Dibbler — a portable DHCPv6
User’s guide

Tomek Mrugalski

thomson(at)klub.com.pl

2015-08-09

1.0.1

mailto:thomson(at)klub.com.pl

Dibbler 1.0.1 User’s Guide 2
Contents

1 Intro 6

1.1 Overview o o e e 6

1.2 Supported parameters oL 9

1.3 Not supported features 10

1.4 Operating System Requirementso 10

1.5 Supported platforms 10

2 Installation and usage 11

2.1 Linux installation oL 11

2.2 Windows installation 11

2.3 Mac OS X installation 12

2.4 FreeBSD, NetBSD, OpenBSD, Solaris 11 12

2.5 Basicusage e e 12

3 Compilation 13

3.1 Linux/Mac OS X/FreeBSD/NetBSD/OpenBSD /Solaris Compilation 13

3.2 Modern Windows (XP...Win7) compilation 14

3.3 Legacy Windows (NT/2000) compilation 14

3.4 IPvO support e e e 14

3.4.1 Setting up IPv6in Linux 14

3.4.2 Setting up IPv6 in Windows Vista and Win7 14

3.4.3 Setting up IPv6 in Windows XP and 2003 14

3.4.4 Setting up IPv6 in Windows 2000o 15

3.4.5 Setting up IPv6 in Windows NT4, 15

4 Features HOWTO 17

4.1 Prefix delegation L 17

4.2 Relays 18

4.3 Address and prefix assignment policy 19

4.4 Routing configuration L 20

4.5 Custom Options e e e e 22

4.6 DNS Update e 23

4.6.1 Example BIND configuration L L. 24

4.6.2 Secure DDNS e 27

4.6.3 Dynamic DNS Testing and tips L 28

4.6.4 Accepting Unknown FQDNs 29

4.7 Introduction to client classification L L L 30

4.7.1 Client class declaration L o 31

4.7.2 Accesscontrol 31

4.7.3 Assigning clients to defined classes L. 32

4.7.4 Examples of Client-Class Classifying, 32

4.8 External script e 33

4.9 Reconfiguration Lo e 34

4.10 Following M, O bits from Router Advertisements 34

4.11 CONFIRM meSsage v v v v v v i it et et e e e e e e s e e 35

4.12 Mobility e e 36

4.13 Leasequery« . o i e e e e e e e e e e e 36

4.14 Stateless vs stateful and TA, TA options 36

4.15 Server address caching L oL 38

Dibbler 1.0.1 User’s Guide 3

4.16 XML files e 38
4.17 Authentication and Authorization 38
4.17.1 Replay Detection L e 39
4.17.2 Reconfigure Key Authentication 40
4.17.3 Delayed Authentication 41
4.17.4 Dibbler Authentication Protocol 42
4.17.5 Key generation L L 43

4.18 Exceptions: per client configuration L0 44
4.19 Vendor specific information 44
4.20 Not connected interfaces (inactive-mode) oL 45
4.21 Parameters not supported by server (insist-mode) oL 45
4.22 Different DUID types o o o 0 0 45
4.23 Debugging/compatibility features o Lo 46
4.23.1 Interface-id option L 46
4.23.2 Non-empty IA_ NA option 47
4.23.3 Providing address/prefix hints 47

4.24 Experimental features 47
4.24.1 Server Performance mode L 48
4.24.2 Address Parameters 48
4.24.3 Remote Autoconfiguration L 49

4.25 Obsoleted experimental features. L L 51
4.25.1 Mapping prefix e e e 51
4.25.2 Tunnel mode e 51

5 Server configuration 52
B.1 0 SCOPES . . o e e 52
5.1.1 Global scope e e 52
5.1.2 Interface declaration 52
5.1.3 Address class Scope e 52
5.1.4 Prefix class scope e 53
5.1.5 Temporary address class scope 53
5.1.6 Routing scope. L 53
5.1.7 Client scope o e e 54
5.1.8 Keyscope e 54

5.2 Server Ooptions e e e 54
5.2.1 Client class quantifiers L 61

5.3 Server configuration examples 61
5.3.1 Example 1: Simpleo 61
5.3.2 Example 2: Timeouts L 62
5.3.3 Example 3: Limiting amount of addresses 62
5.3.4 Example 4: Unicast communication 63
5.3.5 Example 5: Rapid-commit o 63
5.3.6 Example 6: Accesscontrol L 63
5.3.7 Example 7: Multiple classes 64
5.3.8 Example 8: Relay support 65
5.3.9 Example 9: Cascade 2 relays L 66
5.3.10 Example 10: Dynamic DNS (FQDN) 67
5.3.11 Example 11: Vendor-specific Information option 69
5.3.12 Example 12: Per client configuration oo 70

5.3.13 Example 13: Prefix delegation 0. 72

Dibbler 1.0.1

User’s Guide

5.3.14
5.3.15
5.3.16
5.3.17
5.3.18
5.3.19
5.3.20
5.3.21
5.3.22

Example 14:
Example 15:
Example 16:
Example 17:
Example 18:
Example 19:
Example 20:
Example 21:
Example 21:

6 Client configuration

6.1
6.2

6.3
6.4
6.5
6.6
6.7
6.8

Data types

Scopes
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6

Stateless configuration
Relay support
Comments
File location
Client Reference

Multiple prefixes

Inactive mode

Leasequery

Dibbler Authentication
Relay support with unknown interface-id
DS-Lite tunnel (AFTR)
Custom options
Remote Autoconfiguration
Subnet declaration

Interface declaration
TA declaration
TA declaration
PD declaration
Address declaration

Prefix declaration

Client Configuration Examples

6.8.1
6.8.2
6.8.3
6.8.4
6.8.5
6.8.6
6.8.7
6.8.8
6.8.9
6.8.10
6.8.11
6.8.12
6.8.13
6.8.14
6.8.15
6.8.16
6.8.17
6.8.18
6.8.19

Example 1:
Example 2:
Example 3:
Example 4:
Example 5:
Example 6:
Example 7:
Example 8:
Example 9:

Example 10:
Example 11:
Example 12:
Example 13:
Example 14:
Example 15:
Example 15:
Example 16:
Example 17:
Example 18:

7 Relay configuration

7.1 Global scope
Interface declaration
Options

7.2
7.3
7.4

Default
DNS
Timeouts and specific address
More than one address
Quick configuration using Rapid-commit
Stateless mode
Dynamic DNS (FQDN)
Interface indexes
Vendor-specific options
Unicast communication
Prefix delegation

Insist mode

Inactive mode
Dibbler Authentication
Skip Confirm
User-defined TAID
DS-Lite tunnel (AFTR)
Custom options
Remote Autoconfiguration

Relay configuration examples .

72
73
73
73
74
74
75
75
75

76
76
76
76
7
77
77
78
78
78
78
79
79
79
85
85
86
86
87
88
88
89
90
90
90
91
93
93
93
93
94
94
94
95

Dibbler 1.0.1 User’s Guide 5
7.4.1 Example 1: Simpleo 98

7.4.2 Example 2: Unicast/multicast L Lo Lo 98

7.4.3 Example 3: Multiple interfaces o Lo 98

744 Example 4: 2relayso 99

7.4.5 Example 5: Guess-mode Lo 100

7.4.6 Example 6: Relaying to multicast o o L. 100

7.4.7 Example 7: Options inserted by therelay 101

8 Requestor configuration 103
9 Frequently Asked Questions 104
9.1 Common Questions L e 104
9.2 Linux specific questions e 106
9.3 Windows specific questions L 106

10 Miscellaneous topics 108
10.1 History o o o 108
10.2 Contact and reporting bugso 108
10.3 Mailing lists oL 108
10.4 Thanks and greetings L 109

11 Acknowledgements 111
Bibliography 113

Dibbler 1.0.1 User’s Guide 6

1 Intro

First of all, as an author I would like to thank you for your interest in this DHCPv6 implementation. If
this documentation doesn’t answer your questions or you have any suggestions, feel free to contact me as
explained in Contact section. Also be sure to check out Dibbler website: http://klub.com.pl/dhcpv6/.

Tomek Mrugalski

1.1 Overview

Dynamic Host Configuration Protocol for IPv6, often abbreviated as DHCPv®6, is a protocol, which is
used to automatically configure IPv6 capable computers and other equipment located in a local network.
This protocol defines clients (i.e. nodes, which want to be configured), servers (i.e. nodes, which provide
configuration to clients) and relays (i.e. nodes, which are connected to more than one network and are
able to forward traffic between local clients and remote servers). Also, special type of DHCPv6 entity
called requestor has been defined. It is used by network administrator to query servers about their status
and assigned parameters.

Dibbler is a portable DHCPv6 solution, which features server, client and relay. Currently there are
ports available for many Windows platforms ranging from NT4 to Windows 8, Linux 2.4 or later systems
and Mac OS (experimental). See Section 1.4 for details. It supports both stateful (i.e. IPv6 address
granting) and stateless (i.e. options granting) autoconfiguration. Besides basic functionality (specified in
basic DHCPv6 spec, RFC3315 [5]), it also offers serveral enhancements, e.g. DNS servers and domain
names configuration.

Dibbler is an open source software, distributed under GNU GPL v2 licence. It means that it is freely
available, free of charge and can be used by anyone (including commercial users). Source code is also
provided, so anyone skilled enough can fix bugs, add new features and distribute his/her own version.

Requestor support has been added in version 0.7.0RC1. Requestor is a separate entity, which sends
queries to the server regarding leases to specific clients. It is possible to ask a server, who has specific
address or what addresses are assigned to a specific client. This feature is part of the lease query mechanism
defined in [21] and is considered advanced topic. If you don’t know what lease query is, you definetely
don’t need it.

<—SOLICIT, REQUEST, RENEW,RELEASE——

ADVERTISE, REPLY——mMmM>

a

Dibbler server Dibbler client

Figure 1: General DHCPuv6 operation

Dibbler 1.0.0RC1 supports all features specified in RFC3315. In particular the following features are
supported:

e Basic server discovery and address assignment (SOLICIT, ADVERTISE, REQUEST and REPLY
messages) — This is a most common case: client discovers servers available in the local network,
then asks for an address (and possibly additional options like DNS configuration), which is granted
by a server.

http://klub.com.pl/dhcpv6/
http://www.gnu.org/copyleft/gpl.html

Dibbler 1.0.1 User’s Guide 7

Dibbler clients

Ethernet/WiFi

Dibbler
server

et

Figure 2: Several clients supported by one server

e Server redundancy/Best server discovery — when client detects more than one server available (by
receiving more than one ADVERTISE message), it chooses the best one and remembers remaining
ones as a backup.

e Multiple servers support — Client is capable of discovering and maintaning communication with
several servers. For example, client would like to have 5 addresses configured. Prefered server can
only lease 3, so client send request for remaining 2 addresses to one of the remaining servers.

e Relay support — In a larger network, which contains several Ethernet segments and/or wireless
areas, sometimes centrally located DHCPv6 server might not be directly reachable. In such cace,
additional proxies, so called relays, might be deployed to relay communication between clients and
a remote server. Dibbler server supports indirect communication with clients via relays. Stand-
alone, lightweight relay implementation is also available. Clients are capable of talking to the server
directly or via relays.

e Address renewal — After receiving address from a server, client might be instructed to renew its
address at regular intervals. Client periodically sends RENEW messege to a server, which granted
its address. In case of communication failure, client is also able to attempt emergency address
renewal (i.e. it sends REBIND message to any server).

e Unicast communication — if specific conditions are met, client could send messages directly to a
server’s unicast address, so additional servers does not need to process those messages. It also
improves effciency, as all nodes present in LAN segment receive multicast packets.!

e Duplicate address detection — Client is able to detect and properly handle faulty situation, when
server grants an address which is illegaly used by some other host. It will inform server of such
circumstances (using DECLINE message), and request another address. Server will mark this
address as used by unknown host, and will assign another address to a client.

'Nodes, which do not belong to specific multicast group, drop those packets silently. However, determining if host belongs
or not to a group must be performed on each node. Also using multicast communication increases the network load.

Dibbler 1.0.1 User’s Guide 8

Dibbler client

(Ethernet/WiFi ()
5 5 X
S S S

Several Dibbler servers

Figure 3: Redundancy: several servers

e Power failure/crash support — After client recovers from a crash or a power failure, it still can have
valid addresses assigned. In such circumstances, client uses CONFIRM message, to config if those
addresses are still valid.

e Link change detection — Client can be instructed to monitor its link state. Once it detects

e Normal and temporary addresses — Depending on its purpose, client can be configured to ask for
normal (IA_NA option) or temporary (IA_TA option). Although use of temporary addresses is
rather uncommon, both dibbler server and client support it.

e Hint system — Client can be configured to send various parameters and addresses in the REQUEST
message. It will be treated as a hint by the server. If such hint is valid, it will be granted for this
client.

e Server caching — Server can cache granted addresses, so the same client will receive the same address
each time it asks. Size of this cache can be configured.

e Stateless mode — Client can be configured to not ask for any addresses, but the configuration
options only. In such case, when no addresses are granted, such configuration is called stateless
(INFORMATION-REQUEST message is used instead of normal REQUEST).

e Rapid Commit — Sometimes it is desirable to quicken configuration process. If both client and server
are configured to use rapid commit, address assignment procedure can be shortened to 2 messages,
instead of usual 4. Major advantage is lesser network usage and quicker client startup time.

e M,O bits from Router Advertisement — the client can be told to observe M(managed) and O(OtherConf)
bits from RA and act according to them

e Reconfigure — server can inform clients that the configuration has changed and clients can initiate
Reconfigure

Dibbler 1.0.1 User’s Guide 9

e Authentication: Reconfigure-key — the server can generate HMAC-MD5 reconfigure keys on the
fly to later authenticate reconfigure messages. Clients are able to receive, store and later validate
against that received key.

e Authentication: Delayed authorization — server and client can protect their communication against
tampering by using preprovisioned keys.

1.2 Supported parameters
Except RFC3315-specified behavior [5], Dibbler also supports several enhancements:

e DNS Servers — During normal operation, almost all hosts require constant use of the DNS servers.
It is necessary for event basic operations, like web surfing. DHCPv6 client can ask for information
about DNS servers and DHCPv6 server will provide necessary information. [9]

e Domain Name — Client might be interested in obtaining information about its domain. Properly
configured domain allow reference to a different hosts in the same domain using hostname only, not
the full domain name, e.g. alice.example.com with properly configured domain can refer to another
host in the same domain by using ’bob’ only, instead of full name bob.example.com. [9]

e NTP Servers — To prevent clock misconfiguration and drift, NTP protocol [1] can be used to syn-
chronize clocks. However, to successful use it, location of near NTP servers must be known. Dibbler
is able to configure this information. [14]

e Time Zone — To avoid time-related ambiguation, each host should have timezone set properly.
Dibbler is able to pass this parameter to all clients, who request it. [32]

e SIP Servers — Session Initiation Protocol (SIP) [4] is commonly used in VoIP solutions. One of the
necessary information is SIP server addresses. This information can be passed to the clients. [6]

e SIP Domain Name — SIP domain name is another important parameter of the VoIP capable nodes.
This parameter can be passed to all clients, who ask for it. [6]

e NIS, NIS+ Server — Network Information Service is a protocol for sharing authentication parameters
between multiple Unix or Linux nodes. Both NIS and NIS+ server addresses can be passed to the
clients. [11]

e NIS, NIS+ Domain Name — NIS or NIS+ domain name is another necessary parameter for NIS or
NIS+. It can be obtained from the DHCPv6 server to all clients, who require it. [11]

e Option Renewal Mechanism (Lifetime option)— All of the options mentioned on this list can be
refreshed periodically. This might be handy if one of those parameters change. [13]

e Dynamic DNS Updates — Server can assign a fully qualified domain name for a client. To make such
name useful, DNS servers must be informed that such name is bound to a specific IPv6 address.
This procedure is called DNS Update. There are two kinds of the DNS Updates: forward and
reverse. First is used to translate domain name to an address. The second one is used to obtain full
domain name of a known address. See section 4.6 for details. [16]

e Prefix Delegation — Server can be configured to manage a prefix pool, i.e. clients will be assigned
whole pools instead on single addresses. This is very useful, when clients are not simple end users
(e.g. desktop computers or laptops), but rather are routers (e.g. cable modems). This functionality
is often used for remote configuration of IPv6 routers. [§]

Dibbler 1.0.1 User’s Guide 10

1.3 Not supported features

Although list of the supported features increases with each release, there are certain limitations. Below
is a list of such features:

e DNS Updates are done over IPv6 only. Adding IPv4 support is not planned. Do not bother to
develop patches — Dibbler is a IPv6-focused software and IPv4-related patches will be rejected.

e Conflict resolution in DNS Updates is not supported.

1.4 Operating System Requirements

Dibbler can be run on Linux systems with kernels from 2.4 or later series. IPv6 (compiled into kernel or
as module) support is necessary to run dibbler. DHCPv6 uses UDP ports below 1024, so root privileges
are required. They’re also required to add, modify and delete various system parameters, e.g. IPv6
addresses.

Dibbler also runs on any Windows systems from Windows XP (Service Pack 1 or later) to Windows 8.
Support for Windows 8 has been added in 0.8.3. To install various Dibbler parts (server, client or relay)
as services, administrator privileges might be required. Support for Windows NT4 and 2000 is limited
and considered experimental. Due to lack of support and any kind of informations from Microsoft, this
will not change. In fact, support for NT4 and 2000 is expected to be dropped soon. Please post to Dibbler
mailing list if you need them.

There is working Mac OS X port available.

Support for FreeBSD, NetBSD and OpenBSD was added in 0.8.1RC1, but those versions are not very
well tested. Support for Solaris 11 has been added in 0.8.3, but it is still highly experimental. Sources
are confirmed to compile and be able to start operation. Author was not able to test them thoroughly,
so reports regarding confirming their stability or any discovered issues are welcome. Please report them
on the mailing list. See section 10.3.

See RELEASE-NOTES for details about version-specific upgrades, fixes and features.

1.5 Supported platforms

Although Dibbler was developed on the i386 architecture, there are ports available for other architec-
tures: 1A64, AMDG64, PowerPC, HPPA, Sparc, MIPS, S/390, Alpha and ARMv5. They are available in
the PLD, Gentoo and Debian Linux distributions. Other platforms are likely to be supported. Keep in
mind that author has not tested those ports himself and need to rely on users’ reports, so there might be
some unknown issues present. If this is the case, be sure to notify package maintainers and possibly the
author.

If your system is not on the list, don’t despair. Dibbler is fully portable. Core logic is system
independent and coded in C++ language. There are also several low-level functions, which are system
specific. They’re used for adding addresses, retrieving information about interfaces, setting DNS servers
and so on. Porting Dibbler to other systems (and even other architectures) would require implementic
only those serveral system-specific functions. See Developer’s Guide for details.

Dibbler 1.0.1 User’s Guide 11

2 Installation and usage

Client, server and relay are installed in the same way. Installation method is different in Windows and
Linux systems, so each system installation is described separately. To simplify installation, it assumes
that binary versions are used?.

2.1 Linux installation

Starting with 0.4.0, Dibbler consists of 3 different elements: client, server and relay. During writing
this documentation, Dibbler is already part of many Linux distributions. In particular:

Debian GNU /Linux, Ubuntu and derived — use standard tools (apt-get, aptitude and similar) to
install dibbler-client, dibbler-server, dibbler-relay or dibbler-doc packages.

OpenSUSE — use standard installation mechanism.
PLD GNU /Linux — use standard PLD’s poldek tool to install dibbler package.
Gentoo Linux — use emerge to install dibbler (e.g. emerge dibbler).

OpenWRT - there are package definitions for OpenWRT. At time of this writing, they were very
outdated (using 0.5.0 version).

If you are using other Linux distribution, check out if it already provides Dibbler packages. You may
use them or compile the sources on your own. See Section 3 for details regarding compilation process.
Dibbler used to provide native DEB and RPM packages, but due to limited resources, author is not
continuing this activity. If you are a Dibbler package maintainer and want your package to be put on
dibbler website, please send such request on mailing list (see Section 10.3).

To install Dibbler on Debian or other system that provides apt-get package management system,
run apt-get install package command. For example, to install server and client, issue the following
command:

apt-get install dibbler-server dibbler-client

To install Dibbler in Gentoo systems, just type:

emerge dibbler

2.2 Windows installation

Dibbler supports Windows XP and 2003 since the 0.2.1-RC1 release. Support for Vista was added
somewhere around 0.7.x. Support for Windows 7 was added in 0.8.0RC1. In version 0.4.1 exprimental
support for Windows NT4 and 2000 was added. The easiest way of Windows installation is to download
clickable Windows installer. It can be downloaded from http://klub.com.pl/dhcpv6/. After download-
ing, click on it and follow on screen instructions. Dibbler will be installed and all required links will be
placed in the Start menu. Note that there are two Windows versions (ports): one for modern systems
(XP/2003/Vista and Win7) and one for archaic ones (NT4/2000). Make sure to use proper port. If you
haven’t set up IPv6 support, see following sections for details.

Operation on Windows 8 was never tested, so support is not confirmed.

2Compilation is not required, usually binary version can be used. Compilation should be performed by advanced users
only, see Section 3 for details.

http://debian.org
http://ubuntu.com
http://opensuse.org
http://www.pld-linux.org
http://www.gentoo.org
http://openwrt.org
http://klub.com.pl/dhcpv6/

Dibbler 1.0.1 User’s Guide 12

2.3 Mac OS X installation

As of 0.8.0 release, ready to use dmg packages are not provided, therefore dibbler has to be compiled.
Please follow section 3 for generic Dibbler compilation that applies to Mac OS X.

Currently support for Mac OS X is usable, but there is still one notable limitation. Client is not able
to configure DNS servers or domain name informations.

2.4 FreeBSD, NetBSD, OpenBSD, Solaris 11

As of 0.8.1RC1 release, support for FreeBSD, NetBSD and OpenBSD has been added. Solaris 11
support is implemented after 0.8.2 and will be included in 0.8.3. There are no prebuilt binary packages
available. Please follow Section 3 for generic Dibbler compilation that applies to all 3 mentioned OSes.

2.5 Basic usage

Depending what functionality do you want to use (server,client or relay), you should edit configuration
file (client.conf for client, server.conf for server and relay.conf for relay). All configuration files
should be placed in the /etc/dibbler directory. Also make sure that /var/lib/dibbler directory is
present and is writeable. After editing configuration files, issue one of the following commands:

dibbler-server start
dibbler-client start
dibbler-relay start

start parameter requires little explanation. It instructs Dibbler to run in daemon mode — detach
from console and run in the background. During configuration files fine-tuning, it is ofter better to watch
Dibbler’s bahavior instantly. In this case, use run instead of start parameter. Dibbler will present its
messages on your console instead of log files. To finish it, press ctrl-c.

To stop server, client or relay running in daemon mode, type:

dibbler-server stop
dibbler-client stop
dibbler-relay stop

To see, if client, server or relay are running, type:

dibbler-server status
dibbler-client status
dibbler-relay status

To see full list of available commands, type dibbler-server, dibbler-client or dibbler-relay
without any parameters.

If your OS uses different layout of directories, you may want to modify Misc/Portable.h before starting
compilation process.

Dibbler 1.0.1 User’s Guide 13

3 Compilation

Dibbler is distributed in 2 versions: binary and source code. If there is binary version provided for
your system, it is usually better choice. Compilation usually is performed by more experienced users.
In average case it does not offer significant advantages over binary version. You probably want to just
install and use Dibbler. If that is your case, read section named 2. However, if you are skilled enough,
you might want to tune several Dibbler aspects during compilation. See Dibbler Developer’s Guide for
information about various compilation parameters.

3.1 Linux/Mac OS X/FreeBSD/NetBSD/OpenBSD /Solaris Compilation

The following descriptions applies to Linux, Mac OS X, FreeBSD, NetBSD and OpenBSD. Solaris 11
support has been added since 0.8.3. Other POSIX systems may work, but were never tested by author.
If you would like to install Dibbler from sources, you will need all required dependencies. In particular,
you need a typical C++ environment: a C and C++ compilers (most probably gcc and g++), make, and
several other smaller tools.

To install Dibbler package from sources, go to project homepage and download latest tar.gz source
archive. Extract it using available tool for that purpose (in most cases that would be tool called tar and
gzip).

After sources are extracted, they must be configured to match specific operating system. To complete
this step, a configure script must be called:

./configure

Configure script accepts many parameters, so if like to tweak something, here is your chance. You may
run ./configure --help to see list of available parameters. For example, to set up sources to compile
in debug mode (useful if you want to debug them or provide better bugreport), you can do this:

./configure --enable-debug

See Dibbler Developer’s Guide, section 2 for details on compilation switches.

Once configure completes its operation, it prints out details of its configuration and source are ready
for compilation. To build all components, just type make. If you want to make specific component only,
you may use it as parameter to make, e.g. make server. After successful compilation type make install
to install compiled code in your system.

For example, to build server and relay, type:

tar zxvf dibbler-0.8.1RCl-src.tar.gz
./configure

make server relay

make install

mkdir -p /var/lib/dibbler

Configure script was added in 0.8.1RC1. Earlier versions do not not need that step.

Dibbler was compiled using gcc 2.95, 3.0, 3.2, 3.3, 3.4, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7 versions.
Note that many older compilers are now considered obsolete and were not tested for some time. Lexer
files (grammar defined config file) were generated using flex 2.5.35. Parser file were created using bison++
1.21.9. Flex and bison++ tools are not required to compile Dibbler. Generated files are placed in GIT
and in tar.gz archives. Dibbler requires also make. Autoconf and automake tools (autotools) were used
for regeneration of the Makefiles and configure script, but those generated files are shipped with the code,
so autotools should not be required.

Dibbler 1.0.1 User’s Guide 14

3.2 Modern Windows (XP...Win7) compilation

Download dibbler-1.0.1-src.tar.gz and extract it. In Port-win32 there are several project files (for
server, client and relay) for MS Visual Studio 2008. According to authors knowledge, it is possible to com-
pile dibbler using free MS Visutal C++ Express 2008 edition. Previous dibbler releases were compiled us-
ing MS Visual Studio .NET (sometimes called 2002) and 2003. Those versions are not supported anymore.
It might work with newest dibber version, but there are no guarantee. Open dibbler-win32.vs2008.sln
solution file click Build command. That should start compilation. After a while, binary exe files will be
stored in the Debug/ or Release/ directories.

3.3 Legacy Windows (NT/2000) compilation

Windows NT4/2000 port is considered experimental, but there are reports that it works just fine. To
compile it, you should download dev-cpp (http://www.bloodshed.net/dev/devcpp.html), a free IDE
for Windows utilising minGW port of the gcc for Windows. Run dev-cpp, click ,,open project...”, and
open one of the x.dev files located in the Port-winnt2k directory, then click compile. You also should
take a look at Port-winnt2k/INFO file for details.

3.4 IPv6 support

Some systems does not have IPv6 enabled by default. In that is the case, you can skip following
subsections safely. If you are not sure, here is an easy way to check it. To verify if you have IPv6 support,
execute following command: ping6 ::1 (Linux) or ping ::1 (Windows). If you get replies, you have
IPv6 already installed.

3.4.1 Setting up IPv6 in Linux

Almost all modern Linux distributions have IPv6 enabled by default, so there is very good chance
that nothing has to be done. However, if that is not the case, IPv6 can be enabled in Linux systems
in two ways: compiled directly into kernel or as a module. If you don’t have IPv6 enabled, try to load
IPv6 module: modprobe ipv6 (command executed as root) and try ping6 ::1. If that fails, you have to
recompile kernel to support [Pv6. There are numerous descriptions how to recompile kernel available on
the web, just type ”kernel compilation howto” in Google.

3.4.2 Setting up IPv6 in Windows Vista and Win7

Both systems have IPv6 enabled by default. Also note that Win7 also has DHCPv6 client built-in, so
you may use it as well.

3.4.3 Setting up IPv6 in Windows XP and 2003

If you have already working IPv6 support, you can safely skip this section. The easiest way to enable
IPv6 support is to right click on the My network place on the desktop, select Properties, then locate
your network interface, right click it and select Properties. Then click Install..., choose protocol
and then IPv6 (its naming is somewhat diffrent depending on what Service Pack you have installed).
In XP, there’s much quicker way to install IPv6. Simply run command ipv6 install (i.e. hit Start...,
choose run... and then type ipv6 install). Also make sure that you have built-in firewall disabled. See
Frequently Asked Question section for details.

http://www.bloodshed.net/dev/devcpp.html
http://www.google.com

Dibbler 1.0.1 User’s Guide 15

3.4.4 Setting up IPv6 in Windows 2000

If you have already working IPv6 support, you can safely skip this section. The following description
was provided by Sob ((sob(at)hisoftware.cz). Thanks. This description assumes that ServicePack 4 is
already installed.

1.

10.

11.

12.

13.

Download the file tpipv6-001205.exe from: http://msdn.microsoft.com/downloads/sdks/platform/
tpipv6.asp and save it to a local folder (for example, C:\IPv6TP).

From the local folder (C:\IPv6TP), run Tpipv6-001205.exe and extract the files to the same loca-
tion.

From the local folder (C:\IPv6TP), run Setup.exe -x and extract the files to a subfolder of the
current folder (for example, C:\IPv6TP\files).

. From the folder containing the extracted files (C:\IPv6TP\files), open the file Hotfix.inf in a

text editor.

In the [Version| section of the Hotfix.inf file, change the line NTServicePackVersion=256 to NTSer-
vicePackVersion=1024, and then save changes. *

From the folder containing the extracted files (C:\IPv6TP\files), run Hotfix.exe.
Restart the computer when prompted.

After the computer is restarted, from the Windows 2000 desktop, click Start, point to Settings, and
then click Network and Dial-up Connections. As an alternative, you can right-click My Network
Places, and then click Properties.

Right-click the Ethernet-based network interface to which you want to add the IPv6 protocol, and
then click Properties. Typically, this network interface is named Local Area Connection.

Click Install.
In the Select Network Component Type dialog box, click Protocol, and then click Add.
In the Select Network Protocol dialog box, click Microsoft IPv6 Protocol and then click OK.

Click Close to close the Local Area Connection Properties dialog box.

3.4.5 Setting up IPv6 in Windows NT4

If you have already working IPv6 support, you can safely skip this section. The following description
was provided by The following description was provided by Sob (sob(at)hisoftware.cz). Thanks.

1.

Download the file msripv6-bin-1-4.exe from: http://research.microsoft.com/msripv6/msripve6.
htmMicrosoft and save it to a local folder (for example, C:\IPv6Kit).

From the local folder (C:\IPv6Kit), run msripv6-bin-1-4.exe and extract the files to the same
location.

Start the Control Panel’s ”Network” applet (an alternative way to do this is to right-click on
”Network Neighborhood” and select ”Properties”) and select the ”Protocols” tab.

3This defines Service Pack requirement. NTServicePackVersion is a ServicePack version multiplied by 256. If there would
be SP5 available, this value should have been changed to the 1280.

mailto:sob(at)hisoftware.cz
http://msdn.microsoft.com/downloads/sdks/platform/tpipv6.asp
http://msdn.microsoft.com/downloads/sdks/platform/tpipv6.asp
mailto:sob(at)hisoftware.cz
http://research.microsoft.com/msripv6/msripv6.htm
http://research.microsoft.com/msripv6/msripv6.htm

Dibbler 1.0.1 User’s Guide 16

4. Click the 7Add...” button and then "Have Disk...”. When it asks you for a disk, give it the full
pathname to where you downloaded the binary distribution kit (C:\IPv6Kit).

5. IPv6 is now installed.

Dibbler 1.0.1 User’s Guide 17

4 Features HOWTO

This section contains information about setting up various Dibbler features. Since this section was
added recently, it is not yet comprehensive. That is expected to change.

4.1 Prefix delegation

Prefix delegation is a mechanism that allows two routers to delegate (“assign”) prefixes in similar way
as server can delegate (“lease”) addresses to hosts. As specified in [8]: The prefix delegation mechanism is
intended for simple delegation of prefixes from a delegating router to requesting routers. It is appropriate
for situations in which the delegating router does not have knowledge about the topology of the networks to
which the requesting router is attached, and the delegating router does not require other information aside
from the identity of the requesting router to choose a prefix for delegation. For example, these options
would be used by a service provider to assign a prefix to a Customer Premise Equipment (CPE) device
acting as a router between the subscriber’s internal network and the service provider’s core network.

To configure server to provide prefixes, a PD pool and a client prefixes’ length must be defined. An
example section below assigns 2001:db8::/32 pool to be managed by this server. From this pool, server
will assign /48 prefixes to the clients. For example, client can receive prefix 2001:db8:7c34::/48.

pd-class {
pd-pool 2001:db8::/32
pd-length 48

As a general rule, server will provide random prefix to a client, unless client provided a hint. The full
prefix assignment algorithm is as follows:

1. client didn’t provide any hints: one prefix from each pool will be granted
2. client has provided hint and that is valid (supported and unused): requested prefix will be granted

3. client has provided hint, which belongs to supported pool, but this prefix is used: other prefix from
that pool will be asigned

4. client has provided hint, but it is invalid (not beloninging to a supported pool, multicast or link-
local): see point 1

Dibbler implementation supports prefix delegation, as specified in [8]. Up to and including 0.7.3
version, client was also capable to do non-standard tricks with delegated prefix if it was a host, rather than
router. This mode of operation was removed in 0.8.0RC1. Now client behaves the same way, regardless
if it is a host or a router. When client receives prefix on one interface (e.g. prefix 2000:1234:7¢34::/48
received on eth0) it will generate subprefixes for all other interfaces, which are up, running, non-loopback
and multicast capable. In the example depicted on Fig. 4.1, received prefix was split into 3 prefixes:
2000:1234:7¢34:1000::/56 for ethl, 2000:1234:7¢34:2000::/56 for eth2 and 2000:1234:7¢34:3000::/56 for
eth3. Client support for prefix delectation was improved in 0.8.2. Client is now able to handle prefixes of
arbitrary lengths (do not have to be divisible by 8 anymore). The only restriction is that prefix must be
shorter or equal 120 bits.

It is also possible to explicitly specify which interfaces are downlink (i.e. sub-prefixes should be
assigned to). downlink-prefiz-ifaces command may be used to disable interface autoselection and just list
downlink interfaces.

It is also possible to define multiple prefix pools. See section 5.3.13 for simple prefix delegation
configuration for server or section 5.3.14 for multiple prefixes configuration. Also section 6.8.11 provides
information related to client configuration.

Dibbler 1.0.1 User’s Guide 18

C_ ki D [T
eth2: 2000:1234:7¢34:2000::/56

N\ Dibbler client 1
) (router)
eth1: 2000:1234:7¢34:1000::/56 eth3: 2000:1234:7¢34:3000:/56

/etho no prefix assigned

Assigned prefix to client1:
2000:1234:7c34::/48

(Ethernet/WiFi ()

Dibbler Available pool: 2000:1234:::/32
server Prefix length: 48

Figure 4: Prefiz delegation (router behaviour)

4.2 Relays

In small networks, all nodes (server, hosts and routers) are connected to the same network segment
— usually Ethernet segment or a single access point or hotspot. This is very convenient as all clients can
reach server directly. However, larger networks usually are connected via routers, so direct communication
is not always possible. On the other hand it is useful to have one server, which supports multiple links —
some connected directly and some remotely.

Very nice feature of the relays is that they appear as actual servers from the client’s point of view.
Therefore no special arrangement or configuration on the client side is required. On the other hand, from
the administrator point of view, it is much easier to manage one DHCPv6 server and deploy several relays
than manage several servers on remote links.

It is important to understand that relays not simply forward DHCPv6 messages. Each message
forwarded from client to the server is encapsulated. Also each message forwarded from server to a client
is decapsulated. Therefore additional server configuration is required to deal with encapsulated (i.e.
relayed) traffic.

There are 2 ways in which server can select apropriate set of addresses, prefixes and other configuration
options. The first one is based on addresses. Relay that forwards packets from client-facing interface (e.g.
eth0) must set link-addr field in RELAY-FORW message to an address that identifies that link. Please
note that this is NOT a link-local address, it is typically a global address that identifies a link. Server
can select appropriate set of parameters if the “subnet” clause is defined. This recent addition was added
after 0.8.3 release and will be included in 0.8.4.

The second way to refer to a specific link (i.e. ethO on the relay may be different link than ethO on
the server), each link is referred to using its unique interface-id. It is essential to use the same indentifier
in the relay configuration as well as in the server, so both will refer to the same link using the same
number. See section 5.3.8 for example how to configure server and section 7.4.1 for corresponding relay
configuration.

It is essential to understand that the “iface relayX” in the configuration represents a link accessible
via a relay, not the relay itself. These are not the same. One obvious example is a relay thay has 2
customer facing interfaces and one for relaying data to the server. This requires two separate “iface
relayX” defintions in the server.conf file.

In larger networks it is sometimes useful to connect multiple relays. Assuming there are 2 relays
connecting server and client. Such scenario is depicted on figure 6. Requests from client are received

Dibbler 1.0.1 User’s Guide 19

remote Dibbler
client

(Ethernet segment 2

(Ethernet segment 1

7 local Dibbler
client

Dibbler server

et

Figure 5: Relay deployment

by relay2, which encapsulates and sends them to relayl. Relayl further encapsulates those messages
and sends them to the server. Since server receives double encapsulated messages, it must be properly
configured to support such traffic. See section 5.3.9 for details about server configuration and section
7.4.4 for example relays configuration.

4.3

Address and prefix assignment policy

Address and prefix assignment routines has been rewritten after 0.8.1 was released. It currently follows
this algorithm:

1.
2.

Client classification is performed (a class is assigned to a client)

Client access control is performed (hosts listed on black-list are rejected, if any; if there is white-list
defined, host must be on that list, otherwise it is rejected)

If existing lease this client/ia exists, it is assigned again (e.g. after host reboot)

Fixed lease is searched (using per-client configuration or so called exception mechanism). If found,
this fixed lease is assigned.

max-client-leases is checked. If client already has maximum number of leases, further leases are
declined.

Server checks if there is cached (i.e. previously assinged, but later released or expired) lease for this
client. It is assigned, if possible.

Server checks if client sent any hints in SOLICIT or REQUEST message. Server tries to assign
requested address or prefix. If this lease cannot be assinged for any reason, server tries to assign
similar lease (i.e. from the same pool if client’s hint was within supporte pool).

Dibbler 1.0.1 User’s Guide 20

Dibbler client

(Ethernet segment 3
DN .
N Dibbler relay 2
DN
(Ethernet segment 2)

Dibbler relay 1

D
"“m..
N

v

(Ethernet segment 1)

Dibbler server

Figure 6: Cascade relays

8. Otherwise, if all of above steps fails, server assigns a random address or prefix from supported pools.

This algorithm is supported for non-temporary addresses and prefixes. It is not supported for tempo-
rary addresses.

4.4 Routing configuration

Warning: Due to objections in IETF by a small, but vocal group of opponents, further standardiza-
tion process of [30] draft in IETF was abandoned. It will not be published as RFC document. Consider
this feature a private extension.

Until recently, DHCPv6 protocol did not define a way to provision routing configuration information
to clients. The only way to deliver this information to hosts was to use Router Advertisment mechanism
in Neighbor Discovery protocol [18]. While that approach works, it brings a number of drawbacks. In
particular:

1. RA sent by router affects all hosts in a network. There is no way to differentiate this information
on a per host basis. There is no way to define additional routing information for specified class of
hosts (e.g. one department in a corporate network).

2. RA and DHCPv6 configuration has to be consistent. That is very doable, but somewhat problematic,
because network configuration has to be specified in several places. Moreover, it does not scale too
well. There are routers located in every segment of a network, while there may be just a single
DHCPv6 server deployed that serves many links.

3. Administrators experienced with IPv4 that are migrating their networks to IPv6 ask this question
very frequently: “How do I configure routing?”. Until recently the proper answer to that question
was “you don’t”.

Dibbler 1.0.1 User’s Guide 21

4. In mobile environment, mobile nodes had to wait for RA and then start DHCPv6 exchange. Al-
though hosts can request RA by sending Router Solicitation (RS), that may sometimes not work,
as routers have upper limits of how many RA they are allowed to sent.

To solve aforementioned problems, a DHCPv6-based solution was proposed [30]. It allows provi-
sioning of IPv6 routing information. In particular, it allows configuration of a default route, any rea-
sonable number of specific routes and routes available on link. This feature was introduced in Dibbler
0.8.1RC1. Both server and client support it. Dibbler sources come with examples config files. See
doc/example/server-route.conf and doc/example/client-route.conf for details.

Note: This specification is not approved yet. It will change in the future. In particular, TANA
have not assigned specific option values yet. Dibbler currently uses 242 for NEXT_HOP and 243 for
RTPREFIX options. Those values will change.

Note: Current implementation is a prototype. It does support only one route per router, only one
router and only a single route on-link. Although server is able to parse config that defines more than one,
it will provision only the first route or router information to a client. That is implementation limitation
that will be removed in future releases. That is not a spec limitation.

To configure routing on a server side, following config may be used

Example server configuration file: server-route.conf

iface "ethO" {
assign addresses from this pool
class {
pool 2000::/64
b

router with a single route with infinite lifetime
next-hop 2001:db8:1::face:b00c {
replace this with ::/0 to configure default route
route 2001:db8:1::/64

a single next-hop without any routes defined (i.e. default router)
This simplified mode is recommended only in bandwidth restricted
networks. Please use full mode instead

next-hop 2001:db8:1::cafe

router with 3 routes defined in different ways
next-hop 2001:db8:1::dead:beef {

route may have defined a lifetime

route 2001:db8:2::/64 lifetime 7200

lifetime may be infinite

route 2001:db8:3::/64 lifetime infinite

prefixes available on link directly, not via router
route 2001:db8:5::/64 lifetime 3600
I;

Support on client’s side is enabled in a very simple way:

Dibbler 1.0.1 User’s Guide 22

Example client configuration file: client-route.conf

Uncomment following line to skip confirm sending (after crash or power outage)
skip-confirm

7 = omit debug messages
log-level 8

Uncomment this line to run script every time response is received
script "/var/lib/dibbler/client-notify.sh"

iface "eth0" {
ia

option dns-server
option domain
routing 1

}

Two features should be enabled to reasonably use this feature. routing 1 instructs client that is
should request routing information (NEXT_HOP and RTPREFIX options). Once such information is
sent by the server, client will execute a notify script. Client will run defined script and pass necessary
information to it. In particular, it will set OPTION _NEXT_HOP, OPTION_NEXT_HOP_RTPREFIX and
OPTION_RTPREFIX variables with contents of received option. Please see scripts/notify-scripts/client-
notify.sh for example on how to use that information to configure routing. User is also recommended to
read Section 4.8 about details of running a script and passed variables.

4.5 Custom options

Dibbler is the DHCPv6 with support for a very large number of options. However, there are always
some new options that are not yet supported. Another case is that vendors sometimes want to develop and
validate their private options before formal standarisation process takes place. Starting with 0.8.0RC1,
both client and server are able to handle custom options. Even though author tries to implement support
for as many options as possible, there are always cases, when that is not enough. Some users may also
test out new ideas, before thet get standardized. Currently only several option layouts are supported,
but that list is going to be expanded. Server is able to support following extra formats: generic (defined
by hex string), IPv6 address, IPv6 address list and string (domain). To define those options, use the
following format:

#server.conf
iface "ethO0" {

class {
pool 2001:db8:1::/64
}

option 145 duid 01:02:a3:b4:cb:dd:ea

option 146 address 2001:db8:1::dead:beef

option 147 address-list 2001:db8:1::aaaa,2001:db8:1::bbbb
option 148 string "secretlair.example.org"

Dibbler 1.0.1 User’s Guide 23

Similar list can be configured for client. However, client can ask for such custom options for testing
purposes only, as mechanism for handling those options once received is not yet implemented, as of
0.8.0RC1. Consider it experimental for the time being. Client can request for an option using ORO
option or even send the option in its messages.

Note that in 0.8.2 formatting of DUID-style options has changed. “hex” keyword is now required.

#client.conf
iface "eth0" {
ia

This will send specified option value

option 145 hex 01:02:a3:b4:cb:dd:ea

option 146 address 2001:db8:1::dead:beef

option 147 address-list 2001:db8:1::aaaa,2001:db8:1::bbbb
option 148 string "secretlair.example.org"

This will request specific options and interpret responses
option 149 hex

option 150 address

option 151 address-list

option 152 string

A word of warning: There are no safety checks regarding option codes, so it is possible to transmit
already defined options using this feature. Use with caution!

4.6 DNS Update

During normal operation, DHCPv6 client receives one or more IPv6 address(es) from DHCPv6 server.
If configured to do so, it can also receive information about DNS server addresses. As an additional
service, DNS Update (RFC2136, [2]) can be performed. This feature known as Dynamic DNS, or DNS
Update, keeps the DNS entries synced up with DHCP. When client boots, it gets its fully qualified domain
name and this name can be used to reach this particular client by other nodes. Details of this mechanism
is described in [2] and [16].

Note: In this section, we will assume that hostnames will be used from the example.com domain and
that addresses will be provided from the 2000::/64 pool.

There are two types of the DNS Updates. First is a so called forward resolving. It allows to change
a node’s name into its address, e.g. malcolm.example.com can be translated into 2000::123. Other kind
of record, which can be updated is a so called reverse resolving. It allows to obtain full name of a node
with know address, e.g. 2000::124 can be translated into zoe.example.com.

To configure this feature, following steps must be performed:

1. Configure DNS server. DNS server supporting IPv6 and dynamic updates must be configured. One
example of such server is an excellent [SC BIND software. Version used during writing of this
documentation was BIND 9.7.2. It is necessary to allow listening on the IPv6 sockets and define
that specific domain can be updated. See example below.

2. Configure Dibbler server to provide DNS server informations for clients. DNS Updates will be sent
to the first DNS server on the list of available servers.

http://www.isc.org/software/bind

Dibbler 1.0.1 User’s Guide 24

Dibbler /AN
client
(Ethernet/WiFi ()
DNS DNS Update
server Dibbler
\ server

Figure 7: DNS Update (performed by server)

3. Configure Dibbler server to work in stateful mode, i.e. that it can provide addresses for the clients.
This is a default mode, so unless configuration was altered, this step is already done. Make sure
that there is no ,,stateless” keyword in the server.conf file.

4. Define list of the available names in the server configuration file. Make sure to use fully qualified
domain names (e.g. malcolm.example.com), not the hostnames only.

5. Configure dibbler client to request for DNS Update. Use ,,option fqdn” to achieve this.
6. Server can be configured to execute

e both (AAAA and PTR) updates by itself
e cxecute PTR only by itself and let client execute AAAA update
e don’t perform any updates and let client perform AAAA update.

Note that only server is allowed to perform PTR updates. After configuration, client and/or server
should log following line, which informs that Dynamic DNS Update was completed successfully.

As of 0.8.0, both Dibbler server and client are using TCP connection for DNS Updates. Connections
are established over IPv6. There is no support for IPv4 connections. Server uses first DNS server address
specified in dns-server option. It is possible to use differentiate between DNS addresses provided to
clients and the one used for DDNS. To override DNS updates to be performed to different address, use
the following command:

fqdn-ddns-address 2001:db8:1::1

4.6.1 Example BIND configuration

Below are example configuration files for the ISC BIND 9.7.2, developed by Internet Systems Consor-
tium, Inc.. First is a relevant part of the /etc/bind/named.conf configuration file. Generally, support for
IPv6 in BIND is enabled (listen-on-v6) and there are two zones added: example.com (normal domain) and
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.2.ip6.arpa (reverse mapping). Corresponding files are stored in example.com
and rev-2000 files. For details about meaning of those directives, please consult BIND 9 Administrator
Reference Manual.

Note: Provided configuration is not safe from the security point of view. See next subsection for
details.

http://www.isc.org/software/bind
http://www.isc.org
http://www.isc.org

Dibbler 1.0.1 User’s Guide

25

DNS Update

Dibbler
client

Ethernet/WiFi

DNS server

Dibbler
server

Figure 8: DNS Update (performed by client)

// part of the /etc/bind/named.conf configuration file

options {
listen-on-v6 { any; };
listen-on { any; };

// other global options here
/...
¥

zone "example.com" {
type master;
file "example.com";
allow-update { any; };
allow-transfer { any; I};
allow-query { any; };

// other example.com domain-specific
// options follow
/...

s

zone "0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.2.ip6.arpa"
type master;
file "rev-2000";
allow-update { any; };
allow-transfer { any; };
allow-query { any; J};

// other 2000::/64 reverse domain related
// options follow
/] ...

Dibbler 1.0.1 User’s Guide 26

Below are examples of two files: forward and reverse zone. First example presents how to configure
normal domain. As an example there is entry provided for zoe.example.com host, which has 2000::123
address. Note that you do not have to manually configure such entries — dibbler will do this automatically.
It was merely provided as an example, what kind of mapping will be done in this zone.

$O0RIGIN .

$TTL 86400 ; 1 day
example.com IN SOA v13.klub.com.pl. root.v1i3.klub.com.pl. (
129 ; serial
7200 ; refresh (2 hours)
3600 ; retry (1 hour)
604800 ; expire (1 week)
86400 ; minimum (1 day)
)
NS v13.klub.com.pl.
A 1.2.3.4
TXT "Fake domain used for Dibbler tests."
$ORIGIN example.com.
$TTL 7200 ; 2 hours
zoe AAAA 2000::123

Second example presents zone file for reverse mapping. It contains entries for a special zone called
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.2.ip6.arpa. This zone represents 2000::/64 address space. As an example there
is a static entry, which maps address 2000::999 to a canonical name kaylee.example.com. Note that you do
not have to manually configure such entries — dibbler will do this automatically. It was merely provided
as an example, what kind of mapping will be done in this zone.

; rev-2000 example file
$ORIGIN .
$TTL 259200 ; 3 days

; this line below is split in two due to page with limitation
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.2.1ip6.arpa IN
SOA 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.2.1ip6.arpa. hostmaster.ep.net. (
; this line above is split in two due to page with limitation
200608268 ; serial

86400 ; refresh (1 day)

1800 ; retry (30 minutes)

172800 ; expire (2 days)

259200 ; minimum (3 days)

)

NS klub.com.pl.

$0RIGIN 0.2.1ip6.arpa.
$TTL 86200 ; 23 hours 56 minutes 40 seconds
3.2.1 PTR picard.example.com.

; this line below is split in two due to page with limitation
9.9.9 PTR kaylee.example.com.
$0RIGIN 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.2.ip6.arpa.

; example entry: 2000::999 -> troi.example.com.

Dibbler 1.0.1 User’s Guide 27

; this line below is split in two due to page with limitation

9.9.9.0.2.1ip6.arpa
PTR troi.example.com.

; this line above is split in two due to page with limitation

Note: Due to page width limitation, if the example above, two lines were split.

4.6.2 Secure DDNS

Earlier Dibbler versions do not provide security for DNS Updates. This capability has been added in
0.8.3. It is possible to protect your updates using TSIG (Transaction Signatures), defined in RFC2845
([3]). For this feature to work, your DNS server and Dibbler server must be both configured with the
same key. The first step to use this feature is to generate a key. Currently only HMAC-MD5 keys are
supported. Please ask on dibbler-devel mailing list if you are interested in other key types. See section
10.3 for details. To generate HMAC-MD5 key, a dnssec-keygen tool from ISC BIND9 can be used:

dnssec-keygen -a hmac-md5 -b 128 -n HOST my-ddns-secret-key

For ease of configuration, dibbler uses the same key syntax in its config file as [SC BIND9 does. In
particular, all statements are finished with a semicolon. For example, the minimal set of commands to
configure a key look like the following:

key "DDNS_UPDATER" {
secret "9SYMLnjK20hb1N/56GZ5Jg=="";
algorithm hmac-mdb5;

};

Please keep in mind that TSIG signatures are time sensitive and they are valid only for specified amount
of time. Therefore it is essential that your Dibbler server and your DNS server have well synchronized
clocks. It is recommented to use NTP for that purpose. By default, the signature is valid for 300 seconds.
This parameter is called a fudge. It can be modified to a different value, if needed. Shorter value is
better from the security perspective as it shortens the window of potential replay attack. Longer values
are better from the convenience perspective, as they are more “forgiving” to clock skew. The maximum
allowed value here is 65535 seconds. Please note that such a large value is not reasonable.

An example with the fudge value set to 250 is presented below:

key "DDNS_UPDATER" {
secret "9SYMLnjK2ohb1N/56GZ5Jg=="";
algorithm hmac-mdb5;
fudge 250;

s

Any DNS server that supports DNS Updates ([2]) and TSIG ([3]) must support HMAC-MD?5 signa-
tures. Following paragraph explains how to configure HMAC-MD5 key for ISC BIND9. There are at
least three steps that has to be done to achieve forward (AAAA) and reverse (PTR) updates to function
properly.

First step is to add a key. Use the same key definition that was included in your Dibbler server.conf.
Add it to BIND9 config file. Its location varies between systems, but it often /etc/bind/named.conf or
similar. You should also modify your zone and reverse zone to accept updates from this new key. Make
sure that you do not define fudge parameter, as it is not supported by BIND9. Part of the named.conf
that contains related changes looks as follows:

key "DDNS_UPDATER" {

http://www.isc.org/software/bind
http://www.isc.org/software/bind
http://www.isc.org/software/bind

Dibbler 1.0.1 User’s Guide 28

secret "9SYMLnjK2ohb1N/56GZ5Jg=="";
algorithm hmac-md5;
s

(other configuration options here)

zone "example.org" {
type master;
file "/path/to/your/zonefile";
allow-update { key DDNS_UPDATER; };
allow-query { any; };

};

zone "0.0.0.0.1.0.0.0.8.b.d4.0.1.0.0.2.ip6.arpa" {
type master;
file "/path/to/your/zonefile";
allow-update { key DDNS_UPDATER; };
allow-query { any; J};

(other zones and configuration options here)

In case of any problems, please refer to BIND 9 Administrator Reference Manual, available on Internet
Systems Consortium website.

4.6.3 Dynamic DNS Testing and tips

Proper configuration of the DNS Update mechanism is not an easy task. Therefore this section provides
description of several methods of testing and tuning BIND configuration. Please review following steps
before reporting issues to the author or on the mailing list.

e See example server and client configuration files described in a sections 6.8.7 and 5.3.10. Also note
that Dibbler distribution should be accompanied with several example configuration files. Some of
them include FQDN usage examples.

e Make sure that unix user, which runs BIND, is able to create and write file example.com.jnl. When
BIND is unable to create this journal file, it will fail to accept updates from dibbler and will report
failure. Check BIND log files, which are usually stored in the /var/log/ directory.

e Make sure that you have routing configured properly on a host, which will attempt to perform DNS
Update. Use ping6 command to verify that DNS server is reachable from this host.

e Make sure that your DNS server is configured properly. To do so, you might want to use nsupdate
tool. It is part of the BIND distribution, but it is sometimes distributed separated as part of
the dnsutils package. After executing nsupdate tool, specify address of the DNS server (server
command), specify update parameters (update command) and then type send. If nsupdate return
a command prompt, then the update was successful. Otherwise nsupdate will print DNS server’s
response, e.g. NOTAUTH of SRVFAIL. See below for examples of successful forward (AAAA record)
and reverse (PTR record) updates.

e After DNS Update is performed, DNS records can be verified using dig command line tool (a part of
the dnsutils package). Command syntax is: dig @(dns-server-address) name record-type. In

http://www.isc.org/software/bind
http://www.isc.org/software/bind

Dibbler 1.0.1 User’s Guide 29

the following example, this query checks for name jayne.example.com at a server located at 2000::1
address. Record type AAAA (standard record for resolving name into IPv6 address) is requested.
dig tool provides server’s response in the ANSWER SECTION:. See example log below.

e In example BIND configuration above, zone transfers, queries and updates are allowed from any-
where. To make this configuration more secure, it might be a good idea to allow updates only from
a certain range of addresses or even one (DHCPv6 server’s) address only.

To manually make AAAA record update, type:

nsupdate

>server 2000::1

>update add worf.example.com 7200 IN AAAA 2000::567
>send

To manually make PTR record update, type:

nsupdate

>server 2000::1

>update add
3.2.1.0.2.1ip6.arpa.
86200 IN PTR picard.example.com.

>send

Note: Everything between "update” and ”picard.example.com” must be typed in one line.
And here is an example dig session:

v13:/var# dig ©2000::1 jayne.example.com AAAA

; <<>> DiG 9.3.2 <<>> ©02000::1 jayne.example.com AAAA

; (1 server found)

;; global options: printcmd

;; Got answer:

;5 —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 33416

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 2

;5 QUESTION SECTION:
;jayne.example.com. IN AAAA

;5 ANSWER SECTION:
jayne.example.com. 7200 IN AAAA 2001::e4

;5 AUTHORITY SECTION:
example.com. 86400 1IN NS v13.klub.com.pl.

;3 Query time: 6 msec

;3 SERVER: 2000::1#53(2000::1)

;; WHEN: Mon Jul 24 01:38:13 2006
;3 MSG SIZE rcvd: 136

4.6.4 Accepting Unknown FQDNs

By default, server configured to support FQDN has a list of names that are to be provided to clients.
But there are use cases, when client uses its own name and sends it to the server. So it makes sense to

Dibbler 1.0.1 User’s Guide 30

sometimes allow client’s own domain names. Server does not know anything about such names, thus its
nickname ”Unknown FQDN”.

There are several actions that server can do, when unknown FQDN is received. To configure such
support for unknown FQDNs, accept-unknonwn-fqdn option can be defined on an interface. Depending
on its, value, it may bave domain name as a parameter. For example:

iface "ethO0" {

assign addresses from this class
class {

pool 2000::/64
by

provide DNS server location to the clients

also server will use this address to perform DNS Update,

so it must be valid and DNS server must accept DNS Updates.
option dns-server 2000::1

provide their domain name
option domain example.com

provide fully qualified domain names for clients
note that first, second and third entry is reserved
for a specific address or a DUID

option fqdn 1 64
zebuline.example.com - 2000::1,
kael .example.com - 2000::2,
wash.example.com - 0x0001000043ce25b40013d4024b£5,
zoe.example.com,
malcolm.example.com,
kaylee.example.com,
jayne.example.com,
inara.example.com

specify what to do with client’s names that are not on the list

0 - reject

1 - send other name from allowed list

- accept any name client sends

- accept any name client sends, but append specified domain suffix

- ignore client’s hint, generate name based on his address, append domain name

H H HF H H H
W N

accept—-unknown-fqdn 4 foo.bar.pl

4.7 Introduction to client classification

It is possible to define more than one address class for a single interface. Normally, when a client
asks for an address, one of the classes is being chosen on a random basis. If not specified otherwise, all

Dibbler 1.0.1 User’s Guide 31

classes have equal probability of being chosen. However there are cases where an Administrator wants
to restrict access to a given pool or to have distinct ”client classes” associated to different address pools.
For example, Computer and IP-Telephone terminals can coexist in the same LAN ; but the Computer
must belong to given class pool meanwhile the IP-Telephone must belong to another pool.

In order to implement the Client Class Classification, you must first create the client class and then in
the class declaration, indicate which class to be allowed or denied. This point will be discussed in detail
in next sections.

4.7.1 Client class declaration

Each client class used for class / ta / pd addressing must be defined in the server configuration file at
global scope. A client-class declaration looks like this:

Client-class TelephoneClass{
match-if (client.vendor-spec.en == 1234567)
}

Where TelephoneClass denotes the name of the client class and the (client.vendor-spec.en == 1234567)
denotes the condition an incoming message shall match to belong to the Client-Class. The supported
operator and data will be discussed in next section.

4.7.2 Access control

Access control is based on a per pool basis. In the client-class declaration; you can deny or allow
the client class by using the keyword ”allow” or ”deny”. For example, following class accepts all clients
except those belonging to the client class ” TelephoneClass”:

class {

2000::/64

deny TelephoneClass
}

Another example. This class accepts only client belonging to the client class ” TelephoneClass”.

class {

2000: :/64

allow TelephoneClass
}

The rule can also be applied to TA/PD declaration. Several "allow” directives can be associated to a
given pool.

ta-class {
pool 2000::/64
deny TelephoneClass

pd-class {
pd-pool 2000::/80
pd-length 96
deny TelephoneClass

Dibbler 1.0.1 User’s Guide 32

4.7.3 Assigning clients to defined classes

Classifying operators are used for assigning client to a specific class. Currently, Dibbler supports the
following Operators for classifying clients:

Equal operator
Syntax : (Exprl == Expr2)
Scope : global
Purpose : returns "true" if Exprl equals Expr2

And Operator
Syntax : (Conditionl and Condition2)
Scope : global
Purpose : returns "true" if both Conditionl and Condition2 are "true"

Or operator
Syntax : (Conditionl or Condition2)
Scope : global
Purpose : returns "true" if either Conditionl or Condition2 is "true"

Contain Operator
Syntax : (Stringl contain String2)
Scope : global
Purpose : returns "true" if String2 is a substring of Stringl

Substring Operator
Syntax substring (Exprl, index, length)
Scope : global
Purpose : returns the substring of the result of that evaluation
that starts index characters from the beginning, continuing for
length characters.

Dibbler accepts different data expressions — or variables — which reflect value of options found in the
packet to which the server is responding.

client.vendor-spec.en the enterprise number value of OptionVendorSpecific (OPTION_VENDOR_OPTS,
option value equals to 17 as per RFC3315)

client.vendor-spec.data the data of OptionVendorSpecific (OPTION_VENDOR_OPTS, option value
equals to 17 as per RFC3315)

client.vendor-class.en the enterprise number value of OptionVendorClass (OPTION_VENDOR_CLASS,
option value equal to 16 as per RFC3315)

client.vendor-class.data the data of OptionVendorClass (OPTION_VENDOR_CLASS, option value
equals to 16 as per RFC3315)
4.7.4 Examples of Client-Class Classifying
Example 1 :

Client-class CPEClass {
match-if (client.vendor-spec.data contain CPE)

Dibbler 1.0.1 User’s Guide 33

Client belongs to CPEClass if its request message contains the Vendor Specific option with the data field
including the substring ”CPE”.
Example 2 : Combination with AND operator

Client-class TelephoneClass {
match-if ((client.vendor-spec.en == 1234) and (client.vendor-spec.data contain CPE))

}

Example 3 : Combination with OR operator

Client-class TelephoneClass {
match-if ((client.vendor-spec.en == 1234) or (client.vendor-spec.data contain CPE))

I;

4.8 External script

Note: Support for external scripts (often called notify script was rewritten in 0.8.1RC1 release. Note
that mapping prefix and notify scripts were removed. Support for server-side script was introduced in
0.8.1RC1.

Dibbler-client is able to receive addresses, prefixes and numerous additional options. It will do its
best to set up those parameters in the system. However, the need for some extra processing may arise.
The most elegant solution is to call external script every time the configuration changes. Dibbler client
may be configured to call external script every time REPLY is received for REQUEST (new parameters
added), RENEW (parameters were updated) or RELEASE (parameters were deleted).

Name of this script is specified using script keyword followed by absolute path to script. Script will
be called with a single parameter, denoting current operation. Its value will be one of “add”, “update”,
“delete” or “expire”. Currently “expire” event is triggered on server-side only. * Actual values of received
parameters are passed as environment variables. In particular, IFNAME and IFINDEX variables denote
interface name and interface index that was used to communicate with server, respectively. Another
essential variable set is REMOTE_ADDR. It defines address from which packet originated. That is
client’s address (when run on server) and server’s address (when run on client). Client’s message type is
passed in CLNT_MESSAGE variable. Server’s response is passed in SRV_MESSAGE. Note that server’s
reply is most often REPLY as script execution is skipped after sending ADVERTISE.

Addresses are passed in variables ADDR1, ADDR2 and following. Note that each ADDR variable is
accompanied with two additional variables: ADDRIPREF (address preferred lifetime) and ADDR1VALID
(address valid lifetime). Prefixes are passed in variables PREFIX1, PREFIX2 and following. Note that
each PREFIX variable is accompanied with three additional variales: PREFIX1LEN (prefix length),
PREFIX1PREF (prefix preferred lifetime), and PREFIX1VALID (prefix valid lifetime). Support for
additional options is in progress. Options are passed as environment variables. For example client DUID
(conveyed in option code 1), will be passed as OPTIONI.

In 0.8.4 additional variables were added: DOWLINK_PREFIX_IFACES that defines a list of downlink
interfaces when splitting delegated prefix. Typically it contains (sanitized) list defined in downlink-prefix-ifaces
in client.conf or detected automatically by the client. The accompanying variable DOWNLINK_PREFIXES
contains the actual prefixes that were configured on specified interfaces. Those two variables are set on
the client side only, for obvious reasons.

To enable script execution, script global option must be added to client.conf file. For example:

client.conf
script /var/lib/dibbler/script.sh

4Please send your feedback to mailing list if you need it also on client-side.

Dibbler 1.0.1 User’s Guide 34

iface eth0 {
ia

3

4.9 Reconfiguration

Once DHCPv6 clients receive their configuration, they are not communicating with the server until
T1 timer expires. If the network configuration changes before that time, it may be useful in some cases
to inform that the clients should start reconfiguration process now, rather than wait till T1. To address
this problem, DHCPv6 offers reconfigure mechanism.

First, clients are informing the server that they are supporting reconfiguration process by sending
RECONFIGURE-ACCEPT in their SOLICIT messages. Configuration then proceeds as usual, but the
server includes AUTH option in the REPLY message with a randomly generated reconfigure-key. The
client then knows that if it receives any RECONFIGURE message, it will be signed using HMAC-MD5
generate with that particular key. That is a protection against rogue DHCPv6 servers, as the only server
that is allows to trigger reconfiguration is the one who originally provided the configuration.

The aforementioned example assumes that the default reconfigure-key authentication is used. It is
also possible to sign RECONFIGURE using delayed auth or Dibbler authentication protocol.

During start-up, the server will load its lease database and will check whether loaded database matches
existing configuration. In particular, it will check if the addresses clients have still belong to the configured
subnets. If the server detects and outdated configuration, it will send RECONFIGURE informing the
client that it must start reconfiguration process.

Clients by default have reconfigure support disabled. To enable it, use reconfigure-accept directive.
When enabling reconfigure support, it is strongly recommended to enable one of authentication methods,
e.g. reconfigure-key. See section 4.17 for detailed discussion about authentication. A short example that
has reconfigure enabled looks like this:

client.conf - with reconfigure and reconfigure-key enabled
reconfigure-accept 1

auth-protocol reconfigure-key
auth-replay monotonic
auth-methods digest-hmac-md5

iface eth0 {
ia

4.10 Following M, O bits from Router Advertisements

Rounter Advertisements contain two bits that inform what kind of DHCPv6 services are available
on link. M (Managed) that tells that addresses and prefixes can be obtained using stateful DHCPv6.
O (OtherConf) tells that other configuration options may be configured. Both bits are defined in [17],
section 4.2. It should be noted that those bits are informational only. In the default mode (when obey-ra-
bits is absent), the client will ask for configuration options that are specified specified in its configuration
file. With obey-ra-bits, the client will wait till it receives the RA message and will act according to the
received bits. The default is off (obey-ra-bits missing). Enabling obey-ra-bits implies inactive-mode.

Let’s take this simple client configuration:

client.conf - example that takes care of M,0 bits from Router Adv.

Dibbler 1.0.1 User’s Guide 35

obey-ra-bits

iface ethO {
ia
option dns-server

Iy

Without obey-ra-bits enabled, it would simply send SOLICIT with one IA_NA option (i.e. requesting
non-temporary address) and ORO requesting DNS-SERVER configuration. If there is RA received with
M=0, O=0, then Dibbler will not send anything and will simply wait till RA with at least one of M or
O bits is received. If RA is received with M=0, O=1, then Dibbler will request “other” configuration
options, i.e. all those that are not stateful or in other words any type of IA will not be sent. Dibbler will
send INFORMATION-REQUEST with ORO requesting DNS-SERVERS. With M=1, O=0 Dibbler will
send a SOLCIT only request an address, but will not ask for DNS-SERVERS. Finally, with M=1, O=1
Dibbler will send SOLICIT asking for both an address and DNS-SERVERS.

It should be noted that Dibbler will assess M,O bits only during start-up or while enabling an inter-
face. It will not monitor any possible future changes in those bits (e.g. as a result of receiving Router
Advertisement with updated flags).

4.11 CONFIRM message

Client detects if previous client instance was not shutdown properly (due to power outage, client crash,
forceful shutdown or similar event). In such case, it reads existing address database and checks if assigned
addresses may still be valid. If that is so, it tries to confirm those addresses by using CONFIRM message.

If you want to provoke this kind of scenario on purpose, you can run dibbler-client normally, then
forcefully kill the procss (by sending kill -9 signal, or pressing ctrl-backslash under Linux). Make sure
that you rerun client before address valid lifetime expires.

Currently, client does support only IAs in the CONFIRM.

You can force the client to not send CONFIRM message by adding the following clause to your
client.conf:

Uncomment following line to skip confirm sending
skip-confirm

It is important to understand the meaning of the CONFIRM message. It is a question whether
specified addresses are topologically valid for a given link, not if the server has bindings for them. The
server can be provided with the information which addresses are valid on a given link using subnet clause.
This directive was introduced in Dibbler 0.8.4RC1. See section 5.3.22 for server configuration examples.

Server will try to respond to CONFIRM messages, even when subnet is not defined. In that case it will
check if the addresses are within configured address pool. If they are, the server will respond with success
status code. Otherwise it will not respond (as required by RFC3315, section 18.2.2). It is important to
understand the difference between address pool (or class) and subnet. Imagine the case of a network that
uses 2001:db8::/32 prefix. Out of that prefix only small pool (2001:db8::1-2001:db8::ff) was assigned for
server allocation. Without subnet definition, the server will be able to respond to CONFIRM messages
only for that small pool. With subnet specified in its config file, the server will be able to respond to
addresses from the whole subnet.

The exact algorithm is as follows. If there is subnet defined, check if all addresses and prefixes sent
in CONFIRM are within that subnet. If yes, respond with success status. If any of the servers is not
within the subnet, respond with NotOnLink status. If there were no addresses or prefixes specified, do
not respond. If there is not subnet defined, check if all addresses and prefixes sent in CONFIRM are
present in respective class, ta-class or pd-class ranges. If they are, respond with Success status. If any

Dibbler 1.0.1 User’s Guide 36

of them is not within the pools, do not respond (because the server does not have enough knowledge to
authoritatively say that they are not valid).

4.12 Mobility

Client can also be compiled with support for link change detection. The intended use for this feature is
mobility. Client is able to detect when it moves to new link and react accordingly. Client sends CONFIRM
message to verify that its currently held address is still usable on this new link.

4.13 Leasequery

Servers provide addresses, prefixes and other configuration options to the clients. Sometime adminis-
trators may want to obtain information regarding certain leases, e.g. who has been given a specific address
or what addresses have been assigned to a specific client. This mechanism is called Leasequery [21]. New
DHCPv6 participant called requestor has been defined. Its sole purpose is to send queries and receive
responses. Dibbler provides example implementation. To define a query, command line parameters are
used.

There are two types of queries: by address ("who leases this address?”) and by client identifier (”what
addresses has this client?”). To specify one of such types, ~addr or duid command-line switches can be
used. It is also mandatory to specify (using -i IFACE), which interface should be used to transmit the
query.

Here is a complete list of all command-line switches:

-i IFACE - defines thru which interface should the query be sent

-addr ADDR - sets query type to query by address. Also defines address, which the query will be
about.

-duid DUID - sets query type to query by client indentifier. Also defines client intentifier.
-timeout SECS — specifies time, which requestor should wait for response.

-dstaddr ADDR - destination address of the lease query message. By default messages are sent to the
multicast address (ff02::1:2). To transmit query to an unicast addres, use this option.

Example query 1: Who has 2000::1 address?
dibbler-requestor -i ethO -addr 2000::1

Example query 2: Which addresses are assigned to client with specific client identifier?

dibbler-requestor -i ethO -duid 00:01:00:01:0e:8d:22:d7:00:08:54:04:a3:24

4.14 Stateless vs stateful and IA, TA options

This section explains the difference between stateless and stateful configurations. IA and TA options
usage is also described.

Usually, normal stateful configuration based on non-temporary addresses should be used. If you don’t
know, what temporary addresses are, you don’t need them.

Note that DHCPv6 stateless autoconfiguration is part of stateless autoconfiguration defined in [18].

There are two kinds of configurations in DHCPv6 ([5], [10]):

stateful — it assumes that addresses (and possibly other parameters) are assigned to a client. To perform
this kind of configuration, four messages are exchanged: SOLICIT, ADVERTISE, REQUEST and
REPLY.

Dibbler 1.0.1 User’s Guide 37

stateless — when only parameters are configured (without assigning addresses to a client). During
execution of this type of configuration, only two messages are exchanged: INF-REQUEST and
REPLY.

During normal operation, client works in a stateful mode. If not instructed otherwise, it will request
one or more normal (i.e. non-temporary) address. It will use IA option (Identity Association for Non-
temporary Addresses, see [5] for details) to request and retrieve addresses. Since this is a default behavior,
it does not have to be mentioned in the client configuration file. Nevertheless, it can be provided:

client.conf
iface ethO {
ia
option dns-server

I

In a specific circustances, client might be interested in obtaining only temporary addresses. Although
this is still a stateful mode, its configuration is sligtly different. There is a special option called TA
(Identity Association for Temporary Addresses, see [5] for details). This option will be used to request
and receive temporary addresses from the client. To force client to request temporary addresses instead
of permanent ones, ta keyword must be used in client.conf file. If this option is defined, only temporary
address will be requested. Keep in mind that temporary addresses are not renewed.

client.conf
iface ethO {
ta
option dns-server

3

It is also possible to instruct client to work in a stateless mode. It will not ask for any type of addresses,
but will ask for specific non-address related configuration parameters, e.g. DNS Servers information. This
can be achieved by using stateless keyword. Since this is a global parameter, it is not defined on any
interface, but as a global option.

client.conf
stateless
iface ethO
{
option dns-server

3

Some of the cases mentioned above can be used together. However, several combinations are illegal.
Here is a complete list:

none — When no option is specified, client will assume one TA with one address should be requested.
Client will send ia option (stateful autoconfiguration).

ia — Client will send ia option (stateful autoconfiguration).

ia,ta — When both options are specified, client will request for both - Non-temporary as well as Temporary
addresses (stateful autoconfiguration).

stateless — Client will request additional configration parameters only and will not ask for addresses
(stateless autoconfiguration).

stateless,ia — This combination is not allowed.

Dibbler 1.0.1 User’s Guide 38

stateless,ta — This combination is not allowed.

stateless,ia,ta — This combination is not allowed.

4.15 Server address caching

Previous Dibbler versions assigned a random address from the available address pool, so the same
client received different address each time it asked for one. In the 0.5.0 release, new mechanism was
introduced to make sure that the same client gets the same address each time. It is called Server caching.

Below is the algorithm used by the server to assign an address to the client.

e if the client provided hint, it is valid (i.e. is part of the supported address pool) and not used, then
assign requested address.

e if the client provided hint, it is valid (i.e. is part of the supported address pool) but used, then
assign free address from the same pool.

e if the client provided hint, but it is not valid (i.e. is not part of the supported address pool, is
link-local or a multicast address), then ignore the hint completety.

e if the did not provide valid hint (or provided invalid one), try to assign address previously assigned
to this client (address caching)

e if this is the first time the client is seen, assign any address available.

4.16 XML files

During its execution, all dibbler components (client, server and relay) store its internal information
in the XML files. In Linux systems, they are stored in the /var/lib/dibbler directory. In Windows,
current directory (i.e. directory where exe files are located) is used instead. There are several xml files
generated. Since they are similar for each component, following list provides description for server only:

e server-CfgMgr.xml — Represents information read from a configuration file, e.g. available address
pool or DNS server configuration.

e server-IfaceMgr.xml — Represens detected interfaces in the operating system, as well as bound sockets
and similar information.

e server-AddrMgr.xml — This is database, which contains identity associations with associated ad-
dresses.

e server-cache.xml — Since caching is implemented by the server only, this file is only created by the
server. It contains information about previously assigned addresses.

4.17 Authentication and Authorization

Implementation of authentication and authorization in Dibbler in versions 0.8.4 and earlier was loosely
based on [26]. The implementation in 1.0.0 has been rewritten and is now based on standard [5] format
and mechanism, with custom extensions. Dibbler supports several mechanisms:

1. Replay detection — Dibbler is able to detect whether the messages are being new or replayed. It
implements the Replay Detection mechanism described in Section 21.3 of [5].

Dibbler 1.0.1 User’s Guide 39

2. Reconfigure Key Authentication protocol — Dibbler supports reconfiguration mechanism since 1.0.0.
Reconfiguration requires that the server generates a random key when configuring clients. That
key is later used by server and client to verify if the reconfigure request really comes from the ligit
server, not a rogue one. This mechanism uses HMAC-MD35 digests. This mechanism is described
in Section 21.5 of [5].

3. Delayed Authentication protocol — It is possible to pre-provision clients with keys and configure the
server to use them to sign its messages. Client informs the server that it is capable of using this
method by sending empty AUTH option in its SOLICIT message. The server then selects a key
and sends its key id to the client and signs its response. Then the client checks if it has a key with
matching key-id and then uses it to verify incoming packets and sign its own transmissions. This
mechanism uses HMAC-MD5 digests. That follows the mechanism specified in Section 21.4 of [5]

4. Dibbler protocol — Dibbler also supports its own, custom authentication extension. It is somewhat
similar to the delayed authentication, but has a number of advantages over it. First, it secures
the whole transmission, including initial SOLICIT message. Second, it offers much stronger di-
gests: HMAC-MD5, HMAC-SHA1, HMAC-SHA224, HMAC-SHA256, HMAC-SHA384 and HMAC-
SHA512. As this is Dibbler specific extension, it is not expected to inter-operate with any other
implementations. Third, it does not require to maintain strict client DUID-key-id bindings on the
server side, as clients send ID of the key they used to protect their transmissions.

The authentication/authorization implementation in Dibbler is highly flexible. That is both blessing
and a curse. You can tweak it to match your specific needs, but if you don’t know what you are doing,
you may get only an impression of security and complicate your deployment a lot.

Both delayed authentication and Dibbler protocols are dynamic. It means that the server and the
client reads its key files every time packet is sent or received. It means that the keys can be updated in
real-time without any need for restarts.

The following subsections explain how to take advantage of each mechanisms.

4.17.1 Replay Detection

One of the possible attacks in DHCPv6 is a replay detection. In particular, the attacker could capture
RECONFIGURE message and then replay it frequently to cause the client to transmit RENEW or other
messages many times. To prevent such an attack, a mechanism called replay detection was implemented.
It’s basic principle is that the server includes a value in replay-detection field in AUTH option. That
value must be strictly increasing, i.e. the server must use greater value in any next message. Since the
message is also protected using digest, attacker can’t simply increase the value, as it would invalidate the
digest.

This parameter is configured using auth-replay. The only allowed values are none and monotonic. It
should be noted that this mechanism is useless on its own and must be used with one of other authenti-
cation mechanisms.

The example for server configuration:

server.conf - example with enabled auth-replay protection
auth-protocol reconfigure-key

auth-replay monotonic

auth-methods digest-hmac-md5

iface ethO {
class {
pool 2001:db8:1::/64

Dibbler 1.0.1 User’s Guide 40

This is an example client configuration:

client.conf - with replay protection enabled
auth-protocol reconfigure-key

This specifies replay detection mechanism.
Available modes: none, monotonic
auth-replay monotonic

auth-methods digest-hmac-md5

iface eth0 {
ia

4.17.2 Reconfigure Key Authentication

Reconfigure key is a mechanism that protects only RECONFIGURE message that the server sends to
clients to force them to initiate reconfiguration procedure. The major benefit of Reconfigure key algorithm
is that it does not require any preconfigured key. The server randomly generates keys on the fly when
sending REPLY message back to a client that reported support for reconfiguration. The major flaw of
the Reconfigure key algorithm is that it sends the key value as a plain text, so client is only moderately
confident that the entity that sent RECONFIGURE is indeed the server. It is sufficient to sniff the initial
client configuration procedure to obtain the key to later spoof RECONFIGURE message to trick the
client to initiate reconfiguration process.

To take advantage of reconfigure key authentication, the client must do a couple things. First, it
must support reconfiguration. Second, it must set its authentication protocol to reconfigure-key. Third,
it must discard messages that are not authenticated. Finally, it should accept authentication method
HMAC-MD5, as this is the method used by reconfigure key authentication. The minimal configuration
file for client looks like this:

client.conf - reconfigure-key authentication
reconfigure-accept 1

auth-protocol reconfigure-key

auth-replay monotonic

auth-methods digest-hmac-md5

iface ethO {
ia

Server’s configuration is modified in the similar way:

server.conf - reconfigure-key authentication
auth-protocol reconfigure-key

auth-replay monotonic

auth-methods digest-hmac-md5

auth-required 0

iface ethO {

Dibbler 1.0.1 User’s Guide 41

class {
pool 2001:db8:1::/64

For a more fully featured example, see doc/examples/client-auth-reconf-key.conf for client and
doc/examples/server-auth-reconf-key.conf for server.

4.17.3 Delayed Authentication

Delayed authentication assumes that there are shared keys. Those keys must be somehow installed
on the client and server machines, using an out of band mechanisms, e.g. using scp, manually copying
keys using USB sticks etc.

Dibbler assumes that the keys are stored in /var/lib/dibbler/AAA directory. See section 4.17.5
below for details on how to generate and deploy keys. Let’s assume that the client and server shares a key
with key-id 0x01020304. In such case both client and server much name the key file AAA-key-01020304
and place it in /var/lib/dibbler/AAA directory.

In the delayed authentication keys belong to a given realm, which is really an administrative domain.
Each realm must have a unique name. For the examples we use ’dibbler test realm’ as the realm name.

Once this is done, both client and server should be configured to use delayed authentication. Here’s
minimal client’s example:

client.conf - delayed auth
auth-protocol delayed
auth-realm ’dibbler test realm’
auth-replay monotonic
auth-methods digest-hmac-mdb5

iface eth0 {
ia

Server’s configuration is similar:

server.conf - delayed auth
auth-protocol delayed
auth-replay monotonic
auth-methods digest-hmac-md5
auth-realm "dibbler test realm"
auth-required 1

iface ethO {
class {
pool 2001:db8:1::/64

There is one additional step required. Server must be told which keys are to be used when communi-
cating with specific clients. That is specified using a separate file keys-mapping, which should be placed
in /var/1ib/dibbler/AAA directory. The format of the file is simple. It is a text file. Each line consists
of a DUID followed by a coma, followed by key-id in hex notation. For example:

Dibbler 1.0.1 User’s Guide 42

Comments starting with # are ignored.
So are empty lines

00:01:02:03:04:06:07:08:09, 0x010203ff
00:04:ff:ab:cd:ef:09:87:65:al1:bc, Oxabcdef00

4.17.4 Dibbler Authentication Protocol

This is a mechanism that evolved from master thesis done by Michal Kowalczuk. It was rewritten by
Tomek Mrugalski to use standard AUTH option as defined in [5], rather then using its own non-standard
AUTH, KEYGENERATION and AAAAUTHENTICATION options.

This authentication protocol provides strong protection against message tampering, can be used to
authenticate the server (i.e. client is confident that it is talking to ligitimate server) by the clients and
vice versa (i.e. the server is confident that it is providing configuration to the legitimate client).

The first step is to deploy shared keys on the clients and the server. That is explained in details in
4.17.5. The server needs only one key per client. It is possible to share the same key among multiple
clients, but that somewhat defeats the purpose of authentication. The client side requires two files: the
key itself and a AAA-SPI, which contains 32-bit key identifier. That extra mechanism is needed for cases
where client has multiple keys provisioned. That can come in handy for doing key rollover or using
different keys for different visited networks.

Both client and server can specify a list of accepted digests, using auth-methods list. The first method
on the list will be used as a default, but the server can later override it and use different method.
Care should be taken to configure client and server with at least one common method, otherwise the
authentication will fail.

Once client is provided with key and AAA-SPI file that points to that key, the client sends SOLICIT
that includes AUTH option with used key-id and digest using the first method specified on auth-methods
list. The server will use specified key-id to select appropriate key and will validate the signature. Server
will then know that the client is legitimate as it used known secret key. The server will then send
ADVERTISE option that will be protected by digest generated with the same key. Once client receives
the message, it will do exactly the same verification as the server. Client will then know that the response
was sent by legitimate server. Both sides have established their validity and the configuration process will
continue.

Depending on the intended outcome, the server may require clients to authenticate and drop packets
from non-authenticated users. That is convenient for high-security networks where only known (registered)
clients are able to get a service.

An example client configuration file looks as follows:

auth-protocol dibbler
auth-replay monotonic
auth-methods digest-hmac-sha256, digest-hmac-shal, digest-hmac-mdb5

iface eth0 {
ia

3

An example server configuration file looks as follows:

auth-protocol dibbler
auth-replay monotonic
auth-required 1

Dibbler 1.0.1 User’s Guide 43

iface ethO {
class {
pool 2001:db8:1::/64

4.17.5 Key generation

Delayed authentication and Dibbler authentication require secret key to be generated and shared
between the server and the client.

For each pair of client and server three (two for delayed authentication) files are needed. Client uses
a file AAA-SPI, which contains 32-bit AAA-SPI (AAA Security Parameter Index) — eight hexadecimal
digits, to properly introduce himself (authorize) to server. This file is needed only for Dibbler authenti-
cation.

Also it needs file named AAA-key-AAASPI, which contains a key that is used to generate authentication
information in AUTH options. The AAA-key is any number of arbitrary chosen bytes and is generated
by administrator of DHCPv6 server. The server needs only one file per client to properly communicate
using authentication. The file is named AAA-key-AAASPI, where AAASPI is the same value, that client
has in AAA-SPI file. This file contains the same AAA-key, that client has in AAA-key file. Dibbler searches
for those files in AAA directory, which is /var/lib/dibbler/AAA when running under Linux and current
directory, when running under Windows.

Typical scenario of preparing a client and server to use authentication:

1. Administrator generates AAA-key-AAASPI file. AAASPI is an arbitrary chosen 32-bit number (as
described above). The file contains any AAA-key and can be administrator’s favorite poem or can
be simply generated using dd and /dev/urandom:

$ dd if=/dev/urandom of=AAA-key-b9a6452c bs=1 count=32

2. Administrator creates file AAMA-SPI which contains previously chosen AAASPI. This file will be used
by the client only.

3. Administrator transfers AAA-SPI and AAA-key-AAASPT to the client, using some secure method (e.g.
mail+PGP, scp, https) to avoid sniffing the key by a potential attacker.

4. Client: User stores AAA-SPI and AAA-key-AAASPI in AAA directory.
5. Server: Administrator stores AAA-key-AAASPI in AAA directory.

For example, configuration files can look like this:

o Server’s AAA-key-b9a6452c and client’s AAA-key (32 bytes):

ma8s9849pujhaw09y4h [80pashydp80f

e Client’s AAA-SPI (8 bytes):

b9a6452c

When configuration files are prepared and stored in client’s and server’s AAA directory you are ready
to use authentication. For detailed description of possible options see 6.7.

Dibbler 1.0.1 User’s Guide 44

4.18 Exceptions: per client configuration

All configuration parameters (except FQDN) are the same for all clients, e.g. all clients will receive
the same domain name and the same DNS servers information.

However, it is sometimes useful to provide some clients with different configuration parameters. For
example computers from the accouting department in a corporate network may be configured to be in
a different subdomain. Is is possible to specify that for particular client different configuration options
should be provided. Each client is identified by its DUID, by Remote-ID or by link-local address. This
mechanism is called per client configuration, but it is sometimes referred to as exceptions. Support for
per client prefix configuration has been added in 0.8.2RC1.

See section 5.3.12 for server configuration examples.

4.19 Vendor specific information

Dibbler supports vendor specific information options. As the name suggests, that option is specific to
a particular vendor. For each vendor (or enterprise-id), there may be defined a number of sub-options.
Let’s assume that we want to define a suboption 1027 in vendor-id 4491. The value of that option should
be 0x0013. To be able to support any vendor in a flexible manner, values are specified in a hex format in
server.conf. For example:

option vendor-spec 4491-1027-0x0013

When client asks for a vendor-specific info, server will send vendor-specific info option with enterprise
number set to 4491 and option-data will contain one sub-option with code 1027. The value of that option
will be 0x0013.

Although uncommon, it is also possible to specify multiple vendor options. Another server.conf
example:

option vendor-spec 4491-1027-0x0013,1234-5678-0x0002aaaa

Server algorithm for choosing, which vendor option should be sent, works as follows:

e When client requests for a speficic vendor (i.e. sends vendor-spec info option with vendor field set),
it will receive option for that specific vendor (i.e. requested 4491, got 4491).

e When client requests any vendor (i.e. sends only option request option with vendor-spec mentioned),
it will receive first vendor-spec info option from the list (i.e. 4491/1027/0x0013).

e When client requests for not supported vendor (i.e. 11111), it will receive first vendor-spec option
from the list (i.e. 5678/0002aaaa).

It is possible to configure Dibbler client to ask for vendor-specific info. Granted value will not be
used, so from the client’s point of view this feature may be used as testing tool for the server. Client can
request vendor-specific information option in one of the following ways:

option vendor-spec — Only option request option will be sent with vendor-spec info option mentioned.

option vendor-spec 1234 — option request option will be sent with vendor-spec info option mentioned,
but also vendor-spec info option with enterprise number set to 1234 will be sent.

option vendor-spec 1234 - 5678 — option request option will be sent with vendor-spec info option
mentioned, but also vendor-spec info option with enterprise number set to 1234 and sub-option
with code 5678 will be sent.

Dibbler 1.0.1 User’s Guide 45

Although that is almost never needed, it is possible to configure client to request multiple vendor-
specific options at the same time. That is also supported by the server. See 6.8.9 for examples.

However, if client sends requests for multiple vendor-specific options, which are not supported by the
server, for each sent option, server will assign one default vendor-spec option.

See 6.8.9 for client example and 5.3.11 for server examples.

4.20 Not connected interfaces (inactive-mode)

During normal startup, client tries to bind all interfaces defined in a configuration file. If such attempt
fails, client reports an error and gives up. Usually that is best action. However, in some cases it is possible
that interface is not ready yet, e.g. WLAN interface did not complete association. Dibbler attempt to
detect link-local addresses, bind any sockets or initiate any kind of communication will fail. To work
around this disadvantage, a new mode has been introduced in the 0.6.0RC4 version. It is possible to
modify client behavior, so it will accept downed and not running interfaces. To do so, inactive-mode
keyword must be added to client.conf file. In this mode, client will accept inactive interfaces, will add
them to inactive list and will periodically monitor its state. When the interface finally goes on-line, client
will try to configure it.

To test this mode, you can simulate deassociation using normal Ethernet interface. Issue following
commands:

e Bring down your interface (e.g. ifconfig ethO down)
e cdit client.conf to enable inactive-mode
e cxecute client: dibbler-client run

e client will print information related to not ready interface, and will periodically (once in 3 seconds)
check interface state.

e in a separate console, issue ifconfig ethO up to bring the interface up.

e dibbler-client will detect this and will initiate normal configuration process.

In the 0.6.1 version, similar feature has been introduced on the server side. See sections 6.8.13 and
5.3.15 for configuration examples.

4.21 Parameters not supported by server (insist-mode)

Client can be instructed to obtain several configuration options, for example DNS server configuration
or domain name. It is possible that server will not provide all requested options. Older versions of the
dibbler client had been very aggressive in such case. It tried very hard to obtain such options. To do so,
it did send INF-REQUEST to obtain such option. It is possible that some other DHCPv6 servers will
receive this message and will reply with valid configuration parameters. This behavior has changed in the
0.6.0RC4 release. Right now when client does not receive all requested options, it will complain, but will
take no action. To enable old behavior, so called insist-mode has been added. To enable this mode, add
insist-mode at the global section of the client.conf file. Example configuration file is provided in the
6.8.12.

4.22 Different DUID types
There are 3 different types of the DUID (DHCP Unique Identifier):

e type 1 (link-layer + time) — this DUID is based on Link-layer address and a current timestamp.
According to spec [5], that is a default type.

Dibbler 1.0.1 User’s Guide 46

e type 2 (enterprise number) — this DUID is based on the Private Enterprise Number assigned to
larger companies. Each vendor should maintain its own space of unique identifiers.

e type 3 (link-layer) — this DUID is based on link-layer address only.

According to spec [5], it is recommended to use link-layer + time, if possible. That DUID type
provides most uniqueness. It has one major drawback — it is impossible to know DUID before it is actually
generated. That poses significant disadvantage to sysadmins, who want to specify different configuration
for each client. In such cases, it is recommended to switch to link-layer only (type 3) DUIDs.

During first executing dibbler-client will generate its DUID and store it in client-duid file on disk.
During next startup DUID will be read from the file, not generated.

It is possible to specify, what DUID format should be used. It is worth noting that such definition is
taken into consideration during DUID generation only, i.e. during first client execution. To specify DUID
type, put only one of the following lines in the client.conf file:

uncommend only ONE of the lines below
duid-type duid-11t

#duid-type duid-en 1234 0x56789abcde
#duid-type duid-11

iface ethO {
ia
option dns-server

I;

When using link-layer+time or link-layer DUID types, dibbler will autodetect addresses. To generate
enterprise number-based DUID, specific data must be provided: enterprise-number (a 32-bit integer,
1234 in the example above) and a enterprise-specific indentifier of arbitrary length (56:78:9a:bc:de in the
example above).

4.23 Debugging/compatibility features

During interoperability test session, it has been discovered that sometimes various different implemen-
tations of the DHCPv6 protocol has problem to interact with each other. As the protocol itself does not
specify all aspects and details, some things can ba done differently and there is no only one ,,proper way”.
It also happens that some implementations may have problems with different than its authors expected
behaviors. To allow better interoperation between such implementation, dibbler has some features, which
cause different behaviors. This could result in a successful operation with other servers, clients and relays.

Normal users don’t have to worry about those options, unless they are using different servers, clients
and relays. Those options also may be useful for other vendors, who want to test their implementations.
Therefore those options can be perceived as a debugging or testing features.

4.23.1 Interface-id option

During message relaying (done by relays), options can be placed in the RELAY-FORW message is
arbitrary order. In general, there are two options used: interface-id option and relay-message option.
The former defines interface identifier, which the original data has been received from, while the later
contains the whole original message. When several relays are used, such message-in-option encapsulation
can occur multiple times.

It is possible to instruct relay to store interface-id before relay-message option or after. There is
also possibility to instruct server to omit the interface-id option altogether, but since this violates [5],

Dibbler 1.0.1 User’s Guide 47

it should not be used. In general, this configuration parameter is only useful when dealing with buggy
relays, which can’t handle all option orders properly. Consider this parameter a debugging feature.
Similar parameter is defined for the server. Server uses it during RELAY-REPL generation.
See description of the interface-id-order parameters in Server configuation (section 5) and Relay
configuration (section 7).

4.23.2 Non-empty IA_NA option

When client is interested in receiving an address, it sends IA_NA option. In this option it may (but
don’t have to) include addresses (using JAADDR suboption) as hints for the server.

It has been detected that some servers does not support properly (perfectly valid) empty IA_NA
options. To work around this problem, dibbler-client can be instructed to include two JAADDR in the
IA_NA option. Here is minimal example config, which achieves that:

iface ethO {

ia {
address
address
}

4.23.3 Providing address/prefix hints

Dibbler client can be instructed to send specific addresses or prefixes in its SOLICIT messages. This
can be achieved by using following syntax:

client.conf - request specific address/prefix
iface ethO {
ia {
address { 2001:db8:dead:beef:: }

}
pd {

prefix 2001:db8:aaaa::/64
}

Be default, client will use those addresses in SOLICIT message only. When transmitting REQUEST
message, it will copy proposals from ADVERTISE message, received from a server. To force client to use
those specified addresses and/or prefixes also in REQUEST, please use insist-mode directive.

4.24 Experimental features

This section contains experimental features. Besides serving as a general purpose DHCPv6 solution,
dibbler is also used as a research tool for new ideas. ® Normal users are recommended NOT to use any
of those features. Advanced users should take extra caution. Also be aware that those options may not
work as expected, may be incomplete and not documented properly. You have been warned.

Since those mechanisms are non-standard, they are disabled by default. To enable them, ,experimen-
tal” keyword must be placed in the client.conf or server.conf files.

5This was particularly true during my Ph. D. research.

Dibbler 1.0.1 User’s Guide 48

4.24.1 Server Performance mode

When running in a normal mode, the server rewrites its full database every time there is a change. That
becomes problematic once the number of clients is large and number of packets per second is sufficiently
high. To somehow eleviate the problem, an experiment