key id in the key list is authorized to execute commands over the control channel. See
[Remote Name Daemon Control application] in Section 3.3.1.2) for information about configuring keys
in rndc.

If no controls statement is present, named will set up a default control channel listening on the loopback
address 127.0.0.1 and its IPv6 counterpart ::1. In this case, and also when the controls statement is
present but does not have a keys clause, named will attempt to load the command channel key from the
file rndc.key in /etc (or whatever sysconfdir was specified as when BIND was built). To create a
rndc.key file, run rndc-confgen -a.

The rndc.key feature was created to ease the transition of systems from BIND 8, which did not have
digital signatures on its command channel messages and thus did not have a keys clause. It makes it
possible to use an existing BIND 8 configuration file in BIND 9 unchanged, and still have rndc work the
same way ndc worked in BIND 8, simply by executing the command rndc-confgen -a after BIND 9
is installed.

Since the rndc.key feature is only intended to allow the backward-compatible usage of BIND 8 con-
figuration files, this feature does not have a high degree of configurability. You cannot easily change the
key name or the size of the secret, so you should make a rndc.conf with your own key if you wish to
change those things. The rndc.key file also has its permissions set such that only the owner of the file
(the user that named is running as) can access it. If you desire greater flexibility in allowing other users
to access rndc commands, then you need to create a rndc.conf file and make it group readable by a
group that contains the users who should have access.

To disable the command channel, use an empty controls statement: controls { };.

6.2.5 include Statement Grammar

include filename;

44

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

6.2.6 include Statement Definition and Usage

The include statement inserts the specified file at the point where the include statement is encountered.
The include statement facilitates the administration of configuration files by permitting the reading or
writing of some things but not others. For example, the statement could include private keys that are
readable only by the name server.

6.2.7 key Statement Grammar

key key_id {
algorithm string;
secret string;

};

6.2.8 key Statement Definition and Usage

The key statement defines a shared secret key for use with TSIG (see Section 4.5) or the command
channel (see Section 6.2.4).

The key statement can occur at the top level of the configuration file or inside a view statement. Keys de-
fined in top-level key statements can be used in all views. Keys intended for use in a controls statement
(see Section 6.2.4) must be defined at the top level.

The key id, also known as the key name, is a domain name uniquely identifying the key. It can be used
in a server statement to cause requests sent to that server to be signed with this key, or in address match
lists to verify that incoming requests have been signed with a key matching this name, algorithm, and
secret.

The algorithm id is a string that specifies a security/authentication algorithm. Named supports
hmac-md5, hmac-sha1, hmac-sha224, hmac-sha256, hmac-sha384 and hmac-sha512 TSIG au-
thentication. Truncated hashes are supported by appending the minimum number of required bits pre-
ceded by a dash, e.g. hmac-sha1-80. The secret string is the secret to be used by the algorithm,
and is treated as a base-64 encoded string.

6.2.9 logging Statement Grammar

logging {
[channel channel_name {

(file path_name
[versions (number | unlimited)]
[size size spec]

| syslog syslog_facility
| stderr
| null);

[severity (critical | error | warning | notice |
info | debug [level] | dynamic);]

[print-category yes or no;]
[print-severity yes or no;]
[print-time yes or no;]

};]
[category category_name {

channel_name ; [channel_name ; ...]
};]
...

};

45

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

6.2.10 logging Statement Definition and Usage

The logging statement configures a wide variety of logging options for the name server. Its channel
phrase associates output methods, format options and severity levels with a name that can then be used
with the category phrase to select how various classes of messages are logged.

Only one logging statement is used to define as many channels and categories as are wanted. If there is
no logging statement, the logging configuration will be:

logging {
category default { default_syslog; default_debug; };
category unmatched { null; };

};

In BIND 9, the logging configuration is only established when the entire configuration file has been
parsed. In BIND 8, it was established as soon as the logging statement was parsed. When the server
is starting up, all logging messages regarding syntax errors in the configuration file go to the default
channels, or to standard error if the ”-g” option was specified.

6.2.10.1 The channel Phrase

All log output goes to one or more channels; you can make as many of them as you want.

Every channel definition must include a destination clause that says whether messages selected for the
channel go to a file, to a particular syslog facility, to the standard error stream, or are discarded. It can
optionally also limit the message severity level that will be accepted by the channel (the default is info),
and whether to include a named-generated time stamp, the category name and/or severity level (the
default is not to include any).

The null destination clause causes all messages sent to the channel to be discarded; in that case, other
options for the channel are meaningless.

The file destination clause directs the channel to a disk file. It can include limitations both on how
large the file is allowed to become, and how many versions of the file will be saved each time the file is
opened.

If you use the versions log file option, then named will retain that many backup versions of the file
by renaming them when opening. For example, if you choose to keep three old versions of the file
lamers.log, then just before it is opened lamers.log.1 is renamed to lamers.log.2, lamers.
log.0 is renamed to lamers.log.1, and lamers.log is renamed to lamers.log.0. You can say
versions unlimited to not limit the number of versions. If a size option is associated with the log file,
then renaming is only done when the file being opened exceeds the indicated size. No backup versions
are kept by default; any existing log file is simply appended.

The size option for files is used to limit log growth. If the file ever exceeds the size, then named will
stop writing to the file unless it has a versions option associated with it. If backup versions are kept, the
files are rolled as described above and a new one begun. If there is no versions option, no more data
will be written to the log until some out-of-band mechanism removes or truncates the log to less than
the maximum size. The default behavior is not to limit the size of the file.

Example usage of the size and versions options:

channel an_example_channel {
file "example.log" versions 3 size 20m;
print-time yes;
print-category yes;

};

The syslog destination clause directs the channel to the system log. Its argument is a syslog facility as
described in the syslog man page. Known facilities are kern, user, mail, daemon, auth, syslog, lpr,
news, uucp, cron, authpriv, ftp, local0, local1, local2, local3, local4, local5, local6 and local7, however

46

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

not all facilities are supported on all operating systems. How syslog will handle messages sent to this
facility is described in the syslog.conf man page. If you have a system which uses a very old version of
syslog that only uses two arguments to the openlog() function, then this clause is silently ignored.

The severity clause works like syslog’s ”priorities”, except that they can also be used if you are writing
straight to a file rather than using syslog. Messages which are not at least of the severity level given will
not be selected for the channel; messages of higher severity levels will be accepted.

If you are using syslog, then the syslog.conf priorities will also determine what eventually passes
through. For example, defining a channel facility and severity as daemon and debug but only log-
ging daemon.warning via syslog.conf will cause messages of severity info and notice to be dropped.
If the situation were reversed, with named writing messages of only warning or higher, then syslogd
would print all messages it received from the channel.

The stderr destination clause directs the channel to the server’s standard error stream. This is intended
for use when the server is running as a foreground process, for example when debugging a configura-
tion.

The server can supply extensive debugging information when it is in debugging mode. If the server’s
global debug level is greater than zero, then debugging mode will be active. The global debug level is
set either by starting the named server with the -d flag followed by a positive integer, or by running
rndc trace. The global debug level can be set to zero, and debugging mode turned off, by running rndc
notrace. All debugging messages in the server have a debug level, and higher debug levels give more
detailed output. Channels that specify a specific debug severity, for example:

channel specific_debug_level {
file "foo";
severity debug 3;

};

will get debugging output of level 3 or less any time the server is in debugging mode, regardless of
the global debugging level. Channels with dynamic severity use the server’s global debug level to
determine what messages to print.

If print-time has been turned on, then the date and time will be logged. print-time may be specified for
a syslog channel, but is usually pointless since syslog also logs the date and time. If print-category is
requested, then the category of the message will be logged as well. Finally, if print-severity is on, then
the severity level of the message will be logged. The print- options may be used in any combination,
and will always be printed in the following order: time, category, severity. Here is an example where all
three print- options are on:

28-Feb-2000 15:05:32.863 general: notice: running

There are four predefined channels that are used for named’s default logging as follows. How they are
used is described in Section 6.2.10.2.

channel default_syslog {
// send to syslog’s daemon facility
syslog daemon;
// only send priority info and higher
severity info;

channel default_debug {
// write to named.run in the working directory
// Note: stderr is used instead of "named.run" if
// the server is started with the ’-f’ option.
file "named.run";
// log at the server’s current debug level
severity dynamic;

};

channel default_stderr {
// writes to stderr

47

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

stderr;
// only send priority info and higher
severity info;

};

channel null {
// toss anything sent to this channel
null;

};

The default debug channel has the special property that it only produces output when the server’s
debug level is nonzero. It normally writes to a file called named.run in the server’s working directory.

For security reasons, when the ”-u” command line option is used, the named.run file is created only
after named has changed to the new UID, and any debug output generated while named is starting up
and still running as root is discarded. If you need to capture this output, you must run the server with
the ”-g” option and redirect standard error to a file.

Once a channel is defined, it cannot be redefined. Thus you cannot alter the built-in channels directly,
but you can modify the default logging by pointing categories at channels you have defined.

6.2.10.2 The category Phrase

There are many categories, so you can send the logs you want to see wherever you want, without
seeing logs you don’t want. If you don’t specify a list of channels for a category, then log messages in
that category will be sent to the default category instead. If you don’t specify a default category, the
following ”default default” is used:

category default { default_syslog; default_debug; };

As an example, let’s say you want to log security events to a file, but you also want keep the default
logging behavior. You’d specify the following:

channel my_security_channel {
file "my_security_file";
severity info;

};
category security {

my_security_channel;
default_syslog;
default_debug;

};

To discard all messages in a category, specify the null channel:

category xfer-out { null; };
category notify { null; };

Following are the available categories and brief descriptions of the types of log information they contain.
More categories may be added in future BIND releases.

default The default category defines the logging options for
those categories where no specific configuration has
been defined.

general The catch-all. Many things still aren’t classified into cat-
egories, and they all end up here.

database Messages relating to the databases used internally by
the name server to store zone and cache data.

security Approval and denial of requests.

48

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

config Configuration file parsing and processing.
resolver DNS resolution, such as the recursive lookups per-

formed on behalf of clients by a caching name server.
xfer-in Zone transfers the server is receiving.
xfer-out Zone transfers the server is sending.
notify The NOTIFY protocol.
client Processing of client requests.
unmatched Messages that named was unable to determine the

class of or for which there was no matching view. A
one line summary is also logged to the client category.
This category is best sent to a file or stderr, by default it
is sent to the null channel.

network Network operations.
update Dynamic updates.
update-security Approval and denial of update requests.
queries Specify where queries should be logged to.

At startup, specifying the category queries will also
enable query logging unless querylog option has been
specified.
The query log entry reports the client’s IP address and
port number, and the query name, class and type. Next
it reports whether the Recursion Desired flag was set
(+ if set, - if not set), if the query was signed (S), EDNS
was in use (E), if TCP was used (T), if DO (DNSSEC Ok)
was set (D), or if CD (Checking Disabled) was set (C).
After this the destination address the query was sent to
is reported.
client 127.0.0.1#62536: query:
www.example.com IN AAAA +SE
client ::1#62537: query:
www.example.net IN AAAA -SE

query-errors Information about queries that resulted in some failure.
dispatch Dispatching of incoming packets to the server modules

where they are to be processed.
dnssec DNSSEC and TSIG protocol processing.
lame-servers Lame servers. These are misconfigurations in remote

servers, discovered by BIND 9 when trying to query
those servers during resolution.

delegation-only Delegation only. Logs queries that have been forced to
NXDOMAIN as the result of a delegation-only zone or
a delegation-only in a hint or stub zone declaration.

49

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

edns-disabled Log queries that have been forced to use plain DNS due
to timeouts. This is often due to the remote servers not
being RFC 1034 compliant (not always returning FOR-
MERR or similar to EDNS queries and other extensions
to the DNS when they are not understood). In other
words, this is targeted at servers that fail to respond to
DNS queries that they don’t understand.
Note: the log message can also be due to packet loss.
Before reporting servers for non-RFC 1034 compliance
they should be re-tested to determine the nature of the
non-compliance. This testing should prevent or reduce
the number of false-positive reports.
Note: eventually named will have to stop treating
such timeouts as due to RFC 1034 non compliance and
start treating it as plain packet loss. Falsely classify-
ing packet loss as due to RFC 1034 non compliance im-
pacts on DNSSEC validation which requires EDNS for
the DNSSEC records to be returned.

6.2.10.3 The query-errors Category

The query-errors category is specifically intended for debugging purposes: To identify why and how
specific queries result in responses which indicate an error. Messages of this category are therefore only
logged with debug levels.

At the debug levels of 1 or higher, each response with the rcode of SERVFAIL is logged as follows:

client 127.0.0.1#61502: query failed (SERVFAIL) for www.example.com/IN/AAAA
at query.c:3880

This means an error resulting in SERVFAIL was detected at line 3880 of source file query.c. Log
messages of this level will particularly help identify the cause of SERVFAIL for an authoritative server.

At the debug levels of 2 or higher, detailed context information of recursive resolutions that resulted in
SERVFAIL is logged. The log message will look like as follows:

fetch completed at resolver.c:2970 for www.example.com/A
in 30.000183: timed out/success [domain:example.com,
referral:2,restart:7,qrysent:8,timeout:5,lame:0,neterr:0,
badresp:1,adberr:0,findfail:0,valfail:0]

The first part before the colon shows that a recursive resolution for AAAA records of www.example.com
completed in 30.000183 seconds and the final result that led to the SERVFAIL was determined at line 2970
of source file resolver.c.

The following part shows the detected final result and the latest result of DNSSEC validation. The latter
is always success when no validation attempt is made. In this example, this query resulted in SERV-
FAIL probably because all name servers are down or unreachable, leading to a timeout in 30 seconds.
DNSSEC validation was probably not attempted.

The last part enclosed in square brackets shows statistics information collected for this particular reso-
lution attempt. The domain field shows the deepest zone that the resolver reached; it is the zone where
the error was finally detected. The meaning of the other fields is summarized in the following table.

referral The number of referrals the resolver received through-
out the resolution process. In the above example this is
2, which are most likely com and example.com.

50

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

restart The number of cycles that the resolver tried remote
servers at the domain zone. In each cycle the re-
solver sends one query (possibly resending it, depend-
ing on the response) to each known name server of the
domain zone.

qrysent The number of queries the resolver sent at the domain
zone.

timeout The number of timeouts since the resolver received the
last response.

lame The number of lame servers the resolver detected at
the domain zone. A server is detected to be lame ei-
ther by an invalid response or as a result of lookup in
BIND9’s address database (ADB), where lame servers
are cached.

neterr The number of erroneous results that the resolver en-
countered in sending queries at the domain zone. One
common case is the remote server is unreachable and
the resolver receives an ICMP unreachable error mes-
sage.

badresp The number of unexpected responses (other than
lame) to queries sent by the resolver at the domain
zone.

adberr Failures in finding remote server addresses of the
domain zone in the ADB. One common case of this is
that the remote server’s name does not have any ad-
dress records.

findfail Failures of resolving remote server addresses. This is a
total number of failures throughout the resolution pro-
cess.

valfail Failures of DNSSEC validation. Validation failures are
counted throughout the resolution process (not lim-
ited to the domain zone), but should only happen in
domain.

At the debug levels of 3 or higher, the same messages as those at the debug 1 level are logged for other
errors than SERVFAIL. Note that negative responses such as NXDOMAIN are not regarded as errors
here.

At the debug levels of 4 or higher, the same messages as those at the debug 2 level are logged for other
errors than SERVFAIL. Unlike the above case of level 3, messages are logged for negative responses.
This is because any unexpected results can be difficult to debug in the recursion case.

6.2.11 lwres Statement Grammar

This is the grammar of the lwres statement in the named.conf file:

lwres {
[listen-on { ip_addr [port ip_port] ;

[ip_addr [port ip_port] ; ...] };]
[view view_name;]
[search { domain_name ; [domain_name ; ...] };]
[ndots number;]

};

51

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

6.2.12 lwres Statement Definition and Usage

The lwres statement configures the name server to also act as a lightweight resolver server. (See Sec-
tion 5.2.) There may be multiple lwres statements configuring lightweight resolver servers with different
properties.

The listen-on statement specifies a list of addresses (and ports) that this instance of a lightweight re-
solver daemon should accept requests on. If no port is specified, port 921 is used. If this statement is
omitted, requests will be accepted on 127.0.0.1, port 921.

The view statement binds this instance of a lightweight resolver daemon to a view in the DNS names-
pace, so that the response will be constructed in the same manner as a normal DNS query matching this
view. If this statement is omitted, the default view is used, and if there is no default view, an error is
triggered.

The search statement is equivalent to the search statement in /etc/resolv.conf. It provides a list of
domains which are appended to relative names in queries.

The ndots statement is equivalent to the ndots statement in /etc/resolv.conf. It indicates the min-
imum number of dots in a relative domain name that should result in an exact match lookup before
search path elements are appended.

6.2.13 masters Statement Grammar

masters name [port ip_port] { (masters_list |
ip_addr [port ip_port] [key key]) ; [...] };

6.2.14 masters Statement Definition and Usage

masters lists allow for a common set of masters to be easily used by multiple stub and slave zones.

6.2.15 options Statement Grammar

This is the grammar of the options statement in the named.conf file:

options {
[attach-cache cache_name;]
[version version_string;]
[hostname hostname_string;]
[server-id server_id_string;]
[directory path_name;]
[key-directory path_name;]
[managed-keys-directory path_name;]
[named-xfer path_name;]
[tkey-gssapi-credential principal;]
[tkey-domain domainname;]
[tkey-dhkey key_name key_tag;]
[cache-file path_name;]
[dump-file path_name;]
[bindkeys-file path_name;]
[memstatistics yes_or_no;]
[memstatistics-file path_name;]
[pid-file path_name;]
[recursing-file path_name;]
[statistics-file path_name;]
[zone-statistics yes_or_no;]

52

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

[auth-nxdomain yes_or_no;]
[deallocate-on-exit yes_or_no;]
[dialup dialup_option;]
[fake-iquery yes_or_no;]
[fetch-glue yes_or_no;]
[flush-zones-on-shutdown yes_or_no;]
[has-old-clients yes_or_no;]
[host-statistics yes_or_no;]
[host-statistics-max number;]
[minimal-responses yes_or_no;]
[multiple-cnames yes_or_no;]
[notify yes_or_no | explicit | master-only;]
[recursion yes_or_no;]
[rfc2308-type1 yes_or_no;]
[use-id-pool yes_or_no;]
[maintain-ixfr-base yes_or_no;]
[ixfr-from-differences (yes_or_no | master | slave);]
[dnssec-enable yes_or_no;]
[dnssec-validation yes_or_no;]
[dnssec-lookaside (auto |

domain trust-anchor domain);]
[dnssec-must-be-secure domain yes_or_no;]
[dnssec-accept-expired yes_or_no;]
[forward (only | first);]
[forwarders { [ip_addr [port ip_port] ; ...] };]
[dual-stack-servers [port ip_port] {

(domain_name [port ip_port] |
ip_addr [port ip_port]) ;

... };]
[check-names (master | slave | response)

(warn | fail | ignore);]
[check-dup-records (warn | fail | ignore);]
[check-mx (warn | fail | ignore);]
[check-wildcard yes_or_no;]
[check-integrity yes_or_no;]
[check-mx-cname (warn | fail | ignore);]
[check-srv-cname (warn | fail | ignore);]
[check-sibling yes_or_no;]
[allow-new-zones { yes_or_no };]
[allow-notify { address_match_list };]
[allow-query { address_match_list };]
[allow-query-on { address_match_list };]
[allow-query-cache { address_match_list };]
[allow-query-cache-on { address_match_list };]
[allow-transfer { address_match_list };]
[allow-recursion { address_match_list };]
[allow-recursion-on { address_match_list };]
[allow-update { address_match_list };]
[allow-update-forwarding { address_match_list };]
[update-check-ksk yes_or_no;]
[dnssec-dnskey-kskonly yes_or_no;]
[dnssec-secure-to-insecure yes_or_no ;]
[try-tcp-refresh yes_or_no;]
[allow-v6-synthesis { address_match_list };]
[blackhole { address_match_list };]
[use-v4-udp-ports { port_list };]
[avoid-v4-udp-ports { port_list };]
[use-v6-udp-ports { port_list };]
[avoid-v6-udp-ports { port_list };]

53

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

[listen-on [port ip_port] { address_match_list };]
[listen-on-v6 [port ip_port] { address_match_list };]
[query-source ((ip4_addr | *)

[port (ip_port | *)] |
[address (ip4_addr | *)]
[port (ip_port | *)]) ;]

[query-source-v6 ((ip6_addr | *)
[port (ip_port | *)] |
[address (ip6_addr | *)]
[port (ip_port | *)]) ;]

[use-queryport-pool yes_or_no;]
[queryport-pool-ports number;]
[queryport-pool-updateinterval number;]
[max-transfer-time-in number;]
[max-transfer-time-out number;]
[max-transfer-idle-in number;]
[max-transfer-idle-out number;]
[tcp-clients number;]
[reserved-sockets number;]
[recursive-clients number;]
[serial-query-rate number;]
[serial-queries number;]
[tcp-listen-queue number;]
[transfer-format (one-answer | many-answers);]
[transfers-in number;]
[transfers-out number;]
[transfers-per-ns number;]
[transfer-source (ip4_addr | *) [port ip_port] ;]
[transfer-source-v6 (ip6_addr | *) [port ip_port] ;]
[alt-transfer-source (ip4_addr | *) [port ip_port] ;]
[alt-transfer-source-v6 (ip6_addr | *)

[port ip_port] ;]
[use-alt-transfer-source yes_or_no;]
[notify-delay seconds ;]
[notify-source (ip4_addr | *) [port ip_port] ;]
[notify-source-v6 (ip6_addr | *) [port ip_port] ;]
[notify-to-soa yes_or_no ;]
[also-notify { ip_addr [port ip_port] ;

[ip_addr [port ip_port] ; ...] };]
[max-ixfr-log-size number;]
[max-journal-size size_spec;]
[coresize size_spec ;]
[datasize size_spec ;]
[files size_spec ;]
[stacksize size_spec ;]
[cleaning-interval number;]
[heartbeat-interval number;]
[interface-interval number;]
[statistics-interval number;]
[topology { address_match_list }];
[sortlist { address_match_list }];
[rrset-order { order_spec ; [order_spec ; ...]] };
[lame-ttl number;]
[max-ncache-ttl number;]
[max-cache-ttl number;]
[sig-validity-interval number [number] ;]
[sig-signing-nodes number ;]
[sig-signing-signatures number ;]
[sig-signing-type number ;]

54

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

[min-roots number;]
[use-ixfr yes_or_no ;]
[provide-ixfr yes_or_no;]
[request-ixfr yes_or_no;]
[treat-cr-as-space yes_or_no ;]
[min-refresh-time number ;]
[max-refresh-time number ;]
[min-retry-time number ;]
[max-retry-time number ;]
[port ip_port;]
[additional-from-auth yes_or_no ;]
[additional-from-cache yes_or_no ;]
[random-device path_name ;]
[max-cache-size size_spec ;]
[match-mapped-addresses yes_or_no;]
[filter-aaaa-on-v4 (yes_or_no | break-dnssec);]
[filter-aaaa { address_match_list };]
[preferred-glue (A | AAAA | NONE);]
[edns-udp-size number;]
[max-udp-size number;]
[root-delegation-only [exclude { namelist }] ;]
[querylog yes_or_no ;]
[disable-algorithms domain { algorithm;

[algorithm;] };]
[acache-enable yes_or_no ;]
[acache-cleaning-interval number;]
[max-acache-size size_spec ;]
[clients-per-query number ;]
[max-clients-per-query number ;]
[masterfile-format (text|raw) ;]
[empty-server name ;]
[empty-contact name ;]
[empty-zones-enable yes_or_no ;]
[disable-empty-zone zone_name ;]
[zero-no-soa-ttl yes_or_no ;]
[zero-no-soa-ttl-cache yes_or_no ;]
[deny-answer-addresses { address_match_list } [except-from { namelist }];]
[deny-answer-aliases { namelist } [except-from { namelist }];]

};

6.2.16 options Statement Definition and Usage

The options statement sets up global options to be used by BIND. This statement may appear only once
in a configuration file. If there is no options statement, an options block with each option set to its
default will be used.

attach-cache Allows multiple views to share a single cache database. Each view has its own cache
database by default, but if multiple views have the same operational policy for name resolution
and caching, those views can share a single cache to save memory and possibly improve resolution
efficiency by using this option.

The attach-cache option may also be specified in view statements, in which case it overrides the
global attach-cache option.

The cache name specifies the cache to be shared. When the named server configures views which
are supposed to share a cache, it creates a cache with the specified name for the first view of these
sharing views. The rest of the views will simply refer to the already created cache.

55

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

One common configuration to share a cache would be to allow all views to share a single cache.
This can be done by specifying the attach-cache as a global option with an arbitrary name.

Another possible operation is to allow a subset of all views to share a cache while the others to
retain their own caches. For example, if there are three views A, B, and C, and only A and B
should share a cache, specify the attach-cache option as a view A (or B)’s option, referring to the
other view name:

view "A" {
// this view has its own cache
...

};
view "B" {

// this view refers to A’s cache
attach-cache "A";

};
view "C" {

// this view has its own cache
...

};

Views that share a cache must have the same policy on configurable parameters that may affect
caching. The current implementation requires the following configurable options be consistent
among these views: check-names, cleaning-interval, dnssec-accept-expired, dnssec-validation,
max-cache-ttl, max-ncache-ttl, max-cache-size, and zero-no-soa-ttl.

Note that there may be other parameters that may cause confusion if they are inconsistent for
different views that share a single cache. For example, if these views define different sets of for-
warders that can return different answers for the same question, sharing the answer does not
make sense or could even be harmful. It is administrator’s responsibility to ensure configuration
differences in different views do not cause disruption with a shared cache.

directory The working directory of the server. Any non-absolute pathnames in the configuration file
will be taken as relative to this directory. The default location for most server output files (e.g.
named.run) is this directory. If a directory is not specified, the working directory defaults to ‘.’,
the directory from which the server was started. The directory specified should be an absolute
path.

key-directory When performing dynamic update of secure zones, the directory where the public and
private DNSSEC key files should be found, if different than the current working directory. (Note
that this option has no effect on the paths for files containing non-DNSSEC keys such as bind.
keys, rndc.key or session.key.)

managed-keys-directory The directory used to hold the files used to track managed keys. By default
it is the working directory. It there are no views then the file managed-keys.bind otherwise a
SHA256 hash of the view name is used with .mkeys extension added.

named-xfer This option is obsolete. It was used in BIND 8 to specify the pathname to the named-xfer
program. In BIND 9, no separate named-xfer program is needed; its functionality is built into the
name server.

tkey-gssapi-credential The security credential with which the server should authenticate keys requested
by the GSS-TSIG protocol. Currently only Kerberos 5 authentication is available and the credential
is a Kerberos principal which the server can acquire through the default system key file, normally
/etc/krb5.keytab. Normally this principal is of the form ”DNS/server.domain”. To use
GSS-TSIG, tkey-domain must also be set.

56

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

tkey-domain The domain appended to the names of all shared keys generated with TKEY. When a
client requests a TKEY exchange, it may or may not specify the desired name for the key. If present,
the name of the shared key will be client specified part + tkey-domain. Otherwise,
the name of the shared key will be random hex digits + tkey-domain. In most cases, the
domainname should be the server’s domain name, or an otherwise non-existent subdomain like
” tkey.domainname”. If you are using GSS-TSIG, this variable must be defined.

tkey-dhkey The Diffie-Hellman key used by the server to generate shared keys with clients using the
Diffie-Hellman mode of TKEY. The server must be able to load the public and private keys from
files in the working directory. In most cases, the keyname should be the server’s host name.

cache-file This is for testing only. Do not use.

dump-file The pathname of the file the server dumps the database to when instructed to do so with
rndc dumpdb. If not specified, the default is named dump.db.

memstatistics-file The pathname of the file the server writes memory usage statistics to on exit. If not
specified, the default is named.memstats.

pid-file The pathname of the file the server writes its process ID in. If not specified, the default is /
var/run/named/named.pid. The PID file is used by programs that want to send signals to
the running name server. Specifying pid-file none disables the use of a PID file — no file will be
written and any existing one will be removed. Note that none is a keyword, not a filename, and
therefore is not enclosed in double quotes.

recursing-file The pathname of the file the server dumps the queries that are currently recursing when
instructed to do so with rndc recursing. If not specified, the default is named.recursing.

statistics-file The pathname of the file the server appends statistics to when instructed to do so using
rndc stats. If not specified, the default is named.stats in the server’s current directory. The
format of the file is described in Section 6.4.0.1.

bindkeys-file The pathname of a file to override the built-in trusted keys provided by named. See the
discussion of dnssec-lookaside for details. If not specified, the default is /etc/bind.keys.

secroots-file The pathname of the file the server dumps security roots to when instructed to do so with
rndc secroots. If not specified, the default is named.secroots.

session-keyfile The pathname of the file into which to write a TSIG session key generated by named
for use by nsupdate -l. If not specified, the default is /var/run/named/session.key. (See
Section 6.2.28.4, and in particular the discussion of the update-policy statement’s local option
for more information about this feature.)

session-keyname The key name to use for the TSIG session key. If not specified, the default is ”local-
ddns”.

session-keyalg The algorithm to use for the TSIG session key. Valid values are hmac-sha1, hmac-
sha224, hmac-sha256, hmac-sha384, hmac-sha512 and hmac-md5. If not specified, the default is
hmac-sha256.

57

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

session-keyfile The pathname of the file into which to write a session TSIG key for use by nsupdate
-l. (See the discussion of the update-policy statement’s local option for more details on this
feature.)

port The UDP/TCP port number the server uses for receiving and sending DNS protocol traffic. The
default is 53. This option is mainly intended for server testing; a server using a port other than 53
will not be able to communicate with the global DNS.

random-device The source of entropy to be used by the server. Entropy is primarily needed for DNSSEC
operations, such as TKEY transactions and dynamic update of signed zones. This options speci-
fies the device (or file) from which to read entropy. If this is a file, operations requiring entropy
will fail when the file has been exhausted. If not specified, the default value is /dev/random (or
equivalent) when present, and none otherwise. The random-device option takes effect during the
initial configuration load at server startup time and is ignored on subsequent reloads.

preferred-glue If specified, the listed type (A or AAAA) will be emitted before other glue in the addi-
tional section of a query response. The default is not to prefer any type (NONE).

root-delegation-only Turn on enforcement of delegation-only in TLDs (top level domains) and root
zones with an optional exclude list.

DS queries are expected to be made to and be answered by delegation only zones. Such queries
and responses are treated as an exception to delegation-only processing and are not converted to
NXDOMAIN responses provided a CNAME is not discovered at the query name.

If a delegation only zone server also serves a child zone it is not always possible to determine
whether an answer comes from the delegation only zone or the child zone. SOA NS and DNSKEY
records are apex only records and a matching response that contains these records or DS is treated
as coming from a child zone. RRSIG records are also examined to see if they are signed by a child
zone or not. The authority section is also examined to see if there is evidence that the answer is
from the child zone. Answers that are determined to be from a child zone are not converted to
NXDOMAIN responses. Despite all these checks there is still a possibility of false negatives when
a child zone is being served.

Similarly false positives can arise from empty nodes (no records at the name) in the delegation
only zone when the query type is not ANY.

Note some TLDs are not delegation only (e.g. ”DE”, ”LV”, ”US” and ”MUSEUM”). This list is not
exhaustive.

options {
root-delegation-only exclude { "de"; "lv"; "us"; "museum"; };

};

disable-algorithms Disable the specified DNSSEC algorithms at and below the specified name. Multi-
ple disable-algorithms statements are allowed. Only the most specific will be applied.

dnssec-lookaside When set, dnssec-lookaside provides the validator with an alternate method to vali-
date DNSKEY records at the top of a zone. When a DNSKEY is at or below a domain specified by
the deepest dnssec-lookaside, and the normal DNSSEC validation has left the key untrusted, the
trust-anchor will be appended to the key name and a DLV record will be looked up to see if it can
validate the key. If the DLV record validates a DNSKEY (similarly to the way a DS record does)
the DNSKEY RRset is deemed to be trusted.

If dnssec-lookaside is set to auto, then built-in default values for the DLV domain and trust
anchor will be used, along with a built-in key for validation.

58

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

The default DLV key is stored in the file bind.keys, which named loads at startup if dnssec-
lookaside is set to auto. A copy of that file is installed along with BIND 9, and is current as
of the release date. If the DLV key expires, a new copy of bind.keys can be downloaded from
https://www.isc.org/solutions/dlv <>.

(To prevent problems if bind.keys is not found, the current key is also compiled in to named.
Relying on this is not recommended, however, as it requires named to be recompiled with a new
key when the DLV key expires.)

NOTE: Using bind.keys to store locally-configured keys is possible, but not recommended, as
the file will be overwritten whenever BIND 9 is re-installed or upgraded.

dnssec-must-be-secure Specify hierarchies which must be or may not be secure (signed and validated).
If yes, then named will only accept answers if they are secure. If no, then normal DNSSEC vali-
dation applies allowing for insecure answers to be accepted. The specified domain must be under
a trusted-keys or managed-keys statement, or dnssec-lookaside must be active.

6.2.16.1 Boolean Options

allow-new-zones If yes, then zones can be added at runtime via rndc addzone or deleted via rndc
delzone. The default is no.

auth-nxdomain If yes, then the AA bit is always set on NXDOMAIN responses, even if the server is
not actually authoritative. The default is no; this is a change from BIND 8. If you are using very
old DNS software, you may need to set it to yes.

deallocate-on-exit This option was used in BIND 8 to enable checking for memory leaks on exit. BIND
9 ignores the option and always performs the checks.

memstatistics Write memory statistics to the file specified by memstatistics-file at exit. The default is
no unless ’-m record’ is specified on the command line in which case it is yes.

dialup If yes, then the server treats all zones as if they are doing zone transfers across a dial-on-demand
dialup link, which can be brought up by traffic originating from this server. This has different
effects according to zone type and concentrates the zone maintenance so that it all happens in a
short interval, once every heartbeat-interval and hopefully during the one call. It also suppresses
some of the normal zone maintenance traffic. The default is no.

The dialup option may also be specified in the view and zone statements, in which case it over-
rides the global dialup option.

If the zone is a master zone, then the server will send out a NOTIFY request to all the slaves
(default). This should trigger the zone serial number check in the slave (providing it supports
NOTIFY) allowing the slave to verify the zone while the connection is active. The set of servers to
which NOTIFY is sent can be controlled by notify and also-notify.

If the zone is a slave or stub zone, then the server will suppress the regular ”zone up to date” (re-
fresh) queries and only perform them when the heartbeat-interval expires in addition to sending
NOTIFY requests.

Finer control can be achieved by using notify which only sends NOTIFY messages, notify-
passive which sends NOTIFY messages and suppresses the normal refresh queries, refresh
which suppresses normal refresh processing and sends refresh queries when the heartbeat-interval
expires, and passive which just disables normal refresh processing.

dialup mode normal refresh heart-beat refresh heart-beat notify
no (default) yes no no

59

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

yes no yes yes
notify yes no yes
refresh no yes no
passive no no no
notify-passive no no yes

Note that normal NOTIFY processing is not affected by dialup.

fake-iquery In BIND 8, this option enabled simulating the obsolete DNS query type IQUERY. BIND 9
never does IQUERY simulation.

fetch-glue This option is obsolete. In BIND 8, fetch-glue yes caused the server to attempt to fetch
glue resource records it didn’t have when constructing the additional data section of a response.
This is now considered a bad idea and BIND 9 never does it.

flush-zones-on-shutdown When the nameserver exits due receiving SIGTERM, flush or do not flush
any pending zone writes. The default is flush-zones-on-shutdown no.

has-old-clients This option was incorrectly implemented in BIND 8, and is ignored by BIND 9. To
achieve the intended effect of has-old-clients yes, specify the two separate options auth-nxdomain
yes and rfc2308-type1 no instead.

host-statistics In BIND 8, this enables keeping of statistics for every host that the name server interacts
with. Not implemented in BIND 9.

maintain-ixfr-base This option is obsolete. It was used in BIND 8 to determine whether a transaction log
was kept for Incremental Zone Transfer. BIND 9 maintains a transaction log whenever possible. If
you need to disable outgoing incremental zone transfers, use provide-ixfr no.

minimal-responses If yes, then when generating responses the server will only add records to the au-
thority and additional data sections when they are required (e.g. delegations, negative responses).
This may improve the performance of the server. The default is no.

multiple-cnames This option was used in BIND 8 to allow a domain name to have multiple CNAME
records in violation of the DNS standards. BIND 9.2 onwards always strictly enforces the CNAME
rules both in master files and dynamic updates.

notify If yes (the default), DNS NOTIFY messages are sent when a zone the server is authoritative
for changes, see Section 4.1. The messages are sent to the servers listed in the zone’s NS records
(except the master server identified in the SOA MNAME field), and to any servers listed in the
also-notify option.

If master-only, notifies are only sent for master zones. If explicit, notifies are sent only to
servers explicitly listed using also-notify. If no, no notifies are sent.

The notify option may also be specified in the zone statement, in which case it overrides the
options notify statement. It would only be necessary to turn off this option if it caused slaves to
crash.

notify-to-soa If yes do not check the nameservers in the NS RRset against the SOA MNAME. Normally
a NOTIFY message is not sent to the SOA MNAME (SOA ORIGIN) as it is supposed to contain the
name of the ultimate master. Sometimes, however, a slave is listed as the SOA MNAME in hidden

60

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

master configurations and in that case you would want the ultimate master to still send NOTIFY
messages to all the nameservers listed in the NS RRset.

recursion If yes, and a DNS query requests recursion, then the server will attempt to do all the work
required to answer the query. If recursion is off and the server does not already know the answer, it
will return a referral response. The default is yes. Note that setting recursion no does not prevent
clients from getting data from the server’s cache; it only prevents new data from being cached as
an effect of client queries. Caching may still occur as an effect the server’s internal operation, such
as NOTIFY address lookups. See also fetch-glue above.

rfc2308-type1 Setting this to yes will cause the server to send NS records along with the SOA record
for negative answers. The default is no.

NOTE

Not yet implemented in BIND 9.

use-id-pool This option is obsolete. BIND 9 always allocates query IDs from a pool.

zone-statistics If yes, the server will collect statistical data on all zones (unless specifically turned off
on a per-zone basis by specifying zone-statistics no in the zone statement). The default is no.
These statistics may be accessed using rndc stats, which will dump them to the file listed in the
statistics-file. See also Section 6.4.0.1.

use-ixfr This option is obsolete. If you need to disable IXFR to a particular server or servers, see the
information on the provide-ixfr option in Section 6.2.18. See also Section 4.3.

provide-ixfr See the description of provide-ixfr in Section 6.2.18.

request-ixfr See the description of request-ixfr in Section 6.2.18.

treat-cr-as-space This option was used in BIND 8 to make the server treat carriage return (”\r”) charac-
ters the same way as a space or tab character, to facilitate loading of zone files on a UNIX system
that were generated on an NT or DOS machine. In BIND 9, both UNIX ”\n” and NT/DOS ”\r\n”
newlines are always accepted, and the option is ignored.

additional-from-auth, additional-from-cache These options control the behavior of an authoritative
server when answering queries which have additional data, or when following CNAME and
DNAME chains.

When both of these options are set to yes (the default) and a query is being answered from au-
thoritative data (a zone configured into the server), the additional data section of the reply will be
filled in using data from other authoritative zones and from the cache. In some situations this is
undesirable, such as when there is concern over the correctness of the cache, or in servers where
slave zones may be added and modified by untrusted third parties. Also, avoiding the search for
this additional data will speed up server operations at the possible expense of additional queries
to resolve what would otherwise be provided in the additional section.

For example, if a query asks for an MX record for host foo.example.com, and the record found is
”MX 10 mail.example.net”, normally the address records (A and AAAA) for mail.example.
net will be provided as well, if known, even though they are not in the example.com zone. Setting

61

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

these options to no disables this behavior and makes the server only search for additional data in
the zone it answers from.

These options are intended for use in authoritative-only servers, or in authoritative-only views.
Attempts to set them to no without also specifying recursion no will cause the server to ignore the
options and log a warning message.

Specifying additional-from-cache no actually disables the use of the cache not only for additional
data lookups but also when looking up the answer. This is usually the desired behavior in an
authoritative-only server where the correctness of the cached data is an issue.

When a name server is non-recursively queried for a name that is not below the apex of any served
zone, it normally answers with an ”upwards referral” to the root servers or the servers of some
other known parent of the query name. Since the data in an upwards referral comes from the
cache, the server will not be able to provide upwards referrals when additional-from-cache no
has been specified. Instead, it will respond to such queries with REFUSED. This should not cause
any problems since upwards referrals are not required for the resolution process.

match-mapped-addresses If yes, then an IPv4-mapped IPv6 address will match any address match list
entries that match the corresponding IPv4 address.

This option was introduced to work around a kernel quirk in some operating systems that causes
IPv4 TCP connections, such as zone transfers, to be accepted on an IPv6 socket using mapped
addresses. This caused address match lists designed for IPv4 to fail to match. However, named
now solves this problem internally. The use of this option is discouraged.

filter-aaaa-on-v4 This option is only available when BIND 9 is compiled with the --enable-filter-
aaaa option on the ”configure” command line. It is intended to help the transition from IPv4 to
IPv6 by not giving IPv6 addresses to DNS clients unless they have connections to the IPv6 Internet.
This is not recommended unless absolutely necessary. The default is no. The filter-aaaa-on-v4
option may also be specified in view statements to override the global filter-aaaa-on-v4 option.

If yes, the DNS client is at an IPv4 address, in filter-aaaa, and if the response does not include
DNSSEC signatures, then all AAAA records are deleted from the response. This filtering applies
to all responses and not only authoritative responses.

If break-dnssec, then AAAA records are deleted even when dnssec is enabled. As suggested
by the name, this makes the response not verify, because the DNSSEC protocol is designed detect
deletions.

This mechanism can erroneously cause other servers to not give AAAA records to their clients. A
recursing server with both IPv6 and IPv4 network connections that queries an authoritative server
using this mechanism via IPv4 will be denied AAAA records even if its client is using IPv6.

This mechanism is applied to authoritative as well as non-authoritative records. A client using
IPv4 that is not allowed recursion can erroneously be given AAAA records because the server is
not allowed to check for A records.

Some AAAA records are given to IPv4 clients in glue records. IPv4 clients that are servers can then
erroneously answer requests for AAAA records received via IPv4.

ixfr-from-differences When yes and the server loads a new version of a master zone from its zone
file or receives a new version of a slave file by a non-incremental zone transfer, it will compare
the new version to the previous one and calculate a set of differences. The differences are then
logged in the zone’s journal file such that the changes can be transmitted to downstream slaves as
an incremental zone transfer.

By allowing incremental zone transfers to be used for non-dynamic zones, this option saves band-
width at the expense of increased CPU and memory consumption at the master. In particular, if
the new version of a zone is completely different from the previous one, the set of differences will
be of a size comparable to the combined size of the old and new zone version, and the server will
need to temporarily allocate memory to hold this complete difference set.

62

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

ixfr-from-differences also accepts master and slave at the view and options levels which causes
ixfr-from-differences to be enabled for all master or slave zones respectively. It is off by default.

multi-master This should be set when you have multiple masters for a zone and the addresses refer to
different machines. If yes, named will not log when the serial number on the master is less than
what named currently has. The default is no.

dnssec-enable Enable DNSSEC support in named. Unless set to yes, named behaves as if it does not
support DNSSEC. The default is yes.

dnssec-validation Enable DNSSEC validation in named. Note dnssec-enable also needs to be set to
yes to be effective. The default is yes.

dnssec-accept-expired Accept expired signatures when verifying DNSSEC signatures. The default is
no. Setting this option to yes leaves named vulnerable to replay attacks.

querylog Specify whether query logging should be started when named starts. If querylog is not spec-
ified, then the query logging is determined by the presence of the logging category queries.

check-names This option is used to restrict the character set and syntax of certain domain names in
master files and/or DNS responses received from the network. The default varies according to
usage area. For master zones the default is fail. For slave zones the default is warn. For answers
received from the network (response) the default is ignore.

The rules for legal hostnames and mail domains are derived from RFC 952 and RFC 821 as modi-
fied by RFC 1123.

check-names applies to the owner names of A, AAAA and MX records. It also applies to the
domain names in the RDATA of NS, SOA, MX, and SRV records. It also applies to the RDATA of
PTR records where the owner name indicated that it is a reverse lookup of a hostname (the owner
name ends in IN-ADDR.ARPA, IP6.ARPA, or IP6.INT).

check-dup-records Check master zones for records that are treated as different by DNSSEC but are
semantically equal in plain DNS. The default is to warn. Other possible values are fail and ignore.

check-mx Check whether the MX record appears to refer to a IP address. The default is to warn. Other
possible values are fail and ignore.

check-mx Check whether the MX record appears to refer to a IP address. The default is to warn. Other
possible values are fail and ignore.

check-wildcard This option is used to check for non-terminal wildcards. The use of non-terminal wild-
cards is almost always as a result of a failure to understand the wildcard matching algorithm (RFC
1034). This option affects master zones. The default (yes) is to check for non-terminal wildcards
and issue a warning.

check-integrity Perform post load zone integrity checks on master zones. This checks that MX and SRV
records refer to address (A or AAAA) records and that glue address records exist for delegated
zones. For MX and SRV records only in-zone hostnames are checked (for out-of-zone hostnames
use named-checkzone). For NS records only names below top of zone are checked (for out-of-zone
names and glue consistency checks use named-checkzone). The default is yes.

check-mx-cname If check-integrity is set then fail, warn or ignore MX records that refer to CNAMES.
The default is to warn.

63

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

check-srv-cname If check-integrity is set then fail, warn or ignore SRV records that refer to CNAMES.
The default is to warn.

check-sibling When performing integrity checks, also check that sibling glue exists. The default is yes.

zero-no-soa-ttl When returning authoritative negative responses to SOA queries set the TTL of the SOA
record returned in the authority section to zero. The default is yes.

zero-no-soa-ttl-cache When caching a negative response to a SOA query set the TTL to zero. The default
is no.

update-check-ksk When set to the default value of yes, check the KSK bit in each key to determine
how the key should be used when generating RRSIGs for a secure zone.

Ordinarily, zone-signing keys (that is, keys without the KSK bit set) are used to sign the entire
zone, while key-signing keys (keys with the KSK bit set) are only used to sign the DNSKEY RRset
at the zone apex. However, if this option is set to no, then the KSK bit is ignored; KSKs are treated
as if they were ZSKs and are used to sign the entire zone. This is similar to the dnssec-signzone -z
command line option.

When this option is set to yes, there must be at least two active keys for every algorithm rep-
resented in the DNSKEY RRset: at least one KSK and one ZSK per algorithm. If there is any
algorithm for which this requirement is not met, this option will be ignored for that algorithm.

dnssec-dnskey-kskonly When this option and update-check-ksk are both set to yes, only key-signing
keys (that is, keys with the KSK bit set) will be used to sign the DNSKEY RRset at the zone apex.
Zone-signing keys (keys without the KSK bit set) will be used to sign the remainder of the zone,
but not the DNSKEY RRset. This is similar to the dnssec-signzone -x command line option.

The default is no. If update-check-ksk is set to no, this option is ignored.

try-tcp-refresh Try to refresh the zone using TCP if UDP queries fail. For BIND 8 compatibility, the
default is yes.

dnssec-secure-to-insecure Allow a dynamic zone to transition from secure to insecure (i.e., signed to
unsigned) by deleting all of the DNSKEY records. The default is no. If set to yes, and if the
DNSKEY RRset at the zone apex is deleted, all RRSIG and NSEC records will be removed from the
zone as well.

If the zone uses NSEC3, then it is also necessary to delete the NSEC3PARAM RRset from the zone
apex; this will cause the removal of all corresponding NSEC3 records. (It is expected that this
requirement will be eliminated in a future release.)

Note that if a zone has been configured with auto-dnssec maintain and the private keys remain
accessible in the key repository, then the zone will be automatically signed again the next time
named is started.

6.2.16.2 Forwarding

The forwarding facility can be used to create a large site-wide cache on a few servers, reducing traffic
over links to external name servers. It can also be used to allow queries by servers that do not have
direct access to the Internet, but wish to look up exterior names anyway. Forwarding occurs only on
those queries for which the server is not authoritative and does not have the answer in its cache.

64

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

forward This option is only meaningful if the forwarders list is not empty. A value of first, the
default, causes the server to query the forwarders first — and if that doesn’t answer the question,
the server will then look for the answer itself. If only is specified, the server will only query the
forwarders.

forwarders Specifies the IP addresses to be used for forwarding. The default is the empty list (no for-
warding).

Forwarding can also be configured on a per-domain basis, allowing for the global forwarding options to
be overridden in a variety of ways. You can set particular domains to use different forwarders, or have
a different forward only/first behavior, or not forward at all, see Section 6.2.27.

6.2.16.3 Dual-stack Servers

Dual-stack servers are used as servers of last resort to work around problems in reachability due the
lack of support for either IPv4 or IPv6 on the host machine.

dual-stack-servers Specifies host names or addresses of machines with access to both IPv4 and IPv6
transports. If a hostname is used, the server must be able to resolve the name using only the
transport it has. If the machine is dual stacked, then the dual-stack-servers have no effect unless
access to a transport has been disabled on the command line (e.g. named -4).

6.2.16.4 Access Control

Access to the server can be restricted based on the IP address of the requesting system. See Section 6.1.1
for details on how to specify IP address lists.

allow-notify Specifies which hosts are allowed to notify this server, a slave, of zone changes in addition
to the zone masters. allow-notify may also be specified in the zone statement, in which case
it overrides the options allow-notify statement. It is only meaningful for a slave zone. If not
specified, the default is to process notify messages only from a zone’s master.

allow-query Specifies which hosts are allowed to ask ordinary DNS questions. allow-query may also
be specified in the zone statement, in which case it overrides the options allow-query statement.
If not specified, the default is to allow queries from all hosts.

NOTE

allow-query-cache is now used to specify access to the cache.

allow-query-on Specifies which local addresses can accept ordinary DNS questions. This makes it pos-
sible, for instance, to allow queries on internal-facing interfaces but disallow them on external-
facing ones, without necessarily knowing the internal network’s addresses.

allow-query-on may also be specified in the zone statement, in which case it overrides the options
allow-query-on statement.

If not specified, the default is to allow queries on all addresses.

65

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

NOTE

allow-query-cache is used to specify access to the cache.

allow-query-cache Specifies which hosts are allowed to get answers from the cache. If allow-query-
cache is not set then allow-recursion is used if set, otherwise allow-query is used if set unless
recursion no; is set in which case none; is used, otherwise the default (localnets; localhost;) is
used.

allow-query-cache-on Specifies which local addresses can give answers from the cache. If not specified,
the default is to allow cache queries on any address, localnets and localhost.

allow-recursion Specifies which hosts are allowed to make recursive queries through this server. If
allow-recursion is not set then allow-query-cache is used if set, otherwise allow-query is used if
set, otherwise the default (localnets; localhost;) is used.

allow-recursion-on Specifies which local addresses can accept recursive queries. If not specified, the
default is to allow recursive queries on all addresses.

allow-update Specifies which hosts are allowed to submit Dynamic DNS updates for master zones. The
default is to deny updates from all hosts. Note that allowing updates based on the requestor’s IP
address is insecure; see Section 7.3 for details.

allow-update-forwarding Specifies which hosts are allowed to submit Dynamic DNS updates to slave
zones to be forwarded to the master. The default is { none; }, which means that no update for-
warding will be performed. To enable update forwarding, specify allow-update-forwarding
{ any; };. Specifying values other than { none; } or { any; } is usually counterproduc-
tive, since the responsibility for update access control should rest with the master server, not the
slaves.

Note that enabling the update forwarding feature on a slave server may expose master servers
relying on insecure IP address based access control to attacks; see Section 7.3 for more details.

allow-v6-synthesis This option was introduced for the smooth transition from AAAA to A6 and from
”nibble labels” to binary labels. However, since both A6 and binary labels were then deprecated,
this option was also deprecated. It is now ignored with some warning messages.

allow-transfer Specifies which hosts are allowed to receive zone transfers from the server. allow-
transfer may also be specified in the zone statement, in which case it overrides the options allow-
transfer statement. If not specified, the default is to allow transfers to all hosts.

blackhole Specifies a list of addresses that the server will not accept queries from or use to resolve a
query. Queries from these addresses will not be responded to. The default is none.

filter-aaaa Specifies a list of addresses to which filter-aaaa-on-v4 is applies. The default is any.

6.2.16.5 Interfaces

The interfaces and ports that the server will answer queries from may be specified using the listen-on
option. listen-on takes an optional port and an address match list. The server will listen on all
interfaces allowed by the address match list. If a port is not specified, port 53 will be used.

66

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

Multiple listen-on statements are allowed. For example,

listen-on { 5.6.7.8; };
listen-on port 1234 { !1.2.3.4; 1.2/16; };

will enable the name server on port 53 for the IP address 5.6.7.8, and on port 1234 of an address on the
machine in net 1.2 that is not 1.2.3.4.

If no listen-on is specified, the server will listen on port 53 on all IPv4 interfaces.

The listen-on-v6 option is used to specify the interfaces and the ports on which the server will listen for
incoming queries sent using IPv6.

When

{ any; }

is specified as the address match list for the listen-on-v6 option, the server does not bind a separate
socket to each IPv6 interface address as it does for IPv4 if the operating system has enough API support
for IPv6 (specifically if it conforms to RFC 3493 and RFC 3542). Instead, it listens on the IPv6 wildcard
address. If the system only has incomplete API support for IPv6, however, the behavior is the same as
that for IPv4.

A list of particular IPv6 addresses can also be specified, in which case the server listens on a separate
socket for each specified address, regardless of whether the desired API is supported by the system.

Multiple listen-on-v6 options can be used. For example,

listen-on-v6 { any; };
listen-on-v6 port 1234 { !2001:db8::/32; any; };

will enable the name server on port 53 for any IPv6 addresses (with a single wildcard socket), and on
port 1234 of IPv6 addresses that is not in the prefix 2001:db8::/32 (with separate sockets for each matched
address.)

To make the server not listen on any IPv6 address, use

listen-on-v6 { none; };

If no listen-on-v6 option is specified, the server will not listen on any IPv6 address unless -6 is specified
when named is invoked. If -6 is specified then named will listen on port 53 on all IPv6 interfaces by
default.

6.2.16.6 Query Address

If the server doesn’t know the answer to a question, it will query other name servers. query-source
specifies the address and port used for such queries. For queries sent over IPv6, there is a separate
query-source-v6 option. If address is * (asterisk) or is omitted, a wildcard IP address (INADDR ANY)
will be used.

If port is * or is omitted, a random port number from a pre-configured range is picked up and will be
used for each query. The port range(s) is that specified in the use-v4-udp-ports (for IPv4) and use-v6-
udp-ports (for IPv6) options, excluding the ranges specified in the avoid-v4-udp-ports and avoid-v6-
udp-ports options, respectively.

The defaults of the query-source and query-source-v6 options are:

query-source address * port *;
query-source-v6 address * port *;

If use-v4-udp-ports or use-v6-udp-ports is unspecified, named will check if the operating system pro-
vides a programming interface to retrieve the system’s default range for ephemeral ports. If such an

67

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

interface is available, named will use the corresponding system default range; otherwise, it will use its
own defaults:

use-v4-udp-ports { range 1024 65535; };
use-v6-udp-ports { range 1024 65535; };

Note: make sure the ranges be sufficiently large for security. A desirable size depends on various pa-
rameters, but we generally recommend it contain at least 16384 ports (14 bits of entropy). Note also that
the system’s default range when used may be too small for this purpose, and that the range may even be
changed while named is running; the new range will automatically be applied when named is reloaded.
It is encouraged to configure use-v4-udp-ports and use-v6-udp-ports explicitly so that the ranges are
sufficiently large and are reasonably independent from the ranges used by other applications.

Note: the operational configuration where named runs may prohibit the use of some ports. For example,
UNIX systems will not allow named running without a root privilege to use ports less than 1024. If such
ports are included in the specified (or detected) set of query ports, the corresponding query attempts
will fail, resulting in resolution failures or delay. It is therefore important to configure the set of ports
that can be safely used in the expected operational environment.

The defaults of the avoid-v4-udp-ports and avoid-v6-udp-ports options are:

avoid-v4-udp-ports {};
avoid-v6-udp-ports {};

Note: BIND 9.5.0 introduced the use-queryport-pool option to support a pool of such random ports, but
this option is now obsolete because reusing the same ports in the pool may not be sufficiently secure. For
the same reason, it is generally strongly discouraged to specify a particular port for the query-source or
query-source-v6 options; it implicitly disables the use of randomized port numbers.

use-queryport-pool This option is obsolete.

queryport-pool-ports This option is obsolete.

queryport-pool-updateinterval This option is obsolete.

NOTE

The address specified in the query-source option is used for both UDP and
TCP queries, but the port applies only to UDP queries. TCP queries always use
a random unprivileged port.

NOTE

Solaris 2.5.1 and earlier does not support setting the source address for TCP
sockets.

68

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

NOTE

See also transfer-source and notify-source.

6.2.16.7 Zone Transfers

BIND has mechanisms in place to facilitate zone transfers and set limits on the amount of load that
transfers place on the system. The following options apply to zone transfers.

also-notify Defines a global list of IP addresses of name servers that are also sent NOTIFY messages
whenever a fresh copy of the zone is loaded, in addition to the servers listed in the zone’s NS
records. This helps to ensure that copies of the zones will quickly converge on stealth servers.
Optionally, a port may be specified with each also-notify address to send the notify messages to a
port other than the default of 53. If an also-notify list is given in a zone statement, it will override
the options also-notify statement. When a zone notify statement is set to no, the IP addresses
in the global also-notify list will not be sent NOTIFY messages for that zone. The default is the
empty list (no global notification list).

max-transfer-time-in Inbound zone transfers running longer than this many minutes will be termi-
nated. The default is 120 minutes (2 hours). The maximum value is 28 days (40320 minutes).

max-transfer-idle-in Inbound zone transfers making no progress in this many minutes will be termi-
nated. The default is 60 minutes (1 hour). The maximum value is 28 days (40320 minutes).

max-transfer-time-out Outbound zone transfers running longer than this many minutes will be termi-
nated. The default is 120 minutes (2 hours). The maximum value is 28 days (40320 minutes).

max-transfer-idle-out Outbound zone transfers making no progress in this many minutes will be ter-
minated. The default is 60 minutes (1 hour). The maximum value is 28 days (40320 minutes).

serial-query-rate Slave servers will periodically query master servers to find out if zone serial numbers
have changed. Each such query uses a minute amount of the slave server’s network bandwidth.
To limit the amount of bandwidth used, BIND 9 limits the rate at which queries are sent. The value
of the serial-query-rate option, an integer, is the maximum number of queries sent per second. The
default is 20.

serial-queries In BIND 8, the serial-queries option set the maximum number of concurrent serial num-
ber queries allowed to be outstanding at any given time. BIND 9 does not limit the number of
outstanding serial queries and ignores the serial-queries option. Instead, it limits the rate at which
the queries are sent as defined using the serial-query-rate option.

transfer-format Zone transfers can be sent using two different formats, one-answer and many-answers.
The transfer-format option is used on the master server to determine which format it sends. one-
answer uses one DNS message per resource record transferred. many-answers packs as many
resource records as possible into a message. many-answers is more efficient, but is only supported
by relatively new slave servers, such as BIND 9, BIND 8.x and BIND 4.9.5 onwards. The many-
answers format is also supported by recent Microsoft Windows nameservers. The default is many-
answers. transfer-format may be overridden on a per-server basis by using the server statement.

69

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

transfers-in The maximum number of inbound zone transfers that can be running concurrently. The
default value is 10. Increasing transfers-in may speed up the convergence of slave zones, but it
also may increase the load on the local system.

transfers-out The maximum number of outbound zone transfers that can be running concurrently.
Zone transfer requests in excess of the limit will be refused. The default value is 10.

transfers-per-ns The maximum number of inbound zone transfers that can be concurrently transferring
from a given remote name server. The default value is 2. Increasing transfers-per-ns may speed
up the convergence of slave zones, but it also may increase the load on the remote name server.
transfers-per-ns may be overridden on a per-server basis by using the transfers phrase of the
server statement.

transfer-source transfer-source determines which local address will be bound to IPv4 TCP connections
used to fetch zones transferred inbound by the server. It also determines the source IPv4 address,
and optionally the UDP port, used for the refresh queries and forwarded dynamic updates. If not
set, it defaults to a system controlled value which will usually be the address of the interface ”clos-
est to” the remote end. This address must appear in the remote end’s allow-transfer option for
the zone being transferred, if one is specified. This statement sets the transfer-source for all zones,
but can be overridden on a per-view or per-zone basis by including a transfer-source statement
within the view or zone block in the configuration file.

NOTE

Solaris 2.5.1 and earlier does not support setting the source address for
TCP sockets.

transfer-source-v6 The same as transfer-source, except zone transfers are performed using IPv6.

alt-transfer-source An alternate transfer source if the one listed in transfer-source fails and use-alt-
transfer-source is set.

NOTE

If you do not wish the alternate transfer source to be used, you should set
use-alt-transfer-source appropriately and you should not depend upon
getting an answer back to the first refresh query.

alt-transfer-source-v6 An alternate transfer source if the one listed in transfer-source-v6 fails and use-
alt-transfer-source is set.

use-alt-transfer-source Use the alternate transfer sources or not. If views are specified this defaults to
no otherwise it defaults to yes (for BIND 8 compatibility).

notify-source notify-source determines which local source address, and optionally UDP port, will be
used to send NOTIFY messages. This address must appear in the slave server’s masters zone
clause or in an allow-notify clause. This statement sets the notify-source for all zones, but can

70

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

be overridden on a per-zone or per-view basis by including a notify-source statement within the
zone or view block in the configuration file.

NOTE

Solaris 2.5.1 and earlier does not support setting the source address for
TCP sockets.

notify-source-v6 Like notify-source, but applies to notify messages sent to IPv6 addresses.

6.2.16.8 UDP Port Lists

use-v4-udp-ports, avoid-v4-udp-ports, use-v6-udp-ports, and avoid-v6-udp-ports specify a list of IPv4
and IPv6 UDP ports that will be used or not used as source ports for UDP messages. See Section 6.2.16.6
about how the available ports are determined. For example, with the following configuration

use-v6-udp-ports { range 32768 65535; };
avoid-v6-udp-ports { 40000; range 50000 60000; };

UDP ports of IPv6 messages sent from named will be in one of the following ranges: 32768 to 39999,
40001 to 49999, and 60001 to 65535.

avoid-v4-udp-ports and avoid-v6-udp-ports can be used to prevent named from choosing as its random
source port a port that is blocked by your firewall or a port that is used by other applications; if a query
went out with a source port blocked by a firewall, the answer would not get by the firewall and the
name server would have to query again. Note: the desired range can also be represented only with
use-v4-udp-ports and use-v6-udp-ports, and the avoid- options are redundant in that sense; they are
provided for backward compatibility and to possibly simplify the port specification.

6.2.16.9 Operating System Resource Limits

The server’s usage of many system resources can be limited. Scaled values are allowed when specifying
resource limits. For example, 1G can be used instead of 1073741824 to specify a limit of one gigabyte.
unlimited requests unlimited use, or the maximum available amount. default uses the limit that was in
force when the server was started. See the description of size spec in Section 6.1.

The following options set operating system resource limits for the name server process. Some operating
systems don’t support some or any of the limits. On such systems, a warning will be issued if the
unsupported limit is used.

coresize The maximum size of a core dump. The default is default.

datasize The maximum amount of data memory the server may use. The default is default. This is
a hard limit on server memory usage. If the server attempts to allocate memory in excess of this
limit, the allocation will fail, which may in turn leave the server unable to perform DNS service.
Therefore, this option is rarely useful as a way of limiting the amount of memory used by the
server, but it can be used to raise an operating system data size limit that is too small by default. If
you wish to limit the amount of memory used by the server, use the max-cache-size and recursive-
clients options instead.

files The maximum number of files the server may have open concurrently. The default is unlimited.

71

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

stacksize The maximum amount of stack memory the server may use. The default is default.

6.2.16.10 Server Resource Limits

The following options set limits on the server’s resource consumption that are enforced internally by
the server rather than the operating system.

max-ixfr-log-size This option is obsolete; it is accepted and ignored for BIND 8 compatibility. The
option max-journal-size performs a similar function in BIND 9.

max-journal-size Sets a maximum size for each journal file (see Section 4.2.1). When the journal file
approaches the specified size, some of the oldest transactions in the journal will be automatically
removed. The default is unlimited. This may also be set on a per-zone basis.

host-statistics-max In BIND 8, specifies the maximum number of host statistics entries to be kept. Not
implemented in BIND 9.

recursive-clients The maximum number of simultaneous recursive lookups the server will perform on
behalf of clients. The default is 1000. Because each recursing client uses a fair bit of memory, on
the order of 20 kilobytes, the value of the recursive-clients option may have to be decreased on
hosts with limited memory.

tcp-clients The maximum number of simultaneous client TCP connections that the server will accept.
The default is 100.

reserved-sockets The number of file descriptors reserved for TCP, stdio, etc. This needs to be big
enough to cover the number of interfaces named listens on, tcp-clients as well as to provide room
for outgoing TCP queries and incoming zone transfers. The default is 512. The minimum value is
128 and the maximum value is 128 less than maxsockets (-S). This option may be removed in the
future.

This option has little effect on Windows.

max-cache-size The maximum amount of memory to use for the server’s cache, in bytes. When the
amount of data in the cache reaches this limit, the server will cause records to expire prematurely
based on an LRU based strategy so that the limit is not exceeded. A value of 0 is special, meaning
that records are purged from the cache only when their TTLs expire. Another special keyword
unlimited means the maximum value of 32-bit unsigned integers (0xffffffff), which may not
have the same effect as 0 on machines that support more than 32 bits of memory space. Any
positive values less than 2MB will be ignored reset to 2MB. In a server with multiple views, the
limit applies separately to the cache of each view. The default is 0.

tcp-listen-queue The listen queue depth. The default and minimum is 3. If the kernel supports the
accept filter ”dataready” this also controls how many TCP connections that will be queued in
kernel space waiting for some data before being passed to accept. Values less than 3 will be silently
raised.

6.2.16.11 Periodic Task Intervals

cleaning-interval This interval is effectively obsolete. Previously, the server would remove expired
resource records from the cache every cleaning-interval minutes. BIND 9 now manages cache

72

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

memory in a more sophisticated manner and does not rely on the periodic cleaning any more.
Specifying this option therefore has no effect on the server’s behavior.

heartbeat-interval The server will perform zone maintenance tasks for all zones marked as dialup
whenever this interval expires. The default is 60 minutes. Reasonable values are up to 1 day
(1440 minutes). The maximum value is 28 days (40320 minutes). If set to 0, no zone maintenance
for these zones will occur.

interface-interval The server will scan the network interface list every interface-interval minutes. The
default is 60 minutes. The maximum value is 28 days (40320 minutes). If set to 0, interface scanning
will only occur when the configuration file is loaded. After the scan, the server will begin listen-
ing for queries on any newly discovered interfaces (provided they are allowed by the listen-on
configuration), and will stop listening on interfaces that have gone away.

statistics-interval Name server statistics will be logged every statistics-interval minutes. The default
is 60. The maximum value is 28 days (40320 minutes). If set to 0, no statistics will be logged.

NOTE

Not yet implemented in BIND 9.

6.2.16.12 Topology

All other things being equal, when the server chooses a name server to query from a list of name
servers, it prefers the one that is topologically closest to itself. The topology statement takes an ad-
dress match list and interprets it in a special way. Each top-level list element is assigned a distance.
Non-negated elements get a distance based on their position in the list, where the closer the match is
to the start of the list, the shorter the distance is between it and the server. A negated match will be
assigned the maximum distance from the server. If there is no match, the address will get a distance
which is further than any non-negated list element, and closer than any negated element. For example,

topology {
10/8;
!1.2.3/24;
{ 1.2/16; 3/8; };

};

will prefer servers on network 10 the most, followed by hosts on network 1.2.0.0 (netmask 255.255.0.0)
and network 3, with the exception of hosts on network 1.2.3 (netmask 255.255.255.0), which is preferred
least of all.

The default topology is

topology { localhost; localnets; };

NOTE

The topology option is not implemented in BIND 9.

73

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

6.2.16.13 The sortlist Statement

The response to a DNS query may consist of multiple resource records (RRs) forming a resource records
set (RRset). The name server will normally return the RRs within the RRset in an indeterminate order
(but see the rrset-order statement in Section 6.2.16.14). The client resolver code should rearrange the RRs
as appropriate, that is, using any addresses on the local net in preference to other addresses. However,
not all resolvers can do this or are correctly configured. When a client is using a local server, the sorting
can be performed in the server, based on the client’s address. This only requires configuring the name
servers, not all the clients.

The sortlist statement (see below) takes an address match list and interprets it even more specifically
than the topology statement does (Section 6.2.16.12). Each top level statement in the sortlist must itself
be an explicit address match list with one or two elements. The first element (which may be an IP
address, an IP prefix, an ACL name or a nested address match list) of each top level list is checked
against the source address of the query until a match is found.

Once the source address of the query has been matched, if the top level statement contains only one
element, the actual primitive element that matched the source address is used to select the address in
the response to move to the beginning of the response. If the statement is a list of two elements, then the
second element is treated the same as the address match list in a topology statement. Each top level
element is assigned a distance and the address in the response with the minimum distance is moved to
the beginning of the response.

In the following example, any queries received from any of the addresses of the host itself will get
responses preferring addresses on any of the locally connected networks. Next most preferred are ad-
dresses on the 192.168.1/24 network, and after that either the 192.168.2/24 or 192.168.3/24 network with
no preference shown between these two networks. Queries received from a host on the 192.168.1/24
network will prefer other addresses on that network to the 192.168.2/24 and 192.168.3/24 networks.
Queries received from a host on the 192.168.4/24 or the 192.168.5/24 network will only prefer other
addresses on their directly connected networks.

sortlist {
// IF the local host
// THEN first fit on the following nets
{ localhost;

{ localnets;
192.168.1/24;
{ 192.168.2/24; 192.168.3/24; }; }; };

// IF on class C 192.168.1 THEN use .1, or .2 or .3
{ 192.168.1/24;

{ 192.168.1/24;
{ 192.168.2/24; 192.168.3/24; }; }; };

// IF on class C 192.168.2 THEN use .2, or .1 or .3
{ 192.168.2/24;

{ 192.168.2/24;
{ 192.168.1/24; 192.168.3/24; }; }; };

// IF on class C 192.168.3 THEN use .3, or .1 or .2
{ 192.168.3/24;

{ 192.168.3/24;
{ 192.168.1/24; 192.168.2/24; }; }; };

// IF .4 or .5 THEN prefer that net
{ { 192.168.4/24; 192.168.5/24; };
};

};

The following example will give reasonable behavior for the local host and hosts on directly connected
networks. It is similar to the behavior of the address sort in BIND 4.9.x. Responses sent to queries from
the local host will favor any of the directly connected networks. Responses sent to queries from any
other hosts on a directly connected network will prefer addresses on that same network. Responses to
other queries will not be sorted.

74

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

sortlist {
{ localhost; localnets; };
{ localnets; };

};

6.2.16.14 RRset Ordering

When multiple records are returned in an answer it may be useful to configure the order of the records
placed into the response. The rrset-order statement permits configuration of the ordering of the records
in a multiple record response. See also the sortlist statement, Section 6.2.16.13.

An order spec is defined as follows:

[class class name] [type type name] [name "domain name"] order ordering

If no class is specified, the default is ANY. If no type is specified, the default is ANY. If no name is
specified, the default is ”*” (asterisk).

The legal values for ordering are:

fixed Records are returned in the order they are defined in the zone
file.

random Records are returned in some random order.
cyclic Records are returned in a cyclic round-robin order.

If BIND is configured with the ”–enable-fixed-rrset” option at
compile time, then the initial ordering of the RRset will match
the one specified in the zone file.

For example:

rrset-order {
class IN type A name "host.example.com" order random;
order cyclic;

};

will cause any responses for type A records in class IN that have ”host.example.com” as a suffix, to
always be returned in random order. All other records are returned in cyclic order.

If multiple rrset-order statements appear, they are not combined — the last one applies.

NOTE

In this release of BIND 9, the rrset-order statement does not support ”fixed”
ordering by default. Fixed ordering can be enabled at compile time by specifying
”–enable-fixed-rrset” on the ”configure” command line.

6.2.16.15 Tuning

lame-ttl Sets the number of seconds to cache a lame server indication. 0 disables caching. (This is NOT
recommended.) The default is 600 (10 minutes) and the maximum value is 1800 (30 minutes).

75

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

Lame-ttl also controls the amount of time DNSSEC validation failures are cached. There is a mini-
mum of 30 seconds applied to bad cache entries if the lame-ttl is set to less than 30 seconds.

max-ncache-ttl To reduce network traffic and increase performance, the server stores negative answers.
max-ncache-ttl is used to set a maximum retention time for these answers in the server in seconds.
The default max-ncache-ttl is 10800 seconds (3 hours). max-ncache-ttl cannot exceed 7 days and
will be silently truncated to 7 days if set to a greater value.

max-cache-ttl Sets the maximum time for which the server will cache ordinary (positive) answers. The
default is one week (7 days). A value of zero may cause all queries to return SERVFAIL, because
of lost caches of intermediate RRsets (such as NS and glue AAAA/A records) in the resolution
process.

min-roots The minimum number of root servers that is required for a request for the root servers to be
accepted. The default is 2.

NOTE

Not implemented in BIND 9.

sig-validity-interval Specifies the number of days into the future when DNSSEC signatures automati-
cally generated as a result of dynamic updates (Section 4.2) will expire. There is an optional second
field which specifies how long before expiry that the signatures will be regenerated. If not spec-
ified, the signatures will be regenerated at 1/4 of base interval. The second field is specified in
days if the base interval is greater than 7 days otherwise it is specified in hours. The default base
interval is 30 days giving a re-signing interval of 7 1/2 days. The maximum values are 10 years
(3660 days).

The signature inception time is unconditionally set to one hour before the current time to allow for
a limited amount of clock skew.

The sig-validity-interval should be, at least, several multiples of the SOA expire interval to allow
for reasonable interaction between the various timer and expiry dates.

sig-signing-nodes Specify the maximum number of nodes to be examined in each quantum when sign-
ing a zone with a new DNSKEY. The default is 100.

sig-signing-signatures Specify a threshold number of signatures that will terminate processing a quan-
tum when signing a zone with a new DNSKEY. The default is 10.

sig-signing-type Specify a private RDATA type to be used when generating key signing records. The
default is 65535.

It is expected that this parameter may be removed in a future version once there is a standard type.

min-refresh-time, max-refresh-time, min-retry-time, max-retry-time These options control the server’s
behavior on refreshing a zone (querying for SOA changes) or retrying failed transfers. Usually the
SOA values for the zone are used, but these values are set by the master, giving slave server ad-
ministrators little control over their contents.

These options allow the administrator to set a minimum and maximum refresh and retry time
either per-zone, per-view, or globally. These options are valid for slave and stub zones, and clamp

76

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

the SOA refresh and retry times to the specified values.

The following defaults apply. min-refresh-time 300 seconds, max-refresh-time 2419200 seconds
(4 weeks), min-retry-time 500 seconds, and max-retry-time 1209600 seconds (2 weeks).

edns-udp-size Sets the advertised EDNS UDP buffer size in bytes to control the size of packets received.
Valid values are 512 to 4096 (values outside this range will be silently adjusted). The default value
is 4096. The usual reason for setting edns-udp-size to a non-default value is to get UDP answers
to pass through broken firewalls that block fragmented packets and/or block UDP packets that
are greater than 512 bytes.

named will fallback to using 512 bytes if it get a series of timeout at the initial value. 512 bytes is
not being offered to encourage sites to fix their firewalls. Small EDNS UDP sizes will result in the
excessive use of TCP.

max-udp-size Sets the maximum EDNS UDP message size named will send in bytes. Valid values
are 512 to 4096 (values outside this range will be silently adjusted). The default value is 4096.
The usual reason for setting max-udp-size to a non-default value is to get UDP answers to pass
through broken firewalls that block fragmented packets and/or block UDP packets that are greater
than 512 bytes. This is independent of the advertised receive buffer (edns-udp-size).

Setting this to a low value will encourage additional TCP traffic to the nameserver.

masterfile-format Specifies the file format of zone files (see Section 6.3.7). The default value is text,
which is the standard textual representation. Files in other formats than text are typically ex-
pected to be generated by the named-compilezone tool. Note that when a zone file in a different
format than text is loaded, named may omit some of the checks which would be performed for
a file in the text format. In particular, check-names checks do not apply for the raw format. This
means a zone file in the raw format must be generated with the same check level as that specified
in the named configuration file. This statement sets the masterfile-format for all zones, but can be
overridden on a per-zone or per-view basis by including a masterfile-format statement within the
zone or view block in the configuration file.

clients-per-query, max-clients-per-query These set the initial value (minimum) and maximum number
of recursive simultaneous clients for any given query (<qname,qtype,qclass>) that the server will
accept before dropping additional clients. named will attempt to self tune this value and changes
will be logged. The default values are 10 and 100.

This value should reflect how many queries come in for a given name in the time it takes to resolve
that name. If the number of queries exceed this value, named will assume that it is dealing with a
non-responsive zone and will drop additional queries. If it gets a response after dropping queries,
it will raise the estimate. The estimate will then be lowered in 20 minutes if it has remained
unchanged.

If clients-per-query is set to zero, then there is no limit on the number of clients per query and no
queries will be dropped.

If max-clients-per-query is set to zero, then there is no upper bound other than imposed by
recursive-clients.

notify-delay The delay, in seconds, between sending sets of notify messages for a zone. The default is
five (5) seconds.

6.2.16.16 Built-in server information zones

The server provides some helpful diagnostic information through a number of built-in zones under
the pseudo-top-level-domain bind in the CHAOS class. These zones are part of a built-in view (see
Section 6.2.25) of class CHAOS which is separate from the default view of class IN; therefore, any global

77

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

server options such as allow-query do not apply the these zones. If you feel the need to disable these
zones, use the options below, or hide the built-in CHAOS view by defining an explicit view of class
CHAOS that matches all clients.

version The version the server should report via a query of the name version.bind with type TXT,
class CHAOS. The default is the real version number of this server. Specifying version none
disables processing of the queries.

hostname The hostname the server should report via a query of the name hostname.bind with type
TXT, class CHAOS. This defaults to the hostname of the machine hosting the name server as
found by the gethostname() function. The primary purpose of such queries is to identify which of
a group of anycast servers is actually answering your queries. Specifying hostname none; disables
processing of the queries.

server-id The ID the server should report when receiving a Name Server Identifier (NSID) query, or a
query of the name ID.SERVERwith type TXT, class CHAOS. The primary purpose of such queries
is to identify which of a group of anycast servers is actually answering your queries. Specifying
server-id none; disables processing of the queries. Specifying server-id hostname; will cause
named to use the hostname as found by the gethostname() function. The default server-id is
none.

6.2.16.17 Built-in Empty Zones

Named has some built-in empty zones (SOA and NS records only). These are for zones that should
normally be answered locally and which queries should not be sent to the Internet’s root servers. The
official servers which cover these namespaces return NXDOMAIN responses to these queries. In partic-
ular, these cover the reverse namespace for addresses from RFC 1918 and RFC 3330. They also include
the reverse namespace for IPv6 local address (locally assigned), IPv6 link local addresses, the IPv6 loop-
back address and the IPv6 unknown address.

Named will attempt to determine if a built-in zone already exists or is active (covered by a forward-only
forwarding declaration) and will not create an empty zone in that case.

The current list of empty zones is:

• 0.IN-ADDR.ARPA

• 127.IN-ADDR.ARPA

• 254.169.IN-ADDR.ARPA

• 2.0.192.IN-ADDR.ARPA

• 100.51.198.IN-ADDR.ARPA

• 113.0.203.IN-ADDR.ARPA

• 255.255.255.255.IN-ADDR.ARPA

• 0.IP6.ARPA

• 1.0.IP6.ARPA

• 8.B.D.0.1.0.0.2.IP6.ARPA

• D.F.IP6.ARPA

• 8.E.F.IP6.ARPA

• 9.E.F.IP6.ARPA

• A.E.F.IP6.ARPA

• B.E.F.IP6.ARPA

78

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

Empty zones are settable at the view level and only apply to views of class IN. Disabled empty zones are
only inherited from options if there are no disabled empty zones specified at the view level. To override
the options list of disabled zones, you can disable the root zone at the view level, for example:

disable-empty-zone ".";

If you are using the address ranges covered here, you should already have reverse zones covering the
addresses you use. In practice this appears to not be the case with many queries being made to the
infrastructure servers for names in these spaces. So many in fact that sacrificial servers were needed to
be deployed to channel the query load away from the infrastructure servers.

NOTE

The real parent servers for these zones should disable all empty zone under the
parent zone they serve. For the real root servers, this is all built-in empty zones.
This will enable them to return referrals to deeper in the tree.

empty-server Specify what server name will appear in the returned SOA record for empty zones. If
none is specified, then the zone’s name will be used.

empty-contact Specify what contact name will appear in the returned SOA record for empty zones. If
none is specified, then ”.” will be used.

empty-zones-enable Enable or disable all empty zones. By default, they are enabled.

disable-empty-zone Disable individual empty zones. By default, none are disabled. This option can be
specified multiple times.

6.2.16.18 Additional Section Caching

The additional section cache, also called acache, is an internal cache to improve the response perfor-
mance of BIND 9. When additional section caching is enabled, BIND 9 will cache an internal short-cut
to the additional section content for each answer RR. Note that acache is an internal caching mechanism
of BIND 9, and is not related to the DNS caching server function.

Additional section caching does not change the response content (except the RRsets ordering of the
additional section, see below), but can improve the response performance significantly. It is particularly
effective when BIND 9 acts as an authoritative server for a zone that has many delegations with many
glue RRs.

In order to obtain the maximum performance improvement from additional section caching, setting
additional-from-cache to no is recommended, since the current implementation of acache does not
short-cut of additional section information from the DNS cache data.

One obvious disadvantage of acache is that it requires much more memory for the internal cached data.
Thus, if the response performance does not matter and memory consumption is much more critical,
the acache mechanism can be disabled by setting acache-enable to no. It is also possible to specify the
upper limit of memory consumption for acache by using max-acache-size.

Additional section caching also has a minor effect on the RRset ordering in the additional section. With-
out acache, cyclic order is effective for the additional section as well as the answer and authority sec-
tions. However, additional section caching fixes the ordering when it first caches an RRset for the addi-
tional section, and the same ordering will be kept in succeeding responses, regardless of the setting of

79

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

rrset-order. The effect of this should be minor, however, since an RRset in the additional section typ-
ically only contains a small number of RRs (and in many cases it only contains a single RR), in which
case the ordering does not matter much.

The following is a summary of options related to acache.

acache-enable If yes, additional section caching is enabled. The default value is no.

acache-cleaning-interval The server will remove stale cache entries, based on an LRU based algorithm,
every acache-cleaning-interval minutes. The default is 60 minutes. If set to 0, no periodic cleaning
will occur.

max-acache-size The maximum amount of memory in bytes to use for the server’s acache. When the
amount of data in the acache reaches this limit, the server will clean more aggressively so that the
limit is not exceeded. In a server with multiple views, the limit applies separately to the acache of
each view. The default is 16M.

6.2.16.19 Content Filtering

BIND 9 provides the ability to filter out DNS responses from external DNS servers containing certain
types of data in the answer section. Specifically, it can reject address (A or AAAA) records if the corre-
sponding IPv4 or IPv6 addresses match the given address match list of the deny-answer-addresses
option. It can also reject CNAME or DNAME records if the ”alias” name (i.e., the CNAME alias or the
substituted query name due to DNAME) matches the given namelist of the deny-answer-aliases op-
tion, where ”match” means the alias name is a subdomain of one of the name list elements. If the
optional namelist is specified with except-from, records whose query name matches the list will be
accepted regardless of the filter setting. Likewise, if the alias name is a subdomain of the corresponding
zone, the deny-answer-aliases filter will not apply; for example, even if ”example.com” is specified for
deny-answer-aliases,

www.example.com. CNAME xxx.example.com.

returned by an ”example.com” server will be accepted.

In the address match list of the deny-answer-addresses option, only ip addr and ip prefix are
meaningful; any key id will be silently ignored.

If a response message is rejected due to the filtering, the entire message is discarded without being
cached, and a SERVFAIL error will be returned to the client.

This filtering is intended to prevent ”DNS rebinding attacks,” in which an attacker, in response to a
query for a domain name the attacker controls, returns an IP address within your own network or an
alias name within your own domain. A naive web browser or script could then serve as an unintended
proxy, allowing the attacker to get access to an internal node of your local network that couldn’t be exter-
nally accessed otherwise. See the paper available at http://portal.acm.org/citation.cfm?id=1315245.1315298
<> for more details about the attacks.

For example, if you own a domain named ”example.net” and your internal network uses an IPv4 prefix
192.0.2.0/24, you might specify the following rules:

deny-answer-addresses { 192.0.2.0/24; } except-from { "example.net"; };
deny-answer-aliases { "example.net"; };

If an external attacker lets a web browser in your local network look up an IPv4 address of ”attacker.example.com”,
the attacker’s DNS server would return a response like this:

attacker.example.com. A 192.0.2.1

in the answer section. Since the rdata of this record (the IPv4 address) matches the specified prefix
192.0.2.0/24, this response will be ignored.

80

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

On the other hand, if the browser looks up a legitimate internal web server ”www.example.net” and the
following response is returned to the BIND 9 server

www.example.net. A 192.0.2.2

it will be accepted since the owner name ”www.example.net” matches the except-from element, ”exam-
ple.net”.

Note that this is not really an attack on the DNS per se. In fact, there is nothing wrong for an ”external”
name to be mapped to your ”internal” IP address or domain name from the DNS point of view. It
might actually be provided for a legitimate purpose, such as for debugging. As long as the mapping is
provided by the correct owner, it is not possible or does not make sense to detect whether the intent of
the mapping is legitimate or not within the DNS. The ”rebinding” attack must primarily be protected
at the application that uses the DNS. For a large site, however, it may be difficult to protect all possible
applications at once. This filtering feature is provided only to help such an operational environment; it
is generally discouraged to turn it on unless you are very sure you have no other choice and the attack
is a real threat for your applications.

Care should be particularly taken if you want to use this option for addresses within 127.0.0.0/8. These
addresses are obviously ”internal”, but many applications conventionally rely on a DNS mapping from
some name to such an address. Filtering out DNS records containing this address spuriously can break
such applications.

6.2.17 server Statement Grammar

server ip_addr[/prefixlen] {
[bogus yes_or_no ;]
[provide-ixfr yes_or_no ;]
[request-ixfr yes_or_no ;]
[edns yes_or_no ;]
[edns-udp-size number ;]
[max-udp-size number ;]
[transfers number ;]
[transfer-format (one-answer | many-answers) ;]]
[keys { string ; [string ; [...]] } ;]
[transfer-source (ip4_addr | *) [port ip_port] ;]
[transfer-source-v6 (ip6_addr | *) [port ip_port] ;]
[notify-source (ip4_addr | *) [port ip_port] ;]
[notify-source-v6 (ip6_addr | *) [port ip_port] ;]
[query-source [address (ip_addr | *)]

[port (ip_port | *)];]
[query-source-v6 [address (ip_addr | *)]

[port (ip_port | *)];]
[use-queryport-pool yes_or_no;]
[queryport-pool-ports number;]
[queryport-pool-updateinterval number;]

};

6.2.18 server Statement Definition and Usage

The server statement defines characteristics to be associated with a remote name server. If a prefix length
is specified, then a range of servers is covered. Only the most specific server clause applies regardless of
the order in named.conf.

The server statement can occur at the top level of the configuration file or inside a view statement. If a
view statement contains one or more server statements, only those apply to the view and any top-level
ones are ignored. If a view contains no server statements, any top-level server statements are used as
defaults.

81

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

If you discover that a remote server is giving out bad data, marking it as bogus will prevent further
queries to it. The default value of bogus is no.

The provide-ixfr clause determines whether the local server, acting as master, will respond with an
incremental zone transfer when the given remote server, a slave, requests it. If set to yes, incremental
transfer will be provided whenever possible. If set to no, all transfers to the remote server will be non-
incremental. If not set, the value of the provide-ixfr option in the view or global options block is used
as a default.

The request-ixfr clause determines whether the local server, acting as a slave, will request incremental
zone transfers from the given remote server, a master. If not set, the value of the request-ixfr option in
the view or global options block is used as a default.

IXFR requests to servers that do not support IXFR will automatically fall back to AXFR. Therefore, there
is no need to manually list which servers support IXFR and which ones do not; the global default of yes
should always work. The purpose of the provide-ixfr and request-ixfr clauses is to make it possible to
disable the use of IXFR even when both master and slave claim to support it, for example if one of the
servers is buggy and crashes or corrupts data when IXFR is used.

The edns clause determines whether the local server will attempt to use EDNS when communicating
with the remote server. The default is yes.

The edns-udp-size option sets the EDNS UDP size that is advertised by named when querying the
remote server. Valid values are 512 to 4096 bytes (values outside this range will be silently adjusted).
This option is useful when you wish to advertises a different value to this server than the value you
advertise globally, for example, when there is a firewall at the remote site that is blocking large replies.

The max-udp-size option sets the maximum EDNS UDP message size named will send. Valid values
are 512 to 4096 bytes (values outside this range will be silently adjusted). This option is useful when you
know that there is a firewall that is blocking large replies from named.

The server supports two zone transfer methods. The first, one-answer, uses one DNS message per
resource record transferred. many-answers packs as many resource records as possible into a message.
many-answers is more efficient, but is only known to be understood by BIND 9, BIND 8.x, and patched
versions of BIND 4.9.5. You can specify which method to use for a server with the transfer-format
option. If transfer-format is not specified, the transfer-format specified by the options statement will
be used.

transfers is used to limit the number of concurrent inbound zone transfers from the specified server. If
no transfers clause is specified, the limit is set according to the transfers-per-ns option.

The keys clause identifies a key id defined by the key statement, to be used for transaction security
(TSIG, Section 4.5) when talking to the remote server. When a request is sent to the remote server,
a request signature will be generated using the key specified here and appended to the message. A
request originating from the remote server is not required to be signed by this key.

Although the grammar of the keys clause allows for multiple keys, only a single key per server is
currently supported.

The transfer-source and transfer-source-v6 clauses specify the IPv4 and IPv6 source address to be used
for zone transfer with the remote server, respectively. For an IPv4 remote server, only transfer-source
can be specified. Similarly, for an IPv6 remote server, only transfer-source-v6 can be specified. For more
details, see the description of transfer-source and transfer-source-v6 in Section 6.2.16.7.

The notify-source and notify-source-v6 clauses specify the IPv4 and IPv6 source address to be used for
notify messages sent to remote servers, respectively. For an IPv4 remote server, only notify-source can
be specified. Similarly, for an IPv6 remote server, only notify-source-v6 can be specified.

The query-source and query-source-v6 clauses specify the IPv4 and IPv6 source address to be used
for queries sent to remote servers, respectively. For an IPv4 remote server, only query-source can be
specified. Similarly, for an IPv6 remote server, only query-source-v6 can be specified.

82

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

6.2.19 statistics-channels Statement Grammar

statistics-channels {
[inet (ip_addr | *) [port ip_port]
[allow { address_match_list }];]
[inet ...;]

};

6.2.20 statistics-channels Statement Definition and Usage

The statistics-channels statement declares communication channels to be used by system administra-
tors to get access to statistics information of the name server.

This statement intends to be flexible to support multiple communication protocols in the future, but cur-
rently only HTTP access is supported. It requires that BIND 9 be compiled with libxml2; the statistics-
channels statement is still accepted even if it is built without the library, but any HTTP access will fail
with an error.

An inet control channel is a TCP socket listening at the specified ip port on the specified ip addr, which
can be an IPv4 or IPv6 address. An ip addr of * (asterisk) is interpreted as the IPv4 wildcard address;
connections will be accepted on any of the system’s IPv4 addresses. To listen on the IPv6 wildcard
address, use an ip addr of ::.

If no port is specified, port 80 is used for HTTP channels. The asterisk ”*” cannot be used for ip port.

The attempt of opening a statistics channel is restricted by the optional allow clause. Connections to the
statistics channel are permitted based on the address match list. If no allow clause is present, named
accepts connection attempts from any address; since the statistics may contain sensitive internal infor-
mation, it is highly recommended to restrict the source of connection requests appropriately.

If no statistics-channels statement is present, named will not open any communication channels.

6.2.21 trusted-keys Statement Grammar

trusted-keys {
string number number number string ;
[string number number number string ; [...]]

};

6.2.22 trusted-keys Statement Definition and Usage

The trusted-keys statement defines DNSSEC security roots. DNSSEC is described in Section 4.8. A se-
curity root is defined when the public key for a non-authoritative zone is known, but cannot be securely
obtained through DNS, either because it is the DNS root zone or because its parent zone is unsigned.
Once a key has been configured as a trusted key, it is treated as if it had been validated and proven
secure. The resolver attempts DNSSEC validation on all DNS data in subdomains of a security root.

All keys (and corresponding zones) listed in trusted-keys are deemed to exist regardless of what parent
zones say. Similarly for all keys listed in trusted-keys only those keys are used to validate the DNSKEY
RRset. The parent’s DS RRset will not be used.

The trusted-keys statement can contain multiple key entries, each consisting of the key’s domain name,
flags, protocol, algorithm, and the Base-64 representation of the key data. Spaces, tabs, newlines and
carriage returns are ignored in the key data, so the configuration may be split up into multiple lines.

trusted-keys may be set at the top level of named.conf or within a view. If it is set in both places, they
are additive: keys defined at the top level are inherited by all views, but keys defined in a view are only
used within that view.

83

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

6.2.23 managed-keys Statement Grammar

managed-keys {
string initial-key number number number string ;
[string initial-key number number number string ; [...]]

};

6.2.24 managed-keys Statement Definition and Usage

The managed-keys statement, like trusted-keys, defines DNSSEC security roots. The difference is that
managed-keys can be kept up to date automatically, without intervention from the resolver operator.

Suppose, for example, that a zone’s key-signing key was compromised, and the zone owner had to
revoke and replace the key. A resolver which had the old key in a trusted-keys statement would be
unable to validate this zone any longer; it would reply with a SERVFAIL response code. This would
continue until the resolver operator had updated the trusted-keys statement with the new key.

If, however, the zone were listed in a managed-keys statement instead, then the zone owner could add a
”stand-by” key to the zone in advance. named would store the stand-by key, and when the original key
was revoked, named would be able to transition smoothly to the new key. It would also recognize that
the old key had been revoked, and cease using that key to validate answers, minimizing the damage
that the compromised key could do.

A managed-keys statement contains a list of the keys to be managed, along with information about
how the keys are to be initialized for the first time. The only initialization method currently supported
(as of BIND 9.7.0) is initial-key. This means the managed-keys statement must contain a copy of
the initializing key. (Future releases may allow keys to be initialized by other methods, eliminating this
requirement.)

Consequently, a managed-keys statement appears similar to a trusted-keys, differing in the presence
of the second field, containing the keyword initial-key. The difference is, whereas the keys listed
in a trusted-keys continue to be trusted until they are removed from named.conf, an initializing key
listed in a managed-keys statement is only trusted once: for as long as it takes to load the managed key
database and start the RFC 5011 key maintenance process.

The first time named runs with a managed key configured in named.conf, it fetches the DNSKEY RRset
directly from the zone apex, and validates it using the key specified in the managed-keys statement. If
the DNSKEY RRset is validly signed, then it is used as the basis for a new managed keys database.

From that point on, whenever named runs, it sees the managed-keys statement, checks to make sure
RFC 5011 key maintenance has already been initialized for the specified domain, and if so, it simply
moves on. The key specified in the managed-keys is not used to validate answers; it has been super-
seded by the key or keys stored in the managed keys database.

The next time named runs after a name has been removed from the managed-keys statement, the corre-
sponding zone will be removed from the managed keys database, and RFC 5011 key maintenance will
no longer be used for that domain.

named only maintains a single managed keys database; consequently, unlike trusted-keys, managed-
keys may only be set at the top level of named.conf, not within a view.

In the current implementation, the managed keys database is stored as a master-format zone file called
managed-keys.bind. When the key database is changed, the zone is updated. As with any other
dynamic zone, changes will be written into a journal file, managed-keys.bind.jnl. They are com-
mitted to the master file as soon as possible afterward; in the case of the managed key database, this
will usually occur within 30 seconds. So, whenever named is using automatic key maintenance, those
two files can be expected to exist in the working directory. (For this reason among others, the working
directory should be always be writable by named.)

If the dnssec-lookaside option is set to auto, named will automatically initialize a managed key for the
zone dlv.isc.org. The key that is used to initialize the key maintenance process is built into named,
and can be overridden from bindkeys-file.

84

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

6.2.25 view Statement Grammar

view view_name
[class] {
match-clients { address_match_list };
match-destinations { address_match_list };
match-recursive-only yes_or_no ;
[view_option; ...]
[zone_statement; ...]

};

6.2.26 view Statement Definition and Usage

The view statement is a powerful feature of BIND 9 that lets a name server answer a DNS query differ-
ently depending on who is asking. It is particularly useful for implementing split DNS setups without
having to run multiple servers.

Each view statement defines a view of the DNS namespace that will be seen by a subset of clients. A
client matches a view if its source IP address matches the address match list of the view’s match-
clients clause and its destination IP address matches the address match list of the view’s match-
destinations clause. If not specified, both match-clients and match-destinations default to matching
all addresses. In addition to checking IP addresses match-clients and match-destinations can also take
keys which provide an mechanism for the client to select the view. A view can also be specified as
match-recursive-only, which means that only recursive requests from matching clients will match that
view. The order of the view statements is significant — a client request will be resolved in the context of
the first view that it matches.

Zones defined within a view statement will only be accessible to clients that match the view. By defining
a zone of the same name in multiple views, different zone data can be given to different clients, for
example, ”internal” and ”external” clients in a split DNS setup.

Many of the options given in the options statement can also be used within a view statement, and then
apply only when resolving queries with that view. When no view-specific value is given, the value in
the options statement is used as a default. Also, zone options can have default values specified in the
view statement; these view-specific defaults take precedence over those in the options statement.

Views are class specific. If no class is given, class IN is assumed. Note that all non-IN views must contain
a hint zone, since only the IN class has compiled-in default hints.

If there are no view statements in the config file, a default view that matches any client is automatically
created in class IN. Any zone statements specified on the top level of the configuration file are considered
to be part of this default view, and the options statement will apply to the default view. If any explicit
view statements are present, all zone statements must occur inside view statements.

Here is an example of a typical split DNS setup implemented using view statements:

view "internal" {
// This should match our internal networks.
match-clients { 10.0.0.0/8; };

// Provide recursive service to internal
// clients only.
recursion yes;

// Provide a complete view of the example.com
// zone including addresses of internal hosts.
zone "example.com" {

type master;
file "example-internal.db";

};

85

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

};

view "external" {
// Match all clients not matched by the
// previous view.
match-clients { any; };

// Refuse recursive service to external clients.
recursion no;

// Provide a restricted view of the example.com
// zone containing only publicly accessible hosts.
zone "example.com" {

type master;
file "example-external.db";

};
};

6.2.27 zone Statement Grammar

zone zone_name [class] {
type master;
[allow-query { address_match_list };]
[allow-query-on { address_match_list };]
[allow-transfer { address_match_list };]
[allow-update { address_match_list };]
[update-policy local | { update_policy_rule [...] };]
[also-notify { ip_addr [port ip_port] ;

[ip_addr [port ip_port] ; ...] };]
[check-names (warn|fail|ignore) ;]
[check-mx (warn|fail|ignore) ;]
[check-wildcard yes_or_no;]
[check-integrity yes_or_no ;]
[dialup dialup_option ;]
[file string ;]
[masterfile-format (text|raw) ;]
[journal string ;]
[max-journal-size size_spec;]
[forward (only|first) ;]
[forwarders { [ip_addr [port ip_port] ; ...] };]
[ixfr-base string ;]
[ixfr-from-differences yes_or_no;]
[ixfr-tmp-file string ;]
[maintain-ixfr-base yes_or_no ;]
[max-ixfr-log-size number ;]
[max-transfer-idle-out number ;]
[max-transfer-time-out number ;]
[notify yes_or_no | explicit | master-only ;]
[notify-delay seconds ;]
[notify-to-soa yes_or_no;]
[pubkey number number number string ;]
[notify-source (ip4_addr | *) [port ip_port] ;]
[notify-source-v6 (ip6_addr | *) [port ip_port] ;]
[zone-statistics yes_or_no ;]
[sig-validity-interval number [number] ;]
[sig-signing-nodes number ;]
[sig-signing-signatures number ;]

86

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

[sig-signing-type number ;]
[database string ;]
[min-refresh-time number ;]
[max-refresh-time number ;]
[min-retry-time number ;]
[max-retry-time number ;]
[key-directory path_name;]
[auto-dnssec allow|maintain|create|off;]
[zero-no-soa-ttl yes_or_no ;]

};

zone zone_name [class] {
type slave;
[allow-notify { address_match_list };]
[allow-query { address_match_list };]
[allow-query-on { address_match_list };]
[allow-transfer { address_match_list };]
[allow-update-forwarding { address_match_list };]
[update-check-ksk yes_or_no;]
[dnssec-dnskey-kskonly yes_or_no;]
[dnssec-secure-to-insecure yes_or_no ;]
[try-tcp-refresh yes_or_no;]
[also-notify { ip_addr [port ip_port] ;

[ip_addr [port ip_port] ; ...] };]
[check-names (warn|fail|ignore) ;]
[dialup dialup_option ;]
[file string ;]
[masterfile-format (text|raw) ;]
[journal string ;]
[max-journal-size size_spec;]
[forward (only|first) ;]
[forwarders { [ip_addr [port ip_port] ; ...] };]
[ixfr-base string ;]
[ixfr-from-differences yes_or_no;]
[ixfr-tmp-file string ;]
[maintain-ixfr-base yes_or_no ;]
[masters [port ip_port] { (masters_list | ip_addr

[port ip_port]
[key key]) ; [...] };]

[max-ixfr-log-size number ;]
[max-transfer-idle-in number ;]
[max-transfer-idle-out number ;]
[max-transfer-time-in number ;]
[max-transfer-time-out number ;]
[notify yes_or_no | explicit | master-only ;]
[notify-delay seconds ;]
[notify-to-soa yes_or_no;]
[pubkey number number number string ;]
[transfer-source (ip4_addr | *) [port ip_port] ;]
[transfer-source-v6 (ip6_addr | *) [port ip_port] ;]
[alt-transfer-source (ip4_addr | *) [port ip_port] ;]
[alt-transfer-source-v6 (ip6_addr | *)

[port ip_port] ;]
[use-alt-transfer-source yes_or_no;]
[notify-source (ip4_addr | *) [port ip_port] ;]
[notify-source-v6 (ip6_addr | *) [port ip_port] ;]
[zone-statistics yes_or_no ;]
[database string ;]
[min-refresh-time number ;]

87

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

[max-refresh-time number ;]
[min-retry-time number ;]
[max-retry-time number ;]
[multi-master yes_or_no ;]
[zero-no-soa-ttl yes_or_no ;]

};

zone zone_name [class] {
type hint;
file string ;
[delegation-only yes_or_no ;]
[check-names (warn|fail|ignore) ;] // Not Implemented.

};

zone zone_name [class] {
type stub;
[allow-query { address_match_list };]
[allow-query-on { address_match_list };]
[check-names (warn|fail|ignore) ;]
[dialup dialup_option ;]
[delegation-only yes_or_no ;]
[file string ;]
[masterfile-format (text|raw) ;]
[forward (only|first) ;]
[forwarders { [ip_addr [port ip_port] ; ...] };]
[masters [port ip_port] { (masters_list | ip_addr

[port ip_port]
[key key]) ; [...] };]

[max-transfer-idle-in number ;]
[max-transfer-time-in number ;]
[pubkey number number number string ;]
[transfer-source (ip4_addr | *) [port ip_port] ;]
[transfer-source-v6 (ip6_addr | *)

[port ip_port] ;]
[alt-transfer-source (ip4_addr | *) [port ip_port] ;]
[alt-transfer-source-v6 (ip6_addr | *)

[port ip_port] ;]
[use-alt-transfer-source yes_or_no;]
[zone-statistics yes_or_no ;]
[database string ;]
[min-refresh-time number ;]
[max-refresh-time number ;]
[min-retry-time number ;]
[max-retry-time number ;]
[multi-master yes_or_no ;]

};

zone zone_name [class] {
type forward;
[forward (only|first) ;]
[forwarders { [ip_addr [port ip_port] ; ...] };]
[delegation-only yes_or_no ;]

};

zone zone_name [class] {
type delegation-only;

};

88

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

6.2.28 zone Statement Definition and Usage

6.2.28.1 Zone Types

master The server has a master copy of the data for the zone and will be
able to provide authoritative answers for it.

slave A slave zone is a replica of a master zone. The masters list speci-
fies one or more IP addresses of master servers that the slave con-
tacts to update its copy of the zone. Masters list elements can also
be names of other masters lists. By default, transfers are made
from port 53 on the servers; this can be changed for all servers by
specifying a port number before the list of IP addresses, or on a
per-server basis after the IP address. Authentication to the master
can also be done with per-server TSIG keys. If a file is specified,
then the replica will be written to this file whenever the zone is
changed, and reloaded from this file on a server restart. Use of a
file is recommended, since it often speeds server startup and elimi-
nates a needless waste of bandwidth. Note that for large numbers
(in the tens or hundreds of thousands) of zones per server, it is
best to use a two-level naming scheme for zone filenames. For ex-
ample, a slave server for the zone example.com might place the
zone contents into a file called ex/example.com where ex/ is
just the first two letters of the zone name. (Most operating systems
behave very slowly if you put 100000 files into a single directory.)

stub A stub zone is similar to a slave zone, except that it replicates only
the NS records of a master zone instead of the entire zone. Stub
zones are not a standard part of the DNS; they are a feature specific
to the BIND implementation.
Stub zones can be used to eliminate the need for glue NS record
in a parent zone at the expense of maintaining a stub zone entry
and a set of name server addresses in named.conf. This usage is
not recommended for new configurations, and BIND 9 supports
it only in a limited way. In BIND 4/8, zone transfers of a par-
ent zone included the NS records from stub children of that zone.
This meant that, in some cases, users could get away with con-
figuring child stubs only in the master server for the parent zone.
BIND 9 never mixes together zone data from different zones in this
way. Therefore, if a BIND 9 master serving a parent zone has child
stub zones configured, all the slave servers for the parent zone also
need to have the same child stub zones configured.
Stub zones can also be used as a way of forcing the resolution of
a given domain to use a particular set of authoritative servers.
For example, the caching name servers on a private network us-
ing RFC1918 addressing may be configured with stub zones for
10.in-addr.arpa to use a set of internal name servers as the
authoritative servers for that domain.

forward A ”forward zone” is a way to configure forwarding on a per-
domain basis. A zone statement of type forward can contain a for-
ward and/or forwarders statement, which will apply to queries
within the domain given by the zone name. If no forwarders state-
ment is present or an empty list for forwarders is given, then no
forwarding will be done for the domain, canceling the effects of
any forwarders in the options statement. Thus if you want to use
this type of zone to change the behavior of the global forward op-
tion (that is, ”forward first” to, then ”forward only”, or vice versa,
but want to use the same servers as set globally) you need to re-
specify the global forwarders.

89

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

hint The initial set of root name servers is specified using a ”hint zone”.
When the server starts up, it uses the root hints to find a root name
server and get the most recent list of root name servers. If no hint
zone is specified for class IN, the server uses a compiled-in default
set of root servers hints. Classes other than IN have no built-in
defaults hints.

delegation-only This is used to enforce the delegation-only status of infrastructure
zones (e.g. COM, NET, ORG). Any answer that is received without
an explicit or implicit delegation in the authority section will be
treated as NXDOMAIN. This does not apply to the zone apex. This
should not be applied to leaf zones.
delegation-only has no effect on answers received from for-
warders.
See caveats in root-delegation-only.

6.2.28.2 Class

The zone’s name may optionally be followed by a class. If a class is not specified, class IN (for Internet),
is assumed. This is correct for the vast majority of cases.

The hesiod class is named for an information service from MIT’s Project Athena. It is used to share
information about various systems databases, such as users, groups, printers and so on. The keyword
HS is a synonym for hesiod.

Another MIT development is Chaosnet, a LAN protocol created in the mid-1970s. Zone data for it can
be specified with the CHAOS class.

6.2.28.3 Zone Options

allow-notify See the description of allow-notify in Section 6.2.16.4.

allow-query See the description of allow-query in Section 6.2.16.4.

allow-query-on See the description of allow-query-on in Section 6.2.16.4.

allow-transfer See the description of allow-transfer in Section 6.2.16.4.

allow-update See the description of allow-update in Section 6.2.16.4.

update-policy Specifies a ”Simple Secure Update” policy. See Section 6.2.28.4.

allow-update-forwarding See the description of allow-update-forwarding in Section 6.2.16.4.

also-notify Only meaningful if notify is active for this zone. The set of machines that will receive a DNS
NOTIFY message for this zone is made up of all the listed name servers (other than the primary
master) for the zone plus any IP addresses specified with also-notify. A port may be specified
with each also-notify address to send the notify messages to a port other than the default of 53.
also-notify is not meaningful for stub zones. The default is the empty list.

check-names This option is used to restrict the character set and syntax of certain domain names in
master files and/or DNS responses received from the network. The default varies according to

90

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

zone type. For master zones the default is fail. For slave zones the default is warn. It is not
implemented for hint zones.

check-mx See the description of check-mx in Section 6.2.16.1.

check-wildcard See the description of check-wildcard in Section 6.2.16.1.

check-integrity See the description of check-integrity in Section 6.2.16.1.

check-sibling See the description of check-sibling in Section 6.2.16.1.

zero-no-soa-ttl See the description of zero-no-soa-ttl in Section 6.2.16.1.

update-check-ksk See the description of update-check-ksk in Section 6.2.16.1.

dnssec-dnskey-kskonly See the description of dnssec-dnskey-kskonly in Section 6.2.16.1.

try-tcp-refresh See the description of try-tcp-refresh in Section 6.2.16.1.

database Specify the type of database to be used for storing the zone data. The string following the
database keyword is interpreted as a list of whitespace-delimited words. The first word identi-
fies the database type, and any subsequent words are passed as arguments to the database to be
interpreted in a way specific to the database type.

The default is "rbt", BIND 9’s native in-memory red-black-tree database. This database does not
take arguments.

Other values are possible if additional database drivers have been linked into the server. Some
sample drivers are included with the distribution but none are linked in by default.

dialup See the description of dialup in Section 6.2.16.1.

delegation-only The flag only applies to hint and stub zones. If set to yes, then the zone will also be
treated as if it is also a delegation-only type zone.

See caveats in root-delegation-only.

forward Only meaningful if the zone has a forwarders list. The only value causes the lookup to fail
after trying the forwarders and getting no answer, while first would allow a normal lookup to be
tried.

forwarders Used to override the list of global forwarders. If it is not specified in a zone of type forward,
no forwarding is done for the zone and the global options are not used.

ixfr-base Was used in BIND 8 to specify the name of the transaction log (journal) file for dynamic update
and IXFR. BIND 9 ignores the option and constructs the name of the journal file by appending ”.
jnl” to the name of the zone file.

ixfr-tmp-file Was an undocumented option in BIND 8. Ignored in BIND 9.

journal Allow the default journal’s filename to be overridden. The default is the zone’s filename with
”.jnl” appended. This is applicable to master and slave zones.

91

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

max-journal-size See the description of max-journal-size in Section 6.2.16.10.

max-transfer-time-in See the description of max-transfer-time-in in Section 6.2.16.7.

max-transfer-idle-in See the description of max-transfer-idle-in in Section 6.2.16.7.

max-transfer-time-out See the description of max-transfer-time-out in Section 6.2.16.7.

max-transfer-idle-out See the description of max-transfer-idle-out in Section 6.2.16.7.

notify See the description of notify in Section 6.2.16.1.

notify-delay See the description of notify-delay in Section 6.2.16.15.

notify-to-soa See the description of notify-to-soa in Section 6.2.16.1.

pubkey In BIND 8, this option was intended for specifying a public zone key for verification of signa-
tures in DNSSEC signed zones when they are loaded from disk. BIND 9 does not verify signatures
on load and ignores the option.

zone-statistics If yes, the server will keep statistical information for this zone, which can be dumped
to the statistics-file defined in the server options.

sig-validity-interval See the description of sig-validity-interval in Section 6.2.16.15.

sig-signing-nodes See the description of sig-signing-nodes in Section 6.2.16.15.

sig-signing-signatures See the description of sig-signing-signatures in Section 6.2.16.15.

sig-signing-type See the description of sig-signing-type in Section 6.2.16.15.

transfer-source See the description of transfer-source in Section 6.2.16.7.

transfer-source-v6 See the description of transfer-source-v6 in Section 6.2.16.7.

alt-transfer-source See the description of alt-transfer-source in Section 6.2.16.7.

alt-transfer-source-v6 See the description of alt-transfer-source-v6 in Section 6.2.16.7.

use-alt-transfer-source See the description of use-alt-transfer-source in Section 6.2.16.7.

notify-source See the description of notify-source in Section 6.2.16.7.

notify-source-v6 See the description of notify-source-v6 in Section 6.2.16.7.

min-refresh-time, max-refresh-time, min-retry-time, max-retry-time See the description in Section 6.2.16.15.

92

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.2. CONFIGURATION FILE GRAMMAR

ixfr-from-differences See the description of ixfr-from-differences in Section 6.2.16.1. (Note that the
ixfr-from-differences master and slave choices are not available at the zone level.)

key-directory See the description of key-directory in Section 6.2.16.

auto-dnssec Zones configured for dynamic DNS may also use this option to allow varying levels of
automatic DNSSEC key management. There are four possible settings:

auto-dnssec allow; permits keys to be updated and the zone fully re-signed whenever the user
issues the command rndc sign zonename.

auto-dnssec maintain; includes the above, but also automatically adjusts the zone’s DNSSEC keys
on schedule, according to the keys’ timing metadata (see XrefId[??] and dnssec-settime(8)). The
command rndc sign zonename causes named to load keys from the key repository and sign the
zone with all keys that are active. rndc loadkeys zonename causes named to load keys from the
key repository and schedule key maintenance events to occur in the future, but it does not sign the
full zone immediately.

auto-dnssec create; includes the above, but also allows named to create new keys in the key repos-
itory when needed. (NOTE: This option is not yet implemented; the syntax is being reserved for
future use.)

The default setting is auto-dnssec off.

multi-master See the description of multi-master in Section 6.2.16.1.

masterfile-format See the description of masterfile-format in Section 6.2.16.15.

dnssec-secure-to-insecure See the description of dnssec-secure-to-insecure in Section 6.2.16.1.

6.2.28.4 Dynamic Update Policies

BIND 9 supports two alternative methods of granting clients the right to perform dynamic updates to a
zone, configured by the allow-update and update-policy option, respectively.

The allow-update clause works the same way as in previous versions of BIND. It grants given clients
the permission to update any record of any name in the zone.

The update-policy clause allows more fine-grained control over what updates are allowed. A set of rules
is specified, where each rule either grants or denies permissions for one or more names to be updated
by one or more identities. If the dynamic update request message is signed (that is, it includes either a
TSIG or SIG(0) record), the identity of the signer can be determined.

Rules are specified in the update-policy zone option, and are only meaningful for master zones. When
the update-policy statement is present, it is a configuration error for the allow-update statement to be
present. The update-policy statement only examines the signer of a message; the source address is not
relevant.

There is a pre-defined update-policy rule which can be switched on with the command update-policy
local;. Switching on this rule in a zone causes named to generate a TSIG session key and place it in a file,
and to allow that key to update the zone. (By default, the file is /var/run/named/session.key, the
key name is ”local-ddns” and the key algorithm is HMAC-SHA256, but these values are configurable
with the session-keyfile, session-keyname and session-keyalg options, respectively).

A client running on the local system, and with appropriate permissions, may read that file and use the
key to sign update requests. The zone’s update policy will be set to allow that key to change any record
within the zone. Assuming the key name is ”local-ddns”, this policy is equivalent to:

93

6.2. CONFIGURATION FILE GRAMMAR CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

update-policy { grant local-ddns zonesub any; };

The command nsupdate -l sends update requests to localhost, and signs them using the session key.

Other rule definitions look like this:

(grant | deny) identity nametype [name] [types]

Each rule grants or denies privileges. Once a message has successfully matched a rule, the operation is
immediately granted or denied and no further rules are examined. A rule is matched when the signer
matches the identity field, the name matches the name field in accordance with the nametype field, and
the type matches the types specified in the type field.

No signer is required for tcp-self or 6to4-self however the standard reverse mapping / prefix
conversion must match the identity field.

The identity field specifies a name or a wildcard name. Normally, this is the name of the TSIG or SIG(0)
key used to sign the update request. When a TKEY exchange has been used to create a shared secret,
the identity of the shared secret is the same as the identity of the key used to authenticate the TKEY
exchange. TKEY is also the negotiation method used by GSS-TSIG, which establishes an identity that is
the Kerberos principal of the client, such as "user@host.domain". When the identity field specifies
a wildcard name, it is subject to DNS wildcard expansion, so the rule will apply to multiple identities.
The identity field must contain a fully-qualified domain name.

The nametype field has 13 values: name, subdomain, wildcard, self, selfsub, selfwild, krb5-self,
ms-self, krb5-subdomain, ms-subdomain, tcp-self, 6to4-self, and zonesub.

name Exact-match semantics. This rule matches when the name
being updated is identical to the contents of the name field.

subdomain This rule matches when the name being updated is a subdo-
main of, or identical to, the contents of the name field.

zonesub This rule is similar to subdomain, except that it matches
when the name being updated is a subdomain of the zone
in which the update-policy statement appears. This obvi-
ates the need to type the zone name twice, and enables the
use of a standard update-policy statement in multiple zones
without modification.
When this rule is used, the name field is omitted.

wildcard The name field is subject to DNS wildcard expansion, and
this rule matches when the name being updated name is a
valid expansion of the wildcard.

self This rule matches when the name being updated matches the
contents of the identity field. The name field is ignored,
but should be the same as the identity field. The self
nametype is most useful when allowing using one key per
name to update, where the key has the same name as the
name to be updated. The identity would be specified as *
(an asterisk) in this case.

selfsub This rule is similar to self except that subdomains of self
can also be updated.

selfwild This rule is similar to self except that only subdomains of
self can be updated.

94

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.3. ZONE FILE

tcp-self Allow updates that have been sent via TCP and for which the
standard mapping from the initiating IP address into the IN-
ADDR.ARPA and IP6.ARPA namespaces match the name to
be updated.

NOTE

It is theoretically possible to spoof
these TCP sessions.

6to4-self Allow the 6to4 prefix to be update by any TCP connection
from the 6to4 network or from the corresponding IPv4 ad-
dress. This is intended to allow NS or DNAME RRsets to be
added to the reverse tree.

NOTE

It is theoretically possible to spoof
these TCP sessions.

In all cases, the name field must specify a fully-qualified domain name.

If no types are explicitly specified, this rule matches all types except RRSIG, NS, SOA, NSEC and NSEC3.
Types may be specified by name, including ”ANY” (ANY matches all types except NSEC and NSEC3,
which can never be updated). Note that when an attempt is made to delete all records associated with a
name, the rules are checked for each existing record type.

6.3 Zone File

6.3.1 Types of Resource Records and When to Use Them

This section, largely borrowed from RFC 1034, describes the concept of a Resource Record (RR) and
explains when each is used. Since the publication of RFC 1034, several new RRs have been identified
and implemented in the DNS. These are also included.

6.3.1.1 Resource Records

A domain name identifies a node. Each node has a set of resource information, which may be empty.
The set of resource information associated with a particular name is composed of separate RRs. The
order of RRs in a set is not significant and need not be preserved by name servers, resolvers, or other
parts of the DNS. However, sorting of multiple RRs is permitted for optimization purposes, for example,
to specify that a particular nearby server be tried first. See Section 6.2.16.13 and Section 6.2.16.14.

The components of a Resource Record are:

owner name The domain name where the RR is found.
type An encoded 16-bit value that specifies the type of the re-

source record.

95

6.3. ZONE FILE CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

TTL The time-to-live of the RR. This field is a 32-bit integer in
units of seconds, and is primarily used by resolvers when
they cache RRs. The TTL describes how long a RR can be
cached before it should be discarded.

class An encoded 16-bit value that identifies a protocol family
or instance of a protocol.

RDATA The resource data. The format of the data is type (and
sometimes class) specific.

The following are types of valid RRs:

A A host address. In the IN class, this is a 32-bit IP address.
Described in RFC 1035.

AAAA IPv6 address. Described in RFC 1886.
A6 IPv6 address. This can be a partial address (a suffix) and an

indirection to the name where the rest of the address (the
prefix) can be found. Experimental. Described in RFC 2874.

AFSDB Location of AFS database servers. Experimental. Described
in RFC 1183.

APL Address prefix list. Experimental. Described in RFC 3123.
CERT Holds a digital certificate. Described in RFC 2538.
CNAME Identifies the canonical name of an alias. Described in RFC

1035.
DHCID Is used for identifying which DHCP client is associated with

this name. Described in RFC 4701.
DNAME Replaces the domain name specified with another name to

be looked up, effectively aliasing an entire subtree of the
domain name space rather than a single record as in the case
of the CNAME RR. Described in RFC 2672.

DNSKEY Stores a public key associated with a signed DNS zone. De-
scribed in RFC 4034.

DS Stores the hash of a public key associated with a signed DNS
zone. Described in RFC 4034.

GPOS Specifies the global position. Superseded by LOC.
HINFO Identifies the CPU and OS used by a host. Described in RFC

1035.
IPSECKEY Provides a method for storing IPsec keying material in DNS.

Described in RFC 4025.
ISDN Representation of ISDN addresses. Experimental. De-

scribed in RFC 1183.
KEY Stores a public key associated with a DNS name. Used in

original DNSSEC; replaced by DNSKEY in DNSSECbis, but
still used with SIG(0). Described in RFCs 2535 and 2931.

KX Identifies a key exchanger for this DNS name. Described in
RFC 2230.

LOC For storing GPS info. Described in RFC 1876. Experimental.
MX Identifies a mail exchange for the domain with a 16-bit pref-

erence value (lower is better) followed by the host name of
the mail exchange. Described in RFC 974, RFC 1035.

NAPTR Name authority pointer. Described in RFC 2915.
NSAP A network service access point. Described in RFC 1706.
NS The authoritative name server for the domain. Described in

RFC 1035.
NSEC Used in DNSSECbis to securely indicate that RRs with an

owner name in a certain name interval do not exist in a
zone and indicate what RR types are present for an exist-
ing name. Described in RFC 4034.

96

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.3. ZONE FILE

NSEC3 Used in DNSSECbis to securely indicate that RRs with an
owner name in a certain name interval do not exist in a
zone and indicate what RR types are present for an exist-
ing name. NSEC3 differs from NSEC in that it prevents
zone enumeration but is more computationally expensive
on both the server and the client than NSEC. Described in
RFC 5155.

NSEC3PARAM Used in DNSSECbis to tell the authoritative server which
NSEC3 chains are available to use. Described in RFC 5155.

NXT Used in DNSSEC to securely indicate that RRs with an
owner name in a certain name interval do not exist in a
zone and indicate what RR types are present for an exist-
ing name. Used in original DNSSEC; replaced by NSEC in
DNSSECbis. Described in RFC 2535.

PTR A pointer to another part of the domain name space. De-
scribed in RFC 1035.

PX Provides mappings between RFC 822 and X.400 addresses.
Described in RFC 2163.

RP Information on persons responsible for the domain. Exper-
imental. Described in RFC 1183.

RRSIG Contains DNSSECbis signature data. Described in RFC
4034.

RT Route-through binding for hosts that do not have their own
direct wide area network addresses. Experimental. De-
scribed in RFC 1183.

SIG Contains DNSSEC signature data. Used in original
DNSSEC; replaced by RRSIG in DNSSECbis, but still used
for SIG(0). Described in RFCs 2535 and 2931.

SOA Identifies the start of a zone of authority. Described in RFC
1035.

SPF Contains the Sender Policy Framework information for a
given email domain. Described in RFC 4408.

SRV Information about well known network services (replaces
WKS). Described in RFC 2782.

SSHFP Provides a way to securely publish a secure shell key’s fin-
gerprint. Described in RFC 4255.

TXT Text records. Described in RFC 1035.
WKS Information about which well known network services,

such as SMTP, that a domain supports. Historical.
X25 Representation of X.25 network addresses. Experimental.

Described in RFC 1183.

The following classes of resource records are currently valid in the DNS:

IN The Internet.
CH Chaosnet, a LAN protocol created at MIT in the mid-1970s.

Rarely used for its historical purpose, but reused for BIND’s
built-in server information zones, e.g., version.bind.

HS Hesiod, an information service developed by MIT’s Project
Athena. It is used to share information about various sys-
tems databases, such as users, groups, printers and so on.

The owner name is often implicit, rather than forming an integral part of the RR. For example, many
name servers internally form tree or hash structures for the name space, and chain RRs off nodes. The
remaining RR parts are the fixed header (type, class, TTL) which is consistent for all RRs, and a variable

97

6.3. ZONE FILE CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

part (RDATA) that fits the needs of the resource being described.

The meaning of the TTL field is a time limit on how long an RR can be kept in a cache. This limit
does not apply to authoritative data in zones; it is also timed out, but by the refreshing policies for
the zone. The TTL is assigned by the administrator for the zone where the data originates. While
short TTLs can be used to minimize caching, and a zero TTL prohibits caching, the realities of Internet
performance suggest that these times should be on the order of days for the typical host. If a change
can be anticipated, the TTL can be reduced prior to the change to minimize inconsistency during the
change, and then increased back to its former value following the change.

The data in the RDATA section of RRs is carried as a combination of binary strings and domain names.
The domain names are frequently used as ”pointers” to other data in the DNS.

6.3.1.2 Textual expression of RRs

RRs are represented in binary form in the packets of the DNS protocol, and are usually represented in
highly encoded form when stored in a name server or resolver. In the examples provided in RFC 1034,
a style similar to that used in master files was employed in order to show the contents of RRs. In this
format, most RRs are shown on a single line, although continuation lines are possible using parentheses.

The start of the line gives the owner of the RR. If a line begins with a blank, then the owner is assumed
to be the same as that of the previous RR. Blank lines are often included for readability.

Following the owner, we list the TTL, type, and class of the RR. Class and type use the mnemonics
defined above, and TTL is an integer before the type field. In order to avoid ambiguity in parsing, type
and class mnemonics are disjoint, TTLs are integers, and the type mnemonic is always last. The IN class
and TTL values are often omitted from examples in the interests of clarity.

The resource data or RDATA section of the RR are given using knowledge of the typical representation
for the data.

For example, we might show the RRs carried in a message as:

ISI.EDU. MX 10 VENERA.ISI.EDU.
MX 10 VAXA.ISI.EDU

VENERA.ISI.EDU A 128.9.0.32
A 10.1.0.52

VAXA.ISI.EDU A 10.2.0.27
A 128.9.0.33

The MX RRs have an RDATA section which consists of a 16-bit number followed by a domain name.
The address RRs use a standard IP address format to contain a 32-bit internet address.

The above example shows six RRs, with two RRs at each of three domain names.

Similarly we might see:

XX.LCS.MIT.EDU. IN A 10.0.0.44
CH A MIT.EDU. 2420

This example shows two addresses for XX.LCS.MIT.EDU, each of a different class.

6.3.2 Discussion of MX Records

As described above, domain servers store information as a series of resource records, each of which
contains a particular piece of information about a given domain name (which is usually, but not always,
a host). The simplest way to think of a RR is as a typed pair of data, a domain name matched with a

98

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.3. ZONE FILE

relevant datum, and stored with some additional type information to help systems determine when the
RR is relevant.

MX records are used to control delivery of email. The data specified in the record is a priority and a
domain name. The priority controls the order in which email delivery is attempted, with the lowest
number first. If two priorities are the same, a server is chosen randomly. If no servers at a given priority
are responding, the mail transport agent will fall back to the next largest priority. Priority numbers do
not have any absolute meaning — they are relevant only respective to other MX records for that domain
name. The domain name given is the machine to which the mail will be delivered. It must have an
associated address record (A or AAAA) — CNAME is not sufficient.

For a given domain, if there is both a CNAME record and an MX record, the MX record is in error, and
will be ignored. Instead, the mail will be delivered to the server specified in the MX record pointed to
by the CNAME. For example:

example.com. IN MX 10 mail.example.com.
IN MX 10 mail2.example.com.
IN MX 20 mail.backup.org.

mail.example.com. IN A 10.0.0.1
mail2.example.com. IN A 10.0.0.2

Mail delivery will be attempted to mail.example.com and mail2.example.com (in any order), and
if neither of those succeed, delivery to mail.backup.org will be attempted.

6.3.3 Setting TTLs

The time-to-live of the RR field is a 32-bit integer represented in units of seconds, and is primarily used
by resolvers when they cache RRs. The TTL describes how long a RR can be cached before it should be
discarded. The following three types of TTL are currently used in a zone file.

SOA The last field in the SOA is the negative caching TTL. This controls how
long other servers will cache no-such-domain (NXDOMAIN) responses
from you.
The maximum time for negative caching is 3 hours (3h).

$TTL The $TTL directive at the top of the zone file (before the SOA) gives a
default TTL for every RR without a specific TTL set.

RR TTLs Each RR can have a TTL as the second field in the RR, which will control
how long other servers can cache the it.

All of these TTLs default to units of seconds, though units can be explicitly specified, for example,
1h30m.

6.3.4 Inverse Mapping in IPv4

Reverse name resolution (that is, translation from IP address to name) is achieved by means of the
in-addr.arpa domain and PTR records. Entries in the in-addr.arpa domain are made in least-to-most
significant order, read left to right. This is the opposite order to the way IP addresses are usually writ-
ten. Thus, a machine with an IP address of 10.1.2.3 would have a corresponding in-addr.arpa name of
3.2.1.10.in-addr.arpa. This name should have a PTR resource record whose data field is the name of the
machine or, optionally, multiple PTR records if the machine has more than one name. For example, in
the [example.com] domain:

$ORIGIN 2.1.10.in-addr.arpa
3 IN PTR foo.example.com.

99

6.3. ZONE FILE CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

NOTE

The $ORIGIN lines in the examples are for providing context to the examples
only — they do not necessarily appear in the actual usage. They are only used
here to indicate that the example is relative to the listed origin.

6.3.5 Other Zone File Directives

The Master File Format was initially defined in RFC 1035 and has subsequently been extended. While
the Master File Format itself is class independent all records in a Master File must be of the same class.

Master File Directives include $ORIGIN, $INCLUDE, and $TTL.

6.3.5.1 The @ (at-sign)

When used in the label (or name) field, the asperand or at-sign (@) symbol represents the current origin.
At the start of the zone file, it is the <zone name> (followed by trailing dot).

6.3.5.2 The $ORIGIN Directive

Syntax: $ORIGIN domain-name [comment]

$ORIGIN sets the domain name that will be appended to any unqualified records. When a zone is first
read in there is an implicit $ORIGIN <zone name>. (followed by trailing dot). The current $ORIGIN
is appended to the domain specified in the $ORIGIN argument if it is not absolute.

$ORIGIN example.com.
WWW CNAME MAIN-SERVER

is equivalent to

WWW.EXAMPLE.COM. CNAME MAIN-SERVER.EXAMPLE.COM.

6.3.5.3 The $INCLUDE Directive

Syntax: $INCLUDE filename [origin] [comment]

Read and process the file filename as if it were included into the file at this point. If origin is specified
the file is processed with $ORIGIN set to that value, otherwise the current $ORIGIN is used.

The origin and the current domain name revert to the values they had prior to the $INCLUDE once the
file has been read.

100

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.3. ZONE FILE

NOTE

RFC 1035 specifies that the current origin should be restored after an $IN-
CLUDE, but it is silent on whether the current domain name should also be
restored. BIND 9 restores both of them. This could be construed as a devia-
tion from RFC 1035, a feature, or both.

6.3.5.4 The $TTL Directive

Syntax: $TTL default-ttl [comment]

Set the default Time To Live (TTL) for subsequent records with undefined TTLs. Valid TTLs are of the
range 0-2147483647 seconds.

$TTL is defined in RFC 2308.

6.3.6 BIND Master File Extension: the $GENERATE Directive

Syntax: $GENERATE range lhs [ttl] [class] type rhs [comment]

$GENERATE is used to create a series of resource records that only differ from each other by an iterator.
$GENERATE can be used to easily generate the sets of records required to support sub /24 reverse
delegations described in RFC 2317: Classless IN-ADDR.ARPA delegation.

$ORIGIN 0.0.192.IN-ADDR.ARPA.
$GENERATE 1-2 @ NS SERVER$.EXAMPLE.
$GENERATE 1-127 $ CNAME $.0

is equivalent to

0.0.0.192.IN-ADDR.ARPA. NS SERVER1.EXAMPLE.
0.0.0.192.IN-ADDR.ARPA. NS SERVER2.EXAMPLE.
1.0.0.192.IN-ADDR.ARPA. CNAME 1.0.0.0.192.IN-ADDR.ARPA.
2.0.0.192.IN-ADDR.ARPA. CNAME 2.0.0.0.192.IN-ADDR.ARPA.
...
127.0.0.192.IN-ADDR.ARPA. CNAME 127.0.0.0.192.IN-ADDR.ARPA.

Generate a set of A and MX records. Note the MX’s right hand side is a quoted string. The quotes will
be stripped when the right hand side is processed.

$ORIGIN EXAMPLE.
$GENERATE 1-127 HOST-$ A 1.2.3.$
$GENERATE 1-127 HOST-$ MX "0 ."

is equivalent to

HOST-1.EXAMPLE. A 1.2.3.1
HOST-1.EXAMPLE. MX 0 .
HOST-2.EXAMPLE. A 1.2.3.2
HOST-2.EXAMPLE. MX 0 .
HOST-3.EXAMPLE. A 1.2.3.3
HOST-3.EXAMPLE. MX 0 .
...
HOST-127.EXAMPLE. A 1.2.3.127
HOST-127.EXAMPLE. MX 0 .

101

6.3. ZONE FILE CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

range This can be one of two forms: start-stop or start-stop/step. If the first
form is used, then step is set to 1. All of start, stop and step must be
positive.

lhs This describes the owner name of the resource records to be created.
Any single $ (dollar sign) symbols within the lhs string are replaced
by the iterator value. To get a $ in the output, you need to escape the
$ using a backslash \, e.g. \$. The $ may optionally be followed by
modifiers which change the offset from the iterator, field width and
base. Modifiers are introduced by a { (left brace) immediately fol-
lowing the $ as ${offset[,width[,base]]}. For example, ${-20,3,d} sub-
tracts 20 from the current value, prints the result as a decimal in a
zero-padded field of width 3. Available output forms are decimal (d),
octal (o), hexadecimal (x or X for uppercase) and nibble (n or N\for
uppercase). The default modifier is ${0,0,d}. If the lhs is not absolute,
the current $ORIGIN is appended to the name.
In nibble mode the value will be treated as if it was a reversed hex-
adecimal string with each hexadecimal digit as a separate label. The
width field includes the label separator.
For compatibility with earlier versions, $$ is still recognized as indi-
cating a literal $ in the output.

ttl Specifies the time-to-live of the generated records. If not specified this
will be inherited using the normal TTL inheritance rules.
class and ttl can be entered in either order.

class Specifies the class of the generated records. This must match the zone
class if it is specified.
class and ttl can be entered in either order.

type Any valid type.
rhs rhs, optionally, quoted string.

The $GENERATE directive is a BIND extension and not part of the standard zone file format.

BIND 8 does not support the optional TTL and CLASS fields.

6.3.7 Additional File Formats

In addition to the standard textual format, BIND 9 supports the ability to read or dump to zone files
in other formats. The raw format is currently available as an additional format. It is a binary format
representing BIND 9’s internal data structure directly, thereby remarkably improving the loading time.

For a primary server, a zone file in the raw format is expected to be generated from a textual zone file
by the named-compilezone command. For a secondary server or for a dynamic zone, it is automatically
generated (if this format is specified by the masterfile-format option) when named dumps the zone
contents after zone transfer or when applying prior updates.

If a zone file in a binary format needs manual modification, it first must be converted to a textual form by
the named-compilezone command. All necessary modification should go to the text file, which should
then be converted to the binary form by the named-compilezone command again.

Although the raw format uses the network byte order and avoids architecture-dependent data align-
ment so that it is as much portable as possible, it is primarily expected to be used inside the same single
system. In order to export a zone file in the raw format or make a portable backup of the file, it is
recommended to convert the file to the standard textual representation.

102

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.4. BIND9 STATISTICS

6.4 BIND9 Statistics

BIND 9 maintains lots of statistics information and provides several interfaces for users to get access to
the statistics. The available statistics include all statistics counters that were available in BIND 8 and are
meaningful in BIND 9, and other information that is considered useful.

The statistics information is categorized into the following sections.

Incoming Requests The number of incoming DNS requests for
each OPCODE.

Incoming Queries The number of incoming queries for each
RR type.

Outgoing Queries The number of outgoing queries for each
RR type sent from the internal resolver.
Maintained per view.

Name Server Statistics Statistics counters about incoming request
processing.

Zone Maintenance Statistics Statistics counters regarding zone mainte-
nance operations such as zone transfers.

Resolver Statistics Statistics counters about name resolution
performed in the internal resolver. Main-
tained per view.

Cache DB RRsets The number of RRsets per RR type and
nonexistent names stored in the cache
database. If the exclamation mark (!) is
printed for a RR type, it means that partic-
ular type of RRset is known to be nonex-
istent (this is also known as ”NXRRSET”).
Maintained per view.

Socket I/O Statistics Statistics counters about network related
events.

A subset of Name Server Statistics is collected and shown per zone for which the server has the authority
when zone-statistics is set to yes. These statistics counters are shown with their zone and view names.
In some cases the view names are omitted for the default view.

There are currently two user interfaces to get access to the statistics. One is in the plain text format
dumped to the file specified by the statistics-file configuration option. The other is remotely accessible
via a statistics channel when the statistics-channels statement is specified in the configuration file (see
Section 6.2.19.)

6.4.0.1 The Statistics File

The text format statistics dump begins with a line, like:

+++ Statistics Dump +++ (973798949)

The number in parentheses is a standard Unix-style timestamp, measured as seconds since January 1,
1970. Following that line is a set of statistics information, which is categorized as described above. Each
section begins with a line, like:

++ Name Server Statistics ++

Each section consists of lines, each containing the statistics counter value followed by its textual descrip-
tion. See below for available counters. For brevity, counters that have a value of 0 are not shown in the
statistics file.

The statistics dump ends with the line where the number is identical to the number in the beginning
line; for example:

103

6.4. BIND9 STATISTICS CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

— Statistics Dump — (973798949)

6.4.1 Statistics Counters

The following tables summarize statistics counters that BIND 9 provides. For each row of the tables,
the leftmost column is the abbreviated symbol name of that counter. These symbols are shown in the
statistics information accessed via an HTTP statistics channel. The rightmost column gives the descrip-
tion of the counter, which is also shown in the statistics file (but, in this document, possibly with slight
modification for better readability). Additional notes may also be provided in this column. When a
middle column exists between these two columns, it gives the corresponding counter name of the BIND
8 statistics, if applicable.

6.4.1.1 Name Server Statistics Counters

Symbol BIND8 Symbol Description
Requestv4 RQ IPv4 requests received. Note: this also counts non

query requests.
Requestv6 RQ IPv6 requests received. Note: this also counts non

query requests.
ReqEdns0 Requests with EDNS(0) received.
ReqBadEDNSVer Requests with unsupported EDNS version received.
ReqTSIG Requests with TSIG received.
ReqSIG0 Requests with SIG(0) received.
ReqBadSIG Requests with invalid (TSIG or SIG(0)) signature.
ReqTCP RTCP TCP requests received.
AuthQryRej RUQ Authoritative (non recursive) queries rejected.
RecQryRej RURQ Recursive queries rejected.
XfrRej RUXFR Zone transfer requests rejected.
UpdateRej RUUpd Dynamic update requests rejected.
Response SAns Responses sent.
RespTruncated Truncated responses sent.
RespEDNS0 Responses with EDNS(0) sent.
RespTSIG Responses with TSIG sent.
RespSIG0 Responses with SIG(0) sent.
QrySuccess Queries resulted in a successful answer. This means

the query which returns a NOERROR response with at
least one answer RR. This corresponds to the success
counter of previous versions of BIND 9.

QryAuthAns Queries resulted in authoritative answer.
QryNoauthAns SNaAns Queries resulted in non authoritative answer.
QryReferral Queries resulted in referral answer. This corresponds

to the referral counter of previous versions of BIND 9.
QryNxrrset Queries resulted in NOERROR responses with no data.

This corresponds to the nxrrset counter of previous ver-
sions of BIND 9.

QrySERVFAIL SFail Queries resulted in SERVFAIL.
QryFORMERR SFErr Queries resulted in FORMERR.
QryNXDOMAIN SNXD Queries resulted in NXDOMAIN. This corresponds to

the nxdomain counter of previous versions of BIND 9.
QryRecursion RFwdQ Queries which caused the server to perform recursion

in order to find the final answer. This corresponds to
the recursion counter of previous versions of BIND 9.

QryDuplicate RDupQ Queries which the server attempted to recurse but dis-
covered an existing query with the same IP address,
port, query ID, name, type and class already being pro-
cessed. This corresponds to the duplicate counter of
previous versions of BIND 9.

104

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.4. BIND9 STATISTICS

QryDropped Recursive queries for which the server discovered an
excessive number of existing recursive queries for the
same name, type and class and were subsequently
dropped. This is the number of dropped queries
due to the reason explained with the clients-per-query
and max-clients-per-query options (see the descrip-
tion about clients-per-query.) This corresponds to the
dropped counter of previous versions of BIND 9.

QryFailure Other query failures. This corresponds to the failure
counter of previous versions of BIND 9. Note: this
counter is provided mainly for backward compatibil-
ity with the previous versions. Normally a more fine-
grained counters such as AuthQryRej and RecQryRej
that would also fall into this counter are provided, and
so this counter would not be of much interest in prac-
tice.

XfrReqDone Requested zone transfers completed.
UpdateReqFwd Update requests forwarded.
UpdateRespFwd Update responses forwarded.
UpdateFwdFail Dynamic update forward failed.
UpdateDone Dynamic updates completed.
UpdateFail Dynamic updates failed.
UpdateBadPrereq Dynamic updates rejected due to prerequisite failure.

6.4.1.2 Zone Maintenance Statistics Counters

Symbol Description
NotifyOutv4 IPv4 notifies sent.
NotifyOutv6 IPv6 notifies sent.
NotifyInv4 IPv4 notifies received.
NotifyInv6 IPv6 notifies received.
NotifyRej Incoming notifies rejected.
SOAOutv4 IPv4 SOA queries sent.
SOAOutv6 IPv6 SOA queries sent.
AXFRReqv4 IPv4 AXFR requested.
AXFRReqv6 IPv6 AXFR requested.
IXFRReqv4 IPv4 IXFR requested.
IXFRReqv6 IPv6 IXFR requested.
XfrSuccess Zone transfer requests succeeded.
XfrFail Zone transfer requests failed.

6.4.1.3 Resolver Statistics Counters

Symbol BIND8 Symbol Description
Queryv4 SFwdQ IPv4 queries sent.
Queryv6 SFwdQ IPv6 queries sent.
Responsev4 RR IPv4 responses received.
Responsev6 RR IPv6 responses received.
NXDOMAIN RNXD NXDOMAIN received.
SERVFAIL RFail SERVFAIL received.
FORMERR RFErr FORMERR received.

105

6.4. BIND9 STATISTICS CHAPTER 6. BIND 9 CONFIGURATION REFERENCE

OtherError RErr Other errors received.
EDNS0Fail EDNS(0) query failures.
Mismatch RDupR Mismatch responses received. The DNS ID, response’s

source address, and/or the response’s source port does
not match what was expected. (The port must be 53 or
as defined by the port option.) This may be an indica-
tion of a cache poisoning attempt.

Truncated Truncated responses received.
Lame RLame Lame delegations received.
Retry SDupQ Query retries performed.
QueryAbort Queries aborted due to quota control.
QuerySockFail Failures in opening query sockets. One common reason

for such failures is a failure of opening a new socket due
to a limitation on file descriptors.

QueryTimeout Query timeouts.
GlueFetchv4 SSysQ IPv4 NS address fetches invoked.
GlueFetchv6 SSysQ IPv6 NS address fetches invoked.
GlueFetchv4Fail IPv4 NS address fetch failed.
GlueFetchv6Fail IPv6 NS address fetch failed.
ValAttempt DNSSEC validation attempted.
ValOk DNSSEC validation succeeded.
ValNegOk DNSSEC validation on negative information suc-

ceeded.
ValFail DNSSEC validation failed.
QryRTTnn Frequency table on round trip times (RTTs) of queries.

Each nn specifies the corresponding frequency. In the
sequence of nn 1, nn 2, ..., nn m, the value of nn i is
the number of queries whose RTTs are between nn (i-
1) (inclusive) and nn i (exclusive) milliseconds. For the
sake of convenience we define nn 0 to be 0. The last
entry should be represented as nn m+, which means
the number of queries whose RTTs are equal to or over
nn m milliseconds.

6.4.1.4 Socket I/O Statistics Counters

Socket I/O statistics counters are defined per socket types, which are UDP4 (UDP/IPv4), UDP6 (UDP/IPv6),
TCP4 (TCP/IPv4), TCP6 (TCP/IPv6), Unix (Unix Domain), and FDwatch (sockets opened outside the
socket module). In the following table <TYPE> represents a socket type. Not all counters are available
for all socket types; exceptions are noted in the description field.

Symbol Description
<TYPE>Open Sockets opened successfully. This counter is not appli-

cable to the FDwatch type.
<TYPE>OpenFail Failures of opening sockets. This counter is not appli-

cable to the FDwatch type.
<TYPE>Close Sockets closed.
<TYPE>BindFail Failures of binding sockets.
<TYPE>ConnFail Failures of connecting sockets.
<TYPE>Conn Connections established successfully.
<TYPE>AcceptFail Failures of accepting incoming connection requests.

This counter is not applicable to the UDP and FDwatch
types.

<TYPE>Accept Incoming connections successfully accepted. This
counter is not applicable to the UDP and FDwatch
types.

106

CHAPTER 6. BIND 9 CONFIGURATION REFERENCE 6.4. BIND9 STATISTICS

<TYPE>SendErr Errors in socket send operations. This counter corre-
sponds to SErr counter of BIND 8.

<TYPE>RecvErr Errors in socket receive operations. This includes errors
of send operations on a connected UDP socket notified
by an ICMP error message.

6.4.1.5 Compatibility with BIND 8 Counters

Most statistics counters that were available in BIND 8 are also supported in BIND 9 as shown in the
above tables. Here are notes about other counters that do not appear in these tables.

RFwdR,SFwdR These counters are not supported because BIND 9 does not adopt the notion of for-
warding as BIND 8 did.

RAXFR This counter is accessible in the Incoming Queries section.

RIQ This counter is accessible in the Incoming Requests section.

ROpts This counter is not supported because BIND 9 does not care about IP options in the first place.

107

Chapter 7

BIND 9 Security Considerations

7.1 Access Control Lists

Access Control Lists (ACLs) are address match lists that you can set up and nickname for future use
in allow-notify, allow-query, allow-query-on, allow-recursion, allow-recursion-on, blackhole, allow-
transfer, etc.

Using ACLs allows you to have finer control over who can access your name server, without cluttering
up your config files with huge lists of IP addresses.

It is a good idea to use ACLs, and to control access to your server. Limiting access to your server by
outside parties can help prevent spoofing and denial of service (DoS) attacks against your server.

Here is an example of how to properly apply ACLs:

// Set up an ACL named "bogusnets" that will block
// RFC1918 space and some reserved space, which is
// commonly used in spoofing attacks.
acl bogusnets {

0.0.0.0/8; 1.0.0.0/8; 2.0.0.0/8; 192.0.2.0/24;
224.0.0.0/3; 10.0.0.0/8; 172.16.0.0/12;
192.168.0.0/16;

};

// Set up an ACL called our-nets. Replace this with the
// real IP numbers.
acl our-nets { x.x.x.x/24; x.x.x.x/21; };
options {

...

...
allow-query { our-nets; };
allow-recursion { our-nets; };
...
blackhole { bogusnets; };
...

};

zone "example.com" {
type master;
file "m/example.com";
allow-query { any; };

};

109

7.2. CHROOT AND SETUID CHAPTER 7. BIND 9 SECURITY CONSIDERATIONS

This allows recursive queries of the server from the outside unless recursion has been previously dis-
abled.

For more information on how to use ACLs to protect your server, see the AUSCERT advisory at:

<ftp://ftp.auscert.org.au/pub/auscert/advisory/AL-1999.004.dns dos>

7.2 Chroot and Setuid

On UNIX servers, it is possible to run BIND in a chrooted environment (using the chroot() function) by
specifying the ”-t” option for named. This can help improve system security by placing BIND in a
”sandbox”, which will limit the damage done if a server is compromised.

Another useful feature in the UNIX version of BIND is the ability to run the daemon as an unprivileged
user (-u user). We suggest running as an unprivileged user when using the chroot feature.

Here is an example command line to load BIND in a chroot sandbox, /var/named, and to run named
setuid to user 202:

/usr/local/sbin/named -u 202 -t /var/named

7.2.1 The chroot Environment

In order for a chroot environment to work properly in a particular directory (for example, /var/
named), you will need to set up an environment that includes everything BIND needs to run. From
BIND’s point of view, /var/named is the root of the filesystem. You will need to adjust the values of
options like like directory and pid-file to account for this.

Unlike with earlier versions of BIND, you typically will not need to compile named statically nor install
shared libraries under the new root. However, depending on your operating system, you may need to
set up things like /dev/zero, /dev/random, /dev/log, and /etc/localtime.

7.2.2 Using the setuid Function

Prior to running the named daemon, use the touch utility (to change file access and modification times)
or the chown utility (to set the user id and/or group id) on files to which you want BIND to write.

NOTE

Note that if the named daemon is running as an unprivileged user, it will not be
able to bind to new restricted ports if the server is reloaded.

7.3 Dynamic Update Security

Access to the dynamic update facility should be strictly limited. In earlier versions of BIND, the only
way to do this was based on the IP address of the host requesting the update, by listing an IP address
or network prefix in the allow-update zone option. This method is insecure since the source address of
the update UDP packet is easily forged. Also note that if the IP addresses allowed by the allow-update
option include the address of a slave server which performs forwarding of dynamic updates, the master
can be trivially attacked by sending the update to the slave, which will forward it to the master with its
own source IP address causing the master to approve it without question.

110

ftp://ftp.auscert.org.au/pub/auscert/advisory/AL-1999.004.dns_dos

CHAPTER 7. BIND 9 SECURITY CONSIDERATIONS 7.3. DYNAMIC UPDATE SECURITY

For these reasons, we strongly recommend that updates be cryptographically authenticated by means
of transaction signatures (TSIG). That is, the allow-update option should list only TSIG key names, not
IP addresses or network prefixes. Alternatively, the new update-policy option can be used.

Some sites choose to keep all dynamically-updated DNS data in a subdomain and delegate that subdo-
main to a separate zone. This way, the top-level zone containing critical data such as the IP addresses of
public web and mail servers need not allow dynamic update at all.

111

Chapter 8

Troubleshooting

8.1 Common Problems

8.1.1 It’s not working; how can I figure out what’s wrong?

The best solution to solving installation and configuration issues is to take preventative measures by
setting up logging files beforehand. The log files provide a source of hints and information that can be
used to figure out what went wrong and how to fix the problem.

8.2 Incrementing and Changing the Serial Number

Zone serial numbers are just numbers — they aren’t date related. A lot of people set them to a number
that represents a date, usually of the form YYYYMMDDRR. Occasionally they will make a mistake and
set them to a ”date in the future” then try to correct them by setting them to the ”current date”. This
causes problems because serial numbers are used to indicate that a zone has been updated. If the serial
number on the slave server is lower than the serial number on the master, the slave server will attempt
to update its copy of the zone.

Setting the serial number to a lower number on the master server than the slave server means that the
slave will not perform updates to its copy of the zone.

The solution to this is to add 2147483647 (2ˆ31-1) to the number, reload the zone and make sure all slaves
have updated to the new zone serial number, then reset the number to what you want it to be, and reload
the zone again.

8.3 Where Can I Get Help?

The Internet Systems Consortium (ISC) offers a wide range of support and service agreements for BIND
and DHCP servers. Four levels of premium support are available and each level includes support for
all ISC programs, significant discounts on products and training, and a recognized priority on bug fixes
and non-funded feature requests. In addition, ISC offers a standard support agreement package which
includes services ranging from bug fix announcements to remote support. It also includes training in
BIND and DHCP.

To discuss arrangements for support, contact info@isc.org <mailto:info@isc.org> or visit the ISC
web page at <http://www.isc.org/services/support/> to read more.

113

mailto:info@isc.org
http://www.isc.org/services/support/

Appendix A

Appendices

A.1 Acknowledgments

A.1.1 A Brief History of the DNS and BIND

Although the ”official” beginning of the Domain Name System occurred in 1984 with the publication of
RFC 920, the core of the new system was described in 1983 in RFCs 882 and 883. From 1984 to 1987, the
ARPAnet (the precursor to today’s Internet) became a testbed of experimentation for developing the new
naming/addressing scheme in a rapidly expanding, operational network environment. New RFCs were
written and published in 1987 that modified the original documents to incorporate improvements based
on the working model. RFC 1034, ”Domain Names-Concepts and Facilities”, and RFC 1035, ”Domain
Names-Implementation and Specification” were published and became the standards upon which all
DNS implementations are built.

The first working domain name server, called ”Jeeves”, was written in 1983-84 by Paul Mockapetris for
operation on DEC Tops-20 machines located at the University of Southern California’s Information Sci-
ences Institute (USC-ISI) and SRI International’s Network Information Center (SRI-NIC). A DNS server
for Unix machines, the Berkeley Internet Name Domain (BIND) package, was written soon after by a
group of graduate students at the University of California at Berkeley under a grant from the US Defense
Advanced Research Projects Administration (DARPA).

Versions of BIND through 4.8.3 were maintained by the Computer Systems Research Group (CSRG) at
UC Berkeley. Douglas Terry, Mark Painter, David Riggle and Songnian Zhou made up the initial BIND
project team. After that, additional work on the software package was done by Ralph Campbell. Kevin
Dunlap, a Digital Equipment Corporation employee on loan to the CSRG, worked on BIND for 2 years,
from 1985 to 1987. Many other people also contributed to BIND development during that time: Doug
Kingston, Craig Partridge, Smoot Carl-Mitchell, Mike Muuss, Jim Bloom and Mike Schwartz. BIND
maintenance was subsequently handled by Mike Karels and Øivind Kure.

BIND versions 4.9 and 4.9.1 were released by Digital Equipment Corporation (now Compaq Computer
Corporation). Paul Vixie, then a DEC employee, became BIND’s primary caretaker. He was assisted
by Phil Almquist, Robert Elz, Alan Barrett, Paul Albitz, Bryan Beecher, Andrew Partan, Andy Cheren-
son, Tom Limoncelli, Berthold Paffrath, Fuat Baran, Anant Kumar, Art Harkin, Win Treese, Don Lewis,
Christophe Wolfhugel, and others.

In 1994, BIND version 4.9.2 was sponsored by Vixie Enterprises. Paul Vixie became BIND’s principal
architect/programmer.

BIND versions from 4.9.3 onward have been developed and maintained by the Internet Systems Con-
sortium and its predecessor, the Internet Software Consortium, with support being provided by ISC’s
sponsors.

As co-architects/programmers, Bob Halley and Paul Vixie released the first production-ready version
of BIND version 8 in May 1997.

115

A.2. GENERAL DNS REFERENCE INFORMATION APPENDIX A. APPENDICES

BIND version 9 was released in September 2000 and is a major rewrite of nearly all aspects of the under-
lying BIND architecture.

BIND versions 4 and 8 are officially deprecated. No additional development is done on BIND version 4
or BIND version 8.

BIND development work is made possible today by the sponsorship of several corporations, and by the
tireless work efforts of numerous individuals.

A.2 General DNS Reference Information

A.2.1 IPv6 addresses (AAAA)

IPv6 addresses are 128-bit identifiers for interfaces and sets of interfaces which were introduced in the
DNS to facilitate scalable Internet routing. There are three types of addresses: Unicast, an identifier for
a single interface; Anycast, an identifier for a set of interfaces; and Multicast, an identifier for a set of
interfaces. Here we describe the global Unicast address scheme. For more information, see RFC 3587,
”Global Unicast Address Format.”

IPv6 unicast addresses consist of a global routing prefix, a subnet identifier, and an interface identifier.

The global routing prefix is provided by the upstream provider or ISP, and (roughly) corresponds to the
IPv4 network section of the address range. The subnet identifier is for local subnetting, much the same as
subnetting an IPv4 /16 network into /24 subnets. The interface identifier is the address of an individual
interface on a given network; in IPv6, addresses belong to interfaces rather than to machines.

The subnetting capability of IPv6 is much more flexible than that of IPv4: subnetting can be carried out
on bit boundaries, in much the same way as Classless InterDomain Routing (CIDR), and the DNS PTR
representation (”nibble” format) makes setting up reverse zones easier.

The Interface Identifier must be unique on the local link, and is usually generated automatically by
the IPv6 implementation, although it is usually possible to override the default setting if necessary. A
typical IPv6 address might look like: 2001:db8:201:9:a00:20ff:fe81:2b32

IPv6 address specifications often contain long strings of zeros, so the architects have included a short-
hand for specifying them. The double colon (‘::’) indicates the longest possible string of zeros that can
fit, and can be used only once in an address.

A.3 Bibliography (and Suggested Reading)

A.3.1 Request for Comments (RFCs)

Specification documents for the Internet protocol suite, including the DNS, are published as part of the
Request for Comments (RFCs) series of technical notes. The standards themselves are defined by the
Internet Engineering Task Force (IETF) and the Internet Engineering Steering Group (IESG). RFCs can
be obtained online via FTP at:

ftp://www.isi.edu/in-notes/RFCxxxx.txt <ftp://www.isi.edu/in-notes/>

(where xxxx is the number of the RFC). RFCs are also available via the Web at:

<http://www.ietf.org/rfc/>.

References

116

ftp://www.isi.edu/in-notes/
http://www.ietf.org/rfc/

APPENDIX A. APPENDICES A.3. BIBLIOGRAPHY (AND SUGGESTED READING)

Standards

[RFC1034] Domain Names — Concepts and Facilities, P.V. Mockapetris, November 1987.

[RFC1035] Domain Names — Implementation and Specification, P. V. Mockapetris, November 1987.

[RFC974] Mail Routing and the Domain System, C. Partridge, January 1986.

Proposed Standards

[RFC1995] Incremental Zone Transfer in DNS, M. Ohta, August 1996.

[RFC1996] A Mechanism for Prompt Notification of Zone Changes, P. Vixie, August 1996.

[RFC2136] Dynamic Updates in the Domain Name System, P. Vixie, S. Thomson, Y. Rekhter, and J.
Bound, April 1997.

[RFC2181] Clarifications to the DNS Specification, R., R. Bush Elz, July 1997.

[RFC2308] Negative Caching of DNS Queries, M. Andrews, March 1998.

[RFC2671] Extension Mechanisms for DNS (EDNS0), P. Vixie, August 1997.

[RFC2672] Non-Terminal DNS Name Redirection, M. Crawford, August 1999.

[RFC2845] Secret Key Transaction Authentication for DNS (TSIG), P. Vixie, O. Gudmundsson, D. East-
lake, 3rd, and B. Wellington, May 2000.

[RFC2930] Secret Key Establishment for DNS (TKEY RR), D. Eastlake, 3rd, September 2000.

[RFC2931] DNS Request and Transaction Signatures (SIG(0)s), D. Eastlake, 3rd, September 2000.

[RFC3007] Secure Domain Name System (DNS) Dynamic Update, B. Wellington, November 2000.

[RFC3645] Generic Security Service Algorithm for Secret Key Transaction Authentication for DNS (GSS-
TSIG), S. Kwan, P. Garg, J. Gilroy, L. Esibov, J. Westhead, and R. Hall, October 2003.

DNS Security Proposed Standards

[RFC3225] Indicating Resolver Support of DNSSEC, D. Conrad, December 2001.

[RFC3833] Threat Analysis of the Domain Name System (DNS), D. Atkins and R. Austein, August
2004.

[RFC4033] DNS Security Introduction and Requirements, R. Arends, R. Austein, M. Larson, D. Massey,
and S. Rose, March 2005.

[RFC4034] Resource Records for the DNS Security Extensions, R. Arends, R. Austein, M. Larson, D.
Massey, and S. Rose, March 2005.

[RFC4035] Protocol Modifications for the DNS Security Extensions, R. Arends, R. Austein, M. Larson,
D. Massey, and S. Rose, March 2005.

Other Important RFCs About DNS Implementation

[RFC1535] A Security Problem and Proposed Correction With Widely Deployed DNS Software., E.
Gavron, October 1993.

[RFC1536] Common DNS Implementation Errors and Suggested Fixes, A. Kumar, J. Postel, C. Neuman,
P. Danzig, and S. Miller, October 1993.

[RFC1982] Serial Number Arithmetic, R. Elz and R. Bush, August 1996.

[RFC4074] Common Misbehaviour Against DNS Queries for IPv6 Addresses, Y. Morishita and T. Jinmei,
May 2005.

117

A.3. BIBLIOGRAPHY (AND SUGGESTED READING) APPENDIX A. APPENDICES

Resource Record Types

[RFC1183] New DNS RR Definitions, C.F. Everhart, L. A. Mamakos, R. Ullmann, and P. Mockapetris,
October 1990.

[RFC1706] DNS NSAP Resource Records, B. Manning and R. Colella, October 1994.

[RFC1876] A Means for Expressing Location Information in the Domain Name System, C. Davis, P. Vixie,
T., and I. Dickinson, January 1996.

[RFC2052] A DNS RR for Specifying the Location of Services., A. Gulbrandsen and P. Vixie, October
1996.

[RFC2163] Using the Internet DNS to Distribute MIXER Conformant Global Address Mapping, A. Al-
locchio, January 1998.

[RFC2168] Resolution of Uniform Resource Identifiers using the Domain Name System, R. Daniel and M.
Mealling, June 1997.

[RFC2230] Key Exchange Delegation Record for the DNS, R. Atkinson, October 1997.

[RFC2536] DSA KEYs and SIGs in the Domain Name System (DNS), D. Eastlake, 3rd, March 1999.

[RFC2537] RSA/MD5 KEYs and SIGs in the Domain Name System (DNS), D. Eastlake, 3rd, March
1999.

[RFC2538] Storing Certificates in the Domain Name System (DNS), D. Eastlake, 3rd and O. Gudmunds-
son, March 1999.

[RFC2539] Storage of Diffie-Hellman Keys in the Domain Name System (DNS), D. Eastlake, 3rd, March
1999.

[RFC2540] Detached Domain Name System (DNS) Information, D. Eastlake, 3rd, March 1999.

[RFC2782] A DNS RR for specifying the location of services (DNS SRV), A. GulbrandsenP. VixieL. Esi-
bov, February 2000.

[RFC2915] The Naming Authority Pointer (NAPTR) DNS Resource Record, M. MeallingR. Daniel,
September 2000.

[RFC3110] RSA/SHA-1 SIGs and RSA KEYs in the Domain Name System (DNS), D. Eastlake, 3rd, May
2001.

[RFC3123] A DNS RR Type for Lists of Address Prefixes (APL RR), P. Koch, June 2001.

[RFC3596] DNS Extensions to support IP version 6, S. Thomson, C. Huitema, V. Ksinant, and M.
Souissi, October 2003.

[RFC3597] Handling of Unknown DNS Resource Record (RR) Types, A. Gustafsson, September 2003.

DNS and the Internet

[RFC1101] DNS Encoding of Network Names and Other Types, P. V. Mockapetris, April 1989.

[RFC1123] Requirements for Internet Hosts - Application and Support, Braden, October 1989.

[RFC1591] Domain Name System Structure and Delegation, J. Postel, March 1994.

[RFC2317] Classless IN-ADDR.ARPA Delegation, H. Eidnes, G. de Groot, and P. Vixie, March 1998.

[RFC2826] IAB Technical Comment on the Unique DNS Root, Internet Architecture Board, May 2000.

[RFC2929] Domain Name System (DNS) IANA Considerations, D. Eastlake, 3rd, E. Brunner-Williams,
and B. Manning, September 2000.

118

APPENDIX A. APPENDICES A.3. BIBLIOGRAPHY (AND SUGGESTED READING)

DNS Operations

[RFC1033] Domain administrators operations guide., M. Lottor, November 1987.

[RFC1537] Common DNS Data File Configuration Errors, P. Beertema, October 1993.

[RFC1912] Common DNS Operational and Configuration Errors, D. Barr, February 1996.

[RFC2010] Operational Criteria for Root Name Servers., B. Manning and P. Vixie, October 1996.

[RFC2219] Use of DNS Aliases for Network Services., M. Hamilton and R. Wright, October 1997.

Internationalized Domain Names

[RFC2825] A Tangled Web: Issues of I18N, Domain Names, and the Other Internet protocols, IAB and R.
Daigle, May 2000.

[RFC3490] Internationalizing Domain Names in Applications (IDNA), P. Faltstrom, P. Hoffman, and A.
Costello, March 2003.

[RFC3491] Nameprep: A Stringprep Profile for Internationalized Domain Names, P. Hoffman and M.
Blanchet, March 2003.

[RFC3492] Punycode: A Bootstring encoding of Unicode for Internationalized Domain Names in Applica-
tions (IDNA), A. Costello, March 2003.

Other DNS-related RFCs

[RFC1464] Using the Domain Name System To Store Arbitrary String Attributes, R. Rosenbaum, May
1993.

[RFC1713] Tools for DNS Debugging, A. Romao, November 1994.

[RFC1794] DNS Support for Load Balancing, T. Brisco, April 1995.

[RFC2240] A Legal Basis for Domain Name Allocation, O. Vaughan, November 1997.

[RFC2345] Domain Names and Company Name Retrieval, J. Klensin, T. Wolf, and G. Oglesby, May
1998.

[RFC2352] A Convention For Using Legal Names as Domain Names, O. Vaughan, May 1998.

[RFC3071] Reflections on the DNS, RFC 1591, and Categories of Domains, J. Klensin, February 2001.

[RFC3258] Distributing Authoritative Name Servers via Shared Unicast Addresses, T. Hardie, April
2002.

[RFC3901] DNS IPv6 Transport Operational Guidelines, A. Durand and J. Ihren, September 2004.

Obsolete and Unimplemented Experimental RFC

[RFC1712] DNS Encoding of Geographical Location, C. Farrell, M. Schulze, S. Pleitner, and D. Baldoni,
November 1994.

[RFC2673] Binary Labels in the Domain Name System, M. Crawford, August 1999.

[RFC2874] DNS Extensions to Support IPv6 Address Aggregation and Renumbering, M. Crawford and
C. Huitema, July 2000.

119

A.4. BIND 9 DNS LIBRARY SUPPORT APPENDIX A. APPENDICES

Obsoleted DNS Security RFCs

[RFC2065] Domain Name System Security Extensions, D. Eastlake, 3rd and C. Kaufman, January
1997.

[RFC2137] Secure Domain Name System Dynamic Update, D. Eastlake, 3rd, April 1997.

[RFC2535] Domain Name System Security Extensions, D. Eastlake, 3rd, March 1999.

[RFC3008] Domain Name System Security (DNSSEC) Signing Authority, B. Wellington, November
2000.

[RFC3090] DNS Security Extension Clarification on Zone Status, E. Lewis, March 2001.

[RFC3445] Limiting the Scope of the KEY Resource Record (RR), D. Massey and S. Rose, December
2002.

[RFC3655] Redefinition of DNS Authenticated Data (AD) bit, B. Wellington and O. Gudmundsson,
November 2003.

[RFC3658] Delegation Signer (DS) Resource Record (RR), O. Gudmundsson, December 2003.

[RFC3755] Legacy Resolver Compatibility for Delegation Signer (DS), S. Weiler, May 2004.

[RFC3757] Domain Name System KEY (DNSKEY) Resource Record (RR) Secure Entry Point (SEP) Flag,
O. Kolkman, J. Schlyter, and E. Lewis, April 2004.

[RFC3845] DNS Security (DNSSEC) NextSECure (NSEC) RDATA Format, J. Schlyter, August 2004.

A.3.2 Internet Drafts

Internet Drafts (IDs) are rough-draft working documents of the Internet Engineering Task Force. They
are, in essence, RFCs in the preliminary stages of development. Implementors are cautioned not to
regard IDs as archival, and they should not be quoted or cited in any formal documents unless accom-
panied by the disclaimer that they are ”works in progress.” IDs have a lifespan of six months after which
they are deleted unless updated by their authors.

A.3.3 Other Documents About BIND

References

[1] DNS and BIND, Paul Albitz and Cricket Liu, Copyright c© 1998 Sebastopol, CA: O’Reilly
and Associates.

A.4 BIND 9 DNS Library Support

This version of BIND 9 ”exports” its internal libraries so that they can be used by third-party applications
more easily (we call them ”export” libraries in this document). In addition to all major DNS-related APIs
BIND 9 is currently using, the export libraries provide the following features:

• The newly created ”DNS client” module. This is a higher level API that provides an interface to
name resolution, single DNS transaction with a particular server, and dynamic update. Regarding
name resolution, it supports advanced features such as DNSSEC validation and caching. This
module supports both synchronous and asynchronous mode.

• The new ”IRS” (Information Retrieval System) library. It provides an interface to parse the tra-
ditional resolv.conf file and more advanced, DNS-specific configuration file for the rest of this
package (see the description for the dns.conf file below).

120

APPENDIX A. APPENDICES A.4. BIND 9 DNS LIBRARY SUPPORT

• As part of the IRS library, newly implemented standard address-name mapping functions, getad-
drinfo() and getnameinfo(), are provided. They use the DNSSEC-aware validating resolver back-
end, and could use other advanced features of the BIND 9 libraries such as caching. The getad-
drinfo() function resolves both A and AAAA RRs concurrently (when the address family is un-
specified).

• An experimental framework to support other event libraries than BIND 9’s internal event task
system.

A.4.1 Prerequisite

GNU make is required to build the export libraries (other part of BIND 9 can still be built with other
types of make). In the reminder of this document, ”make” means GNU make. Note that in some plat-
forms you may need to invoke a different command name than ”make” (e.g. ”gmake”) to indicate it’s
GNU make.

A.4.2 Compilation

$./configure --enable-exportlib [other flags]
$ make

This will create (in addition to usual BIND 9 programs) and a separate set of libraries under the lib/export
directory. For example, lib/export/dns/libdns.a is the archive file of the export version of the
BIND 9 DNS library. Sample application programs using the libraries will also be built under the
lib/export/samples directory (see below).

A.4.3 Installation

$ cd lib/export
$ make install

This will install library object files under the directory specified by the –with-export-libdir configure op-
tion (default: EPREFIX/lib/bind9), and header files under the directory specified by the –with-export-
includedir configure option (default: PREFIX/include/bind9). Root privilege is normally required.
”make install” at the top directory will do the same.

To see how to build your own application after the installation, see lib/export/samples/Makefile-
postinstall.in.

A.4.4 Known Defects/Restrictions

• Currently, win32 is not supported for the export library. (Normal BIND 9 application can be built
as before).

• The ”fixed” RRset order is not (currently) supported in the export library. If you want to use
”fixed” RRset order for, e.g. named while still building the export library even without the fixed
order support, build them separately:

$./configure --enable-fixed-rrset [other flags, but not --enable-exportlib]
$ make
$./configure --enable-exportlib [other flags, but not --enable-fixed-rrset]
$ cd lib/export

121

A.4. BIND 9 DNS LIBRARY SUPPORT APPENDIX A. APPENDICES

$ make

• The client module and the IRS library currently do not support DNSSEC validation using DLV
(the underlying modules can handle it, but there is no tunable interface to enable the feature).

• RFC 5011 is not supported in the validating stub resolver of the export library. In fact, it is not clear
whether it should: trust anchors would be a system-wide configuration which would be managed
by an administrator, while the stub resolver will be used by ordinary applications run by a normal
user.

• Not all common /etc/resolv.conf options are supported in the IRS library. The only available
options in this version are ”debug” and ”ndots”.

A.4.5 The dns.conf File

The IRS library supports an ”advanced” configuration file related to the DNS library for configuration
parameters that would be beyond the capability of the resolv.conf file. Specifically, it is intended
to provide DNSSEC related configuration parameters. By default the path to this configuration file is
/etc/dns.conf. This module is very experimental and the configuration syntax or library interfaces
may change in future versions. Currently, only the trusted-keys statement is supported, whose syntax
is the same as the same name of statement for named.conf. (See Section 6.2.21 for details.)

A.4.6 Sample Applications

Some sample application programs using this API are provided for reference. The following is a brief
description of these applications.

A.4.6.1 sample: a simple stub resolver utility

It sends a query of a given name (of a given optional RR type) to a specified recursive server, and prints
the result as a list of RRs. It can also act as a validating stub resolver if a trust anchor is given via a set of
command line options.

Usage: sample [options] server address hostname

Options and Arguments:

-t RRtype specify the RR type of the query. The default is the A RR.

[-a algorithm] [-e] -k keyname -K keystring specify a command-line DNS key to validate the answer.
For example, to specify the following DNSKEY of example.com:

example.com. 3600 IN DNSKEY 257 3 5 xxx

specify the options as follows:

-e -k example.com -K "xxx"

-e means that this key is a zone’s ”key signing key” (as known as ”secure Entry point”). When -a
is omitted rsasha1 will be used by default.

122

APPENDIX A. APPENDICES A.4. BIND 9 DNS LIBRARY SUPPORT

-s domain:alt server address specify a separate recursive server address for the specific ”domain”. Ex-
ample: -s example.com:2001:db8::1234

server address an IP(v4/v6) address of the recursive server to which queries are sent.

hostname the domain name for the query

A.4.6.2 sample-async: a simple stub resolver, working asynchronously

Similar to ”sample”, but accepts a list of (query) domain names as a separate file and resolves the names
asynchronously.

Usage: sample-async [-s server address] [-t RR type] input file

Options and Arguments:

-s server address an IPv4 address of the recursive server to which queries are sent. (IPv6 addresses are
not supported in this implementation)

-t RR type specify the RR type of the queries. The default is the A RR.

input file a list of domain names to be resolved. each line consists of a single domain name. Example:

www.example.com
mx.examle.net
ns.xxx.example

A.4.6.3 sample-request: a simple DNS transaction client

It sends a query to a specified server, and prints the response with minimal processing. It doesn’t act as
a ”stub resolver”: it stops the processing once it gets any response from the server, whether it’s a referral
or an alias (CNAME or DNAME) that would require further queries to get the ultimate answer. In other
words, this utility acts as a very simplified dig.

Usage: sample-request [-t RRtype] server address hostname

Options and Arguments:

-t RRtype specify the RR type of the queries. The default is the A RR.

server address an IP(v4/v6) address of the recursive server to which the query is sent.

hostname the domain name for the query

A.4.6.4 sample-gai: getaddrinfo() and getnameinfo() test code

This is a test program to check getaddrinfo() and getnameinfo() behavior. It takes a host name as an
argument, calls getaddrinfo() with the given host name, and calls getnameinfo() with the resulting
IP addresses returned by getaddrinfo(). If the dns.conf file exists and defines a trust anchor, the un-
derlying resolver will act as a validating resolver, and getaddrinfo()/getnameinfo() will fail with an
EAI INSECUREDATA error when DNSSEC validation fails.

123

A.4. BIND 9 DNS LIBRARY SUPPORT APPENDIX A. APPENDICES

Usage: sample-gai hostname

A.4.6.5 sample-update: a simple dynamic update client program

It accepts a single update command as a command-line argument, sends an update request message to
the authoritative server, and shows the response from the server. In other words, this is a simplified
nsupdate.

Usage: sample-update [options] (add|delete) ”update data”

Options and Arguments:

-a auth server An IP address of the authoritative server that has authority for the zone containing the
update name. This should normally be the primary authoritative server that accepts dynamic
updates. It can also be a secondary server that is configured to forward update requests to the
primary server.

-k keyfile A TSIG key file to secure the update transaction. The keyfile format is the same as that for
the nsupdate utility.

-p prerequisite A prerequisite for the update (only one prerequisite can be specified). The prerequisite
format is the same as that is accepted by the nsupdate utility.

-r recursive server An IP address of a recursive server that this utility will use. A recursive server may
be necessary to identify the authoritative server address to which the update request is sent.

-z zonename The domain name of the zone that contains

(add|delete) Specify the type of update operation. Either ”add” or ”delete” must be specified.

”update data” Specify the data to be updated. A typical example of the data would look like ”name
TTL RRtype RDATA”.

NOTE

In practice, either -a or -r must be specified. Others can be optional; the under-
lying library routine tries to identify the appropriate server and the zone name for
the update.

Examples: assuming the primary authoritative server of the dynamic.example.com zone has an IPv6
address 2001:db8::1234,

$ sample-update -a sample-update -k Kxxx.+nnn+mmmm.key add "foo.dynamic.example.com 30 IN A 192.168.2.1"

adds an A RR for foo.dynamic.example.com using the given key.

$ sample-update -a sample-update -k Kxxx.+nnn+mmmm.key delete "foo.dynamic.example.com 30 IN A"

removes all A RRs for foo.dynamic.example.com using the given key.

$ sample-update -a sample-update -k Kxxx.+nnn+mmmm.key delete "foo.dynamic.example.com"

124

APPENDIX A. APPENDICES A.4. BIND 9 DNS LIBRARY SUPPORT

removes all RRs for foo.dynamic.example.com using the given key.

A.4.6.6 nsprobe: domain/name server checker in terms of RFC 4074

It checks a set of domains to see the name servers of the domains behave correctly in terms of RFC
4074. This is included in the set of sample programs to show how the export library can be used in a
DNS-related application.

Usage: nsprobe [-d] [-v [-v...]] [-c cache address] [input file]

Options

-d run in the ”debug” mode. with this option nsprobe will dump every RRs it receives.

-v increase verbosity of other normal log messages. This can be specified multiple times

-c cache address specify an IP address of a recursive (caching) name server. nsprobe uses this server
to get the NS RRset of each domain and the A and/or AAAA RRsets for the name servers. The
default value is 127.0.0.1.

input file a file name containing a list of domain (zone) names to be probed. when omitted the stan-
dard input will be used. Each line of the input file specifies a single domain name such as ”exam-
ple.com”. In general this domain name must be the apex name of some DNS zone (unlike normal
”host names” such as ”www.example.com”). nsprobe first identifies the NS RRsets for the given
domain name, and sends A and AAAA queries to these servers for some ”widely used” names
under the zone; specifically, adding ”www” and ”ftp” to the zone name.

A.4.7 Library References

As of this writing, there is no formal ”manual” of the libraries, except this document, header files (some
of them provide pretty detailed explanations), and sample application programs.

125

Appendix B

Manual pages

B.1 dig

Name

dig — DNS lookup utility

Synopsis

dig [@server] [-b address] [-c class] [-f filename] [-k filename] [-m] [-p
port#] [-q name] [-t type] [-x addr] [-y [hmac:]name:key] [-4] [-6]
[name] [type] [class] [queryopt...]

dig [-h]

dig [global-queryopt...] [query...]

DESCRIPTION

dig (domain information groper) is a flexible tool for interrogating DNS name servers. It performs DNS
lookups and displays the answers that are returned from the name server(s) that were queried. Most
DNS administrators use dig to troubleshoot DNS problems because of its flexibility, ease of use and
clarity of output. Other lookup tools tend to have less functionality than dig.

Although dig is normally used with command-line arguments, it also has a batch mode of operation
for reading lookup requests from a file. A brief summary of its command-line arguments and options is
printed when the -h option is given. Unlike earlier versions, the BIND 9 implementation of dig allows
multiple lookups to be issued from the command line.

Unless it is told to query a specific name server, dig will try each of the servers listed in /etc/resolv.
conf.

When no command line arguments or options are given, dig will perform an NS query for ”.” (the root).

It is possible to set per-user defaults for dig via ${HOME}/.digrc. This file is read and any options in
it are applied before the command line arguments.

The IN and CH class names overlap with the IN and CH top level domains names. Either use the -t
and -c options to specify the type and class, use the -q the specify the domain name, or use ”IN.” and
”CH.” when looking up these top level domains.

127

B.1. DIG APPENDIX B. MANUAL PAGES

SIMPLE USAGE

A typical invocation of dig looks like:

dig @server name type

where:

server is the name or IP address of the name server to query. This can be an IPv4 address in dotted-
decimal notation or an IPv6 address in colon-delimited notation. When the supplied server ar-
gument is a hostname, dig resolves that name before querying that name server. If no server ar-
gument is provided, dig consults /etc/resolv.conf and queries the name servers listed there.
The reply from the name server that responds is displayed.

name is the name of the resource record that is to be looked up.

type indicates what type of query is required — ANY, A, MX, SIG, etc. type can be any valid query
type. If no type argument is supplied, dig will perform a lookup for an A record.

OPTIONS

The -b option sets the source IP address of the query to address. This must be a valid address on one
of the host’s network interfaces or ”0.0.0.0” or ”::”. An optional port may be specified by appending
”#<port>”

The default query class (IN for internet) is overridden by the -c option. class is any valid class, such
as HS for Hesiod records or CH for Chaosnet records.

The -f option makes dig operate in batch mode by reading a list of lookup requests to process from
the file filename. The file contains a number of queries, one per line. Each entry in the file should be
organized in the same way they would be presented as queries to dig using the command-line interface.

The -m option enables memory usage debugging.

If a non-standard port number is to be queried, the -p option is used. port# is the port number that
dig will send its queries instead of the standard DNS port number 53. This option would be used to test
a name server that has been configured to listen for queries on a non-standard port number.

The -4 option forces dig to only use IPv4 query transport. The -6 option forces dig to only use IPv6
query transport.

The -t option sets the query type to type. It can be any valid query type which is supported in BIND
9. The default query type is ”A”, unless the -x option is supplied to indicate a reverse lookup. A zone
transfer can be requested by specifying a type of AXFR. When an incremental zone transfer (IXFR) is
required, type is set to ixfr=N. The incremental zone transfer will contain the changes made to the
zone since the serial number in the zone’s SOA record was N.

The -q option sets the query name to name. This useful do distinguish the name from other arguments.

Reverse lookups — mapping addresses to names — are simplified by the -x option. addr is an IPv4
address in dotted-decimal notation, or a colon-delimited IPv6 address. When this option is used, there
is no need to provide the name, class and type arguments. dig automatically performs a lookup for a
name like 11.12.13.10.in-addr.arpa and sets the query type and class to PTR and IN respectively.
By default, IPv6 addresses are looked up using nibble format under the IP6.ARPA domain. To use the
older RFC1886 method using the IP6.INT domain specify the -i option. Bit string labels (RFC2874) are
now experimental and are not attempted.

To sign the DNS queries sent by dig and their responses using transaction signatures (TSIG), specify a
TSIG key file using the -k option. You can also specify the TSIG key itself on the command line using
the -y option; hmac is the type of the TSIG, default HMAC-MD5, name is the name of the TSIG key
and key is the actual key. The key is a base-64 encoded string, typically generated by dnssec-keygen(8).

128

APPENDIX B. MANUAL PAGES B.1. DIG

Caution should be taken when using the -y option on multi-user systems as the key can be visible in
the output from ps(1) or in the shell’s history file. When using TSIG authentication with dig, the name
server that is queried needs to know the key and algorithm that is being used. In BIND, this is done by
providing appropriate key and server statements in named.conf.

QUERY OPTIONS

dig provides a number of query options which affect the way in which lookups are made and the results
displayed. Some of these set or reset flag bits in the query header, some determine which sections of the
answer get printed, and others determine the timeout and retry strategies.

Each query option is identified by a keyword preceded by a plus sign (+). Some keywords set or reset an
option. These may be preceded by the string no to negate the meaning of that keyword. Other keywords
assign values to options like the timeout interval. They have the form +keyword=value. The query
options are:

+[no]tcp Use [do not use] TCP when querying name servers. The default behavior is to use UDP
unless an AXFR or IXFR query is requested, in which case a TCP connection is used.

+[no]vc Use [do not use] TCP when querying name servers. This alternate syntax to +[no]tcp is
provided for backwards compatibility. The ”vc” stands for ”virtual circuit”.

+[no]ignore Ignore truncation in UDP responses instead of retrying with TCP. By default, TCP retries
are performed.

+domain=somename Set the search list to contain the single domain somename, as if specified in a
domain directive in /etc/resolv.conf, and enable search list processing as if the +search
option were given.

+[no]search Use [do not use] the search list defined by the searchlist or domain directive in resolv.
conf (if any). The search list is not used by default.

+[no]showsearch Perform [do not perform] a search showing intermediate results.

+[no]defname Deprecated, treated as a synonym for +[no]search

+[no]aaonly Sets the ”aa” flag in the query.

+[no]aaflag A synonym for +[no]aaonly.

+[no]adflag Set [do not set] the AD (authentic data) bit in the query. This requests the server to return
whether all of the answer and authority sections have all been validated as secure according to the
security policy of the server. AD=1 indicates that all records have been validated as secure and the
answer is not from a OPT-OUT range. AD=0 indicate that some part of the answer was insecure
or not validated.

+[no]cdflag Set [do not set] the CD (checking disabled) bit in the query. This requests the server to
not perform DNSSEC validation of responses.

+[no]cl Display [do not display] the CLASS when printing the record.

+[no]ttlid Display [do not display] the TTL when printing the record.

129

B.1. DIG APPENDIX B. MANUAL PAGES

+[no]recurse Toggle the setting of the RD (recursion desired) bit in the query. This bit is set by
default, which means dig normally sends recursive queries. Recursion is automatically disabled
when the +nssearch or +trace query options are used.

+[no]nssearch When this option is set, dig attempts to find the authoritative name servers for the
zone containing the name being looked up and display the SOA record that each name server has
for the zone.

+[no]trace Toggle tracing of the delegation path from the root name servers for the name being
looked up. Tracing is disabled by default. When tracing is enabled, dig makes iterative queries
to resolve the name being looked up. It will follow referrals from the root servers, showing the
answer from each server that was used to resolve the lookup.

+[no]cmd Toggles the printing of the initial comment in the output identifying the version of dig and
the query options that have been applied. This comment is printed by default.

+[no]short Provide a terse answer. The default is to print the answer in a verbose form.

+[no]identify Show [or do not show] the IP address and port number that supplied the answer
when the +short option is enabled. If short form answers are requested, the default is not to
show the source address and port number of the server that provided the answer.

+[no]comments Toggle the display of comment lines in the output. The default is to print comments.

+[no]stats This query option toggles the printing of statistics: when the query was made, the size of
the reply and so on. The default behavior is to print the query statistics.

+[no]qr Print [do not print] the query as it is sent. By default, the query is not printed.

+[no]question Print [do not print] the question section of a query when an answer is returned. The
default is to print the question section as a comment.

+[no]answer Display [do not display] the answer section of a reply. The default is to display it.

+[no]authority Display [do not display] the authority section of a reply. The default is to display it.

+[no]additional Display [do not display] the additional section of a reply. The default is to display
it.

+[no]all Set or clear all display flags.

+time=T Sets the timeout for a query to T seconds. The default timeout is 5 seconds. An attempt to set
T to less than 1 will result in a query timeout of 1 second being applied.

+tries=T Sets the number of times to try UDP queries to server to T instead of the default, 3. If T is
less than or equal to zero, the number of tries is silently rounded up to 1.

+retry=T Sets the number of times to retry UDP queries to server to T instead of the default, 2. Unlike
+tries, this does not include the initial query.

130

APPENDIX B. MANUAL PAGES B.1. DIG

+ndots=D Set the number of dots that have to appear in name to D for it to be considered absolute.
The default value is that defined using the ndots statement in /etc/resolv.conf, or 1 if no
ndots statement is present. Names with fewer dots are interpreted as relative names and will be
searched for in the domains listed in the search or domain directive in /etc/resolv.conf.

+bufsize=B Set the UDP message buffer size advertised using EDNS0 to B bytes. The maximum and
minimum sizes of this buffer are 65535 and 0 respectively. Values outside this range are rounded
up or down appropriately. Values other than zero will cause a EDNS query to be sent.

+edns=# Specify the EDNS version to query with. Valid values are 0 to 255. Setting the EDNS version
will cause a EDNS query to be sent. +noedns clears the remembered EDNS version.

+[no]multiline Print records like the SOA records in a verbose multi-line format with human-
readable comments. The default is to print each record on a single line, to facilitate machine
parsing of the dig output.

+[no]fail Do not try the next server if you receive a SERVFAIL. The default is to not try the next
server which is the reverse of normal stub resolver behavior.

+[no]besteffort Attempt to display the contents of messages which are malformed. The default is
to not display malformed answers.

+[no]dnssec Requests DNSSEC records be sent by setting the DNSSEC OK bit (DO) in the OPT record
in the additional section of the query.

+[no]sigchase Chase DNSSEC signature chains. Requires dig be compiled with -DDIG SIGCHASE.

+trusted-key=#### Specifies a file containing trusted keys to be used with +sigchase. Each DNSKEY
record must be on its own line.

If not specified, dig will look for /etc/trusted-key.key then trusted-key.key in the cur-
rent directory.

Requires dig be compiled with -DDIG SIGCHASE.

+[no]topdown When chasing DNSSEC signature chains perform a top-down validation. Requires dig
be compiled with -DDIG SIGCHASE.

+[no]nsid Include an EDNS name server ID request when sending a query.

MULTIPLE QUERIES

The BIND 9 implementation of dig supports specifying multiple queries on the command line (in addi-
tion to supporting the -f batch file option). Each of those queries can be supplied with its own set of
flags, options and query options.

In this case, each query argument represent an individual query in the command-line syntax described
above. Each consists of any of the standard options and flags, the name to be looked up, an optional
query type and class and any query options that should be applied to that query.

A global set of query options, which should be applied to all queries, can also be supplied. These global
query options must precede the first tuple of name, class, type, options, flags, and query options sup-

131

B.2. HOST APPENDIX B. MANUAL PAGES

plied on the command line. Any global query options (except the +[no]cmd option) can be overridden
by a query-specific set of query options. For example:

dig +qr www.isc.org any -x 127.0.0.1 isc.org ns +noqr

shows how dig could be used from the command line to make three lookups: an ANY query for www.
isc.org, a reverse lookup of 127.0.0.1 and a query for the NS records of isc.org. A global query
option of +qr is applied, so that dig shows the initial query it made for each lookup. The final query
has a local query option of +noqr which means that dig will not print the initial query when it looks up
the NS records for isc.org.

IDN SUPPORT

If dig has been built with IDN (internationalized domain name) support, it can accept and display non-
ASCII domain names. dig appropriately converts character encoding of domain name before sending
a request to DNS server or displaying a reply from the server. If you’d like to turn off the IDN support
for some reason, defines the IDN DISABLE environment variable. The IDN support is disabled if the
variable is set when dig runs.

FILES

/etc/resolv.conf

${HOME}/.digrc

SEE ALSO

host(1), named(8), dnssec-keygen(8), RFC1035.

BUGS

There are probably too many query options.

B.2 host

Name

host — DNS lookup utility

Synopsis

host [-aCdlnrsTwv] [-c class] [-N ndots] [-R number] [-t type] [-W wait]
[-m flag] [-4] [-6] name [server]

132

APPENDIX B. MANUAL PAGES B.2. HOST

DESCRIPTION

host is a simple utility for performing DNS lookups. It is normally used to convert names to IP addresses
and vice versa. When no arguments or options are given, host prints a short summary of its command
line arguments and options.

name is the domain name that is to be looked up. It can also be a dotted-decimal IPv4 address or a colon-
delimited IPv6 address, in which case host will by default perform a reverse lookup for that address.
server is an optional argument which is either the name or IP address of the name server that host
should query instead of the server or servers listed in /etc/resolv.conf.

The -a (all) option is equivalent to setting the -v option and asking host to make a query of type ANY.

When the -C option is used, host will attempt to display the SOA records for zone name from all the
listed authoritative name servers for that zone. The list of name servers is defined by the NS records
that are found for the zone.

The -c option instructs to make a DNS query of class class. This can be used to lookup Hesiod or
Chaosnet class resource records. The default class is IN (Internet).

Verbose output is generated by host when the -d or -v option is used. The two options are equivalent.
They have been provided for backwards compatibility. In previous versions, the -d option switched on
debugging traces and -v enabled verbose output.

List mode is selected by the -l option. This makes host perform a zone transfer for zone name. Transfer
the zone printing out the NS, PTR and address records (A/AAAA). If combined with -a all records will
be printed.

The -i option specifies that reverse lookups of IPv6 addresses should use the IP6.INT domain as defined
in RFC1886. The default is to use IP6.ARPA.

The -N option sets the number of dots that have to be in name for it to be considered absolute. The
default value is that defined using the ndots statement in /etc/resolv.conf, or 1 if no ndots state-
ment is present. Names with fewer dots are interpreted as relative names and will be searched for in the
domains listed in the search or domain directive in /etc/resolv.conf.

The number of UDP retries for a lookup can be changed with the -R option. number indicates how
many times host will repeat a query that does not get answered. The default number of retries is 1. If
number is negative or zero, the number of retries will default to 1.

Non-recursive queries can be made via the -r option. Setting this option clears the RD — recursion
desired — bit in the query which host makes. This should mean that the name server receiving the query
will not attempt to resolve name. The -r option enables host to mimic the behavior of a name server
by making non-recursive queries and expecting to receive answers to those queries that are usually
referrals to other name servers.

By default, host uses UDP when making queries. The -T option makes it use a TCP connection when
querying the name server. TCP will be automatically selected for queries that require it, such as zone
transfer (AXFR) requests.

The -4 option forces host to only use IPv4 query transport. The -6 option forces host to only use IPv6
query transport.

The -t option is used to select the query type. type can be any recognized query type: CNAME, NS,
SOA, SIG, KEY, AXFR, etc. When no query type is specified, host automatically selects an appropriate
query type. By default, it looks for A, AAAA, and MX records, but if the -C option was given, queries
will be made for SOA records, and if name is a dotted-decimal IPv4 address or colon-delimited IPv6
address, host will query for PTR records. If a query type of IXFR is chosen the starting serial number
can be specified by appending an equal followed by the starting serial number (e.g. -t IXFR=12345678).

The time to wait for a reply can be controlled through the -W and -w options. The -W option makes host
wait for wait seconds. If wait is less than one, the wait interval is set to one second. When the -w
option is used, host will effectively wait forever for a reply. The time to wait for a response will be set
to the number of seconds given by the hardware’s maximum value for an integer quantity.

133

B.3. DNSSEC-DSFROMKEY APPENDIX B. MANUAL PAGES

The -s option tells host not to send the query to the next nameserver if any server responds with a
SERVFAIL response, which is the reverse of normal stub resolver behavior.

The -m can be used to set the memory usage debugging flags record, usage and trace.

IDN SUPPORT

If host has been built with IDN (internationalized domain name) support, it can accept and display non-
ASCII domain names. host appropriately converts character encoding of domain name before sending
a request to DNS server or displaying a reply from the server. If you’d like to turn off the IDN support
for some reason, defines the IDN DISABLE environment variable. The IDN support is disabled if the
variable is set when host runs.

FILES

/etc/resolv.conf

SEE ALSO

dig(1), named(8).

B.3 dnssec-dsfromkey

Name

dnssec-dsfromkey — DNSSEC DS RR generation tool

Synopsis

dnssec-dsfromkey [-v level] [-1] [-2] [-a alg] [-l domain] keyfile

dnssec-dsfromkey -s [-1] [-2] [-a alg] [-K directory] [-l domain] [-s] [-c
class] [-f file] [-A] [-v level] dnsname

DESCRIPTION

dnssec-dsfromkey outputs the Delegation Signer (DS) resource record (RR), as defined in RFC 3658 and
RFC 4509, for the given key(s).

OPTIONS

-1 Use SHA-1 as the digest algorithm (the default is to use both SHA-1 and SHA-256).

-2 Use SHA-256 as the digest algorithm.

-a algorithm Select the digest algorithm. The value of algorithm must be one of SHA-1 (SHA1) or
SHA-256 (SHA256). These values are case insensitive.

134

APPENDIX B. MANUAL PAGES B.3. DNSSEC-DSFROMKEY

-K directory Look for key files (or, in keyset mode, keyset- files) in directory.

-f file Zone file mode: in place of the keyfile name, the argument is the DNS domain name of a zone
master file, which can be read from file. If the zone name is the same as file, then it may be
omitted.

-A Include ZSK’s when generating DS records. Without this option, only keys which have the KSK flag
set will be converted to DS records and printed. Useful only in zone file mode.

-l domain Generate a DLV set instead of a DS set. The specified domain is appended to the name for
each record in the set. The DNSSEC Lookaside Validation (DLV) RR is described in RFC 4431.

-s Keyset mode: in place of the keyfile name, the argument is the DNS domain name of a keyset file.

-c class Specifies the DNS class (default is IN). Useful only in keyset or zone file mode.

-v level Sets the debugging level.

EXAMPLE

To build the SHA-256 DS RR from the Kexample.com.+003+26160 keyfile name, the following com-
mand would be issued:

dnssec-dsfromkey -2 Kexample.com.+003+26160

The command would print something like:

example.com. IN DS 26160 5 2 3A1EADA7A74B8D0BA86726B0C227AA85AB8BBD2B2004F41A868A54F0
C5EA0B94

FILES

The keyfile can be designed by the key identification Knnnn.+aaa+iiiii or the full file name Knnnn.
+aaa+iiiii.key as generated by dnssec-keygen(8).

The keyset file name is built from the directory, the string keyset- and the dnsname.

CAVEAT

A keyfile error can give a ”file not found” even if the file exists.

SEE ALSO

dnssec-keygen(8), dnssec-signzone(8), BIND 9 Administrator Reference Manual, RFC 3658, RFC 4431. RFC
4509.

AUTHOR

Internet Systems Consortium

135

B.4. DNSSEC-KEYFROMLABEL APPENDIX B. MANUAL PAGES

B.4 dnssec-keyfromlabel

Name

dnssec-keyfromlabel — DNSSEC key generation tool

Synopsis

dnssec-keyfromlabel -l label [-3] [-a algorithm] [-A date/offset] [-c
class] [-D date/offset] [-E engine] [-f flag] [-G] [-I date/offset]
[-k] [-K directory] [-n nametype] [-P date/offset] [-p protocol] [-R
date/offset] [-t type] [-v level] [-y] name

DESCRIPTION

dnssec-keyfromlabel gets keys with the given label from a crypto hardware and builds key files for
DNSSEC (Secure DNS), as defined in RFC 2535 and RFC 4034.

The name of the key is specified on the command line. This must match the name of the zone for which
the key is being generated.

OPTIONS

-a algorithm Selects the cryptographic algorithm. The value of algorithm must be one of RSAMD5,
RSASHA1, DSA, NSEC3RSASHA1, NSEC3DSA, RSASHA256 or RSASHA512. These values are
case insensitive.

If no algorithm is specified, then RSASHA1 will be used by default, unless the -3 option is spec-
ified, in which case NSEC3RSASHA1 will be used instead. (If -3 is used and an algorithm is
specified, that algorithm will be checked for compatibility with NSEC3.)

Note 1: that for DNSSEC, RSASHA1 is a mandatory to implement algorithm, and DSA is recom-
mended.

Note 2: DH automatically sets the -k flag.

-3 Use an NSEC3-capable algorithm to generate a DNSSEC key. If this option is used and no algorithm
is explicitly set on the command line, NSEC3RSASHA1 will be used by default.

-E engine Specifies the name of the crypto hardware (OpenSSL engine). When compiled with PKCS#11
support it defaults to ”pkcs11”.

-l label Specifies the label of the key pair in the crypto hardware. The label may be preceded by an
optional OpenSSL engine name, separated by a colon, as in ”pkcs11:keylabel”.

-n nametype Specifies the owner type of the key. The value of nametype must either be ZONE (for a
DNSSEC zone key (KEY/DNSKEY)), HOST or ENTITY (for a key associated with a host (KEY)),
USER (for a key associated with a user(KEY)) or OTHER (DNSKEY). These values are case insen-
sitive.

-C Compatibility mode: generates an old-style key, without any metadata. By default, dnssec-keyfromlabel
will include the key’s creation date in the metadata stored with the private key, and other dates

136

APPENDIX B. MANUAL PAGES B.4. DNSSEC-KEYFROMLABEL

may be set there as well (publication date, activation date, etc). Keys that include this data may be
incompatible with older versions of BIND; the -C option suppresses them.

-c class Indicates that the DNS record containing the key should have the specified class. If not speci-
fied, class IN is used.

-f flag Set the specified flag in the flag field of the KEY/DNSKEY record. The only recognized flags
are KSK (Key Signing Key) and REVOKE.

-G Generate a key, but do not publish it or sign with it. This option is incompatible with -P and -A.

-h Prints a short summary of the options and arguments to dnssec-keyfromlabel.

-K directory Sets the directory in which the key files are to be written.

-k Generate KEY records rather than DNSKEY records.

-p protocol Sets the protocol value for the key. The protocol is a number between 0 and 255. The
default is 3 (DNSSEC). Other possible values for this argument are listed in RFC 2535 and its
successors.

-t type Indicates the use of the key. type must be one of AUTHCONF, NOAUTHCONF, NOAUTH, or
NOCONF. The default is AUTHCONF. AUTH refers to the ability to authenticate data, and CONF
the ability to encrypt data.

-v level Sets the debugging level.

-y Allows DNSSEC key files to be generated even if the key ID would collide with that of an existing
key, in the event of either key being revoked. (This is only safe to use if you are sure you won’t be
using RFC 5011 trust anchor maintenance with either of the keys involved.)

TIMING OPTIONS

Dates can be expressed in the format YYYYMMDD or YYYYMMDDHHMMSS. If the argument begins
with a ’+’ or ’-’, it is interpreted as an offset from the present time. For convenience, if such an offset is
followed by one of the suffixes ’y’, ’mo’, ’w’, ’d’, ’h’, or ’mi’, then the offset is computed in years (defined
as 365 24-hour days, ignoring leap years), months (defined as 30 24-hour days), weeks, days, hours, or
minutes, respectively. Without a suffix, the offset is computed in seconds.

-P date/offset Sets the date on which a key is to be published to the zone. After that date, the key
will be included in the zone but will not be used to sign it. If not set, and if the -G option has not
been used, the default is ”now”.

-A date/offset Sets the date on which the key is to be activated. After that date, the key will be
included in the zone and used to sign it. If not set, and if the -G option has not been used, the
default is ”now”.

-R date/offset Sets the date on which the key is to be revoked. After that date, the key will be
flagged as revoked. It will be included in the zone and will be used to sign it.

137

B.5. DNSSEC-KEYGEN APPENDIX B. MANUAL PAGES

-I date/offset Sets the date on which the key is to be retired. After that date, the key will still be
included in the zone, but it will not be used to sign it.

-D date/offset Sets the date on which the key is to be deleted. After that date, the key will no longer
be included in the zone. (It may remain in the key repository, however.)

GENERATED KEY FILES

When dnssec-keyfromlabel completes successfully, it prints a string of the form Knnnn.+aaa+iiiii
to the standard output. This is an identification string for the key files it has generated.

• nnnn is the key name.

• aaa is the numeric representation of the algorithm.

• iiiii is the key identifier (or footprint).

dnssec-keyfromlabel creates two files, with names based on the printed string. Knnnn.+aaa+iiiii.
key contains the public key, and Knnnn.+aaa+iiiii.private contains the private key.

The .key file contains a DNS KEY record that can be inserted into a zone file (directly or with a $IN-
CLUDE statement).

The .private file contains algorithm-specific fields. For obvious security reasons, this file does not
have general read permission.

SEE ALSO

dnssec-keygen(8), dnssec-signzone(8), BIND 9 Administrator Reference Manual, RFC 4034.

AUTHOR

Internet Systems Consortium

B.5 dnssec-keygen

Name

dnssec-keygen — DNSSEC key generation tool

Synopsis

dnssec-keygen [-a algorithm] [-b keysize] [-n nametype] [-3] [-A
date/offset] [-C] [-c class] [-D date/offset] [-E engine] [-e] [-f
flag] [-G] [-g generator] [-h] [-I date/offset] [-i interval] [-K
directory] [-k] [-P date/offset] [-p protocol] [-q] [-R date/offset]
[-r randomdev] [-S key] [-s strength] [-t type] [-v level] [-z] name

138

APPENDIX B. MANUAL PAGES B.5. DNSSEC-KEYGEN

DESCRIPTION

dnssec-keygen generates keys for DNSSEC (Secure DNS), as defined in RFC 2535 and RFC 4034. It
can also generate keys for use with TSIG (Transaction Signatures) as defined in RFC 2845, or TKEY
(Transaction Key) as defined in RFC 2930.

The name of the key is specified on the command line. For DNSSEC keys, this must match the name of
the zone for which the key is being generated.

OPTIONS

-a algorithm Selects the cryptographic algorithm. For DNSSEC keys, the value of algorithm must
be one of RSAMD5, RSASHA1, DSA, NSEC3RSASHA1, NSEC3DSA, RSASHA256 or RSASHA512.
For TSIG/TKEY, the value must be DH (Diffie Hellman), HMAC-MD5, HMAC-SHA1, HMAC-
SHA224, HMAC-SHA256, HMAC-SHA384, or HMAC-SHA512. These values are case insensitive.

If no algorithm is specified, then RSASHA1 will be used by default, unless the -3 option is spec-
ified, in which case NSEC3RSASHA1 will be used instead. (If -3 is used and an algorithm is
specified, that algorithm will be checked for compatibility with NSEC3.)

Note 1: that for DNSSEC, RSASHA1 is a mandatory to implement algorithm, and DSA is recom-
mended. For TSIG, HMAC-MD5 is mandatory.

Note 2: DH, HMAC-MD5, and HMAC-SHA1 through HMAC-SHA512 automatically set the -T
KEY option.

-b keysize Specifies the number of bits in the key. The choice of key size depends on the algorithm
used. RSA keys must be between 512 and 2048 bits. Diffie Hellman keys must be between 128 and
4096 bits. DSA keys must be between 512 and 1024 bits and an exact multiple of 64. HMAC keys
must be between 1 and 512 bits.

The key size does not need to be specified if using a default algorithm. The default key size is 1024
bits for zone signing keys (ZSK’s) and 2048 bits for key signing keys (KSK’s, generated with -f
KSK). However, if an algorithm is explicitly specified with the -a, then there is no default key size,
and the -b must be used.

-n nametype Specifies the owner type of the key. The value of nametype must either be ZONE (for a
DNSSEC zone key (KEY/DNSKEY)), HOST or ENTITY (for a key associated with a host (KEY)),
USER (for a key associated with a user(KEY)) or OTHER (DNSKEY). These values are case insen-
sitive. Defaults to ZONE for DNSKEY generation.

-3 Use an NSEC3-capable algorithm to generate a DNSSEC key. If this option is used and no algo-
rithm is explicitly set on the command line, NSEC3RSASHA1 will be used by default. Note that
RSASHA256 and RSASHA512 algorithms are NSEC3-capable.

-C Compatibility mode: generates an old-style key, without any metadata. By default, dnssec-keygen
will include the key’s creation date in the metadata stored with the private key, and other dates
may be set there as well (publication date, activation date, etc). Keys that include this data may be
incompatible with older versions of BIND; the -C option suppresses them.

-c class Indicates that the DNS record containing the key should have the specified class. If not speci-
fied, class IN is used.

-E engine Uses a crypto hardware (OpenSSL engine) for random number and, when supported, key
generation. When compiled with PKCS#11 support it defaults to pkcs11; the empty name resets it
to no engine.

139

B.5. DNSSEC-KEYGEN APPENDIX B. MANUAL PAGES

-e If generating an RSAMD5/RSASHA1 key, use a large exponent.

-f flag Set the specified flag in the flag field of the KEY/DNSKEY record. The only recognized flags
are KSK (Key Signing Key) and REVOKE.

-G Generate a key, but do not publish it or sign with it. This option is incompatible with -P and -A.

-g generator If generating a Diffie Hellman key, use this generator. Allowed values are 2 and 5. If
no generator is specified, a known prime from RFC 2539 will be used if possible; otherwise the
default is 2.

-h Prints a short summary of the options and arguments to dnssec-keygen.

-K directory Sets the directory in which the key files are to be written.

-k Deprecated in favor of -T KEY.

-p protocol Sets the protocol value for the generated key. The protocol is a number between 0 and
255. The default is 3 (DNSSEC). Other possible values for this argument are listed in RFC 2535 and
its successors.

-q Quiet mode: Suppresses unnecessary output, including progress indication. Without this option,
when dnssec-keygen is run interactively to generate an RSA or DSA key pair, it will print a string
of symbols to stderr indicating the progress of the key generation. A ’.’ indicates that a random
number has been found which passed an initial sieve test; ’+’ means a number has passed a single
round of the Miller-Rabin primality test; a space means that the number has passed all the tests
and is a satisfactory key.

-r randomdev Specifies the source of randomness. If the operating system does not provide a /dev/
random or equivalent device, the default source of randomness is keyboard input. randomdev
specifies the name of a character device or file containing random data to be used instead of the
default. The special value keyboard indicates that keyboard input should be used.

-S key Create a new key which is an explicit successor to an existing key. The name, algorithm, size,
and type of the key will be set to match the existing key. The activation date of the new key will
be set to the inactivation date of the existing one. The publication date will be set to the activation
date minus the prepublication interval, which defaults to 30 days.

-s strength Specifies the strength value of the key. The strength is a number between 0 and 15, and
currently has no defined purpose in DNSSEC.

-T rrtype Specifies the resource record type to use for the key. rrtype must be either DNSKEY or
KEY. The default is DNSKEY when using a DNSSEC algorithm, but it can be overridden to KEY
for use with SIG(0).

Using any TSIG algorithm (HMAC-* or DH) forces this option to KEY.

-t type Indicates the use of the key. type must be one of AUTHCONF, NOAUTHCONF, NOAUTH, or
NOCONF. The default is AUTHCONF. AUTH refers to the ability to authenticate data, and CONF
the ability to encrypt data.

140

APPENDIX B. MANUAL PAGES B.5. DNSSEC-KEYGEN

-v level Sets the debugging level.

TIMING OPTIONS

Dates can be expressed in the format YYYYMMDD or YYYYMMDDHHMMSS. If the argument begins
with a ’+’ or ’-’, it is interpreted as an offset from the present time. For convenience, if such an offset is
followed by one of the suffixes ’y’, ’mo’, ’w’, ’d’, ’h’, or ’mi’, then the offset is computed in years (defined
as 365 24-hour days, ignoring leap years), months (defined as 30 24-hour days), weeks, days, hours, or
minutes, respectively. Without a suffix, the offset is computed in seconds.

-P date/offset Sets the date on which a key is to be published to the zone. After that date, the key
will be included in the zone but will not be used to sign it. If not set, and if the -G option has not
been used, the default is ”now”.

-A date/offset Sets the date on which the key is to be activated. After that date, the key will be
included in the zone and used to sign it. If not set, and if the -G option has not been used, the
default is ”now”.

-R date/offset Sets the date on which the key is to be revoked. After that date, the key will be
flagged as revoked. It will be included in the zone and will be used to sign it.

-I date/offset Sets the date on which the key is to be retired. After that date, the key will still be
included in the zone, but it will not be used to sign it.

-D date/offset Sets the date on which the key is to be deleted. After that date, the key will no longer
be included in the zone. (It may remain in the key repository, however.)

-i interval Sets the prepublication interval for a key. If set, then the publication and activation dates
must be separated by at least this much time. If the activation date is specified but the publication
date isn’t, then the publication date will default to this much time before the activation date; con-
versely, if the publication date is specified but activation date isn’t, then activation will be set to
this much time after publication.

If the key is being created as an explicit successor to another key, then the default prepublication
interval is 30 days; otherwise it is zero.

As with date offsets, if the argument is followed by one of the suffixes ’y’, ’mo’, ’w’, ’d’, ’h’, or
’mi’, then the interval is measured in years, months, weeks, days, hours, or minutes, respectively.
Without a suffix, the interval is measured in seconds.

GENERATED KEYS

When dnssec-keygen completes successfully, it prints a string of the form Knnnn.+aaa+iiiii to the
standard output. This is an identification string for the key it has generated.

• nnnn is the key name.

• aaa is the numeric representation of the algorithm.

• iiiii is the key identifier (or footprint).

dnssec-keygen creates two files, with names based on the printed string. Knnnn.+aaa+iiiii.key
contains the public key, and Knnnn.+aaa+iiiii.private contains the private key.

The .key file contains a DNS KEY record that can be inserted into a zone file (directly or with a $IN-
CLUDE statement).

141

B.6. DNSSEC-REVOKE APPENDIX B. MANUAL PAGES

The .private file contains algorithm-specific fields. For obvious security reasons, this file does not
have general read permission.

Both .key and .private files are generated for symmetric encryption algorithms such as HMAC-
MD5, even though the public and private key are equivalent.

EXAMPLE

To generate a 768-bit DSA key for the domain example.com, the following command would be issued:

dnssec-keygen -a DSA -b 768 -n ZONE example.com

The command would print a string of the form:

Kexample.com.+003+26160

In this example, dnssec-keygen creates the files Kexample.com.+003+26160.key and Kexample.
com.+003+26160.private.

SEE ALSO

dnssec-signzone(8), BIND 9 Administrator Reference Manual, RFC 2539, RFC 2845, RFC 4034.

AUTHOR

Internet Systems Consortium

B.6 dnssec-revoke

Name

dnssec-revoke — Set the REVOKED bit on a DNSSEC key

Synopsis

dnssec-revoke [-hr] [-v level] [-K directory] [-E engine] [-f] keyfile

DESCRIPTION

dnssec-revoke reads a DNSSEC key file, sets the REVOKED bit on the key as defined in RFC 5011, and
creates a new pair of key files containing the now-revoked key.

OPTIONS

-h Emit usage message and exit.

-K directory Sets the directory in which the key files are to reside.

-r After writing the new keyset files remove the original keyset files.

142

APPENDIX B. MANUAL PAGES B.7. DNSSEC-SETTIME

-v level Sets the debugging level.

-E engine Use the given OpenSSL engine. When compiled with PKCS#11 support it defaults to pkcs11;
the empty name resets it to no engine.

-f Force overwrite: Causes dnssec-revoke to write the new key pair even if a file already exists matching
the algorithm and key ID of the revoked key.

SEE ALSO

dnssec-keygen(8), BIND 9 Administrator Reference Manual, RFC 5011.

AUTHOR

Internet Systems Consortium

B.7 dnssec-settime

Name

dnssec-settime — Set the key timing metadata for a DNSSEC key

Synopsis

dnssec-settime [-f] [-K directory] [-P date/offset] [-A date/offset] [-R
date/offset] [-I date/offset] [-D date/offset] [-h] [-v level] [-E
engine] keyfile

DESCRIPTION

dnssec-settime reads a DNSSEC private key file and sets the key timing metadata as specified by the
-P, -A, -R, -I, and -D options. The metadata can then be used by dnssec-signzone or other signing
software to determine when a key is to be published, whether it should be used for signing a zone, etc.

If none of these options is set on the command line, then dnssec-settime simply prints the key timing
metadata already stored in the key.

When key metadata fields are changed, both files of a key pair (Knnnn.+aaa+iiiii.key and Knnnn.
+aaa+iiiii.private) are regenerated. Metadata fields are stored in the private file. A human-
readable description of the metadata is also placed in comments in the key file.

OPTIONS

-f Force an update of an old-format key with no metadata fields. Without this option, dnssec-settime
will fail when attempting to update a legacy key. With this option, the key will be recreated in
the new format, but with the original key data retained. The key’s creation date will be set to the
present time. If no other values are specified, then the key’s publication and activation dates will
also be set to the present time.

143

B.7. DNSSEC-SETTIME APPENDIX B. MANUAL PAGES

-K directory Sets the directory in which the key files are to reside.

-h Emit usage message and exit.

-v level Sets the debugging level.

-E engine Use the given OpenSSL engine. When compiled with PKCS#11 support it defaults to pkcs11;
the empty name resets it to no engine.

TIMING OPTIONS

Dates can be expressed in the format YYYYMMDD or YYYYMMDDHHMMSS. If the argument begins
with a ’+’ or ’-’, it is interpreted as an offset from the present time. For convenience, if such an offset is
followed by one of the suffixes ’y’, ’mo’, ’w’, ’d’, ’h’, or ’mi’, then the offset is computed in years (defined
as 365 24-hour days, ignoring leap years), months (defined as 30 24-hour days), weeks, days, hours, or
minutes, respectively. Without a suffix, the offset is computed in seconds. To unset a date, use ’none’.

-P date/offset Sets the date on which a key is to be published to the zone. After that date, the key
will be included in the zone but will not be used to sign it.

-A date/offset Sets the date on which the key is to be activated. After that date, the key will be
included in the zone and used to sign it.

-R date/offset Sets the date on which the key is to be revoked. After that date, the key will be
flagged as revoked. It will be included in the zone and will be used to sign it.

-I date/offset Sets the date on which the key is to be retired. After that date, the key will still be
included in the zone, but it will not be used to sign it.

-D date/offset Sets the date on which the key is to be deleted. After that date, the key will no longer
be included in the zone. (It may remain in the key repository, however.)

-S predecessor key Select a key for which the key being modified will be an explicit successor. The
name, algorithm, size, and type of the predecessor key must exactly match those of the key being
modified. The activation date of the successor key will be set to the inactivation date of the pre-
decessor. The publication date will be set to the activation date minus the prepublication interval,
which defaults to 30 days.

-i interval Sets the prepublication interval for a key. If set, then the publication and activation dates
must be separated by at least this much time. If the activation date is specified but the publication
date isn’t, then the publication date will default to this much time before the activation date; con-
versely, if the publication date is specified but activation date isn’t, then activation will be set to
this much time after publication.

If the key is being set to be an explicit successor to another key, then the default prepublication
interval is 30 days; otherwise it is zero.

As with date offsets, if the argument is followed by one of the suffixes ’y’, ’mo’, ’w’, ’d’, ’h’, or
’mi’, then the interval is measured in years, months, weeks, days, hours, or minutes, respectively.
Without a suffix, the interval is measured in seconds.

144

APPENDIX B. MANUAL PAGES B.8. DNSSEC-SIGNZONE

PRINTING OPTIONS

dnssec-settime can also be used to print the timing metadata associated with a key.

-u Print times in UNIX epoch format.

-p C/P/A/R/I/D/all Print a specific metadata value or set of metadata values. The -p option may be
followed by one or more of the following letters to indicate which value or values to print: C for
the creation date, P for the publication date, A for the activation date, R for the revocation date, I
for the inactivation date, or D for the deletion date. To print all of the metadata, use -p all.

SEE ALSO

dnssec-keygen(8), dnssec-signzone(8), BIND 9 Administrator Reference Manual, RFC 5011.

AUTHOR

Internet Systems Consortium

B.8 dnssec-signzone

Name

dnssec-signzone — DNSSEC zone signing tool

Synopsis

dnssec-signzone [-a] [-c class] [-d directory] [-E engine] [-e end-time]
[-f output-file] [-g] [-h] [-K directory] [-k key] [-l domain] [-i
interval] [-I input-format] [-j jitter] [-N soa-serial-format] [-o
origin] [-O output-format] [-p] [-P] [-r randomdev] [-S] [-s
start-time] [-T ttl] [-t] [-u] [-v level] [-x] [-z] [-3 salt] [-H
iterations] [-A] zonefile [key...]

DESCRIPTION

dnssec-signzone signs a zone. It generates NSEC and RRSIG records and produces a signed version of
the zone. The security status of delegations from the signed zone (that is, whether the child zones are
secure or not) is determined by the presence or absence of a keyset file for each child zone.

OPTIONS

-a Verify all generated signatures.

-c class Specifies the DNS class of the zone.

-C Compatibility mode: Generate a keyset-zonename file in addition to dsset-zonename when
signing a zone, for use by older versions of dnssec-signzone.

145

B.8. DNSSEC-SIGNZONE APPENDIX B. MANUAL PAGES

-d directory Look for dsset- or keyset- files in directory.

-E engine Uses a crypto hardware (OpenSSL engine) for the crypto operations it supports, for instance
signing with private keys from a secure key store. When compiled with PKCS#11 support it de-
faults to pkcs11; the empty name resets it to no engine.

-g Generate DS records for child zones from dsset- or keyset- file. Existing DS records will be
removed.

-K directory Key repository: Specify a directory to search for DNSSEC keys. If not specified, defaults
to the current directory.

-k key Treat specified key as a key signing key ignoring any key flags. This option may be specified
multiple times.

-l domain Generate a DLV set in addition to the key (DNSKEY) and DS sets. The domain is appended
to the name of the records.

-s start-time Specify the date and time when the generated RRSIG records become valid. This can be
either an absolute or relative time. An absolute start time is indicated by a number in YYYYMMD-
DHHMMSS notation; 20000530144500 denotes 14:45:00 UTC on May 30th, 2000. A relative start
time is indicated by +N, which is N seconds from the current time. If no start-time is specified,
the current time minus 1 hour (to allow for clock skew) is used.

-e end-time Specify the date and time when the generated RRSIG records expire. As with start-time,
an absolute time is indicated in YYYYMMDDHHMMSS notation. A time relative to the start time
is indicated with +N, which is N seconds from the start time. A time relative to the current time
is indicated with now+N. If no end-time is specified, 30 days from the start time is used as a
default. end-time must be later than start-time.

-f output-file The name of the output file containing the signed zone. The default is to append .
signed to the input filename.

-h Prints a short summary of the options and arguments to dnssec-signzone.

-i interval When a previously-signed zone is passed as input, records may be resigned. The interval
option specifies the cycle interval as an offset from the current time (in seconds). If a RRSIG record
expires after the cycle interval, it is retained. Otherwise, it is considered to be expiring soon, and
it will be replaced.

The default cycle interval is one quarter of the difference between the signature end and start times.
So if neither end-time or start-time are specified, dnssec-signzone generates signatures that
are valid for 30 days, with a cycle interval of 7.5 days. Therefore, if any existing RRSIG records are
due to expire in less than 7.5 days, they would be replaced.

-I input-format The format of the input zone file. Possible formats are ”text” (default) and ”raw”.
This option is primarily intended to be used for dynamic signed zones so that the dumped zone
file in a non-text format containing updates can be signed directly. The use of this option does not
make much sense for non-dynamic zones.

-j jitter When signing a zone with a fixed signature lifetime, all RRSIG records issued at the time of
signing expires simultaneously. If the zone is incrementally signed, i.e. a previously-signed zone

146

APPENDIX B. MANUAL PAGES B.8. DNSSEC-SIGNZONE

is passed as input to the signer, all expired signatures have to be regenerated at about the same
time. The jitter option specifies a jitter window that will be used to randomize the signature
expire time, thus spreading incremental signature regeneration over time.

Signature lifetime jitter also to some extent benefits validators and servers by spreading out cache
expiration, i.e. if large numbers of RRSIGs don’t expire at the same time from all caches there will
be less congestion than if all validators need to refetch at mostly the same time.

-n ncpus Specifies the number of threads to use. By default, one thread is started for each detected
CPU.

-N soa-serial-format The SOA serial number format of the signed zone. Possible formats are
”keep” (default), ”increment” and ”unixtime”.

”keep” Do not modify the SOA serial number.

”increment” Increment the SOA serial number using RFC 1982 arithmetics.

”unixtime” Set the SOA serial number to the number of seconds since epoch.

-o origin The zone origin. If not specified, the name of the zone file is assumed to be the origin.

-O output-format The format of the output file containing the signed zone. Possible formats are
”text” (default) and ”raw”.

-p Use pseudo-random data when signing the zone. This is faster, but less secure, than using real
random data. This option may be useful when signing large zones or when the entropy source is
limited.

-P Disable post sign verification tests.

The post sign verification test ensures that for each algorithm in use there is at least one non
revoked self signed KSK key, that all revoked KSK keys are self signed, and that all records in the
zone are signed by the algorithm. This option skips these tests.

-r randomdev Specifies the source of randomness. If the operating system does not provide a /dev/
random or equivalent device, the default source of randomness is keyboard input. randomdev
specifies the name of a character device or file containing random data to be used instead of the
default. The special value keyboard indicates that keyboard input should be used.

-S Smart signing: Instructs dnssec-signzone to search the key repository for keys that match the zone
being signed, and to include them in the zone if appropriate.

When a key is found, its timing metadata is examined to determine how it should be used, accord-
ing to the following rules. Each successive rule takes priority over the prior ones:

If no timing metadata has been set for the key, the key is published in the zone and used to sign
the zone.

If the key’s publication date is set and is in the past, the key is published in the zone.

If the key’s activation date is set and in the past, the key is published (regardless of publication
date) and used to sign the zone.

147

B.8. DNSSEC-SIGNZONE APPENDIX B. MANUAL PAGES

If the key’s revocation date is set and in the past, and the key is published, then the key is revoked,
and the revoked key is used to sign the zone.

If either of the key’s unpublication or deletion dates are set and in the past, the key is NOT
published or used to sign the zone, regardless of any other metadata.

-T ttl Specifies the TTL to be used for new DNSKEY records imported into the zone from the key
repository. If not specified, the default is the minimum TTL value from the zone’s SOA record.
This option is ignored when signing without -S, since DNSKEY records are not imported from
the key repository in that case. It is also ignored if there are any pre-existing DNSKEY records at
the zone apex, in which case new records’ TTL values will be set to match them.

-t Print statistics at completion.

-u Update NSEC/NSEC3 chain when re-signing a previously signed zone. With this option, a zone
signed with NSEC can be switched to NSEC3, or a zone signed with NSEC3 can be switch to
NSEC or to NSEC3 with different parameters. Without this option, dnssec-signzone will retain
the existing chain when re-signing.

-v level Sets the debugging level.

-x Only sign the DNSKEY RRset with key-signing keys, and omit signatures from zone-signing keys.
(This is similar to the dnssec-dnskey-kskonly yes; zone option in named.)

-z Ignore KSK flag on key when determining what to sign. This causes KSK-flagged keys to sign all
records, not just the DNSKEY RRset. (This is similar to the update-check-ksk no; zone option in
named.)

-3 salt Generate an NSEC3 chain with the given hex encoded salt. A dash (salt) can be used to
indicate that no salt is to be used when generating the NSEC3 chain.

-H iterations When generating an NSEC3 chain, use this many interations. The default is 10.

-A When generating an NSEC3 chain set the OPTOUT flag on all NSEC3 records and do not generate
NSEC3 records for insecure delegations.

Using this option twice (i.e., -AA) turns the OPTOUT flag off for all records. This is useful when
using the -u option to modify an NSEC3 chain which previously had OPTOUT set.

zonefile The file containing the zone to be signed.

key Specify which keys should be used to sign the zone. If no keys are specified, then the zone will be
examined for DNSKEY records at the zone apex. If these are found and there are matching private
keys, in the current directory, then these will be used for signing.

EXAMPLE

The following command signs the example.com zone with the DSA key generated by dnssec-keygen
(Kexample.com.+003+17247). Because the -S option is not being used, the zone’s keys must be in the
master file (db.example.com). This invocation looks for dsset files, in the current directory, so that
DS records can be imported from them (-g).

148

APPENDIX B. MANUAL PAGES B.9. NAMED-CHECKCONF

% dnssec-signzone -g -o example.com db.example.com \
Kexample.com.+003+17247
db.example.com.signed
%

In the above example, dnssec-signzone creates the file db.example.com.signed. This file should be
referenced in a zone statement in a named.conf file.

This example re-signs a previously signed zone with default parameters. The private keys are assumed
to be in the current directory.

% cp db.example.com.signed db.example.com
% dnssec-signzone -o example.com db.example.com
db.example.com.signed
%

SEE ALSO

dnssec-keygen(8), BIND 9 Administrator Reference Manual, RFC 4033.

AUTHOR

Internet Systems Consortium

B.9 named-checkconf

Name

named-checkconf — named configuration file syntax checking tool

Synopsis

named-checkconf [-h] [-v] [-j] [-t directory] filename [-p] [-z]

DESCRIPTION

named-checkconf checks the syntax, but not the semantics, of a named configuration file. The file is
parsed and checked for syntax errors, along with all files included by it. If no file is specified, /etc/
named.conf is read by default.

Note: files that named reads in separate parser contexts, such as rndc.key and bind.keys, are not
automatically read by named-checkconf. Configuration errors in these files may cause named to fail
to run, even if named-checkconf was successful. named-checkconf can be run on these files explicitly,
however.

OPTIONS

-h Print the usage summary and exit.

-t directory Chroot to directory so that include directives in the configuration file are processed
as if run by a similarly chrooted named.

149

B.10. NAMED-CHECKZONE APPENDIX B. MANUAL PAGES

-v Print the version of the named-checkconf program and exit.

-p Print out the named.conf and included files in canonical form if no errors were detected.

-z Perform a test load of all master zones found in named.conf.

-j When loading a zonefile read the journal if it exists.

filename The name of the configuration file to be checked. If not specified, it defaults to /etc/named.
conf.

RETURN VALUES

named-checkconf returns an exit status of 1 if errors were detected and 0 otherwise.

SEE ALSO

named(8), named-checkzone(8), BIND 9 Administrator Reference Manual.

AUTHOR

Internet Systems Consortium

B.10 named-checkzone

Name

named-checkzone, named-compilezone — zone file validity checking or converting tool

Synopsis

named-checkzone [-d] [-h] [-j] [-q] [-v] [-c class] [-f format] [-F format]
[-i mode] [-k mode] [-m mode] [-M mode] [-n mode] [-r mode] [-s style]
[-S mode] [-t directory] [-w directory] [-D] [-W mode] zonename
filename

named-compilezone [-d] [-j] [-q] [-v] [-c class] [-C mode] [-f format] [-F
format] [-i mode] [-k mode] [-m mode] [-n mode] [-o filename] [-r mode]
[-s style] [-t directory] [-w directory] [-D] [-W mode] -o filename
zonename filename

DESCRIPTION

named-checkzone checks the syntax and integrity of a zone file. It performs the same checks as named
does when loading a zone. This makes named-checkzone useful for checking zone files before config-
uring them into a name server.

150

APPENDIX B. MANUAL PAGES B.10. NAMED-CHECKZONE

named-compilezone is similar to named-checkzone, but it always dumps the zone contents to a spec-
ified file in a specified format. Additionally, it applies stricter check levels by default, since the dump
output will be used as an actual zone file loaded by named. When manually specified otherwise, the
check levels must at least be as strict as those specified in the named configuration file.

OPTIONS

-d Enable debugging.

-h Print the usage summary and exit.

-q Quiet mode - exit code only.

-v Print the version of the named-checkzone program and exit.

-j When loading the zone file read the journal if it exists.

-c class Specify the class of the zone. If not specified, ”IN” is assumed.

-i mode Perform post-load zone integrity checks. Possible modes are ”full” (default), ”full-sibling”,
”local”, ”local-sibling” and ”none”.

Mode ”full” checks that MX records refer to A or AAAA record (both in-zone and out-of-zone
hostnames). Mode ”local” only checks MX records which refer to in-zone hostnames.

Mode ”full” checks that SRV records refer to A or AAAA record (both in-zone and out-of-zone
hostnames). Mode ”local” only checks SRV records which refer to in-zone hostnames.

Mode ”full” checks that delegation NS records refer to A or AAAA record (both in-zone and out-
of-zone hostnames). It also checks that glue address records in the zone match those advertised
by the child. Mode ”local” only checks NS records which refer to in-zone hostnames or that some
required glue exists, that is when the nameserver is in a child zone.

Mode ”full-sibling” and ”local-sibling” disable sibling glue checks but are otherwise the same as
”full” and ”local” respectively.

Mode ”none” disables the checks.

-f format Specify the format of the zone file. Possible formats are ”text” (default) and ”raw”.

-F format Specify the format of the output file specified. Possible formats are ”text” (default) and
”raw”. For named-checkzone, this does not cause any effects unless it dumps the zone contents.

-k mode Perform ”check-names” checks with the specified failure mode. Possible modes are ”fail”
(default for named-compilezone), ”warn” (default for named-checkzone) and ”ignore”.

-m mode Specify whether MX records should be checked to see if they are addresses. Possible modes
are ”fail”, ”warn” (default) and ”ignore”.

-M mode Check if a MX record refers to a CNAME. Possible modes are ”fail”, ”warn” (default) and
”ignore”.

151

B.10. NAMED-CHECKZONE APPENDIX B. MANUAL PAGES

-n mode Specify whether NS records should be checked to see if they are addresses. Possible modes are
”fail” (default for named-compilezone), ”warn” (default for named-checkzone) and ”ignore”.

-o filename Write zone output to filename. If filename is - then write to standard out. This is
mandatory for named-compilezone.

-r mode Check for records that are treated as different by DNSSEC but are semantically equal in plain
DNS. Possible modes are ”fail”, ”warn” (default) and ”ignore”.

-s style Specify the style of the dumped zone file. Possible styles are ”full” (default) and ”relative”.
The full format is most suitable for processing automatically by a separate script. On the other
hand, the relative format is more human-readable and is thus suitable for editing by hand. For
named-checkzone this does not cause any effects unless it dumps the zone contents. It also does
not have any meaning if the output format is not text.

-S mode Check if a SRV record refers to a CNAME. Possible modes are ”fail”, ”warn” (default) and
”ignore”.

-t directory Chroot to directory so that include directives in the configuration file are processed
as if run by a similarly chrooted named.

-w directory chdir to directory so that relative filenames in master file $INCLUDE directives
work. This is similar to the directory clause in named.conf.

-D Dump zone file in canonical format. This is always enabled for named-compilezone.

-W mode Specify whether to check for non-terminal wildcards. Non-terminal wildcards are almost
always the result of a failure to understand the wildcard matching algorithm (RFC 1034). Possible
modes are ”warn” (default) and ”ignore”.

zonename The domain name of the zone being checked.

filename The name of the zone file.

RETURN VALUES

named-checkzone returns an exit status of 1 if errors were detected and 0 otherwise.

SEE ALSO

named(8), named-checkconf(8), RFC 1035, BIND 9 Administrator Reference Manual.

AUTHOR

Internet Systems Consortium

152

APPENDIX B. MANUAL PAGES B.11. NAMED

B.11 named

Name

named — Internet domain name server

Synopsis

named [-4] [-6] [-c config-file] [-d debug-level] [-E engine-name] [-f]
[-g] [-m flag] [-n #cpus] [-p port] [-s] [-S #max-socks] [-t directory]
[-u user] [-v] [-V] [-x cache-file]

DESCRIPTION

named is a Domain Name System (DNS) server, part of the BIND 9 distribution from ISC. For more
information on the DNS, see RFCs 1033, 1034, and 1035.

When invoked without arguments, named will read the default configuration file /etc/named.conf,
read any initial data, and listen for queries.

OPTIONS

-4 Use IPv4 only even if the host machine is capable of IPv6. -4 and -6 are mutually exclusive.

-6 Use IPv6 only even if the host machine is capable of IPv4. -4 and -6 are mutually exclusive.

-c config-file Use config-file as the configuration file instead of the default, /etc/named.
conf. To ensure that reloading the configuration file continues to work after the server has
changed its working directory due to to a possible directory option in the configuration file,
config-file should be an absolute pathname.

-d debug-level Set the daemon’s debug level to debug-level. Debugging traces from named be-
come more verbose as the debug level increases.

-E engine-name Use a crypto hardware (OpenSSL engine) for the crypto operations it supports, for
instance re-signing with private keys from a secure key store. When compiled with PKCS#11
support engine-name defaults to pkcs11, the empty name resets it to no engine.

-f Run the server in the foreground (i.e. do not daemonize).

-g Run the server in the foreground and force all logging to stderr.

-m flag Turn on memory usage debugging flags. Possible flags are usage, trace, record, size,
and mctx. These correspond to the ISC MEM DEBUGXXXX flags described in <isc/mem.h>.

-n #cpus Create #cpus worker threads to take advantage of multiple CPUs. If not specified, named
will try to determine the number of CPUs present and create one thread per CPU. If it is unable to
determine the number of CPUs, a single worker thread will be created.

153

B.11. NAMED APPENDIX B. MANUAL PAGES

-p port Listen for queries on port port. If not specified, the default is port 53.

-s Write memory usage statistics to stdout on exit.

NOTE

This option is mainly of interest to BIND 9 developers and may be removed
or changed in a future release.

-S #max-socks Allow named to use up to #max-socks sockets.

WARNING

This option should be unnecessary for the vast majority of users. The use
of this option could even be harmful because the specified value may ex-
ceed the limitation of the underlying system API. It is therefore set only
when the default configuration causes exhaustion of file descriptors and
the operational environment is known to support the specified number of
sockets. Note also that the actual maximum number is normally a little
fewer than the specified value because named reserves some file descrip-
tors for its internal use.

-t directory Chroot to directory after processing the command line arguments, but before reading
the configuration file.

WARNING

This option should be used in conjunction with the -u option, as chrooting
a process running as root doesn’t enhance security on most systems; the
way chroot(2) is defined allows a process with root privileges to escape
a chroot jail.

-u user Setuid to user after completing privileged operations, such as creating sockets that listen on
privileged ports.

NOTE

On Linux, named uses the kernel’s capability mechanism to drop all root
privileges except the ability to bind(2) to a privileged port and set pro-
cess resource limits. Unfortunately, this means that the -u option only
works when named is run on kernel 2.2.18 or later, or kernel 2.3.99-pre3
or later, since previous kernels did not allow privileges to be retained after
setuid(2).

154

APPENDIX B. MANUAL PAGES B.11. NAMED

-v Report the version number and exit.

-V Report the version number and build options, and exit.

-x cache-file Load data from cache-file into the cache of the default view.

WARNING

This option must not be used. It is only of interest to BIND 9 developers
and may be removed or changed in a future release.

SIGNALS

In routine operation, signals should not be used to control the nameserver; rndc should be used instead.

SIGHUP Force a reload of the server.

SIGINT, SIGTERM Shut down the server.

The result of sending any other signals to the server is undefined.

CONFIGURATION

The named configuration file is too complex to describe in detail here. A complete description is pro-
vided in the BIND 9 Administrator Reference Manual.

named inherits the umask (file creation mode mask) from the parent process. If files created by named,
such as journal files, need to have custom permissions, the umask should be set explicitly in the script
used to start the named process.

FILES

/etc/named.conf The default configuration file.

/var/run/named/named.pid The default process-id file.

SEE ALSO

RFC 1033, RFC 1034, RFC 1035, named-checkconf(8), named-checkzone(8), rndc(8), lwresd(8), named.conf(5),
BIND 9 Administrator Reference Manual.

AUTHOR

Internet Systems Consortium

155

B.12. NAMED-JOURNALPRINT APPENDIX B. MANUAL PAGES

B.12 named-journalprint

Name

named-journalprint — print zone journal in human-readable form

Synopsis

named-journalprint journal

DESCRIPTION

named-journalprint prints the contents of a zone journal file in a human-readable form.

Journal files are automatically created by named when changes are made to dynamic zones (e.g., by
nsupdate). They record each addition or deletion of a resource record, in binary format, allowing the
changes to be re-applied to the zone when the server is restarted after a shutdown or crash. By default,
the name of the journal file is formed by appending the extension .jnl to the name of the corresponding
zone file.

named-journalprint converts the contents of a given journal file into a human-readable text format.
Each line begins with ”add” or ”del”, to indicate whether the record was added or deleted, and contin-
ues with the resource record in master-file format.

SEE ALSO

named(8), nsupdate(8), BIND 9 Administrator Reference Manual.

AUTHOR

Internet Systems Consortium

B.13 nsupdate

Name

nsupdate — Dynamic DNS update utility

Synopsis

nsupdate [-d] [-D] [-g | -o | -l | -y [hmac:]keyname:secret | -k keyfile]
[-t timeout] [-u udptimeout] [-r udpretries] [-R randomdev] [-v]
[filename]

156

APPENDIX B. MANUAL PAGES B.13. NSUPDATE

DESCRIPTION

nsupdate is used to submit Dynamic DNS Update requests as defined in RFC 2136 to a name server.
This allows resource records to be added or removed from a zone without manually editing the zone
file. A single update request can contain requests to add or remove more than one resource record.

Zones that are under dynamic control via nsupdate or a DHCP server should not be edited by hand.
Manual edits could conflict with dynamic updates and cause data to be lost.

The resource records that are dynamically added or removed with nsupdate have to be in the same
zone. Requests are sent to the zone’s master server. This is identified by the MNAME field of the zone’s
SOA record.

The -d option makes nsupdate operate in debug mode. This provides tracing information about the
update requests that are made and the replies received from the name server.

The -D option makes nsupdate report additional debugging information to -d.

The -L option with an integer argument of zero or higher sets the logging debug level. If zero, logging
is disabled.

Transaction signatures can be used to authenticate the Dynamic DNS updates. These use the TSIG
resource record type described in RFC 2845 or the SIG(0) record described in RFC 2535 and RFC 2931
or GSS-TSIG as described in RFC 3645. TSIG relies on a shared secret that should only be known to
nsupdate and the name server. Currently, the only supported encryption algorithm for TSIG is HMAC-
MD5, which is defined in RFC 2104. Once other algorithms are defined for TSIG, applications will need
to ensure they select the appropriate algorithm as well as the key when authenticating each other. For
instance, suitable key and server statements would be added to /etc/named.conf so that the name
server can associate the appropriate secret key and algorithm with the IP address of the client application
that will be using TSIG authentication. SIG(0) uses public key cryptography. To use a SIG(0) key, the
public key must be stored in a KEY record in a zone served by the name server. nsupdate does not read
/etc/named.conf.

GSS-TSIG uses Kerberos credentials. Standard GSS-TSIG mode is switched on with the -g flag. A non-
standards-compliant variant of GSS-TSIG used by Windows 2000 can be switched on with the -o flag.

nsupdate uses the -y or -k option to provide the shared secret needed to generate a TSIG record for
authenticating Dynamic DNS update requests, default type HMAC-MD5. These options are mutually
exclusive.

When the -y option is used, a signature is generated from [hmac:]keyname:secret. keyname is the
name of the key, and secret is the base64 encoded shared secret. Use of the -y option is discouraged
because the shared secret is supplied as a command line argument in clear text. This may be visible in
the output from ps(1) or in a history file maintained by the user’s shell.

With the -k option, nsupdate reads the shared secret from the file keyfile. Keyfiles may be in two for-
mats: a single file containing a named.conf-format key statement, which may be generated automati-
cally by ddns-confgen, or a pair of files whose names are of the format K{name}.+157.+{random}.
key and K{name}.+157.+{random}.private, which can be generated by dnssec-keygen. The -k
may also be used to specify a SIG(0) key used to authenticate Dynamic DNS update requests. In this
case, the key specified is not an HMAC-MD5 key.

nsupdate can be run in a local-host only mode using the -l flag. This sets the server address to localhost
(disabling the server so that the server address cannot be overridden). Connections to the local server
will use a TSIG key found in /var/run/named/session.key, which is automatically generated by
named if any local master zone has set update-policy to local. The location of this key file can be
overridden with the -k option.

By default, nsupdate uses UDP to send update requests to the name server unless they are too large to fit
in a UDP request in which case TCP will be used. The -v option makes nsupdate use a TCP connection.
This may be preferable when a batch of update requests is made.

The -p sets the default port number to use for connections to a name server. The default is 53.

157

B.13. NSUPDATE APPENDIX B. MANUAL PAGES

The -t option sets the maximum time an update request can take before it is aborted. The default is 300
seconds. Zero can be used to disable the timeout.

The -u option sets the UDP retry interval. The default is 3 seconds. If zero, the interval will be computed
from the timeout interval and number of UDP retries.

The -r option sets the number of UDP retries. The default is 3. If zero, only one update request will be
made.

The -R randomdev option specifies a source of randomness. If the operating system does not provide
a /dev/random or equivalent device, the default source of randomness is keyboard input. randomdev
specifies the name of a character device or file containing random data to be used instead of the default.
The special value keyboard indicates that keyboard input should be used. This option may be specified
multiple times.

INPUT FORMAT

nsupdate reads input from filename or standard input. Each command is supplied on exactly one line
of input. Some commands are for administrative purposes. The others are either update instructions
or prerequisite checks on the contents of the zone. These checks set conditions that some name or set
of resource records (RRset) either exists or is absent from the zone. These conditions must be met if the
entire update request is to succeed. Updates will be rejected if the tests for the prerequisite conditions
fail.

Every update request consists of zero or more prerequisites and zero or more updates. This allows
a suitably authenticated update request to proceed if some specified resource records are present or
missing from the zone. A blank input line (or the send command) causes the accumulated commands
to be sent as one Dynamic DNS update request to the name server.

The command formats and their meaning are as follows:

server servername [port] Sends all dynamic update requests to the name server servername. When
no server statement is provided, nsupdate will send updates to the master server of the correct
zone. The MNAME field of that zone’s SOA record will identify the master server for that zone.
port is the port number on servername where the dynamic update requests get sent. If no port
number is specified, the default DNS port number of 53 is used.

local address [port] Sends all dynamic update requests using the local address. When no local state-
ment is provided, nsupdate will send updates using an address and port chosen by the system.
port can additionally be used to make requests come from a specific port. If no port number is
specified, the system will assign one.

zone zonename Specifies that all updates are to be made to the zone zonename. If no zone statement
is provided, nsupdate will attempt determine the correct zone to update based on the rest of the
input.

class classname Specify the default class. If no class is specified, the default class is IN.

ttl seconds Specify the default time to live for records to be added. The value nonewill clear the default
ttl.

key name secret Specifies that all updates are to be TSIG-signed using the keyname keysecret pair.
The key command overrides any key specified on the command line via -y or -k.

gsstsig Use GSS-TSIG to sign the updated. This is equivalent to specifying -g on the commandline.

158

APPENDIX B. MANUAL PAGES B.13. NSUPDATE

oldgsstsig Use the Windows 2000 version of GSS-TSIG to sign the updated. This is equivalent to speci-
fying -o on the commandline.

realm [realm name] When using GSS-TSIG use realm name rather than the default realm in krb5.
conf. If no realm is specified the saved realm is cleared.

prereq nxdomain domain-name Requires that no resource record of any type exists with name domain-name.

prereq yxdomain domain-name Requires that domain-name exists (has as at least one resource record,
of any type).

prereq nxrrset domain-name [class] type Requires that no resource record exists of the specified type,
class and domain-name. If class is omitted, IN (internet) is assumed.

prereq yxrrset domain-name [class] type This requires that a resource record of the specified type,
class and domain-name must exist. If class is omitted, IN (internet) is assumed.

prereq yxrrset domain-name [class] type data... The data from each set of prerequisites of this form
sharing a common type, class, and domain-name are combined to form a set of RRs. This
set of RRs must exactly match the set of RRs existing in the zone at the given type, class, and
domain-name. The data are written in the standard text representation of the resource record’s
RDATA.

update delete domain-name [ttl] [class] [type [data...]] Deletes any resource records named domain-name.
If type and data is provided, only matching resource records will be removed. The internet class
is assumed if class is not supplied. The ttl is ignored, and is only allowed for compatibility.

update add domain-name ttl [class] type data... Adds a new resource record with the specified ttl,
class and data.

show Displays the current message, containing all of the prerequisites and updates specified since the
last send.

send Sends the current message. This is equivalent to entering a blank line.

answer Displays the answer.

debug Turn on debugging.

Lines beginning with a semicolon are comments and are ignored.

EXAMPLES

The examples below show how nsupdate could be used to insert and delete resource records from the
example.com zone. Notice that the input in each example contains a trailing blank line so that a group
of commands are sent as one dynamic update request to the master name server for example.com.

nsupdate
> update delete oldhost.example.com A
> update add newhost.example.com 86400 A 172.16.1.1

159

B.14. RNDC APPENDIX B. MANUAL PAGES

> send

Any A records for oldhost.example.com are deleted. And an A record for newhost.example.com with
IP address 172.16.1.1 is added. The newly-added record has a 1 day TTL (86400 seconds).

nsupdate
> prereq nxdomain nickname.example.com
> update add nickname.example.com 86400 CNAME somehost.example.com
> send

The prerequisite condition gets the name server to check that there are no resource records of any type
for nickname.example.com. If there are, the update request fails. If this name does not exist, a CNAME
for it is added. This ensures that when the CNAME is added, it cannot conflict with the long-standing
rule in RFC 1034 that a name must not exist as any other record type if it exists as a CNAME. (The rule
has been updated for DNSSEC in RFC 2535 to allow CNAMEs to have RRSIG, DNSKEY and NSEC
records.)

FILES

/etc/resolv.conf used to identify default name server

/var/run/named/session.key sets the default TSIG key for use in local-only mode

K{name}.+157.+{random}.key base-64 encoding of HMAC-MD5 key created by dnssec-keygen(8).

K{name}.+157.+{random}.private base-64 encoding of HMAC-MD5 key created by dnssec-keygen(8).

SEE ALSO

RFC 2136, RFC 3007, RFC 2104, RFC 2845, RFC 1034, RFC 2535, RFC 2931, named(8), ddns-confgen(8),
dnssec-keygen(8).

BUGS

The TSIG key is redundantly stored in two separate files. This is a consequence of nsupdate using the
DST library for its cryptographic operations, and may change in future releases.

B.14 rndc

Name

rndc — name server control utility

Synopsis

rndc [-b source-address] [-c config-file] [-k key-file] [-s server] [-p
port] [-V] [-y key id] command

160

APPENDIX B. MANUAL PAGES B.14. RNDC

DESCRIPTION

rndc controls the operation of a name server. It supersedes the ndc utility that was provided in old BIND
releases. If rndc is invoked with no command line options or arguments, it prints a short summary of
the supported commands and the available options and their arguments.

rndc communicates with the name server over a TCP connection, sending commands authenticated
with digital signatures. In the current versions of rndc and named, the only supported authentication
algorithm is HMAC-MD5, which uses a shared secret on each end of the connection. This provides
TSIG-style authentication for the command request and the name server’s response. All commands
sent over the channel must be signed by a key id known to the server.

rndc reads a configuration file to determine how to contact the name server and decide what algorithm
and key it should use.

OPTIONS

-b source-address Use source-address as the source address for the connection to the server.
Multiple instances are permitted to allow setting of both the IPv4 and IPv6 source addresses.

-c config-file Use config-file as the configuration file instead of the default, /etc/rndc.conf.

-k key-file Use key-file as the key file instead of the default, /etc/rndc.key. The key in /etc/
rndc.key will be used to authenticate commands sent to the server if the config-file does not
exist.

-s server server is the name or address of the server which matches a server statement in the con-
figuration file for rndc. If no server is supplied on the command line, the host named by the
default-server clause in the options statement of the rndc configuration file will be used.

-p port Send commands to TCP port port instead of BIND 9’s default control channel port, 953.

-V Enable verbose logging.

-y key id Use the key key id from the configuration file. key id must be known by named with the
same algorithm and secret string in order for control message validation to succeed. If no key id
is specified, rndc will first look for a key clause in the server statement of the server being used,
or if no server statement is present for that host, then the default-key clause of the options state-
ment. Note that the configuration file contains shared secrets which are used to send authenticated
control commands to name servers. It should therefore not have general read or write access.

For the complete set of commands supported by rndc, see the BIND 9 Administrator Reference Manual
or run rndc without arguments to see its help message.

LIMITATIONS

rndc does not yet support all the commands of the BIND 8 ndc utility.

There is currently no way to provide the shared secret for a key id without using the configuration file.

Several error messages could be clearer.

161

B.15. RNDC.CONF APPENDIX B. MANUAL PAGES

SEE ALSO

rndc.conf(5), rndc-confgen(8), named(8), named.conf(5), ndc(8), BIND 9 Administrator Reference Manual.

AUTHOR

Internet Systems Consortium

B.15 rndc.conf

Name

rndc.conf — rndc configuration file

Synopsis

rndc.conf

DESCRIPTION

rndc.conf is the configuration file for rndc, the BIND 9 name server control utility. This file has a
similar structure and syntax to named.conf. Statements are enclosed in braces and terminated with
a semi-colon. Clauses in the statements are also semi-colon terminated. The usual comment styles are
supported:

C style: /* */

C++ style: // to end of line

Unix style: # to end of line

rndc.conf is much simpler than named.conf. The file uses three statements: an options statement, a
server statement and a key statement.

The options statement contains five clauses. The default-server clause is followed by the name
or address of a name server. This host will be used when no name server is given as an argument to
rndc. The default-key clause is followed by the name of a key which is identified by a key state-
ment. If no keyid is provided on the rndc command line, and no key clause is found in a match-
ing server statement, this default key will be used to authenticate the server’s commands and re-
sponses. The default-port clause is followed by the port to connect to on the remote name server.
If no port option is provided on the rndc command line, and no port clause is found in a matching
server statement, this default port will be used to connect. The default-source-address and
default-source-address-v6 clauses which can be used to set the IPv4 and IPv6 source addresses
respectively.

After the server keyword, the server statement includes a string which is the hostname or address for
a name server. The statement has three possible clauses: key, port and addresses. The key name
must match the name of a key statement in the file. The port number specifies the port to connect to. If
an addresses clause is supplied these addresses will be used instead of the server name. Each address
can take an optional port. If an source-address or source-address-v6 of supplied then these will
be used to specify the IPv4 and IPv6 source addresses respectively.

The key statement begins with an identifying string, the name of the key. The statement has two
clauses. algorithm identifies the encryption algorithm for rndc to use; currently only HMAC-MD5
is supported. This is followed by a secret clause which contains the base-64 encoding of the algorithm’s
encryption key. The base-64 string is enclosed in double quotes.

162

APPENDIX B. MANUAL PAGES B.15. RNDC.CONF

There are two common ways to generate the base-64 string for the secret. The BIND 9 program rndc-
confgen can be used to generate a random key, or the mmencode program, also known as mimencode,
can be used to generate a base-64 string from known input. mmencode does not ship with BIND 9 but
is available on many systems. See the EXAMPLE section for sample command lines for each.

EXAMPLE

options {
default-server localhost;
default-key samplekey;

};

server localhost {
key samplekey;

};

server testserver {
key testkey;
addresses { localhost port 5353; };

};

key samplekey {
algorithm hmac-md5;
secret "6FMfj43Osz4lyb24OIe2iGEz9lf1llJO+lz";

};

key testkey {
algorithm hmac-md5;
secret "R3HI8P6BKw9ZwXwN3VZKuQ==";

};

In the above example, rndc will by default use the server at localhost (127.0.0.1) and the key called sam-
plekey. Commands to the localhost server will use the samplekey key, which must also be defined in the
server’s configuration file with the same name and secret. The key statement indicates that samplekey
uses the HMAC-MD5 algorithm and its secret clause contains the base-64 encoding of the HMAC-MD5
secret enclosed in double quotes.

If rndc -s testserver is used then rndc will connect to server on localhost port 5353 using the key testkey.

To generate a random secret with rndc-confgen:

rndc-confgen

A complete rndc.conf file, including the randomly generated key, will be written to the standard
output. Commented-out key and controls statements for named.conf are also printed.

To generate a base-64 secret with mmencode:

echo "known plaintext for a secret" | mmencode

163

B.16. RNDC-CONFGEN APPENDIX B. MANUAL PAGES

NAME SERVER CONFIGURATION

The name server must be configured to accept rndc connections and to recognize the key specified in
the rndc.conf file, using the controls statement in named.conf. See the sections on the controls
statement in the BIND 9 Administrator Reference Manual for details.

SEE ALSO

rndc(8), rndc-confgen(8), mmencode(1), BIND 9 Administrator Reference Manual.

AUTHOR

Internet Systems Consortium

B.16 rndc-confgen

Name

rndc-confgen — rndc key generation tool

Synopsis

rndc-confgen [-a] [-b keysize] [-c keyfile] [-h] [-k keyname] [-p port] [-r
randomfile] [-s address] [-t chrootdir] [-u user]

DESCRIPTION

rndc-confgen generates configuration files for rndc. It can be used as a convenient alternative to writ-
ing the rndc.conf file and the corresponding controls and key statements in named.conf by hand.
Alternatively, it can be run with the -a option to set up a rndc.key file and avoid the need for a rndc.
conf file and a controls statement altogether.

OPTIONS

-a Do automatic rndc configuration. This creates a file rndc.key in /etc (or whatever sysconfdir
was specified as when BIND was built) that is read by both rndc and named on startup. The rndc.
key file defines a default command channel and authentication key allowing rndc to communicate
with named on the local host with no further configuration.

Running rndc-confgen -a allows BIND 9 and rndc to be used as drop-in replacements for BIND 8
and ndc, with no changes to the existing BIND 8 named.conf file.

If a more elaborate configuration than that generated by rndc-confgen -a is required, for example
if rndc is to be used remotely, you should run rndc-confgen without the -a option and set up a
rndc.conf and named.conf as directed.

-b keysize Specifies the size of the authentication key in bits. Must be between 1 and 512 bits; the
default is 128.

-c keyfile Used with the -a option to specify an alternate location for rndc.key.

164

APPENDIX B. MANUAL PAGES B.17. DDNS-CONFGEN

-h Prints a short summary of the options and arguments to rndc-confgen.

-k keyname Specifies the key name of the rndc authentication key. This must be a valid domain name.
The default is rndc-key.

-p port Specifies the command channel port where named listens for connections from rndc. The
default is 953.

-r randomfile Specifies a source of random data for generating the authorization. If the operating
system does not provide a /dev/random or equivalent device, the default source of randomness
is keyboard input. randomdev specifies the name of a character device or file containing random
data to be used instead of the default. The special value keyboard indicates that keyboard input
should be used.

-s address Specifies the IP address where named listens for command channel connections from rndc.
The default is the loopback address 127.0.0.1.

-t chrootdir Used with the -a option to specify a directory where named will run chrooted. An ad-
ditional copy of the rndc.key will be written relative to this directory so that it will be found by
the chrooted named.

-u user Used with the -a option to set the owner of the rndc.key file generated. If -t is also specified
only the file in the chroot area has its owner changed.

EXAMPLES

To allow rndc to be used with no manual configuration, run

rndc-confgen -a

To print a sample rndc.conf file and corresponding controls and key statements to be manually in-
serted into named.conf, run

rndc-confgen

SEE ALSO

rndc(8), rndc.conf(5), named(8), BIND 9 Administrator Reference Manual.

AUTHOR

Internet Systems Consortium

B.17 ddns-confgen

Name

ddns-confgen — ddns key generation tool

165

B.17. DDNS-CONFGEN APPENDIX B. MANUAL PAGES

Synopsis

ddns-confgen [-a algorithm] [-h] [-k keyname] [-r randomfile] [-s name | -z
zone] [-q] [name]

DESCRIPTION

ddns-confgen generates a key for use by nsupdate and named. It simplifies configuration of dynamic
zones by generating a key and providing the nsupdate and named.conf syntax that will be needed to
use it, including an example update-policy statement.

If a domain name is specified on the command line, it will be used in the name of the generated key
and in the sample named.conf syntax. For example, ddns-confgen example.com would generate a
key called ”ddns-key.example.com”, and sample named.conf command that could be used in the zone
definition for ”example.com”.

Note that named itself can configure a local DDNS key for use with nsupdate -l. ddns-confgen is only
needed when a more elaborate configuration is required: for instance, if nsupdate is to be used from a
remote system.

OPTIONS

-a algorithm Specifies the algorithm to use for the TSIG key. Available choices are: hmac-md5, hmac-
sha1, hmac-sha224, hmac-sha256, hmac-sha384 and hmac-sha512. The default is hmac-sha256.

-h Prints a short summary of the options and arguments to ddns-confgen.

-k keyname Specifies the key name of the DDNS authentication key. The default is ddns-key when
neither the -s nor -z option is specified; otherwise, the default is ddns-key as a separate label
followed by the argument of the option, e.g., ddns-key.example.com. The key name must
have the format of a valid domain name, consisting of letters, digits, hyphens and periods.

-q Quiet mode: Print only the key, with no explanatory text or usage examples.

-r randomfile Specifies a source of random data for generating the authorization. If the operating
system does not provide a /dev/random or equivalent device, the default source of randomness
is keyboard input. randomdev specifies the name of a character device or file containing random
data to be used instead of the default. The special value keyboard indicates that keyboard input
should be used.

-s name Single host mode: The example named.conf text shows how to set an update policy for the
specified name using the ”name” nametype. The default key name is ddns-key.name. Note that
the ”self” nametype cannot be used, since the name to be updated may differ from the key name.
This option cannot be used with the -z option.

-z zone zone mode: The example named.conf text shows how to set an update policy for the specified
zone using the ”zonesub” nametype, allowing updates to all subdomain names within that zone.
This option cannot be used with the -s option.

SEE ALSO

nsupdate(1), named.conf(5), named(8), BIND 9 Administrator Reference Manual.

166

APPENDIX B. MANUAL PAGES B.18. ARPANAME

AUTHOR

Internet Systems Consortium

B.18 arpaname

Name

arpaname — translate IP addresses to the corresponding ARPA names

Synopsis

arpaname ipaddress...

DESCRIPTION

arpaname translates IP addresses (IPv4 and IPv6) to the corresponding IN-ADDR.ARPA or IP6.ARPA
names.

SEE ALSO

BIND 9 Administrator Reference Manual.

AUTHOR

Internet Systems Consortium

B.19 genrandom

Name

genrandom — generate a file containing random data

Synopsis

genrandom [-n number] size filename

DESCRIPTION

genrandom generates a file or a set of files containing a specified quantity of pseudo-random data,
which can be used as a source of entropy for other commands on systems with no random device.

167

B.20. ISC-HMAC-FIXUP APPENDIX B. MANUAL PAGES

ARGUMENTS

-n number In place of generating one file, generates number (from 2 to 9) files, appending number to
the name.

size The size of the file, in kilobytes, to generate.

domain The file name into which random data should be written.

SEE ALSO

rand(3), arc4random(3)

AUTHOR

Internet Systems Consortium

B.20 isc-hmac-fixup

Name

isc-hmac-fixup — fixes HMAC keys generated by older versions of BIND

Synopsis

isc-hmac-fixup algorithm secret

DESCRIPTION

Versions of BIND 9 up to and including BIND 9.6 had a bug causing HMAC-SHA* TSIG keys which
were longer than the digest length of the hash algorithm (i.e., SHA1 keys longer than 160 bits, SHA256
keys longer than 256 bits, etc) to be used incorrectly, generating a message authentication code that was
incompatible with other DNS implementations.

This bug has been fixed in BIND 9.7. However, the fix may cause incompatibility between older and
newer versions of BIND, when using long keys. isc-hmac-fixup modifies those keys to restore compati-
bility.

To modify a key, run isc-hmac-fixup and specify the key’s algorithm and secret on the command line. If
the secret is longer than the digest length of the algorithm (64 bytes for SHA1 through SHA256, or 128
bytes for SHA384 and SHA512), then a new secret will be generated consisting of a hash digest of the
old secret. (If the secret did not require conversion, then it will be printed without modification.)

SECURITY CONSIDERATIONS

Secrets that have been converted by isc-hmac-fixup are shortened, but as this is how the HMAC protocol
works in operation anyway, it does not affect security. RFC 2104 notes, ”Keys longer than [the digest
length] are acceptable but the extra length would not significantly increase the function strength.”

168

APPENDIX B. MANUAL PAGES B.21. NSEC3HASH

SEE ALSO

BIND 9 Administrator Reference Manual, RFC 2104.

AUTHOR

Internet Systems Consortium

B.21 nsec3hash

Name

nsec3hash — generate NSEC3 hash

Synopsis

nsec3hash salt algorithm iterations domain

DESCRIPTION

nsec3hash generates an NSEC3 hash based on a set of NSEC3 parameters. This can be used to check the
validity of NSEC3 records in a signed zone.

ARGUMENTS

salt The salt provided to the hash algorithm.

algorithm A number indicating the hash algorithm. Currently the only supported hash algorithm for
NSEC3 is SHA-1, which is indicated by the number 1; consequently ”1” is the only useful value
for this argument.

iterations The number of additional times the hash should be performed.

domain The domain name to be hashed.

SEE ALSO

BIND 9 Administrator Reference Manual, RFC 5155.

AUTHOR

Internet Systems Consortium

169

	1 Introduction
	1.1 Scope of Document
	1.2 Organization of This Document
	1.3 Conventions Used in This Document
	1.4 The Domain Name System (DNS)
	1.4.1 DNS Fundamentals
	1.4.2 Domains and Domain Names
	1.4.3 Zones
	1.4.4 Authoritative Name Servers
	1.4.4.1 The Primary Master
	1.4.4.2 Slave Servers
	1.4.4.3 Stealth Servers

	1.4.5 Caching Name Servers
	1.4.5.1 Forwarding

	1.4.6 Name Servers in Multiple Roles

	2 BIND Resource Requirements
	2.1 Hardware requirements
	2.2 CPU Requirements
	2.3 Memory Requirements
	2.4 Name Server Intensive Environment Issues
	2.5 Supported Operating Systems

	3 Name Server Configuration
	3.1 Sample Configurations
	3.1.1 A Caching-only Name Server
	3.1.2 An Authoritative-only Name Server

	3.2 Load Balancing
	3.3 Name Server Operations
	3.3.1 Tools for Use With the Name Server Daemon
	3.3.1.1 Diagnostic Tools
	3.3.1.2 Administrative Tools

	3.3.2 Signals

	4 Advanced DNS Features
	4.1 Notify
	4.2 Dynamic Update
	4.2.1 The journal file

	4.3 Incremental Zone Transfers (IXFR)
	4.4 Split DNS
	4.4.1 Example split DNS setup

	4.5 TSIG
	4.5.1 Generate Shared Keys for Each Pair of Hosts
	4.5.1.1 Automatic Generation
	4.5.1.2 Manual Generation

	4.5.2 Copying the Shared Secret to Both Machines
	4.5.3 Informing the Servers of the Key's Existence
	4.5.4 Instructing the Server to Use the Key
	4.5.5 TSIG Key Based Access Control
	4.5.6 Errors

	4.6 TKEY
	4.7 SIG(0)
	4.8 DNSSEC
	4.8.1 Generating Keys
	4.8.2 Signing the Zone
	4.8.3 Configuring Servers

	4.9 DNSSEC, Dynamic Zones, and Automatic Signing
	4.9.1 Converting from insecure to secure
	4.9.2 Dynamic DNS update method
	4.9.3 Fully automatic zone signing
	4.9.4 Private-type records
	4.9.5 DNSKEY rollovers
	4.9.6 Dynamic DNS update method
	4.9.7 Automatic key rollovers
	4.9.8 NSEC3PARAM rollovers via UPDATE
	4.9.9 Converting from NSEC to NSEC3
	4.9.10 Converting from NSEC3 to NSEC
	4.9.11 Converting from secure to insecure
	4.9.12 Periodic re-signing
	4.9.13 NSEC3 and OPTOUT

	4.10 Dynamic Trust Anchor Management
	4.10.1 Validating Resolver
	4.10.2 Authoritative Server

	4.11 PKCS #11 (Cryptoki) support
	4.11.1 Prerequisites
	4.11.1.1 Building OpenSSL for the AEP Keyper on Linux
	4.11.1.2 Building OpenSSL for the SCA 6000 on Solaris

	4.11.2 Building BIND 9 with PKCS#11
	4.11.2.1 Configuring BIND 9 for Linux
	4.11.2.2 Configuring BIND 9 for Solaris

	4.11.3 PKCS #11 Tools
	4.11.4 Using the HSM
	4.11.5 Specifying the engine on the command line
	4.11.6 Running named with automatic zone re-signing

	4.12 IPv6 Support in BIND 9
	4.12.1 Address Lookups Using AAAA Records
	4.12.2 Address to Name Lookups Using Nibble Format

	5 The BIND 9 Lightweight Resolver
	5.1 The Lightweight Resolver Library
	5.2 Running a Resolver Daemon

	6 BIND 9 Configuration Reference
	6.1 Configuration File Elements
	6.1.1 Address Match Lists
	6.1.1.1 Syntax
	6.1.1.2 Definition and Usage

	6.1.2 Comment Syntax
	6.1.2.1 Syntax
	6.1.2.2 Definition and Usage

	6.2 Configuration File Grammar
	6.2.1 acl Statement Grammar
	6.2.2 acl Statement Definition and Usage
	6.2.3 controls Statement Grammar
	6.2.4 controls Statement Definition and Usage
	6.2.5 include Statement Grammar
	6.2.6 include Statement Definition and Usage
	6.2.7 key Statement Grammar
	6.2.8 key Statement Definition and Usage
	6.2.9 logging Statement Grammar
	6.2.10 logging Statement Definition and Usage
	6.2.10.1 The channel Phrase
	6.2.10.2 The category Phrase
	6.2.10.3 The query-errors Category

	6.2.11 lwres Statement Grammar
	6.2.12 lwres Statement Definition and Usage
	6.2.13 masters Statement Grammar
	6.2.14 masters Statement Definition and Usage
	6.2.15 options Statement Grammar
	6.2.16 options Statement Definition and Usage
	6.2.16.1 Boolean Options
	6.2.16.2 Forwarding
	6.2.16.3 Dual-stack Servers
	6.2.16.4 Access Control
	6.2.16.5 Interfaces
	6.2.16.6 Query Address
	6.2.16.7 Zone Transfers
	6.2.16.8 UDP Port Lists
	6.2.16.9 Operating System Resource Limits
	6.2.16.10 Server Resource Limits
	6.2.16.11 Periodic Task Intervals
	6.2.16.12 Topology
	6.2.16.13 The sortlist Statement
	6.2.16.14 RRset Ordering
	6.2.16.15 Tuning
	6.2.16.16 Built-in server information zones
	6.2.16.17 Built-in Empty Zones
	6.2.16.18 Additional Section Caching
	6.2.16.19 Content Filtering

	6.2.17 server Statement Grammar
	6.2.18 server Statement Definition and Usage
	6.2.19 statistics-channels Statement Grammar
	6.2.20 statistics-channels Statement Definition and Usage
	6.2.21 trusted-keys Statement Grammar
	6.2.22 trusted-keys Statement Definition and Usage
	6.2.23 managed-keys Statement Grammar
	6.2.24 managed-keys Statement Definition and Usage
	6.2.25 view Statement Grammar
	6.2.26 view Statement Definition and Usage
	6.2.27 zone Statement Grammar
	6.2.28 zone Statement Definition and Usage
	6.2.28.1 Zone Types
	6.2.28.2 Class
	6.2.28.3 Zone Options
	6.2.28.4 Dynamic Update Policies

	6.3 Zone File
	6.3.1 Types of Resource Records and When to Use Them
	6.3.1.1 Resource Records
	6.3.1.2 Textual expression of RRs

	6.3.2 Discussion of MX Records
	6.3.3 Setting TTLs
	6.3.4 Inverse Mapping in IPv4
	6.3.5 Other Zone File Directives
	6.3.5.1 The @ (at-sign)
	6.3.5.2 The $ORIGIN Directive
	6.3.5.3 The $INCLUDE Directive
	6.3.5.4 The $TTL Directive

	6.3.6 BIND Master File Extension: the $GENERATE Directive
	6.3.7 Additional File Formats

	6.4 BIND9 Statistics
	6.4.0.1 The Statistics File
	6.4.1 Statistics Counters
	6.4.1.1 Name Server Statistics Counters
	6.4.1.2 Zone Maintenance Statistics Counters
	6.4.1.3 Resolver Statistics Counters
	6.4.1.4 Socket I/O Statistics Counters
	6.4.1.5 Compatibility with BIND 8 Counters

	7 BIND 9 Security Considerations
	7.1 Access Control Lists
	7.2 Chroot and Setuid
	7.2.1 The chroot Environment
	7.2.2 Using the setuid Function

	7.3 Dynamic Update Security

	8 Troubleshooting
	8.1 Common Problems
	8.1.1 It's not working; how can I figure out what's wrong?

	8.2 Incrementing and Changing the Serial Number
	8.3 Where Can I Get Help?

	A Appendices
	A.1 Acknowledgments
	A.1.1 A Brief History of the DNS and BIND

	A.2 General DNS Reference Information
	A.2.1 IPv6 addresses (AAAA)

	A.3 Bibliography (and Suggested Reading)
	A.3.1 Request for Comments (RFCs)
	A.3.2 Internet Drafts
	A.3.3 Other Documents About BIND

	A.4 BIND 9 DNS Library Support
	A.4.1 Prerequisite
	A.4.2 Compilation
	A.4.3 Installation
	A.4.4 Known Defects/Restrictions
	A.4.5 The dns.conf File
	A.4.6 Sample Applications
	A.4.6.1 sample: a simple stub resolver utility
	A.4.6.2 sample-async: a simple stub resolver, working asynchronously
	A.4.6.3 sample-request: a simple DNS transaction client
	A.4.6.4 sample-gai: getaddrinfo() and getnameinfo() test code
	A.4.6.5 sample-update: a simple dynamic update client program
	A.4.6.6 nsprobe: domain/name server checker in terms of RFC 4074

	A.4.7 Library References

	B Manual pages
	B.1 dig
	B.2 host
	B.3 dnssec-dsfromkey
	B.4 dnssec-keyfromlabel
	B.5 dnssec-keygen
	B.6 dnssec-revoke
	B.7 dnssec-settime
	B.8 dnssec-signzone
	B.9 named-checkconf
	B.10 named-checkzone
	B.11 named
	B.12 named-journalprint
	B.13 nsupdate
	B.14 rndc
	B.15 rndc.conf
	B.16 rndc-confgen
	B.17 ddns-confgen
	B.18 arpaname
	B.19 genrandom
	B.20 isc-hmac-fixup
	B.21 nsec3hash

