N\

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Beneath Apple ProDOS

Beneath ple ProDOS

FOR USERS OF APPLE Il PLUS, APPLE lle AND APPLE llc COMPUTERS

QUALITY
By Don Worth and Pieter Lechner SOFTWARE

“A2B-BAPD1-1 1A COVER RGB.PICT” 15792 KB 2001-07-17 dpi: 400h x 400v pix: 1968h x 3071v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0001 of 0340 |

\

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Beneath Apple ProDOS

Beneath Apple ProDOS

FOR USERS OF APPLE Il PLUS, APPLE lle AND APPLE llc COMPUTERS

By Don Worth and Pieter Lechner SOFTWARE

“A2B-BAPD1-1 1B COVER GR.PICT” 5932 KB 2001-07-17 dpi: 400h x 400v pix: 1973h x 3071v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0002 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Beneath Apple ProDOS

by Don D. Worth and Pieter M. Lechner

riRsr PRINTING , 148

ERRATA MARKED &1 "ERR" IN MARGIA,
fot EXAMPLE sl PraE -6

QUALITY
SOFTWARE

21601 Marilla Street
Chatsworth, California 91311

“A2B-BAPD1-1 1C TTL COVERBW.PICT” 144 KB 2001-07-17 dpi: 600h x 600v pix: 2734h x 3725v

| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0003 of 0340

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Apple Books from Quality Software

Beneath Apple DOS
by Don Worth & Pieter Lechner

Understanding the Apple I1
by Jim Sather

Understanding the Apple Ile (Available Fall 1984)
by Jim Sather

Apple Utility Software from Quality Software

Bag of Tricks (includes diskette)
by Don Worth & Pieter Lechner

Universal File Conversion (includes diskette)
by Gary Charpentier

Production Editor: Kathryn M. Sechmidt
Original Diagrams: Don Worth & Pieter Lechner
Art Director: Vie Grenrock

Illustrations By: George Garcia

Compositor: American Typesetting, Inc.

Printed By: California Offset Printers

tained herein.

International Standard Book Number: 0-912985-05-4
Library of Congress Number: 84-61383

86 85 84 54321

Printed in the United States of America

$19.95
$22.95

$24.95

$39.95

$34.95

© 1984 Quality Software. All rights reserved. No part of this book may be reprinted,
or reproduced, or utilized in any form or by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying and recording, or
in any information storage and retrieval system, without permission in writing from
the Publisher. No patent liability is assumed with respect to the use of the informa-
tion contained herein. While every precaution has been taken in the preparation of
this book, the publisher assumes no responsibility for errors or omissions. Neither is
any liability assumed for damages resulting from the use of the information con-

“A2B-BAPD1-1 1D TTL ORDER.PICT” 301 KB 2001-07-17 dpi: 600h x 600V pix: 2698h x 4342v

| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner

Page 0004 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

This book is dedicated to my sister, Betsy, who said she
had room on her bookshelf for another one of my books.

Don D. Worth

This book is dedicated to my Father and Mother, with a
deep sense of appreciation and gratitude.

Pieter M. Lechner

“A2B-BAPD1-1 1E TTL DEDIC.PICT” 59 KB 2001-07-17 dpi: 600h x 600v pix: 2099h x 992v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0005 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Acknowledgements

The authors wish to thank Quality Software for their able assistance in
producing this book. Special thanks to Bob Christiansen, Bob Pierce,
Kathy Schmidt, George Garcia, Vie Grenrock, and Jeff Weinstein for
their unique and special contributions.

“A2B-BAPD1-1 1F TTL ACK.PICT” 65 KB 2001-07-17 dpi: 600h x 600v pix: 2708h x 831v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0006 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

CONTENTS
Chapter 1 INTRODUCTION
Chapter2 TO BUILD A BETTER DOS

THE DEHCIENCIES OF DOS 21

ENTER ProDOS 2-3

MORE ProDOS ADVANTAGES 2-5

WHAT YOU GIVE UPWITH ProDOS 2-7

OTHER DIFFERENCES BETWEEN ProDOS AND DOS 29

Chapter 3 DISK Il HARDWARE AND DISKETTE FORMATTING

TRACKS AND SECTORS 3-2
TRACK FORMATTING 3-5
DISK 1l BLOCK AND SECTOR INTERLEAVING ~ 3-15

Chapter4 VOLUMES, DIRECTORIES, AND FILES

THE DISKETTE VOLUME 4-1

THE VOLUME DIRECTORY 4-6

FILE STRUCTURES 4-13

FILE DATATYPES 4-19

DIR FILES—ProDOS SUBDIRECTORIES 4-26
EMERGENCY REPAIRS 4-30
FRAGMENTATION 4-33

Chapter5 THE STRUCTURE OF ProDOS

ProDOS MEMORY USE = 5-1
GLOBALPAGES 5-5
WHAT HAPPENS DURING BOOTING 5-8

Chapter 6 USING ProDOS FROM ASSEMBLY LANGUAGE

CAVEAT 61

DIRECT USE OF THE DISKETTE DRIVE ~ 6-2

CALLING THE DISK Il DEVICE DRIVER (BLOCK ACCESS) 6-6
CALLING THE MACHINE LANGUAGE INTERFACE 6-12

MLI PARAMETER LISTS BY RUNCTION CODE 6-156

PASSING COMMAND LINES TO THE BASIC INTERPRETER 6-61
COMMON ALGORITHMS ~ 6-63

Chapter7 CUSTOMIZING ProDOS

SYSTEM PROGRAMMING WITH ProDOS 7-1
INSTALLING A PROGRAM BETWEEN THE BI AND ITS BUFFERS 74
ADDING YOUR OWN COMMANDS TO THE ProDOS

BASIC INTERPRETER 7-5

“A2B-BAPD1-1 1G TOC1.PICT” 280 KB 2001-07-17 dpi: 600h x 600v pix: 2582h x 4351v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0007 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Chapter 8

Appendix A

Appendix B

AppendixC

AppendixD

Appendix E

Glossary

Index

Reference Card

CONTENTS

DISABLE /RAM VOLUME FOR 128K MACHINES 7-7

WRITING YOUR OWN INTERPRETER 7-11

INSTALLING NEW PERIPHERAL DRIVES 7-13

INSTALLING AN INTERRUPT HANDLER 7-15

DIRECT MODIFICATION OF ProDOS—AWORD OFWARNING 7-18

ProDOS GLOBAL PAGES

BASIC INTERPRETER GLOBAL PAGE 8-2
ProDOS SYSTEM GLOBAL PAGE 8-5
ORDERING THE SUPPLEMENT TO Beneath Apple ProDOS 8-8

EXAMPLE PROGRAMS

STORING THE PROGRAMS ON DISKETTE A-3
DUMP—Track Dump Utility A4
FORMAT—Reformat a Range of Tracks A9
ZAP—Disk Update Utility A-19

MAP—Map Freespace on aVolume A-22
FIB—Find Index Block Utility A-25
TYPE—Type Command A-30
DUMBTERM—Dumb-Terminal Program

DISKETTE PROTECTION SCHEMES

A BRIEF HISTORY OF APPLE SOFTWARE PROTECTION B-2
PROTECTION METHODS B-3
THE IDEAL PROTECTION SCHEME B-7

NIBBLIZING

ENCODING TECHNIQUES C-1
THE ENCODING PROCESS C-5

THE LOGIC STATE SEQUENCER

ProDOS, DOS, AND SOS

CONVERTING FROM DOS TO ProDOS E-1
WRITING PROGRAMS FOR ProDOS AND SOS E-3

Collected Car YZOOK s

“A2B-BAPD1-1 1H TOC2.PICT” 254 KB 2001-07-17 dpi: 600h x 600V pix: 2653h x 4495v

L First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner

Page 0008 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

CHAPTER 1

INTRODUCTION

Beneath Apple ProDOS is intended to serve as a companion to
the manuals provided by Apple Computer, Inc. for ProDOS,
providing additional information for the advanced programmer or
for the novice Apple user who wants to know more about the
structure of disks. It is not the intent of'this manual to replace the
documentation provided by Apple. Although, for the sake of
continuity, some of the material covered in the Apple manuals is
also covered here, it will be assumed that the reader is reasonably
familiar with the contents of Apple’s ProDOS User’s Manual and
BASIC Programming With ProDOS. Since all chapters presented
here may not be of use to each Apple owner, each has been written

WH ERE'%HE
GOING?

i
bR s

“A2B-BAPD1-2 01-01.PICT” 298 KB 2001-07-17 dpi: 600h x 600v pix: 2689h x 3896v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0009 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

1-2 Beneath Apple ProDOS

to stand on its own. Readers of our earlier book, Beneath Apple
DOS, will notice that we have retained the basic organization of
that book in an attempt to help them familiarize themselves with
Beneath Apple ProDOS more quickly.

The information presented here is a result of intensive
disassembly and annotation of various versions of ProDOS by the
authors. It also uses as a reference various application notes and
preliminary documentation from Apple. Although no guarantee
can be made concerning the accuracy of the information presented
here, all of the material included in Beneath Apple ProDOS has
been thoroughly researched and tested.

There were several reasons for writing Beneath Apple ProDOS:

® To show how to access ProDOS and/or the Disk IT drive
directly from machine language.

@ To help you fix damaged disks.

® To correct errors and omissions in the Apple documentation.

® To allow you to customize ProDOS to fit your needs.

® To provide complete information on diskette formatting.

® To document the internal logic of ProDOS.

® To present a critical, non-Apple perspective of ProDOS.

® To provide more examples of ProDOS programming.

® Tohelp you to learn-about how an operating system works.

When Apple introduced ProDOS Version 1.0.1 in January 1984,
three manuals were available: the ProDOS User’s Manual
documents the use of ProDOS utilities; the BASIC Programming
With ProDOS.manual describes the command language supported
by the BASIC Interpreter and how to write BASIC programs
which access the disk; and the ProDOS Technical Reference
Manual (for the Apple IT family) documents the assembly language
interfaces to ProDOS. It should be stated that this technical
reference manual represents the best internal documentation
Apple has ever provided to users of one of their operating systems.
Unfortunately, the ProDOS Technical Reference Manual
documents a prerelease version of ProDOS, and is not entirely
accurate for the current release at the time of this writing. In
addition, many sections require further explanation before the
interfaces they describe can be used at all. For example, the
discussion of how one adds a command to the BASIC Interpreter
omits several vital pieces of information which are documented
fully in Beneath Apple ProDOS. In addition, none of the Apple

st David Crocq (Fane 2001) : The Apple 7 S0S and
Macintesh OS docs are 7rea‘f foo.
T don'T think PPTRM exceeds These .
- “A2B-BAPD1-2 01-02.PICT” 617 KB 2001-07-17 dpi: 600h x 600v pix: 2801h x 4750v
| First Edition « 1984 < Written by Don D. Worth & Pieter M. Lechner Page 0010 of 0340)

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Intfroduction 14-3

documentation addresses diskette formatting or direct access of
the Disk II family of controllers from assembly language. Beneath
Apple ProDOS was written in an attempt to improve upon the
documentation base established by Apple. Most of the topics
covered by Apple’s technical manual are covered here also, but
they are explained in a different and, we hope, clearer way, based
upon a programmer’s understanding of the code in the ProDOS
Kernel and the BASIC Interpreter. We have also added
substantial information on diskette formatting and repair, the
internal logic and structure of ProDOS, and customizing
techniques, as well as providing several example programs and
quick reference materials.

In addition to the ProDOS specific information provided, many
of the discussions also apply to other operating systemsin the
Apple IT and Apple I1I family of machines. For example, disk
formatting at the track and sector level is for the most part the
same. Also, the format of a ProDOS volume is nearly identical to
that of an Apple III SOS volume.

For those readers who would like to have a detailed description
of every bit of code in the current version of ProDOS, a supplement
to this book is available and can-be ordered directlyfrom Quality
Software. Please see Chapter 8 for details.

The ‘wfp'emevn-l' contams an eyrcrh I,H with

correchms B THe boolk-

“A2B-BAPD1-2 01-03.PICT” 350 KB 2001-07-17 dpi: 600h x 600v pix: 2698h x 4396v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0011 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

CHAPTER 2

TO BUILD A BETTER DOS

From June 1978 to January 1984, the primary disk operating
system for the Apple II family was Apple DOS. Throughout
its first six years of existence, DOS has gone through a number of
changes, culminating in its final version, DOS 3.3. DOS was
originally designed primarily to support the BASIC programmer,
but has since been adopted by assembly language programmers
and by the majority of Apple users for a variety of applications.

THE DEFICIENCIES OF DOS

Although it is a flexible and easy to use operating system, DOS
suffers from many weaknesses. Among these are;

® DOSisslow. Since each byte read from the disk is copied
between memory buffers up to three times, a large portion of
the actual overhead in reading data from the disk is in
processor manipulation after the data has been read. To
circumvent this, several “fast DOS” packages have been
marketed by third parties which heavily modify DOS to
prevent multiple buffering under certain circumstances.

® DOSisdevice dependent. When DOS was developed, the only
mass storage device for the Apple was the Disk II diskette
drive. Now that diskette drives with increased capacity and
hard disks are available, a more device independent file
organization is needed. DOS is limited in the number of files
which can be stored on a diskette as well as their maximum
size. These are significant drawbacks when a hard disk with
five million bytes or more is used.

“A2B-BAPD1-2 02-01.PICT" 379 KB 2001-07-17 dpi: 600h x 600v pix: 2707h x 3905v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0012 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

2-2 Beneath Apple ProDOS

® Over the years, new hardware has been introduced by Apple
and other manufacturers which DOS does not intrinsically
support. The Apple Ile with its 80-column card and the
Thunderclock are examples.

® DOSis difficult to customize. There are few external “hooks”
provided to allow system programmers the opportunity to
personalize the operating system to special applications. For
example, a new command cannot be added to DOS without
version dependent patches.

® DOSfile structures and system calls are incompatible with
other operating systems. Each operating system Apple has
announced in the past has had its own way of organizing data
on a diskette. There is no compatibility between DOS, SOS and
the Apple Pascal system. This means that special utilities must
be written to move data between these systems and that
applications developed in one environment will not run
without major modifications under any other system.

® DOS does not provide a consistent mechanism for supporting
multiple peripherals which can generate hardware interrupts.
In the past, various manufacturers have implemented
interrupt handlers on their own, often resulting in
incompatibilities between their devices.

® DOS provides little standardization of memory use and of
operating system interfaces. Most “interesting” locations
within DOS are internalized and therefore not officially
available to the programmer. Also, since there is no standard
way to set aside portions of memory for specific applications, it
is difficult to put a program in a “safe” place so that it may co-
reside with another application.

® Although DOS allows most of its commands to be executed
from within a BASIC program, additional function is needed.
Under DOS, there is no way to conveniently read a file
directory from a BASIC program, or to save and restore
Applesoft’s variables, for example. Likewise, the
implementation of program CHAINing is not integrated into
DOS.

“A2B-BAPD1-2 02-02.PICT” 481 KB 2001-07-17 dpi: 600h x 600v pix: 2689h x 4592v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0013 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

To Build a Better DOS 2-3

'WW

A TINIMAMNNNTNRN NI\ W,

AN AN AN NN

® Additional functions under DOS which would also be desirable
(toname only a few) are: a display of the amount of freespace
left on a diskette; a way to show the address and length
parameters stored with a binary file; and a way to create
unbootable data disks to increase storage space for user files.

ENTER ProDOS

In January 1984, Apple introduced a new disk operating system
for its Apple II family of computers. ProDOS is intended to replace
DOS 3.3 as the standard Apple I operating system, and it is now
being shipped with all new Disk II drives instead of DOS.
Although, on the surface, ProDOS is very similar in appearance to
DOS 3.3, it represents a major redesign and is a new and separate
system. From the beginning, ProDOS addresses all of DOS’s
weaknesses mentioned above:

® ProDOS is up to eight times faster than DOS in disk access. A
new “direct read” mode has been implemented which allows
multisector reads to be performed directly from the disk to the
programmer’s buffer without multiple buffering within
ProDOS itself. When performing direct reads, ProDOS can
transfer data from the diskette at a rate of eight kilobytes per
second (at best, DOS can read one kilobyte per second). Even
when reading small amounts of data from the disk, ProDOS
does less multiple buffering than does DOS.

“A2B-BAPD1-2 02-03.PICT” 461 KB 2001-07-17 dpi: 600h x 600v pix: 2662h x 4620v

| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0014 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

2-4 Beneath Apple ProDOS

® ProDOS provides a device independent interface to “foreign”
mass storage devices. The concept of a hierarchically
organized disk “volume” was created to allow for large
capacity devices, and vectors are provided to allow device
drivers for non-standard disks to be integrated into ProDOS.
Directories may be dynamically expanded to unlimited size to
allow for large numbers of files, and an individual file may
now occupy up to 16 million bytes of space on a volume. The
largest volume which can be supported is 32 million bytes.

® Device driver support has also been provided for
calendar/clock peripherals, allowing time and date stamping
of files, and support for the Apple Ile and ITe 80-column
hardware is a part of ProDOS.

® Learning from its mistakes with DOS, Apple has externalized
as many ProDOS functions as possible through well defined
system calls. In addition to standard file management system
calls, interfaces are provided to support user written
commands to the BASIC Interpreter, and to invoke a ProDOS
command from within an assembly language program.

® The ProDOS file and volume structure is nearly identical to
that of the Apple III SOS operating system. There are even
strong similarities between ProDOS system calls and those on
Apple’s Macintosh! A ProDOS volume may be accessed from
SOS directly without the need for a special utility program.
ProDOS system calls dre a large subset of those offered under
SOS, and applications may be developed which will easily port
between the two operating systems.

® ProDOS definesa protocol which interrupting devices may use
to coexist harmoniously in the same machine. Up to four
interrupt drivers may be installed in ProDOS, and-each device
need not know that the others exist.

® Most system locations of general interest have been placed in
externally accessible areas of memory called global pages.
Through a global page, a user written program can obtain the
current ProDOS version number, the most recent values
entered on a ProDOS command line, or the configuration of the-
current hardware including the machine type, memory size,
and contents of the peripheral card slots. In addition, a

“A2B-BAPD1-2 02-04.PICT” 536 KB 2001-07-17 dpi: 600h x 600v pix: 2698h x 4584v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0015 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)
To Build a Better DOS 2-5

voluntary system has been provided to “fence off” portions of
memory for special uses by marking a memory bit map in the
system global page.

® New support has been provided under ProDOS for BASIC
programmers. A BASIC program can now read a directory
file, make a “snapshot” of its variables on disk and later restore
them, and chain between programs, preserving the variables.

® The CATALOG command under ProDOS displays the address
and length values of binary files as well as the space
remaining on a disk volume.

MORE ProDOS ADVANTAGES

In addition to addressing needs which grew out of DOS, Apple
has also come up with other enhancements with ProDOS:

® A new “smart” RUN command (“~”) has been added which will
automatically perform the function of a RUN, EXEC or

‘BRUN .as appropriate depending upon the type of file being
RUN.

® The assembly language interface has been expanded to include
obtaining and updating statistical information about a file,
moving the end of file mark in a file, allowing line-at-a-time
reads versus byte stream reads, determining the names of
diskettes mounted in online drives, and creating new files or
directories. In addition, entry points are included to allow
applications to pass control from program to program and to
allocate memory.

® The language independent, file management portion of
ProDOS (the Kernel), is a separate unit from the BASIC
support routines. Applications may be written which reclaim
the memory normally occupied by BASIC support routines.

® All ProDOS utilities are menu oriented with enhanced user
interfaces.

® Owners of the Extended 80-column card in an Apple Ile have
access to a 64K “RAM/electronic disk drive” under ProDOS.
Data stored there may be accessed almost instantaneously
all>wing much more efficient loading and storing of programs
and data.

“A2B-BAPD1-2 02-05.PICT” 463 KB 2001-07-17 dpi: 600h x 600v pix: 2671h x 4548v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0016 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

2-6 Beneath Apple ProDOS

HIS WORK 15

REALLY REMARKKULA
NICE A F
JOBS! Q 0
g

® Applesoft string “garbage collection” has been rewritten
under ProDOS, and is now many times faster and more
efficient.

® Files may be restricted or “locked” by type of access. Read only
files may be established, or files which may be written but not

destroyed, for example.

® The binary save (BSAVE) command has been enhanced under
ProDOS. BSAVEs into existing binary files whose A and/or L
keywords are omitted will use the current values of the target
file. Also, other file types besides BIN files may be BLOADed
and BSAVE(, allowing direct modification at a byte-by-byte
level. (For example, one can BLOAD a text file and examine it
in memory, making modifications to the hex image.)

® The record length of a random access text file is now stored
with the file, allowing subsequent BASIC programs to access
it without knowing its record length.

® Data disk volumes may now be created which do not contain an
image of the operating system. ProDOS makes more efficient
use of the disk, resulting in slightly more user storage for files.

: - “A2B-BAPD1-2 02-06.PICT” 411 KB 2001-07-17 dpi: 600h x 600v pix: 2716h x 4601v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0017 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

To Build a BetterDOS 2-7

® More information about a file is stored in the directory entry
under ProDOS than under DOS. The length of a binary or
Applesoft file, for example, is stored in the directory, not in the
file itself.

® The manner in which the ProDOS BASIC Interpreter
intercepts a BASIC program’s command lines has been
improved and is more reliable. It is now very difficult to
“disconnect” ProDOS as could occur under DOS.

® More file types (256) are available under ProDOS. Some are
“user definable.”

WHAT YOU GIVE UP WITH ProDOS

ProDOS is not for everyone, however: There are a number of

disadvantages to moving from DOS to ProDOS:

® Most assembly language programs which ran under DOS will
have to be rewritten for ProDOS. The file management
interfaces are completely different, and the “PRINT
control-D” mechanism which worked from assembly language
under DOS no longer works under ProDOS. This means that
most commerecial applications, such as word processors,
compilers, and spreadsheets, will not be available for ProDOS
until they are converted. This state of affairs will change,
however, since ProDOS is now the “official” operating system
for Apple II computers.

® Apple’solder version of BASIC, Integer BASIC, is not
supported under ProDOS. Indeed, Applesoft must be in the
motherboard ROMs.for the ProDOS BASIC Interpreter to
work at all. This means that only the ProDOS Kernel, used in a
standalone, run-time environment, will run.on an original,
Integer Apple II. It is likely that someone (probably not Apple)
will soon market an Integer BASIC interpreter for ProDOS,
however.

® ProDOS requires 64K to support BASIC programming and
commands. It can be made to run in 48K for run-time assembly
language applications, but 64K is requiredto run the BASIC
Interpreter which incorporates all of the ProDOS commands
(e.g. CATALOG, BLOAD, etc.).

“A2B-BAPD1-2 02-07.PICT" 478 KB 2001-07-17 dpi: 600h x 600v pix: 2717h x 4637v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0018 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

2-8 Beneath Apple ProDOS

® Under BASIC, less memory is available to the program.
Under DOS, HIMEM was set at $9600 with three file buffers
built into DOS. Under ProDOS, HIMEM is at $9600 with no
file buffers built in. Thus, as soon as a ProDOS BASIC
program opens a file, HIMEM is moved down and 1K less
memory is available. Likewise, since the Kernel occupies the
Language Card (or bank switched memory), this space may
not be used for other purposes. (DOS could be relocated into
the language card to make more space available to BASIC
programs. Also, Applesoft enhancement aid programs
typically were loaded intothe language card’s alternate 4K
bank under DOS. This is where ProDOS stores its Quit code
now.)

® ProDOS only maintains a single directory prefix for all
volumes, rather than remembering a default prefix for each
volume. Hence, diskette swapping and access to multiple
‘volumes at once can be cumbersome.

® Although the pathname for a file may be 64 characters, the
actual name of a file may be only 15 characters, and may not
include any special characters or blanks (other than “period”).
30 characters were permitted under DOS.

® Under DOS, up to 16 files may be opened concurrently by a
BASIC program. Under ProDOS, only eight files may be
opened at once. Also, an open file “cost” 595 bytes under DOS;
under ProDOS, a 1024-byte buffer is allocated.

® BASIC programs which are computationally oriented will run
about four percent slower on ProDOS than they did under
DOS. This is because the ProDOS BASIC Interpreter leaves
Applesoft TRACE running (invisibly) at all times so that it can
monitor the execution of the program and perform garbage
collection and disk commands. On the other hand, if strings or
disk accesses are used, this degradation of performance will be
more than offset by improvements in these areas.

@ Several DOS commands have been removed, including
NOMON, MON, and VERIFY. There is now no way to see the
commands in an EXEC file as they are executed.

® Ifa ProDOS directory is destroyed, it is harder to reconstruct
than was the DOS CATALOG track. More information is
stored in the directory making it harder to identify a file’s type
“A2B-BAPD1-2 02-08.PICT” 547 KB 2001-07-17 dpi: 600h x 600v pix: 2698h x 4583v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0019 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

To Build a BetterDOS 2-9

by examining its data blocks. Also, since seedling files do not
have index blocks (similar to DOS Track/Sector Lists), they
are almost impossible to find once their directory entries are
gone.

OTHER DIFFERENCES BETWEEN ProDOS AND DOS

There are a few other minor differences between ProDOS and
DOS which are worth noting:
® The BRUN command now calls the target program rather
than jumping to it as did DOS. The invoked program may
return to ProDOS via a return subroutine.

® CLOSE will not produce an error message if the file named is
not currently open.

® APPEND implies WRITE. It is not necessary to follow an
APPEND command with a WRITE command in a BASIC
program.

® ASCII text in ProDOS directory entries or TXT files is stored
with the most significant bit off.

“A2B-BAPD1-2 02-09.PICT” 231 KB 2001-07-17 dpi: 600h x 600v pix: 2734h x 4637v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0020 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

CHAPTER 3

DISK Il HARDWARE
AND DISKETTE FORMATTING

This chapter will explain how data is stored on a floppy diskette
using a disk drive (Disk II family or equivalent). Much of the
information in this chapter is applicable not only to ProDOS but
also to other operating systems on the Apple computer (DOS,
PASCAL, CP/M). Because ProDOS isolates device specific code,
the contents of this chapter should not be considered a prerequisite
for understanding succeeding chapters.

For system housekeeping, ProDOS divides external storage
devices into blocks. Each block contains 512 bytes of information.
It is device independent in that each device has its own driver. This
driver enables ProDOS to read and write blocks, and additionally
to obtain the status of a device. The device itself may actually store
information in a number of ways and not necessarily in blocks.
Blocks can be thought of as a conceptual unit of data that was
created in software, having little or no relation to how data is
actually stored on an external storage device. In fact, the standard
Disk II stores information in a track and sector format. The device
driver provides a mapping between these tracks and sectors, and
the blocks. Since a sector contains 256 bytes, two sectors are
required for each block. There are 560 sectors on a diskette and
therefore 280 blocks. Chapter 4 deals with how ProDOS allocates
these blocks to create files.

: - “A2B-BAPD1-2 03-01.PICT" 364 KB 2001-07-17 dpi: 600h x 600v pix: 2653h x 3422v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0021 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

3-2 Beneath Apple ProDOS

TRACKS AND SECTORS

As stated above, a diskette is divided into tracks and sectors.
This is done during the initialization or formatting process. A
track is a physically defined circular path which is concentric
‘with the hole in the center of the diskette. Each track is identified
by its distance from the center of the disk. Similar to a phonograph
stylus, the read/write head of the disk drive may be positioned over
any given track. The tracks are similar to the grooves in a record,
but they are not connected in a spiral. Much like playing a record,
the diskette is spun at a constant speed while the data is read from
or written to its surface with the read/write head. Apple formats
its diskettes into 35 tracks, numbered from 0 to 34, track 0 being
the outermost track and track 34 the innermost. Figure 3.1
illustrates the concept of tracks, although they are invisible to the
eye on-a real diskette.

It should be pointed out, for the sake of accuracy, that the disk
arm can position itself over 70 distinct locations or phases. To
move the arm from one track to the next, two phases of the stepper
motor which moves the arm must be cycled. This implies that data
might be stored on 70 tracks, rather than 35. Unfortunately, the
resolution of the read/write head is such that attempts to use these
phantom half tracks create so much cross-talk that data is lost or
overwritten. Although standard ProDOS uses only full tracks
(even phases), some copy protected disks use half tracks (odd
phases) or combinations of the two. This will- work provided that no
data is closer than two phases from other data. See APPENDIX B
for more information on copy protection schemes.

TRACK 0

PR, / | TRACK 17
-~ ~
—_—— ~
. - -
// 7 o \\/E
— ~ < .
S - ~ N | TRACK 34

/., ~ A\)/\(J
/ \.
! / N SECTORS
[Vol
L I [
vy \ ! / |
\ \ \ Q/ ;)
Vv N\ VAR
NN s 7/
NN ~ e

ONE TRACK

Figure 3.1 Tracks and Sectors

“A2B-BAPD1-2 03-02.PICT” 488 KB 2001-07-17 dpi: 600h x 600v pix: 2707h x 4620v

L First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner Page 0022 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Disk Il Hardware and Diskette Formatting 3-3

A sector is a subdivision of a track. It is the smallest unit of
“updatable” data on the diskette. While ProDOS reads or writes
data a block at a time (two sectors), the device driver operates on
one sector at a time. This allows the device driver to use only a -
small portion of memory as a buffer during read or write
operations. Apple has used two different track formats to date. The
initial operating system divided the track into 13 sectors, but all
recent operating systems use 16 sectors. The sectoring does not use
the index hole, provided on most diskettes, to locate the first sector
of the track. The implication is that the software must be able to
locate any given track and sector with no help from the hardware.
This scheme, known as soft sectoring, takes a little more space for
storage but allows flexibility, as evidenced by the previous change
from 13 sectorsto 16 sectors per track. The following table
categorizes the amount of data stored.on a diskette under ProDOS.
Both system and data diskettes are categorized.

DISKETTE ORGANIZATION
TRACKS e 35
SECTORSPERTRACK ..., 16
SECTORS PERDISKETTE. 560 |-
BYTESPERSECTOR............covvun.... 256
BYTESPERDISKETTE 143,360
USABLE* BLOCKS FOR DATA STORAGE

ProDOS System Diskette 221

ProDOS Data Diskette 273
USABLE*BYTES PER DISKETTE.

ProDOS System Diskette 113,152

ProDOS Data Diskette 139,776

*System Diskette includes PRODOS and BASIC.SYSTEM files only.

“A2B-BAPD1-2 03-03.PICT” 416 KB 2001-07-17 dpi: 600h x 600v pix: 2663h x 4592v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0023 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

3-4 Beneath Apple ProDOS

TRACK FORMAITING

Up to this point we have broken down the structure of data to the
track and sector level. To better understand how data is stored and
retrieved, we will start at the bottom and work up.

As this manual is about software (ProDOS), we will deal
primarily with the function of the hardware rather than explain
how it performs that function. For example, while data is in fact
stored as a continuous stream of analog signals, we will deal with
discrete digital data, i.e. a “0” or a “1”. We recognize that the
hardware converts analog data to digital data, but how this is
accomplished is beyond the scope of this manual. For a full and
detailed explanation of the hardware, please refer to Jim Sather’s
excellent book, Understanding the Apple I1, published by Quality
Software.

Data bits arerecorded on the diskette in precise intervals. The

“hardware recognizes each of these intervals as either a “0” or a “1”
We will define these intervals to be bit-cells. A bit cell can be
thought of as the distance the diskette moves in four machine
cycles; which is about four microseconds. Using this
representation, data written on and read back from the diskette
takes the form shown in Figure 3.2. The data pattern shown
represents-a binary value of 101.

.BIT CELL
4.p sec

[]
[)

DATABITS

Figureé 3.2 Bits on Diskette
“A2B-BAPD1-2 03-04.PICT" 347 KB 2001-07-17 dpi: 600h x 600v pix: 2689h x 4584v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0024 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Disk II'Hardware and Diskette Formatting 3-5

\' o

Wil

‘——Eblﬂ? CELLS —

A byte as recorded on the disk consists of eight (8) consecutive bit
cells. The most significant bit cell is usually referred to as bit cell
7, and the least significant is bit cell 0. When reference is made to
a specific data bit (i.e. data bit 5), it is with respect to the
corresponding bit cell (bit cell 5). Data is written and read serially,
one bit at a time. Thus, during a write operation, bit cell 7 of each
byte is written first, and bit cell 0 is written last. Correspondingly,
when data is being read back from the diskette, bit cell 7 is read
first and bit cell 0 is read last. Figure 3.3 illustrates the
relationship of the bits within a byte.

. D:0 o [o_:l - D0 o J;l - D=0 o [E::l ° D=0 o D=1_g D=0 El_
| | | |) J }

.
BIT CELL 7 | BITCELLG | BITCELLS | BITCELLS ‘ BITCELLS | BITCELL? T BIT CELL 1 BT CELLO "
ms8

BYTE

1 0 1 [1 0 1 [}

$SA $A

Figure 3.3 One Byte on Diskette

“A2B-BAPD1-2 03-05.PICT” 305 KB 2001-07-17 dpi: 600h x 600v pix: 2707h x 4530v

| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0025 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

3-6 Beneath Apple ProDOS

To graphically show how bits are stored and retrieved, we must
take certain liberties. The diagrams are a representation of what
functionally occurs within the disk drive. For the purposes of our
presentation, the hardware interface to the diskette will be repre-
sented as an 8-bit data register. Since the hardware involves
considerably more complication, from a software standpoint it is
reasonable to use the data register, as it accurately embodies.the
function of data flow to and from the diskette. For a further
discussion of the hardware, please see APPENDIX D.

Figure 3.4 shows the three bits, 101, being read from the
diskette data stream-into the data register. Of course another five
bits would be read to fill the register.

DATA REGISTER
CITTTTT1TY
RN
BITSTREAM. o D=1 D=0
HEEEERRD
- o— D=1 o D=0 -0~ 'D_=11
LLITTTTo]

Figure 3.4 Reading Data from a Diskette

“A2B-BAPD1-2 03-06.PICT” 250 KB 2001-07-17 dpi: 600h x 600v pix: 2662h x 4557v

L First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner Page 0026 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Disk Il Hardware and Diskette Formatting 3-7

Writing data canbe depicted in much the same way (see Figure
3.5).- It should be noted that, while in write mode, zeroes are being
brought into the data register to replace the data being written. It
is the task of the software to make sure that the register is loaded
and instructed to write in 32-cycle (microsecond) intervals. If not,
zero bits will continue to be written every four cycles, which is in
fact exactly how self-sync bytes are created. Self-sync bytes will be
covered in detail shortly.

DATA REGISTER
[1Jo[+fof1]o]1]o]

[1]o]1]of1]ofo]ofe—0

[o]:Jo]1]o]ofofofe—0

[o]1fo]]ofo]o]o]

Figure 3.5 Writing Data to a Diskette

“A2B-BAPD1-2 03-07.PICT” 200 KB 2001-07-17 dpi: 600h x 600v pix: 2671h x 4485v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0027 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

3-8 Beneath Apple ProDOS

A field is made up of a group of consecutive bytes. The number
of bytes varies, depending upon the nature of the field. The two
types of fields present on a diskette are the Address Field and the
Data Field. They are similar in that they both contain a prologue,
adata area, a checksum, and an epilogue. Each field on a track is
separated from adjacent fields by a number of bytes. These areas
of separation are called gaps and are provided for two reasons.
First, they allow the updating of one field without affecting
adjacent fields (on the Apple, only data fields are updated).
Secondly, they allow the computer time to decode the address field
before the corresponding data field can pass beneath the
read/write head.

All gaps are primarily alike in content, consisting of self-sync
hexadecimal FF’s, and vary only in the number of bytes they
contain. Figure 3.6 is a diagram of a portion of a typical track,
broken into its major components.

TRACK FORMAT

GAP 1 DDRESS] GAP2 DATA FIELD GAP 3 DDRESS| GAP 2 DATA FIELD GAP 3 JADDRESS{ GAP 2 DATA FIELD GAP 3
FIELD FIELD FIELD
#0 40 a1 21 #2 22

nnnnnnnnnnnnnnnnn
AAAAAAAAAAAA

ssssssssssssss HEX FF SYNC BYTES HEX FF SYNC BYTES
124 TYPICALLY 5-10 -

Figure 3.6 Track Format

Self-sync or auto-sync bytes are special bytes that make up the
three different types of gaps on a track. They are so named because
of their ability to automatically bring the hardware into
synchronization with data bytes on the disk. The difficulty in doing
this lies in the fact that the hardware reads bits, and the data must
be stored as 8-bit bytes. It has been mentioned that a track is
literally a continuous stream of data bits. In fact, at the bit level,
there is no way to determine where a byte starts or ends, because

“A2B-BAPD1-2 03-08.PICT" 422 KB 2001-07-17 dpi: 600h x 600v pix: 2716h x 4619v
First Edition « 1984 < Written by Don D. Worth & Pieter M. Lechner Page 0028 of 0340 |
\

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Disk Il Hardware and Diskette Formatting 3-9

By The Qld Bir Strea

each bit cell is exactly the same, written in precise intervals with
its neighbors. When the drive is instructed to read data, it will
start wherever it happens to be on a particular track. That could
be anywhere among the 50,000 or so bits on a track. The hardware
finds the first bit cell with data in it and proceeds to read the
following seven data bits into the 8-bit register. In effect, it
assumes that it had started at the beginning of a data byte. Of
course, in reality, it could have started at any of the “1” bits of the
byte. Pictured in Figure 3.7 is a small portion of a track.

0110101110101100111101101110101

Figure 3.7 An Example Bit Stream on the Diskette

From looking at the data, there is no way to tell what bytes are
represented, because we don’t know where to start. This is exactly
the problem that self-sync bytes overcome.

A self-sync byte is defined to be a hexadecimal FF with a
special difference. It is, in fact, a 10-bit byte rather than an 8-bit
byte. Its two extra bits are zeroes. Figure 3.8 shows the difference
between a normal data hex FF that might be found elsewhere on
the disk and a self-sync hex FF byte.

: - “A2B-BAPD1-2 03-09.PICT" 394 KB 2001-07-17 dpi: 600h x 600v pix: 2662h x 4584v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0029 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

3-10 Beneath Apple ProDOS

NORMAL BYTE HEX FF

SELF-SYNC BYTE HEX FF

111

1

Byte

Figure 3.8 Comparison Between a Normal Byte and a Self-Sync

A self-syne byte is generated by using a 40-cycle (microsecond)
loop while writing an FF. A bit is written every four cycles, so two
of the zero bits brought into the data register while the FF was
being written are also written to the disk, making the 10-bit byte.
It can be shown, using Figure 3.9, that four self-sync bytes are
sufficient to guarantee that the hardware is reading valid data.
The reason for this is that the hardware requires the first bit of a
byte to be a “1”. Pictured at the top of the figure is a stream of four
self-syne bytes followed by a normal FF. Each row below that
demonstrates what the hardware will read should.it start reading:
at any given bit in the first byte. In each case, by the time the four
sync bytes have passed beneath the read/write head, the hardware
will be synced to read the data bytes that follow. As long as the
disk is left in read mode, it will continue to correctly interpret the
data unless there is an error on the track.

1

1

1

1111111100111111110011111111001111 110011111111
[rr11i1oop1ti 1111 1oofp 11111 11oof 111 11Joop 11 11111]
1Mt rtr11ooht11111tjoof1111111oof 111 11Joofi1111111]
11[111.11100][11111-111]0«0[1111 1 11oof1 111 11oofi 1111111
11771700111 r110op1111111fooft111 11Jooft 1111117
111117001 ii11ii1100fi1111171100[i1171 1100 1111111]
11111710011 p 111100111 T1100f 111 11oof 1111 111]
111111001 1111001 11111000111 170011111117
1111110011111 iioo1 1111100111 11001111 7171]
1111111001111 r1|oofft111111ooh 111 11001111111

Figure 3.9 Self-Sync Bytes

“A2B-BAPD1-2 03-10.PICT” 399 KB 2001-07-17 d

pi: 600h x 600V pix: 2699h x 4584v

L First Edition e

1984 « Written by Don D. Worth & Pieter M. Lechner

Page 0030 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Disk Il Hardware and Diskette Formatting 3-14

We can now discuss the particular portions of a track in detail.
The three gaps will be covered first. Unlike some other disk
formats, the size of the three gap types will vary from drive to
drive and even from track to track. During the formatting process,
ProDOS will start with large gaps and keep making them smaller
until an entire track can be written without overlapping itself. A
minimum number of self-sync bytes is maintained for each gap
type. The result is fairly uniform gap sizes within each particular
track.

Gap 1 is the first data written to a track during initialization. Its
purpose is twofold. The gap originally consists of 128 self-sync
bytes, a large enough area to insure that all portions of a track will
contain data. Since the speed of a particular drive may vary, the
total length of the track in bytes is uncertain, and the percentage
occupied by data is unknown. The initialization process is set up,
however, so that even on drives of differing speeds, the last data
field written will overlap Gap 1, providing continuity over the
entire physical track. Unlike earlier operating systems, ProDOS
will let you know if your drive is too fast or too slow. The remaining
portion of Gap 1 must be approximately 75% as long as a Gap 3 on
that track, enabling it to serve as a Gap 3 type for Address Field
number 0 (See Figure 3.6 for clarity).

Gap 2 appears after each Address Field and before each Data
Field. Its primary purpose is to provide time for the information in
an Address Field to be decoded by the computer before a read or
write takes place. If the gap was too short, the beginning of the
Data Field might spin past while ProDOS was still determining if
this was the sector to be read. The 200 cycles that five self-sync
bytes provide seems ample time to decode an Address Field. When
a Data Field is written, there is no guarantee that the write will
occur in exactly the same spot each time. This is due to the fact that
the drive which is rewriting the Data Field may not be the one
which originally formatted or wrote it. Since the speed of the
drives can vary, it is possible that the write could start in mid-byte
(see Figure 3.10). For this reason, the length of Gap 2 varies from
five to ten bytes. This is not a problem as long as the difference in
positioning is not great. To insure the integrity of Gap 2 when
writing a data field, five self-sync bytes are written prior to
writing the Data Field itself. This serves two purposes. Since

“A2B-BAPD1-2 03-11.PICT” 592 KB 2001-07-17 dpi: 600h x 600v pix: 2689h x 4530v

L First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner Page 0031 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

3-12° Beneath Apple ProDOS

NEW
DATA
FIELD

e S

ADDRESS GAP 2
FIELD

CURRENT
DATA
FIELD

GAP 3

e L p——

5

NEW
DATA
FIELD

Figure 3.10 ProDOS Doesn'’t Always Write in the Same Place

relatively little time is spent decoding an address field, the five
bytes help place the Data Field near its original position. Secondly,
and more importantly, the five self-sync bytes are the minimum
number required to guarantee read-synchronization. It is probable
that, in writing a Data Field, at least one sync byte will be
destroyed. This is because, just as in reading bits on the track, the
write may not begin on a byte boundary, thus altering an existing
byte. Figure 3.11 illustrates this.

Before

é—o—,_lt[A_[JF 4——[7—0—

After

oIl o o Tl o M o1, .

Figure 3.11 Writing Out of Sync

“A2B-BAPD1-2 03-12.PICT” 228 KB 2001-07-17 dpi: 600h x 600v pix: 2681h x 4557v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0032 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Disk Il Hardware and Diskette Formatting 3-13

Gap 3 appears after each Data Field and before each Address
Field. It is longer than Gap 2 and care is taken to make sure it
ranges from 16 to 28 bytes in length. It is quite similar in purpose
to Gap 2. Gap 3 allows the additional time needed to manipulate
the data that has been read before the next sector is to be read. The
length of Gap 3 is not as critical as that of Gap 2. If the following
Address Field is missed, ProDOS can always wait for the next
time it spins around under the read/write head (one revolution of
the disk at most). Since Address Fields are never rewritten, there
is no problem with Gap 3 providing synchronization, since only the
first part of the gap can be overwritten or damaged (see Figure
3.10 for clarity).

ADDRESS FIELDS

An examination of the contents of the two types of fields is in
order. The Address Field contains the address or identifying
information about the Data Field which follows it. The volume,
track, and sector number of any given sector can be thought of as
its “address,” much like a country, city, and street number might
identify a house. As shown previously in Figure 3.6, there are a
number of components which make up the Address Field. A more
detailed illustration is given in Figure 3.12.

PROLOGUE VOLUME TRACK SECTOR . CHECKSUM EPILOGUE

D5 AA 96 | XX YY| XX YY|XX YY|XX YY |DE AA EB

Figure 3.12 Address Field

Each byte of the Address Field is encoded into two bytes when:
written to the disk. APPENDIX C describes the “4 and 4” method
used for Address Field encoding.

“A2B-BAPD1-2 03-13.PICT” 389 KB 2001-07-17 dpi: 600h x 600v pix: 2689h x 4396v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0033 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

3-14 Beneath Apple ProDOS

The prologue consists of three bytes which form a unique
sequence, found in no other component of the track. This fact
enables ProDOS to locate an Address Field with almost no
possibility of error. The three bytes are $D5, $AA, and $96. The
$D5 and $AA are reserved (never written as data), thus insuring
the uniqueness of the prologue. The $96, following this unique
string, indicates that the data following constitutes an Address
Field (as opposed to a Data Field). The address information follows
next, consisting of the volume#*, track, and sector number and a
checksum. This information is absolutely essential for ProDOS to
know where it is positioned on a particular diskette. The
checksum is computed by exclusive-ORing the first three pieces of
information, and is used to verify its integrity. Lastly follows the
epilogue, which contains the three bytes §DE, $AA and $EB. The
$EB is only partly written during initialization, and is therefore
never verified when an Address Field is read. The epilogue bytes
are sometimes referred to as bit-slip marks, which provide added
assurance that the drive is still in sync with the bytes on the disk.
These bytes are probably unnecessary, but do provide a means of
double checking.

DATA FIELDS

The other field type is the Data Field. Much like the Address
Field, it consists of a prologue, data, checksum, and an epilogue
(refer to Figure 3.13). The prologue differs only in the third byte.
The bytes are $D5, $AA, and $AD, which again form a unique
sequence, enabling ProDOS to locate the beginning of the sector
data. The data consists of 342 bytes of encoded data. (The encoding
scheme used is quite complex and is documented in detail in
APPENDIX C.) The data is followed by a checksum byte, used to
verify the integrity of the data just read. The epilogue portion of
the Data Field is absolutely identical to the epilogue in the Address
Field and serves the same function.

PROLOGUE USER DATA CHECKSUM EPILOGUE
D5 AA AD| 342 BYTES DATA XX |DE AAEB
‘y B
SIX AND TWO
ENCODED

Figure 3.13 Data Field

*Volume number is a leftover from earlier operating systems and is not used by
ProDOS.

“A2B-BAPD1-2 03-14.PICT" 524 KB 2001-07-17 dpi: 600h x 600v pix: 2690h x 4584v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0034 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Disk Il Hardware and Diskette Formatting 3-15

DISK [BLOCK AND SECTOR INTERLEAVING

Because-the disk drive is such an integral part of the Apple I1
family of machines, it is important that it perform efficiently. One
major factor in disk drive performance is how the data is arranged
on the diskette. Because the diskette spins and the head that reads
and writes the data is stationary, it is necessary to wait for a
particular portion of a given track to pass by. This waiting
(rotational delay) can add significant time to a disk access if the
data is poorly arranged. Interleaving (or skewing) is the
arranging of data at the block or sector level to maximize access-
speed. It effectively places a gap between blocks or-seetors that
will normally be accessed sequentially, allowing sufficient time for
internal housekeeping before the next one appears. In general, if-
blocks or sectors are poorly arranged on a track, it is-usually
necessary to wait an entire revolution of the diskette before the
next desired block or sector can be accessed.

The first versions of Apple’s operating system used physical
interleaving on the disk. (That is, sectors were written in a
particular order on the diskette.) A number of different schemes
were used in an attempt to maximize performance. This worked
reasonably well but, because different methods were used for
different operations, performance suffered. Later versions

“A2B-BAPD1-2 03-15.PICT" 484 KB 2001-07-17 dpi: 600h x 600v pix: 2654h x 4432v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0035 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

3-16 Beneath Apple ProDOS

standardized the physical interleaving (as sequential), and used a
software method to try to maximize performance. An attempt was
also made to standardize some operations, but performance still
was not optimal as evidenced by a proliferation of “fast” DOS’s.

ProDOS provides an impressive improvement over Apple’s
earlier operating systems. Several factors account for the
dramatic improvement. The routine to read data is significantly
faster, minimizing the delay occurring between read operations.

€ The data is dealt with in larger pieces (512K vs. 2_5£5K), lowering
the number of requests to the code that actually reads and writes
data (Device Driver). And almost all operations involve files stored
on sequential blocks. As a disk begins to get full, this will not
always be possible and some files will be discontinuous; but for the
most part, all operations (loading ProDOS or Applesoft BASIC,
reading or writing to files or a directory) involve data in
contiguous pieces. This greatly simplifies the problem of finding

“an optimal interleaving for-disk accesses.

In ProDOS, the interleaving is done in software. The 16 sectors
are stored in numerically ascending order on the diskette (0, 1, 2, ...
15), and are not physically interleaved at all. An algorithm is used
to translate block numbers into physical sector numbers used by
the ProDOS device driver. For example, if the block number
requested were 2, this would be translated to track 0, sectors 8 and
A. Figure 3.14 illustrates the concept of software interleaving
and Table 3.1 shows the mapping of physical sectors to blocks for a
Disk II or compatible drive.

There are two kinds of interleaving to consider in the case of
ProDOS. First, there is the interleaving of the two sectors that
make up a block. This will be referred to as intra-block or “within
block” interleaving. Second, there is the interleaving between
blocks on a given track. This will be referred to as inter-block or
“between block” interleaving. It should be noted that we are
concerned primarily with delays within ProDOS and the Disk II
device driver, and not with delays that may be present in various

application packages.

“A2B-BAPD1-2 03-16.PICT” 528 KB 2001-07-17 dpi: 600h x 600v pix: 2725h x 4459v

L First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner Page 0036 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Page 3-16:

In the first paragraph starting on the page, thg sentence
should read "The data is dealt with in larger pieces (512
bytes vs. 256 bytes)...", not 512K vs. 256K.

“A2B-BAPD1-2 03-16E.PICT” 18 KB 2001-07-17 dpi: 300h x 300v pix: 1921h x 295v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0037 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Disk Il Hardware and Diskette Formatting 3-47
Table 3.4 ProDOS Block Conversion Table for Diskettes
PHYSICAL SECTOR
0&2 4&6 8&A C&E 1&3 5&7 9&B D&F
TRACK 0 000 001 002 003 004 005 006 007
TRACK 1 008 009 00A 00B 00C 00D 00E 00F
TRACK 2 010 011 012__ 013 014 015 016__ 017
TRACK 3 018 019 01A ___01B___0IC__ 01D __0IE _ OIF
TRACK 4 020 021 022 023 024 025 026 027
TRACK 5 028 029 __02A __02B_ _02C__ 02D 02E __ 02F
TRACK 6 030 031 032 033 034 035 036 037
TRACK 7 038 039 _03A__ _03B___03C_ 03D ___ 03E _ 03F
TRACK 8 040 041 042 043 044 045 046 047
TRACK 9 048 049 04A 04B 04C 04D 04E 04F
TRACK A 050 051 052 053 054 055 056 057
TRACK B 058 059 05A 05B 05C 05D 05K 05F
TRACK C 060 061 062 063 064 065 066 067
TRACK D 068 069 06A 06B 06C 06D 06E 06F
TRACK E 070 071 072 073 074 075 076 077
TRACKF 078 079 07A 07B 07C 07D 07E 07F
TRACK 10 080 081 082 083 084 085___ 086 087
TRACK 11 088 089 _08A 08B 08C_ _ 08D _ 08E _ OSF
TRACK 12 090 091 092 093 094 095 096 097
TRACK 13 098 099 09A 09B 09C 09D 09E 09F
TRACK 14 0AQ 0A1 0A2 0A3 0A4 0A5 0A6 0A7
TRACK 15 0A8 __ 0A9 0AA _ 0AB__ 0AC___0AD OAE _ 0AF
TRACK 16 0B0 0B1 0B2 0B3 0B4 0B5 0B6 0B7
TRACK 17 0BS ___0B9 __OBA _0BB___0BC __0OBD OBE _ OBF
TRACK 18 0CO 0C1 0C2 0C3 0C4 0C5 0C6 0C7
TRACK 19 0C8 __0C9__0CA_0CB__0CC_0CD___0CE___OCF
TRACK 1A 0D0___0D1__0D2___0D3 ___0D4___0D5 _ 0D6 _ 0D7
TRACK 1B 0D8 ___0D9 __ODA___0DB___O0DC___0DD _ODE _ ODF
TRACK 1C OE0___OE1___OE2___OE3 __OE4 ___OE5 _ OE6__ OE7
TRACK 1D OES __OE9 _OEA _OEB___OEC__OED _OEE _ OEF
TRACK 1E 0F0 0F1 0F2 0F3 0F4 OF5 0F6 0F7
TRACK 1F OF8 __OF9 __OFA ___0FB___OFC___OFD _ OFE _ OFF
TRACK 20 100 101 102 103 104 105 106 107
TRACK 21 108 109 10A 10B 10C 10D 10E 10F
TRACK 22 110 111 112 113 114 115 116 117
BLOCKS
/ \

SECTORS

to Read or Write One Block.

Figure 3.14 Block Interleaving (Track 0)

“A2B-BAPD1-2 03-17.PICT” 404 KB 2001-07-17 d

pi: 600h x 600V pix: 2716h x 4565v

L First Edition e

1984 « Written by Don D. Worth & Pieter M. Lechner

Page 0038 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

3-18 Beneath Apple ProDOS

INTRA-BLOCK INTERLEAVING

When ProDOS accesses a block, it must of course access the two
sectors that make up that block. There is a small delay after the
device driver has accessed the first sector, before it can access the
second sector. This delay is different for Read and Write
operations. The Read operation is so fast that the disk can read two
sectors in a row. However, the Write operation takes longer, so for
optimal performance there must be a gap between the two sectors
that make up a block. If there wasn’t a gap, an entire revolution of
the diskette would be required for each block written. A single
sector provides a sufficient gap, so intra-block interleaving (within
the block) consists of one sector. The result is that ProDOS is able
to write to a given block as rapidly as is possible. Some time is lost
when reading a block, but no other interleaving scheme would
provide the same overall efficiency. Intra-block interleaving is
illustrated in Figure 3.15.

INTRA-BLOCK GAP =1 SECTOR

BLOCK 0

Figure 3.15 Intra-Black Interleaving (Within Block)

INTER-BLOCK INTERLEAVING

When ProDOS accesses a number of blocks as required in most
disk operations (i.e. reading or writing a directory or a file),
another kind of interleaving is involved. There will be a delay
between accesses, but it is now between blocks rather than sectors.
There is relatively little difference in delay time in the MLI itself
between reading and writing—almost all the difference occurs in
the device driver. However, when ProDOS writes a block that is
already allocated (i.e. part of an existing directory or file), it
always reads that block before writing to it. This requires an
entire revolution of the diskette regardless of how the interleaving
is done. It turns out that, just as for intra-block operations, a single
sector isa sufficient gap for reading blocks. Inter-block
interleaving is illustrated in Figure 3.16.

“A2B-BAPD1-2 03-18.PICT” 486 KB 2001-07-17 dpi: 600h x 600v pix: 2699h x 4583v

L First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner Page 0039 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Disk Il Hardware and Diskette Formatting 3-19

READING OR WRITING A BLOCK

Assume that we wish to access block 2. ProDOS passes the
request to the device driver which in turn converts the block
number into its track and sector representation (see Figure 3.14).
The arm is moved to the proper track (0) and then a sector is read.
This could be any sector, because the diskette is spinning. Sectors
are continually read until sector 8 is found. The following two
sectors are then read (9 and A) which completes the read.of block 2
(sectors 8 and A). Depending on where we start on the track, we
could read between 3 and 18 sectors. The same process occurs
when writing a single block, with one small difference. After
sector 8 is located and written to, the delay required to ready the
data for sector A will cause us to miss reading sector 9. This does
not alter the amount of rotation necessary to complete the task. To
summarize, the time required to either read or write a single block
consists of two factors. (We are assuming the track has already
been located). First, there is the time required to locate the first.
sector of the block—this is variable and ranges between 0 and the
time of one full rotation of the diskette. Second is the time required
to actually read or write the two sectors that make up the block—
this is fixed and always requires 3/16 rotation of the diskette.

INTER-BLOCK GAP=1SECTOR _..

BLOCK 0

BLOCK 1

Figure 3.16 Inter-Block Interleaving (Between Block)

“A2B-BAPD1-2 03-19.PICT" 413 KB 2001-07-17 dpi: 600h x 600v pix: 2662h x 4593v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0040 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

3-20 Beneath Apple ProDOS

READING OR WRITING CONSECUTIVE BLOCKS

Let’s examine what occurs when.a number of blocks are accessed
during reading or writing of a typical file. We will assume the file
is reasonably large and takes up a number of blocks. We will
confine our observation to a single track, in which eight blocks
comprise the file of interest. We will assume track 2, which
contains blocks 10 through 17 (as in Figure 3.17), and we will
further assume that the blocks will be accessed sequentially. When
the read/write head moves to track 2, we will start reading sectors
until the appropriate sector is found (0 in this case). Then each
sector is read until all eight blocks are found. This will require
exactly two revolutions of the disk. Writing takes significantly
longer because each block is read before being written to.
Therefore, once the first sector of the block in question is located,
one entire revolution is necessary to write each block. Upon
writing a block, ProDOS is able to locate the next block
immediately, read it, wait through one revolution and write it. A
total of ten revolutions is required to write an entire track as
opposed to two revolutions to read it.

BLOCKS

-SECTORS

Figure 3.17 Example: The Block Interleaving of Track 2

“A2B-BAPD1-2 03-20.PICT” 382 KB 2001-07-17 dpi: 600h x 600v pix: 2662h x 4629v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0041 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

CHAPTER 4

VOLUMES, DIRECTORIES, AND FILES

As was described in Chapter 3, a 16-sector diskette consists of
560 data areas of 256 bytes each, called sectors. These sectors are
arranged on the diskette in 35 concentric rings, called tracks, of 16
sectors each. The way ProDOS allocates these tracks of sectors is
the subject of this chapter.

THE DISKETTE VOLUME

ProDOS defines a volume to be any (usually direct access) indi-
vidual mass storage media. The discussion which follows assumes
this media to be a single 35-track diskette, but all of the structures

‘presented here are identical for other diskette sizes and even for a
hard disk such as the Apple ProFile. Another interesting point is
that the structure of a ProDOS volume is almost identical to that of
an Apple III SOS volume. This fact allows greater data compati-
bility between the two operating systems.

To make the allocation of sectors more manageable, ProDOS
pairs them up to form 512-byte blocks. Since there are 16 sectors
per track and 560 sectors per diskette volume, there are eight
blocks per track and 280 blocks per volume. These blocks are
numbered from 0 to 279 (decimal) or $0000 to $0117 (hexadec-
imal). The arrangement of blocks on a diskette is shown in Figure
4.1. Of course, on a real diskette, skewing (discussed in Chapter 3)
would reorder the blocks on any given track, but, for the purposes
of this discussion, the blocks can be assumed to be stored
sequentially.

“A2B-BAPD1-2 04-01.PICT” 371 KB 2001-07-17 dpi: 600h x 600v pix: 2680h x 3958v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0042 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

4-2 Beneath Apple ProDOS

Figure 4.4 Blocks on a Diskette

A file, be it BAS, BIN, TXT, or SYS type, consists of one or more
blocks containing data. Since a block is the smallest unit of allocat-
able space on a ProDOS volume, a file will use up at least one block
even if it is less than 512 bytes long; the remainder of the block is
wasted. Thus, a file containing 600 characters (or bytes) of data
will occupy one entire block and 88 bytes of another with 424 bytes
wasted. Knowing that there are 280 blocks on a diskette, one might
expect to be able to use up to 280 times 512 or 143,360 bytes of
space on a diskette for files. Actually, the largest file that can be
stored is 271 blocks long (or 138,752 bytes). The reason for this is
that some of the blocks on the diskette volume must be used for
what is called overhead.

“A2B-BAPD1-2 04-02.PICT" 434 KB 2001-07-17 dpi: 600h x 600v pix: 2698h x 4592v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0043 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Volumes, Directories, and Files 4-3

VOLUME OVERHEAD

Overhead blocks contain the image of the ProDOS bootstrap
loader (which is loaded by the ROM on your diskette controller
card and, in turn, loads the ProDOS system files into memory), a
list of file names and locations of the files on the diskette, and an
accounting of the blocks which are free for use by new files or for
expansions.of existing ones. An example of the way ProDOS uses
blocks is given in Figure 4.2.

Notice that in the case of this diskette volume, system overhead
(that part of the diskette which does not actually contain files) falls
entirely on track 0 of the diskette (blocks 0 through 7). In fact,
there is room for one block’s worth of file data on track 0 (block 7).
The first block (block 0) is always devoted to the image of the
bootstrap loader. (Block 1 is the SOS bootstrap loader.) Following
these, and always starting at block 2, is the Volume Directory.
The Volume Directory is the “anchor” of the entire volume. On any
diskette (or hard disk for that matter) for any version of ProDOS,
the first or “key” block of the Volume Directory is always in the
same place—block 2. Since files can end up anywhere on the
diskette, it is through the Volume Directory key block that
ProDOS is able to find them. Thus, just as the card catalog is used

to locate a book in a library, the Volume Directory is the master

index to all of the files on a volume. In addition to deseribing the
name, attributes and placement of each file, it also contains the
block number of the Volume Bit Map which will be described

/EXAMPLE
NAME TYPE BLOCKS MODIFIED CREATED ENDFILE SUBTYPE
BASFILE BAS 1 <NO DATE> <NO DATE> 109
TXTFILE TXT 1l <NO DATE> <NO DATE> 9 R= 64
BINFILE BIN 1 <NO DATE> <NO DATE> 48 A=$03DO
BLOCKS FREE: 270 BLOCKS USED: 10 TOTAL BLOCKS: 280
BLOCK or oo
o - o M T N O ~ 0 O O v~ NN.OO & 1D O I~ © N~ N~ o~
O ~ N M T D O~ 0 D ™ ™~ = v v ™ = ~ 1 NNNN(\INNNNJ{\JNNN
7 Uil Z
———F1 1 RV FREE BLOCKS §
&\ F——11 9 . N P .
\ Ak
7 1 \BINFILE
TXTFILE
oor | voume O\ IS
LOADER
IMAGE VOLUME
DIREC-
TORY

Figure 4.2 Block Usage on an Example Diskette

“A2B-BAPD1-2 04-03.PICT” 455 KB 2001-07-17 dpi: 600h x 600v pix: 2671h x 4574v

L First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner Page 0044 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

4-4 Beneath Apple ProDOS

next. The first four bytes of every Volume Directory block are
reserved for “pointers” to (the block numbers of) the previous

Volume Directory block and the next Volume Directory block. This
structure is called a doubly-linked list and is handy in that, from
any block, it is easy to move forward or backward through the
directory entries. The Volume Directory and Volume Bit Map are

diagrammed in Figure 4.3.

BLOCK 2

POINTERS TO
FILES

VOLUME
DIRECTORY
KEY BLOCK

OR
= SUBDIRECTORIES

BLOCK 3

NEXT 13
ENTRIES

BLOCK 4

etc.

BLOCK 5

etc.

BLOCK 6

VOLUME BIT
MAP

Figure 4.3 Linking of Volume Directory and Volume Bit Map

“A2B-BAPD1-2 04-04.PICT” 226 KB 2001-07-17 d

pi: 600h x 600V pix: 2653h x 4601v

L First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner

Page 0045 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Volumes, Directories, and Files 4-5

VOLUME SPACE ALLOCATION —THE VOLUME BIT MAP

When a diskette volume is first formatted, only the first seven
blocks described above are marked in use. All of the remainder of
the diskette blocks are considered “free” for use with files yet to be
created. Each time a new block is required for a file, the free block
with the lowest number is used. To keep track of which blocks have
been used and which are free, ProDOS maintains one block as the
Volume Bit Map. The Volume Bit Map is located by following a
pointer in the Volume Directory, however, it is almost always in
block 6. It consists of 512 bytes, each byte representing eight
blocks on the volume. If the bytes are examined in binary form,
each consists of eight bits having a value of one or zero. Thus, if
block zero is in use as it always is, then the first byte’s first bit is set
to zero. If the ninth block (block 8) is free, then the first bit of the
second byte is set to one. Since there are many more bits in the
Volume Bit Map (4096 bits in all) than there could ever be blocks
on a diskette, only the first 280 (or 35 bytes) are used. For a
5-megabyte hard disk, like the Apple ProFile, 1241 bytes are
needed; in this case, since the number of blocks on the volume is
stored in the Volume Directory, ProDOS automatically knows to
expect a bigger Volume Bit Map—one which is three blocks long.
Bits which do not correspond to a real block (because it would be
past the end of the volume) are set to zero. An example of a Volume
Bit Map for the volume mapped in Figure 4.2, is given in Figure
4.4. Notice that, since three 1-block fileshavebeen allocated, a
total of ten blocks are marked “in use.”

Blocks $0—$9.In Use Blocks $A—$1 17 Free
A_

0000 0000 0011 1111 1111 1111 .. 1111

@0 QO3FFFFFEFFFFFFFFF FFFFF/

0gC FFFFFFFFFFFFFFFFFFFFFF

18 FFFFFFFFFFFFFFFFFFFFFFQQ .
24 000000000000000000000000 ...c....
30 000000000000000000000000 «.ooveeeeenn.
3C 000000000000000000000000 +.veeeeeaaas

(Remainder of Block Zeroes)

Figure 4.4 Example Volume Bit Map

“A2B-BAPD1-2 04-05.PICT” 530 KB 2001-07-17 dpi: 600h x 600v pix: 2662h x 4566v

| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0046 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

4-6 Beneath Apple ProDOS

THE VOLUME DIRECTORY

When ProDOS must find a specified file by name, it first reads
block 2 of the diskette, the key block of the Volume Directory. If
the file name is not found in this block, the next directory block is
read, following the pointer in the third and fourth bytes of the cur-
rent block. Typically, the Volume Directory blocks occupy blocks 2
through 5 of a volume. Of course, as long as a block number pointer
exists, linking one block to the next, and the first Volume Directory
block is block 2, ProDOS does not really care where the rest of the
directory blocks are located. Figure 4.5 diagrams the Volume
Directory for the example given in Figure 4.2. The figure shows
the “next block” pointer (bytes +2 and +3 in the block) of block 2 in
the Volume Directory, as an arrow pointing to block 3. Each block,
in turn, has block numbers in the same relative location (+0,+1 and
+2,+3) which point backward to the previous block and forward to
the next block respectively. If no previous or next block exists, a
block number of zero is used to indicate this (block 0, being part of
the boot image, would never be a valid block number for a direc-
tory or file block, so this is a safe convention). The first block in the
Volume Directory (the key block) contains a special entry called
the header which describes the directory itself and the character-
istics of the volume, ete. This is followed by 12 file descriptive

g
-
i
) o S
.
°
°
°
o
(4
D
I

DIRZCTORY ASSISTANGCE

: - “A2B-BAPD1-2 04-06.PICT” 501 KB 2001-07-17 dpi: 600h x 600v pix: 2653h x 4575v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0047 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Volumes, Directories, and Files 4-7

entries. All Volume Directory blocks other than the key block con-
tain descriptions of up to 13 files each. (In practice, these entries
can also be used to describe subdirectories, but this will be covered
in detail later in the chapter.) Thus, with four Volume Directory
blocks, a total of 4 times 13 less 1 (for the Volume Directory Header
entry) or 51 files may be described.

BLOCK 2

FIRST 12
FILENAMES

BASFILE

/

BLOCK 3

TXTFILE

SECOND 13
FILENAMES

BINFILE

BLOCK 4

THIRD 13
FILENAMES

BLOCK 5

LAST 13
FILENAMES

Figure 4.5 The Volume Directory

“A2B-BAPD1-2 04-07.PICT” 208 KB 2001-07-17 dpi: 600h x 600v pix: 2671h x 4530v

First Edition

1984 « Written by Don D. Worth & Pieter M. Lechner

Page 0048 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

4-8 Beneath Apple ProDOS

THE VOLUME DIRECTORY HEADER

The Volume Directory Header is the first entry in the first block .
of the Volume Directory. As such, its first byte follows the four
bytes of next/previous block pointers, so its first byte is at +$04. A
description of its format follows:*

$04 STORAGE_TYPE/NAME_LENGTH: The first nibble
(top four bits) of this byte describes the type of entry. In
this case, this is a Volume Directory Header so this nib-
ble is $F. The low four bits are the length of the name in
the next field (the volume name).

$05-$13 VOLUME_NAME: A 15-byte field containing the name
of this volume. The actual length is defined by
NAME_LENGTH above; the remainder of the field is
ignored. No “/” is present as the first character since this
is only used to delimit different level names but is not
part of the names themselves.

$14-$1B Reserved for future use. Usually zeroes.

$1C-$1F CREATION: The date and time of the creation (format-
ting) of this volume. This field is zero if no date was:
assigned. The format of the field is as follows:

BYTE 0 and 1 —yyyyyyymmmmddddd year/month/day
BYTE 2 and 3—000hhhhhOOmmmmmm hours/minutes

where each letter above represents one binary bit. This
is the standard form for all create and modify date/time
stamps in directories.

$20 VERSION: The ProDOS version number under which
this volume was formatted. This field tellslater versions
of ProDOS not to expect to find any fields which were
defined by Apple after this version of ProDOS was
released. This field indicates the level of upward com-
patibility between versions. Under ProDOS 1.0, its
value is zero.

*Unless otherwise indicated, all multiple byte numeric values, such as block
numbers, EOF marks, etc., are stored least significant byte first, most significant
byte last (LO/HI).
“A2B-BAPD1-2 04-08.PICT” 505 KB 2001-07-17 dpi: 600h x 600V pix: 2680h X 4557v

| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0049 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Volumes, Directories, and Files 4-9

$21 MIN_VERSION: Minimum version of ProDOS which
can access this volume. A value in this field implies that
significant changes were made to the field definitions
since prior versions of ProDOS were in use and these
older versions would not be able to suecessfully interpret
the file structure of this volume. This field indicates the
level of downward compatibility between versions.
Under ProDOS 1.0, its value is zero.

$22 ACCESS: The bits in the flag byte define how the direc-
tory may be accessed. The bit assignments are as
follows:

$80 — Volume may be destroyed (reformatted)

$40 — Volume may be renamed

$20 — Volume directory has changed since last backup
$02 — Volume directory may be written to

$01 — Volume directory may be read

All other bits are reserved for future use.

$23 ENTRY_LENGTH: Length of each entry in the Volume
Directory in bytes (usually $27).

$24 ENTRIES_PER_BLOCK: Number of entries in each
block of the Volume Directory (usually $0D). Note that
the Volume Directory Header is considered to be an
entry.

$25-$26 FILE_COUNT: Number of active entries in the Volume
Directory. An active entry is one which describes a file
or subdirectory which has not been deleted. This count
does not include the Volume Directory Header. Note
that this field’s name is a bit misleading since the count
also includes subdirectory entries.

$27-$28 BIT_MAP_POINTER: The block number of the first
block of the Volume Bit Map described earlier. This
value is usually 6.

$29-$2A TOTAL_BLOCKS: The total number of blocks on this
volume. $0118 is for a 35-track diskette (280 decimal).
This number may be used to compute the number of
blocks in the Volume Bit Map as described earlier.
“A2B-BAPD1-2 04-09.PICT" 435 KB 2001-07-17 dpi: 600h x 600v pix: 2681h x 4558v

| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0050 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

4-10 Beneath Apple ProDOS

FILE DESCRIPTIVE ENTRIES

Each file (or subdirectory) on a volume has a File Descriptive
Entry in the Volume Directory or another directory. These entries
all have the same format:

$00 STORAGE_TYPE/NAME_LENGTH: The first nibble
(top four bits) of this byte describes the type of entry.
Currently assigned values are: '

$0 = Deleted entry. Available for reuse

$1 = Fileisaseedling (only one data block)

$2 = Fileisasapling (2 to 256 data blocks)

$3 = Fileisatree (257 to 32768 data blocks)

$D = Fileisa subdirectory

$E = Reserved for Subdirectory Header entry

$F = Reserved for Volume Directory Header entry

The low four bits are the length of the file or subdirec-
tory name in the next field. When a file is deleted, a $00
is stored in this byte.

$01-$0F FILE_NAME: A 15-byte field containing the name of
this file. The actual length is defined by NAME_LENGTH
above; the remainder of the field is ignored.

$10 FILE_TYPE: Primary file type. The hexadecimal value
of this byte gives the file type as shown in the following
table:

TYPE | NAME | DESCRIPTION

$00 Typeless file

$01 BAD Bad block(s) file

$04 TXT Text file (ASCII text, msb off)
$06 BIN Binary file (8-bit binary image)
$O0F DIR Directory file

$19 ADB AppleWorks data base file

$1A AWP AppleWorks word processing file
$1B | ASP AppleWorks spreadsheet file
SEF PAS ProDOS PASCALfile

“A2B-BAPD1-2 04-10.PICT” 461 KB 2001-07-17 dpi: 600h x 600v pix: 2726h x 4585v

L First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner Page 0051 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Volumes, Directories, and Files 4-11

$FO0 CMD ProDOS added command file
$F1-$F8 User defined file types 1 through 8
$FC BAS Applesoft BASIC program file
$FD VAR Applesoft stored variables file
$FE REL Relocatable object module-file
(EDASM)

$FF SYS ProDOS system file

$11-$12

$13-$14

$15-$17

$18-$1B

All other types are either SOS file types or are reserved
by Apple for future use. See APPENDIX Efor a
complete list.

KEY_POINTER: The block number of the key block of
the file. In the case of a seedling file, this is the block
number of the only data block. For saplings, this is the
block number of the index block. For tree files, this is
the block number of the master index block. (More on
these file structures later.) If the file is a subdirectory
file, thisis the block number of its first block.
BLOCKS_USED: The total number of blocks used by
this file including index blocks and data blocks. If the
file is a subdirectory, this is the number of directory
blocks.

EOF: The location of the end of the file (EOF)asa
3-byte offset from the first byte. This can also be thought
of as the length in bytes of a sequential file.

CREATION: The date and time of the creation of this
file. This field is zero if no date was-assigned. The format
of the field is as follows:

BYTE O0and 1—yyyyyyymmmmddddd year/month/day
BYTE 2 and 3—000hhhhh0Ommmmmm hours/minutes

where each letter above represents one binary bit. This
is the standard form for all create and modify date/time
stamps in directories.

VERSION: The ProDOS version number under which
this file was created. This field tells later versions of
ProDOS not to expect to find any fields which were
defined by Apple after this version of ProDOS was
released. This field indicates the level of upward com-
patibility between versions. Under ProDOS 1.0, its
value is zero.

“A2B-BAPD1-2 04-11.PICT” 475 KB 2001-07-17 dpi: 600h x 600v pix: 2646h x 4558v

L First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner

Page 0052 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

4-12 Beneath Apple ProDOS

$1D MIN_VERSION: Minimum version of ProDOS which
can access this file. A value in this field implies that sig-
nificant changes were made to the file structure defini-
tion since prior versions of ProDOS were in use, and
these older versions would not be able to successfully
interpret the file structure of this file. This field indi-
cates the level of downward compatibility between ver-
sions. Under ProDOS 1.0, its value is zero.

$1E ACCESS: The bits in this flag byte define how the file
may be accessed. The bit assignments are as follows:

$80 — F'ile may be destroyed

$40 — File may be renamed

$20 — F'ile has changed since last backup
$02 — File may be written to

$01 — File may be read

All other bits are reserved for future use. An unlocked
file’s ACCESS is usually $C3. If a file is locked,
ACCESS will be set to $01. Subdirectory files which
have a non-zero FILE_COUNT field will be locked until
all files described by them are deleted.

$1F-$20 AUX_TYPE: Auxiliary type field whose contents
depend upon FILE_TYPE. Common uses are as follows:

TYPE USE

TXT |Random access record length (L from OPEN)
BIN |Load address for binary image (A from BSAVE)
BAS |Load address for program image (when SAVEd)
VAR |Address of compressed variables image (when
STOREd

SYS [Load addressfor system program (usually
$2000)

$21-$24 LAST_MOD: Date and time at which file was last modi-
fied. This field is zero if no date was assigned. Format is
identical to CREATION above.

$25-326 HEADER_POINTER: Block number of the key block
for the directory which describes this file.

Figure 4.6 is'an example of a typical Volume Directory block for
the example introduced with Figure 4.2. In this case, there are
only three-files on the diskette so only the first three directory
entries are filled in. The remaining dlrectory entries have never
been used and contain zeroes.

“A2B-BAPD1-2 04-12.PICT” 487 KB 2001-07-17 dpi: 600h x 600v pix: 2716h x 4575v

| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0053 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Volumes, Directories, and Files 4-13

VOLUME DIRECTORY HEADER ‘

SF Indicates Volume Directory Header Entry Follows
Volume Name Is 7 Characters Long
!

— S8 (280} Blocks on Volume Total

|_POINTER FIELDS ' L ongs
i [- Volume Name Is "EXAMPLE'
l glfoxctlelfs / | Mlmmumi .
No Previous | Versions =0 o
glFRnesmes DIRBlock~_ . ’ N Volume DIR Access
T 00 le@wmpﬁ 84\45\504L45‘ . WEXAMPLE) 3 DESTAOT/RENAME
VOL Creation 0C (00000 0000000RI0ORIR00000 v esrrver.. EAD Enabled
Date (not set) ooodocededpdCiR 7t — Entry Length Is $27 Bytes
ENTRIES PERBLOCKﬁh{o[@zw[eewll8@1[1742415346 BA
Is SD 30 waewwwweaw-—}hﬁlmsmeWDE
VOLBitMap | —3C ¢700010080000000000000000......
in Block & 48 QUE301080000000002001754 .C......... T Stindicates Seedling File
T FleT 54 585446494c45w®we@90000 XTFI " S7Characters in Name
tle lype 6433904030001 0AB8BBFPOVUUC .. .0 eevens Key Block = 89
6C w(w £3400000000080002 1Block in File
78 00[17/42494E46494C45009000 . lBINFILE}——FneName
BIN File Type : 0609000 1003600 et End of File at +830
9¢ 00/000000600Ra0dE3DECIE0BI = P Date File Last Modified (not
File Creation Date—<9C 00 00[0200[00 @ 90
(not set)

AUX_TYPE—For BIN
Fite: AS300

DIR Header Block

For This File R der of Block Z
(Remainder o Block Zeroes) Access: SE3 = DESTROY/RENAME Enabled

Backup Needed
WRITE/READ Enabled

Orig/Minimum Version of File =0

Figure 4.6 Example Volume Directory Block

FILE STRUCTURES

One of ProDOS’s major jobs is to keep track of the blocks which
make up a file. When programming, the user need never know that
a file is actually made up of one or more blocks scattered far and
wide all over the diskette volume. ProDOS must make the file
appear to the programmer to be a continuous stream of sequential
data.

So far the files shown in the examples here have had.only one
block. This was done to avoid complicating the discussion of the
Volume Directory. In practice, however, very few files are 512
bytes or less in length. ProDOS defines three file structures to
handle files of different sizes:

The Seedling —for files of 512 bytes or less

The Sapling —for files with more than 512 bytes but
less than 128K bytes of data

The Tree —for files with more than 128K bytes of
data up to 16 megabytes (16,777,216
bytes).

“A2B-BAPD1-2 04-13.PICT” 415 KB 2001-07-17 dpi: 600h x 600v pix: 2672h x 4558v

L First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner Page 0054 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

4-144 Beneath Apple ProDOS

SEEDLING SAPLING TREE SPARSE
FILE FILE FiLE FILE

Examples of seedling files have already been shown. A seedling
file consists of a single data block whose number is stored in the
KEY_POINTER field in the file entry of the directory. Thus, a
seedling file, by definition, costs only one block of storage (and a
file descriptive entry).

For the purposes of this discussion, let us assume that we had
run the following Applesoft BASIC program against our example
disk volume from Figure 4.2.

1¢ PRINT CHRS(4);"OPEN TXTFILE,L64"
20 FOR I=0 TO 2

3¢ PRINT CHRS (4);"WRITE TXTFILE,R";I
4¢ PRINT "“RECORD";I

50 NEXT I

60 PRINT CHRS(4);"CLOSE TXTFILE"

70 END

This program creates the TXT file, “TXTFILE”, with a record
length of 64 bytes. It then writes three records containing the
strings “RECORDO0”, “RECORD1”, and “RECORD2”. The total
size of this file is then 3 times 64 or 192 bytes. Since this is less than
512 bytes, the file is stored as a seedling.

Now, assume that statement 20 is changed to read:

20 FOR I=0 TO 100
“A2B-BAPD1-2 04-14.PICT” 365 KB 2001-07-17 dpi: 600h X 600V pix: 2655h x 4575v

| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0055 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Volumes, Directories, and Files 4-45

and the program is rerun. The file it creates will now contain 101
records of 64 bytes each, so the total size is 6464 bytes. As the ninth
record is written (RECORDRS), ProDOS discovers that the original
seedling block is full. There is no room in the directory to store
another block number, so ProDOS creates what is called an index
block. This block contains the block numbers of each data block in
the file in the order that they should be accessed. Using an index
block, ProDOS can describe the file in a sequential and orderly
way, even though its data blocks may not be physically contiguous
(next to one another on the diskette). For example, if the previous
data block in a file was 47, it is not necessary to store the data
which follows it in block 48. Instead, any free block located any-
where on the diskette may be used simply by placing its block
number next to 47’s in the index block.

Thus, in our example, a new block is allocated to be the index
block ($A), another new block is'allocated to be the second data
block ($B), both the original data block’s number and the new data
block’s number are placed in the new index block, and, finally, the
directory entry for the file is updated so that it now points to the
index block instead of the seedling data block. Of course, the
STORAGE_TYPE field in the directory entry must also be
changed to indicate that this is now a sapling file and is no longer a
seedling. Index block entries which are not associated with any
data block yet (such as those beyond the end of file position) are set
to zeroes. Since a block is 512 bytes long and block numbers
require a 2-byte field, this index block can store pointers to up to
256 data blocks representing up to 131,072 bytes of data (128K).
Obviously, most files will fall within this class of file structure. A
diagram of the general form of a sapling file is givenin Figure 4.7.

DIRECTORY ENTRY INDEX BLOCK

NEXT TO

FIRST BLOCK SECOND BLOCK THIRD BLOCK LAST BLOCK LAST BLOCK

OF "TXTFILE" OF "TXTFILE" OF “TXTFILE OF “TXTFILE OF "TXTFILE"

“TXTFILE™ —

Figure 4.7 Sapling File Organization

“A2B-BAPD1-2 04-15.PICT” 513 KB 2001-07-17 dpi: 600h x 600v pix: 2646h x 4593v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0056 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

-4-16 Beneath Apple ProDOS

The index block for TXTFILE is given in Figure 4.8. Notice that
the first block of the file is still block 8, the original data block of
the old seedling version of TXTFILE. Notice also that in an index
block, the least significant byte of the block numbers are stored in
the first half of the block, and the most significant byte (in this
example all MSB’s are $00) in the last half. This was done to sim-
plify indexing into the block (the 6502 index registers can only
index up to 256 bytes at a time). Thus, to find any given block, one

BLOCK $A

930 e gy Tt $0008 =»First data

- block of file is
0P0000000000000000000000 e eeennnn. : Block $8

054 000000000000000000000000 .. e eeeeon.
FIRST 060 000000000000000000000000Nc....
HALF OF 06C 0000000000000C0000000000
INDEX < 078 0000000000000000000000C00
BLOCK 084 000000000000000000000V000
(LSBs) 090 Q0000000000000 0VC00ACC000

09C 000000000000000000000C00
000000000000000000000000

$0016 = Lastdata

D8 000ADCOC000RRTVTO0C0B000 « v e e, block of file is
0000000000000 00 ...vveeeeeoeos Block S]G

124 0000000000C0GE0000000000 - e
130 000000000000000000000000 ...nnow.....
13C 000000000000000000000000
SECOND 148 00GGO0006GE0000000000000 . nn.r.
HALF OF 154 0000000000000 00000G0000 ..o vuunwn...
INDEX 160 000000C00000000000000000 «.ovvnnnn...
BLOGK 16C 00G000000000000000000000 ... oon.n...

178 000GG00000CGGA0000000000o.....
(MSBs) 184 000000000000000000000000
190 000000000000CEG000060000 ..vvoun.. ..
19C 000000000003000000000000
1A8 00GG00000GE0000000000000 .. .0.......
1B4 000000000000000000G00000 . .nuunnw...
1C¢ 000000000000GG0000G00000 . ..oonn.....
1CC 0000000000 000000060300000
1D8 0CG000000000000000000000 «.vouun.n....
1E4 000000000000000300000000 »...........
1F0 000000000000000000000000n.n.......
1FC 00000000 et

Figure 48 Example Sapling Index Block
“A2B-BAPD1-2 04-16.PICT" 429 KB 2001-07-17 dpi: 600h x 600v pix: 2673h x 4575v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0057 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Volumes, Directories, and Files 4-17

must assemble a block number by picking the Nth byte and the N
+256th byte in the index block where N is the relative block
desired.

Suppose that we now modify our program again so that 2144
records will be written. This pushes the total file size up to 137,216,
more than can be described by a single index block. ProDOS must
“promote” the file to the next level of the hierarchy, a tree file. A
tree file consists of a single- master index block, pointed to by the
directory entry, which, in turn, contains the block numbers of two
or more other index blocks. These lower level index blocks contain
the actual data block numbers. This structure is diagrammed in
Figure 4.9. Thus, since the master index block can describe 256
“subindex” blocks, and each subindex block can deseribe 256 data
blocks, in principle this structure would support files of up to 32
megabytes! In order to limit block numbers to a 2-byte signed
value of 32767, however, an arbitrary upper limit of 16 megabytes
was imposed. In other words, a master index block can never be
more than half full.

The entire file structure for TXTFILE is depicted in Figure
4.10. Note that the original index block of the sapling file (block
$A) became the first subindex block of the tree file. Also, when the
changeover was made, the master index block was allocated first

DIRECTORY ENTRY

MASTER
‘TXTFILE ~ INDEX BLOCK

O
LAST
INDEXBLOCK 0 INDEX BLOCK
L B N B B) B—\
e
FIRST BLOCK SECOND BLOCK cee 256TH BLOCK 257TH BLOCK coee LAST BLOCK

OF “TXTFILE" OF "TXTFILE" * OF "TXTFILE" OF “TXTFILE" OF "TXTFILE"

Figure 4.9 Tree File Organization

“A2B-BAPD1-2 04-17.PICT” 399 KB 2001-07-17 dpi: 600h x 600v pix: 2655h x 4531v

L First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner Page 0058 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

4-18 Beneath Apple ProDOS

BLOCK $010A MASTER INDEX BLOCK

JUQY00AGRUBRGYURE ..o
~ QUC QROQBBAVEOPRUOBYU0RILEBBY v ovve e

4 018 VOEUOPOEURVUODRBOUGOVBB00 .ottt
/ 0624 0000000000000

POOOUI0Y oo
// 030 00000800YV00GBLYY

(S22 15 11 B
¢3C 00000UBLAVVIBOBUORAGABUE +.ovveeren e
// W48 ¢000BAVQCBUOBUO0LYARA0YEY «vvviee o

FUEEUY U UL HODUEOEOYY o e e
T 10C QUEN0UUCYa0TINEOCBR000BAY . v v vt e e
' 118 UGUPUULBULRLAVRUBRUBA0UUY oo veer e
124 ¢0000000000BUY00BODQEBU0BUE .o vt
130 UUUUUUUUHUUGOHUU@HH»UUU%
13C Q0UU0U00008B000B00VBLY 06\
148 0uU000UIY0UBUYULY0R0U0ROY \ o v v

BLOCK S000A BLOCK $010B INDEX BLOCK 1
600 [ESYRGCODOECF1UI112131415 200

06C 16118191A1B1CIDLIEIF202] GUC 0BO0000PACUBRB0V00R00GM00 it
018 22232425262728292A2B2C20 "#Ss& () ¥4, - V18 Q0EOUOE06G00B0UE0REP0000 ... hl..
@24 2£2F36913233343536372839 ./0123456789 924 GUPOOC0VE000OROA00HEBEGE .t
030 3A3B3C3IRIE3IF404142434445 :;<=>2¢ABCDE $30 00000BUE00UG000VEBYRERBEE ...
93C 464748494A4B4C4D4E4F5USY FGHIJKLMNOPQ §3C 00PGC000EVU0E0000LARBE00 ...
U48 525354555§5758595A5B5C5D RSTUVWXYZ (/) 048 00V0O00006000EE00P000AGOT ...t

100 [G0RCVUBoUe00EA0N00080008080 ..o 100 ¢1016101010101
10C GO0VBQUUG000ABY0YBE0RBUAY ..o i 10C 0006000000000 00
118 P000QBYO0B0000QB00RGAA000 .o v e 118 00Q000000000000
124 CQ000ECERYL0000P00QUB0A0YE . ovvvnveens 124 0000000000000000004000G0B0covnnnnn
130 000000000¢00004U0BRYB00E ... iv e 130 000000000000 00PORPOGARAG ..o vve e
13C ¢U9Q000GeIN0BORARBBAREBUE ... vv et 13C 000C0P0GRR00000PAYR0RBA00 ... vvvvvenn
148 POOQOGORQO0Q000PA00Y0R0LY «oovvve e 148 Q00000000000 CQPOPOBABACET . ovvenennnn
\ /'
-
\I
\ |
\.
BLOCK S0008 DATABLOCK 0 BLOCK S0117 DATA BLOCK 267
¢00 5245434F5244300000¢00000 RECORDG..... @00 5245434F52443231333660¢0 RECORD2136..
P0C 0060000000000000000000C0BY ..o veennten 0@C 0Q000CCE000000600VEVOD00
018 0QQC0QUGBEROERRYUABAERUUAY ... 918 000000000VEN0YBUR0NALIVLEL
¢24 Q000000QGEEBBO0Y0B000R0Y .t ¢24 0000000000060V AVUUO0ULY
¢30 0000Q0000C0QBEAR0CEDU00BY ... @30 Q0000000000000 0CI0ULLLLY
@3C 000000605245434F5244310DRECORDL. 93C 0P0BOB0005245424F52443231
?48 000000000000000000CA0000 ... 048 3337000003000080046COUEO

Figure 410 Example Tree File

: - “A2B-BAPD1-2 04-18.PICT” 287 KB 2001-07-17 dpi: 600h x 600v pix: 2691h x 4469v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0059 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Volumes, Directories, and Files 4-19

($10A), then the second subindex block ($10B), and finally the data
block whose allocation made the file into a tree file ($10C). The last
block allocated is for RECORD2136 through RECORD2143 (for a
total of 2144 records). This is the last block on the diskette ($117),
and, since no blocks were ever freed, the diskette is now full.
Although TXTFILE has only two subindex blocks and it is nearly
as large as a diskette, this does not imply that all tree files will
have two subindex blocks, as will become apparent when sparse
files are discussed.

FILE DATA TYPES

Unless they are directories (DIR type files), all files conform to
one of the three file structures described above even though the
data in files may have different intended uses. A file might contain
an Applesoft BASIC program which was SAVEd in addition
to being a sapling file. It might be a binary memory image which
was BSAVEd and conforms to the seedling structure. Or it might
be data for a BASIC program in a TXT file and have the tree
characteristic. File types, such as BAS, TXT, or SYS are less
important to ProDOS than they are to the programs which use the
files. This means that the basic structure of a BAS file is identical
to that of a BIN file—only the interpretation of the data differs.
ProDOS maintains a consistent set of file types by convention, and
toalimited extent, the BASIC command interpreter enforces these
conventions (e.g., “FILE TYPE MISMATCH”). You are not pre-
vented, however, from storing an Applesoft BASIC program
image in a TXT file if you really work at it!

TXT FILES

The TXT or text file in its sequential form is the least compli-
cated file data type (in its random form it is, perhaps, the most
complex). A sequential TXT file consists of one or more records,
separated from each other by carriage return characters (hex
$0D’s). This structure is shown and an example file is given in
Figure 4.11. Usually, the end of a TXT file is signaled by the End
Of File (EOF) position stored in the directory entry for the file.

“A2B-BAPD1-2 04-19.PICT” 500 KB 2001-07-17 dpi: 600h x 600v pix: 2655h x 4576v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0060 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

4-20 Beneath Apple ProDOS

EOF

RECORD 0 RECORD 1 RECORD 2

A Sequential Text TXT Type File

END OF FILE
POSITION

RECORD 0

9@ 312C322C332C34[@DP0000A00 1,2,3,4,...
0C 000000000000000000000000cceeeees
18 0000000000000 00000000000coveeue..
24 000000000000000000000000 ...oveeeenen
30 000000000000000000000000 ...ccceeeeee
3C 000000000000000000000000 ...ccceeeeee
48 0000Q00000000000000000000 ...coeveenese
54 (00000000000000Q0000000000 ...coceeeves
(Remainder of Block Zeroes)

Figure 411 Example Sequential Text File Block

Since $0D is used to delimit records, carriage returns should not
appear within a record. Usually, only valid ASCII characters are
allowed in a TXT file to make them accessible to BASIC programs
(i.e. printable text, numerics or special characters; refer to p. 8 of
the Apple II Reference Manual or p. 16 of the Apple II Reference
Manual for IIe Only). This restriction makes processing of a TXT
file slower and less efficient in the use of disk space than with a
BIN or VAR type file, since each digit must occupy a full byte in
the file.

When TXT files are accessed randomly, or by record number,
“holes” can appear between records. In the example given earlier
and in Figure 4.12, each record is allotted 64 bytes of space in the
file. By doing this, it is easy to find any record by multiplying its
number by 64 and using this as a byte offset into the file. The
record length is chosen as the maximum amount of space any
record might occupy. Thus, records with less than 64 bytes of data,
such as the ones in the example, will have wasted space at their end
(filled, in this case, with $00s). This wasted space is called padding.
The actual data in each record is terminated with a $0D (carriage
return) just as in the sequential text file record (allowing BASIC to
read it as a single INPUT line). In this way, data within a single
record can be accessed as if it was a miniature sequential TXT file.
If an attempt is made to sequentially read beyond into the padding,
a null string is returned.

“A2B-BAPD1-2 04-20.PICT” 459 KB 2001-07-17 dpi: 600h x 600v pix: 2673h x 4575v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0061 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Volumes, Directories, and Files 4-21

When the randomly organized file is OPENed, the record length
given with the “L” keyword is stored in the AUX_TYPE field in
the directory entry for the file. Then, if later OPENs omit this
keyword, the original value can be supplied by ProDOS.

Notice that in the example in Figure 4.12, record 3 has not been
initialized. Indeed, none of the other records following RECORD2
have anything but $00s in them. By WRITEing to specific records
in a non-sequential order, it is possible to leave very large holes
between records which contain data. Such files are called “sparse.”
If a hole falls within a block which has other records which-contain
data, itis represented by binary zeroes. But if the hole covers entire
blocks, ProDOS does not bother to allocate them at all. There is no
point in wasting disk space on holes! Thus, if the next record con-
taining data in our example file was RECORD25, for instance, the

RECORD 0 RECORD 1 etc.

A e N
N N

DATA PADDING DATA PADDING

A Random Text TXT Type File

DATA (cR) Padding to Make L64
@0 5245434F524430@DPDO0E@G# RECORDA.

0C GOG000000000000200BETO0F «ovunnennnn.
18 0000000000000 380D, 25%3?23
24 0000000000000 0000000080 «ovuuunnnn..
30 0000000000000 0000000000 «.oueunnenn.
3C 000@00005245434F5244310DRECORDL.
48 000000000000000000000880 - oueuennnnn..
54 GO0C0000P0000000F0000000 «oueuunnnnn.
60 0G00COGE000000000000F008 o vuenueennn.
6C 000000000000000000000000 «..nueuenn...
78 000GIE00000000005245434F RECO
84 5244320D00000008¢0000000 RD2.........
90 00000000000000000F00000F «nveeeunnnns RECORD 2
9C GO0B000CII0000EIA006BEAT «oeeennnnnn. 64 BYTES
A8 0G0000000000000000000080 ..ueuennnnn..
B4 GO0G00000000000000000008 «.nueeunnnn.
C0 000000000000000000000000 - o .vss. NODATAIN

(Remainder of Block Zeroes) RECORD 3

RECORD 1
64 BYTES

r AUX_TYPE in directory contains record length = 64 J

Figure 412 Example Random Text File Block

“A2B-BAPD1-2 04-21.PICT” 403 KB 2001-07-17 dpi: 600h x 600v pix: 2646h x 4549v

L First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner Page 0062 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

4-22 Beneath Apple ProDOS

rest of block 0 would contain zeroes (as it does now), no block would
be allocated for block-1 or block 2, and block 3 would contain zeroes
until the position of RECORD25 was reached. This is diagrammed
in Figure 4.13. Notice that the positions of the “phantom” blocks
are marked in the file’s index block with zeroes. Thus, although the
file covers a “data space” of six blocks, only three data blocks are
actually allocated. It is possible to create a file with only two data
blocks which covers the entire 16-megabyte data space. Such a file
would incorporate one master index block with an entry at+0 and
at +7F. All the subindex blocks in between would be “phantom,” or -
not allocated and marked with zero pointers. The first index block
would contain a single entry at +0 for the first data block. And the
last index block would contain a single entry at +F'F for the last
data block. A 16-megabyte file using only five blocks of disk space!

BIN FILES

The structure of a BIN type file is shown in Figure 4.14. An
exact copy of the memory selected is written to the disk block(s).
The original address from which the memory was copied is stored
in the AUX_TYPE field of the directory entry for the file. The
EOF position in the directory records the length of the binary
image. These values are those given in the A and L (or E) keywords
of the BSAVE command which created the file. ProDOS can be
made to BLOAD or BRUN the binary image at a different address
by specifying the A (address) keyword when the command is
entered, or by changing the address in the directory entry (this is
sometimes necessary if the file cannot be BSAVEd from the loca-
tion where it will run, such as from the screen buffer).

\

0

INDEX BLOCK

BE:

BLOCK50F

FILE

| Lo]
BLOCK 0 OF ! o | BLOCK 3 0F
FILE i Ly ! FILE
| I

Figure 4.13 A Sparse File

“A2B-BAPD1-2 04-22.PICT” 462 KB 2001-07-17 dpi: 600h x 600v pix: 2681h x 4575v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0063 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Volumes, Directories, and Files 4-23

MEMORY IMAGE...

A Binary BIN Type File

$30 Byte Binary Memory Image

r

\

4CU0BE4COOBEQOUOFFFFO000 L.>L.>..

FFFF@OOOFFFFOU00FFFFO000 o
FFFF@QUOFFFFO00059FAJE@BE LY
1B4C@3BE4CPPBE4CS9FFEBBF L L.>L.>LY K

BAS FILES

0000000000000000000600000
000000000000000000000000 «coveennen.
000000000000000000000000coveennn
000000000000000000000000c00ven..
000000000000000000000000cvueeenn
0000000000 00000000000000ccvveeenn
JopPo000000000000000000080 ... veeann
0000000000 00000000000000 ...

(Remainder of Block Zeroes)

AUX_TYPE in Directory Contains Address = $300
EQF in Directory Contains Length = $30

Figure 414 Example BIN File Block

EQF: Marks End of
Binary Image

A BASIC program is saved to the diskette in a way that is nearly
identical to BSAVE. The format of a BAS file is given in Figure
4.15. When the SAVE command is typed, the ProDOS BASIC
command interpreter determines the location of the BASIC pro-
gram in memory and its length by examining Applesoft’s zero
page addresses. An image of the program is written to the file and,
again, the AUX_TYPE and EOF fields of the directory entry
represent the address and length. Notice that the character repre-
sentation of the program is somewhat garbled. This is because, in
the interest of saving memory, BASIC “tokenizes” the program.
Reserved BASIC words, such as PRINT, IF, END, or CHRS, are
replaced with a single hexadecimal code value (set off from other
characters by its most significant bit being forced on). A complete
treatment of the appearance.of a BASIC program in memory is
outside of the scope of this manual, but a partial breakdown of the
program in Figure 4.15 is given.

“A2B-BAPD1-2 04-23.PICT” 376 KB 2001-07-17 dpi: 600h x 600v pix: 2628h x 4593v

| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0064 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

4-24 Beneath Apple ProDOS

PROGRAM MEMORY IMAGE...

An Applesoft BAS Type File

10 PRINT CHR$(4);"OPEN TXTFILE,L64"
20 FOR I=¢ TO 2

30 PRINT CHRS$(4);"WRITE TXTFILE,R";I
49 PRINT "“RECORD";I

5¢ NEXT I

60 PRINT CHRS$ (4);"CLOSE TXTFILE"

7@ END

$BA = PRINT

Address of Next $E7 = CHRS

Line—1 (4)."0..etc.

Line 10

00 [LE0S[0APORAE72834293B224F]:G(4) ;"0
9C 50454E2054585446494C452C PEN TXTFILE,
18 4C36342200290814008149D0 L64".)....IP
24 30C1320047081EQUBAE72834 @A2.G...:G(4
3¢ 293B22575249544520545854) ;"WRITE TXT
3C 46494C452C52223B49005708 FILE,R";I.W.
48 280@BA225245434F5244223B (.:"RECORD";
54 4900SE@8320082490078083C I..2..1.X.<
60 @OBAE72834293B22434C4F53 .:G(4);"CLOS
6C 452054585446494C4522007E E TXTFILE".)
EOF: Marks 78 9846008000000 00AP0I0I000 .F....000...

Appresoft
Program Image

End of Program 84 00000600C0E0000000000006000
Image 90 000000 0P0C0000000000
9C ¢gODQe00Cr00ICr0000aCn00
A8 000000000000 0P000000A000
B4 0000000000000 000000000
CO 0000000000000000000a0000

............

(Remainder of Block Zeroes)

AUX_TYPE in Directory Contains Program Start Address = $801
EOF in Directory Contains Program Length = $80

Figure 4.15 Example BAS File Block

OTHER FILE TYPES (VAR, REL, SYS)

Several other file types have been set aside by ProDOS. Many
are those found in the SOS operating system (e.g. PCD, PTX, PDA
for Pascal, etc.). These are listed in APPENDIX E and will not be
covered here since they are not indigenous to ProDOS. Other
ProDOS file types include BAD and CMD. BAD files are obviously
intended to mark permanent I/O errors on a disk’s surface from
accidental use, but there seem to be no utilities within ProDOS 1.0
which create them. The CMD and PAS file types are not currently
supported by the ProDOS BASIC command interpreter, so their
planned structures are anyone’s guess. AppleWorks file types are
designed for the AppleWorks package, and their structures are

“A2B-BAPD1-2 04-24.PICT” 391 KB 2001-07-17 dpi: 600h x 600v pix: 2654h x 4575v

L First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner

Page 0065 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Volumes, Directories, and Files 4-25

specific to that package. The formats of the VAR, REL, and SYS
files are defined, however.

The VAR file type is used to store the contents of a BASIC pro-
gram’s variables using the STORE command. The ProDOS
BASIC command interpreter compresses all of the strings
together with the numeric variables and saves the resulting chunk
of memory as a VAR file. The first five bytes of the file constitute a
header which defines the memory image that follows:

VAR FILE HEADER

BYTE

OFFSET | LENGTH | DESCRIPTION

+0 (2bytes) |Combined length of simple and array
variables.

+2 (2 bytes) |Length of simple variables only.

+4 (1 byte) MSB of HIMEM when these variables
were STOREJ.

+5 (n bytes) [Startof memory image....

The AUX_TYPE field of the directory entry for the file contains
the starting address from which the compressed variables were
copied. EOF is an indication of the end of the image. When a
RESTORE is later issued, the memory image is reloaded, the
strings are separated from the rest of the variables, and, if neces-
sary, string pointers are adjusted based on the new HIMEM value.

The REL file type is used with a special form of binary file, con-
taining the memory image of a machine language program which
may be relocated anywhere in memory based upon additional
information stored with the image itself. Such a file is called a
Relocatable Object Module file and is produced as output from the
Apple Toolkit Assembler (EDASM). The format for this type of file
1s given in the documentation accompanying the assembler.

A SYS, or system file, is just like a BIN file except that it nearly
always loads at $2000 and implies a reload of the command inter-
preter after it exits. SYS files are invoked with the “-”, or smart
RUN command, from the BASIC command interpreter. The inter-
preter closes all open files, frees all of the memory occupied by
itself, and does a standard BRUN at $2000.

“A2B-BAPD1-2 04-25.PICT" 499 KB 2001-07-17 dpi: 600h x 600v pix: 2690h x 4549v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0066 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

4-26 Beneath Apple ProDOS

DIR FILES—PRODOS SUBDIRECTORIES

Since the Volume Directory has room for just 51 entries, without
subdirectories, you would be limited to 51 files per volume. This
may not seem to be much of a hardship on a diskette (although it
might, since DOS 3.3 allows 105), but on a hard disk with 5 million
bytes or more this limit is unthinkable. In order to create a more
dynamic and flexible structure, the user is permitted to create
subdirectories. A subdirectory can be thought of as an extension
to the Volume Directory, but there is more to it than that. In the
simplest case, a subdirectory is created and an entry which de-
scribes it is placed in the Volume Directory. The subdirectory has a
structure very similar to the Volume Directory: it has a header
entry located at its beginning; its blocks are doubly linked by point-
ers in the first four bytes of each block; and it can contain file
descriptive entries (including entries for “sub-subdirectories”).
Unlike the Volume Directory, however, it can be of any length (it
starts out with only a single block and more are added as
required), its header has a slightly different format, it can be
located anywhere on the diskette, and its blocks are not necessary
contiguous. A diagram of a typical subdirectory is shown in Figure
4.16. Thus, within a single subdirectory, you can create as many
file entries as you have disk blocks! In, practice, however, it is usu-
ally more convenient to create multiple subdirectories “dangling”
from the Volume Directory, each for a specific purpose (e.g. one for
word processing, one for program development, one for spread-
sheets, and so on). These subdirectories might even be thought of as
miniature “diskettes” within the larger volume. Although it is pos-
sible to set up very complex structures using subdirectories (mul-
tiple level tree-like networks), usually this is not very efficient or
convenient and a single level (all subdirectories linked directly to
the Volume Directory) works best.

One of the major concepts around which ProDOS was designed
is the notion of a path to a file. Ordinarily, if a file is described by
the Volume Directory, this path is very simple. ProDOS merely
looks up the file in the Volume Directory and that is that. If the file
is described by a subdirectory, however, ProDOS insists upon
knowing how to find the subdirectory. Of course, ProDOS could
systematically search all subdirectories for the file and all subdi-
rectories of the subdirectories, and so on, but this would be very
time consuming (especially if you had mistyped the file name and

“A2B-BAPD1-2 04-26.PICT” 612 KB 2001-07-17 dpi: 600h x 600v pix: 2699h x 4496v

L First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner Page 0067 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Volumes, Directories, and Files 4-27

BLOCK 2

VOLUME FILE
DIRECTORY \

DIRECTORY \

OTHER FILES
OR
SUBDIRECTORIES

/ﬂ

Figure 4.16 A ProDOS Subdirectory

it didn’t really exist!). Since the user usually knows which subdi-
rectory contains the file (and, perhaps, which subdirectory de-
scribes that subdirectory, ete.) the practice is to tell ProDOS what
path to follow to find a file. This is done by first specifying the
volume to be searched, thereby naming the Volume Directory, fol-
lowed by a list of all subdirectories which must be traversed to
eventually find the file, and finally by the file name itself. For
example, if in Figure 4.16 the volume name is “VOLUME” and the
subdirectory name is “SUB” and the file described by the subdi-
rectory is “FILE,” the path to find that file would be:

/VOLUME/SUB/FILE

If the file described by the Volume Directory in Figure 4.16 was
also called “FILE” there would be no confusion at all, because its
pathname would be unique:

/VOLUME/FILE

“A2B-BAPD1-2 04-27.PICT" 292 KB 2001-07-17 dpi: 600h x 600v pix: 2681h x 4610v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0068 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

4-28 Beneath Apple ProDOS

This points out an additional advantage of subdirectories. It was
mentioned earlier that they were like miniature “diskettes,” and,
just like diskettes, there is no problem in using identical file names
within different directories.

To make specifying pathnames easier, the user can specify a
default prefix to ProDOS. When a file name is given (without a
leading “/” in its name) it is assumed to be an incomplete path-
name. To complete it, ProDOS merely attaches the prefix to the
beginning. Thus, if the current prefix is:

/VOLUME/SUB/

And a reference was made to “FILE,” ProDOS would create the
following fully qualified pathname:

/VOLUME/SUB/FILE

Therefore, by specifying a prefix you are, in a sense, stating that
you wish to work within a specific “miniature diskette,” although
you can still access any other file on the volume by giving its com-
plete pathname explicitly.

An example of a typical subdirectory block is given in Figure
4.17. The format of the Subdirectory Header is given below
(remember that the first four bytes of each subdirectory block con-
tain the previous and next block numbers respectively):

$04 STORAGE_TYPE/NAME_LENGTH: The first nibble
(top 4 bits) of this byte describes the type of entry. In this
case, this is a Subdirectory Header so this nibble is $E.
The low 4 bits are the length of the name in the next field
(the subdirectory name).

$05-$13 SUBDIR_NAME: A 15-byte field containing the name
of this subdirectory. The actual length is defined by
NAME_LENGTH above; the remainder of the field is
ignored.

$14 $14 must contain $75.

$15-$1B Reserved for future use.

$1C-$1F CREATION: The date and time of the creation of this
subdirectory. This field is zero if no date was assigned.
The format of the field is as follows:

BYTE 0 and 1 —yyyyyyymmmmddddd year/month/day
BYTE 2 and 83— 000hFihhOOmmmmmm hours/minutes

“A2B-BAPD1-2 04-28.PICT" 529 KB 2001-07-17 dpi: 600h x 600v pix: 2681h x 4584v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0069 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Volumes, Directories, and Files 4-29

Start of SUBDIRECTORY HEADER|

icat irect
Pointer Fields $E Indicates Subdirectory

(no other blocks)
8 Character DIR Name “SUBSTUFF” Creating/Minimum

/ ProDOS Versions
00 000000 OQES535542535455461<...HSUBSTU Access: $C3=
Creation 0C [4600000000000000[75485523 Fvsov... UHUS DESTROY/RENAME
Date/Time 4E 2] ‘ FCON!...... c' WRITE/READ Enabled

(not set)

. 4500009000000/000000000806 E..veeeeenen Entry Length Is
g(l)(lj)cinmes DerW W 1000000800000 «.veeeeonnnn $27 Bytes
, 18 p#E30005000 Cuvrnennens
File Count 000000000000
(1 File) 69 20000000000
Parent DIR 6C 00GH00000000

StartsinBlock2 /8 0@pUB000000000

(VOL DIR) 00000000000
(Remainder of

00000000000
00000000000 Neeeoooeons

lock Zeroes)

FILE ENTRY

Parent Entry # C 1
(5th Entry For "AFILE
Describes This Parent Entry Seedling
Subdirectory) Length Is 27 Type =BIN
Bytes Data Block = $114
EOF = $100
Full Access

AUX_TYPE = A$800
DIR Header in Block $113

Figure 417 Example Subdirectory Block

where each letter above represents one binary bit. This
is the standard form for all create and modify date/time
stamps in directories.

$20 VERSION: The ProDOS version number under which
this subdirectory was created. This field tells later ver-
sions of ProDOS not to expect to find any fields which
were defined by Apple after this version of ProDOS was
released. This field indicates the level of upward com-
patibility between versions. Under ProDOS 1.0, its
value is zero.

$21 MIN_VERSION: Minimum version of ProDOS which
can access this subdirectory. A value in this field implies
that significant changes were made to the field defini-
tions since prior versions of ProDOS were in use and
these older versions would not be able to successfully
interpret the structure of this subdirectory. This field
indicates the level of downward compatibility between
versions. Under ProDOS 1.0, its value is zero.

“A2B-BAPD1-2 04-29.PICT” 407 KB 2001-07-17 dpi: 600h x 600v pix: 2673h x 4601v

L First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner Page 0070 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

4-30 Beneath Apple ProDOS

$22 ACCESS: The bits in the flag byte define how the direc-
tory may be accessed. The bit assignments are as
follows:

$80 — Subdirectory may be destroyed (deleted)
$40 — Subdirectory may be renamed

$20 — Subdirectory has changed since last backup
$02 — Subdirectory may be written to

$01 — Subdirectory may be read

All other bits are reserved for future use.

$23 ENTRY_LENGTH: Length of each entry in the Subdi-
rectory in bytes (usually $27).
$24 ‘ENTRIES:PER_BLOCK: Number of entries in each

block of the Subdirectory (usually $0D). Note that the
Subdirectory Header is considered to be an entry.

$25-$26 FILE_COUNT: Number of active entries in the Subdi-
rectory. An active entry is one which describes a file or
subdirectory which has not been deleted. This count does
not include the Subdirectory Header. Note that this
field’s name is a bit misleading since the count also
includes other subdirectory entries.

$27-$28 PARENT_POINTER: The block number of the key
((first) block of the directory which contains the entry
which describes this subdirectory.

$29 PARENT_ENTRY: The entry number within the par-
ent directory which describes this subdirectory (the
parent directory’s header counts as zero).

$2A PARENT_ENTRY_LENGTH: The length of entries in
the parent directory in bytes (usually $27).

EMERGENCY REPAIRS

- From time to time the information on a diskette can become
damaged or lost. This can create various symptoms, ranging from
mild side effects, such as the disk not booting, to major problems,
such as an input/output (I/O) error in the Volume Directory. A
good understanding of the format of a diskette, as described pre-
viously, and a few program tools can allow any reasonably sharp
Apple IT user to patch up most errors on his diskettes.

A first question would be, “how do errors occur?” The most
common cause of an error is a worn or physically damaged
diskette. Usually a diskette will warn you that it is wearing out by

“A2B-BAPD1-2 04-30.PICT” 492 KB 2001-07-17 dpi: 600h x 600v pix: 2655h x 4576v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0071 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Volumes, Directories, and Files 4-34

EMERGENCY REPAIRS ARE EASIER |F YOU HAVE A BACKUP

producing “soft errors.” Soft errors are I/O errors which occur
randomly. You may get an I/O error message when you CATALOG
a disk one time and have it CATALOG correctly if you try again.
When this happens, the smart programmer immediately copies
the files on the aged diskette to a brand new one and discards the
old one or keeps it as a backup.

Another cause of damaged diskettes is the practice of hitting the
RESET key to abort the execution of a program which is accessing
the diskette. Damage will usually occur when the RESET signal
comes just as data is being written onto the disk. Powering the
machine off just as data is being written to the disk is also a sure
way to clobber a diskette. Of course, real hardware problems in the
disk drive, cable, or controller card can cause damage as well.

If the damaged diskette can be CATALOGed, recovery is much
easier. A damaged ProDOS bootstrap loader on track 0 can usually
be corrected by formatting a fresh diskette and copying the files
from the old one to the new one. If only one file produces an I/0
ERROR when it is used, it may be possible to copy most of the sec-
tors of the file to another diskette by skipping over the bad sector
with an assembler language program which calls the MLI
(Machine Language Interface) in the ProDOS Kernel, or with a
BASIC program (if the file is a TXT file). Indeed, if the problem is -
a bad checksum (see Chapter 3), it may be possible to read the bad
sector and ignore the error and get most of the data.

“A2B-BAPD1-2 04-31.PICT" 483 KB 2001-07-17 dpi: 600h x 600v pix: 2681h x 4584v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0072 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

“another commercial disk utility, you can use the ZAP program in

index blocks (ones which are not otherwise connected to the

4-32 Beneath Apple ProDOS

An I/0 error usually means that one of two conditions has
occurred. Either a bad checksum was detected on the data in a sec-
tor, meaning that all bytes in the sector which follow the point of
damage may be lost; or the sectoring is clobbered such that the sec-
tor no longer even exists on the diskette. If the latter is the case, the
diskette (or at the very least, the track) must be reformatted,
resulting in a massive loss of data. Although a program can be
written to format a single track (see APPENDIX A), it is usually
easier to copy all readable sectors from the damaged diskette to
another formatted diskette and then reconstruct the lost data
there.

Disk utilities, such as Quality Software’s Bag of Tricks, allow the
user to read and display the contents of sectors or blocks. Bag of
Tricks will also allow you to modify the sector data and rewrite it to
the same or another diskette. If you do not have Bag of Tricks or

APPENDIX A of this book. The ZAP program will read any block
of an unprotected disk into memory, allowing the user to examine
it or modify the data and then, optionally, rewrite it to a disk.
Using such a program is very important when learning about
diskette formats and when fixing clobbered data.

Using ZAP, a bad sector within a file can be localized by reading
each block listed in the index blocks for that file. If the bad block is
in a directory, the pointers of up to 13 files may be lost. When
this occurs, a search of the diskette can be made to find “homeless”

remaining good directory blocks in that and other directories). As
these index blocks are found, new file descriptive entries can be
made in the damaged sector which point to these blocks. Of course,
it helps to know whether the lost files are seedlings, saplings or
trees! When the entire Volume Directory is lost, this process can
take hours, even with a good understanding of the format of Pro-
DOS volumes. Such an endeavor should only be undertaken if
there is no other way to recover the data. Of course, the best policy
is to create backup copies of important files periodically to sim-
plify recovery. More information on the above procedures is given
in APPENDIX A.

A less significant but very annoying form of diskette clobber is
the loss of free blocks. It is possible, by powering off or hitting
RESET at the wrong time, to leave blocks marked in use in the
Volume Bit Map which were about to be marked free. These lost
“A2B-BAPD1-2 04-32.PICT” 598 KB 2001-07-17 dpi: 600h x 600v pix: 2646h x 4575v

L First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner Page 0073 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Volumes, Directories, and Files 4-33

blocks can never be recovered by normal means, even when files
are deleted, since they do not belong to anyone. The result is a
DISK FULL message before the volume is actually full. To reclaim
the lost block, it is necessary to compare every block listed in every
index block or directory against the Volume Bit Map to see if there
are any discrepancies. There are utility programs which will do
this automatically, but the best way to solve this problem is to copy
all the files on the diskette to another diskette (note that the
diskette must be copied on a file by file basis, not as a volume, since
a volume copy would copy an image of the diskette, bad Volume Bit
Map and all).

If a file is deleted it can usually be recovered, providing that
additional block allocations have not occurred since it was deleted.
If another file was created after the DELETE command, ProDOS
probably has reused some or all of the blocks of the old file. The
appropriate directory can be quickly ZAPped to reactivate the file
(you will have to guess at the STORAGE_TYPE and
‘NAME_LENGTH values) at +0 in the deleted entry. The file
should then be copied to another disk and then the original deleted
so that the Volume Bit Map will be correct.

FRAGMENTATION

ProDOS overhead in reading or writing blocks to a volume con-
sists of three main parts:

1. ProDOS computational overhead time (the time to get ready to
access the disk).

2. Seek time (moving the disk arm to the proper track).

3. Rotational delay (waiting for the proper sector to appear under
the disk head).

In the first respect, ProDOS is an enormous improvement over

'Apple’s earlier operating system, DOS, being up to eight times

faster in its operation. This fact only increases the significance of
the other two delay areas. Skewing can have an effect on rotational
delay to some extent (see Chapter 3), but is much more difficult to
control. Seek time, however, can vary greatly depending upon use
patterns and the arrangement of files on a volume.

Imagine, for example, a volume on which a great deal of activity
has occurred. Many files have been created and deleted over a
period of time, leaving “holes” here and there as files are deleted,

“A2B-BAPD1-2 04-33.PICT” 533 KB 2001-07-17 dpi: 600h x 600v pix: 2673h x 4584v

L First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner Page 0074 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

4-34 Beneath Apple ProDOS

rotational delay will be.

diskette) so that pathname searches will go faster.

“A2B-BAPD1-2 04-34.PICT” 521 KB 2001-07-17 d

which are reallocated to existing or new files as necessary. Even-
tually, a map of the volume looks like a plate of spaghetti! There is
nothing really wrong with this — files can be accessed normally —
but if parts of an otherwise short file are spread all over the disk
volume, ProDOS must spend a lot of time moving the disk read/
write head from track to track to pick up all the pieces in the
proper order. This costs time. A disk volume in this state of affairs
is said to be badly “fragmented.” Fragmentation can be even more
important on a hard disk since the ratio of seek delay to rotational
delay is much greater. Likewise, the best skewing setup in the
world can be completely gutted by a fragmented disk, since few
sequential file sectors are found together on the same track, and as
the arm is moved to a new track there is no telling how long the

When disk access time becomes a concern, it is sometimes useful
to intelligently move files to specific spots on the disk. To accom-
plish this, the user must format a new, blank volume and copy the
files from the old disk, one by one, to the new disk in an appro-
priate order. Remember that ProDOS allocates blocks for files in
numerically increasing order (from the outside track of the disk to
the inside track). Thus, the first file you copy will be placed near
the Volume Directory (a good place to be if you want to find that
file fast). The last file you copy will go closest to the center hub of
the diskette. If your program accesses two files at once, try to place
them near one another on the disk. Do not separate them by many
other files or you will hear the disk arm “thrashing” back and forth
as it first accesses a block in file A and then must access one in file
B. While you hear that noise, your program is not doing anything
useful! Another thing to remember if your program opens and
closes files frequently is that, when it does so, it may access several
directories. It is usually a good idea in any case to keep all of your
directories squashed down against the Volume Directory (i.e.
CREATE all directories before you copy any files onto the new

pi: 600h x 600V pix: 2655h x 4549v

| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner

Page 0075 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

CHAPTER 5

THE STRUCTURE OF PRODOS

ProDOS MEMORY USE

ProDOS is an assembly language program which is loaded into
RAM memory when the user boots his disk. Although the ProDOS
machine language support routines can run by themselves in a
machine smaller than 64K (or 48K plus a language card), ProDOS
is primarily intended to run only on a full sized 64K or larger

Apple II Plus or an Apple Ile or IIc. In a 64K Apple II, ProDOS
normally occupies the 16K of bank switched memory (or the
Language Card for older Apples) and about 10.5K at the top of
main memory($9600 through $BFFF). The part of ProDOS which
occupies the bank switched memory is called the Kernel. The part
occupying the top of main memory is called the BASIC
Interpreter (BI). The Kernel eonsists of support subroutines
which may be called by any assembly language program (such as
the BASIC Interpreter) to access the disk, either block by block or
file by file. The BASIC Interpreter accepts ProDOS commands
entered by the user or his programs, and translates them into calls
to the Kernel subroutines.* When the BASIC Interpreter is loaded,
ProDOS must fool Applesoft BASIC into believing that there is

*It is possible, if the BASIC Interpreter’s functions are not required by an
application (such as a stand alone arcade-type game), to separate the Kernel from
the BASIC Interpreter and not even load the BASIC Interpreter. For the purposes
of this discussion, however, we will assume that ProDOS consists of both the Kernel
and the BASIC Interpreter. In addition, the ProDOS Kernel may be loaded into the
main part of memory if the Apple does not have a language card (48K Apple II), but
the BASIC Interpreter may not be used under these circumstances because it
cannot be relocated.

“A2B-BAPD1-2 05-01.PICT" 414 KB 2001-07-17 dpi: 600h x 600v pix: 2708h x 3929v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0076 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

5-2 Beneath Apple ProDOS

actually less RAM memory in the machine than there is. With
ProDOS loaded, Applesoft believes that there is only about 38K of
RAM. ProDOS does this by adjusting HIMEM after it has loaded
the BASIC Interpreter to prevent Applesoft from using the
memory ProDOS is occupying. In order to keep track of the
memory it is using, ProDOS maintains a “bit map” table which
describes every page (256 bytes) in memory and marks it either
free or in-use. By examining this table, user written programs can
avoid using previously assigned memory, even if later versions of
ProDOS are loaded elsewhere.

A diagram of ProDOS’s memory is given in Figure 5.1. As can
be seen, there are numerous subdivisions of the two basic
components mentioned above. In addition, there are two special
global pages containing addresses and data pertaining to the
ProDOS Kernel (SYSTEM GLOBAL PAGE at $BF00) and the
BASIC Interpreter (BI GLOBAL PAGE at $BE00) which may be
of interest to external user written programs. These global pages
will be discussed in more detail later in this chapter.

“A2B-BAPD1-2 05-02.PICT” 430 KB 2001-07-17 dpi: 600h x 600v pix: 2664h x 4531v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0077 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

The Structure of ProDOS 5-3

SFFFF $FF80: CLOCK
DEVICE DRIVERS ~ $FF00: /RAM DRIVE
$F800 $F800: DISKETTE
KERNEL SCRATCH SPACE
$Fo0oF 100
Language Card
Applesoftin
ProDOS KERNEL Motherboard
ROMs
$E000 . MACHINE LANGUAGE INTERFACE
(MLI)
$D000
System Global
$C000 Page ($BF00)
Bl Global Page
($BE0O)
$B000 4 ProD0OS
BASIC INTERPRETER
(BI)
$A000 “ [Open File
/ Buffers Are
$9A00 Inserted Here
GENERAL PURPOSE BUFFER
$9600 NARRY HIMEM
$9000

Figure 54 ProDOS Memory Usage (64K)

“A2B-BAPD1-2 05-03.PICT” 299 KB 2001-

07-17 dpi: 600h x 600V pix: 2646h x 4487v

| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner

Page 0078 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

5-4 Beneath Apple ProDOS

As discussed earlier, ProDOS can be divided into two major
components: the Kernel, containing the Machine Language
Interface (MLI); and the BASIC Interpreter (BI). In theory, other
interpreters could be written and substituted for the BI (to support
Pascal or C language development, for example) but at present the
only interpreter provided by Apple is the BASIC Interpreter,
supporting Applesoft BASIC. There is currently no support for the
older Integer BASIC language. In fact, because of the memory
utilization of ProDOS, Applesoft must be resident in ROM (since
the Kernel resides in the language card). Hence, ProDOS is only
supported for Apple IT Pluses, IIc’s, and Ile’s. Use of the term
“BASIC Interpreter” should not be confused with the Applesoft
BASIC Interpreter in ROM.* Here, “interpreter” means
“Interpreter of disk access commands,” and not “interpreter of
BASIC language statements.” Although the Bl is closely
“married” to the Applesoft interpreter in ROM, its primary
responsibility is to interpret ProDOS commands which load and
save files, display directories, and support file operations in
BASIC programs.

The BI normally occupies memory from $9600 to SBEFF. The
first 1K ($9600-$9A00) is a general purpose buffer, used during
Applesoft string garbage collection and for other purposes.
Following this, at $9A00, are the actual machine language
instructions and work areas of the BI. Any data which is
considered to be of interest to external programs is placed in the
BI Global Page at $BE00. As files are opened by BASIC programs,
1024-byte file buffers are allocated and inserted between the
general purpose buffer and the Bl itself. To do this, the BI must
relocate the general purpose buffer and any strings which were
allocated by the running BASIC program lower in memory to
make room for the file buffers. HIMEM must be lowered
accordingly. Thus, the memory available to the BASIC program
fluctuates according to the number of open files.

The ProDOS Kernel occupies 12K of the 16K bank switched
memory (language card). Most of the remaining 4K bank is not
currently used, but is reserved by Apple for future use (the QUIT
code occupies three pages currently). The main part of the ProDOS

* Apple’s documentation also refers to the BASIC Interpreter as the “BASIC
Systemy Program.” “BASIC Interpreter” is used here because of frequent
references to the “Bl,” an earlier designation.

: - “A2B-BAPD1-2 05-04.PICT” 590 KB 2001-07-17 dpi: 600h x 600v pix: 2690h x 4593v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0079 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

The Structure of ProDOS 5-5

Kernel begins at $D000, and contains the Machine Language
Interface (MLI) subroutines which allow access to the disk by
other programs (such as the BI or user written machine language
programs). MLI functions provided include: open a file, create a
new file, delete a file, rename a file, determine online volumes,
read/write to a file, etc. The Kernel also handles interrupts for
devices which can generate them. Access to these subroutines and
their data is strictly controlled by the System Global Page which
will be described next. Following the Kernel and its scratch space
(work areas), is a 2K area devoted to device drivers. In order to
provide a device independent interface to peripherals, subroutines
are loaded here which can perform block oriented I/0 to the Apple
diskette drive, the /RAM “electronic” 64K memory diskette drive
implemented in the Extended 80-Column Text card, and the
Thunderclock. Additional device drivers (Hard disk, printer, etc.)
must be placed in interface card ROM or in main RAM memory.
The entry point addresses of each device driver in use are kept in
the System Global Page.

GLOBAL PAGES

The System and BI Global Pages are maintained by ProDOS at
fixed locations in main memory ($BF00 and $BE0O respectively).
This practice allows important ProDOS data and subroutines to be
accessed by external programs via a fixed location. Each time
Apple makes a change in ProDOS and reassembles its source code,
the addresses of all of the subroutines and variables may change.
By putting the addresses of these routines and the variables
themselves in fixed locations in memory, dependencies by a user
written program on a particular version of ProDOS can be
eliminated. Hopefully, all subroutines or data of general interest
have been “vectored” through these global pages. If not, the
programmer cannot be sure that a subroutine he calls directly will
not “move out from under him” in a later version.

The exact format of the System Global Page is given in Chapter
8 but it contains the following information:

1. JMP (Goto) instructions to the main entry of the MLI, a quit
vector, a clock/calendar subroutine, etc.
2. Addresses of the device drivers for each slot and drive.
3. A list of all disk drives online, and the slot and drive each
occupies.
“A2B-BAPD1-2 05-05.PICT” 561 KB 2001-07-17 dpi: 600h x 600v pix: 2673h x 4584v

| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0080 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

5-6 Beneath Apple ProDOS

4. A “bit map” showing which pages of memory are in use and
which are free.
Addresses of the buffers being used by MLI opened files.
Addresses of up to four interrupt handling routines and
associated register save areas.
Current date, time and file level.
A machine ID flag byte giving the model (e.g. Apple IIe) and
memory in the machine on which ProDOS is currently
running.

9. Various flags indicating MLI status and whether a card

occupies any slot.

10. Language card bank switching routines.
11. Interruptentry and exit routines.
12. ProDOS version number.

o on

=

The BI global page contains:

1. Addresses of routines in the BI
which allow warmstart, command
scanning, and error message
printing.

2. 1/0 vectors for PR# and IN# for

each slot, and the currently active

input and output streams.

Default slot and drive.

BI status flags indicating whether

an EXEC file is active,a BASIC

program is running, a file is being
read or written, ete.

5. Parameters that allow a user to
pass an external command line to the BI.

6. A table indicating which commands allow which keyword

parameters (e.g. OPEN does not allow the AD keyword but

does allow the L keyword).

The current value for all keywords (A,B,E,L,S,D,etc.).

The address of the pathname buffers within the BI.

A subroutine used by the Bl to access the MLIL.

Ll

e

“A2B-BAPD1-2 05-06.PICT” 393 KB 2001-07-17 dpi: 600h x 600v pix: 2672h x 4557v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0081 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

The Structure of ProDOS 5-7

10. Parameter lists used by the BI to access the MLI.
11. Vectors to the BI’s buffer allocate and free subroutines.
12. The current HIMEM MSB.

In addition to the ProDOS vectors in the global pages, the
Monitor ROM and Applesoft maintain additional vectors of
general interest from $3F0 through $3FF. They are:

machine language instruction. Supported by the Autostart
and Apple ITe and IIc ROMs. Normally contains the
address of a Monitor ROM routine which prints the
contents of the registers.
$3F2 |[LO/HI address of routine which will handle RESET for
Autostart and Apple IIe ROM. Normally the Bl restart
address ($BE00) is stored here, but the user may change it
if he wishes to handle RESET himself.
$3F4 |Power-up byte. Contains a “funny complement” of the
RESET address with an $A5. This scheme is used to
determine if the machine was just powered up or if
RESET was pressed. If a power-up occurred, the
Autostart ROM or Apple IIe ROM ignores the address at
$3F2 (since it has never been initialized), and attempts to
boot a diskette. To prevent this from happening when-you
change $3F2 to handle your own RESETSs, EOR (exclusive
OR) the new value at $3F3 with an $A5 and store the result
in the power-up byte.
$3F5 |A JMP to a machine language routine which is to be called
when the “&” feature is used in Applesoft. Initialized by
ProDOS to point to the BI command scanner vector.

$3F8 [A JMP to a machine language routine which is to be called
‘ when a control-Y is entered from the monitor.
$3FB |A JMP to a machine language routine which is to be called
when a non-maskable interrupt (NMI) occurs.
$3FE |LO/HI address of ProDOS’s IRQ maskable interrupt
handler dispatcher. If you wish to handle an IRQ interrupt,
install an interrupt handler into ProDOS—do not replace
this vector.

“A2B-BAPD1-2 05-07.PICT” 534 KB 2001-07-17 dpi: 600h x 600v pix: 2735h x 4460v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0082 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

5-8 Beneath Apple ProDOS

WHAT HAPPENS DURING BOOTING

When an Apple is powered on, its memory is essentially devoid of
any programs. In order to get ProDOS running, a diskette is
“booted.” The term “boot” refers to the process of bootstrap loading
ProDOS into RAM. Bootstrap loading involves a series of steps
which load successively bigger pieces of a program until all of the
program is in memory and running. In the case of ProDOS,
bootstrapping occurs in two major stages, corresponding to the
loading of the ProDOS Kernel and the BASIC Interpreter. Within
these major stages, there are minor stages which must be
performed to complete the loading process. Figures 5.2 and 5.3
diagram the processes involved in loading the Kernel and the BI
respectively from the diskette. A description of this process
follows.

The first boot stage is the execution of the ROM on the disk
controller card. This is called the Boot ROM, and it exists on
either the diskette controller card or a hard disk controller card at

“A2B-BAPD1-2 05-08.PICT" 394 KB 2001-07-17 dpi: 600h x 600v pix: 2673h x 4478v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0083 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

The Structure of ProDOS 5-9

$Cs00 (where “s” is the slot number). Thus, when the Apple is first
powered on, the Monitor ROM searches the slots for a disk
controller card (starting with slot 7 and moving down in slot
number) and, upon finding one, it branches to $Cs00 (usually
$C600 if the controller is in slot 6). Control is also passed to this
address should the user type PR#6 in BASIC or C600G or 6(ctr])P
in the monitor. The diskette controller Boot ROM is a machine
language program of about 256 bytes in length. When executed, it
“recalibrates” the diskette arm by pulling it back to track 0 (the
“clacketty-clack” noise that is heard), and then reads sector 0 from
track 0 into RAM memory at location $800. Once this sector has
been read, the Boot ROM jumps (GOTO’s) to $801 which is the
second stage boot, the ProDOS Loader.

The ProDOS Loader occupies the first block on a ProDOS
diskette (physical sectors 0 and 2). Since the Boot ROM has only
loaded sector 0, the first task the ProDOS Loader must perform is
to load the remaining sector of itself. It does this by calling the
Boot ROM as a subroutine, loading it at $900. Having completed
this, a portion of the Boot ROM is copied into a subroutine in the
ProDOS Loader itself (this variable code is different for a diskette
or a hard disk), and uses this to search the diskette’s Volume
Directory for a system file with the name “PRODOS”. This file
contains an image of the ProDOS Relocator, the BI Loader, and the
ProDOS Kernel itself. If the file can be found, its contents are read
into memory at $2000, and the ProDOS Loader jumps to the
ProDOS Relocator at $2000.

The ProDOS Relocator prints a copyright and version number
on the screen, and then begins to examine the machine in use to
find out its model. This is done by testing the Monitor ROM for
special model-dependent indicators and by checking for language
card memory. The ProDOS Relocator assembles the data it has
collected into a byte of flags indicating whether the machine is an
Apple 11, Apple II Plus, Apple ITe, Apple Ilc, or an Apple Il in
Apple IT emulation mode. It also indicates the amount of memory
available. Once this has been established, the Kernel image is
copied either to the bank switched memory (language card) if the
machine has 64K or more, or to $9000 for a 48K Apple. If the
machine has 128K, a /RAM drive is set up in the alternate 64K
memory. The peripheral card configuration is also checked, and a
table of occupied slots and interface card identifications is made.

“A2B-BAPD1-2 05-09.PICT” 615 KB 2001-07-17 dpi: 600h x 600v pix: 2673h x 4575v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0084 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

5-10 Beneath Apple ProDOS

$FFFF

W - $F000

" RELOCATED
ProDOS
KERNEL

N

1/0
Boot ROM AE

System Global Page —

—
\\/\\

— ProDOS IMAGE —— ‘ e

“ProDQS" System File

It
~4 $2D00

1 pron0s RELOCATOR

BLOCK BUFFER

BLOCK BUFFER

~— ProDOS LOADER ———*

$0800
$0000

Block 0
DISKETTE

MEMORY

Figure 5.2 ProDOS Kernel Bootstrap Process

The initialization of the Kernel is completed by moving an image

of the System Global Page to $BF00 and initializing it as

necessary. The BI Loader image is then copied to $800 and control

transfers there to begin booting the BI.

The BI Loader searches the Volume Directory for the first
system file it can find whose name ends with “.SYSTEM?”. The file
which is found will normally be BASIC.SYSTEM, but any other

interpreter could be loaded in this way. If a file is found, its
contents are loaded into memory at $2000 and control passes
BI Relocator at $2000.

“A2B-BAPD1-2 05-10.PICT” 321 KB 2001-07-17 d

Bl Loader
Copied To $800

to the

pi: 600h x 600V pix: 2655h x 4584v

L First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner

Page 0085 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

The Structure of ProDOS 5-11

$FFFF
$F000
ro S \\
\\\ \ KERNE
\\\\ $E000
\\v\ \<§§§\\\
\ $D000

AN\ Boot ROM —>~ $C600

System Global Page —-| icooo

/L LI

oba ae/
BI Gtobal Pag ,Oé///?////7</7/ (;25

/// RELOCATED

mn

GENERAL PURPOSE BUFFER

—— BIIMAGE —=
|

“BASIC.SYSTEM”
A

|
L L‘ i ____.._--—-—-"""'-‘-_j_-;---— SO EANSSRRERN SN \\h
\ Lot " T BIRELOCATOR s N S 69000
Ve %
BLOCK BUFFER ggg%%
Bl LOADER
$0800
DISKETTE MEMORY

Figure 5.3 Basic Interpreter (Bl) Bootstrap Process

The BI Relocator copies the BI image to high memory ($9A00),
sets up the BI Global Page at $BEOO and marks the pages
occupied by these as “in-use” in the System Global Page’s memory
bit map. The screen and keyboard vectors in zero page (CSWL/H
and KSWL/H) are modified to cause immediate transfer of control
to the relocator, and a jump to BASIC’s coldstart entry is executed.
As soon as Applesoft has completed initialization, it prints a
prompt character “]”. This causes control to transfer back into the
BI Relocator. CSWL/H and KSWL/H are restored to their normal
settings, and initialization of the BI Global Page is completed. If a

“A2B-BAPD1-2 05-11.PICT” 454 KB 2001-07-17 dpi: 600h x 600v pix: 2699h x 4584v

| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0086 of 0340
S

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

5-12 Beneath Apple ProDOS

“STARTUP?” file can be found in the Volume Directory, an initial
command line of “-STARTUP” is dummied up and, after
completing the vectors in.page 3 ($3F0 etc.), control transfers to
the BI through its vector at $BE0O.

The various stages of the boot process are covered again in
greater detail in the ProDOS Program Logic Supplement—see
Chapter 8 for details.

“A2B-BAPD1-2 05-12.PICT" 129 KB 2001-07-17 dpi: 600h x 600v pix: 2646h x 4363v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0087 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

CHAPTER &

USING ProDOS FROM
ASSEMBLY LANGUAGE

CAVEAT

This chapter is aimed at the advanced assembly language
programmer who wishes to access the disk at any level. Access to
the disk by BASIC programs is well documented in the ProDOS
manual, BASIC Programming With ProDOS. The material
presented in this chapter may be beyond the comprehension (at
least for the present) of a programmer who has never used
assembly language.

Access to a diskette from assembly language may be
accomplished at four different levels:

Level 0 Direct access of the diskette controller
Level 1 Block access

Level 2 Machine Language Interface (MLI) access
Level 3 BI command access

At the lowest level is direct access of the diskette controller.
Here, data is accessed byte by byte. This may be required to
implement diskette protection schemes or to perform low level
diagnostic or correction of I/0 errors. The next level of access is by
ProDOS blocks (two sectors per block). This is done using the ap-
propriate ProDOS device driver; in this case, the diskette device
driver. At a higher level still is the ProDOS Machine Language
Interface (MLI). Here, data may be accessed on a file basis.

“A2B-BAPD1-2 06-01.PICT” 321 KB 2001-07-17 dpi: 600h x 600v pix: 2690h x 3504v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0088 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

6-2 Beneath Apple ProDOS

Finally, the highest level of access is through the ProDOS BASIC
Interpreter. Here, entire ProDOS command lines may be executed
to produce formatted directory listings and the like. A detailed
description of the programming considerations at each of these
levels follows.

DIRECT USE OF THE DISKETTE DRIVE

It is often desirable or necessary to access the Apple’s disk drives
directly from assembly language, without the use of ProDOS.
Applications which might use direct disk access range from a user
‘written operating system to ProDOS-independent utility
programs.Direct access is acomplished using 16 addresses that
provide eight on/off switches which directly control the hardware.
For information on the disk hardware, please refer to
APPENDIX D. The device address assignments are given in

Table 6.1.
TABLE 6.1 ProDOS Hardware Addresses
“OFF” SWITCHES “ON” SWITCHES
BASE BASE |
SWITCH | ADDRESS|FUNCTION |ADDRESS|FUNCTION
Q0 $C080 Phase 0 off $COR1 Phase 0 on
Q1 $CO82 Phase 1 off $CO83 Phase 1 on
Q2 $C084 Phase 2 off $C085 Phase 2 on
Q3 $C086 Phase 3 off $C087 Phase 3on
Q4 $C088 Drive off $C089 Drive on
Q5 1 $CORA |Select drive 1 | $C08B Select drive 2
Q6 $C08C Shift data $CO08D Load data
register register
Q7 $CORE Read $CO8F [Write

The last two switches are difficult to explain in single phrase
definitions because they interact with each other forming a 4-way
switch. The four possible settings are given in Table 6.2.

“A2B-BAPD1-2 06-02.PICT” 433 KB 2001-07-17 dpi: 600h x 600v pix: 2663h x 4390v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0089 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Using ProDOS from Assembly Language 6-3

TABLE 6 .2 Four Way Q6/Q7 Switches

| Q6

Q7

FUNCTION

Off
Off

|On
On

Off
On

Off
On

‘| while writing.

Enable read sequencing.

Shift data register every four cycles
while writing.

Check write protect and initialize
sequencer for writing.

Load data register every four cycles

The addresses are slot dependent and the offsets are computed
by multiplying the slot number by 16. In hexadecimal this works
out nicely. Simply add the value $s0 (where s is the slot number) to
the base address. To engage disk drive number 1 in slot number 6,
for example, we would add $60 to $CO8A (device address
assignment for engaging drive 1) for a result of SCOEA. However,
since it is generally desirable to write code that is not slot
dependent, one would normally use $CO8A,X (where the X-
register contains the value $s0). Table 6.3 shows the range of
addresses for each slot number.

TABLE 6.3 Address Ranges For Slots

SLOT ADDRESS
NUMBER RANGE

$C080—$CO8F

$C090—3CO9F

$COA0—S$COAF
$COBO—$COBF
$C0CO—3COCF
$COD0—3$CODF
$COE0—3COEF
$COF0—$COFF

ST W= O

“A2B-BAPD1-2 06-03.PICT” 331 KB 2001-07-17 d

pi: 600h x 600V pix: 2637h x 4496v

L First Edition

1984 « Written by Don D. Worth & Pieter M. Lechner

Page 0090 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

6-4 Beneath Apple ProDOS

In general, the above addresses need only be accessed with-any
valid 6502 instruction. However, in the case of reading and writing
bytes (last four addresses), care must be taken to insure that the
data will be in an appropriate register. All of the following would
engage drive number 1: (Assume slot number 6.)

BIT SCOEA
LDA SC@8A,X (where X-register contains $689)
CMP S$SC@8A,X (where X-register contains $60)

Below are typical examples demonstrating the use of the device
address assignments. For more examples, see APPENDIX A. All
examples assume that the label SLOT is set to 16 times the desired
slot number (e.g. $60 for slot 6).

STEPPER PHASE OFF OR ON

Basically, each of the four phases (0-3) must be turned on and
then off again. Done in ascending order moves the arm inward. In
descending order, the arm moves outward. For optimum
performance, the timing between accesses to these locations is
critical, making this a nontrivial exercise. An example is provided
in APPENDIX A demonstrating how to move the arm to a given

location.

MOTOR-OFFOR ON
LDX* #SLOT Put slot number times 16 in X-register.
LDA $C@88,X Turn motor off.
LDX #SLOT Put slot number times 16 in X-register.
LDA $C@89,X Turn motor on (selected drive).

NOTE: A sufficient delay should be provided to allow the motor
time to come up to speed before reading or writing to the
disk. Either a specific delay or a routine that watches the
data register can be used. See APPENDIX A for an
example.

“A2B-BAPD1-2 06-04.PICT" 354 KB 2001-07-17 dpi: 600h x 600v pix: 2646h x 4523v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0091 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Using ProDOS from Assembly Language 6-5

ENGAGE DRIVE 1 OR 2

LDX #SLOT Put slot number times 16 in X-register.
LDA $CO@8A,X Engage drive 1.
LDX #SLOT Put slot number times 16 in X-register.
LDA S$C0@8B,X Engage drive 2.
READ A BYTE
LDX #SLOT Put slot number times 16 in X-register.
LLDA SC@8E,X Insure Read mode.
READ LDA $C@8C,X Put contents of data register in Accumulator.
BPL READ Loop until the high bit is set.

NOTE: $CO8E,X must be accessed to assure Read mode. The
loop is necessary to assure that the accumulator will
contain valid data. If the data register does not yet
contain valid data, the high bit will be zero.

SENSE WRITE PROTECT

LDX #SLOT Put slot number times 16 in X-register.
LDA $C@8D,X

LDA S$C@S8E,X Sense write protect.

BMI ERROR If high bit set, protected.

WRITE LOAD AND WRITE A BYTE

LDX #SLOT Put slot number times 16 in X-register.
LDA DATA Load ‘Accumulator with byte to write.
STA $C@8D,X Write load.

ORA $C@8C,X Write byte.

NOTE: $CO08F,X must already-have been accessed to insure
- Write mode and a 100-microsecond delay should be

~invoked before writing.

“A2B-BAPD1-2 06-05.PICT” 222 KB 2001-07-17 d

pi: 600h x 600V pix: 2664h x 4160v

L First Edition e

1984 « Written by Don D. Worth & Pieter M. Lechner

Page 0092 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

6-6 Beneath Apple ProDOS

Due to hardware constraints, normal data bytes must be written
in 32-cycle loops. The example below writes the two bytes $D5 and
$AA to the disk. It does this by an immediate load of the
accumulator, followed by a subroutine call (WRITE9) that writes
the byte in the accumulator. Timing is so critical that different
routines may be necessary, depending on how the data is to be
accessed, and code cannot cross memory page boundaries without
an adjustment.

LDA #SD5S Load byte to write. (2 cycles)
JSR WRITE9 Go write it. (6)
LDA #SAA Load byte to write. (2)
JSR WRITE9 Go write it. (6)
WRITE9 CLC Provide different (2)
WRITE7 PHA delays to produce (3)
PLA correct timing. (4)
WRITE STA $C@8D,X Store byte in register. (5)
ORA S$C@8C,X Write byte. (4)
RTS Return to caller. (6}

CALLING THE DISK Il DEVICE DRIVER (BLOCK ACCESS)

ProDOS is device independent in that it requires a device driver
for all storage devices. ProDOS comes with two device drivers
built in. One supports the disk drive (Disk II or equivalent). The
other supports a RAM drive on the Apple Ilc or an Apple Ile with
an additional 64K of memory. ProDOS can also support the ProFile
hard disk which has its device driver on ROM. It seems clear that
there will be many kinds of storage devices available in the future,
each with its own driver.

These device drivers are used as subroutines by the MLI and
provide the means of accessing the appropriate device. Four basic
functions are currently defined for a device driver. They are
STATUS, READ, WRITE, and FORMAT. However, not all
device drivers will provide all four functions. The Disk II device
driver, for example, does not support FORMAT; because of space
constraints, this function is provided in the program named F'iler.

“A2B-BAPD1-2 06-06.PICT” 416 KB 2001-07-17 dpi: 600h x 600v pix: 2628h x 4486v

L First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner Page 0093 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Using ProDOS from Assembly Language 6-7

The READ BLOCK and WRITE BLOCK calls in the MLI
provide the only means of using a device driver from ProDOS and
is the preferred method. While it is not generally recommended,
any device driver can be called directly. This could prove useful in
particular applications that don’t require the MLI. Great care
should be taken when calling the device driver directly because
doing so can easily destroy data on the particular storage device.

While the parameters to call a device driver are quite
straightforward, there are several potential difficulties to
consider. First, RAM based device drivers normally reside in
bank-switched memory, and therefore must be carefully selected
and deselected. Second, a request for an unsupported device
function may produce undesirable results. As mentioned above,
the Disk II device driver does not support the FORMAT call. If
such a request was made, it would be interpreted as a WRITE call.

There are four inputs stored in six zero page locations that must
contain the appropriate information when a call ismade toa
device driver. The first input is the Command Code, which
indicates which operation is requested. As mentioned earlier, four
operations are currently defined. The first of these is STATUS,
which is used to determine if the device is ready to be accessed
(either Read or Write). Although not all device drivers do so, it is
suggested that the number of blocks the device supports be
returned, in additon to the status. This should be done using the X
(low byte) and Y (high byte) registers. The remaining operations
are quite straightforward—READ for reading a block, WRITE for
writing a block, and FORMAT to format or initialize the media.

The second input is the Unit Number, indicating in which slot
and drive the desired device resides. Only two drives per slot are
supported directly, but it will clearly be possible to interface a
controller card that supports additional drives or volumes.

The third input is a 2-byte Buffer Pointer that indicates the
location of a 512-byte area for data transfer. The MLI verifies that
no memory conflicts exist, but most device drivers will not do so;
therefore, some degree of care should be exercised in determining
this input.

The fourth input is a 2-byte Block Number indicating which
block is to be used for data transfer. The value should be in keeping
with the number of blocks available on the desired device.

“A2B-BAPD1-2 06-07.PICT” 592 KB 2001-07-17 dpi: 600h x 600v pix: 2664h x 4531v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0094 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

6-8 Beneath Apple ProDOS

The four inputs necessary are listed in Table 6.4.

Table 6 4
Device Driver Parameters— General Format

LOCATION | DESCRIPTION [OPTIONS
$42 | Command code |$00 = STATUS

$01 = READ
$02 = WRITE
$03 = FORMAT

$43 | Unit Number DSSS0000
D =Drive number (0 =drive 1,
1=drive 2); SSS = Slot number

(0to7)
$44-45 | 1/0 Buffer Can be $0000 to SFFFF*
$46-47 | Block Number Must be $00 to $117
Return code The processor CARRY flag is

set upon return from the device
driver if an error occurred.

The ACCUMULATOR
contains the return code.

$00 = Noerrors

$27 =1/0Oerror

$28 = No device connected
$2B = Write protect error

* Unlike the MLI, the device driver will not check this location’s validity.

Although Apple has defined the manner in which device drivers
are to be called, some variations will occur. Even the drivers
provided by Apple vary slightly from one another. For this reason
it is advisable to make calls to any device driver with great
caution. The tables that follow detail the four kinds of calls that are
available. Not all device drivers will support all four call types and
a request to an unsupported call type could prove dangerous.

“A2B-BAPD1-2 06-08.PICT" 349 KB 2001-07-17 dpi: 600h x 600v pix: 2681h x 4504v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0095 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Using ProDOS from Assembly Language 6-9

DEVICE DRIVER PARAMETER LISTS BY COMMAND CODE

FUNCTION This call returns the status of a particular device
and is generally used to determine if a device is
present, and if so, whether it is write protected.
Additionally, some drivers will return the
number of blocks supported by that device.

REQUIRED INPUTS

$42 Must be $00.
$43 Unit number of disk to be accessed. The bit
assignment of a ProDOS unit number is as
follows: DSSS0000, where D is the drive number
(0=drive 1, 1 =drive 2) and SSS is the slot
number (1—7).
$44-45 Unused.
$46-47 Unused but sometimes checked for validity (use

$0000).
RETURNED VALUES
Carry Flag Clear —Noerror occurred
Set —Error occurred (see Accumulator for
type)
Accumulator $00 —Noerrors
$27 —1I/0 error or bad block number
$28 —Nodevice connected to unit

$2B —Disk is write protected

X-register Blocks available (low byte)
Y-register Blocks available (high byte)

FUNCTION This call will read a 512-byte block and store it
at the specified memory location. Most drivers
will not check the memory location, so some care
is suggested.

“A2B-BAPD1-2 06-09.PICT” 400 KB 2001-07-17 dpi: 600h x 600v pix: 2690h x 4398v

First Edition « 1984 < Written by Don D. Worth & Pieter M. Lechner Page 0096 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

6-10 Beneath Apple ProDOS

REQUIRED INPUTS

$42
$43

$44-45

$46-47

RETURNED VALUES

Carry Flag

Accumulator

Must be $01

Unit number of disk to be accessed. The bit
assignment of a ProDOS unit number is as
follows: DSSS0000, where D is the drive number
(0=drive 1, 1 =drive 2), and SSS is the slot
number (1—7).

Address (LO/HI) of the caller’s 512-byte buffer
into which the block will be read. The buffer
need not be page aligned.

Block number (LO/HI) to read. Must be valid for
the device being called.

Clear —No error ocurred
Set —Error occurred (see Accumulator for

type)

$00 —Noerrors
$27 —1I/Oerror or bad block number
$28 —Nodevice connected to unit

FUNCTION

REQUIRED INPUTS

$42
$43

$44-45

$46-47

This call will write a 512-byte block from the
specified memory location. Since all write
operations could potentially destroy data, care is
suggested.

Must be $02

Unit number of disk to be accessed. The bit
assignment of a ProDOS unit number is as
follows: DSSS0000, where D is the drive number
(0=drive 1, 1 =drive 2), and SSS is the slot
number (1—7).

Address (LO/HI) of the caller’s 512-byte buffer
into which the block will be read. The buffer
need not be page alighed.

Block number (LO/HI) to read. Must be valid for
the device being called.

“A2B-BAPD1-2 06-10.PICT” 379 KB 2001-07-17 dpi: 600h x 600v pix: 2663h x 4469v

First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner

Page 0097 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Using ProDOS from Assembly Language 6-14

RETURNED VALUES
Carry Flag Clear —Noerror ocurred
Set —Error occurred (see Accumulator for
type)
Accumulator $00 —Noerrors
$27 —1I/0Oerror or bad block number
$28 —Nodevice connected to unit

$2B —Disk is write protected.

FUNCTION This call will format the media present in the
specified device. Since all data will be destroyed,
extreme care is suggested.

REQUIRED INPUTS
$42 Must be $03
$43 Unit number of disk to be accessed. The bit
assignment of a ProDOS unit number is as
follows: DSSS0000, where D is the drive number
(0 =drive 1, 1 =drive 2), and SSS is the slot
number (1—7).

RETURNED VALUES
Carry Flag Clear —Noerror ocurred
Set —Error occurred (see Accumulator for
type)
Accumulator $00 —Noerrors.

$27 —I/Oerror or bad block number
$28 —Nodevice conneeted to unit
$2B —Disk is write protected

Returncode $00 —Noerrors
$27 —I/Oerror
$28 —Nodevice connected

$2B — Write protected

“A2B-BAPD1-2 06-11.PICT” 316 KB 2001-07-17 dpi: 600h x 600v pix: 2681h x 4522v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0098 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

6-12 Beneath Apple ProDOS

CALLING THE MACHINE LANGUAGE INTERFACE

The Machine Language Interface (MLI) consists of a set of
externally callable subroutines in the ProDOS Kernel. Over 20
different functions may be performed to access and manipulate
files in a device independent manner (i.e. the programmer need
not be concerned with whether the device is a diskette drive or a
hard disk). To avoid duplication of code and to eliminate direct
calls to unpublished entry points within ProDOS,; it is
recommended that all file access be performed using the
standardized ProDOS Machine Language Interface.

All calls to the MLI are made through the System Global Page at
$BF00. The first item in this page is a JMP (GOTO) to the MLI.
Thus, to call the MLI, code the following:

JSR SBF0@0
DFB function code
DW addr of parms

where “function_code” should be replaced with a 1-byte
hexadecimal code representing the function you want to perform,
and “addr_of_parms” is the 2-byte address of a parameter list

you have created in your program’s memory which indicates such
things as the file name being accessed, the record number to
access, etc. Note that programming reentrant or “ROMable” code
or routines that cannot have instructions mixed with data will be
made more difficult by this convention. In these cases, it may be
advisable to move the JSR $BF00, the three bytes following, and a
RTS instruction to a RAM data area and call them there.

Upon return, the processor CARRY flag will be set if an error
has occurred, and the return code will be placed in the A register.
All other registers are saved and restored by the MLI. The valid
function_codes are summarized in Table 6.5. It is interesting to
note that most of the function calls are identical between ProDOS
and the Apple III SOS operating system. The names used are the
standardized labels for these functions established by Apple for
SOS and ProDOS.

“A2B-BAPD1-2 06-12.PICT” 482 KB 2001-07-17 dpi: 600h x 600v pix: 2655h x 4584v

L First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner Page 0099 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Using ProDOS from Assembly Language 6-13

Table 6.5 MLI Functions

CODE{NAME DESCRIPTION

$40 ALLOC_INTERRUPT Install interrupt handler

$41 DEALLOC_INTERRUPT| Remove interrupt handler

$65 QUIT Exit from one Interpreter and
dispatch another

$80 READ_BLOCK Read disk block by unit number

$81 WRITE_BLOCK Write disk block by unit number

$82 GET_TIME Read calendar/clock peripheral |-
card and set system date/time

$C0 |CREATE Create a new file or directory

$C1 |DESTROY Delete a file or directory

$C2 |RENAME Rename a file ar directory

$C3 |SET_FILE_INFO Change a file’s attributes

$C4 |GET_FILE_INFO Return a file’s attributes

$C5. |ONLINE Return names of one or all
online volumes

$C6 |SET_PREFIX Change default pathname
prefix

$C7 |GET_PREFIX Return default pathname prefix

$C8 |OPEN Open a file

$C9 |NEWLINE Set end-of-line character for
line-by-line reads

$CA |READ Read one or more bytes from an
open file

$CB |WRITE Write one or more bytes to an
open file

$CC |CLOSE Close one or more open files,
flushing buffers-

$CD |FLUSH Flush all write buffers for one
or more files -

$CE |SET_MARK Change File Position within an
open file

$CF |GET_MARK Return File Position within an
open file

$D0 |SET_EOF Change end-of-file position of
an open file

$D1. |(GET_EOF Return end-of-file position of an
open file

$D2 |SET_BUF Change File Buffer’s address
for an open file

$D3 |GET_BUF Return File Buffer’s address
for an open file

“A2B-BAPD1-2 06-13.PICT” 446 KB 2001-07-17 d

L First Edition

1984 « Written by Don D. Worth & Pieter M. Lechner

pi: 600h x 600V pix: 2681h x 4593v
Page 0100 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

6-14 Beneath Apple ProDOS

The general form for a parameter list is as follows:

+0 PARAMETER
COUNT
+1 one or more parameters
1

The PARAMETER_COUNT is a 1-byte count of the number of
parameters which follow. It is used by the MLI to validity check
the parameter list to make sure that the address following the
caller’s JSR to the MLI really points to a valid parameter list.

o N
N[AssemBLY
LAN 6UAGE

PROGMNMEKS.

BE PREPARED! YOURE ENTERING THE DEPTHS OF Pro DOS.

“A2B-BAPD1-2 06-14.PICT” 366 KB 2001-07-17 dpi: 600h x 600v pix: 2664h x 4575v

First Edition « 1984 < Written by Don D. Worth & Pieter M. Lechner Page 0101 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Using ProDOS from Assembly Language 6-15

MLI PARAMETER LISTS BY FUNCTION CODE

FUNCTION This function allows the user to install his own
interrupt handling routine into the ProDOS
table. The user’s handler resides in memory
outside ProDOS, and only its entry point address
is stored in the System Global Page table by this
MULI call. Up to four such routines may be
installed at any time. When a maskable
interrupt (IRQ) occurs, ProDOS calls each
handler in the order in which they were installed
to allow the interrupt to be serviced. (See
Chapter 7 for more information about writing
interrupt handlers.)

PARAMETER LIST FORMAT
+0 $02
+1 PRIORITY
i

REQUIRED INPUTS

+0 Parameter count (2 parameters in list).
+2/+3 Address (LO/HI format) of user-written
interrupt handling routine.

RETURNED VALUES

+1 Priority assigned to this handler by ProDOS: 1,
2, 3or 4. This is the handler’s position in the

“A2B-BAPD1-2 06-15.PICT” 343 KB 2001-07-17 dpi: 600h x 600v pix: 2655h x 4567v

First Edition « 1984 < Written by Don D. Worth & Pieter M. Lechner Page 0102 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

6-16 Beneath Apple ProDOS

calling sequence. It is assigned the highest
priority (earliest position) available.
Return Code $00 —No errors
$04 — Parameter count is not $02
$25 —Interrupt handler table full (4 are
installed)
$53 —Invalid parameter in list (address is zero)

FUNCTION This function removes a previously installed
interrupt handling routine’s address from the

ProDOS table.
PARAMETER LIST FORMAT
+0 $01
+1 PRIORITY

REQUIRED INPUTS

+0 Parameter count (1 parameter in list).
+1 Priority of handler to be removed (1, 2, 3, or 4) as
returned by MLI call $40 when it was installed.

RETURNED VALUES

Return Code $00 —No errors
$04 — Parameter count is not $01
$53 —Invalid parameter in list (PRIORITY is
not'l, 2, 3,or 4)

FUNCTION This function causes the MLI to move three
pages of code from $D100 in the alternate 4K of
“A2B-BAPD1-2 06-16.PICT” 400 KB 2001-07-17 dpi: 600h x 600v pix: 2672h x 4593v

First Edition « 1984 < Written by Don D. Worth & Pieter M. Lechner Page 0103 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Using ProDQOS from Assembly Language 6-17

the Language card to $1000 and branch to it.
This code frees any memory allocated by the
interpreter in the System Memory Bit Map in
the System Global Page, and thien prompts the
user for the name of a new Interpreter (System
Program) to be executed. It then loads the new
Interpreter and executes it. For more
information on this call and on writing an
Interpreter, see Chapter 7.

PARAMETER LIST FORMAT
+0 $04
+1 RESERVED
+2/+3 RESERVED
+4 RESERVED
+5/+6 RESERVED

REQUIRED INPUTS

+0 Parameter count (4 parameters in list).
+1—+6 All other fields in the parameter list are
reserved for future use. They must be present
and they must be initialized to zeroes.

RETURNED VALUES

Return Code $04 — Parameter count is not $04

“A2B-BAPD1-2 06-17.PICT” 227 KB 2001-07-17 d

pi: 600h x 600V pix: 2655h x 4593v

First Edition « 1984 < Written by Don D. Worth & Pieter M. Lechner

Page 0104 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

6-18 Beneath Apple ProDOS

FUNCTION This function calls the device handler for a given
unit to read a 512-byte disk block. Calling this
function is essentially the same as calling the
device driver directly with the following
additional actions: the buffer memory is validity
checked for prior use; interrupts are disabled
prior to the call to the driver; the unit number is
validity checked and mapped into the appro-
priate device driver’s address; the bank switched
memory (language card) is enabled prior to the
call and restored to its previous condition when
the call completes. For these reasons, it is
recommended that all block I/O be performed
through the READ_BLOCK and
WRITE_BLOCK MLI calls rather than calling
the drivers directly. Direct calls are only
recommended when the application will not be
using the ProDOS Kernel and only the driver
itself is available in memory.

PARAMETER LIST FORMAT
+0 $03
+1 UNIT NUMBER
+2/+3 ADDRESS OF
DATA BUFFER
+4/+5 -BLOCK NUMBER

“A2B-BAPD1-2 06-18.PICT” 366 KB 2001-07-17 dpi: 600h x 600v pix: 2637h x 4557v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0105 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Using ProDQOS from Assembly Language 6-19

REQUIRED INPUTS

+0 Parameter count (3 parameters in list).
+1 Unit number of disk to be aceessed. The bit
assignment of a ProDOS unit number is as
follows: DSSS0000, where D is the drive number
(0=drive 1, 1 =drive 2) and SSS is the slot
number (1 through 7).
+2/+3 Address (LO/HI) of the caller’s 512-byte buffer
into which the block will be read. The buffer
need not be page aligned.
+4/+5 Block number (LO/HI) to read. This may range
from $0000 to $0117 for a diskette. The validity
.of this number is checked by the driver itself.

RETURNED VALUES

Return Code $00 —Noerrors
$04 — Parameter count is not $03
$27 —I/Oerror or bad block number
$28 — No device connected to unit
$56 — Bad buffer (already in use by ProDOS)

FUNCTION This function calls the device handler for a given
unit to write a 512-byte disk block. Calling this
function is essentially the same as calling the
device driver directly with the following
additional actions: the buffer memory is validity
checked for prior use; interrupts are disabled
‘prior to the call to the driver; the unit number is
validity checked and mapped into the appro-
‘priate device driver’s address; the bank switched
memory (language card) is enabled prior to the
call and restored to its previous condition when
the call completes. For these reasons, it is
recommended that all block I/O be performed
through the READ_BLOCK and
WRITE_BLOCK MLI calls rather than calling
the drivers directly. Direct calls are only
recommended when the application will not be

“A2B-BAPD1-2 06-19.PICT” 489 KB 2001-07-17 dpi: 600h x 600v pix: 2664h x 4567v

L First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner Page 0106 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

6-20 Beneath Apple ProDOS

using the ProDOS Kernel and only the driver
itself is available in memory.

PARAMETER LIST FORMAT
+0 $03
+1 UNIT NUMBER
2043 ADDRESS OF
DATA BUFFER
+4/+5 BLOCK NUMBER
:

REQUIRED INPUTS

+0 Parameter count (3 parameters in list).
+1 Unit number of disk to be accessed. The bit
assignment of a ProDOS unit number is as
follows: DSSS0000, where D is the drive number
(0=drive 1, 1 =drive 2) and SSS is the slot
number (1 through 7).
+2/+3 Address (LO/HI) of the caller’s 512-byte buffer
from which the block will be written. The buffer
need not be page aligned.
+4/+5 Block number (LO/HI) to write. This may range
from $0000 to $0117 for a diskette. The validity
of this number is checked by the driver itself.

RETURNED VALUES
Return Code $00 —No errors
$04 — Parameter count is not $03
$27 —1I/0 error or bad block number
$28 — No device connzacted to unit
$2B — Disk is write protected
$56 — Bad buffer (already in use by ProDOS)

“A2B-BAPD1-2 06-20.PICT” 272 KB 2001-07-17 dpi: 600h x 600v pix: 2655h x 4575v

First Edition « 1984 < Written by Don D. Worth & Pieter M. Lechner Page 0107 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Using ProDOS from Assembly Language 6-21

FUNCTION This function accesses any calendar/clock card
which might be in the system and sets the
system date and time in the System Global
Page. If no calendar/clock handler has been
installed (DATETIME vector in the System
Global Page), the call is ignored.

PARAMETER LIST
None (parameter list address following JSR is $0000)

REQUIRED INPUTS
None

RETURNED VALUES

$BF90/$BF91 System Global Page date field is filled in. Its
formatis (LO/HI): YYYYYYYM
MMMDDDDD where YYYYYYY is the year
(offset from 1900), MMMM is the month (1
through 12), and DDDDD is the day.

$BF92/$BF93 System Global Page time field is filled in. Its
format is (LO/HI): HHHHHHHH
MMMMMMMM where HHHHHHHH is the
hour since midnight and MMMMMMMM is
the minute (0 through 59).

Return Code $00 —No errors

FUNCTION This function creates a new file (either a data file
or a directory file). One 512-byte block of disk
space is allocated to the new file. The file may
not already exist. If it is desirable to recreate an

“A2B-BAPD1-2 06-21.PICT” 462 KB 2001-07-17 dpi: 600h x 600v pix: 2708h x 4567v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0108 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

622 Beneath Apple ProDOS

old file, issue the DESTROY call first. If the
pathname given indicates that the file’s
directory entry will be in a subdirectory and
there are no free directory entries there, the
subdirectory will be extended by one block. The
Volume Directory may not be extended. If the
new file is a directory file, a directory header is
created and written to the key block.

PARAMETER LIST FORMAT
+0 $07
ADDRESS OF
+1/+2 PATHNAME
ACCESS
+3 BITS
FILE
+4 TYPE
AUXILIARY
+5/+6 FILE TYPE
. STORAGE
TYPE
CREATION
+8/+9 DATE
1
CREATION
+*A/+B TIME

“A2B-BAPD1-2 06-22.PICT” 180 KB 2001-07-17 dpi: 600h x 600v pix: 2655h x 4433v

First Edition « 1984 < Written by Don D. Worth & Pieter M. Lechner Page 0109 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed

., 1984)

Using ProDOS from Assembly Language 6-23

REQUIRED INPUTS

+0 Parameter count (7 parameters in list).
+1/+2 Address (LO/HI) of pathname buffer for file to

be created. The pathname buffer consists of a 1-

‘byte length followed by 1 to 63 characters of

name. If the first character is a “/”, the name is
considered to be fully qualified. If not, the
current default prefix is added to the name by
ProDOS when the file is created.

Access privileges associated with this file. The
access bits are:

DNBXXXWR
(high bit to low bit) where...

(bit 7)if 1 allows the file to be DESTROYed.
(bit 6) if 1 allows the file to be RENAMEJ.
(bit 5) if 1 indicates file needs backing up.
(bits 4, 3, and 2) are reserved for future use.
(bit 1) if 1 allows the file to be written.

(bit 0) if 1 allows the file to be read.

Full access is $C3. A file is “locked” in the
BASIC interpreter sense if the D, N, Wand R
bits are all zeroes. It is unlocked if they are all
ones. The B bit is forced to one when the file is
created. WARNING: It is possible to set the “X”
reserved bits to ones with this call since no
validity check is made by the MLI on CREATE
(a check is made for SET_FILE_INFO,
however).

Type of data stored in the file. Commonly
supported file types are:

P A

$01 BAD | File containing bad blocks.

$04 TXT | File containing ASCII text
(BASIC data file).

$06 BIN | File containing a binary

memory image or machine
language program.

SOF DIR | Fileisadirectory.

$19 ADB | AppleWorks data base file

“A2B-BAPD1-2 06-23.PICT” 398 KB 2001-07-17 dpi: 600h x 600v pix: 2655h x 4442v

L First Edition

1984 « Written by Don D. Worth & Pieter M. Lechner

Page 0110 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

6-24 Beneath Apple ProDOS

$1A AWP | AppleWorks word processing
file

$1B ASF | AppleWorks spread sheet file
$FO CMD | ProDOS added command file.

$F1-$F'8 User defined file types.

$FC BAS | File contains an Applesoft
program.

$FD VAR | File contains Applesoft
variables (STORE/
RESTORE).

$FE REL | File contains a relocatable -
object module (EDASM).

$FF SYS | File contains a ProDOS
system program.

Other less commonly used file types are defined-
in APPENDIX E. Assignment of a file type isa
convention which serves to inform the program
which accesses a file what data format it-should
expect to find there. You are not prevented from
storing binary data in a TXT file or ASCII text .
in a BIN file, but this runs counter to convention
and is discouraged.

+5/+6 Auxiliary data pertaining to the file. Its usage is
defined according to its file type above. The
current uses of this field by the Bl are:

TXT | contains the default record length
(LO/HI).

BIN | contains the address (LO/HI) at which to
load the image.

BAS | contains the address (LO/HI) of the
BASIC program image.

VAR | contains the address (LO/HI) of the
BASIC variables image.

SYS | contains $2000 (LO/HI), the load address
for system files.

“A2B-BAPD1-2 06-24.PICT" 366 KB 2001-07-17 dpi: 600h x 600v pix: 2672h x 4522v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0111 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Using ProDOS from Assembly Language 6-25

+7 Storage type or type of file organization. If this
byte contains $0D, the file is a linked
subdirectory file. If it is $01, it is a standard
seedling file (at the time of its creation). Other
values are reserved for future use. If a value of
$00, $02, or $03 is given, $01 is assumed. All
values other than $00-$03 or $0D will result in
an error.

+8/+9 Date of creation. If this field is set to zero, the
MLI uses the current system date (if any). If this
field is non-zero, it is the creation date in the
(LO/HI) form YYYYYYYM MMMDDDDD
where YYYYYYY is the year past 1900,
MMMM is the month (1-12) and DDDDD is the
day of the month.

+A/+B Time of creation. If this field is set to zero, the
MLI uses the current system time (if any). If this
field is non-zero, it is the creation time in the
(LO/HI) form HHHHHHHH MMMMMMMM
where HHHHHHHH is the hour past midnight
and MMMMMMMM is the minute within the
hour.

RETURNED VALUES

Return Code $00 —Noerrors
$04 —Parameter count is not $07
$27 —I/Oerror
$2B — Disk is write protected
$40 — Pathname has invalid syntax
$44 — Path to file’s subdirectory is bad
$45 — Volume directory not found
$47 —Duplicate file name already in use
$48 — Disk full
$49 — Volume directory full
$4B — Bad storage type (use only $0D or $01)
$53 —Invalid parameter or address pointer
$5A —Damaged disk freespace bit map

: - “A2B-BAPD1-2 06-25.PICT” 362 KB 2001-07-17 dpi: 600h x 600v pix: 2637h x 4389v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0112 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

6-26 Beneath Apple ProDOS

FUNCTION This function deletes a file or empty
subdirectory. Open files may not be deleted. The
Volume Directory may not be deleted. A
subdirectory is considered “locked” if it contains
any files at all, and may not be DESTROYed
until all its files and subdirectories are
DESTROYed.

PARAMETER LIST FORMAT

+0 $01

ADDRESS OF

*1/+2 PATHNAME

REQUIRED INPUTS
+0 Parameter count (1 parameter inlist).

+1/+2 Address (LO/HI) of pathname buffer for file to
be deleted. The pathname buffer consists of a 1-
byte length followed by 1 to 63 characters of -
name. If the first character is a “/”, the name is

considered to be fully qualified. If not, the

current default prefix is added to the name by

ProDOS.

RETURNED VALUES

Return Code $00 —Noerrors:
$04 —Parameter count is not $01
$27 —1I/O error
$2B — Disk is write protected
$40 —Pathname has invalid syntax
$44 — Path to file’s subdirectory is bad
$45 — Volume directory not found

$46 — File not found in specified directory

“A2B-BAPD1-2 06-26.PICT” 357 KB 2001-07-17 d

pi: 600h x 600V pix: 2655h x 4584v

L First Edition

e 1984 + Written by Don D. Worth & Pieter M. Lechner

Page 0113 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Using ProDOS from Assembly Language 6-27

$4A —Incompatible file format

$4B —Bad storage type

$4E — Access refused: DESTROY bit not
enabled or non-empty subdirectory

$50 — Access refused: File is currently open

$5A —Damaged disk freespace bit map

FUNCTION This function renames a file or subdirectory.
Only the final name in the path specification
may be renamed. This function will not rename
multiple directories in a pathname specification
(e.g. /project/myfile may not be renamed to
/task/yourfile since this involves renaming
something other than the final name in the
pathname). RENAME will not create new
subdirectories or move a file’s entry from one
directory to another (e.g. you may not rename
/project/myfile to /project/another/myfile since
this involves moving the file’s entry to
subdirectory “another”). A volume may be
renamed if no files are currently opened for-it. A
file or subdirectory may be renamed if it is not
open, or if it is a read-only file (WRITE access
disabled). The new file name may not be the
same as another in the same directory.

PARAMETER LIST FORMAT
+0 $02
/42 ADDRESS OF
OLD PATHNAME
1
+3/+4 ADDRESS OF
NEW PATHNAME -

“A2B-BAPD1-2 06-27.PICT” 402 KB 2001-07-17 dpi: 600h x 600v pix: 2646h x 4575v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0114 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

6-28 Beneath Apple ProDOS

REQUIRED INPUTS

+0 Parameter count (2 parameters in list).

+1/+2 Address (LO/HI) of pathname buffer for file to
be renamed. The pathname buffer consists of a
1-byte length followed by 1 to 63 characters of
name. If the first character is a “/”, the name is
considered to be fully qualified. If not, the
current default prefix is added to the name by
ProDOS.

+3/+4 Address (LO/HI) of pathname buffer for the new
name. The qualifying levels of the name, if any,
should match those of the old pathname given at
+1/+2. Only the last name should be different.
The format of the new pathname buffer is
identical to that of the old pathname buffer
given above. The current default prefix, if any,
will be added to a non-fully qualified pathname.

RETURNED VALUES

Return Code $00 —No errors

$04 — Parameter count is not $02

$27 —I/O error

$2B — Disk is write protected

$40 — Pathname has invalid syntax

$44 — Path to file’s subdirectory is bad

$45 — Volume directory not found

$46 —File not found in specified directory

$47 — New name duplicates one already in
directory

$4A —Incompatible file format

$4B — Bad storage type

$4E — Access refused: RENAME bit not enabled

$50 — Access refused: File is currently open

$57 — Two volumes are online with the same
volume name

FUNCTION This function changes the attributes (e.g. file
type, storage type, etc.) which are stored in the
directory entry which describes a file. The file

: - “A2B-BAPD1-2 06-28.PICT" 457 KB 2001-07-17 dpi: 600h x 600v pix: 2708h x 4593v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0115 of 0340
S

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Using ProDOS from Assembly Language 6-29

may be open or closed. SET_FILE_INFO will
not act upon a Volume Directory (an error of $40
will result). Before issuing this function call, it is
recommended that GET_FILE_INFO ($C4) be
used to determine the current parameter
settings for the file. (Note that the parameter
lists for the two calls have a compatible format.)

PARAMETER LIST FORMAT
+0 $07
+1/+2 ADDRESS OF
PATHNAME
.3 ACCESS
BITS
" FILE
TYPE
AUXILIARY
+5/+6 FILE TYPE
+7
NOT
USED
+8/+9
i]
CAJB DATE OF LAST
MODIFICATION
1
+C/D TIME OF LAST
MODIFICATION
L

“A2B-BAPD1-2 06-29.PICT” 192 KB 2001-07-17 d

pi: 600h x 600V pix: 2664h x 4566V

First Edition « 1984 < Written by Don D. Worth & Pieter M. Lechner

Page 0116 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)
6-30 Beneath Apple ProDOS

REQUIRED INPUTS

+0 Parameter count (7 parameters in list).
+1/+2 Address (LO/HI) of pathname buffer for file.

The pathname buffer consists of a 1-byte length
followed by 1 to 63 characters of name. If the
first character is a “/”, the name is considered to
be fully qualified. If not, the current default
prefix is added to the name by ProDOS.

+3 New access privileges to be associated with this
file. The access bits are:

DNBXXXWR
(high bit to low bit) where...

(bit 7)if 1 allows the file to be DESTROYed.
(bit 6) if 1 allows the file to be RENAMEJ.
(bit 5) if 1 indicates file needs backing up.
(bits 4, 3, and 2) are reserved for future use.
(bit 1) if 1 allows the file to be written.

(bit 0) if 1 allows the file to be read.

Full access is $C3. A file is “locked” in the
BASIC interpreter sense if the D, N, Wand R
bits are all zeroes. It is unlocked if they are all
ones. Note that a “locked” file is not protected
against SET_FILE_INFO (how else would one
unlock it?). If an attempt is made to use the “X”
reserved bits, an error will occur. They should be
set to zeroes.

+4 Type of data stored in the file. Commonly
supported file types are:

W 2D

$01 BAD | File containing bad blocks.

$04 TXT | File containing ASCII text
(BASIC data file).

$06 BIN | File containing a binary

memory image or machine
language program.
$OF DIR | Fileisadirectory.

$19 ADB | AppleWorks data base file
$1A AWP | AppleWorks word processing
file

$1B ASF | AppleWorks spread sheet file
$FO0 CMD | ProDOS added command file.

“A2B-BAPD1-2 06-30.PICT" 417 KB 2001-07-17 dpi: 600h x 600v pix: 2663h x 4566v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0117 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Using ProDOS from Assembly Language 6-34

$F1-3F8 User defined file types.

$FC BAS | File contains an Applesoft
program.

$FD VAR | File contains Applesoft
variables (STORE/
RESTORE).

$FE REL | File contains a relocatable
object module (EDASM).

$FF SYS | File contains a ProDOS
system program.

Other less commonly used file types are defined
in APPENDIX E. Assignment of a file type isa
convention which serves to inform the program
which accesses a file what data format it should
expect to find there. You are not prevented from
storing binary data in a TXT file or ASCII text
in a BIN file, but this runs counter to convention
and is discouraged.

+5/+6 Auxiliary data pertaining to the file. Its usage is
defined according to its file type above. The
current uses of this field by the BI are:

TXT | contains the default record length
(LO/HI).

BIN | contains the address (LO/HI) at which to
load the image.

BAS | contains the address (LO/HI) of the
BASIC program image.

VAR | contains the address (LO/HI) of the
BASIC variables image.

SYS | contains $2000 (LO/HI), the load address
for system files.

+7 Ignored. May be set to zero.
+8/+9 Ignored. May be set to zero.
+A/+B Date of last modification. If this field is set to
zero, the MLI uses the current system date (if
any). If this field is non-zero, it is the
modification date in the (LO/HI) form

“A2B-BAPD1-2 06-31.PICT” 392 KB 2001-07-17 dpi: 600h x 600v pix: 2646h x 4593v

L First Edition

1984 « Written by Don D. Worth & Pieter M. Lechner Page 0118 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

6-32 Beneath Apple ProDOS

YYYYYYYM MMMDDDDD where
YYYYYYY is the year past 1900, MMMM is the
month (1-12) and DDDDD is the day of the
month.

+C/+D Time of last modification. If this field is set to
zero, the MLI uses the current system time (if
any). If this field is non-zero, it is the
modification time in the (LO/HI) form
HHHHHHHH MMMMMMMM where
HHHHHHHH is the hour past midnight and
MMMMMMMM is the minute within the hour.

RETURNED VALUES

Return Code $00 —Noerrors
$04 — Parameter count is not $07
$27 —I1/0 error
$2B — Disk is write protected
$40 — Pathname has invalid syntax
$44 —Path to file’s subdirectory is bad
$45 — Volume directory not found
$46 — File not found in specified directory
$4A —Incompatible file format
$4B — Bad storage type
$4E — Access refused: Reserved access bits
were used
$53 — Parameter value out of range
$5A —Damaged disk freespace bit map

FUNCTION This function reads the attributes (e.g. file type,

storage type, etc.), which describe the file and

are stored in the directory entry, and returns

them in the parameter list provided by the

caller. The file may be open or closed. If

information about a Volume Directory is

requested, the size of the volume in blocks and

" the blocks in use count are also returned.
“A2B-BAPD1-2 06-32.PICT" 420 KB 2001-07-17 dpi: 600h x 600v pix: 2655h x 4576v

| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0119 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Using ProDOS from Assembly Language

6-33

PARAMETER LIST FORMAT
+0 $0A
ADDRESS OF
+1/+2 PATHNAME
3 ACCESS
BITS
FILE
+4 TYPE
AUXILIARY
+5/+6 FILE TYPE
v STORAGE
TYPE
. BLOCKS
+8/+9 USED
[
A/+B DATE OF LAST
MODIFICATION
1
+C/+D TIME OF LAST
MODIFICATION
el CREATION
E/+F DATE
1
. CREATION
+10/+11 o
i

“A2B-BAPD1-2 06-33.PICT” 133 KB 2001-07-17 d

pi: 600h x 600V pix: 2655h x 4575v

First Edition e

1984 « Written by Don D. Worth & Pieter M. Lechner

Page 0120 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

6-34 Beneath Apple ProDOS

REQUIRED INPUTS

+0 Parameter count ($A parameters in list).
+1/+2 Address (LO/HI) of pathname buffer for file.
The pathname buffer consists of a 1-byte length
followed by 1 to 63 characters of name. If the
first character is a “/”, the name is considered to
be fully qualified. If not, the current default
prefix is added to the name by ProDOS.

RETURNED VALUES

+3 Access privileges associated with this file. The
access bits are:

DNBXXXWR
(high bit to low bit) where...

(bit 7) if 1 allows the file to be DESTORYed.
(bit 6) if 1 allows the file to be RENAMEd.
(bit 5) if 1 indicates file needs backing up.
(bits 4, 3, and 2) are reserved for future use.
(bit 1) if 1 allows the file to be written.

- (bit 0) if 1 allows the file to be read.

Full access is $C3. A file is “locked” in the
BASIC interpreter sense if the D, N, Wand R
bits are all zeroes. It is unlocked if they are all
ones.

+4 Type of data stored in the file. Commonly
supported file types are:

Y= W 2D

$01 BAD | File containing bad blocks.

$04 TXT | File containing ASCII text
(BASIC data file).

$06 BIN | File containing a binary

memory image or machine
language program.
$OF DIR | Fileisadirectory.

$19 ADB | AppleWorks data base file
$1A AWP | AppleWorks word processing
file

$1B ASF | AppleWorks spread sheet file
$FO CMD | ProDOS added command file.
$F1-$F8 User defined file types.

“A2B-BAPD1-2 06-34.PICT” 380 KB 2001-07-17 dpi: 600h x 600v pix: 2664h x 4593v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0121 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Using ProDOS from Assembly Language 6-35

$FC
$FD

$FE

$FF

BAS

VAR

REL

SYS

File contains an Applesoft
program.

File contains Applesoft
variables (STORE/
RESTORE).

File contains a relocatable
object module (EDASM).
File contains a ProDOS
system program.

Other less commonly used file types are defined
in APPENDIX E. Assignment of a file type is a
convention which serves to inform the program
which accesses a file what data format it should
expect to find there. You are not prevented from
storing binary data in a TXT file or ASCII text
in a BIN file, but this runs counter to convention

and is discouraged.

+5/+6 Auxiliary data pertaining to the file. Its usage is

defined according to its file type above. The
current uses of this field by the BI are:

TXT
BIN
BAS
VAR
SYS

‘contains the default record length
(LO/HI).
contains the address (LO/HI) at which to

load the image.

contains the address (LO/HI) of the
BASIC program image.

contains the address (LO/HI) of the
BASIC variables image.

contains $2000 (LO/HI), the load address
for system files.

If the GET_FILE _INFO request is for the

Volume Directory, this field contains the size of

this volume in blocks.

+7 Storage type or type of file organization.
Currently supported storage types are:

“A2B-BAPD1-2 06-35.PICT” 367 KB 2001-07-17 d

pi: 600h x 600V pix: 2576h x 4611v

L First Edition

1984 « Written by Don D. Worth & Pieter M. Lechner

Page 0122 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

6-36 Beneath Apple ProDOS

$0D|Linked directory file

$01 |Seedling file (no index blocks)
$02 |Sapling file (one index level)
$03 |Tree file (two index levels)

Other values are reserved for future use.
+8/+9 Number of 512-byte disk blocks in use by file

including index blocks and data blocks. If the
GET_FILE_INFO call is made on the volume
itself (Volume Directory), this field contains the
total number of disk blocks in use on the volume
(including system overhead).

+A/+B Date of last modification. If this field is non-zero,
it is the date of the last modification in the
(LO/HI) form YYYYYYYM MMMDDDDD
where YYYYYYY is the year past 1900,
MMMM is the month (1-12) and DDDDD is the
day of the month.

+C/+D Time of last modification. If this field is non-
zero, it is the time of the last modification in the
(LO/HI) form HHHHHHHH MMMMMMMM
where HHHHHHHH is the hour past midnight
and MMMMMMMM is the minute within the
hour.

+E/+F Date of file’s creation. If this field is non-zero, it
is the creation date in the (LO/HI) form
YYYYYYYMMMMDDDDD where
YYYYYYY is the year past 1900, MMMM is the
month (1-12) and DDDDD is the day of the
month. :

+10/+11. Time of file’s creation. If this field is non-zero, it
is the creation time in the (LO/HI) form
HHHHHHHH MMMMMMMM where
HHHHHHHH is the hour past midnight and
MMMMMMMM is the minute within the hour.
Return Code $00 — No errors

$04 — Parameter count is not $0A
$27 —1/0O error
$40 —Pathname has invalid syntax
$44 — Path to file’s subdirectory is bad
$45 — Volume directory not found
$46 — File not found in specified directory

: - “A2B-BAPD1-2 06-36.PICT" 439 KB 2001-07-17 dpi: 600h x 600v pix: 2691h x 4593v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0123 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Using ProDOS from Assembly Language 6-37

$4A —Incompatible file format

$4B — Bad storage type

$63 —Parameter value out of range
$56A —Damaged disk freespace bit map

FUNCTION This function examines all mounted disk
volumes and returns their names in the buffer
provided by the caller. If a single volume is to be
identified, the caller must provide a specific unit
number (slot and drive).

- PARAMETER LIST FORMAT
+0 $02
“ UNIT NUMBER
\2/43 ADDRESS OF
DATA BUFFER
1

'REQUIRED INPUTS

+0 Parameter count (2 parameters in list).

+1 Unit number of specific device to be examined.
If all online volumes are to be identified, set this
field to zero. The bit assignment for a specific
unit number is: DSSS0000, where D is the drive
number (0=drive 1, 1=drive 2) and SSS is the slot
number (1 through 7).

+2/+3 Address (LO/HI) of a buffer to contain the
volume names returned by ProDOS. If a specific
unit is to be examined, a 16-byte buffer must be
provided. If the call is non-specific (UNIT = 0),
then the buffer must be 256 bytes to allow for up
to 16 online volumes.
“A2B-BAPD1-2 06-37.PICT” 381 KB 2001-07-17 dpi: 600h x 600v pix: 2700h x 4584v

First Edition « 1984 < Written by Don D. Worth & Pieter M. Lechner Page 0124 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)
6-38 Beneath Apple ProDOS

RETURNED VALUES

Buffer If the return code in the accumulator is zero, the
caller’s buffer will contain zero or more volume
name entries of format described below. The
volume names will be given in the order in which
ProDOS searches for a volume, i.e. the boot
volume first, followed by slot numbers lower
than the boot slot, wrapping around to higher
slots last.

ONLINE VOLUME ENTRY

byte 0 DSSSLLLL: where D is the drive
number (0=drive 1, 1=drive 2), SSS is
the slot number (1 through 7), and -
LLLL is the length of the name
which follows. If LLLL is zero, an
error occurred in examining this
volume. The return code is in the
first byte of the name field. If byte 0
is zero, then there are no more
volume entries in the buffer.

bytes 1-15| Volume name or 1-byte error code.
No slash precedes the name.

Return Code $00 —No errors
$04 —Parameter count is not $02
$55 — Volume Control Block full (too many open
files)
$56 —Bad buffer address (check system
memory bit map)

The following error codes may appear for a
specific unit in byte 1 of a buffer entry. If so, the
return code above will be $00.

$27 —1I/0 error on this unit

$28 — Device not connected (e.g. no drive 2)

$2E — Diskette switched while file was open

$45 — Volume directory not found

$52 —Not a ProDOS disk volume

$57 — Duplicate volume—Byte 3 of buffer entry
contains the unit number of the duplicate

“A2B-BAPD1-2 06-38.PICT" 372 KB 2001-07-17 dpi: 600h x 600v pix: 2691h x 4593v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0125 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Using ProDOS from Assembly Language 6-39

FUNCTION This function changes the default prefix which is
attached to any pathnames passed to the MLI
which are not fully qualified (do not start with a
slash). The MLI follows the prefix given,
locating each directory at each level of the prefix
to make sure that they exist on a mounted
volume.

PARAMETER LIST FORMAT

$01

+1/+2

ADDRESS OF
PATHNAME

L

“A2B-BAPD1-2 06-39.PICT” 352 KB 2001-07-17 d

pi: 600h x 600V pix: 2655h x 4576v

| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner

Page 0126 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

6-40 Beneath Apple ProDOS

REQUIRED INPUTS

+0 Parameter count (1 parameter in list).

+1/+2 Address (LO/HI) of pathname buffer for the new
prefix. The pathname buffer consists of one byte
of length followed by 1 to 63 characters of name.
If the first character isa “/”, the name is
considered to be fully qualified. If not, the old
default prefix is added to the new one to form a
completely qualified default prefix (for a total
length of no more than 64 characters). The last
name in the prefix must be that of a directory
file. The prefix may be eliminated by specifying
a null (0 length) prefix. An ending slash is
assumed if it is omitted.

RETURNED VALUES

Return Code $00 —No errors
$04 —Parameter count is not $01
$40 — Pathname has invalid syntax or prefix
too long
$44 —Path to final subdirectory is bad
$45 — Volume directory not found
$46 — F'inal subdirectory file not found
$4A —Incompatible file format
$4B — Bad storage type
$5A —Damaged disk freespace bit map .

SR

FUNCTION This function returns the default prefix, if any,

i

to the caller’s buffer.
PARAMETER LIST FORMAT
+0 $01
YR ADDRESS OF
142 PATHNAME

“A2B-BAPD1-2 06-40.PICT” 392 KB 2001-07-17 dpi: 600h x 600v pix: 2646h x 4567v
| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0127 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Using ProDOS from Assembly Language 6-44

REQUIRED INPUTS
+0 Parameter count (1 parameter in list).
+1/+2 Address (LO/HI) of pathname buffer into which
the MLI will copy the default prefix. The buffer
must be at least 64 bytes long.

RETURNED VALUES

Buffer The buffer will contain the current MLI default
prefix. The prefix consists of one byte of length
followed by up to 63 characters of prefix. If the
length is zero, the prefix is null. Otherwise, the
prefix starts and ends with a slash.

Return Code $00 —Noerrors
$04 — Parameter count is not $01
$56 — Bad buffer address (check system
memory bit map)

FUNCTION This funetion locates a file on a volume and sets
up internal control blocks (a File Control
Block—FCB, and a Volume Control Block—VCB)
to allow the user to read or write it. A reference
number (from 1 to 8) is assigned by the MLI to
the open file for future identification. (The
reference number uniquely identifies the FCB
which is being used with the file.) The current
position for reading or writing is set to zero
(start of the file). At most, eight files may be
open at one time. More than one OPEN may be
issued to the same file if the file’s access is
WRITE disabled (read-only file).

Once a file is opened, it should always be
closed (using the MLI CLOSE call). This is to
permit the MLI to release the reference number
for use by other OPENSs. In addition, the MLI
keeps a count of the number of files which are
open on a volume. If the diskette is switched
“A2B-BAPD1-2 06-41.PICT" 458 KB 2001-07-17 dpi: 600h x 600v pix: 2663h x 4567v

| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0128 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

6-42 Beneath Apple ProDOS

REQUIRED INPUTS

while files are open, error return codes are

produced.

A directory file may also be opened (for

READs only). When accessing a directory, do
not make assumptions about the length of an
entry or the number of entries per block—use
the fields in the directory header which are
provided for this purpose. This will help to
insure that your program will work for future
releases of ProDOS. A directory file may be read
only, not written.

PARAMETER LIST FORMAT
40 $03
1/42 ADDRESS OF
PATHNAME
1
. ADDRESS OF
+3/+4 FILE BUFFER
. REFERENCE
NUMBER

+0 Parameter count (3 parameters in list).
+1/+2 Address (LO/HI) of pathname buffer for file.

The pathname buffer consists of one byte of
length followed by 1 to 63 characters of name. If

the first character isa “/”, the name is
considered to be fully qualified. If not, the

current default prefix is added to the name by

ProDOS.

“A2B-BAPD1-2 06-42.PICT” 253 KB 2001-07-17 d

pi: 600h x 600V pix: 2638h x 4549v

| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner

Page 0129 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

Using ProDOS from Assembly Language 6-43

+3/+4 Address (LO/HI) of a 1024-byte file buffer,

provided by the caller in his memory, to be used
by the MLI while the file is open. The buffer
must begin on an even page boundary (LO
portion of address must be zero). The MLI uses
the buffer to hold the current data block and the
current index block respectively. Its contents
need not be intitialized by the caller. It should
not be tampered with by the caller while the file
remains open.

$BF94 The LEVEL byte in the System Global Page
may be set to indicate the level of this OPEN. Ifa
subsequent CLOSE is issued witha REF NUM
of zero, then all files of a given level or higher
will be closed. This feature is handy in that it
allows group CLOSESs on user-defined classes of
files. Normally, LEVEL is set to zero.

RETURNED VALUES

+5 A reference number assigned to this open file by
the MLI (from $01 to $08). The caller should
make a note of this number and use it in all
future references to this open file. A reference
number is used to identify open files instead of
the pathname since it is possible to maintain
multiple “opens” on the same read-only file.

Return Code $00 —Noerrors

$04 —Parameter count is not $03

$27 —I/0 error

$40 —Pathname has invalid syntax

$42 —Eight files are already open

$44 — Path to file’s subdirectory is bad

$45 — Volume directory not found

$46 — F'ile not found in specified directory

$4B — Bad storage type

$50 —File already open (WRITE enabled)

$53 —Parameter value out of range (REF
NUM)

$56 — Bad buffer address (check system
memory bit map)

$5A —Damaged disk freespace bit map

“A2B-BAPD1-2 06-43.PICT” 404 KB 2001-07-17 dpi: 600h x 600v pix: 2638h x 4575v

| First Edition + 1984 <« Written by Don D. Worth & Pieter M. Lechner Page 0130 of 0340 |

Apple 2 Computer Information ¢ Technical Book ¢ Beneath Apple ProDOS (1st Ed., 1984)

6-44 Beneath Apple ProDOS

FUNCTIO<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>