Apple][Applesoft BASIC Floating Point Commentary « Jim Thomas

Features

The Apple Numerics Group has been
working for several years to implement state—
of-the-art numerics on all Apple computers.
The result of these efforts is called SANE, for
Standard Apple Numerics Environment. It is
available for Pascal and assembly program-
mers on Apple II and I1I computers, and is the
native arithmetic on Macintosh. AppleWorks,
MacPascal, MacBASIC, the Lisa Workshop,
and several other Macintosh languages and
application programs use SANE.

This article, which identifies several of the
problems in Applesoft arithmetic, was written
3 years ago by Jim Thomas while a student at
the University of California, Berkeley. Jim is
now the head of the Apple Numerics Group,
which includes Kenton Hanson and Clayton
Lewis. We are indebted to Clayton for bring-
ing the article to our attention.

Many people are no longer surprised to
find their computers executing:

S=0

FORI| = 1 to 1000
S=8S+ 01
NEXT

PRINT S

and not printing 100. They realize that com-
puter arithmetic is in some ways different
from the arithmetic they learned in mathe-
matics classes. The typical computer user
will attempt to ignore these discrepancies,
proceed as if dealing with ordinary (real)
numbers, and then acknowledge that his
results may contain some “‘insignificant”
roundoff error. The user may know that for
some computations, a computer’s arithme-
tic fails to produce usable results. He may
believe this happens only for contrived
problems, or only for people with unusually
bad luck. If his program fails to obtain
results, or if he recognizes his results con-
tain significant errors, he still may not
suspect computer arithmetic as the culprit.

The expert, the numerical analyst or the
scientific programmer, is less naive. In his
circles there is active concern about the
manner in which computers do arithmetic,
evidenced by the 1981 IEEE Proposed
Standard for Binary Floating-Point
arithmetic (which became IEEE Standard
754 in April 1985 and is the basis for SANE
-Ed.) Partly because of the aforementioned
attitudes among naive users, computer
designers have exercised great liberty with
the nature and quality of their machines’
arithmetics. The resulting peculiarities are
many and varied (7). The more irregular the
arithmetic, the more difficult becomes the
programmer’s job in programming around
trouble areas and in verifying program cor-
rectness. If portability of program is
desired, the difficulty increases accord-
ingly. (In light of growing software costs,
these concerns are more than aesthetic.)

Of course arithmetic irregularities affect
the non-expert’s programs too. Since he

Call —A.P.P.L.E. July 1985

Floating-point Arithmetic
in Applesoft BASIC

James W. Thomas

may not undertake an extensive proof of
correctness, he may be spared the task of
programming around trouble areas spotted
in the analysis. Then, however, he may have
results whose accuracy is eroded by the
arithmetic to an extent completely
unknown. On the other hand, if the
arithmetic produces errors which do attract
his attention, either in output or in other
unintended program behavior, and if he
suspects the computer arithmetic as the
culprit, then the non-expert may still have
enormous difficulty in debugging without
acquiring a detailed knowledge of his
machine’s particular arithmetic.

In this article, we discuss some of the
peculiarities of Apple II Applesoft BASIC, a
floating—point arithmetic which is widely
used by non—experts. In the section entitled
Architecture, we summarize the architec-
ture of the arithmetic; under Irregularities
we present and discuss several behavioral
irregularities; and under Implications we
assess the implications the architecture and
irregularities hold for the users.
Architecture

Floating-point numbers are represented
in memory using five bytes (40 bits). The
first byte is an 8-bit exponent which in-
cludes a bias of 128. The high order bit of
the second byte is the sign bit. The remain-
ing 31 bits are used with an implicit
high—order 1 bit to make a 32 bit significand.
Representation is signed magnitude. Thus

8 1 31
lexp [s l signiﬁcandbitsl

represents (-1)x 2exP128 x 1significand-
bits. Zero is represented whenever exp is 0,
regardless of the significand bits. Valid
representations range from 2128 (actually
2128 i5 invalid in some cases—then 2%) to
2127 x (1 - 23?), or roughly 103 to 10%. The
32 bit significands can distinguish between
nine decimal digit significands.

While arithmetic operations are carried
out, operands may have an additional guard
byte, giving a significand of 40 bits. In addi-

tion and subtraction, both operands and the
result use guard bytes. In multiplication, the
multiplier and the product use guard bytes.
In division, only the quotient has extra
significance, but just 1 bit. When addition,
subtraction, or multiplication is initiated,
one operand has a 32 bit significand and the
other a 40 bit significand. Although both
operands in addition and subtraction use
guard bytes, the operand with the 32 bit
significand does so only if it has the smaller
exponent, shifting its significand right. In
formula evaluations involving several
operations, the sizes of the significands de-
pend on the order of the operations as well
as on theoperations themselves. Interme-
diate operands with 40 bit significands may
be rounded to 32 bits and pushed onto a
stack, or not, depending on the details of the
formula.

Rounding consists of inspecting the high
order bit of the guard byte and, if a 1 is
found, incrementing the higher order 32 bit
significand. Thus rounding is to the nearest
value with ties going away from zero.
Numbers are normalized before rounding,
except when an addition or subtraction
cancels the high order 32 bits but leaves a
non-zero guard byte. Then the result is set
to zero. In addition to stack pushes by for-
mula evaluation, memory stores also are
preceded by rounding. Divisors are rounded
before divisions occur. The guard byte has
no sticky bit, so that any 1’s shifted out the

‘right of the guard byte are lost.

Overflow results in an OVERFLOW
ERROR message and termination of the
program. Underflows are set to zero.

Irregularities

By irregularities we mean behavior of
the arithmetic which the user should not be
expected to anticipate. Such behavior may
occur intentionally, because of design deci-
sions, or unintentionally, because of bugs.
Actually the distinction here is not clear—cut
because design decisions often are made to
live with presumably insignificant or toler-
able bugs.

15

| Call-A.P.P.L.E. Magazine .

July 1985

Page 0001 of 0004 |

Apple][Applesoft BASIC Floating Point Commentary « Jim Thomas

Formula-evaluation design flaw.
Intermediate operations may present differ-
ent results to subsequent operations,
depending on the positions of the operations
in the formula.

Example (non-commutative addition):

JLIST

10 A=21(-2)+21(-3)+

21(-33)
20 A=-A
30 B=21(-1)+ 21(-32)
40 C=21(-1)+21(-2)
50 PRINTA+B*CB*C+A
JRUN
0 1.16415322E-10

This phenomenon occurs as a direct conse-
quence of the design of the formula evalua-
tion routine. For A + B*C the result of B*C
stays in a floating—point accumulator,
unrounded and with guard byte. For
B*C+A the result of B*C is rounded and
stacked. Hence different numbers are add-
ed to A in the two cases. The following is
similarly explained.

Example (non-commutative multiplica-
tion):

JLIST

10 A=1-21%(-31)
20 B =2%(-33)
30 C=2%(-1)

10 day money
back guarantee

BLANKENSHI

For the Apple II+, Ie, and IIc

1. Real interpreter, not a pre-processor
2. WHILE-ENDWHILE and REPEAT-UNTIL loops
3. True IF-THEN-ELSE-ENDIF (Using WHEN)
4. PRINT.USING, FILE, MERGE, RANDOMIZE
5. PRINT and TAB commands work in HIRES
6. 80 columns supported on IIe and IIc
7. Full Editor with AUTO-NUM and RENUM
8. Listings are indented automatically
9. Fast SORT, SEARCH and INSTR$ coammands
10. BOX, BOXFILL, DRAW.USING and SOUND
11. DISKE command replaces DOS’'s CHR$(4)
12. DEFINE and PERFORM NAMED procedures
13. 99%x Upward compatible with Applesoft
14. All commands entered normally, no &'s
15. 100’s of satisfied users world wide
16. FREE newsletter available to owners
Apple 1e & registered trademark of Apple Computer lnc

008 3.3 version $25°°
Prod0S version $250°°
Both versions $39°3
Add $1.50 postage & handling

mail check to:

Jobhn Blankenship
P.0. Box 47934
Atlanta GA 30362

Circle 57 on Reader Service Card

16

Features

40 PRINTC + (A+B)*C-A
50 PRINTC +C*(A+B)-A

JRUN
4.65661287E-10
2.32830644E-10

The remedy here would involve nontrivial
design decisions. Two obvious approaches
are i) including the guard byte on the stack
and ii) rounding operands before operations
occur. Alternative i) requires modification
of the addition, subtraction, and multiplica-
tion routines which now use operands with
different size significands.

Evaluator-comparator conspiracy.
In comparing two numbers for = <, or>, the
propagation of carries from a guard byte
beyond the low order byte is not considered.
Thus A op B = A op B may be false, since
the formula evaluator rounds and pushes
one A op B result onto the stack but leaves
the other A op B result unrounded in the
floating-point accumulator.

Example (non-reflexive equality):

JusT

10 A=21(-1)

20 B =21(-24)-21(-33)

30 IFA + B = A + BTHEN PRINT
“A+B=A+B"

40 IFA + B>A + BTHEN PRINT
“A+B>A + B”

JRUN

A+B>A+B

Either remedy suggested above in the ““For-
mula-evaluation design flaw’’ section
would correct this flaw. A fix not involving
the formula evaluator must compare a
rounded number with a non-rounded num-
ber as if the latter were rounded. This ap-
pears to require some code.

Sign-of-small-quotient bug. If the
exponent of a quotient is -128, then a
positive quotient will result regardless of the
signs of the divisor and dividend.

Example ((A/2)/A = -5):

JLIST

10 A =-(21(-127))
20 PRINTA(A/2)/A

JRUN
-5.87747176E-39 -5

In division, the exponent of the divisor is
negated and added to the exponent of the
dividend. If the result including its bias is
zero, then control branches to an underflow
routine in order to produce a zero quotient.
The zero exponent already indicates zero,
so the underflow routine simply sets the
sign to “+ . But then the return is back into
the division routine which increments the
exponent to account for a shift and carries
out the division, so the result is no longer

zero. It appears the underflow should not
have been signaled, since the result is good
except for the sign.

Multiplier bug. When two consecutive
bytes of the multiplier are 0, the accumu-
lated product bits to that point will be shifted
one place too far to the right.

Example (1 *A+ A):

JA = 21(-1) + 21(-24) - 2/(-31)

B = 1*A
JCALL -151

*803.809

0803- 41 00 80 00 00
0808- 00 FE

*80A.810

080A- 42 00 80 00 00 00
0810- 7F

Note that the low order byte FE of A
becomes 7F in B = 1*A, a shift of one bit to
the right. The error can be as large as 127
units in the last place of the binary signifi-
cand. With A as in the example A*1 yields
A, so the multiplication bug produces non-
commutative multiplications. With a slight
modification, the example violates A>1 —
A*B>B(B>0). This bug could be easily ex-
terminated by resetting a carry which is
cleared by a special routine which handles
the zero byte multiplication.

Attempting a clearer demonstration of
the effect of the multiplication bug, we con-
tinue with the preceding example.

JPRINTAB:REMB=1"A
50000003 .500000015

But hand conversion of the binary represen-
tations shows that A and B differ by approx-
imately 30 in the ninth decimal place. The
effect of the multiplication bug is con-
founded by the following.

Binary — decimal conversion error
Example:

JA = .500000059
JCALL -151
*803.809

0803- 41 00 80 00 00
0808- 00 FD

JPRINT A
.500000029

Call —A.P.P.L.E. July 1985

| Call-A.P.P.L.E. Magazine .

July 1985

Page 0002 of 0004 |

Apple][Applesoft BASIC Floating Point Commentary « Jim Thomas

The internal binary representation of A is
correct to all 32 binary places, so the
decimal-to-binary conversion has done its
job well. Since 232 < 2.4*10' the binary
number in the example is nearer to
.500000059 than to .500000058 or
.500000060. Hence we might expect the
conversion decimal-to-binary-to-decimal to
be the identity on .500000059. However we
obtain an error of 30 in the ninth decimal
place! The conversion routines use the
floating-point arithmetic and so are subject
to the errors therein. Perhaps the multipli-
cation bug, via multiplications in the binary-
to-decimal conversion, causes the surpris-
ingly large error above.

Trigonometric function error. The
sine function exhibits extremely poor ac-
curacy near zero.

Example (sin(A)/A is not near 1 when A
is small):

JLIST
10 FORI =1TO12

20 A=10*%(-1)
30 PRINTA,SIN(A)/A

40 NEXT

RUN

A 998334166
.01 999983334
1E-03 999999833
1E-04 999999995
1E-05 99999994
1E-06 999998797
1E-07 999984511
1E-08 99975593
1E-09 997184394

9.99999998E-11 0
9.99999999E- 12 0
9.99999999E-13 0

The sine function is identically zero for
arguments greater than .5*101,

Example (sin(A) = 0 for large A):

JLIST

10 FORI =5T0 12

20 A=10%1

30 PRINTA,SIN(A)

40 NEXT

JRUN

100000 0356574928
1000000 -.349137508
10000000 .41642956
100000000 914209756
1E+09 707106781
1E+10 0

1E+ 11 0

1E+12 0

The flaw in the sine routine lies in its argu-
ment reduction. The argument is divided by
2*pi and F, the fractional part of the quo-
tient, is obtained. As the first step of deter-
mining the quadrant, F is subtracted from Va

Call —=A.P.P.L.E. July 1985

Features

and the difference is the basis of all further
calculations. If F is small, ¥4 - F has little or
no significance. If the original argument is
large, the fractional part of its quotient by
2*pi is zero.

The cosine and tangent functions are ob-
tained through the identities

cos(x) = sin(x + pil2)
tan(x) = sin(x)/cos(x)

and hence inherit the errors in the sine func-
tions.
Example (tan(A)/A<1):

JLIST
10 FORI = 1TO 12

20 A=101(-1)
30 PRINTA,TAN(A)/A

40 NEXT

JRUN

A 1.00334672
.01 1.00003334
1E-03 1.00000033
1E-04 1

1E-05 999999941
1E-06 999998798
1E-07 999984543
1E-08 999755933
1E-09 997184394

9.99999998E-11 0
9.99999999E-12 0
9.99999999E-13 0

Trigonometric identities are not reliable.

Example (sin(A)? + cos(A)? % 1):

JLIST

10 FORI =5T0 12

20 A =101

30 PRINTA,SIN(A)t2 + COS(A)
12

40 NEXT

RUN

100000 1

1000000 1

10000000 1

100000000 982226087

1E+09 1.35355339

1E+10 0

1E+ 11 0

1E+12 0

Example (sin(2*A) # 2*sin(A)*cos(A)):

JLIST

10 FORI =5TO 12

20 A=10%1

30 PRINTSIN(2*A)2*SIN(A)*
COS (A)

40 NEXT

JRUN

-.0712696343 -.0712696343

-.654333618 -.654333618

-.757208846 -.757208846

-.740951125 -.699705854

1 1.30656297

0 0

0 0

0 0

and an all-new Sector Editor.

BACKUP
PROTECTED SOFTWARE

with COPY II PLUS" ver. 5

From the team who first brought you COPY II PLUS in 1981 comes a completely
updated disk backup utility for your Apple // computer. New features include:

* Fully automatic bit copy*. All parameters are stored on disk. Simply type in the
name of the program you wish to backup, and COPY II PLUS does the rest!

¢ New utilities including Alphabetize Catalog, Fast 2-pass Disk Copy on a //c or //e,

* Supplied on a standard DOS diskette. Runs on the Apple //, Apple /+,
Apple //e, Apple //c. Requires 64K and one or two disk drives.

Increase the power of your Apple // ...
Use COPY I PLUS™ 5.0

Call M-F 8-5:30 (W. Coast time) with your 2= &® : 503/244-5782.
Or send a check (add $3 s/h, $8 overseas) to

$39.95

We update Copy Il Plus regularly to handle new protections; you as a registered owner may update at any
time for 1/2 price! (To update, just send original disk and $20.)

This product is provided for the purpose of enabling you to make archival copies only.

ENTRAL POINT
Software, Inc.

9700 SW Capitol Hwy. #100
Portland, OR 97219

Circle 58 on Reader Service Card

17

| Call-A.P.P.L.E. Magazine .

July 1985

Page 0003 of 0004 |

Apple][Applesoft BASIC Floating Point Commentary « Jim Thomas

COMPUTEREYES"

VIDEO IMAGES ON YOUR APPLE!

Finally — an nexpensive way 10 capture reakworid images on your
Apple’s HiRes display! COMPUTEREYES * is an nnovative Slow-scan
device that connects between any Standard video Source (video tape
recorder. video camera, videodisk, etc | and the Apple's game 11O socket
Under simple software control, a biw image 1s acquired in fess than five
seconds A unique multrscan mode also provides realistc grey-scale
images Hundreds of applications!

Package ncludes interface modue.
cable. complete easy-to-use soft
ware support on disk, owner's
manual, ana one year warranty
For 48K Apple I series and com
paubles, with Applesoft and DOS
33 COMPUTEREYES ™ 15 availabie
from your dealer or direct from
DIGITAL VISION for just $129 95
Plus 54 00 SBH USA]

Cpfir O Tk,

Also available as a complete pack
age ncluain

* COMPUTEREYES

* Quality biw video camera

* Connecting cable
for only $349 95 pius 9 00 S&H

Demo disk avarlable for only $1000
postpaid %

Mass residents add 5% sales tax
Mastercard, Visa accepted Toorder
or tor more informaton, wiite or Screen dumps of actual
cal COMPUTEREYES * images

Now aiso for Apple it

EREINIDIGITAL 2DIONININEE

DIGITAL VISION, INC.

14 Oak Street — Suite 2

Needham, MA 02192
(617) 444-9040

Circle 62 on Reader Service Card

Features

Even if the sine’s argument reduction were
repaired, the cosine would perform poorly
for large arguments, x, because pi/2 would
have little or no effect in x + pi/2. The sim-
ple repair for the trigonometric functions is
to replace the module with an implementa-
tion of good existing algorithms.

Implications

The examples in the preceding section
point to several areas in which the arith-
metic’s behavior is other than a program-
mer would expect. This behavior is caused
by subtle workings of the arithmetic rou-
tines (intentional or unintentional), the
understanding of which would prove a
heavy burden for the non-expert pro-
grammer.

e The programmer may have less accu-
racy than the 32 bit significance with
rounding to nearest plus guard bytes
for intermediate results would lead him
to believe. The binary-to—-decimal con-
versions and the multiplication bug
may produce single operation errors of
30 in the ninth decimal place. The
trigonometric functions may produce
results with no significance. The guard
byte provides extra accuracy only for
rather special formulas which avoid the
rounding stack pushes. The guard byte

Life in the Fast Lane,

Slow Lane or
Any Lane...

_..is expensive when it
comes to your car! A
typical driver can spend
$1000 or more on fuel per year
driving 15-20,000 miles at 20
miles per gallon. Driving with a
dirty air filter, low tire pressure

does not facilitate the significance one
would hope for when addition or sub-
traction cancels the 32 high order bits,
because such results are set to zero.

e Themost innocent algebraic manipula-
tions of formulas may alter a program’s
results. Virtually every axiom of real
numbers can fail (maybe not 0 + x =
x). The compilation of a usable set of
rules on which a programmer could de-
pend would be very difficult.

e Branch tests may be difficult to control.
The sign-of-small-quotients bug may
reverse a sign. The formula evaluator
may produce a zero for an expression
which elsewhere appears to be non-
zero. The comparator-evaluator con-
spiracy may provide incorrect com-
parisons. The loss of accuracy men-
tioned above may affect comparisons.
Thus the unwary programmer’s tests
to separate cases or guard against in-
valid operands may be sabotaged.

Although the irregularities discussed in
this paper appear simple to correct (with the
possible exception of the formula evaluation
flaw), Apple Computer Inc., will be reluc-
tant to implement changes. The Applesoft
BASIC was purchased from Microsoft and
no one with Apple is truly familiar with the
details of the code. The code has little
modularity, so it is difficult to assess the
ramifications of changes. Multitudinous
software exists for the current version and it
would be difficult to check that these pro-
grams still run.

On the other hand, with the increased in-
terest in arithmetic among the experts and
with the increased knowledge of computing
among the general population, the number
of users who are aware of anomalies in the
arithmetic can be expected to increase.
More users will pursue the possibility that
errors in their results are caused by com-
puter arithmetic.

References

and other problems can add $100-200 to fuel costs, plus higher repair bills and
decreased reliability!! Minimizing those costs means keeping your car in top condi-
tion and spotting problems early. Using CAR-TRAK your APPLE Il can eliminate 1L
the guesswork from preventative maintenance and help avoid unnecessary
repairs and fuel costs. CAR-TRAK is two programs in one! A SERVICE

Apple II Reference Manual. Apple Com-
puter Inc., 1979.

2. Applesoft BASIC Programming Reference
Manual, Apple Computer Inc., 1978.

expenses, income taxes, and billing
verification. It's simple and easy to
learn and use! Put your APPLE Il to
work for you. Order CAR-TRAK

by CHECK or M.O. for $39.95 plus
$2.00 shipping and handling. (CA
residents add $2.40 sales tax.)

CAR-TRAK requires lI+, //cor / /e w/48K

APPLE 1s a trademark of APPLE Computer, Inc

SCHEDULER reminds you of inspection and service requirements by date and 3
mileage for up to 50 items per car. A PERFORMANCE ANALY ZER graphically ’
highlights suspicious changes in fuel consumption which may signal early
trouble, and provides a number of SUMMARY REPORTS to help with business

10/10 SOFTWARE
22996 El Toro Rd.
Suite 138

El Toro, CA 92630

(714) 380-1063

Circle 76 on Reader Service Card

18

IEEE Subcommittee p754, “A Proposed
Standard for Binary Floating-Point
Arithmetic,” Draft 8.0, Computer, 14, 3,
March 1981, pp 53-62.

4. Camp, Smay, Triska, Microprocessor
Systems Engineering, Matrix Publishers
Inc., 1979.

5. Coonen, J.T., “Accurate, Economical
Binary - Decimal Conversions,” May
1981.

6. Kahan, W., “Error in Numerical Com-
putation,” Course Notes, 1963.

7. Kahan, W., “Why Do We Need A
Floating-Point Arithmetic Standard?”,
March 1981.

8. Luebbart, W.F., “What’s Where in the
Apple,” MICRO - the 6502 Journal,

August 1979.

Call —A.P.P.LE. July 1985

| Call-A.P.P.L.E. Magazine .

July 1985

Page 0004 of 0004 |

