
APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Apple][Computer Family
Technical Documentation

—————————————————————————————————
Technical Notes

—————————————————————————————————
Apple Computer -- Developer CD Volume 2 -- September 1989

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 1 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: !TN.000.About.89.09
###

Apple II
Technical Notes

 Developer Technical Support

#0: About Apple II Technical Notes September 1989

Technical Note #0 (this document) accompanies each release of Apple II
Technical Notes. This release includes revisions to Apple IIGS Notes #26,
#35, #36, #45, and #64, AppleTalk #3-#4, Apple II Miscellaneous #10, and
SmartPort #2, new Notes for the Apple IIGS (#65-#70), and an index to all
released Apple II Technical Notes. If there are any subjects which you would
like to see treated in a Technical Note (or if you have any questions about
existing Technical Notes), please contact us at one of the following
addresses:

 Apple II Technical Notes
 Developer Technical Support
 Apple Computer, Inc.
 20525 Mariani Avenue, M/S 75-3T
 Cupertino, CA 95014
 AppleLink: AIIDTS
 MCI Mail: AIIDTS (264-0103)

We want Technical Notes to be distributed as widely as possible, so they are
sent to all Partners and Associates at no charge; they are also posted on
AppleLink in the Developer Services bulletin board and other electronic
sources, including the Apple FTP site (IP 130.43.2.2). You can also order
them through APDA. As an APDA customer, you have access to the tools and
documentation necessary to develop Apple-compatible products. For more
information about APDA, contact:

 APDA
 Apple Computer, Inc.
 20525 Mariani Avenue, M/S 33-G
 Cupertino, CA 95014
 (800) 282-APDA or (800) 282-2732
 Fax: (408) 562-3971
 Telex: 171-576
 AppleLink: APDA

We place no restrictions on copying Technical Notes, with the exception that
you cannot resell them, so read, enjoy, and share. We hope Apple II Technical
Notes will provide you with lots of valuable information while you are
developing Apple II hardware and software. The following pages list all Apple
II Technical Notes that have been released.

Released Apple II Technical Notes September 1989

 New ***

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 2 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Revised *R*

Apple IIc

 1 Mouse Differences On IIe and IIc 11/88
 2 40-Column and Double High-Resolution Graphics 11/88
 3 Foreign Language Keyboard Layouts 11/88
 4 Dvorak Keyboard Layout 11/88
 5 Memory Expansion on the Apple IIc 11/88
 6 Buffering Blues 11/88
 7 Existing Versions 11/88
 8 Single-Sided 3.5" Media and the Apple IIc Plus 5/89

Apple IIe

 1 Overview of the Apple IIe 11/88
 2 Hardware Protocol for Doing DMA 11/88
 3 Double High-Resolution Graphics 11/88
 4 RDY line 11/88
 5 /INH line 11/88
 6 The Apple II Paddle Circuits 11/88
 7 Interfaces--Serial, Parallel, and IEEE-488 11/88
 8 Known Anomalies of Enhanced IIe ROMs 11/88
 9 Switch Input Changes 11/88

Apple IIGS

 1 How to Install Custom BRK and /NMI Handlers 11/88
 2 Transforming I/O Subroutines for Use in "Native" Mode 11/88
 3 Window Information Bar Use 11/88
 4 Changing Graphics Modes in Mid-Application 11/88
 5 Window and Menu Titles 11/88
 6 QuickDraw II Pattern Data Structure 7/89
 7 Halt Mechanism in IIGS SANE 11/88
 8 Elems Functions in IIGS SANE 11/88
 9 IIGS Sound Expansion Connector: Analog I/O Impedances 11/88
 10 InvalRgn Twist 11/88
 11 Ensoniq DOC Swap-Mode Anomaly 11/88
 12 Tool Set Interdependencies 7/89
 13 ROM 1.0 Modem Firmware Bug 11/88
 14 Standard File Calls and GrafPort Records 11/88
 15 InstallFont and Big Fonts 7/89
 16 Notes on Background Printing 11/88
 17 Application Memory Management & the MMStartUp User ID 11/88
 18 Do-It-Yourself SCC Interrupts 11/88
 19 Multichannel Output with Apple IIGS Note Synthesizer 11/88
 20 Catalog of APW Language Numbers 7/89
 21 DMA Compatibility for Expansion RAM 11/88
 22 Proper Unloading of Dynamic Segments 11/88
 23 Toolbox Use of DOC RAM 11/88
 24 Apple IIGS Toolbox Reference Updates 11/88
 25 Apple IIGS Firmware Reference Updates 5/89
 R 26 ROM Revision Summary 9/89
 27 Graphics Image File Formats 11/88
 28 Interface Card Design Guidelines 11/88
 29 Monochrome High-Resolution Mode 11/88
 30 Apple IIGS Hardware Reference Updates 11/88
 31 Redirecting Output in APW C 11/88

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 3 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 32 /INH Line Anomaly 11/88
 33 ERRORDEATH Macro 11/88
 34 Low-Level QuickDraw II Routines 1/89
 R 35 Printer Driver Specifications 9/89
 R 36 Port Driver Specifications 9/89
 37 Free-Form Synthesizer Tips 11/88
 38 List Controls in Dialog Boxes 7/89
 39 Mega II Video Counters 7/89
 40 VBL Signal 7/89
 41 Font Family Numbers 11/88
 42 Custom Windows 11/88
 43 Undocumented Feature of CalcMenuSize 11/88
 44 GetPenState and SetPenState Record Error 11/88
 R 45 Parameters for GetFrameColor 9/89
 46 DrawPicture Data Format 11/88
 47 What SetDataSize Does 11/88
 48 All About AlertWindow 7/89
 49 Rebooting (Really) 1/89
 50 Extended Serial Interface Error Handling 1/89
 51 Reserving Memory for the Toolbox 1/89
 52 Loading and Special Memory 7/89
 53 Desk Accessories and Tools 3/89
 54 MIDI Drivers 5/89
 55 Avoiding ClrHeartBeat 7/89
 56 Managing Dynamic Segments 7/89
 57 Preventing Memory Compacting and Purging 7/89
 58 Keyboard Modifiers Register Anomaly 7/89
 59 Do Not Create Zero-Length Text Scraps 7/89
 60 Care and Feeding of NewMenu 7/89
 61 Window Title Handles 7/89
 62 No Non-Solid Window Background Patterns 7/89
 63 Master Color Values 7/89
 R 64 Apple IIGS Installer and Installer Scripts 9/89
 *** 65 Control-^ is Harder Than It Looks 9/89
 *** 66 ExpressLoad Philosophy 9/89
 *** 67 LaserWriter Font Mapping 9/89
 *** 68 Tips for I/O Expansion Slot Card Design 9/89
 *** 69 The Ins and Outs of Slot Arbitration 9/89
 *** 70 Fast Graphics Hints 9/89

Apple II Miscellaneous

 1 80-Column Screen Dump 11/88
 2 Apple II Family Identification Routines 2.1 11/88
 3 Super Serial Card Firmware Bug 11/88
 4 AppleWorks Keys 5/89
 5 AppleWorks File Formats 5/89
 6 IWM Port Description 11/88
 7 Apple II Family Identification 11/88
 8 Pascal 1.1 Firmware Protocol ID Bytes 11/88
 9 AppleSoft Real Variable Storage 11/88
 R 10 80-Column GetChar Routine 9/89
 11 Examining the $C800 Space from AppleSoft 5/89
 12 Apple II Firmware WAIT Routine 11/88
 13 not used
 14 Guidelines for Telecommunication Programs 7/89

AppleTalk

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 4 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 1 Identifying AppleTalk 7/89
 2 ProDOS 8 Compatibility on the IIe and IIGS 11/88
 R 3 Avoiding Remote Printer Time-Outs 9/89
 R 4 Printing Through the Firmware 9/89
 5 SPCommand Calls and Error $0702 7/89
 6 Apple IIe Workstation Card Anomalies 7/89

GS/OS

 1 Contents of System.Disk and System.Tools 7/89
 2 GS/OS and the 80-Column Firmware 11/88
 3 Pointers on Caching 11/88
 4 A GS/OS State of Mind 7/89
 5 Resource Fork Formats 7/89
 6 Drivers and GS/OS Direct Page 7/89
 7 Behavior of SET_DISKSW 7/89
 8 Filenames With More Than CAPS and Numerals 7/89

ImageWriter

 1 Custom Font Selection 11/88

Memory Expansion Card

 1 Questions and Answers 11/88

Mouse

 1 Interrupt Environment with the Mouse 11/88
 2 Varying VBL Interrupt Rate 11/88
 3 Mode Byte of the SetMouse Routine 11/88
 4 Mouse Firmware Bug Affecting ServeMouse 11/88
 5 Check on Mouse Firmware Card 11/88
 6 MouseText Characters 1/89
 7 Mouse Clamping 11/88

Pascal

 4 Pascal Declarations & Directory Structure 11/88
 10 Configuration and Use of Pascal Run-Time Systems 11/88
 12 Disk Formatter Routine 11/88
 14 Apple Pascal 1.3 TREESEARCH and IDSEARCH 11/88
 15 Apple II Pascal SHORTGRAPHICS Module 11/88
 16 Driver to Have Two Volumes on One 3.5" Disk 11/88

ProDOS 8

 1 The GETLN Buffer and a ProDOS Clock Card 11/88
 2 Porting DOS 3.3 Programs to ProDOS and BASIC.SYSTEM 11/88
 3 Device Search, Identification, and Driver Conventions 11/88
 4 I/O Redirection in DOS and ProDOS 11/88
 5 ProDOS Block Device Formatting 11/88
 6 Attaching External Commands to BASIC.SYSTEM 11/88
 7 Starting and Quitting Interpreter Conventions 11/88
 8 Dealing with /RAM 11/88
 9 Buffer Management Using BASIC.SYSTEM 11/88
 10 Installing Clock Driver Routines 11/88

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 5 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 11 The ProDOS 8 MACHID Byte 11/88
 12 Interrupt Handling 11/88
 13 Double High-Resolution Graphics Files 11/88
 14 Selector and Dispatcher Conventions 11/88
 15 How ProDOS 8 Treats Slot 3 11/88
 16 How to Format a ProDOS Disk Device 11/88
 17 Recursive ProDOS Catalog Routine 11/88
 18 /RAM Memory Map 11/88
 19 File Auxiliary Type Assignment 11/88
 20 Mirrored Devices and SmartPort 11/88
 21 Identifying ProDOS Devices 7/89
 22 Don't Put Parameter Blocks on Zero Page 7/89
 23 ProDOS 8 Changes and Minutia 7/89
 24 BASIC.SYSTEM Revisions 7/89
 25 Non-Standard Storage Types 7/89

SmartPort

 1 SmartPort Introduction 11/88
 R 2 SmartPort Calls Updated 9/89
 3 SmartPort Bus Architecture 11/88
 4 SmartPort Device Types 11/88
 5 SCSI SmartPort Control Call Changes 1/89
 6 Apple IIGS SmartPort Errata 11/88
 7 SmartPort Subtype Codes 11/88
 8 SmartPort Packets 5/89

UniDisk 3.5

 1 UniDisk 3.5 Internals 11/88
 2 UniDisk 3.5 ID Bytes 11/88
 3 STATUS Call Bug 11/88
 4 Accessing Macintosh Disks 11/88
 5 Architectural Differences Between 3.5" Drives 11/88

END OF FILE !TN.000.About.89.09

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 6 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: !TN.Index.89.09
###

Apple II
Technical Notes

 Developer Technical Support

Index September 1989

$C0 IIGS #27
$C1 IIGS #27
$C300 space GSOS #2
$C800 space Misc #3, #11
/IRQ IIGS #68
/M2SEL IIGS #68
/NMI IIGS #68
/RAM PDOS #8, #16, #18, #21
/RST IIGS #68
/System.Disk GSOS #1
/System.Tools GSOS #1
0o time IIe #2
01 time IIe #2
3D0G IIe #3
3.5 ROM IIc IIc #7
3.5" Disks Pasc #16, IIc #8
3.5" drive differences UDsk #5
5.25" drives PDOS #21
32-byte patterns IIGS #6
40-column IIc #2
40COL IIGS #29
48K Run-Time System Pasc #10, #15
64K Run-Time System Pasc #10
74LS245 IIe #2
80-column card Misc #1, #10,
80-column firmware IIe #8, GSOS #2
80-column screen dump Misc #1
80COL IIc #2, IIe #8
80STORE IIe #3
128K Run-Time Systems Pasc #10
320 mode IIGS #4
400K disks UDsk #4
558 timer IIe #6
640 mode IIGS #4
800K disks UDsk #4
access GSOS #4
aciabuf IIc #6
ADV.DISK.UTIL GSOS #1
Alert IIGS #48
AlertWindow IIGS #48
alternate character set Mous #6
AN3 IIe #3
analog I/O impedance IIGS #9
animation IIGS #70

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 7 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Apple /// emulation Misc #2
Apple 3.5 Drive UDsk #5
Apple II SCSI Interface Card SmPt #5
Apple IIe Workstation Card ATLK #6
Apple IIGS firmware SmPt #6
AppleMouse Mous #2
AppleShare ATLK #1, #2, PDOS #21
AppleSoft BASIC Misc #9, #11
AppleSoft IIe #3
AppleTalk firmware ATLK #3, #4
AppleWorks file formats Misc #5
AppleWorks Misc #4, #5
APW assembler IIGS #33
APW C IIGS #31
APW IIGS #20, #31
arcRot IIGS #6
ASMFORMAT.TEXT Pasc #12
assembly language IIGS #33
ATLK ROM ATLK #1, #2
ATTACH.DATA Pasc #16
ATTACH.DRIVERS Pasc #16
auto-boot UDsk #2
auxID IIGS #17
auxiliary memory IIe #3
auxiliary type IIGS #27, PDOS #19
AUXMOVE IIe #3
auxtype PDOS #19
background printing IIGS #16
BADBLOCK IIc #5
BADCTL SmPt #7
BADCTLPARM SmPt #7
bank crossing IIGS #60
bank-switched memory IIe #3
BASIC Misc #9
BASIC.SYSTEM PDOS #2, #6, #9, #17
 change history PDOS #24
Binary II Misc #14
Bit Encoded Slot Configuration IIGS #69
block device formatting PDOS #5
BLU Misc #14
BOOTTRACKS.DATA Pasc #12
bottleneck procedure IIGS #34
BoundsRect IIGS #34
BREAKVECTOR IIGS #1
BRK handler IIGS #1
Buffer Too Small) PDOS #21
buffer management PDOS #9
buffering IIc #6, IIGS #13
bug IIe #8, IIGS #13, #32, #44, #45
bus contention IIGS #32
C IIGS #31
cachePriority GSOS #3
Caching GSOS #3
CalcMenuSize IIGS #43
card dimensions IIGS #28
card driver IIGS #36
Catalog routine PDOS #17
CDA IIGS #53

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 8 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Centronics IIe #7
character devices GSOS #4
clamping Mous #7
ClampMouse Mous #1, #3
Claris Misc #4
ClearMouse Mous #3
clock card PDOS #1, #11
clock driver routine PDOS #10
ClrHeartBeat IIGS #55
CLRVBLINT IIGS #49
Communications Card IIe #7
CONTROL SmPt #5, #6
Control Manager IIGS #4, #38
copy protection UDsk #1
COUT IIc #2, IIe #8, Misc #1, Mous #6
COUT1 PDOS #4
CREATE UDsk #3
CROW0 IIGS #21
CROW1 IIGS #21
CtlNewRes IIGS #4
custom debugger IIGS #1
custom defProc IIGS #42
custom fonts IMWR #1
custom windows IIGS #42
dbl hi-res IIe #3
DEALLOC_INTERRUPT PDOS #12
debugging stub IIGS #1
defProc IIGS #42
delay Misc #12
design guidelines IIGS #28
Desk Accessory IIGS #53
devcnt PDOS #20
DEVICE SELECT IIe #2, #4
Device Information Block PDOS #21
device-driver entry point PDOS #21
device-driver table PDOS #20
devices PDOS #20
devlst PDOS #20
Dialog Manager IIGS #38
dialog box IIGS #38
DIB PDOS #21, SmPt #4, #7
direct page GSOS #6
Disk Formatter Pasc #12
disk caching GSOS #3
disk device PDOS #16
disk sector format IIGS #25
Dispatcher conventions PDOS #14
DisposeAll IIGS #17
DisposeMenuBar IIGS #3
DisposeRgn IIGS #10
DMA IIe #2, #5, IIGS #21, #68
DOC RAM IIGS #11, #23, #37
DOCMode byte IIGS #19
DOS 3.3 PDOS #3
DOSCMD vector PDOS #2
Double high-resolution IIc #2, IIe #3, PDOS #13
DrawPicture data format IIGS #46
DrawPicture IIGS #46

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 9 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

DrawVerb IIGS #34
DRIVERS IIGS #35,GSOS #6
DSK IIc #4
DTACK IIe #4
Dvorak keyboard layout IIc #4
dynamic segments IIGS #22
dynamic segments IIGS #56
DYN_SLOT_ARBITER IIGS #69
DYNCHK IIGS #22
EJECT SmPt #2, #5
Elems function IIGS #8
EndInfoDrawing IIGS #3
EndOfPicture IIGS #46
Ensoniq 5503 IIGS #9
Ensoniq DOC IIGS #11, #19, #37
Ensoniq RAM IIGS #23
ENTRY2 PDOS #5
ERRORDEATH IIGS #33
expandable IIc IIc #5
expansion card design IIGS #68
expansion RAM IIGS #21
ExpressLoad IIGS #66
Extended Serial Interface IIGS #50
extended files PDOS #25
external commands PDOS #6
Fast Processor Interface IIGS #21, #68
FFGeneratorStatus IIGS #37
FFStartSound IIGS #11, #37
FFStopSound IIGS #26, #37
file format PDOS #19
file system dependencies GSOS #4
file type IIGS #27, PDOS #19
filenames, lowercase GSOS #8
FIListSessions PDOS #21
FilterProc IIGS #38
FixMenuBar IIGS #43
FMScaleSizeErr IIGS #15
Font Manager IIGS #15, #38, #41
font family numbers IIGS #41
FONT.LISTS GSOS #1
fonts IIGS #41, #67
 big IIGS #15
foreign language keyboards IIc #3
FORMAT PDOS #16, SmPt #5
format PDOS #19
FORMATTER PDOS #5, #16
FORMATTER.CODE Pasc #12
FORMATTER.DATA Pasc #12
FORMATTER.TEXT Pasc #12
formatting PDOS #16
FORMDISK.TEXT Pasc #12
FPI IIGS #21, #68
Free-Form Synthesizer IIGS #37
FREEBUFR PDOS #9
FST GSOS #1
FWEntry IIGS #69
General Logic Unit IIGS #37
General Purpose Inteface Bus IIe #7

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 10 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

GET_FILE_INFO PDOS #5, UDsk #3
GetAddr IIGS #18
GETBUFR PDOS #9
GetChar routine Misc #10
GetFamNum IIGS #41
GetFrameColor IIGS #45
GetInfo ATLK #1, #2
GETLN buffer PDOS #1
GETLN bug IIGS #65
GetMouseClamp Mous #7
GetNewModalDialog IIGS #38
GetNextEvent IIGS #42
GetOutBuff IIGS #16
GetPenState IIGS #44
GetVector IIGS #1, #18
GetWTitle IIGS #61
GLoader GSOS #1
GLU IIGS #37
Golden NDA Guideline IIGS #53
GPIB IIe #7
GQuit GSOS #1
GR IIGS #29
GrafPort IIGS #14, #35
graphics file formats IIGS #27
graphics IIe #3, IIGS #29, IIGS #70
graphics modes IIGS #4
GS/OS Errors, Fatal GSOS #4
GS/OS, direct page GSOS #6
half-dot shift IIe #3
HALT vector IIGS #7
hardware IIGS #28
Hewlett-Packard Interface Bus IIe #7
HFS UDsk #4
HGR IIe #3
hi-res IIe #3
high-resolution IIe #3, IIGS #29
HIRES IIe #3, IIGS #29
HPIB IIe #7
I/O redirection PDOS #3
I/O SELECT IIe #2, #4
I/O slot cards IIGS #68
I/O STROBE IIe #2, #4
I/O subroutines IIGS #2
ID bytes IIc #5, Misc #7
ID nibble PDOS #21
identification bytes Misc #7
identification routines Misc #2
IDS.CODE Pasc #14
IDSEARCH routine Pasc #14
IEEE-488 IIe #7
IIc Plus IIc #7, IIc #8, Misc #2, #7
IIe logic board IIe #9
IIe overview IIe #1
IIe ROM IIe #8
IIGS master color values IIGS #63, IMWR #1, Misc #3
InfoDefProc IIGS #3
InfoRefCon IIGS #3
information bar IIGS #3

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 11 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

INH line IIe #5, IIGS #32
INIT SmPt #2
InitialLoad IIGS #66
initialization segments IIGS #52
InitMouse Mous #2
InitPalette IIGS #5
Ins and Outs IIGS #69
installer scripts IIGS #64
InstallFont IIGS #15
InstallTimer ATLK #5
INTEN IIGS #49
interface cards IIGS #28
interfaces IIe #7
interleave UDsk #4
interrupt environment Mous #1
interrupt handler IIGS #18
interrupts IIe #8, IIGS #18,
InvalRgn IIGS #10
inverse characters Mous #6
InvertRgn IIGS #34
ioLoc IIGS #2
IORESULT IIc #5
IOU IIe #2
IWM Misc #6, UDsk #5
key codes IIc #3
keyboards IIc #3, IIc #4
KEYIN PDOS #4
krunching Pasc #10
language numbers IIGS #20
LaserWriter IIGS #41, #67
LEFromScrap IIGS #59
list control IIGS #38
low-level drive access UDsk #5
M2B0 IIGS #68
MACHID byte Misc #2
Macintosh disks UDsk #4
MAKEFMT.CODE Pasc #12
MAKEFMT.TEXT Pasc #12
MasterSCB IIGS #34
MaxWidth IIGS #34
MD IN/OUT IIe #2
Mega II IIGS #32, #39
Mega II bank 0 signal IIGS #68
Mega II select signal IIGS #68
Memory Expansion Card MemX #1
Memory Manager IIGS #15, #17
 compaction flag IIGS #57
memory expansion IIc #5, #6
memory management IIGS #17
memory map IIe #3, IIGS #32, PDOS #18
memory-expandable IIc IIc #7
Menu Manager IIGS #3, #4, #5
menu bar IIGS #3
menu titles IIGS #5
MenuNewRes IIGS #4
MFS UDsk #4
MIDI drivers IIGS #54
MIDI Tool Set IIGS #23, #54

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 12 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

MinRect IIGS #34
mirrored devices PDOS #20, Misc #3, #8
MMStartUp IIGS #17
MMU IIe #2
ModalDialog IIGS #38
Mode byte Mous #3
modem firmware IIGS #13
modifiers register IIGS #58
mono hi-res mode IIGS #29
monochrome hi-res mode IIGS #29, Mous #4, #5,
 PDOS #12, #15, SmPt #6, UDsk #3
mouse clamping Mous #7
mouse IIc #6, Mous #3
MouseText Mous #6
MPW IIGS assembler IIGS #33
MPW IIGS C IIGS #31
MSLOT IIGS #16, Misc #3
multichannel sound output IIGS #19
multiple volumes Pasc #16
native mode IIGS #2
NDA IIGS #53
Network Error PDOS #21
network volumes PDOS #5, #16, #17, #21
NewHandle IIGS #17
NewMenu IIGS #60
NewWindow IIGS #3, #42
nextwave_start IIGS #11
NMI handler IIGS #1
no special memory IIGS #52
Note Sequencer IIGS #23
Note Synthesizer IIGS #19, IIGS #23
NuFX Misc #14
numbanks MemX #1
ObscureCursor IIGS #34
OMF IIGS #52, #66
ON_LINE IIc #5, PDOS #8, #21
option_list GSOS #4
Original IIc IIc #7
OSShutdown IIGS #49, GSOS #2
output redirection IIGS #31
P-machine Pasc #10
PackBytes IIGS #27
paddle circuits IIe #6
paddle read IIe #6
PAGE2 IIe #3
PaintOval IIGS #34
PAL timing chip IIe #2
PAP ATLK #3
Parallel Interface Card IIe #7
parallel interface IIe #7
Pascal 1.1 Firmware Protocol IIe #7
Pascal area PDOS #25
Pascal Device Support Tools Pasc #10
Pascal Pasc #10, #12, #14, #15
Pascal protocol STATUS call ATLK #6
PASCALIO Pasc #10
pathnames GSOS #4
PB0 IIe #9

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 13 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

PB1 IIe #9
PB2 IIe #9
PEEK Misc #11
Pen Pattern IIGS #6
PFI PDOS #21
PH0 IIe #4, IIGS #68
PH1 IIe #4
PH2 IIe #4, IIGS #21, #68
PIC IIe #7
PICT data format IIGS #46
pictSCB IIGS #46
picture data format IIGS #46
picture file formats IIGS #27
PINIT IIGS #16
pixels IIe #3
PMGetPrinterName IIGS #35
PMSetPrinter ATLK #3
POKE Mous #6
port driver IIGS #36
port IIGS #36
PortRef IIGS #34
PosMouse Mous #1, #3
PostScript fonts IIGS #67
power2 MemX #1
POWERUP IIGS #49
powerup MemX #1
PREAD IIe #6
PrGetPageOrientation IIGS #35
PrGetPrinterSpecs IIGS #35
Print Manager IIGS #35, #36, #38, #67
printer driver IIGS #35
printer interface IIGS #36
printer time-out ATLK #3
printing IIGS #16, #35, #36, ATLK #3
 PDOS #8, #11, #15
ProDOS 8
 change history PDOS #23
 invisible bit ATLK #6
 parameter blocks PDOS #22
 storage types PDOS #25
 zero page PDOS #22
ProDOS devices Misc #8, PDOS #3, #21
ProDOS Filing Interface PDOS #21
ProDOS MLI PDOS #16, #20
ProDOS, STATUS PDOS #21
pseudo-device PDOS #21
PutScrap IIGS #59
PWRITE IIGS #16
QuickDraw II IIGS #34, #70
QUIT IIGS #49, PDOS #7, #14
Quitting Interpreter conventions PDOS #7
R/W* IIe #4
R/W* line IIe #2
RAM card IIc #5
RAM disk IIc #5, MemX #1,
RAM-based driver PDOS #21
RAMRD IIe #3
RAMWRT IIe #3

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 14 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

RDY line IIe #4, IIGS #68
READ PDOS #17, UDsk #4
READ_BLOCK PDOS #17
READBLOCK UDsk #4, SmPt #8
ReadDir routine PDOS #17
READDIS IIe #5
ReadMouse IIc #1, Mous #1, #3
real variable storage Misc #9
rebooting IIGS #49
recharge routine IIGS #16
recursive PDOS #17
redirecting output IIGS #31
RefCon IIGS #38
RefreshDesktop IIGS #4
remote printing ATLK #3
RESET IIGS #49, MemX #1
Resource Manager IIGS #12, GSOS #5
resource fork GSOS #5
Restart (System Loader) IIGS #52
Revision B motherboard IIe #3
RgnHandle IIGS #10
ROM (IIGS) IIGS #26
ROMlevel byte Misc #2
RPM ATLK #3
RSHIMEM PDOS #9
RT48: Pasc #10
RT64: Pasc #10
RT128: Pasc #10
RTBOOTLOAD.CODE Pasc #10
RTBSTND.BOOT Pasc #10
RTBSTRP.BOOT Pasc #10
RTI PDOS #12
RTL IIGS #1
RTSETMODE.CODE Pasc #10
RTSTND.APPLE Pasc #10
RTSTRP.APPLE Pasc #10
Run-Time Systems Pasc #10
running man Mous #6
SANE IIGS #7, #8
scan line interrupt IIGS #39
SCC IIGS #18
SCCAREG IIGS #49
Scheduler IIGS #16
Scrap Manager IIGS #53
scraps, text IIGS #59
screen dump, 80-column Misc #1
screen holes MemX #1, IIc #1, #6
SCSI card SmPt #5
segments IIGS #22
Selector conventions PDOS #14
SendQueue IIGS #16
SerFlag IIGS #18
Serial Card Misc #3
serial firmware IIGS #13, #18
serial interface IIe #7
ServeMouse Mous #1, #4
SET_DISKSW GSOS #7
SET_SPEED GSOS #6

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 15 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

SetArcRot IIGS #6
SetContentOrigin IIGS #47
SetDataSize IIGS #47
SetGrafProcs IIGS #34
SETINTC3ROM GSOS #2
SetMouse IIc #1, Mous #3, #4
SetMTitleStart IIGS #5
SetOutBuff IIGS #16
SetPenState IIGS #44
SETSLOTC3ROM GSOS #2
SetStdProcs IIGS #34
SetVector IIGS #1, #18
SetWTitle IIGS #61
ShieldCursor IIGS #34
Sholes keyboard IIc #4
SHORTGRAPHICS module Pasc #15
ShrinkIt Misc #14
signature bytes UDsk #2
single-sided media IIc #8
SizeWindow IIGS #4, #47
slot 3 PDOS #15
Slot Arbiter IIGS #69
slot arbitration IIGS #69, GSOS #4, #6, Misc #14
slot dependencies GSOS #4
slot firmware IIGS #69
slot mapping PDOS #3
slot numbers PDOS #21
slot register GSOS #2
SLOTC3ROM GSOS #2, SmPt #2, #4, #5, #7
SmartPort PDOS #20, SmPt #1
 Bus architecture SmPt #3
 device types SmPt #4
 devices Misc #8, PDOS #21
 Interface SmPt #3
 Interface Version SmPt #2
Sound Tool Set IIGS #11, #37
sound expansion connector IIGS #9
sound IIGS #37
sound impedance IIGS #9
sound oscillator IIGS #11
sound RAM IIGS #23
SPCommand ATLK #5
SPWrite ATLK #5
SSC IIe #7, Misc #3
SSC interrupts IIGS #18
Standard File IIGS #14
StartInfoDrawing IIGS #3
Starting Interpreter conventions PDOS #7
StartUpTools IIGS #12
statcode PDOS #21
static IIGS #11
STATUS PDOS #20
status list SmPt #2
stdArc IIGS #34
StdOval IIGS #34
StdRect IIGS #34
stdRRect IIGS #34
stereo expansion cards IIGS #19

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 16 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

subroutine conversion IIGS #2
substitution string IIGS #48
subtype byte SmPt #7
subtype codes SmPt #7
Super Serial Card IIe #7, Misc #3
SW0 IIe #9
SW1 IIe #9
SW2 IIe #9
swap-mode IIGS #11
switch input IIe #9
SysFailMgr IIGS #33
System Loader IIGS #22, #66
SYSTEM.ATTACH Pasc #10, #16
SYSTEM.CHARSET Pasc #10
SYSTEM.LIBRARY Pasc #10, #15
SYSTEM.MISCINFO Pasc #10
SYSTEM.PASCAL Pasc #10
SYSTEM.STARTUP Pasc #10
SystemTask IIGS #53
T02+ IIe #4
T02- IIe #4
Tads IIe #4
TaskMaster IIGS #42, #47, #53
Tdevsel+ IIe #4
Tdevsel- IIe #4
Tdsu IIe #4
telecommunications Misc #14
Terminal Mode IIc #6
Text cursor bug IIGS #65
Text Edit IIGS #12
Text Tools GSOS #4
Thr IIe #4
ThunderClock PDOS #1, #10
TimeData Mous #2
Tiosel+ IIe #4
Tiosel- IIe #4
Tiostb+ IIe #4
Tiostb- IIe #4
tool set interdependency IIGS #12
tools
 out-of-memory IIGS #51
 required IIGS #53
 starting order IIGS #12
 suggested IIGS #12
TrackGoAway IIGS #42
TREESEARCH routine Pasc #14
trkey IIc #6
Trs IIe #4
TRS.CODE Pasc #14
trser IIc #6
Trwh IIe #4
TURTLEGRAPHICS unit Pasc #15
twkey IIc #6
twser IIc #6
typhed IIc #6, UDsk #2, #3, #4
UniDisk 3.5 Controller Misc #6
UniDisk 3.5 UDsk #5
UniDisk ID bytes UDsk #2

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 17 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

unit_number PDOS #20, #21
UNITCLEAR Pasc #16
UNITREAD Pasc #16
UNITSTATUS Pasc #16
UnitStatus IIc #5
UNITWRITE Pasc #16
Unload Segment IIGS #22
unloading dynamic segments IIGS #22
UnshieldCursor IIGS #34
USER IIe #3
User ID IIGS #17
user tool sets IIGS #53
UserCtlItem IIGS #38
UserID IIGS #34
UserItem IIGS #38
VBL IIGS #39, #40
VBL interrupt Mous #3
VBL interrupt rate Mous #2
VBL interrupts IIGS #39
VBL signal IIGS #40
VCB PDOS #8
vendor ID IIGS #25
vertical retracing IIGS #40
video counters IIGS #39
video timing IIGS #39
volume control block PDOS #8
WAIT routine Misc #12
waveform buffer IIGS #23
waveform envelopes IIGS #23
waveform IIGS #19
waveList IIGS #19
wFrame IIGS #3
windGlobals IIGS #42
WindNewRes IIGS #4
Window Manager IIGS #3, #4, #5, #42
window definition procedure IIGS #42
window information bar IIGS #3
window titles IIGS #5
windows
 background patterns IIGS #62
 record definition IIGS #42
 title handles IIGS #61
wInfoDefProc IIGS #3
wInfoHeight IIGS #3
WRITE UDsk #3, 3.5 #4
write protected UDsk #3
zero-crossing byte IIGS #11

END OF FILE !TN.Index.89.09

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 18 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.AIIc.001
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIc
#1: Mouse Differences on IIe and IIc

Revised by: Matt Deatherage November 1988
Revised by: Cameron Birse February 1986

This Technical Note explains differences between the IIe and IIc when working
with a mouse and how to write programs which function properly on both
machines.

If you use the mouse firmware routines (i.e., SetMouse) to control the mouse,
then these routines will perform the same function on the IIc as they do on
the IIe. However, a program which uses the mouse may not behave the same on
both computers, and there are two reasons for the possible differences.

If a program does not properly set the environment prior to calling the mouse
firmware routines, it is possible for a program to work on one machine and not
the other. In addition, there are differences in machines and although the
ROM routines perform the same functions, there may be a noticeable difference
in the mouse behavior between the two machines.

This Note explains the fundamental differences between the way the mouse works
on the two machines. We point out precautions that you need to take to ensure
your assembly language programs work properly on both machines. (With the
exception of mouse movement scaling described below, neither BASIC nor Pascal
programs need be concerned with setting the proper environment.)

The Apple IIe mouse card has a microprocessor on it which constantly polls the
mouse to get status and position information. This data is kept on the card
and is available whenever the program requests it through the ReadMouse
routine. If the mouse is in passive mode, this information will be picked up
by the main program whenever it gets around to it.

The SetMouse routine can set the mouse card to issue interrupts under certain
conditions. When the mouse card determines that such conditions exist, it
issues an interrupt. This interrupt stops the main computer and goes to
whatever interrupt handling routine has been prepared. This routine then
reads the information from where the card processor saved it and puts it in
the screen holes. When using a mouse on an Apple with a mouse card, your
program is only interrupted if you have requested it, and the data in the
screen holes is changed only when the program's interrupt handler or polling
routine calls ReadMouse. In addition, enabling and disabling interrupts does
not affect the card's microprocessor from updating the mouse information.

The Apple IIc mouse does not have a card microprocessor, so mouse information
is collected by interrupting the microprocessor of the IIc itself. When the

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 19 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

interrupt occurs, the firmware captures it and processes it, which includes
updating the screen holes. The interrupt is passed only if SetMouse set up
the conditions to do so.

Having the mouse interrupt the computer's microprocessor also means that your
program is being constantly interrupted, which affects program timing. This
interruption also means that the screen holes are constantly updated with X
and Y information, even in passive mode, since this information must be stored
somewhere and there is no card to keep it in. If you have disabled
interrupts, the mouse can never interrupt the microprocessor, so the X and Y
values are never updated and calling ReadMouse will indicate that there has
been no mouse movement.

Since the Apple IIc is constantly interrupted while the mouse is on, the
program's performance may be affected. To minimize this effect, the IIc
responds one-half as frequently to mouse movements as does the mouse card,
which means the mouse must be moved twice as far to create the same on-screen
effect. If you want the same behavior on both machines, multiply the IIc X
and Y values by two and the clamping value by one half. You do not need to
make any changes to these values if your program is running on a IIe.

With this exception for mouse movement, your assembly language program can
ignore which machine it is running on by following the precautions listed in
Mouse Technical Note #1, Interrupt Environment with the Mouse (you must take
these conditions into account if you want your assembly language program to
behave similarly on both machines). If you are working in BASIC or Pascal,
these conditions are already handled for you.

Further Reference
o Apple IIc Technical Reference Manual
o Mouse Technical Note #1, Interrupt Environment with the Mouse

END OF FILE TN.AIIc.001

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 20 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.AIIc.002
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIc
#2: 40-Column and Double High-Resolution Graphics

Revised by: Matt Deatherage November 1988
Revised by: Cameron Birse February 1986

This Technical Note describes how to properly handle the 40-column screen
while using double high-resolution graphics on the Apple IIc.

Many developers using double high-resolution graphics may wish to use 40-
column text displays so that the text can be read on a television set. There
are a couple of possibilities for accomplishing this task:

1. You can define your own double high-resolution character set with
 any size characters you desire, then plot them on the double high-
 resolution screen.
2. You can print text to the Apple IIc text screen and toggle the
 screen on to display it.

Note: There is no way to display 4 lines of 40-column text at the
bottom of the double high-resolution screen in mixed mode since
the 80 column hardware must be active while double high-resolution
mode is being used.

Using the second method outlined above requires some special considerations.

The Apple IIc scroll routine continues to use the window parameters when
scrolling, but uses the 80COL softswitch to determine if it should scroll the
80-column screen or 40-column screen. Since the firmware has initialized a
40-column window, the scroll routines will move only the first 40 columns, but
the 80COL flag has been turned on for double high-resolution. Because of the
80COL flag, the scroll routine takes every even column from auxiliary memory
and every odd column from main memory. As a result, only the first 40 columns
get scrolled, 20 columns from auxiliary memory and 20 columns from main
memory.

One solution to the problem is writing your own scroll routines, while another
is writing to the screen so scrolling is not necessary. There is, however,
another solution. Turn on the full 80-column mode with PR#3 or equivalent.
Now print your text to COUT in the normal manner, and do not exceed 40
characters per line--the 80-column firmware should scroll everything properly.
When you are ready to display text, send a Control-Q sequence through COUT to
toggle to 40-columns and send a Control-R sequence to return to double high-
resolution mode. These control characters toggle the display modes, but leave
the 80-column firmware active.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 21 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

When switching between modes, you may experience a momentary glitch. If you
send the Control-Q sequence to COUT while still in graphics mode, the screen
will first switch to the normal high-resolution mode before finally switching
to text mode. If you switch to text mode first, the text will be in 80-column
mode (with 40 columns displayed on the left of the screen) before ultimately
switching to 40-column mode). This same potential glitch may occur when
switching back to double high-resolution mode, and it may be only momentary
and not present any problems for your application. If, however, it does
present a problem, you may wish to make your switch coincide with the video's
vertical blanking interval (see the Apple IIc Technical Reference Manual).

Further Reference
o Apple IIc Technical Reference Manual

END OF FILE TN.AIIc.002

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 22 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.AIIc.003
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIc
#3: Foreign Language Keyboard Layouts

Revised by: Matt Deatherage November 1988
Revised by: Cindy Roberts January 1985

This Technical Note formerly described the keyboard layouts and ASCII codes
for international versions of the Apple IIc keyboard.

The information about international keyboard layouts and key codes which this
Note formerly covered is now documented in all current versions of the Apple
IIc Technical Reference Manual.

Further Reference
o Apple IIc Technical Reference Manual

END OF FILE TN.AIIc.003

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 23 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.AIIc.004
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIc
#4: Dvorak Keyboard Layout

Revised by: Matt Deatherage November 1988
Revised by: Cameron Birse February 1986

This Technical Note discusses the Dvorak keyboard layout on the Apple IIc.

The old, red version of the Apple IIc Reference Manual incorrectly illustrated
the Dvorak keyboard layout, however, the current Apple IIc Technical Reference
Manual contains a corrected diagram on page 370.

The diagram in the current manual shows the Dvorak Simplified Keyboard (DSK)
as it appears and functions on the Apple IIc today. This layout is the ANSI
standard for the Dvorak keyboard layout, which was not available when the
original IIc keyboard ROM was created. Previous IIc computers had a DSK
layout as follows:

 | | ! | @ | # | $ | % | ^ | & | * | (|) | { | } | |
 |esc | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | [|] |delete|

 | | ? | < | > | P | Y | F | G | C | R | L | : | + | | |
 |tab | / | , | . | p | y | f | g | c | r | l | ; | = | \ |

 | | A | O | E | U | I | D | H | T | N | S | _ | |
 |control | a | o | e | u | i | d | h | t | n | s | - |return |

 | | " | Q | J | K | X | B | N | W | V | Z | |
 |shift | ' | q | j | k | x | b | n | w | v | z |shift |

 |caps| ~ | | | | | | ||| |/\ |
 |lock| ` | | OA | space bar | CA |<== |==> |\/ ||| |

 Figure 1-Dvorak DSK Layout on Early IIc Computers

Due to service part changes and other manufacturing considerations, it is not
possible to identify which IIc units have which keyboard ROM by looking at
identification bytes. If a program requires knowledge of this information
(i.e., a typing program which draws the Dvorak keyboard), it must ask the user
for input.

One possible way to accomplish this would be for a program to draw a blank
keyboard layout (except for shift, tab, control, and other keys which do not
move between Dvorak and Sholes layouts) and ask the user to press the key to
the right of the left shift key, while the drawing on screen highlights the

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 24 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

correct key to press. If the key is a Z, the layout is a standard Sholes
layout. If the key is an apostrophe or quotation mark, the layout is the DSK
layout shown above. If the key is a semicolon or colon, the layout is the
ANSI DSK layout on new IIc models. Since such a program must already ask the
user if the keyboard switch is depressed (indicating a Dvorak layout), making
this type of inquiry instead will do the trick.

The IIc manual has another DSK diagram in the front, on page 7. This diagram
correctly shades those symbols which are in different places in the two DSK
layouts.

Further Reference
o Apple IIc Technical Reference Manual

END OF FILE TN.AIIc.004

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 25 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.AIIc.005
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIc
#5: Memory Expansion on the Apple IIc

Revised by: Matt Deatherage November 1988
Written by: Cameron Birse October 1986

This Technical Note describes some important differences in the "memory-
expandable" Apple IIc which you should take into account to ensure
compatibility.

Beginning with the third Apple IIc, which was announced in September 1986, all
new IIc models differ significantly from their predecessors. The most notable
of these differences is the addition of a memory expansion capability. The
memory expansion card for the IIc is functionally identical to the card for
the IIe, but the IIc card "lives" in slot 4 and the firmware is included in
the ROM on the IIc motherboard. This architecture means that you cannot
depend upon the firmware ID bytes to tell if a card is installed, since unlike
other "peripheral cards" in the IIc, the memory expansion card is not
necessarily present. For this particular case, you need to interrogate the
card and see how many blocks of memory are available. If there are no
available blocks, there is no card.

SmartPort

Do a STATUS call with a statcode = $03 to get the Device Information Block
(DIB). This call returns a value of $000000 in the device size fields if
there is no RAM card.

In version 3 of the IIc ROM, the value resulting from a status call to device
0 implies that there is always a real card connected; the ROM version 4
returns device connected only when there is RAM card present.

ProDOS

When you do an ON_LINE call to the ProDOS MLI and there is no RAM on the
Memory Expansion Card, you get an error $2D. This error is not a ProDOS
error, rather it is a SmartPort error. The error is BADBLOCK, and basically
tells you that the block requested was not available. If you try to catalog
the RAM disk from BASIC, you will get a PATH NOT FOUND error.

Pascal

Formatting the RAM disk (unit #9) with no memory on the card returns no error.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 26 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Doing a UnitStatus call will return zero blocks available, and trying to read
the volume directory will result in an IORESULT of 8, which means no room is
available on the volume. Doing the V(ols command from the F(iler will result
in a <no dir> and # of blocks = 0.

DOS 3.3

If there is no memory on the card and you initialize it with an IN#4 (which
returns a slash, appearing to have successfully initialized the RAM disk), you
will get an I/O error (ONERR code = 8) if you try to read from or write to the
RAM disk.

Important: Another significant ramification of the memory
expansion capability is that the mouse firmware has been
moved to slot 7. This change means that programs should
scan the slots just as they would on a IIe to find what
peripherals are installed. Since most programs have a scan
routine in them for the IIe, it should be a relatively minor
change to call this routine for whatever machine you are on.
In fact, we strongly recommend that programs always scan the
slots for peripheral devices regardless of the machine on
which they are running.

The firmware ID bytes for this version of the machine are:

Original Expandable IIc
 $FBB3--$06 $FBC0--$00 $FBBF--$03

Revised Expandable IIc
 $FBB3--$06 $FBC0--$00 $FBBF--$04

Apple IIc Plus
 $FBB3--$06 $FBC0--$00 $FBBF--$05

Further Reference
o Apple IIc Technical Note #6, Buffering Blues
o Apple IIc Technical Note #7, Existing Versions
o Apple II Miscellaneous Technical Note #2, Apple II Family
 Identification Routines 2.1
o Apple II Miscellaneous Technical Note #7, Apple II Family Identification
o Apple II Miscellaneous Technical Note #8, Pascal 1.1 Firmware
 Protocol ID Bytes

END OF FILE TN.AIIc.005

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 27 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.AIIc.006
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIc
#6: Buffering Blues

Revised by: Mike Askins November 1988
Written by: Guillermo Ortiz January 1987

This Technical Note describes changes on the memory-expandable IIc which
affect the procedures for enabling keyboard and serial input buffering.

When the IIc firmware was reorganized to accommodate the memory expansion card
in slot 4, the mouse moved to slot 7, thus causing some screen holes to be
reassigned. This change may software which uses keyboard or serial input
buffering to crash.

The following list shows the changes in the locations which are used for
enabling keyboard and serial input buffering:

 Original &
Name 3.5 ROM Expandable IIc Comment
typhed $5FA $5FA ;buffer the keyboard? NO CHANGE
twkey $5FF $5FC ;storage pointer for type-ahead buffer
trkey $6FF $6FC * ;retrieve pointer for type-ahead buffer

aciabuf $4FF $4FC ;Owner of serial buffer, if any
twser $57F $57C ;storage pointer for serial buffer
trser $67F $67C ;retrieve pointer for serial buffer

* In the version 3 ROM (original "memory-expandable" IIc) this pointer
is still $6FF which causes, among other things, the Terminal Mode to
be inoperative. Revision 4 of the IIc firmware fixes this bug.

We can not emphasize enough the need for carefully checking the version of the
machine on which a program is running. It is also important to pay attention
to the now obvious fact that even in the Apple IIc things can (and most
probably will) move around, making any hard-coded slot assignment a sure
source of incompatibility. To ensure compatibility, scan the slots.

The Apple IIc Technical Reference Manual describes how to enable buffering.
Using serial buffering as an example, the pertinent instructions in the manual
should now be understood as meaning:

Using Serial Buffering Transparently

 If (machineID = "Memory Expandable IIc") then
 begin
 aciabuf = $04FC; {Newest IIc with Expanded Memory Capabilities,}

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 28 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 twser = $057C; {ROM versions 3 and 4.}
 trser = $067C
 end
 else
 begin
 aciabuf = $04FF; {Original IIc and 3.5 ROM IIc}
 twser = $057F;
 trser = $067F
 end;

 Set_Location aciabuf to $C1 or $C2.
 Set_Locations twser and trser to $0.

Using Serial Interrupts Through Firmware

 Set_Location aciabuf to a value other than $C1 or $C2

Further Reference
o Apple IIc Technical Reference Manual
o Apple IIc Technical Note #7, Existing Versions
o Apple II Miscellaneous Technical Note #7, Apple II Family Identification

END OF FILE TN.AIIc.006

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 29 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.AIIc.007
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIc
#7: Existing Versions

Revised by: Matt Deatherage November 1988
Written by: Guillermo Ortiz November 1987

This Technical Note describes the main differences between the five different
IIc ROM versions which encompass the original IIc and four revisions.

Original IIc ($FBBF = $FF)

o Can use the IIc external drive only
o No AppleTalk firmware
o PR#7 boots the second drive
o Mouse firmware maps to slot 4
o Serial firmware does not mask incoming linefeed characters
o Serial firmware does not support XON/XOFF protocol

3.5 ROM IIc ($FBBF = $00)

o Can use the IIc external drive and the UniDisk 3.5 drive
o AppleTalk firmware maps to slot 7
o PR#7 returns the message "AppleTalk Off Line"
o Mouse firmware maps to slot 4
o Serial firmware defaults to mask all incoming linefeed characters
o Serial firmware supports XON/XOFF protocol

Original "Memory-Expandable" IIc ($FBBF = $03)

o Can use the IIc external drive, the UniDisk 3.5 drive, and the IIc
 Memory Expansion Card
o Mouse firmware maps to slot 7
o No AppleTalk firmware
o PR#7 kills the system
o Serial firmware defaults to mask all incoming linefeed characters
o Serial firmware supports XON/XOFF protocol

Revised "Memory-Expandable" IIc ($FBBF = $04)

Same as Original Memory-Expandable, plus:
o Keyboard buffering firmware bug fixed
o Firmware returns correct information when the Memory Expansion Card is
 not present

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 30 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Apple IIc Plus ($FBBF = $05)

o Can use the external IIc drive, the UniDisk 3.5 drive, the Apple 3.5
 drives, but not the original IIc Memory Expansion Card.
o Contains a Memory Expansion Card connector
o 3.5" internal drive replaces 5.25" internal drive
o Mouse maps to slot 7
o PR#7 kills the system
o 4 MHz 65C02 microprocessor
o Accelerator chip and static RAM cache permit operation up to 4 MHz
o Keyboard replaced with Apple Standard Keyboard (minus numeric keypad)
o Internal power supply
o Internal modem connector
o Serial ports refitted with mini-DIN 8 connectors
o Headphone jack has been removed
o Volume control relocated above the keyboard
o 40/80 column switch replaced by keyboard (Sholes/Dvorak) switch

Further Reference
o Apple IIc Technical Reference Manual
o Apple IIc Technical Note #5, Memory Expansion on the Apple IIc
o Apple IIc Technical Note #6, Buffering Blues
o Apple II Miscellaneous Technical Note #2, Apple II Family Identification
 Routines 2.1
o Apple II Miscellaneous Technical Note #7, Apple II Family Identification
o Apple II Miscellaneous Technical Note #8, Pascal 1.1 Firmware Protocol
 ID Bytes

END OF FILE TN.AIIc.007

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 31 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.AIIc.008
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIc
#8: Single-Sided 3.5” Media and the Apple IIc Plus

Written by: Llew Roberts May 1989

This Technical Note describes a media limitation on the internal drive of
the Apple IIc Plus.

With the exception of the internal drive on the Apple IIc Plus, single-sided
3.5" disks are supported on all Apple 3.5" drives, including external disk
drives connected to an Apple IIc Plus. The IIc Plus internal disk drive
assumes that all disks have an 800K capacity, so it returns valid reads on
blocks which occur on the formatted side and I/O errors on blocks which occur
on the unformatted side. A disk may appear to work when the disk-reading
algorithm has read blocks only from the formatted side.

For these reasons, we suggest that you do not ship programs on single-sided
media.

Further Reference

 o Apple IIc Technical Reference Manual

END OF FILE TN.AIIc.008

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 32 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.AIIe.001
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIe
#1: Overview of the Apple IIe

Revised by: Matt Deatherage November 1988
Revised by: Cameron Birse October 1985

This Technical Note formerly presented an overview of the Apple IIe.

This Note formerly presented an overview of the Apple IIe and its differences
from the Apple][and][+. The Apple IIe Technical Reference Manual now
documents this information, as well as differences with other members of the
Apple II family.

Further Reference
 o Apple IIe Technical Reference Manual

END OF FILE TN.AIIe.001

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 33 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.AIIe.002
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIe
#2: Hardware Protocol for Doing DMA

Revised by: Glenn A. Baxter & Rob Moore November 1988
Written by: Peter Baum January 1983

This Technical Note explains the hardware protocol for doing direct memory
access (DMA) on the Apple IIe and Apple][and is meant as a guideline for
developing peripherals which do DMA on these machines, not as a specification
for future Apple products or revisions.

This Note covers the timing differences between the Apple][and IIe and also
gives tips on how to design a peripheral card that will work in both systems.
The reader should be very familiar with either the Apple][+ or the Apple IIe,
especially the timing on the data and address buses in relation to the 6502.

DMA is used by peripheral cards in the Apple II family to transfer data
directly into memory without benefit of the processor. Transfer of data from
a peripheral device into RAM can normally be handled one byte at a time under
control of the processor. By using DMA, you can achieve greater data transfer
rates than the 6502 can handle in software. This transfer rate can approach
the full-cycle time of the memory. This technique can also be used to
transfer single data bytes into memory without requiring the CPU to process an
interrupt, which can be very time consuming.

The DMA process entails five steps: turn the processor off, gain access to
the R/W* line and both address and data buses, complete the data transfer,
release the data and address buses, and finally, allow the microprocessor to
restart. This Note covers each of these steps in detail.

At this point, I should caution the prospective developer that DMA on an Apple
][+ or Apple IIe can only be done under certain circumstances. Because DMA
turns off the processor, any program with a software timing loop will not work
properly. These programs assume that each instruction will take a fixed
amount of time, which is not true when the processor stops in the middle of an
instruction. This assumption means that the Apple II disk drives will not
work since they require a timing loop to read a disk. (Co-processor cards
work with DMA because they initiate the disk access and know that DMA cannot
be used until the disk is finished).

Another problem is that because of the mapping scheme used on the Apple IIe
extended 80-column (64K) card, a peripheral card cannot tell which memory bank
is being used without a complicated detection scheme. This problem means that
if a DMA device writes to a certain memory space, it might not be able to read
the same data back.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 34 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 _______ INTERNAL DATA BUS (MD 0-7)
| |<---------+-----+-----------+---------+------------+---------+
	^ ^ ^ ^									
		___	______		_____v______					
			Keyboard	__v__ ____v____	DATA LATCH					
			__________		64K		80 COL.		____________	
	___	___ ^	RAM		AUX RAM					
		EO-FF		KDB	_____		_________	--------->+		
6502A		ROM		^ ^ VIDEO DATA						

	^ ^	+--+----------+-----+	___v_____							
			ROMEN		RAM ADDR BUS (0-7)			DATA		
		_	______	______	__			LATCH		
			MMU	------------------------->	74LS245					
		->	__________________	MD IN/OUT			_________			
		^		^						
			__	__						
				IOU						
	+---------------------------------->	_____	<--+							
			^							
			TIMING AND CONTROL SIGNALS							
	<---------------+----------------------------+									
			__v____v__							
	___	+--------------+	VIDEO							
		7					CIRCUITS			
		4		____	_____ _____v______	__________				
		L			TIMING		PERIPHERAL			
		S			CIRCUITS		SLOTS	<---------------------+		
		2			__________		____________	EXTERNAL DATA BUS		
		4		^						
		4		ADDRESS BUS (A0-A15)						
_______	->	___	-+----------------------+							

 Figure 1 - Apple IIe Functional Block Diagram

Though the differences between the Apple IIe and Apple][+ architecture appear
to be significant to a device which uses DMA, this should not affect the
design in most cases. A good rule of thumb is that if a device is designed to
work on the Apple IIe, then it will be backward compatible and also run on the
Apple][+. The converse is not true; cards that use DMA on the Apple][+
might not work on the Apple IIe, hence, most of the descriptions in this Note
refer to the Apple IIe with occasional references to the Apple][+. For
example, the timing specifications listed are calculated from the Apple IIe
timing paths unless otherwise noted.

Occasionally the descriptions refer to a chip on the motherboard of the Apple
IIe, so a set of Apple IIe schematics should be nearby. The corresponding
parts on the Apple][+ will be specified when applicable.

The following paragraphs describe and define some of the terms that are used
throughout this Note. The Apple IIe block diagram on the previous page may be
helpful when reading about the buses.

01 (phase one) time The time when the 01 system timing signal is high.
 During this time the data bus, address bus, and RAM are
 used for video refreshing. This time is also called the
 video cycle or video phase.
0o (phase zero) time The time when 0o clock is high. 0o is the inverse of

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 35 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 01. During this time the microprocessor uses the data
 and address buses. This time is also known as the CPU
 cycle or CPU phase.
IOU and MMU Two MOS custom chips inside the Apple IIe. See chapter
 7 of the Apple IIe Technical Reference Manual for more
 details on the custom chips.
Data bus The microprocessor, ROM, and RAM are connected to this
 bus. On the IIe this bus generally has MOS components
 connected to it rather than TTL and is sometimes called
 the MOS data bus. A 74LS245 bidirectional bus
 transceiver (location B2 on the original motherboard)
 connects this internal bus to an external bus that the
 outside world sees through the peripheral slots. The
 data bus connected to the peripheral slots is called the
 external data bus. The Apple][does not have these two
 data buses. Instead, the peripheral slots are connected
 to the ROM, CPU data buffers, and RAM data inputs. The
 RAM data outputs are multiplexed with the keyboard data
 onto this bus.
Address bus There are three different sections to the address bus on
 the Apple IIe. The first section consists of the
 addresses from the 6502A into a pair of 74LS244s
 (locations B1,B3). Part two connects the other side of
 the '244 to the address bus that the peripheral slots
 see. Also connected on this bus are the MMU, the ROM,
 and the chips that decode I/O SELECT, DEVICE SELECT, and
 I/O STROBE. The third address bus is generated by the
 custom chips and is only used to access the RAM. The
 MMU and IOU automatically multiplex this bus with the
 high byte and low byte of an address during any RAM
 access, whether it be for video refresh or for a
 microprocessor instruction fetch. This third bus is
 called the RAM address bus. The Apple][also has these
 three buses, but uses 8T97s and discrete logic instead
 of the 74LS244 and custom chips.
6502 microprocessor In the Apple IIe a 6502A, a 2 MHz part is used instead
 of the 1 MHz 6502 used in the Apple][+. Since the
 custom chips in the Apple IIe are MOS and slower than
 the TTL in the Apple][+, the faster 6502A was used to
 guarantee better margins. For example, the 6502A sets
 up the address bus faster on the Apple IIe than the 6502
 does in the Apple][+.

On the IIe, all the timing signals are generated by the PAL timing chip,
except for the 7 M signal which is generated from an 74S109 or 74109 (early
versions of the IIe). Although both the PAL and the 74S019 use the 14 M
signal for a clock, there will be some skew between edges of the 7 M clock and
the timing signals from the PAL, such as the edges of 0o or 01. This skew
means the 7 M clock edge may rise as much as 20 ns before, or 5 ns after, the
0o falling edge. The clock signals of the Apple][+ should be tighter than
this (probably within 5 ns of each other) since 7 M, 0o, and 01 are all
generated from the same chip, a 74S175. Take this skew into account whenever
using the 7 M signal in a design.

Getting on the Bus (Exact Change Only)

1. Pull DMA low during 01 time.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 36 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 On the Apple IIe, the DMA line controls the direction of the
 74LS245, which enables the internal data bus outwards to the
 peripheral slots or enables external data onto the internal bus.
 Changing the state of the DMA line during 0o could cause the '245
 to change directions, forcing the internal data bus to go tri-
 state during a microprocessor read. The 6502 would read garbage
 and the computer might go belly up by jumping to a random memory
 location.

 On the Apple][, pulling the DMA line always forces the CPU data
 bus buffer to point inward and drive toward the 6502. Pulling the
 DMA line low during 0o of a write cycle would result in garbage
 being written to memory, since the data bus to the RAM would
 suddenly go tri-state.

2. Wait 30 ns, then assert address bus and R/W* line.

 Before driving the address bus and R/W* line, the system must
 process the transition on the DMA line and release the bus. This
 requires:

 25 ns 'LS244 output disable from low level
 +5 ns 'S02 low to high level output transition
 30 ns delay from DMA negative edge before driving address
 bus

 The 30 ns wait will also work on the Apple][, since it only needs
 27 ns ('LS04 and 8T97).

 Ph1 _______|
 |<----------------------->|
 213 ns (#3)
 ___________________ ___________ ______
 Address Bus High Impedence \/ \/ Valid
 from slots ___________________/___________/______

 ->|30 ns (#2)|<-
 DMA ________
 |_______________________________

 Figure 2 - Getting On The Bus

3. Address and R/W* line must be valid within 213 ns of 01 positive
 edge.

 This constraint is needed to meet the setup requirements of the
 IOU, MMU, and RAM. This time can be derived from the 6502A (2
 MHz) setup requirements. The Apple][can wait for 300 ns before
 data must be valid, because it uses the 1 MHz 6502 which has a
 longer setup time.

Warning: This specification (the address setup time) is the major
cause of failure for cards which use DMA in the Apple IIe.
Many DMA cards which were originally designed for the Apple
][+ do not meet this specification.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 37 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

During DMA (Keep Your Hands Inside the Bus at all Times)

1. Don't drive the data bus during 01 time.

 On an Apple][+, it is safe to drive the data bus 35 ns after
 asserting the R/W* line low, regardless of the point in the timing
 cycle. When the R/W* line goes low, the 74LS257s at locations B6
 and B7 tri-state the data bus, even in the middle of 0o or 01.
 This action prevents a bus fight from occurring between a DMA
 device and the system.

 At first glance of the Apple IIe logic schematics, it appears that
 a bus fight cannot occur on the data bus. During the 01 half of a
 write cycle, the 74LS245 tri-states the data bus within 30 ns of
 the R/W* line being pulled low. While this does preclude a fight
 from occurring on the data bus during 01, it doesn't prevent a bus
 crash from occurring at the beginning of 0o. At the beginning of
 0o, the 74LS245 is enabled and will drive the external data bus.
 If the peripheral card also drives the data bus, there could be a
 horrendous bus fight, since the 74LS245 can source 15 ma and sink
 24 ma per line. This might cause a spike on the ground plane,
 which could cause a processor to reset on a co-processor card.

 Let us take a look at the problem by stepping thru Figure 3, a
 timing diagram.

 The diagram starts with the video cycle of a read operation.
 During the video cycle, the video refresh data is read from the
 RAM and put on the data bus. This video data will appear on the
 peripheral slot (external) data bus because the 74LS245, as can be
 seen from Table 1, drives outward during 01 of a read cycle.

 Typically, the address bus and R/W* line would be setup by the
 6502A during 01 for the next CPU cycle, but instead, a peripheral
 card pulls the DMA line low. As explained earlier, the peripheral
 device should wait at least 30 ns before driving the address bus
 and R/W* line. In this first DMA cycle, the peripheral card wants
 to read a byte from RAM, so it keeps the R/W* line high.

 At this point we must switch over and use the Apple][+ to explain
 the timing required to read the data from RAM. The rule of thumb,
 that designing a DMA card for the Apple IIe will be backward
 compatible and run on the Apple][+, will not hold here. On the
 Apple][+ data is valid on the peripheral connector a minimum of
 468 ns from the 0o rising edge and holds to at least the falling
 edge of 0o at 490 ns. The hold time is actually the minimum
 propagation delay from the falling edge of 0o thru the following
 chips: 74LS257 at J1, 74LS139 at F2, 74LS20 at D2, 74LS00 at A2,
 and finally to the enable of the 74LS257s at B5 and B6. On the
 Apple IIe a byte from RAM becomes valid at most 345 ns after the
 rising edge of 0o and stays valid until the 0o falling edge.

7M
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
 |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_|

PH0

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 38 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

___ _____________ _____________ ____
 |_____________| |_____________| |_____________|

PH1
 _____________ _____________ _____________
___| |_____________| |_____________| |____

R/W ->||<-(40-213 ns)
________________________________ ________________
 |____________________________|
 (5 ns Max) (5 ns Max) (5 ns Max)
OE 74LS245 ->||<- ->||<- ->||<-
 ____________ _
_________________________________| |_____________| |_______________
 (5 ns Max)
/DMA ->||<-

 |__

MD IN/OUT ->| |<-(130 ns Max)

___| |_______________

DATA ->| |<-(468 ns*) ->| |<-(170 ns Max)
 ____ __ ____
___________________________/ ___________/ \/ ________________________
 ____/ __/____/
 valid valid
 ->||<-(30 ns Min)
ADDR_ _____________________________ _____________________________ _________
___/ \/ valid \/ valid \/ valid
 _/_____________________________/_____________________________/_________

 ->| |<-(40-213 ns) * This is an Apple][+ specification

 Figure 3 - Timing Diagram

 In the second DMA cycle, the timing diagram shows the peripheral
 card writing a byte to memory. In the first phase of the cycle,
 the video phase, the address bus and R/W* line are setup by the
 peripheral card within the timing specifications described
 earlier, 213 ns. Though the direction of the 74LS245 still points
 toward the slots, the '245 is disabled when the R/W* line is
 pulled low by the peripheral device (see Table 1). This will tri-
 state the external data bus. All the signals stay unchanged
 through the rest of the video phase, until the CPU cycle starts
 with the rising edge of 0o.

 Most bus fights occur at the beginning of the CPU cycle. The CPU
 cycle begins with address bus and R/W* line setup already and the
 data bus tri-stated. The signal MD IN/OUT, which drives the
 74LS245 direction control, is generated by the MMU and is always
 low during 01, so the 74LS245 drives toward the slots. MD IN/OUT
 uses the 0o rising edge to clock itself high during a DMA write
 cycle, but because the MMU is a MOS chip the delay before MD
 IN/OUT finally rises can be as long as 130 ns from the 0o rising
 edge. Hence, at the beginning of 0o the 74LS245 is in tri-state
 mode, but with the direction set to drive toward the peripheral

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 39 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 slots.

 PHO R/W Stable State of 74LS245
 1 0 (Write to RAM) High impedance
 1 1 (Read from RAM) Outward driving external data
 bus (slots)
 0 0 (Write to RAM) Inward driving into RAM
 0 1 (Read from RAM) Outward driving external data
 bus (slots)

 Table 1-Stable State of 74LS245

 Within 5 ns after 0o goes high, the chip enable to the 74LS245
 goes low, enabling data onto the external data bus. The 74LS245
 specification guarantees that the data will be valid within 40 ns
 from the chip enable. If the peripheral device was also driving
 the bus, there would be a bus crash. To prevent this bus crash,
 the data bus cannot be driven during 01, unless the data is pulled
 off the bus before 0o goes high. This means that the rising edge
 of 0o cannot be used to gate data on and off the bus. The bus
 fight will occur before the peripheral card can tri-state the data
 bus.

 Data can only be enabled onto the bus after the 74LS245 has
 changed directions and is driving the internal data bus. The DMA
 device must allow 130 ns for the MD IN/OUT line to change, plus
 the delay for the 74LS245 to change directions which takes 25 ns,
 for a total of 155 ns.

 After this 155 ns, the data must be valid on the bus within 55 ns,
 because the RAM requires data be setup at the CAS falling edge,
 which occurs 210 ns into 0o. This does not leave any time to
 spare, since, for example, a 74LS245 has a 40 ns enable time.
 This timing criteria will also work for the Apple][+ since the
 setup time for 16K RAM is the same as the 64K RAM, and CAS also
 falls at 210 ns. The data hold time of 55 ns after CAS falls is
 also the same for both the Apple IIe and the Apple][+.

 Here is a scenario for a DMA write. Set up the address bus and
 R/W* line within the required 213 ns, then wait for the first 7 M
 (pin 36 on slot) falling edge after 0o goes high before enabling
 your buffer onto the data bus. This edge will occur at 140 ns
 into 0o, and when the gate delay is added, should guarantee the
 buffer will not be driving the bus in the first 155 ns. I don't
 advocate depending on a minimum gate delay as standard design
 practice (my college professor thinks public whipping would be a
 justifiable punishment) but this is the real world (I'm not
 getting graded anyway). The data bus is valid by the time CAS
 falls, and should be stable for at least another 55 ns or until 0o
 falls.

2. The processor can be held off for a total of 10 microseconds.
 (10 0o clock cycles).

 This is true if a Rockwell 6502 is being used. (A Synertek part
 can be held off for as long as 40 µsec.) This time is the maximum
 cycle time of the 6502 and if there are no clock transitions
 within this time, it could result in internal registers (A,X,Y)

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 40 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 losing data. This maximum time varies from manufacturer to
 manufacturer of the 6502.

3. MMU and IOU multiplex address bus

 The custom chips automatically handle the multiplexing required of
 the RAM address bus. The external device doing DMA must set up
 the address bus and R/W* line within 213 ns of the rising edge of
 01 just like the 6502A does. The custom chips will automatically
 generate the addresses to the RAM for the video refresh cycle
 during 01, but use the addresses from the address bus to set up
 for the next instruction cycle. Hence, the only consideration on
 the address bus during DMA is to meet the 213 ns setup time
 requirement.

 The 213 ns setup time will also work with the Apple][since it
 can take as long as 300 ns to set up the address bus and R/W*
 line.

Getting Off the Bus

1. Don't release DMA during 0o.

 This is analogous to step 1 of Getting on the Bus. If the DMA
 line is released during 0o the microprocessor will try to execute
 a cycle during this time without the data or address bus set up
 properly. This random instruction fetch will probably cause the
 system to crash.

2. Tri-state address bus drivers on peripheral slots

 The DMA line is holding off the addresses from the 6502 onto the
 internal address bus by tri-stating the two 74LS244s on the Apple
 IIe bus and the 8T97s on the Apple][+ bus. The address bus and
 R/W* line from the external device in the peripheral slots should
 be tri-stated before releasing the DMA line or a bus fight will
 occur between the internal bus buffers and the peripheral slot
 drivers.

3. Release DMA line

 These last two steps are the opposite of the first two steps
 required to get on the bus. Both of these steps, releasing the
 address and R/W* lines then the DMA line, should be done within
 178 ns of 01 going high. This allows time for the 6502A to set up
 the address and R/W* lines properly for the next instruction
 cycle.

 213 ns address set up requirements
 5 ns 'S02 output high-to-low transition
 -30 ns 'LS244 out enable time
 178 ns to release DMA line and allow 6502 to set up address bus

 Again, the Apple][can take longer, up to 260 ns, before
 releasing the DMA line.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 41 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Further Reference
 o Apple IIe Technical Reference Manual

END OF FILE TN.AIIe.002

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 42 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.AIIe.003
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIe
#3: Double High-Resolution Graphics

Revised by: Matt Deatherage, Glenn A. Baxter & Cameron Birse November 1988
Written by: Peter Baum September 1983

This Technical Note is a tutorial on double high-resolution (hi-res) graphics,
a feature available on 128K Apple IIe, IIc, and IIGS computers.

Introduction

This Note was originally written in the early days of double high-resolution
graphics. At that time, there was no Apple IIc or IIGS, therefore, some of
the things originally said may seem a little strange today, five years later.

For example, this Note talks a fair amount about being sure that you have a
Revision B Apple IIe with the jumper installed. All Apple IIe computers
shipped since about mid-1983 have a Revision B motherboard, so this is not
that big a concern anymore; furthermore, nearly every IIe out there has the
aforementioned jumper already installed (it is not even an option on some
third-party 80-column cards for the IIe).

Also, the IIc and IIGS are functionally equivalent (for the purposes of this
article) to a Revision B IIe with the properly-jumpered 80-column card
installed, and most of the references made to the Apple IIe apply equally to
the IIc and IIGS. We have tried to update most of the references to avoid
confusion.

Considering the myriad of programming utilities, games, graphics programs, and
other software that now uses double high-resolution graphics, it is probable
that this Note will not be as vital as it once was. If you are writing in
AppleSoft BASIC, you will probably find it easier to purchase a commercial
double hi-res BASIC utility package to add double hi-res commands to
AppleSoft, rather than writing your own routines. Similarly, those who want
double hi-res art will find a double hi-res art application much easier than
trying to draw it from the monitor or machine language.

However, if you have the insatiable curiosity about these things that Apple II
owners and developers so often are blessed (cursed?) with, this Note will show
you how double high-resolution works, as well as giving a few type-along
examples in the monitor to get your feet wet.

This article describes the double high-resolution display mode which is
available in the Apple IIc, IIGS, and the Apple IIe (with an extended 80-
column card). Double hi-res graphics provides twice the horizontal resolution

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 43 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

and more colors than the standard high-resolution mode. On a monochrome
monitor, double hi-res displays 560 horizontal by 192 vertical pixels, while
on a color monitor, it allows the use of 16 colors.

Double High-Resolution on the Apple II Series

What is It?

The double high-resolution display mode that is available for the Apple IIe
provides twice the horizontal resolution of the standard high-resolution mode.
On a standard black-and-white video monitor, standard hi-res displays 280
columns and 192 rows of picture elements (pixels); the double hi-res mode
displays 560 x 192 pixels. On a color monitor, the standard hi-res mode
displays up to 140 columns of colors, each color being selected from the group
of six colors available, with certain limitations. Double hi-res displays 140
columns of color, for which all 16 of the low-resolution colors are available.

 Black/White Color
 Standard 280 x 192 pixels 140 columns
 Hi-Res 6 colors

 Double 560 x 192 pixels 140 columns
 Hi-Res 16 colors

 Table 1-Comparison of Standard and Double Hi-Res Graphics

How Do I Install It?

Installation of the double hi-res mode on your Apple IIe depends on the
following three conditions, discussed in detail below:

1. Presence of a Revision B motherboard
2. Installation of an extended 80-column text card with jumper
3. A video monitor with a bandwidth of at least 14 MHz

First, your Apple IIe must have a Revision B (Rev-B) motherboard. To find out
whether your computer's motherboard is a Rev-B, check the part number on the
edge of the board nearest the back panel, above the slots. If the board is a
Rev-B, the part number will be 820-0064-B. (Double hi-res does not work on
systems containing a Rev-A motherboard.) If your computer's motherboard is
not a Rev-B, and if you want to obtain one, contact your local Apple dealer.

The second condition for installing double hi-res on your IIe is that it must
have an extended 80-column text card installed. This card must be installed
with a jumper connecting the two Molex-type pins on the board.

Warning: If your IIe has a Rev-A motherboard, do not use an extended
80-column card with the jumper connection mentioned above;
the system will not work at all if you do.

The last requirement for operation in double hi-res mode is that your video
monitor must have a bandwidth of at least 14 MHz. This bandwidth is necessary
because a television set that requires a modulator will not reproduce some
characters or graphic elements clearly, due to the high speed at which the
computer sends out dots in this mode. Because most of the video monitors
having a bandwidth of up to 14 MHz are black-and-white, the working examples
in this article do not apply to color monitors. If you have a video monitor,

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 44 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

please use it--instead of a television set--to display the following examples.
The AppleColor composite monitors will work just fine.

Your Turn to be Creative (Volunteers, Anyone?)

The tutorial that occupies the rest of this Note assumes you are working at
your Apple II as you read. The second part of the lesson demonstrates the
double hi-res mode; therefore, before embarking on the second part, you should
install a jumpered extended 80-column card in your Rev-B Apple IIe (or use any
Apple IIc or IIGS).

Hands-On Practice with Standard Hi-Res

The Apple II hi-res graphics display is bit-mapped. In other words, each dot
on the screen corresponds to a bit in the computer's memory. For a real-life
example of bit-mapping, perform the following procedure, according to the
instructions given below. (The symbol <cr> indicates a carriage return.)

1. Boot the system.
2. Engage the Caps Lock key, and type HGR<cr>. (This instruction
 should clear the top of the screen.)
3. Type CALL -151 <cr>. (The system is now in the monitor mode, and
 the prompt should appear as an asterisk (*).)
4. Type 2100:1 <cr>. One single dot should appear in the upper left-
 hand corner of the screen.

Congratulations! You have just plotted your first hi-res pixel. (Not an
astonishing feat, but you have to start somewhere.)

With a black-and-white monitor, the bits in memory have a simple
correspondence with the dots (pixels) on the screen. A dot of light appears
if the corresponding bit is set (has a value of 1), but remains invisible if
the bit is off (has a value of zero). (The dot appears white on a black-and-
white monitor, and green on a green-screen monitor, such as Apple's Monitor
/// or Monitor II. For simplicity, we shall refer to an invisible dot as a
black dot or pixel.) Two visible dots located next to each other appear as a
single wide dot, and many adjacent dots appear as a line. To obtain a display
of another dot and a line, follow the steps listed below:

1. Type 2080:40 <cr>. A dot should appear above and to the right of
 the dot you produced in the last exercise.
2. Type 2180:7F <cr>. A small horizontal line should appear below
 the first dot you produced.

From Bits and Bytes to Pixels

The seven low-order bits in each display byte control seven adjacent dots in a
row. A group of 40 consecutive bytes in memory controls a row of 280 dots (7
dots per byte, multiplied by 40 bytes). In the screen display, the least-
significant bit of each byte appears as the leftmost pixel in a group of 7
pixels. The second least-significant bit corresponds to the pixel directly to
the right of the pixel previously displayed, and so on. To watch this
procedure in action, follow the steps listed below. The dots will appear in
the middle of your screen.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 45 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

1. Type 2028:1 <cr>.
2. Type 2828:2 <cr>.
3. Type 3028:4 <cr>.

The three bits you specified in this exercise correspond to three pixels that
are displayed one after another, from left to right.

The most-significant bit in each byte does not correspond to a pixel.
Instead, this bit is used to shift the positions of the other seven bits in
the byte. For a demonstration of this feature, follow the steps listed below:

1. Type 2050:8 <cr>.
2. Type 2850:8 <cr>.
3. Type 3050:8 <cr>.

You will notice that the dots align themselves vertically. Now do the
following:

4. Type 2450:88 <cr>.

The new dot (that is, the one that corresponds to the bit you just specified)
does not line up with the dots you displayed earlier. Instead, it appears to
be shifted one "half-dot" to the right.

5. To demonstrate that this dot really is a new dot, and not just the old
 dot shifted by one dot position, type 2050:18 <cr>, 2850:18 <cr>.

You will notice that the dot mentioned under step 4 (the dot that was not
aligned with the other seven dots) is straddled by the dots above and below
it. (The use of magnifying lenses is permitted.)

Shifting the pixel one half-dot, by setting the high, most-significant bit is
most often used for color displays. When the high bit of a byte is set to
generate this shifted dot (which is also called the half-dot shift), then all
the dots for that byte will be shifted one half dot. The half-dot shift does
not exist in the double hi-res mode.

The Figure 1 shows the memory map for the standard hi-res graphics mode.

 Horizontal Offset
 Base | $00 | $01 | $02 | $03 $24 | $25 | $26 | $27 |
 _____|_____|_____|_____|_____ _____|_____|_____|_____|
 $2000| | | | | | | | | |
 $2080| | | | | | | | | |
 $2100| | | | | | | | | |
 $2180| | | | | | | | | |
 $2200| | | | | | | | | |
 $2280| | | | | | | | | |
 $2300| | | | | | | | | |
 $2380| | | | | | | | | |
 $2028| | | | \ \ | | | |
 $20A8| | | | \ \ | | | |
 $2128| | | | / / | | | |
 $21A8| | | | / / | | | |
 $2228| | | | / / | | | |
 $22A8| | | | / / | | | |
 $2328| | | | / / | | | |
 $23A8| | | | \ \ | | | |

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 46 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 $2050| | | | \ \ | | | |
 $20D0| | | | | | | | | |
 $2150| | | | | | | | | |
 $21D0| | | | | | | | | |
 $2250| | | | | | | | | |
 $22D0| | | | | | | | | |
 $2350| | | | | | | | | |
 $23D0| | | | | | | | | |

 Figure 1 - Standard Hi-Res Memory Map

Note: This memory map is in Chapter 2 of the Apple IIe Technical Reference,
 First Printing, January 1987.

Figure 2 shows the box subdivisions for the memory map in Figure 1.

 Offset Bit
 from LSB
 base | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
 _______|___|___|___|___|___|___|___|
 +$0000 | | | | | | | |
 +$0400 | | | | | | | |
 +$0800 | | | | | | | |
 +$0C00 | | | | | | | |
 +$1000 | | | | | | | |
 +$1400 | | | | | | | |
 +$1800 | | | | | | | |
 +$1C00 | | | | | | | |

 Figure 2 - Box Subdivisions of the Standard Memory Map

Note: This figure is the inset of the hi-res graphics display map in
 Chapter 2 of the Apple IIe Technical Reference, First Printing, January
1987.

For example, the first memory address of each screen line for the first few
lines is as follows:

$2000, $2400, $2800, $2C00, $3000, $3400, $3800, $3C00, $2080, $2480, etc.

Each of the 24 boxes contains 8 screen lines for a total of 192 vertical lines
per screen. Each of the 40 boxes per line contains 7 pixels for a total of
280 pixels horizontally across each line.

The Intricacies of Double Hi-Res

Because the double high-resolution graphics mode provides twice the horizontal
dot density as standard hi-res graphics does, double hi-res requires twice as
much memory as does standard hi-res. If you spent many hours committing the
standard hi-res memory map to memory, don't despair; double hi-res still uses
the hi-res graphics page (but only to represent half the picture, so to
speak). In the double hi-res mode, the hi-res graphics page is compressed to
fit into half of the display. The other half of the display is stored in
memory (called the auxiliary (aux) memory) on the extended 80-column card.
(This article refers to the standard hi-res graphics page, which resides in
main memory, as the motherboard (main) memory.)

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 47 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

The auxiliary memory uses the same addresses used by the standard hi-res
graphics page (page 1, $2000 through $3FFF). The hi-res graphics page stored
in auxiliary memory is known as hi-res page 1X. The graphics pages in
auxiliary memory are bank-switched memory, which you can switch in by
activating some of the soft switches. (Adventurous readers may want to skip
ahead to Using the Auxiliary Memory, which appears later in this Note.)

The memory mapping for the hi-res graphics display is analogous to the
technique used for the 80-column display. The double hi-res display
interleaves bytes from the two different memory pages (auxiliary and
motherboard). Seven bits from a byte in the auxiliary memory bank are
displayed first, followed by seven bits from the corresponding byte on the
motherboard. The bits are shifted out the same way as in standard hi-res
(least-significant bit first). In double hi-res, the most significant bit of
each byte is ignored; thus, no half-dot shift can occur. (This feature is
important, as you will see when we examine double hi-res in color.)

The memory map for double hi-res appears in Figure 3.

 Horizontal Offset
 $00 $01 $02 $03 $24 $25 $26 $27
 M M M M M M M M
 A a A a A a A a A a A a A a A a
 |u i |u i |u i |u i u i |u i |u i |u i |
Base |x |n |x |n |x |n |x |n x |n |x |n |x |n |x |n |
_____|__|__|__|__|__|__|__|__ __|__|__|__|__|__|__|__|
$2000| | | | | | | | | |
$2080| | | | | | | | | |
$2100| | | | | | | | | |
$2180| | | | | | | | | |
$2200| | | | | | | | | |
$2280| | | | | | | | | |
$2300| | | | | | | | | |
$2380| | | | | | | | | |
$2028| | | | \ \ | | | |
$20A8| | | | \ \ | | | |
$2128| | | | / / | | | |
$21A8| | | | / / | | | |
$2228| | | | / / | | | |
$22A8| | | | / / | | | |
$2328| | | | / / | | | |
$23A8| | | | \ \ | | | |
$2050| | | | \ \ | | | |
$20D0| | | | | | | | | |
$2150| | | | | | | | | |
$21D0| | | | | | | | | |
$2250| | | | | | | | | |
$22D0| | | | | | | | | |
$2350| | | | | | | | | |
$23D0| | | | | | | | | |

 Figure 3 - Double Hi-Res Memory Map

Note: This memory map is in Chapter 2 of the Apple IIe Technical Reference,
 First Printing, January 1987.

Each box is subdivided exactly the same way it is in the standard hi-res mode.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 48 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Obtaining a Double-Hi-Res Display

To display the double hi-res mode, set the following soft switches:

 In the monitor In AppleSoft
 Read PEEK
 HI-RES $C057 49239
 GR $C050 49232
 AN3 $C05E 49246
 MIXED $C053 49235

 In the monitor In AppleSoft
 Write POKE
 80COL $C00D 49165,0

Annunciator 3 (AN3) must be turned off to get into double hi-res mode. You
turn it off by reading location 49246 ($C05E). Note that whenever you press
Control-Reset, AN3 is turned on; therefore, each time you press Control-Reset,
you must turn AN3 off again.

If you are using MIXED mode, then the bottom four lines on the screen will
display text. If you have not turned on the 80-column card, then every second
character in the bottom four lines of text will be a random character. (The
reason is that although the hardware displays 80 columns of characters, the
firmware only updates the 40-column screen, which consists of the characters
in the odd-numbered columns. The characters in even-numbered columns then
consist of random characters taken from text page 1X in the auxiliary memory.)

To remove the even characters from the bottom four lines on the screen, type
PR#3<CR> from AppleSoft (type 3^P in the monitor). This procedure clears the
memory locations on page 1X.

Using the Auxiliary Memory

The auxiliary memory consists of several different sections, which you can
select by using the soft switches listed below. A pair of memory locations is
dedicated to each switch. (One location turns the switch on; the other turns
it off.) You activate a switch by writing to the appropriate memory location.
The write instruction itself is what activates the switch; therefore, it does
not matter what data you write to the memory location. The soft switches are
as follows:

 In the monitor In AppleSoft
 Write POKE
 80STORE off $C000 49152,0
 on $C001 49153,0
 RAMRD off $C002 49154,0
 on $C003 49155,0
 RAMWRT off $C004 49156,0
 on $C005 49157,0
 PAGE2 off $C054 49236,0
 on $C055 49237,0
 HIRES off $C056 49238,0
 on $C057 49239,0

A routine called AUXMOVE ($C311), located in the 80-column firmware, is also

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 49 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

very handy, as we will see below.

Accessing memory on the auxiliary card with the soft switches has the
following characteristics. Memory maps, which help clarify the descriptions,
are in Figures 4, 5, and 6.

1. To activate the PAGE2 and HIRES switches, you need only read
 (PEEK) from the corresponding memory locations (instead of writing
 to them, as you do for the other three switches).
2. The PAGE2 switch normally selects the display page, in either
 graphics or text mode, from either page 1 or page 2 of the
 motherboard memory. However, it does so only when the 80STORE
 switch is off.
3. If the 80STORE switch is on, then the function of the PAGE2 switch
 changes. When 80STORE is on, then PAGE2 switches in the text
 page, locations $400-7FF, from auxiliary memory (text page 1X),
 instead of switching the display screen to the alternate video
 page (page 2 on the motherboard). When 80STORE is on, the PAGE2
 switch determines which memory bank (auxiliary or motherboard) is
 used during any access to addresses $400 through 7FF. When the
 80STORE switch is on, it has priority over all other switches.
4. If the 80STORE switch is on, then the PAGE2 switch only switches
 in the graphics page 1X from the auxiliary memory if the HIRES
 switch is also on. (Note that this circumstance is slightly
 different from that described in item 3.) When 80STORE is on, and
 if the HIRES switch is also on, then the PAGE2 switch selects the
 memory bank (auxiliary or motherboard) for accesses to a memory
 location within the range $2000 through 3FFF. If the HIRES switch
 is off, then any access to an memory location within the range
 $2000 through 3FFF uses the motherboard memory, regardless of the
 state of the PAGE2 switch.
5. If the 80STORE switch is off, and if the RAMRD and RAMWRT switches
 are on, then any reading from or writing to address space $200-
 $BFFF gains access to the auxiliary memory. If only one of the
 switches, RAMRD, for example, is set, then only the appropriate
 operation (in this case a read) will be performed on the auxiliary
 memory. If only RAMWRT is set, then all write operations access
 the auxiliary memory. When the 80STORE switch is on, it has
 higher priority than the RAMRD and RAMWRT switches.

 Main Memory Auxiliary Memory
 ___________ _________________ ___________
$FFFF |///////////| | |
 |///Bank////| | Bank |
 |/Switched//| | Switched |
 |//Memory///| | Memory |
 |///////////| | |
 |___________|___________ _____ |___________|___________
$DFFF |///////////|///////////| | | |
 |//Bank 1///|//Bank 2///| | Bank 1 | Bank 2 |
$D000 |///////////|///////////| | | |
 |___________|___________| _____ |___________|___________|
 ___________ _________________ ___________
$BFFF |///////////| | |
 |///////////| | |
 |///////////| | |
 |///////////| | |
 |///////////| | |

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 50 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 |___________| _________________ |___________|
$5FFF |///////////| | |
 |//Hi-Res///| | Hi-Res |
 |/Graphics//| | Graphics |
 |//Page 2///| | Page 2X |
$4000 |///////////| | |
 |___________| _________________ |___________|
$3FFF |///////////| | |
 |//Hi-Res///| | Hi-Res |
 |/Graphics//| | Graphics |
 |//Page 1///| | Page 1X |
$2000 |///////////| | |
 |___________| _________________ |___________|
 |///////////| | |
 |///////////| | |
 |///////////| | |
 |___________| _________________ |___________|
$0BFF |///////////| | |
 |///Text////| | Text |
 |//Page 2///| | Page 2X |
$0800 |///////////| | |
 |___________| _________________ |___________|
$07FF |///////////| | |
 |///Text////| | Text |
 |//Page 1///| | Page 1X |
$0400 |///////////| | |
 |___________| _________________ |___________|
 |///////////| | |
 |///////////| | |
 |///////////| | |
 |___________| _________________ |___________|
$01FF |///////////| | |
 |/Stack and/| | Alternate |
 |/Zero Page/| | Stack and |
 |///////////| | Zero Page |
$0000 |///////////| | |
 |___________| _________________ |___________|

 __________________________ ______
80STORE	OFF	ON		//////
______________	_____	_____		//////
PAGE2	X	OFF		//////
______________	_____	_____		______
HIRES	X	X	Active	
______________	_____	_____	Memory	
RAMRD/RAMWRT	OFF	OFF		
______________	_____	_____		

 Figure 4A - Memory Map One-A

 Main Memory Auxiliary Memory
 ___________ _________________ ___________
$FFFF |///////////| | |
 |///Bank////| | Bank |
 |/Switched//| | Switched |
 |//Memory///| | Memory |
 |///////////| | |
 |___________|___________ _____ |___________|___________

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 51 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

$DFFF |///////////|///////////| | | |
 |//Bank 1///|//Bank 2///| | Bank 1 | Bank 2 |
$D000 |///////////|///////////| | | |
 |___________|___________| _____ |___________|___________|
 ___________ _________________ ___________
$BFFF | | |///////////|
 | | |///////////|
 | | |///////////|
 | | |///////////|
 | | |///////////|
 |___________| _________________ |___________|
$5FFF | | |///////////|
 | Hi-Res | |//Hi-Res///|
 | Graphics | |/Graphics//|
 | Page 2 | |//Page 2X//|
$4000 | | |///////////|
 |___________| _________________ |___________|
$3FFF | | |///////////|
 | Hi-Res | |//Hi-Res///|
 | Graphics | |/Graphics//|
 | Page 1 | |//Page 1X//|
$2000 | | |///////////|
 |___________| _________________ |___________|
 | | |///////////|
 | | |///////////|
 | | |///////////|
 |___________| _________________ |___________|
$0BFF | | |///////////|
 | Text | |///Text////|
 | Page 2 | |//Page 2X//|
$0800 | | |///////////|
 |___________| _________________ |___________|
$07FF | | |///////////|
 | Text | |///Text////|
 | Page 1 | |//Page 1X//|
$0400 | | |///////////|
 |___________| _________________ |___________|
 | | |///////////|
 | | |///////////|
 | | |///////////|
 |___________| _________________ |___________|
$01FF |///////////| | |
 |/Stack and/| | Alternate |
 |/Zero Page/| | Stack and |
 |///////////| | Zero Page |
$0000 |///////////| | |
 |___________| _________________ |___________|

 __________________________ ______
80STORE	OFF	ON		//////
______________	_____	_____		//////
PAGE2	X	ON		//////
______________	_____	_____		______
HIRES	X	X	Active	
______________	_____	_____	Memory	
RAMRD/RAMWRT	ON	ON		
______________	_____	_____		

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 52 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Figure 4B - Memory Map One-B

 Main Memory Auxiliary Memory
 ___________ _________________ ___________
$FFFF |///////////| | |
 |///Bank////| | Bank |
 |/Switched//| | Switched |
 |//Memory///| | Memory |
 |///////////| | |
 |___________|___________ _____ |___________|___________
$DFFF |///////////|///////////| | | |
 |//Bank 1///|//Bank 2///| | Bank 1 | Bank 2 |
$D000 |///////////|///////////| | | |
 |___________|___________| _____ |___________|___________|
 ___________ _________________ ___________
$BFFF |///////////| | |
 |///////////| | |
 |///////////| | |
 |///////////| | |
 |///////////| | |
 |___________| _________________ |___________|
$5FFF |///////////| | |
 |//Hi-Res///| | Hi-Res |
 |/Graphics//| | Graphics |
 |//Page 2///| | Page 2X |
$4000 |///////////| | |
 |___________| _________________ |___________|
$3FFF |///////////| | |
 |//Hi-Res///| | Hi-Res |
 |/Graphics//| | Graphics |
 |//Page 1///| | Page 1X |
$2000 |///////////| | |
 |___________| _________________ |___________|
 |///////////| | |
 |///////////| | |
 |///////////| | |
 |___________| _________________ |___________|
$0BFF |///////////| | |
 |///Text////| | Text |
 |//Page 2///| | Page 2X |
$0800 |///////////| | |
 |___________| _________________ |___________|
$07FF | | |///////////|
 | Text | |///Text////|
 | Page 1 | |//Page 1X//|
$0400 | | |///////////|
 |___________| _________________ |___________|
 |///////////| | |
 |///////////| | |
 |///////////| | |
 |___________| _________________ |___________|
$01FF |///////////| | |
 |/Stack and/| | Alternate |
 |/Zero Page/| | Stack and |
 |///////////| | Zero Page |
$0000 |///////////| | |
 |___________| _________________ |___________|

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 53 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 __________________________ ______
80STORE	ON			//////
______________	_____	_____		//////
PAGE2	ON			//////
______________	_____	_____		______
HIRES	OFF		Active	
______________	_____	_____	Memory	
RAMRD/RAMWRT	OFF			
______________	_____	_____		

 Figure 5A - Memory Map Two-A

 Main Memory Auxiliary Memory
 ___________ _________________ ___________
$FFFF |///////////| | |
 |///Bank////| | Bank |
 |/Switched//| | Switched |
 |//Memory///| | Memory |
 |///////////| | |
 |___________|___________ _____ |___________|___________
$DFFF |///////////|///////////| | | |
 |//Bank 1///|//Bank 2///| | Bank 1 | Bank 2 |
$D000 |///////////|///////////| | | |
 |___________|___________| _____ |___________|___________|
 ___________ _________________ ___________
$BFFF |///////////| | |
 |///////////| | |
 |///////////| | |
 |///////////| | |
 |///////////| | |
 |___________| _________________ |___________|
$5FFF |///////////| | |
 |//Hi-Res///| | Hi-Res |
 |/Graphics//| | Graphics |
 |//Page 2///| | Page 2X |
$4000 |///////////| | |
 |___________| _________________ |___________|
$3FFF | | |///////////|
 | Hi-Res | |//Hi-Res///|
 | Graphics | |/Graphics//|
 | Page 1 | |//Page 1X//|
$2000 | | |///////////|
 |___________| _________________ |___________|
 |///////////| | |
 |///////////| | |
 |///////////| | |
 |___________| _________________ |___________|
$0BFF |///////////| | |
 |///Text////| | Text |
 |//Page 2///| | Page 2X |
$0800 |///////////| | |
 |___________| _________________ |___________|
$07FF | | |///////////|
 | Text | |///Text////|
 | Page 1 | |//Page 1X//|
$0400 | | |///////////|
 |___________| _________________ |___________|
 |///////////| | |

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 54 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 |///////////| | |
 |///////////| | |
 |___________| _________________ |___________|
$01FF |///////////| | |
 |/Stack and/| | Alternate |
 |/Zero Page/| | Stack and |
 |///////////| | Zero Page |
$0000 |///////////| | |
 |___________| _________________ |___________|

 __________________________ ______
80STORE	ON			//////
______________	_____	_____		//////
PAGE2	ON			//////
______________	_____	_____		______
HIRES	ON		Active	
______________	_____	_____	Memory	
RAMRD/RAMWRT	OFF			
______________	_____	_____		

 Figure 5B - Memory Map Two-B

 Main Memory Auxiliary Memory
 ___________ _________________ ___________
$FFFF |///////////| | |
 |///Bank////| | Bank |
 |/Switched//| | Switched |
 |//Memory///| | Memory |
 |///////////| | |
 |___________|___________ _____ |___________|___________
$DFFF |///////////|///////////| | | |
 |//Bank 1///|//Bank 2///| | Bank 1 | Bank 2 |
$D000 |///////////|///////////| | | |
 |___________|___________| _____ |___________|___________|
 ___________ _________________ ___________
$BFFF | | |///////////|
 | | |///////////|
 | | |///////////|
 | | |///////////|
 | | |///////////|
 |___________| _________________ |___________|
$5FFF | | |///////////|
 | Hi-Res | |//Hi-Res///|
 | Graphics | |/Graphics//|
 | Page 2 | |//Page 2X//|
$4000 | | |///////////|
 |___________| _________________ |___________|
$3FFF | | |///////////|
 | Hi-Res | |//Hi-Res///|
 | Graphics | |/Graphics//|
 | Page 1 | |//Page 1X//|
$2000 | | |///////////|
 |___________| _________________ |___________|
 | | |///////////|
 | | |///////////|
 | | |///////////|
 |___________| _________________ |___________|
$0BFF | | |///////////|

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 55 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 | Text | |///Text////|
 | Page 2 | |//Page 2X//|
$0800 | | |///////////|
 |___________| _________________ |___________|
$07FF |///////////| | |
 |///Text////| | Text |
 |//Page 1///| | Page 1X |
$0400 |///////////| | |
 |___________| _________________ |___________|
 | | |///////////|
 | | |///////////|
 | | |///////////|
 |___________| _________________ |___________|
$01FF |///////////| | |
 |/Stack and/| | Alternate |
 |/Zero Page/| | Stack and |
 |///////////| | Zero Page |
$0000 |///////////| | |
 |___________| _________________ |___________|

 __________________________ ______
80STORE	ON			//////
______________	_____	_____		//////
PAGE2	OFF			//////
______________	_____	_____		______
HIRES	OFF		Active	
______________	_____	_____	Memory	
RAMRD/RAMWRT	ON			
______________	_____	_____		

 Figure 6A - Memory Map Three-A

 Main Memory Auxiliary Memory
 ___________ _________________ ___________
$FFFF |///////////| | |
 |///Bank////| | Bank |
 |/Switched//| | Switched |
 |//Memory///| | Memory |
 |///////////| | |
 |___________|___________ _____ |___________|___________
$DFFF |///////////|///////////| | | |
 |//Bank 1///|//Bank 2///| | Bank 1 | Bank 2 |
$D000 |///////////|///////////| | | |
 |___________|___________| _____ |___________|___________|
 ___________ _________________ ___________
$BFFF | | |///////////|
 | | |///////////|
 | | |///////////|
 | | |///////////|
 | | |///////////|
 |___________| _________________ |___________|
$5FFF | | |///////////|
 | Hi-Res | |//Hi-Res///|
 | Graphics | |/Graphics//|
 | Page 2 | |//Page 2X//|
$4000 | | |///////////|
 |___________| _________________ |___________|
$3FFF |///////////| | |

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 56 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 |//Hi-Res///| | Hi-Res |
 |/Graphics//| | Graphics |
 |//Page 1///| | Page 1X |
$2000 |///////////| | |
 |___________| _________________ |___________|
 | | |///////////|
 | | |///////////|
 | | |///////////|
 |___________| _________________ |___________|
$0BFF | | |///////////|
 | Text | |///Text////|
 | Page 2 | |//Page 2X//|
$0800 | | |///////////|
 |___________| _________________ |___________|
$07FF |///////////| | |
 |///Text////| | Text |
 |//Page 1///| | Page 1X |
$0400 |///////////| | |
 |___________| _________________ |___________|
 | | |///////////|
 | | |///////////|
 | | |///////////|
 |___________| _________________ |___________|
$01FF |///////////| | |
 |/Stack and/| | Alternate |
 |/Zero Page/| | Stack and |
 |///////////| | Zero Page |
$0000 |///////////| | |
 |___________| _________________ |___________|

 __________________________ ______
80STORE	ON			//////
______________	_____	_____		//////
PAGE2	OFF			//////
______________	_____	_____		______
HIRES	ON		Active	
______________	_____	_____	Memory	
RAMRD/RAMWRT	ON			
______________	_____	_____		

 Figure 6B - Memory Map Three-B

Shortcuts: Writing to Auxiliary Memory from the Keyboard

Press Control-Reset, then type CALL -151 <cr> (to enter the monitor). Now
type the following hexadecimal addresses to turn on the double hi-res mode:

 C057 (for hi-res)
 C050 (for graphics)
 C053 (for mixed mode)
 C05E Turns off AN3 for double hi-res
 C00D:0 Turns on the 80COL switch

This procedure usually causes the display of a random dot pattern at the top
of the screen, while the bottom four lines on the screen contain text. To
clear the screen, follow the steps listed below:

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 57 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

1. Type 3D0G <cr> to return to BASIC.
2. Type HGR <cr> to clear half of the screen. (The characters you
 type will probably appear in alternating columns. This is not a
 cause for alarm; as noted above, the firmware simply thinks you
 are working with a 40-column display.) Remember that hi-res
 graphics commands do not know about the half of the screen stored
 on page 1X in the auxiliary memory. Therefore, only page 1 (that
 is, the first half) of the graphics page on the motherboard is
 cleared. As a result, in the the screen display, only alternate
 7-bit columns appear cleared.

 On the other hand, if all of the screen columns were cleared after
 the HGR command, then chances are good that you are not in double
 hi-res mode. If your screen was cleared then to determine which
 mode you are in, type the following instructions:

 CALL -151
 2000:FF
 2001<2000.2027M

 If a solid line appears across the top of the screen, you are not
 in double hi-res mode. (The line that appears should be a dashed
 or intermittent line: - - - - - across the screen.) If you are
 not in double hi-res mode, then make sure that you do have a Rev.
 B motherboard, and that the two Molex-type pins on the extended
 80-column card are shorted together with the jumper block. Then
 re-enter the instructions listed above.

If you are staring at a half-cleared screen, you can clear the non-blank
columns by writing zeros to addresses $2000 through $3FFF on graphics page 1X
of auxiliary memory. To do so, simply turn on the 80STORE switch, turn on the
PAGE2 switch, then write to locations $2000, $2001, $2002, and so on up
through $3FFF. However, this procedure will not work if you try it from the
monitor. The reason is that each time you invoke a monitor routine, the
routine sets the PAGE2 switch back to page 1 so that it can display the most
recent command that you entered. When you try to write to $2000, etc. on the
auxiliary card, instead it will write to the motherboard memory.

Another way to obtain the desired result is to use the monitor's USER command,
which forces a jump to memory location $3F8. You can place a JMP instruction
starting at this memory location, so the program will jump to a routine that
writes into hi-res page 1X. Fortunately, the system already contains such a
routine: AUXMOVE.

Using AUXMOVE

You use the AUXMOVE routine to move data blocks between main and auxiliary
memory, but the task still remains of setting up the routine so that it knows
which data to write, and where to write it. To use this routine, some byte
pairs in the zero page must be setup with the data block addresses, and the
carry bit must be fixed to indicate the direction of the move. You may not be
surprised to learn that the byte pairs in the zero page used by AUXMOVE are
also the scratch-pad registers used by the monitor during instruction
execution. The result is that while you type the addresses for the monitor's
move command, those addresses are being stored in the byte pairs used by
AUXMOVE. Thereafter, you can call the AUXMOVE command directly, using the
USER (Control-Y) command.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 58 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

In practice, then, enter the following instructions:

 C00A:0 (turns on the 80-column ROM, which
 contains the AUXMOVE routine)
 C000:0 (reason explained below)
 3F8: 4C 11 C3 (the jump to AUXMOVE)
 2000<2000.3FFF ^Y (where ^Y indicates that you should type
 Control-Y)

The syntax for this USER (Control-Y) command is:

 {AUXdest}<{MBstart}.{MBend}^Y

The command copies the values in the range MBstart to MBend in the motherboard
memory into the auxiliary memory beginning at AUXdest. This command is
analogous to the MOVE command.

You can use this procedure to transfer any block of data from the motherboard
memory to hi-res page 1X. Working directly from the keyboard, you can use a
data block transferred this way to fill in any part of a double hi-res screen
image. The image to be stored in hi-res page 1X (i.e., the image that will be
displayed in the even-numbered columns of the double hi-res picture) must
first be stored in the motherboard memory. You can then use the Control-Y
command to transfer the image to hi-res page 1X.

The AUXMOVE routine uses the RAMRD and RAMWRT switches to transfer the data
blocks. Because the 80STORE switch overrides the RAMRD and RAMWRT switches,
the 80STORE switch must be turned off--otherwise it would keep the transfer
from occurring properly (hence the write to $C000 above).

If the 80STORE and HIRES switches are on and PAGE2 is off, when you execute
AUXMOVE, any access to an address located within the range from $2000 to $3FFF
inclusive would use the motherboard memory, regardless of how RAMRD and RAMWRT
are set. Entering the command C000:0 <cr> turns off 80STORE, thus letting the
RAMRD and RAMWRT switches control the memory banking.

The Control-Y trick described above only works for transferring data blocks
from the main (motherboard) memory to auxiliary memory (because the monitor
always enters the AUXMOVE routine with the carry bit set). To move data
blocks from the auxiliary memory to the main memory, you must enter AUXMOVE
with the carry bit clear. You can use the following routine to transfer data
blocks in either direction:

 301:AD 0 3 (loads the contents of address $300 into the
 accumulator)
 304:2A (rotates the most-significant bit into the carry
 flag)
 305:4C 11 C3 (jump to $C311 (AUXMOVE))
 3F8:4C 1 3 (sets the Control-Y command to jump to address
 $301)

Before using this routine, you must modify memory location $300, depending on
the direction in which you want to transfer the data blocks. If the transfer
is from the auxiliary memory to the motherboard, you must clear location $300
to zero. If the transfer is from the motherboard to the auxiliary memory, you
must set location $300 to $FF.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 59 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Two Double Hi-Res Pages

So far, we have only discussed using graphics pages 1 and 1X to display double
hi-res pictures. But--analogous to the standard hi-res pages 1 and 2--two
double hi-res pages exist: pages 1 and 1X, at locations $2000 through 3FFF,
and pages 2 and 2X, at locations $4000 through 5FFF. The only trick in
displaying the second double hi-res page is that you must turn off the 80STORE
switch. If the 80STORE switch is on, then only the first page (1 and 1X) is
displayed. Go ahead and try it:

 C000:0 to turn off the 80STORE switch
 C055 to turn on the PAGE2 switch

The screen will fill with another display of random bits. Clear the screen
using the instructions listed above (in the Using AUXMOVE section). However,
this time, use addresses $4000 through 5FFF instead. (Don't be alarmed by the
fact that the figures you are typing are not displayed on the screen. They
are being "displayed" on text page 1.)

 4000:0
 4001<4000.5FFFM
 4000<4000.5FFF ^Y

You will be delighted to learn that you can also use this trick to display two
80-column text screens. The only problem here is that the 80-column firmware
continually turns on the 80STORE switch, which prevents the display of the
second 80-column screen. However, if you write your own 80-column display
driver, then you can use both of the 80-column screens.

Color Madness

It should come as no surprise that color-display techniques in double hires
are different from color-display techniques in standard hi-res. This
difference is because the half-dot shift does not exist in double hi-res mode.

Instead of going into a dissertation on how a television set decodes and
displays a color signal, I'll simply explain how to generate color in double
hi-res mode. In the following examples, the term color monitor refers to
either an NTSC monitor or a color television set. Both work; however, the
displays will be much harder to see on the color television. The generation
of color in double hi-res demands sacrifices. A 560 x 192 dot display is not
possible in color. Instead, the horizontal resolution decreases by a factor
of four (140 dots across the screen). Just as with a black-and-white monitor,
a simple correspondence exists between memory and the pixels on the screen.
The difference is that four bits are required to determine each color pixel.
These four bits represent 16 different combinations: one for each of the
colors available in double hi-res. (These are the same colors that are
available in the low-resolution mode.)

Let's start by exploring the pattern that must be stored in memory to draw a
single colored line across the screen. Use a color demonstration program
(such as COLOR.TEST from older DOS 3.3 System Master disks) to adjust the
colors displayed by your monitor. After you have adjusted the colors, exit
from the color demonstration program.

The instructions that appear below are divided into groups separated by blank

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 60 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

lines. Because it is very difficult (and, on a television set, almost
impossible) to read the characters you are typing as they appear on the
screen, you will probably make typing errors. If the instructions appear not
to work, then start again from the beginning of a group of instructions.

 CALL -151 (to get into the monitor routine/program)
 C050 (This set of instructions puts the computer
 CO57 into double hi-res model.
 C05E
 C00D:0
 2000:0 (This set of instructions clears first one half
 2001<2000.3FFFM of the screen, and then the other half of
 3F8: 4C 11 C3 the screen.)
 2000<2000.3FFF^Y

 2100:11 4 (Two red dots appear on top left of
 screen)
 2102<2100.2126M (A dashed red line appears across screen)

 2150:8 22 (Two green dots appear near bottom left)
 2152<2150.2175M (Dashed green line appears across screen)

 2100<2150.2177^Y (Fills in the red line)

In contrast to conditions in standard hi-res, no half-dot shift occurs, and
the most-significant bit of each byte is not used.

As noted above, four bits determine a color. You can paint a one-color line
across the screen simply by repeating a four-bit pattern across the screen,
but it is much easier to write a whole byte rather than just change four bits
at a time. Since only seven bits of each byte are displayed (as noted earlier
in our discussion of black-and-white double hi-res) and the pattern is four
bits wide, it repeats itself every 28 bits or four bytes. Use the
instructions listed below to draw a line of any color across the screen by
repeating a four byte pattern for the color as shown in Table 2.

 2200: main1 main2 (Colored dots appear at the left edge)
 2202<2200.2226M (A dashed, colored line appears)

 2250: aux1 aux2
 2250<2250.2276M

 2200<2250.2276^Y (Fills in line, using the selected color)

 Repeated
 Binary
 Color aux1 main1 aux2 main2 Pattern
 Black 00 00 00 00 0000
 Magenta 08 11 22 44 0001
 Brown 44 08 11 22 0010
 Orange 4C 19 33 66 0011
 Dark Green 22 44 08 11 0100
 Grey1 2A 55 2A 55 0101
 Green 66 4C 19 33 0110
 Yellow 6E 5D 3B 77 0111
 Dark Blue 11 22 44 08 1000
 Violet 19 33 66 4C 1001
 Grey2 55 2A 55 2A 1010

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 61 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Pink 5D 3B 77 6E 1011
 Medium Blue 33 66 4C 19 1100
 Light Blue 3B 77 6E 5D 1101
 Aqua 77 6E 5D 3B 1110
 White 7F 7F 7F 7F 1111

 Table 2-The Sixteen Colors

In Table 2, the heading aux1 indicates the first, fifth, ninth, thirteenth,
etc. byte of each line (i.e., every fourth byte, starting with the first
byte). The heading main1 indicates the second, sixth, tenth, fourteenth, etc.
byte of each line (i.e., every fourth byte, starting with the second byte).
The aux2 and main2 headings indicate every fourth byte, starting with the
third and fourth bytes of each line, respectively. Aux1 and aux2 are always
stored in auxiliary memory, while main1 and main2 are always stored in the
motherboard memory.

As you will infer from Table 2, the absolute position of a byte also
determines the color displayed. If you write an 8 into the first byte at the
far left side of the screen (i.e., in the aux1 column), then a red dot is
displayed. But if you write an 8 into the third byte at the left side of the
screen (the aux2 column), then a dark green dot is displayed. Remember, the
color monitor decides which color to display based on the relative position of
the bits on each line (i.e., on how far the bits are from the left edge of the
screen).

So far, so good. But suppose you want to display more than one color on a
single line. It's easy: just change the four-bit pattern that is stored in
memory. For example, if you want the left half of the line to be red, and the
right half to be purple, then store the red pattern (8, 11, 22, 44) in the
first 40 bytes of the line, then store the purple pattern (19, 33, 66, 4C) in
the second 40 bytes of the line. Table 2 is a useful reference tool for
switching from one color to another, provided you make the change on a byte
boundary. In other words, you must start a new color at the same point in the
pattern at which the old color ended. For example, if the old color stops
after you write a byte from the main1 column, then you should start the new
color by storing the next byte in memory with a byte from the aux2 column.
This procedure is illustrated below:

2028:11 44 11 44 11 44 11 77 5D 77 5D 77 5D (creates a dashed line
2128: 8 22 8 22 8 22 8 22 6E 3B 6E 3B 6E that is red then yellow)

2028<2128.2134^Y (fills in the rest of
 the colors)

Switching Colors in Mid-Byte

If you want a line to change color in the middle of a byte, you will have to
recalculate the column, based on the information in Table 2. Suppose you want
to divide the screen into three vertical sections, each a different color.
The leftmost third of the screen ends in the middle of the 27th character from
the left edge-that is, in an aux2 column of the color table. (Dividing 27 by
4 gives a remainder of 3, which indicates the third column, or aux2.) Your
pattern should change from the first color to the second color after the 5th
bit of the 27th byte. You can change the color in the middle of a byte by
selecting the appropriate bytes from the aux2 column of Table 2 and
concatenating two bits for the second color with five bits for the first

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 62 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

color.

However, because the bits from each byte are shifted out in order from least
significant to most significant, the two most significant bits (in this case
bits 5 and 6, because bit 7 is unused) for the second color are concatenated
with the five least significant bits for the first color. For instance, if
you want the color to change from orange (the first color) to green (the
second color), then you must append the two most significant bits (5 and 6) of
green to the five least significant bits (0-4) of orange. In Table 2, the
aux2 column byte for green is 19, and the two most significant bits are both
clear. The aux2 column byte for orange is 33, and the five least significant
bits are equal to 10011. The new byte calculated from appending green (00) to
orange (10011) yields 13 (0010011). Therefore, the first 26 bytes of the line
come from the table values for orange; the 27th byte is 13, and the next 26
bytes come from the table values for green.

 2300: 19 66 (puts an orange line on the
 screen)
 2302<2300.2310M
 2350: 4C 33
 2352<2350.2360M
 2300<2350.2360^Y

 230D: 33 4C 33 4C 33 4C 33 4C (puts a green line next to it)
 235D: 13 66 19 66 19 66 19 66 (note the first byte)
 230D<235D.2363^Y

There you have it: a basic explanation of how double hi-res works--except for
one or two anomalies. The first anomaly is that NTSC monitors have a limited
display range. The second anomaly shows one of the features of double hi-res
versus a limitation of standard hi-res.

An NTSC color monitor decides what color to display based on its view of four
bit windows in each line, starting from the left edge of the screen. The
monitor looks at the first four bits, determines which color is called for,
then shifts one bit to the right and determines the color for this new four-
bit window. But remember, the color depends not only on the pattern, but also
the position of the pattern. To compensate for relative position from the
left edge of the screen, the monitor keeps track of where on each line each of
these windows start. (For those of you of the technical persuasion, this is
done through the use of the color burst signal, which is a 3.58 MHz. clock).

Try this example:

 2000:0 Clears the screen
 2001<2000.3FFFM
 2000<2000.3FFF^Y

 2001:66 Draws an orange box in the upper left
 2401:66
 2801:66
 2C01:66
 3001:66

 2050:33 Draws a blue box below and to the right
 3402<2050.2050^Y of the orange box
 3802<2050.2050^Y
 3C02<2050.2050^Y

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 63 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Notice that if the blue box was drawn at the top of the screen, next to the
orange box, they would overlap. Yet, the boxes were drawn on two different
columns, orange on main2 and blue on aux1. This can be explained by the
previous paragraph, and the sliding windows. The monitor will detect the
pattern for orange slightly after the main2 column, while the pattern for blue
shows up before column aux1.

The orange pattern is as follows:

 0000000 | 0110011 |0000000 look at four-bit windows and you will see
 aux2 | main2 | aux1 an orange pattern overlaps on both sides

If a pattern is repeated on a line, this overlap does not cause a problem,
since the same color just overlaps itself. But watch what happens when a new
pattern is started next to a different pattern:

 3002<2050.2050^Y Puts a blue pattern next to the orange one
 2C02<2050.2050^Y
 2802<2050.2050^Y

Where the blue overlaps the orange, you will see a white dot. This effect is
because one of the four-bit windows the monitor sees is all 1s. If two colors
are placed right next to each other, the monitor will sometimes display a
third color, or fringe, at the boundary. This fringe effect is especially
noticeable when there are a lot of narrow columns of different colors next to
each other. (Next time you run COLOR TEST take a look at the boundaries
between the colors).

The orange and blue patter is as follows:

 0000000 |0110011 | 11001100 note the four 1s in a row at the boundary
 aux2 | main2 | aux1 between orange and blue

Conclusion

Now you have the tools and the rules to the double hi-res mode. As you can
see, double hi-res has more color with higher resolution than standard hi-res.
You can even develop games that do fancy animation or scroll orange objects
across green backgrounds. You can develop word processing programs which use
different fonts or proportional character sets in black and white. Have fun
playing with his new mode.

Further Reference
 o Apple IIe Technical Reference Manual
 o Apple IIc Technical Reference Manual
 o Apple IIGS Hardware Reference

END OF FILE TN.AIIe.003

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 64 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.AIIe.004
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIe
#4: RDY Line

Revised by: Glenn A. Baxter November 1988
Written by: Peter Baum July 1984

This Technical Note describes an input signal to the 6502 microprocessor
called the RDY line.

Using the RDY Line on the Apple IIe and Apple][+

Though the 6502 was one of the first commercially successful microprocessors
sold, the designers had foresight to include some very useful functions.
Because many early peripherals products were very slow devices, a
microprocessor could not read from the device directly. To connect these slow
devices onto the Apple peripheral bus so the 6502 can read data from them
requires either buffering the device or slowing down the processor. Though
most people would try to buffer the device, sometimes it is not feasible.
When buffering is not possible, a peripheral device can pull the RDY line to
slow down the processor long enough to read a byte. This technique can be
used by slow devices to communicate with the 6502.

The RDY line allows a peripheral card to halt the microprocessor during read
operations (opcode, operand, or data fetches--reads) with the output address
lines reflecting the current address being fetched. If a peripheral device
cannot get data on the bus fast enough to meet the setup time of the 6502,
then the peripheral card can pull the RDY line low and tell the 6502 to wait.
This cannot be done during a 6502 write cycle because the 6502 does not wait
during writes.

For the 6502 to read a valid data byte from a peripheral card, the card has
about 800 ns from the time the addresses are valid to put the data on the bus.
The data must be setup on the bus within approximately 400 ns from the time
that the I/O STROBE, I/O SELECT, or DEVICE SELECT signal on the peripheral
slot goes true. If a device pulls the RDY line low for one clock cycle, the
device will have approximately 1.4 µs, instead of the 400 ns, to put out valid
data. The RDY line can be pulled low for more than one cycle--in fact, there
is no limit. A device that takes 100 µs to send data can just hold the RDY
line low for 100 cycles. Hence, this technique will allow any slower device
to get on the bus and send data to the 6502.

This is a bit different than DMA on the Apple IIs. DMA actually prevents the
CPU from receiving a clock signal, whereas the RDY line is actually a function
of the processor. In Apple II DMA, the 6502 CPU will die after approximately
15 clocks because it depends on the clock to refresh its internal registers.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 65 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

(The 6502 is dynamic, whereas the 65C02 is static, and therefore not affected
by the absence of clock information). In the case of the RDY line, the CPU is
internally told to just not complete its bus cycle until RDY is de-asserted.
This is a similar concept to DTACK on the Motorola 68000 series CPUs.

The RDY line is typically pulled low during PH1, but the specification sheets
for the 6502 show that it can be pulled anytime before the last 200 ns of PH2.
The PH2 line is not used by the Apple II and is an unused output from the
6502. It is basically the same as the PH0 line with a little delay. Before I
explain when to use (or not use, in some cases) the RDY line, let us first
look at some timing diagrams of the Apple system.

Figure 1 shows the relationship between the 6502 and Apple IIe and Apple][+.
The timing specifications have been adjusted to reflect the signals as they
are seen from the peripheral slots. For example the 6502 (1 MHz)
specification guarantees that the address bus will be valid within 225 ns from
PH2 out. But the peripheral slots do not see these address lines directly.
Instead, the address lines go through a buffer and then out to the peripheral
slots. This routing adds a maximum delay of 13 ns in the Apple][and 18 ns
in the Apple IIe. The timing diagrams will show, in the case of an Apple][,
that the address bus will be valid to the peripheral slots within 238 ns
(225+13) of the PH2 falling edge.

The major differences in timing between the Apple][+ and the Apple IIe are
due to the processor. The Apple][uses a 1 MHz 6502, while the Apple IIe
uses a 6502A, which is a 2 MHz part. This does not mean that the system clock
in the Apple IIe runs any faster, only that the 6502A is capable of running
faster. This difference results in better timing margins. For example, the
address and data buses are set up faster in the Apple IIe by the 6502A than
the 6502 sets them up in the Apple][. (This was done because the custom
chips in the Apple IIe are slower than the discrete logic in the Apple][, and
the 6502A was needed to compensate).

A peripheral card which uses the RDY line can only be used under certain
circumstances. Because pulling the RDY line low halts the processor, any
program with a software timing loop may not work properly. These programs
assume that each instruction will take a fixed amount of time, which is not
true when the processor stops in the middle of an instruction. An Apple II
Disk is an example of a peripheral which requires timing loops and may not run
properly if the RDY line is used.

 Apple][1 MHz 6502 Apple IIe 2 MHz 6502A
Symbol Minimum Maximum Minimum Maximum
T02- * 15 50+20 (LS08) 15 50+5 (S02)
T02+ * 30 80+15 (LS08) 30 80+5 (S02)
Tads 225+13 (8T97) 140+18 (LS244)
Trwh 30 30
Tdevsel- 96 (3 x LS138) 65 (LS154+LS138)
Tiosel- 64 (2 x LS138) 38 (LS138)
Tiostb- 32 (LS138) 15 (LS10)
Tdevsel+ 18 (LS138) 30 (LS154)
Tiosel+ 36 (2 x LS138) 18 (LS138)
Tiostb+ 18 (LS138) 15 (LS10)
Tdsu 100+17 (8T28)** 50+12 (LS245)
Thr 10 10
Trs *** 200 200

(All times are given in nanoseconds (ns).)

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 66 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

* load = 100 pf.
** The RFI versions of the Apple][+, revisions A through D
 motherboards, use an 8304 instead an 8T28.
*** The RDY line must never change states within Trs to end of 02.

 Table 1-Timing Specifications for Figure 1

___________ ________________________
Apple 0o |________________________| CPU phase |_______________

Apple 01 ________________________ _______________
___________| Video phase |________________________|

Q3 _______________ _______________ _______________
___________| |________| |________|

 |TO2- | |TO2+ | |TO2- |

_________________ ________________________
02 out of 6502* |________________________| |_________

 | Tads | Trwh ->| |

___________________________ __ ____
R/W & ADDR \/ valid addresses \/
___________________________/__/____
as seen from slots
 |Tdevsel- | |Tdevsel+|

DEVICE SELECT
__ _____
as seen from slots |________________________|

 |Tiosel-| |Tiosel+|

I/O SELECT
__ _______
as seen from slots |________________________|

 |Tiostb-| |Tiostb+|

I/O STROBE
__ _______
as seen from slots |________________________|

 Tdsu ->| ||<- Thr

DATA ________
__/ valid _______
from slots ________/

 | Trs |

___ ____________________ ______
RDY \/ don't change state \/
___/____________________/______

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 67 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

* - 02 is an output signal from the 6502 which is not used by the Apple.
 It is a delayed 0o.

 Figure 1 - Timing Signals As Seen From the Peripheral Slots

Table 1 lists three different type of numbers. If a number is by itself, then
it is just the corresponding 6502 or 6502A specification. If a number is
followed by parenthesis, then it represents the delay, produced by TTL gates,
between the 6502 and the peripheral slots. The characters in the parenthesis
denote the part number(s) of the part(s) which generated the delay. These
parts are typically 74' series TTL except for the 8T28 and 8T97. If there are
two numbers in a column with a plus sign (+) then the first number signifies
the 6502 specification and the second the TTL delay, with the corresponding
part number. Most of the TTL delay times are from the Texas Instrument data
books. The 6502 specifications are from the Synertek 6502 data sheet and from
Synertek application note AN2 - SY6500.

When the RDY Line Can be Changed and When It Cannot

As can be seen from these figures, the RDY line should not be gated with the
PH0 trailing edge since this happens around the same time as the falling edge
of PH2. This would violate the TRS specification and probably force the 6502
to perform erratically. Gating the RDY line with the trailing edge of Q3
during PH0 might work, but this could leave as little as 25 ns for the signal
to be valid. In other words, Q3 must enable the RDY line low within 25 ns of
Q3 changing states. If this output cannot be guaranteed stable, then the RDY
line might violate the TRS specification.

The safest time to pull the RDY line is using the PH0 rising edge, but this
edge occurs before I/O SELECT, I/O STROBE, or DEVICE SELECT are enabled.
Therefore, this scheme will not work if any of these three enables is used by
the peripheral card. For example, many peripheral cards use memory mapped I/O
to transfer data with the cards registers designed to reside in the DEVICE
SELECT memory space. Location $C0n0 (where n = 8 + slot number of peripheral
card) might hold the status of the card, and location $C0n1 might be used to
read a device such as a disk or an A/D converter. The card uses the DEVICE
SELECT signal, pin 41 on the slot, and the four low-order address lines to
determine if the 6502 wants to read the status register or read from the A/D
converter. Typically, the status register can put its data on the bus within
200 ns, easily meeting the setup requirements of the 6502. But the A/D
converter might take at least 100 µs before it can respond with data. The RDY
line must be pulled low to allow time for the A/D converter to set up the data
bus. Notice that the peripheral card does not know that it should pull the
RDY line low until after the DEVICE SELECT signal has gone low. This signal
does not go low until after PH0 goes high, so the PH0 rising edge cannot be
used to enable the RDY line for this peripheral card.

There are a few ways around this problem. One solution would be to decode the
$C0n0 address on the peripheral card and not use DEVICE SELECT. This solution
also requires either putting user-selectable switches on the card for setting
the slot number, or making the card slot dependent. Another solution is to
pull the RDY line low using one of the first three edges, trailing or leading,
of the 7 M clock. These edges occur at 70, 140, and 210 ns into PH0 and are
trailing, leading, then trailing edges, respectively. The best solution is to
use the DEVICE SELECT signal to enable the RDY line. Figure 2 should help.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 68 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

7M
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
 |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |

0o
 _____________ _____________ _____________
___| |_____________| |_____________| |____

Q3
 ______ ______ ______ ______ ______ ____
___| |______| |______| |______| |______| |______|

DEVICE SELECT
____ _____________ _____________ ___
 |_____________| |_____________| |_____________|

 write cycle 6502 halts with addresses &
 don't pull RDY R/W* line valid here
___________________ ____ ___
ADDRESS R/W* \/ \/ valid
___________________/____/___

RDY

 |<----+----->| |________________________________
 | |<----+----->|
 | |
 |___|
 Do NOT change RDY line at these times

 Figure 2 - Timing Diagram

Do Not Pull RDY During Write Cycles

Because there is no acknowledge response from the 6502, the peripheral card
must do some of its own housekeeping and check if a write cycle is taking
place. On write cycles, the 6502 will not halt, but continue running until
the next read cycle. After a slow peripheral pulls the RDY line and before it
tries to get on the bus, it must make sure the 6502 is not in the middle of a
write cycle. Otherwise there will be a bus crash, as both the peripheral card
and 6502 try to drive the bus. One simple way to prevent this bus crash from
occurring is to make sure the peripheral card does not pull the RDY line low
during a write cycle. You can guarantee this will not happen by checking the
R/W line when PH0 goes high or DEVICE SELECT goes low. The R/W line is
guaranteed to be stable by this time.

Releasing the RDY Line

When the RDY line is released, the 6502 will continue the cycle that was
originally halted and allow the 6502 to read the data bus. Data will be read
on the next trailing edge of PH2 by the 6502, as long as RDY does not change
within TRS of the end of PH2. When the peripheral device has set the data bus
up with the correct data, it can release the RDY line to complete the read
cycle. Releasing the RDY line has exactly the same constraints as pulling the
line; do not change RDY within 200 ns of the end of PH2.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 69 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

The RDY line can be released before data has been set up, if the data will be
valid within specification. This means that RDY can be released in the middle
of PH1 if the data bus will be valid 117 ns before PH2 trailing edge, for the
Apple][(62 ns for the Apple IIe).

Slow Writes

Since the 6502 cannot be halted during write cycles, if a device requires
longer than one cycle to receive data then the data must be buffered. Here is
an example of how to accomplish this:

 | |
 _____|\ | 7 |_____|\
 Data bus | \| 4 | \ to slow peripheral
 |_____ /| L |_____ /
 |/ | S | |/
 | 3 |
 | 7 |
 _____________ | 4 |
 DEVICE SELECT | /\ |
 or |_/_______|
 __________ | O ______
 I/O SELECT _________| |___ INXFER
 or

 I/O STROBE

 Figure 3 - Buffering Data

Note: It is very easy to overrun the slow peripheral using this
 scheme, since it only buffers one byte at a time. Do not send
 data twice to the buffer within the maximum allowed time between
 slow peripheral reads.

Further Reference
 o Apple IIe Technical Reference Manual

END OF FILE TN.AIIe.004

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 70 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.AIIe.005
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIe
#5: /INH Line

Revised by: Glenn A. Baxter November 1988
Written by: Peter Baum May 1984

This Technical Note describes how a peripheral card on the Apple IIe should
use the inhibit (/INH) line. This information is true for the Apple IIe only.

Using the /INH Line on the Apple IIe

Overview

One of the new features of the Apple IIe is the ability to add more memory or
override existing memory from a peripheral card. This feature, which uses the
/INH line on the peripheral slots, has been expanded from its original purpose
on the Apple][+ of disabling the on-board ROM and allowing the language card
(RAM) to reside in the same address space. The Apple IIe allows any part of
memory to be replaced by memory on a peripheral card. This Note explains how
a peripheral card should use the /INH line.

Uses

Presently, only a few peripheral devices use the /INH line in the IIe for
memory expansion. One type of card uses /INH for RAM expansion by switching
in extra language cards, while another class of cards uses it to extend the
built-in 80-column ROM code by replacing it with their own ROM code. Other
cards use /INH so that they can have more than one stack and zero page.
Future peripheral cards can take advantage of the /INH line to do even fancier
memory expansion, such as keeping multiple programs running in memory at the
same time.

More memory, either ROM or RAM, can be added by mapping the memory into the
same address space as existing memory. The processor can then select which
memory, the on-board or the additional, it wants to use by setting a register
(or soft switch). This technique of switching different blocks of memory into
the same address space is called bank switching. An example of this technique
for extending memory is found in the Apple][+ language card and in the bank
switched memory on the IIe.

How It Works

When the /INH line, pin 32 in slots 1-7, is pulled low, all memory on the
motherboard and in the auxiliary slot is disabled (including memory on the 80-
column and extended 80-column cards). This action allows a peripheral card in

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 71 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

slots 1-7 to enable its memory onto the bus.

When the 6502 reads a byte from memory, the data typically comes from one of
three places: motherboard ROM, motherboard RAM, or RAM on one of the 80-
column cards in the auxiliary slot. When the /INH line is pulled low, all of
the above mentioned ROM and RAM is disabled and will not drive the data bus.
This disabling allows the peripheral slots to drive the bus by enabling data
onto it. The 6502 will then read data from the peripheral card instead of a
location on the motherboard or auxiliary slot.

During a 6502 write cycle, if the /INH line is pulled low, then motherboard
and auxiliary card RAM are both disabled. A peripheral card can then read a
byte off the data bus and store it.

Implementation

Because pulling the /INH line low disables all of memory, the peripheral card
must be very careful when it does this. If only a small piece of memory is to
be banked into a specific address space, then the /INH line should only be
pulled on memory references to that address space. Otherwise the motherboard
memory will be disabled and the processor will read or write to the wrong
memory and the program will not work properly. For example, if a peripheral
card wants to replace the zero page with memory on the card, then the /INH
line should be pulled low only on references to the address space between $0
and $FF. If the /INH line is pulled during a processor instruction fetch from
the monitor ROM at $F800, the 6502 will read the wrong instruction (or a
floating bus) and probably crash the program.

Pulling the /INH line at specific addresses is called select decoding. The
hardware on the peripheral card does this by checking the address bus of the
6502, and if the address falls in the correct range, the card pulls the /INH
line low. In the earlier example of a new zero page, if the address bus was
in the range $0-$FF the card would pull /INH low.

Differences: IIe vs.][+

On the Apple][+, select decoding was not necessarily needed because the /INH
line only affected the ROM and not the RAM. If the Apple][+ peripheral card
wanted to bank in extra language cards at the addresses $D000-$FFFF, then it
could pull the /INH line and keep it low during any memory access. This
action would disable the on-board ROM and not any other memory accesses such
as zero page or stack. This same card would not work in the IIe, since the
next instruction fetch to RAM after pulling /INH low would read a floating bus
because all the memory would be disabled.

Another Feature

For those of you who love to muck around in the guts of the Apple IIe, one
more feature has been added to the /INH function. The /INH line will also
override DMA accesses to memory on the motherboard. This override means that
if a peripheral card uses DMA to read or write to memory, another peripheral
card could pull the /INH line and process the DMA access. An example of this
would be a co-processor card using the memory on a RAM card in another slot.
Rather than have the co-processor write to the memory on the motherboard then
have the 6502 write to the RAM card, the co-processor can write to an address
that the RAM card recognizes. The RAM card could then pull the /INH line and

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 72 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

it would be free to read or write the data bus. This technique could also be
used by a co-processor to write directly to a printer card in another slot.

Timing

The peripheral card must wait for the address bus to settle, which occurs a
maximum of 190 ns after the falling edge of 0o, before pulling the /INH line.
(The 6502A maximum address setup time is 140 ns from 02, with a worst case
6502A skew of 50 ns from 0o to 02.) To guarantee that the RAM is disabled and
a write does not accidentally take place to the motherboard, the /INH line
must be pulled low within 330 ns of 0o.

01
 ___________________________ __________
___________| Video phase |___________________________|

0o
___________ ___________________________
 |___________________________| CPU phase |__________

Q3
 _______________ 210 ns _______________ __________
___________| 280 ns |___________| |___________|

___________________ ___
ADDR \/
___________________/___

 | 190 ns |
 | 140 ns |
_________ _________ _________________________________
INH _________/ \/ valid _____________
_________/ _________/_________________________________/
 1 2

1. The INH line can be pulled high at this time.
2. The INH line can be pulled low (or high) after the addresses are valid at
 190 ns, but before 300 ns (from 0o).

 Figure 1 - INH Line Timing Signals

Circuits

Figure 2 illustrates a simple example of a circuit that can be used to
implement the /INH function.

 | |
 A15 ---| |
 | Select |
 A14 ---| Decode |
 | Logic | _______
 __/\/--| | | |
 | |------------|D 7 Q|--- INH* J[1-7]32
 A0 ---| | PULLINH* | 4 |
 |________| | L |
 | S |

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 73 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 |\ | 3 |
 Q3 ----| >o-----------------|> 7 |
 |/ |_ 9 |
 0o -------------------------|G |
 |_______|

 Figure 2 - Circuit Implementing /INH Function

An Application

The circuit in Figure 3 can be used to replace the code in the monitor ROM,
from location $FC00 to $FFFF, with custom code. Anytime the address space
between $FC00-$FFFF is accessed, the /INH line is pulled low, the motherboard
memory is disabled, and the circuit's 1K RAM is enabled instead. Part of this
feature can be disabled and the motherboard memory can be read by keeping the
switch connected to +5 volts (READDIS). Whenever the system writes to any
location in the address space $FC00-$FFFF, the circuit will disable any RAM on
the motherboard and instead write into the 1K RAM.

Here is a series of commands that can be used with the circuit to replace the
reset vector at $FFFC and $FFFD. A new reset routine can be written that will
print the screen or save the status of all the registers whenever the Reset
key is pressed.

Start the system with the circuit's switch connected to +5 (READDIS). Doing
so will enable the system to read the monitor ROM during startup, before the
1K RAM has been initialized.

Get into the monitor by typing CALL -151. The system prompt should now be an
asterisk (*). Copy the monitor ROM into the 1K RAM with the command
FC00<FC00.FFFFM. Change the reset vector so that it jumps to location $300
with this command, FFFC:0, then copy your new reset routine into memory
starting at location $300. Now, set the switch to ground (READEN) so all
future read accesses to $FC00-$FFFF will read the 1K RAM.

For example, if these instructions are stored in memory starting at location
$300, then the system will clear the screen and continue execution in the
monitor when the Reset key is pressed.

 $300:20 58 FC JSR HOME (clears screen)
 $303:4C 65 FF JMP to MON (resume execution in monitor)

One of the problems with this circuit is that it also overrides any accesses
to the language card, therefore any program that uses the language card will
not work with it. The circuit does not keep track of which memory is enabled,
ROM or language card RAM, in the $FC00-$FFFF space.

Q3 --+
 _____ _|_
A15 ---| \ \ / <--00
A14 ---| 11)--+ O
A13 ---|_____/ | _____ |
 +--| \ _____ ___|___
A12 ----------------| 11)-----------------| \ | \/ _| ___
A11 ----------------|_____/ +---------------| 11)---|D Q|--- INH
 | +--|_____/ | |
A10 -------------------------+ _____ | | |
R/W -----+---+-----------------| \ | | |

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 74 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 | | | 00)O--+ | 379 |
00 --> \ / | +--|_____/ | |
 O | | | |
 _|___|_____ | _____ |_ |
A9 ---| __ | | / |--+------|G Q|---+
A8 ---| OE WE CE|------------------O(00 | | |_______| |
A7 ---| |--- D7 | _____|-----+ |
A6 ---| 2159 |--- D6 | | +---------------+
A5 ---| 1K RAM |--- D5 | |
A4 ---| |--- D4 | | ^ +5V
A3 ---| |--- D3 | | |
A2 ---| |--- D2 | | o READDIS
A1 ---| |--- D1 | | /
A0 ---|___________|--- D0 +----------------------o/
 |
PH0 ---+ o READDEN
 __|__

 -

 Figure 3 - Circuit to Replace Monitor ROM Code

Further Reference
 o Apple IIe Technical Reference Manual

END OF FILE TN.AIIe.005

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 75 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.AIIe.006
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIe
#6: The Apple II Paddle Circuits

Revised by: Glenn A. Baxter November 1988
Written by: Peter Baum May 1984

This Technical Note describes the paddle circuit used in the Apple II family
of computers.

Caveats

Since Apple has introduced machines with internal clock speeds which may not
be exactly 1.023 MHz, it is best to use the PREAD firmware call to read paddle
data. This Note assumes that the clock speed of the system is exactly 1.023
MHz. If you want to insure accuracy in reading paddle data, you should make
sure the system is first running at the correct speed. Enough information is
provided so that you can write your own PREAD routine, although this is
discouraged. If the program runs on an Apple IIGS or some future machine,
your custom paddle reading routine will fail to give the correct results.

Circuit Description

The value of the Apple paddles (or joystick) is determined by a software
timing loop reading a change of state in a timing circuit. The paddles
consist of a variable resistor (from 0-150k ohms) which makes up part of the
timing circuit. There is a routine in the monitor ROM, called PREAD, which
counts the time until a state change occurs in the paddle circuit. This time
is translated into a value between 0 and 255.

The block diagrams in Figures 1 and 2 show the paddle circuit for the Apple
][+, Apple IIc, and the Apple IIe. The large block on the left illustrates
part of the circuitry inside the 558 timer chip. The 558 chip consists of
four of these blocks, with all four paddle triggers lines shorted together on
the motherboard and activated by the soft switch at $C070. The outputs of the
558 chip run into a multiplexer, which places the appropriate signal onto the
high bit of the data bus when a paddle soft switch address in the range $C064
$C067 is read. The Apple IIc uses a 556 timer rather than the 558 chip and
only supports two paddles, 0 and 1.

The 100 ohm resistor and .022 microfarad capacitor are on the motherboard,
with the variable resistor in the paddle. Each of the four paddle inputs have
their own capacitor and resistor. Since these components can vary by as much
as five percent from Apple to Apple, this circuit is not a very exact analog
to digital converter. If a paddle is moved from one Apple to another without

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 76 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

changing the resistance (turning the knob), the paddle read routine will
probably calculate a different value for each machine. About the only feature
of the paddle read routine that a programmer can depend on is that the value
returned will rise if the paddle resistance increases (or fall if the
resistance decreases).

The paddle timing circuit on the Apple][+ and Apple IIc is slightly different
than the one on the Apple IIe. On the Apple IIe, the 100 ohm fixed resistor
is between the transistor and the capacitor, while the variable resistor in
the paddle is connected directly to the capacitor. On the Apple][+ and IIc,
the capacitor is connected directly to the transistor and the fixed resistor
is in series with paddle resistor.

| 556 Timer |
| ^ VCC | _____________
\		Paddle						
/		^						
5K \			^					
/ +---O---+	\ /							
\				//				
		___________			X			
+------- +	\					//		
			>---	RESET				/ \
\ +-- -	/					______	______	
/								
5K \ Comparator				100 ohm				
/	FLIP FLOP	+-------O---+--+-\/\/\/\--+						
\								
			/					
+------- +	\	_		/	_	_		
		>---	SET Q	---+--	\	___ .022uF		
\ +-- -	/	___________			\>			
/								
5K \		+---	---O------+					
/		__	__					
\		---						
__	__		-					
---			\					
-	+--	>O---	---O Output					
		/	($C06x)					
_________	_____________________________________							
 |
 O Trigger
 ($C070)

 Figure 1 - Apple][+ and IIc Paddle Circuit

An Example of a Typical Paddle Read Routine

The timing circuit works by discharging a capacitor through a transistor, then
shutting the transistor off and letting the paddle charge the capacitor by
supplying current through the variable resistor. The rate at which the
capacitor charges is a function of the variable resistance; the lower the
paddle resistance, the greater the current and the faster the capacitor
charges. When the capacitor reaches a predetermined value it changes the

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 77 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

state of a flip flop. The paddle read routine counts the time it takes for the
capacitor to rise and change the flip flop.

Let's step through an example of a typical paddle read operation. For now we
will assume the capacitor has already been discharged and in a few pages I
will explain when this assumption can be made and when it cannot.

The software starts by reading the soft switch at location $C070, which
strobes the trigger lines on the 558 timer. This action causes two events to
occur, the output signal (which is read at $C064-$C067 for paddle 0-3,
respectively) goes high and the transistor turns off.

The software, after initially strobing the trigger line, executes a timing
loop which reads the state of the output signal. When the output signal
changes from high to low the software jumps out of the timing loop and returns
a value indicating the time. The monitor PREAD routine consists of a 11 µsec.
loop and will return a value between 0 and 255. (Note: The firmware listing
is wrong and says the loop is 12 µsec.) The timing loop returns 255 if the
circuit takes longer than 2.82 ms for the state change to occur.

| 558 Timer |
| ^ VCC | _____________
\		Paddle						
/		^						
5K \			^					
/ +---------------------------------+		\ /						
\				//				
		___________			X			
+------- +	\					//		
			>---	RESET				/ \
\ +-- -	/					______	______	
/								
5K \ Comparator				100 ohm				
/	FLIP FLOP	+-------O--\/\/\/\--+-----+						
\								
			/					
+------- +	\	_		/	_	_		
		>---	SET Q	---+--	\	___ .022uF		
\ +-- -	/	___________			\>			
/								
5K \		+---	---O-----------+					
/		__	__					
\		---						
__	__		-					
---			\					
-	+--	>O---	---O Output					
		/	($C06x)					
_________	_____________________________________							
 |
 O Trigger
 ($C070)

 Figure 2 - Apple IIe Paddle Circuit

* PADDLE READ ROUTINE

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 78 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

* ENTER WITH PADDLE NUMBER (0-3) IN X-REG

FB1E:AD 70 C0 PREAD 4 LDA PTRIG ;TRIGGER PADDLES
FB21:A0 00 2 LDY #0 ;INIT COUNTER
FB23:EA 2 NOP ;COMPENSATE FOR 1ST COUNT
FB24:EA 2 NOP
FB25:BD 64 C0 PREAD2 4 LDA PADDL0,X ;COUNT EVERY 11 µSEC.
FB28:10 04 2 BPL RTS2D ;BRANCH WHEN TIMED OUT
FB2A:C8 2 INY ;INCREMENT COUNTER
FB2B:D0 F8 3 BNE PREAD2 ;CONTINUE COUNTING
FB2D:88 DEY ;COUNTER OVERFLOWED
FB2E:60 RTS2D RTS ;RETURN W/VALUE 0-255

Inside the 558 timer chip, when the trigger is strobed low, the comparator
that feeds the set input of the flip flop is triggered, which in turn sets the
output of the 558 timer. At the same time, the transistor, which has held the
capacitor near ground by sinking current from it, is shut off. The capacitor
can now charge using the current supplied by the paddle. The smaller the
paddle's resistance, the more current the paddle will supply and the faster
the capacitor charges. After some time, the capacitor will charge to the
threshold value of 3.3 volts, which is set by the voltage divider network in
the 558 timer, and the comparator that feeds the reset input on the flip flop
will trigger. This trigger sets the output signal ($C06x) of the 558 timer
low, which indicates to the software that the circuit has timed out.

 _____ ___
Trigger $C070 | |
 |______|

 _| |<------ Threshold
Feedback to _| |_
Reset Comp _____________| |_______________

 | |
Output _________________| |_________________
 Timing Value
 |<--------------------------------->|
 0 - 2.82 milliseconds

 Figure 3 - Paddle Circuit Recharge Timing

Resetting the flip flop turns the transistor on, which discharges the
capacitor very quickly (normally less than 250 ns). That paddle can then be
read again.

A Closer Look at the Hardware

The First Anomaly

Notice that the last sentence states that the paddle can be read again and not
the paddles. If another paddle is read immediately after the first, it may
yield the wrong value. To demonstrate this, I will step through an example of
reading a second paddle immediately after finishing the first.

In this example I will assume that the first paddle has been set with a very

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 79 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

low resistance, while the second paddle has a high resistance. The first
paddle will time out very quickly and return with a small value, while the
second paddle will take longer and yield a larger value.

We start reading the paddles by testing the paddle outputs to see if they are
low, which indicates that the capacitor has been discharged. Assuming that
the outputs are low, the next step is to trigger the 558 timer ($C070), which
turns off the transistor and allows the capacitors to charge. Since all of
the trigger input lines are shorted together, all four of the capacitors will
charge, but at different rates since the paddle resistances have been set to
different values. The voltage on the capacitor for the first paddle will
reach the threshold voltage very quickly since the paddle resistance has been
set low, therefore the timing loop will time out quickly.

At this point the capacitor for the second paddle is still charging and has
not yet reached the threshold since the paddle resistance was set to a high
value. The transistor for the second paddle is still turned off due to the
initial trigger used for reading paddle one. This means that the capacitor
for the second paddle has not been discharged.

Any attempts at reading the second paddle now will only yield false results.
The capacitor is partly charged and therefore will reach the threshold value
much faster than if the capacitor had been completely discharged. If the
timing loop is used, it will return with a smaller value than it would if the
capacitor had been completely discharged. Notice that retriggering (reading
location $C070) the 558 timer will not help, since that only keeps the
transistor turned off and does not help discharge the capacitor. The only way
for the capacitor to discharge is to let the circuit time out completely by
letting the capacitor charge until it resets the flip flop.

To read the second paddle, the capacitor must first be discharged, which is
only done when the threshold value is reached and the 558 timer flip flop is
reset. The only way to guarantee that the capacitor is discharged is if the
transistor is on. This condition is met when the paddle output is low.
Therefore, start every paddle read either by waiting for at least 3 ms before
strobing the trigger input or testing to make sure that the paddle output is
low.

If after 4 ms the paddle output is not low, then there is a good chance that
there is no paddle connected. This result may also indicate that a peripheral
with a larger maximum value resistor than the 150k ohms used by the Apple
paddles is attached. Some peripheral devices use this technique of a larger
variable resistor so that more than 256 points of resolution can be
determined. Of course, this requires a custom software driver and the monitor
PREAD routine cannot be used.

Apple IIe Anomalies

The problem with Apple IIe paddle input is that the capacitor may not be
discharged by the transistor. Typically, the transistor will discharge the
capacitor in less than 250 ns on the Apple][+. But on the Apple IIe, if the
paddle resistance is very low then the paddle may supply enough current to
always keep the capacitor charged.

Because the fixed resistor (100 ohms) on the Apple IIe motherboard is between
the capacitor and the transistor, there will be a voltage drop across the
resistor if the capacitor stays charged. When the transistor is shut off by
the trigger strobe, this voltage drop will disappear and the capacitor, which

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 80 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

may be near the threshold voltage, will trigger the reset comparator earlier
than it would if the capacitor had been discharged completely. The net affect
of this is that the paddles will read zero on the Apple IIe when they would
read a small value on the Apple][+ or IIc.

Other circuits which expect the capacitor to discharge completely may not work
properly. A circuit which attempts to simulate a paddle through active
components such as a digital to analog converter may be able to source enough
current that the capacitor never discharges and the paddle always reads zero.

It should also be noted that due to electromagnetic interference, later model
IIe computers actually have an extra capacitor attached between the BUTTON
inputs and ground. This essentially slows the response time of the input,
making a fully digital input appear a bit more analog (no pun intended). Care
should be taken in designing system which depend on a certain repetition rate
of the button inputs. Careful engineering and testing across systems should
prevent any problems. As an example, adding a transistor output stage to
drive the button inputs to the appropriate states might be a good idea for a
serializing A/D. A joystick would not require this kind of circuit because
the user input is too slow to be affected by the capacitors. For more
information on the changes in later model IIe computers, refer to Apple IIe
Technical Note #9, Switch Input Changes.

Conclusion

Hopefully, this Note has given the reader a good feel for the paddle circuitry
and the routines which determine the paddle values. To reinforce the material
covered, you should try writing your own paddle read routine. For example,
you could write a read routine that would read two paddles at once. The
software loop will not have the 11 µsec. resolution of the PREAD routine, but
you will find it still works just fine. Happy programming.

Further Reference
 o Apple IIe Technical Reference Manual

END OF FILE TN.AIIe.006

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 81 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.AIIe.007
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIe
#7: Interfaces--Serial, Parallel, and IEEE-488

Revised by: Matt Deatherage November 1988
Written by: Peter Baum April 1984

This Technical Note describes the pin configurations of three difference
interface types offered on the Apple II family of computers.

Serial

Currently, Apple sells a card, called the Super Serial Card (SSC), that can be
used to connect an Apple printer to an Apple II. The SSC replaces both the
Communications Card and the Hi-Speed Serial Card. The SSC supports the
firmware (Pascal 1.1) protocol except for the optional control and interrupt
handling routines.

The SSC has a 10-pin header on it, but comes with a cable which connects the
header to a female DB-25 connector. The SSC can be configured as either a
modem (DCE) or as a terminal (DTE) using a jumper block (in the latter case
the jumper block acts as a modem eliminator). Though the pin configuration of
the DB-25 connector is well defined, there is no standard use of the handshake
signals. Different printers will use the handshake lines for different
functions. Table 1 shows the pin configuration for the DB-25 on the SSC.
Consult your printer manual for more specific information on which signals are
used.

 10-pin Female DB-25
 Header Signal Name Terminal Modem
 1 Frame Ground (FRMGND) 1 1
 2 Transmit Data (TxD) 3 2
 3 Receive Data (RxD) 2 3
 4 Request To Send (RTS) 8 4
 5 Clear To Send (CTS) 8 5
 6 Data Set Ready (DSR) 20 6
 8 Signal Ground (SGLGND) 7 7
 10 Data Carrier Detect (DCD) 4,5 *8
 7 Secondary Clear to Send (SCTS) 19 **19
 9 Data Terminal Ready (DTR) 6 20
 * Only if SW1-7 is closed (on) with SSC.
 ** Only if SW2-7 is closed (on) with SSC.

 Table 1-Pin Configuration for SSC DB-25 Connector

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 82 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Parallel

Apple formerly shipped a parallel card, called the Parallel Interface Card
(PIC), which can be used to connect a parallel printer to an Apple II. The
PIC replaced the Parallel Printer Interface Card and the Centronics Interface
Card. The PIC does not support the firmware protocol, so Pascal identifies
the card as a printer card (described in Pascal protocols).

Most commonly used printers operate properly if the switches on the PIC are
set as in Figure 2.

 1 2 3 4 5 6 7
 on | | | | x | x | | |
 off | x | x | x | | | x | x |

 Figure 2-PIC Switch Configuration

This setting prepares the parallel interface to transfer data using a 1
microsecond strobe pulse of negative polarity when sending data, while
receiving a negative acknowledge signal, with interrupts disabled.

The PIC has a 26-pin header, but it comes with a cable which connects the
header to a female DB-25. The Parallel Printer Card and the Centronics Card
used a 20-pin header. Most parallel printers (90%) use a "microribbon 36" as
the connector. The pin configuration varies from printer to printer, but
Table 2 covers most printers (Apple DMP, Epson). For other printers, refer to
page 7 of the Parallel Interface Card Manual.

 PIC Printer
 Function Function 26-Pin DB-25 36-Pin 20-Pin
 Ground Ground 3 2 19 1
 Ground Ground 22 24 16 20
 Ground Ground 7 4
 Ground Ground 14 20
 ACK Acknowledge 6 16 10 2
 Strobe Strobe 4 15 1 8
 DO 0 Data 1 9 5 2 10
 DO 1 Data 2 11 6 3 11
 DO 2 Data 3 15 8 4 12
 DO 3 Data 4 18 22 5 13
 DO 4 Data 5 20 23 6 14
 DO 5 Data 6 21 11 7 15
 DO 6 Data 7 23 12 8 16
 DO 7 Data 8 * 25 13 9 17
 DI 3 Fault 24 25 32 6
 DI 4 Busy 2 14 11 7
 DI 5 Paper out 12 19 12 9
 DI 6 Select 16 21 13 8
 DI 7 Enable 10 18 35 19
 ** 7
 * This may be assigned a "hard" value for some printers to
 distinguish between graphics and normal character sets.
 ** Pin 7 is blocked on the female DB-25 connector and omitted on
 the mail DB-25 connector to prevent the insertion of serial
 connectors into parallel ports.

IEEE-488

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 83 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

The IEEE-488 bus standard is a well defined eight-bit parallel, byte serial,
asynchronous data transfer interface. The standard has been thoroughly
documented with the most complete description available from the Institute of
Electrical and Electronic Engineers (IEEE) in New York. Standard cables are
manufactured by many companies and usually advertised as either IEEE-488,
General Purpose Interface Bus (GPIB), or Hewlett-Packard Interface Bus (HPIB)
cables.

IEEE-488 cards do not support Apple firmware protocols, so an assembly
language driver must be used to access the cards from high level languages
(see Appendix F of the IEEE-488 Interface User's Guide).

Further Reference
 o Apple IIe Technical Reference Manual
 o Parallel Interface Card Manual
 o IEEE-488 Card Manual

END OF FILE TN.AIIe.007

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 84 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.AIIe.008
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIe
#8: Known Anomalies of Enhanced IIe ROMs

Revised by: Matt Deatherage November 1988
Revised by: Cameron Birse February 1986

This Technical Note describes three problems with the Enhanced IIe ROMs and
some suggested solutions.

The following three anomalies are known to occur when the Enhanced IIe ROMs
are present:

1. Some Apple II peripheral cards do not handle interrupts well since
 Apple II family members before the IIc and Enhanced IIe did not
 handle them very well either. If a card that cannot handle
 interrupts is used on the Enhanced Apple IIe, any interrupt is
 very likely to crash the system. A common example of this would
 be older, non-interruptible printer cards used with a Mouse card
 in the system. You can often work around this problem by
 disabling interrupts before printing to such a printer card.

2. There may be some problems when using the ROMs with communications
 packages. These problems are due to the way the 80-column
 firmware switches into 40-column mode. By sending a Control-Q
 through COUT, the firmware switches into 40-column mode. A simple
 solution to this would be to send an Escape-Control-D sequence,
 which disables the control functions. This solution will remain
 in effect until either the 80-column card is re-initialized by
 PR#3 or an Escape-Control-E sequence is sent through COUT.
 Another solution would be to simply not allow Control-Q sequences
 to get through to COUT by filtering them before they get there.

3. Many developers using double high-resolution graphics may wish to
 use 40-column text displays so the text can be read on a
 television set. There are a couple of possibilities:

 A. You can define your own double high-resolution character set
 with any size characters you desire, then plot them on the
 double high-resolution screen.

 B. You can print text to the Apple IIe text screen and toggle the
 screen on to display it.

 Note: There is no way to display four lines of 40-column
 text at the bottom of the double high-resolution screen
 in mixed mode since the 80-column hardware must be active

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 85 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 while double high-resolution graphics are being
 displayed.

 To use the second method, however, does require some special
 considerations.

 The Apple IIe scroll routine continues to use the window
 parameters when scrolling, but uses the 80COL soft switch to
 determine if it should scroll the 80- or 40-column screen.
 Since the firmware has initialized a 40-column window, the
 scroll routines will move only the first 40 columns. But, the
 80COL flag has been turned on for double high-resolution,
 therefore, the scrolling routine takes every even column from
 auxiliary memory and every odd column from main memory. As a
 result, only the first 40 columns get scrolled, 20 columns from
 auxiliary memory and 20 columns from main memory.

 One possible solution to the problem is to write your own
 scroll routines. Another might be to write to the screen so
 that scrolling will not occur. But there is yet another
 solution. Turn on the full 80-column mode with a PR#3 or the
 equivalent. Now print your text to COUT in the normal manner,
 being careful not to exceed 40 characters per line. The 80
 column firmware will scroll everything properly. When you are
 ready to display text, send a Control-Q sequence through COUT
 to switch to 40 columns. When you are ready to return to
 double high-resolution mode, send a Control-R sequence to COUT.

 When switching modes, a momentary glitch may occur. If you
 send the Control-Q sequence to COUT while still in graphics
 mode, the screen will go to regular single high-resolution mode
 before finally going to text mode. If you switch to text mode
 first, the text will be in 80-column mode (with 40 columns
 displayed on the left half of the screen) before ultimately
 going to 40-column mode. The same potential glitch may occur
 going back to double high-resolution mode. The glitch will be
 only momentary and may not present any problem for your
 application.

Further Reference
 o Apple IIe Technical Reference Manual

END OF FILE TN.AIIe.008

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 86 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.AIIe.009
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIe
#9: Switch Input Changes

Revised by: Glenn A. Baxter November 1988
Written by: Earl Edwards May 1988

This Technical Note describes three changes which have been made to the switch
circuitry of Apple IIe revision C and later motherboards.

The latest Apple IIe logic board has some changes in its switch circuitry.
Logic boards with part numbers 820-0087-C and later differ from earlier boards
as follows:

o SW2 has been connected to the Shift keys on the keyboard by
 closing the X6 jumper.
o 12k ohm pullup resistors have been added to SW0 and SW1.
o A 0.1 microfarad capacitor to ground has been added to all three
 switch inputs: SW0 (PB0, Open-Apple, OAPL), SW1 (PB1, Option,
 Closed-Apple, CAPL), and SW2 (PB2).

Note: Schematics showing the differences are available in Chapter 7 of the
 Apple IIe Technical Reference, First Printing, January 1987.

The X6 jumper was closed to allow the Shift key to be read directly,
facilitating the shift-click mouse selection feature in software products.
Note that this change connects SW2 to +5V through a 1k ohm resistor, and when
a shift key is depressed, SW2 is at ground potential.

The 12k ohm resistors were added to ensure that the self-diagnostic test would
run when the keyboard is disconnected. The resistors have negligible
influence when the keyboard is connected.

The capacitors were added to reduce radiated emissions. This reduction was
required because of changes in the memory configuration. As a result of the
addition, the functional bandwidth of the inputs has been reduced; however,
the input requirements of the 74LS251 have not changed. This addition may
cause improper operation with peripheral devices that rely on high push button
repetition rates.

The minimum V(IH) to the 74LS251 remains 2.0V, but for improved noise margin,
a minimum V(IH) of 2.4V is recommended. This requires a drive of about 6 ma
to overcome the 470-ohm 5 percent resistor on SW0 and SW1.

The maximum V(IL) is 0.8V, and here again you should allow for some noise
margin. The low level is ensured by the 470-ohm keyboard pulldown resistor
alone, but additional current sink will speed up the transition time.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 87 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Further Reference
 o Apple IIe Technical Reference Manual

END OF FILE TN.AIIe.009

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 88 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.ATLK.001
###

Apple II
Technical Notes

 Developer Technical Support

AppleTalk
#1: Identifying AppleTalk

Revised by: Dan Strnad July 1989
Written by: Dan Strnad November 1988

This Technical Note describes the correct methods for identifying AppleTalk
under ProDOS 8 and GS/OS, as the ATLK ROM signature is no longer used.
Changes since November 1988: Updated for System Software 5.0 and added
references for determining if an application has been launched over the
network and identifying AppleTalk and its associated slot.

To determine if an application has been launched over the network, refer to
the NetLaunch code fragment found in the AppleShare Programmer's Guide for the
Apple IIGS.

Under ProDOS, to identify both AppleTalk and the slot with which it is
associated for printing, refer to Apple II AppleTalk Technical Note #4,
Printing Through the Firmware.

To identify AppleTalk under ProDOS 8:

 1. Issue an AppleShare GetInfo call.
 2. If there is no error result, AppleTalk is installed.

 InfoParams DB $00 ;Synchronous only
 DB $02 ;GetInfo call number
 InfoResult DS 13 ;<- results returned here

 CheckATalk JSR $BF00
 DB $42 ;$42 command # for AppleTalk calls
 DW InfoParams ;Parameter list address
 BCS NoATalk ;handle the error
 IsATalk. ... ;AppleTalk installed when here

 NoATalk ... ;AppleTalk not installed when here

To identify AppleTalk protocols and AppleShare file system under System
Software 5.0:

 1. Set up the parameter block for a GS/OS GetFSTInfo call using
 fstNum = 1.
 2. Issue the GetFSTInfo call.
 3. If the fileSysID is $0D the AppleShare FST and AppleShare are
 present.
 4. If a parameter out of range error ($53) results, the AppleShare

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 89 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 file system is not present.
 5. Otherwise, if steps 3 and 4 are inconclusive, increment the fstNum
 and loop back to step 2.

To identify AppleTalk protocols, including LAP through PFI but excluding the
file system, under System Software 5.0:

 1. Set up the parameter block for a GS/OS DInfo call using device
 number one.
 2. Issue the DInfo call.
 3. If the deviceID is $1D, the AppleTalk main driver and AppleTalk
 are present.
 4. If a parameter out of range error ($53) results, the AppleTalk
 protocols are not present.
 5. Otherwise, if steps 3 and 4 are inconclusive, increment the device
 number and loop back to step 2.

To identify AppleTalk protocols, including LAP through ASP but excluding the
file system, under System Software 4.0:

 1. Issue an an SPGetStatus call
 2. If the call returns without error, AppleTalk is present.

Note: With the release of System Software 5.0, earlier versions are not
 supported.

Further Reference

 o Inside AppleTalk
 o AppleShare Programmer's Guide for the Apple IIGS
 o GS/OS Reference
 o Apple II AppleTalk Technical Note #4, Printing Through the Firmware

END OF FILE TN.ATLK.001

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 90 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.ATLK.002
###

Apple II
Technical Notes

 Developer Technical Support

AppleTalk
#2: ProDOS 8 Compatibility on the IIe and IIGS

Written by: Mark Day November 1988

This Technical Note describes areas which could cause an application to run
under the AppleShare Apple IIe workstation software, but fail under the Apple
IIGS workstation software.

o If code is running in auxiliary memory in emulation mode (e.g.,
 ProDOS 8 programs that run code from auxiliary memory), make sure
 $0100 in auxiliary memory is set to the normal stack pointer and
 $0101 in auxiliary memory is set to the auxiliary (alternate)
 stack pointer. (See page 93 of the Apple IIe Technical Reference
 Manual.)
o Make sure ProDOS calls are not made from auxiliary memory; Apple
 has never recommended doing this, and it is not supported.
o Make sure interrupts are enabled when making ProDOS 8 calls.
o Make sure interrupts are not disabled for long periods of time,
 nor for a high percentage of time. Whenever interrupts are
 disabled, there is a chance that an AppleTalk packet will be
 missed (which could cause AppleShare volumes to be unmounted).
 The more interrupts are disabled, the more likely that packets
 will be missed. This risk is inherent for any application that
 disables interrupts (directly or indirectly), therefore,
 interrupts should be disabled with discretion and only when
 absolutely necessary.
o Make sure programs get the completion routine return address from
 the GetInfo call when they are started.
o Make sure to identify AppleTalk by calling GetInfo and checking
 for an invalid call number error (which means AppleTalk is not
 present). Do not use the ATLK signature bytes for identification.
 See Apple II AppleTalk Technical Note #1, Identifying AppleTalk.

Further Reference
o Apple IIe Technical Reference Manual
o Apple II AppleTalk Technical Note #1, Identifying AppleTalk

END OF FILE TN.ATLK.002

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 91 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.ATLK.003
###

Apple II
Technical Notes

 Developer Technical Support

AppleTalk
#3: Avoiding Remote Printer Time-Outs

Revised by: Jim Luther September 1989
Written by: Jim Luther May 1989

This Technical Note discusses how to avoid time-outs when printing to remote
printers.
Changes since May 1989: Updated to reflect System Software 5.0 changes
and to clarify the results of changing the time-out interval.

The Apple II AppleTalk firmware's Remote Print Manager (RPM), which supports
AppleTalk's Super Serial Card (SSC) entry points, maintains a time-out
interval value. The time-out interval is usually set to 30 seconds. When an
application quits writing to the AppleTalk firmware, the RPM waits this time
interval before sending the last block of data to the printer and closing the
Printer Access Protocol (PAP) connection.

What does this mean? If an application waits longer than the time-out
interval (e.g., 30 seconds) between any write accesses to the AppleTalk
firmware (i.e., a pause between initialization and printing or a pause during
printing), the PAP connection closes, the current page may be ejected from the
printer (this is printer dependent--the ImageWriter II and ImageWriter LQ do
not automatically eject the page, the Apple LaserWriter does), and the rest of
the application's output to the printer is lost. If you initialize the
AppleTalk SSC firmware, you must print immediately or a time-out may occur and
reinitialization is necessary to print again. Applications should not
initialize the firmware and expect it still to be initialized at a later point
in time.

What You Can Do

The RPM's PMSetPrinter call may be used to change the time-out interval to a
different value. However, the time-out interval should be kept as short as
possible because other users cannot open another PAP connection with the
printer until your machine has timed-out. In other words, if you set the
time-out interval for five minutes, the RPM keeps the PAP connection open with
the printer for five minutes after the last character is written to the RPM,
thus blocking other machines from using that printer for five extra minutes;
this delay is unacceptable in a shared printer environment.

With an Apple IIGS using System Software 5.0, the RPM's PMSetPrinter call may
be used to set the time-out interval to zero. When the time-out interval is
set to zero, the session never times out and must be closed with the Apple
IIGS-specific PMCloseSession RPM call.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 92 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Further Reference

 o AppleShare Programmer's Guide for the Apple IIGS

END OF FILE TN.ATLK.003

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 93 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.ATLK.004
###

Apple II
Technical Notes

 Developer Technical Support

AppleTalk
#4: Printing Through the Firmware

Revised by: Jim Luther September 1989
Written by: Matt Deatherage & Jim Luther July 1989

This Technical Note discusses considerations of printing through the AppleTalk
firmware in transparent mode.
Changes since July 1989: Updated to reflect ROM 03 changes to AppleTalk
firmware.

The AppleShare Programmer's Guide to the Apple IIGS states that printing in
transparent mode (through Super Serial Card emulation for older applications
which don't know about AppleTalk) is initiated when you do a PR#7 command.

This statement is pretty short-sighted. It's much like saying printing
through an ImageWriter II is initiated when you do a PR#1 command--it's only
true if what you want is where you think it is--and usually it isn't.

An Apple IIe Workstation Card, although recommended for slot 7, can work in
almost any slot (just like an ImageWriter II can be connected to nearly any
slot, except maybe slot 3 when the 80-column firmware is active). An Apple
IIGS with ROM versions 00 or 01 may only have AppleTalk firmware located in
slot 7. An Apple IIGS with ROM version 03 may only have AppleTalk firmware
located in either slot 1 or 2.

Before printing through the Super Serial Card emulation to AppleTalk, take the
same precautions you would take before printing to any slot--check to make
sure you see the requested slot as a Pascal device before using Pascal entry
points, and try to look for the signature bytes that indicate the features you
want are present. In general, avoid hard-coding slot numbers for anything.

If your application wants to print over the network, you are already
identifying AppleTalk as described in AppleTalk Technical Note #1, Identifying
AppleTalk. Apple has defined a convention to allow applications to know, when
possible, which slot or port the network connection should use for transparent
printing. If the AppleTalk completion routine pointer points to an address in
slot ROM space, then that slot contains the transparent network printing
firmware. In other words, if the completion routine points to $0000CnXX,
where n is between 1 and 7, then n is the slot to be used for transparent
printing. If the completion routine pointer does not point to slot ROM, then
the application cannot determine what slot to print through and must ask the
user. (This situation will not happen on current Apple II computers, but it
could happen in the future.)

Note: This convention returns a slot number between 1 and 7, which

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 94 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 is not fully compatible with the Slot Arbiter. When using GS/OS,
 do not pass this number directly to the Slot Arbiter. Refer to
 Apple IIGS Technical Note #69, The Ins and Outs of Slot
 Arbitration.

This technique applies only to ProDOS 8 programs. Apple IIGS applications
running under GS/OS should do text printing over the network through the
Remote Print Manager driver, which can be identified by a deviceID of $001F as
returned from DInfo.

The following 6502 code sample illustrates this technique:

;
; This routine will identify AppleTalk and the slot AppleTalk is
; associated with (if possible).
;

CheckATalk equ *

; Check for AppleTalk (see AppleTalk Technical Note #1)

 jsr $BF00 ; ProDOS 8 MLI
 dfb $42 ; $42 command for network calls
 dw InfoParams ; Parameter list address
 bcs NoATalk ; no AppleTalk; handle the error

; AppleTalk installed when here, so find the slot it uses

 lda ComReturn+2 ; bank $00?
 ora ComReturn+3 ; high byte = 0?
 bne AskForSlot ; no, so slot can't be determined
 lda ComReturn+1 ; get the address page
 cmp #$C8
 bge AskForSlot ; greater or equal to $C8 is bad
 cmp #$C1
 blt AskForSlot ; less than $C1 is bad
 and #$0F ; $Cn = $0n
 sta ATalkSlot

HaveSlot equ * ; AppleTalk is installed and
 ; is in slot # ATalkSlot

AskForSlot equ * ; AppleTalk is installed but slot
 ; can't be determined

NoATalk equ * ; AppleTalk is not installed

 rts ; so this sample returns

AtalkSlot dfb $00 ; Slot to use for transparent printing

InfoParams dfb $00 ; Synchronous only
 dfb $02 ; GetInfo call number
 ds 2 ; result code
ComReturn ds 4 ; completion return address
 ds 8 ; space for other result info

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 95 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Further Reference

 o AppleShare Programmer's Guide for the Apple IIGS
 o Apple IIGS Technical Note #69, The Ins and Outs of Slot Arbitration
 o Apple II AppleTalk Technical Note #1, Identifying AppleTalk
 o Apple II Miscellaneous Technical Note #8, Pascal 1.1 Identification Bytes

END OF FILE TN.ATLK.004

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 96 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.ATLK.005
###

Apple II
Technical Notes

 Developer Technical Support

AppleTalk
#5: SPCommand Calls and Error $0702

Written by: Mark Day July 1989

The system now uses SPCommand calls asynchronously. Applications that have
AppleShare volumes mounted under System Software 5.0 and also make SPCommand
calls themselves should now handle the "Too many ASP calls" error, $0702.

AppleShare uses a protocol called AppleTalk Session Protocol (ASP) to maintain
a connection (session) with all servers that you are logged on to. All
commands and data transfer to the server are sent using ASP.

The implementation of ASP on the Apple IIGS has a limit of one command
outstanding (waiting to complete) per session. This means that if one command
has been sent, its reply must be received before you can send the next
command. Remember, the SPCommand call is used to send commands over a
session. If you try to issue an SPCommand before another (asynchronous)
SPCommand on the same session has completed, your call will return with a "Too
many ASP calls" error, $0702.

Before System Software 5.0 on the Apple IIGS, no system software made
asynchronous SPCommand calls, and therefore this error would only occur if the
developer was making the asynchronous calls. As of System Software 5.0, the
AppleShare FST uses asynchronous calls to help prevent the loss of a
connection with servers and to assist the Finder in dynamically updating
windows when a change is made to a network volume. Therefore, this error may
be returned even though the developer is not making asynchronous calls.

The error is easy to handle if you are making synchronous SPCommand calls.
Simply make the call, and if it completes with error $0702, loop back and make
the call again until you can do so without error $0702. This technique forces
your program to wait until ASP is free again to make the call.

If you are making asynchronous SPCommand calls, and you receive the $0702
error, you might want to install a short (i.e., 1/4 second) timer using the
InstallTimer call, and make the SPCommand call again when the timer completes.
Remember, the InstallTimer has to be asynchronous, since you are making it
from the completion routine of an asynchronous call.

The SPWrite call also has a limit of one outstanding call per session. System
software does not currently use asynchronous SPWrite calls, but looping until
ASP returns something other than $0702 would be a good precaution for SPWrite,
too.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 97 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Note: When using the AppleShare FST under GS/OS, there is little
 reason to make SPCommand calls yourself, since most of the calls
 you can make are available through the FST as normal file system
 calls or as FST-specific calls.

Further Reference

 o AppleShare Programmer's Guide for the Apple IIGS
 o Inside AppleTalk
 o System Software 5.0 documentation (APDA)

END OF FILE TN.ATLK.005

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 98 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.ATLK.006
###

Apple II
Technical Notes

 Developer Technical Support

AppleTalk
#6: Apple IIe Workstation Card Anomalies

Written by: Dan Strnad July 1989

This Technical Note describes known anomalies when using the Apple IIe
Workstation Card.

 o Pascal Protocol Serial STATUS call returns incorrect results.
 When using the Workstation card, the Pascal STATUS call (normally
 used for printing) does not properly indicate whether the card is
 ready to receive characters. Applications should avoid this call, as
 the Pascal WRITE call in the firmware will perform this function
 automatically.

 o ProDOS 8 invisible bit is not respected.
 The invisible bit in the ProDOS 8 access byte was defined after the
 release of the Apple IIe Workstation Card, so the ProDOS Filing
 Interface present on the card treats this bit as reserved.

Further Reference

 o AppleShare Programmer's Guide for the Apple IIGS
 o Apple IIe Technical Reference Manual

END OF FILE TN.ATLK.006

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 99 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.GSOS.001
###

Apple II
Technical Notes

 Developer Technical Support

GS/OS
#1: Contents of System.Disk and System.Tools

Revised by: Matt Deatherage July 1989
Written by: Matt Deatherage November 1988

This Technical Note describes the contents of the disks System.Disk and
System.Tools and the minimum files necessary to boot GS/OS starting with
System Software 5.0.
Changes since January 1989: Updated to reflect System Software 5.0.

This Note gives a description of each of the files in the Apple IIGS System
Software 5.0 package. The package includes three disks: System.Disk,
System.Tools, and the Apple II Setup disk for AppleShare 2.01. System.Disk is
bootable and includes two drivers with 5.0. System.Tools is not bootable, but
with 5.0 it includes other drivers, AppleTalk files, and some utility
programs. The Apple II Setup disk is an update for AppleShare File Servers
(version 2.01 or later) which updates them to boot into GS/OS. Since the
software on this disk is not available for licensing and will not ship with
applications, this Note does not cover its contents.

Contents of System.Disk

ProDOS The boot file for GS/OS, ProDOS, contains
 the code necessary to load GS/OS from any
 particular file system. This file will be
 file-system dependent. For example, the
 file ProDOS on a bootable disk in the
 ProDOS file system will be different than
 the file ProDOS on a bootable disk in the
 High Sierra file system.
System The directory containing most of the GS/OS
 files.
 CDevs The directory containing all Apple IIGS
 Control Panel Devices (CDevs) required for
 minimal operation.
 Alphabet Sets translation specifications and
 display languages.
 DirectConnect Allows selection of direct-connected
 printers.
 General Allows setting of general system
 parameters.
 Keyboard Sets keyboard parameters.
 Modem Controls modem port settings.
 Monitor Sets 40-column or 80-column mode,

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 100 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 monochrome or color mode, and the color of
 text, text background, and borders.
 Mouse Sets mouse parameters.
 Printer Controls printer port settings.
 RAM Controls the size of the RAM disk and the
 GS/OS Disk Cache.
 Slots Allows selection of slot settings and
 startup slot.
 Sound Sets user preference for sound pitch and
 volume.
 Time Sets the internal clock's time and display
 format.
 CDev.Data A list of internal Control Panel
 parameters for each CDev in the directory;
 the list is precalculated for speed when
 opening the Control Panel.
 Desk.Accs The directory containing all the classic
 and new desk accessory files to be loaded
 at boot time.
 CtlPanel.NDA The new desk accessory which allows users
 to control almost all system parameters
 and choose printers and file servers.
 Drivers The directory containing all device
 drivers needed by GS/OS and the Toolbox
 (including the Print Manager and MIDI
 Tools).
 AppleDisk3.5 The Apple 3.5 Drive device driver for
 GS/OS.
 AppleDisk5.25 The driver for Apple 5.25" disk drives,
 including Disk II drives and Apple UniDisk
 5.25 drives. This driver is required for
 GS/OS to recognize 5.25" disk drives.
 Console.Driver The text screen and keyboard device driver
 for GS/OS.
 ImageWriter The ImageWriter driver for the Print
 Manager.
 Printer The printer port driver for the Print
 Manager.
 Modem The modem port driver for the Print Manager.
 Printer.Setup A file containing the default printer
 driver and port driver settings for the
 Print Manager.
 Error.Msg A compiled file containing all error
 messages required by GS/OS. This file is
 separate from the GS.OS file to provide
 easier support for localization.
 ExpressLoad New routines for GS/OS which load
 specially processed files up to four times
 faster than previously possible prior to
 System Software 5.0. GS/OS loads
 ExpressLoad at boot time on systems with
 more than 512K total memory.
 Fonts The directory containing all system fonts
 to be used.
 Courier.10 10 point Courier font.
 Courier.12 12 point Courier font.
 FastFont A preshifted version of Shaston 8 which
 QuickDraw II loads at QDStartUp time and

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 101 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 uses to draw Shaston 8 text faster than
 could normally be accomplished. QuickDraw
 II does not load FastFont on systems with
 512K total memory.
 Geneva.10 10 point Geneva font.
 Geneva.12 12 point Geneva font.
 Helvetica.10 10 point Helvetica font.
 Helvetica.12 12 point Helvetica font.
 Shaston.16 16 point Shaston font.
 Times.10 10 point Times font.
 Times.12 12 point Times font.
 Venice.14 14 point Venice font.
 Font.Lists A file prepared by the Font Manager when
 FMStartUp is first called. It contains
 information about all the fonts in the
 Fonts directory and is only recalculated
 if the Font Manager reasonably believes
 the information has changed.

 FSTs The directory containing the file system
 translators to be loaded at boot time.
 Char.FST The character device FST.
 Pro.FST The ProDOS FST.
 GS.OS The remainder of GS/OS.
 GS.OS.Dev The GS/OS Device Manager and associated
 core routines. Separate from GS.OS for
 speed reasons.
 P8 The ProDOS 8 operating system, version 1.8.
 Start The boot program. If this file exists,
 GS/OS will always launch it upon boot. In
 this case, as in most cases, this is the
 Finder. The Finder for System Software
 5.0 is V1.3.
 Start.GS.OS The file containing the GLoader and GQuit
 routines. It loads the files GS.OS and
 GS.OS.Dev, which contain the rest of the
 operating system.
 System.Setup The directory containing all the
 initialization files to be executed at
 boot time.
 CDev.Init A file, required for the Control Panel new
 desk accessory, which executes any
 initialization code in any CDev that is in
 the CDev subdirectory.
 Resource.Mgr The Resource Manager, V1.0. This is an
 initialization file since the design of
 the Resource Manager requires it to be
 present even when an application has not
 specifically loaded it. If this file is
 not present, the system will not boot.
 Sys.Resources A file containing system resources used by
 the tools and the Control Panel, and which
 are available to applications.
 Tool.Setup A required file that loads TS2, which
 contains all the patches to tools in ROM
 for ROM level 01. Tool.Setup would
 attempt to load TS1 if executed on a
 machine with ROM level 00, but GS/OS does

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 102 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 not boot on such a machine, therefore, TS1
 is not included.
 TS2 All the patches to ROM tools for ROM level
 01.
 TS3 A required file included for future
 compatibility.
 Tools The directory containing tool files for
 all tools not in ROM.
 Tool014 Window Manager V3.1.
 Tool015 Menu Manager V3.1.
 Tool016 Control Manager V3.1.
 Tool018 QuickDraw Auxiliary V3.0.
 Tool019 Print Manager V3.0.
 Tool020 LineEdit V3.0.
 Tool021 Dialog Manager V3.1.
 Tool022 Scrap Manager V3.0.
 Tool023 Standard File V3.0.
 Tool025 Note Synthesizer V1.4.
 Tool026 Note Sequencer V1.4.
 Tool027 Font Manager V3.1.
 Tool028 List Manager V3.1.
 Tool029 ACE Tools V1.1.
 Tool034 TextEdit V1.0.
Finder.Def Finder default settings file. This file
 must be present on the backup copy of
 System.Disk you use with the Installer
 program. The Installer will not be able
 to install GS/OS if this file is not
 present on System.Disk.
Icons The directory containing all the icon
 files used by the Finder.
 Finder.Icons The core set of icons used by the
 Finder for all system files and devices.
 Finder.Icons.X The additional icons used by the Finder on
 systems with more than 512K total total
 memory.
 FType.Main The file type names used by the Finder on
 all systems.
 FType.Aux The additional file type names used by the
 Finder on systems with more than 512K
 total memory.
AppleTalk A directory containing files to implement
 the AppleTalk networking protocols. On
 this disk, this folder is empty.
BASIC.System The ProDOS 8 BASIC command interpreter,
 V1.3.
BASIC.Launcher A short program which allows BASIC.System
 to run AppleSoft program files which are
 opened from the Finder.
Tutorial A directory containing several "empty"
 files (files containing two carriage
 returns) and other directories, used in
 user-level documentation to teach the
 concepts of a hierarchical file system.
 These files are absolutely unnecessary to
 the operation of the System Software.
 Budgets
 Finder.Data

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 103 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Home
 CY.1990
 CY.1991
 Finder.Data
 Office
 Finder.Data
 FY.1990
 FY.1991
 Finder.Data
 Graphics
 Ad
 Finder.Data
 Flier
 Letterhead
 Masthead
 Letters
 Finder.Data
 Mr.Merritt
 Ms.Bachtold
 To.Family
 Dad
 Finder.Data
 Mom
 TO.FRIENDS
 Darryl
 Finder.Data
 Molly

Contents of System.Tools

Icons Additional icons for the Finder. This
 folder is currently empty.
System A directory containing additional parts of
 GS/OS not found on System.Disk.
 CDevs Directory with additional Control Panel Devices.
 AppleShare Allows users to choose and log onto
 AppleShare file servers.
 ATIWriter Allows users to choose ImageWriter
 printers on AppleTalk networks for use
 with the Print Manager.
 ATLQIWriter Allows users to choose ImageWriter LQ
 printers on AppleTalk networks for use
 with the Print Manager.
 ATLWriter Allows users to choose LaserWriter
 printers on AppleTalk networks for use
 with the Print Manager.
 DirectConnect Allows selection of direct-connected
 printers.
 Desk.Accs Directory with additional desk
 accessories.
 CDRemote An updated version of the CD Remote new
 desk accessory which ships with the
 AppleCD SC. This version works with the
 SCSI Manager in System Software 5.0.
 VideoMix.NDA An updated version of the VideoMix new
 desk accessory which ships with the Apple
 II Video Overlay Card.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 104 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Drivers Directory with additional device drivers
 for GS/OS and the Toolbox.
 Apple.Midi The Apple MIDI Interface driver for the
 MIDI Tools.
 AppleDisk5.25 The driver for Apple 5.25" disk drives,
 including Disk II drives and Apple UniDisk
 5.25 drives. This driver is required for
 GS/OS to recognize 5.25" disk drives.
 AppleTalk The AppleTalk port driver for the Print
 Manager. It works with either serial port
 when configured for AppleTalk.
 AT.IW.PSetup This file contains the same information as
 the file Printer.Setup for an ImageWriter
 printing through AppleTalk. The Installer
 replaces the file Printer.Setup on the
 destination disk with this file and
 renames it Printer.Setup.
 AT.IWLQ.PSetup This file contains the same information as
 the file Printer.Setup for an ImageWriter
 LQ printing through AppleTalk. The
 Installer replaces the file Printer.Setup
 on the destination disk with this file and
 renames it Printer.Setup.
 ATalk The main AppleTalk GS/OS driver.
 ATP1.ATROM AppleTalk protocols to patch the IIGS ROM.
 ATP2.ATRAM AppleTalk protocols not in ROM.
 Card6850.MIDI The driver for 6850-based MIDI interface
 cards for the MIDI Tools.
 Epson The Epson(R) printer driver for the Print
 Manager.
 EPSON.PSetup This file contains the same information as
 the file Printer.Setup for an Epson
 printing through the parallel card driver.
 The Installer replaces the file
 Printer.Setup on the destination disk with
 this file and renames it Printer.Setup.
 ImageWriter The ImageWriter driver for the Print
 Manager.
 ImageWriter.LQ The ImageWriter LQ driver for the Print
 Manager. This driver currently has no
 more functionality than the ImageWriter
 driver.
 IW.PSetup This file contains the same information as
 the file Printer.Setup for an ImageWriter
 printing through the printer port. The
 Installer replaces the file Printer.Setup
 on the destination disk with this file and
 renames it Printer.Setup.
 IWEM PostScript(R) program which allows a
 LaserWriter emulate an ImageWriter. A user
 can load it into the LaserWriter with the
 LaserWriter CDev, and it is automatically
 invoked when printing through the slot
 associated with AppleTalk.
 IWLQ.PSetup This file contains the same information as
 the file Printer.Setup for an ImageWriter
 LQ printing through the printer port. The
 Installer replaces the file Printer.Setup

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 105 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 on the destination disk with this file and
 renames it Printer.Setup.
 LaserWriter The LaserWriter driver for the Print
 Manager. This driver works with any
 LaserWriter with PostScript. It does not
 work with the LaserWriter IISC.
 LW.PSetup This file contains the same information as
 the file Printer.Setup for an LaserWriter
 printing through AppleTalk. The Installer
 replaces the file Printer.Setup on the
 destination disk with this file and
 renames it Printer.Setup.
 Modem The modem port driver for the Print Manager.
 Parallel.Card A driver for some parallel printer
 interface cards for the Print Manager.
 This driver works with the Apple Parallel
 Interface Card, as well as several other
 parallel interface cards.
 Printer The printer port driver for the Print
 Manager.
 SCC.Manager The GS/OS supervisory driver that
 arbitrates hardware-level usage of the SCC
 in the Apple IIGS.
 SCSI.Manager The GS/OS SCSI Manager, the supervisory
 driver that arbitrates hardware-level
 usage of Apple II SCSI cards.
 SCSICD.Driver The GS/OS driver for the AppleCD SC drive.
 This driver is required for GS/OS to
 recognize CD-ROM drives.
 SCSIHD.Driver The GS/OS driver for SCSI hard disks.
 This driver is required for GS/OS to
 recognize SCSI hard disks.
 UniDisk3.5 The GS/OS driver for UniDisk 3.5 drives.
 This driver is required for proper
 operation of UniDisk 3.5 drives. Using
 the UniDisk with GS/OS without this driver
 eventually corrupts media.

 FSTs Directory with additional File System
 Translators.
 AppleShare.FST The AppleShare FST which allows GS/OS to
 access AppleShare file servers.
 HS.FST The High Sierra FST which allows GS/OS to
 access CD-ROM discs formatted in the
 international standard High Sierra or ISO
 9660 formats. This FST is read-only; it
 only performs read operations.
 System.Setup Directory with additional
 initialization files.
 AppleIIVOC.INIT An initialization file used by the Apple
 IIGS Video Overlay Card tool set.
 ATInit The AppleTalk initialization file.
 ATResponder The AppleTalk responder, used for
 AppleTalk network management.
 Tools Directory with additional tools.
 Tool032 MIDI Tools, V1.3.
 Tool033 Video Overlay Card tool set V1.1
 Fonts Directory with additional fonts. This

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 106 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 directory is currently empty.
Scripts This directory contains all the scripts
 for the Installer. On launch, the
 Installer looks in its parent directory
 for the Scripts directory and the scripts
 it contains.
 ADV.DISK.UTIL Script to install the Advanced Disk
 Utility program.
 APPLE.MIDI Script to install the Apple MIDI Interface
 driver and tool set.
 APPLEDISK5.25 Script to install the 5.25" disk driver
 for GS/OS.
 APPLESHARE Script to install AppleShare.
 Aristotle.Patch Script to install a change to Aristotle
 for easier class transition.
 ATIMAGEWRITER Script to install the ImageWriter printer
 driver for the Print Manager, as well as
 the files necessary to work with
 AppleTalk.
 ATIMAGEWRITERLQ Script to install the ImageWriter LQ
 printer driver for the Print Manager, as
 well as the files necessary to work with
 AppleTalk.
 CARD6850.MIDI Script to install the 6850-based MIDI
 Interface card driver.
 CDROM Script to install the High Sierra FST as
 well as the SCSI Manager and SCSI CD-ROM
 driver for GS/OS.
 DCIMAGEWRITER Script to install the ImageWriter printer
 driver for the Print Manager, as well as
 the files necessary to connect it to a
 serial port.
 DCIMAGEWRITERLQ Script to install the ImageWriter LQ
 printer driver for the Print Manager, as
 well as the files necessary to connect it
 to a serial port.
 EPSON Script to install the Epson printer driver
 for the Print Manager, as well as the
 parallel card driver.
 FONTS Script to install additional fonts. No
 additional fonts are currently supplied.
 INST.SYS.MIN Script to install a minimal GS/OS system
 on a given destination volume.
 INST.SYSF.NOFIN Script to install a minimal GS/OS
 system,without the Finder, on a given
 destination volume.
 INSTAL.SYS.FILE Script to install a GS/OS system, with the
 Finder, on a given destination volume.
 LASERWRITER Script to install the LaserWriter printer
 driver for the Print Manager, as well as
 the files necessary to work with AppleTalk.
 Local.Net.Boot Script to create a 3.5" floppy disk with
 the minimum configuration necessary to
 boot locally but log onto an AppleShare
 file server.
 NAMER Script to install Namer II and related
 AppleTalk files.
 Quick.Logoff Script to add a quick logoff feature

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 107 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 to AppleShare.
 SCSI.HARD.DISK Script to install the SCSI Manager and
 SCSI hard disk driver for GS/OS.
 Server.Sys.File Script to install System Software 5.0 on
 an AppleShare File Server.
 UNIDISK3.5 Script to install the UniDisk 3.5 driver
 for GS/OS.
 VIDEOMIX Script to install the latest versions of
 the Apple II VideoMix software and tools.
Installer The Apple IIGS Installer program. This
 program makes use of scripts found in the
 Scripts directory on this disk to install
 parts of the system, as well as third-
 party applications, without the user
 needing to copy individual files.
AppleTalk This directory contains additional
 AppleTalk files and utilities for
 AppleShare and AppleTalk.
 Boot.Driver A driver for AppleShare that GS/OS loads
 before the other drivers are loaded and
 which remains resident in memory after the
 boot process is finished. Installed on
 servers by the Installer script
 Server.Sys.File.
 Display.0
 Namer This directory contains the Namer II
 application to rename AppleTalk devices.
 MtxAbs.0 MouseText code routines for by Namer II.
 Namer.II The Namer II application (a ProDOS 8
 program).
 Namer.0 Additional code needed by Namer II.
 QuickLogoff An initialization file used to add a quick
 logoff feature to AppleShare.
 Start The AppleShare startup program which is
 installed in place of the Finder on
 AppleShare volumes. It allows the user to
 log on and then launches the server
 startup program for the user's machine.
Adv.Disk.Util The Advanced Disk Utility program which
 allows for partitioning of SCSI hard
 disks, as well as erasing, initializing,
 and zeroing volumes or partitions.

Minimum GS/OS System Disk Requirements

The following files are required for GS/OS to boot. This list does not
address files needed by the Finder or the IIGS Toolbox. Those files only
required in certain circumstances are noted as such. Those files that may be
excluded only when disk space or memory limitations make it absolutely
necessary are marked with asterisks (*).

ProDOS
System
 Start.GS.OS
 GS.OS
 GS.OS.Dev
 Error.Msg

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 108 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 FSTs
 Pro.FST Required for ProDOS disks.
 HS.FST Required for High Sierra or ISO 9660
 discs.
 Char.FST
 AppleShare.FST Required to use AppleShare file servers
 Drivers
 AppleDisk3.5 Required for Apple 3.5 Drives.
 AppleDisk5.25 Required for 5.25" drives.
 UniDisk3.5 Required for UniDisk 3.5 drives.
 SCSI.Manager Required for SCSI devices.
 SCSIHD.Driver Required for SCSI hard disks.
 SCSICD.Driver Required for AppleCD SC drives.
 Console.Driver
 ATalk Required for AppleTalk (including
 AppleShare).
 ATP1.ATROM Required for AppleTalk (including
 AppleShare).
 ATP2.ATRAM Required for AppleTalk (including
 AppleShare).
 SCC.Manager Required for AppleTalk (including
 AppleShare).
 System.Setup
 CDev.INIT Required for the Control Panel NDA.
 Tool.Setup
 TS2
 TS3
 Resource.Mgr
 Sys.Resources
 CDevs
 Alphabet*
 AppleShare* Required for selecting AppleShare file
 servers.
 ATIWriter* Required for choosing printers.
 ATLQIWriter* Required for choosing printers.
 ATLWriter* Required for choosing printers.
 DirectConnect* Required for choosing printers.
 General*
 Keyboard*
 Modem*
 Monitor*
 Mouse*
 Printer*
 RAM* Should always be included if possible.
 It provides the only way to set the size
 of the GS/OS Disk Cache.
 Slots*
 Sound*
 Time*
 CDev.Data* Only required if using the same CDevs that
 ship on System.Disk.
 Desk.Accs* Required for desk accessories; any desk
 accessories should be installed in this
 directory.
 CtlPanel.NDA*
 ExpressLoad* The only reason not to ship ExpressLoad is
 a lack of disk space; it is not loaded in
 512K systems.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 109 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Start Must be present for GS/OS to boot or some
 other file that GS/OS can boot into must
 be present in its place.
 Tools Required for any of the RAM-based tools;
 any RAM-based tools should be installed in
 this directory.
 Fonts Required for the Font Manager.
 FastFont* This makes Shaston 8 text drawing much
 faster and should be included unless
 absolutely impossible.
 P8 Required for ProDOS 8.
BASIC.System Required for AppleSoft BASIC.
BASIC.Launcher Required for AppleSoft BASIC if the user
 is allowed to open these programs from the
 Finder.

Further Reference

 o GS/OS Reference, Volumes 1 and 2

Epson is a registered trademark of Seiko Epson Corporation.
PostScript is a registered trademark of Adobe Systems, Incorporated.

END OF FILE TN.GSOS.001

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 110 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.GSOS.002
###

Apple II
Technical Notes

 Developer Technical Support

GS/OS
#2: GS/OS and the 80-Column Firmware

Written by: Matt Deatherage November 1988

This Technical Note discusses the changes in handling the 80-column firmware
between GS/OS and ProDOS 16.

For compatibility with the Apple IIe, the Apple IIGS does not treat slot 3
like it treats other slots. Instead of using a bit in the Slot Register
($C02D) to control the mapping of ROM in slot 3 between the built-in 80-column
firmware and any peripheral card physically in slot 3, the soft switches
SETINTC3ROM ($C00A) and SETSLOTC3ROM ($C00B) are used instead. On the Apple
IIe, these soft switches (referred to by the single label SLOTC3ROM)
respectively map the ROM at $C300 to the internal 80-column firmware (which
works with the auxiliary-slot 80-column card in most IIe computers) or to a
peripheral card in slot 3. Note that writing to SETSLOTC3ROM on a IIe or IIGS
with no card in slot 3 results in floating bus addresses in the $C300 space.

ProDOS 8 will not allow an Apple IIe or later model computer to have a card
other than an 80-column card in slot 3. ProDOS 8 needs the 80-column firmware
on a 128K machine for use in the /RAM driver, and the enhanced Apple IIe has
some of the interrupt firmware in the $C300 space. When ProDOS 8 is loaded in
an Apple IIe or later, it writes to SETSLOTC3ROM and looks at five
identification bytes. If all five of these bytes do not match, ProDOS 8 will
write to SETINTC3ROM to use the internal firmware. If all five bytes match,
the external slot 3 ROM is left mapped in.

ProDOS 16 fell victim to a bug in ProDOS 8 versions 1.2 through 1.6 which
always switched in the internal 80-column firmware, regardless of the user's
Control Panel setting. GS/OS does not have this bug; a card in slot 3 of a
IIGS other than an 80-column card will not be mapped out by GS/OS.

Application programmers who require the 80-column firmware should be familiar
of the following points:

o If your program contains a routine to insure that the 80-column
 firmware is indeed available, it could be buggy. Since ProDOS 16
 always made the 80-column firmware available, your routine to
 check that condition may never have been executed.
o If your program requires the 80-column firmware and it is not
 available, your program should display a message on the screen
 informing the user that he must set Slot 3 in the Control Panel to
 Built-in Text Display for your program to execute, then gracefully
 exit. Switching the $C300 ROM space, even with the user's
 permission, is not recommended. Slot 3 could contain an operating

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 111 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 GS/OS device, perhaps even the one your program was launched from.
 Remember, it is possible to boot GS/OS from slot 3.

Do not try to be clever in a situation like this. For example, do
not go looking at ID bytes in slot 3 to try to determine the type
of device present so that you can switch it out if you identify it
as a non-disk device. Slot 3 could contain an active device being
operated by a loaded GS/OS driver.

Your program should not ask the user's permission to switch ROM
space between ports and slots (or in this case, the internal
firmware versus the external card). That is why there is a
Control Panel. Simply display a message informing the user that
he must set Slot 3 in the Control Panel to Built-in Text Display
for your program to execute. You may offer to change the battery
RAM parameter for the user and restart the system (using the
OSShutdown call), but under no circumstances should you hit the
soft switch yourself, even with the user's permission.

Further Reference
o GS/OS Reference, Volume 1
o ProDOS 8 Technical Note #15, How ProDOS 8 Treats Slot 3

END OF FILE TN.GSOS.002

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 112 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.GSOS.003
###

Apple II
Technical Notes

 Developer Technical Support

GS/OS
#3: Pointers on Caching

Written by: Matt Deatherage November 1988

This Technical Note discusses effective use of the GS/OS cache.

Introduction

GS/OS is the first Apple II operating system to offer a sophisticated caching
mechanism. However, using the cache and using it wisely are two different
things. This Note presents some concepts which should lead to higher
performance for your application if it uses the cache.

What's Cached Automatically?

All blocks on a GS/OS readable disk could be classified into one of two
categories. "Application blocks" are all blocks on the disk contained in any
file (except a directory file), while "system blocks" are other blocks on the
disk. System blocks belong to the file system and include directory blocks,
bitmap blocks, and other housekeeping blocks specific to the file system.

GS/OS always maintains at least a 16K cache, even if the user has set the disk
cache size to 0K with the Disk Cache new desk accessory. When the system
(usually an FST) goes to read a system block, the block is identified as a
candidate for caching and is cached if possible. Applications define blocks
as candidates for caching by using the cachePriority field of many class 1
GS/OS calls. Note that class 0 calls do not have this field, thus
applications using exclusively class 0 calls will not be able to cache any
application blocks.

Although this difference may seem like a limitation, it in fact improves
performance. On the Macintosh, most applications that work with files (like
database managers) leave the file with which they are working open while they
need it; the file is only closed when the window containing it is closed.
Apple II programs historically are quite different--they usually read an
entire file at the beginning, modify it in memory, and write it when the save
function is selected. A moment's thought will show that if GS/OS arbitrarily
cached most or all application blocks, system blocks that would be used again
(such as directory blocks) will be kicked out to make room for them. We will
see that this is probably a bad thing to do.

How to Cache Effectively

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 113 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

The first tendency of many programmers is to attempt to completely cache any
given file, but this usually leads to a degradation in performance, not an
improvement. In small caches such strategies can slow the system to a crawl,
and large caches offer no significant improvement. Remember that until the
cache memory is needed, it is available to the system. The cache size for
GS/OS as set by the user is the maximum to be allotted, not the minimum.

Suppose you are attempting to cache a 40K file (80 512-byte blocks). If the
cache is set to less than 40K, the entire cache will be written through,
kicking out all system blocks currently cached. A cache of this size slows
system performance for little gain, since the entire file could not be cached
anyway. Even if the cache is large enough to hold the entire file, you are
needlessly taking twice the amount of memory with the same file (by reading it
into memory you have obtained from the Memory Manager and by asking GS/OS to
keep a copy in the cache).

It is evident that the system makes the best use of the cache automatically,
freeing your application from the duty of caching system blocks, but there are
certain instances where caching application data can improve system
performance.

An application which does not limit document size to available memory will
often only keep a portion of the document in memory at any given time.
Suppose that the beginning of such an application's document file contains a
header which to various parts of the document file. (These parts could be
chapters for a word processor, report formats for a database manager, or
individual pictures for an animation program.) This document header is
probably not very long, but the application will likely need to read it quite
often to quickly access various portions of the document file.

This header is a prime candidate for caching since it is a part of the file
which will definitely be read many times during the life of the application.
Contrast this with arbitrarily caching the entire file, which needlessly
wastes both cache space and available memory to keep a duplicate copy of
something that may or may not be read from disk again.

Although caching provides enormous benefits to GS/OS, indiscriminate use of
the cache will waste memory and degrade overall system performance. Be
prudent and limit your use of the cache to those portions of your document
files which will be read from disk many times.

Further Reference
o GS/OS Reference, Volume 1

END OF FILE TN.GSOS.003

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 114 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.GSOS.004
###

Apple II
Technical Notes

 Developer Technical Support

GS/OS
#4: A GS/OS State of Mind

Revised by: Dave Lyons & Matt Deatherage July 1989
Written by: Matt Deatherage January 1989

This Technical Note discusses GS/OS concepts and practices.
Changes singe January 1989: Updated for System Software 5.0.

Although GS/OS bears many similarities to ProDOS, GS/OS is a much wider-
reaching operating system, working not only with multiple file systems but
also with character devices. Some things which work under ProDOS cause
problems under GS/OS, and application programmers need to be aware of the
differences, particularly those developing text-based programs.

GS/OS Hints

Be aware of character devices. A legal GS/OS pathname, perhaps entered
by a user in response to a prompt, could map to a character device, with
potentially disastrous results. Error $58, Not a Block Device, can protect
you against this on many calls, including Create, but you must still take
precaution. DInfo tells you if a device is a character device or block
device; bit seven of the characteristics word is set if the device is a block
device.

Don't preprocess pathnames. A user input routine which prevents users
from entering pathnames that don't follow ProDOS syntax may help prevent
Illegal Pathname Syntax errors, but it also keeps users from creating files on
non-ProDOS disks with anything but ProDOS pathname syntax, and it could keep
them from accessing files on non-ProDOS disks which they created with another
GS/OS application. Since the only FST which allowed you to write to a device
under System Software 4.0 was ProDOS, you didn't see this problem right away.
However, System Software 5.0 includes an AppleShare FST which, compared to
ProDOS, is fast and loose with pathnames. "How about an anti-ProDOS name?" is
a legal AppleShare filename. To allow compatibility with present and future
non-ProDOS FSTs, Apple suggests you pass user-entered pathnames directly to
GS/OS, with no application preprocessing.

Remember that under GS/OS both colons and slashes are valid separators, and
colons can only be separators. In addition, all eight bits of each byte of a
pathname are significant. Refer to GS/OS Reference, Volume 1 for more
information on GS/OS pathname syntax. Using all eight bits of each byte may
be particularly difficult for text-based applications, which have no way to
force the standard Apple II character set to display characters such as sigma
or the copyright symbol; they can fiddle to get characters like the sterling

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 115 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

pound sign and an Apple. Some programs may wish to adopt special
typographical conventions for these special characters while others may choose
not to create files with such characters in their names. These programs could
present the user with a list of existing filenames (with some substitution for
the characters which are unavailable), while providing a method of choosing
one, to retrieve such files. Any way around this problem for a text-based
program will be less than optimal.

Avoid the Text Tools and all slot dependencies. Preliminary GS/OS
documentation points to a System Service call named DYN_SLOT_ARBITER. This
mechanism, which is not fully implemented in System Software 5.0, eventually
will allow the operating system to use internal ports and external slots for
the same "slot" in the same session, instead of requiring the user to reboot
the system to safely change between ports and slots. Applications which have
hard-coded slot dependencies (as the Text Tools unfortunately require) make
this transition very difficult, both for GS/OS and for the applications and
users. We recommend that applications use the GS/OS loaded and generated
character device drivers for text output. A DInfo call will tell you what
slot or port a driver controls, and whether or not it is a character device.

Avoid other file system dependencies. Many of the things ProDOS
programmers are used to as facts of life just are not true any longer. For
example, filenames don't have to be 15 characters or less under GS/OS. When
making class one calls, GS/OS will tell you if you don't have enough room for
the pathname by returning a Buffer Too Small error ($4F). Avoiding file
system dependencies means handling this error intelligently: if you receive
it, allocate more space for the buffer and try the call again. GS/OS will
tell you how much space is needed. If you absolutely must hard code
pathnames, such as volume names, be sure to use the colon as the separator,
because if you do not, filenames with slashes will cause problems. Similarly,
don't assume any of the following:

 o There can only be 51 files in the volume directory
 o All devices are named ".Dn," where n is the device number
 o All blocks are 512 bytes long
 o All devices are block devices
 o Any other ProDOS-specific characteristics

Don't hog all of the memory. While this is never a good idea on the
IIGS, it's even worse under GS/OS. To process things like pathnames, GS/OS
allocates memory through the Memory Manager. If you've allocated all of
available memory (i.e., for a disk copy procedure), GS/OS will be forced to
return an Out of Memory error ($54). If the condition is so severe that GS/OS
can no longer function, it will return a fatal GS/OS error with an ID = 2, and
the user will be asked to restart the system.

(A common cause of fatal GS/OS error 2 during development is using a length
byte instead of a length word on a class one string. Doing so almost always
causes the first word to be greater than 8K, which is the maximum length of
pathnames under GS/OS. GS/OS then dies for your enjoyment, as it is unable to
allocate the memory for the pathname because it's too big, even if more than
8K is available.)

Hard code as little as possible. Even seemingly static things like
device names should not be hard coded, since a new loaded driver could change
the name of the same device at any time. Also, it may be possible in the
future for users to rename devices.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 116 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Only ask for the access you need. If you're just going to read a file,
make a call to Open the file with read permission only. In file systems where
access privileges mean more than they traditionally have in ProDOS (where
things are usually "Locked" or "Unlocked"), this could save some trouble. For
example, AppleShare allows the same file to be opened multiple times as long
as each open is with read-only access. If your program is only going to read
a file, opening it with read and write access needlessly denies others on the
server access to the file.

Copy all GS/OS information with files. Applications that copy files
need to do more than copy the data fork of the file. If the file is extended,
the resource fork of the file should be copied as well. In addition, when
requested, each FST returns an option_list that contains information specific
to the host file system that GS/OS does not use (i.e., AppleShare's
option_list includes Finder information and access privileges). Calls to
GetFileInfo and Open can return the option_list, while a call to SetFileInfo
can set it. An FST will not set parameters in the option_list which should
not be altered (just as SetFileInfo skips the EOF fields in GetFileInfo
records). To ensure that the duplicate has as much host file system
information from the original as can reasonably be transferred, always copy
the option_list.

Further Reference

 o GS/OS Reference, Volumes 1 and 2

END OF FILE TN.GSOS.004

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 117 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.GSOS.005
###

Apple II
Technical Notes

 Developer Technical Support

GS/OS
#5: Resource Fork Formats

Revised by: Matt Deatherage July 1989
Written by: Matt Deatherage January 1989

This Technical Note discusses the resource fork format of GS/OS extended
files.
Changes since January 1989: Documented the location of resource fork
format information.

Due to an omission in GS/OS Reference, Volume 1, some developers are not aware
that the format of the resource fork of any file is reserved by Apple
Computer, Inc. With the release of System Software 5.0 for the Apple IIGS, a
Resource Manager is available to manipulate discrete chunks of data stored in
the resource forks of files. To prevent corruption of media, information
should only be stored in any resource fork in this format.

The Resource Manager should always be used to manipulate the data in resource
forks. Some utilities may find this impossible and will require direct
manipulation of resources without the Resource Manager. Information on the
format of the resource forks is included with the Resource Manager
documentation in the System Software 5.0 documentation.

Further Reference

 o GS/OS Reference, Volume 1
 o System Software 5.0 documentation (APDA)

END OF FILE TN.GSOS.005

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 118 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.GSOS.006
###

Apple II
Technical Notes

 Developer Technical Support

GS/OS
#6: Drivers and GS/OS Direct Page

Revised by: Dave Lyons July 1989
Written by: Matt Deatherage March 1989

This Technical Note corrects an error in the preliminary GS/OS documentation
and provides an alternate suggestion for developers who are writing GS/OS
drivers.
Changes since March 1989: Added information about setting the D register
before making system service calls and documented that the GS/OS direct page
is now guaranteed to remain the same between Driver_StartUp and
Driver_ShutDown calls.

Preliminary GS/OS documentation, including the beta draft of GS/OS Reference,
Volume 2, incorrectly states that locations $5A through $5F are available for
device drivers, and that locations $66 through $6B are shared by device
drivers and supervisory drivers (and may be corrupted by either a driver or
supervisory driver call).

This is not correct. The locations in question are used by GS/OS; destroying
these locations can cause system failure and media corruption.

Drivers which require direct page space of their own should request it from
the Memory Manager when they are started. Upon receiving a call, a driver can
save the value of the D register (containing the GS/OS direct page) and switch
to its own direct page. The driver may keep the value of its direct page
inside the driver itself; no space on GS/OS direct page is available for this
purpose. The driver must restore the D register to point to the GS/OS direct
page before returning from the call, and it should also dispose of its direct
page space when it shuts down.

The driver must also set the D register to point to the GS/OS direct page
before making any system service call other than SET_SPEED and
DYN_SLOT_ARBITER.

Note: The location of the GS/OS direct page is guaranteed to
 remain the same between Driver_StartUp and Driver_ShutDown calls.

Further Reference

 o GS/OS Reference, Volume 2

END OF FILE TN.GSOS.006

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 119 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.GSOS.007
###

Apple II
Technical Notes

 Developer Technical Support

GS/OS
#7: Behavior of SET_DISKSW

Written by: Matt Deatherage July 1989

This Technical Note discusses changes to the documented behavior of SET_DISKSW
in System Software 5.0. This Note is primarily of interest to device driver
authors.

GS/OS Reference, Volume 2, states that the system service call SET_DISKSW
($01FC90) will remove a device's blocks from the cache and place its volumes
off line.

With System Software 5.0, this behavior is slightly changed. SET_DISKSW also
posts insertion and ejection notices to the GS/OS Notify Procedure queue, so
that notification procedures may be called. This requires SET_DISKSW to check
the current status of the device to know if the disk switched condition
indicates an insertion or an ejection (by comparing the current device status
against the device-dispatcher maintained status).

A GS/OS driver may have an interrupt handler present to handle interrupts
generated by its device on insertion or ejection (if the hardware is capable
of generating such interrupts). Such an interrupt handler will probably want
to call SET_DISKSW when an insertion or ejection is detected to make the rest
of the operating system aware of it. However, SET_DISKSW obtains the device's
status based on the deviceNum and callNum on the GS/OS direct page.

Any driver or interrupt handler calling SET_DISKSW must first save the values
for deviceNum and callNum on the GS/OS direct page, replacing callNum with the
number of a driver call that accesses media (Apple suggests Driver_Read,
$0002) and replacing deviceNum with the number of the device for which
SET_DISKSW is being called. The caller must restore the original values after
SET_DISKSW returns.

Although SET_DISKSW saves and restores the GS/OS direct page, the caller must
know where the GS/OS direct page is located so it can place the proper
parameters there. The value used for the GS/OS direct page should be the
value of the D register when the driver receives its Driver_StartUp call. The
GS/OS direct page is now guaranteed to remain constant between Driver_StartUp
and Driver_ShutDown calls.

Further Reference

 o GS/OS Reference, Volume 2

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 120 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

END OF FILE TN.GSOS.007

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 121 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.GSOS.008
###

Apple II
Technical Notes

 Developer Technical Support

GS/OS
#8: Filenames With More Than CAPS and Numerals

Written by: Matt Deatherage July 1989

This Technical Note discusses the problems some applications may have when
dealing with filenames containing lowercase letters for the first time.

With System Software 5.0, lowercase filenames enter GS/OS en masse for the
first time. Lowercase filenames are inherent to the AppleShare filing system
and have been added to the ProDOS filing system through the ProDOS FST.
However, since Apple II filing systems never had lowercase characters in
filenames before, this change undoubtedly causes problems for some
applications. This Note gives general guidelines to help developers avoid
such problems.

How the ProDOS FST Does It

"Wait," you say (not for any particular reason, other than a general fondness
for monosyllables). "If you put lowercase characters in the ProDOS directory
entry, it's going to cause all kinds of problems. What's gonna' happen on][+
machines?"

Two previously unused bytes in each file's directory entry are now used to
indicate the case of a filename. The bytes are at relative locations +$1C and
+$1D in each directory entry, and were previously labeled version and
min_version. Since ProDOS 8 never actually used these bytes for version
checking (except in one case, discussed below), they are now used to store
lowercase information. (In the Volume header, bytes +$1A and +$1B are used
instead.)

If version is read as a word value, bit 7 of min_version would be the highest
bit (bit 15) of the word. If that bit is set, the remaining 15 bits of the
word are interpreted as flags that indicate whether the corresponding
character in the filename is uppercase or lowercase, with set indicating
lowercase. For example, the filename Desk.Accs has a value in this word of
$B9C0, or binary 1011 1001 1100 0000. The following illustration shows the
relationship between the bits and the filename:

 Bits in WORD: 1011100111000000
 Filename: Desk.Accs
 Uppercase or Lowercase: ULLLUULLL

Note that the period (.) is considered an uppercase character.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 122 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

What it Means

Because no lowercase ASCII characters are actually stored in the filename
fields of the directory entries, all ProDOS 8 software should continue to work
correctly with disks containing files with lowercase characters in the
filenames. Neither ProDOS 8 nor the ProDOS FST are case sensitive when
searching for filenames: ProDOS is the same file as PRODOS is the same file
as prodos.

The main trouble applications have is when a filename has been "processed" by
the application before passing it to GS/OS. For example, if a command shell
automatically converts filenames to all uppercase characters before passing
them to ProDOS 16, the chosen uppercase and lowercase combination for the
filename will never be seen by the user without any apparent reason. Some
developers have considered it okay to ignore lowercase considerations,
thinking that they would only apply to file systems other than ProDOS (and
file systems which would not be available on the Apple II for a long time, if
ever). These developers were mistaken.

A more pressing problem is that of an application that is looking for a
specific file, perhaps a data file or a configuration file. If the
application simply passes a pathname to GS/OS and asks for that file to be
opened, it will be opened if it exists. The case of the filename is
irrelevant since file systems are not case sensitive. However, if the
application makes GetDirEntry calls on a specific directory, looking for the
filename in question, there could be trouble: the application won't find the
file unless its string comparison routine is not case sensitive. If the user
has renamed the file MyApp.Config, and the string comparison is looking for
MYAPP.CONFIG, then the application will report that the file does not exist.

It is repeated here that when dealing with normal OS considerations, it's
almost always better to ask for something and respond intelligently if it's
not there than it is to go looking for it yourself. The OS already has a lot
of code to look for things (or expand pathnames, or examine access privileges,
etc.), and reinventing the wheel is not only tedious, it can be detrimental to
future compatibility.

The One Exception

In the past, ProDOS 8 did look at the version bytes when opening a
subdirectory. The code to do this has been removed from ProDOS 8 V1.8.
Please be aware that earlier versions of ProDOS 8 will be unable to scan
subdirectories with lowercase characters in the directory name, even to find
files in those directories.

Conclusion

Most user-input routines (including the Standard File tool set) return
filenames or pathnames that can be passed directly to GS/OS without
preprocessing. Doing so may return "pathname syntax errors" more often than
not doing so, but it also enables applications to take advantage of future
versions of the System Software that loosen the restrictions on syntax (or new
file systems that never had such restrictions). Under GS/OS, even ProDOS
disks aren't what they used to be.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 123 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Further Reference

 o GS/OS Reference

END OF FILE TN.GSOS.008

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 124 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.001
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#1: How to Install Custom BRK and /NMI Handlers

Revised by: Jim Mensch & Jim Merritt November 1988
Written by: Jim Merritt October 1986

This Technical Note discusses a method to install a custom debugger or
debugging stub within the Apple IIGS system.

Introduction

This Technical Note discusses a particular method that you may use to install
a custom debugger or debugging stub within the Apple IIGS system. The
strategy and techniques described here should be of special interest to those
who wish to operate the Apple IIGS as a slave to a debugger that resides on
another machine.

Typically, an interrupt handler should pass control to a debugger or debugging
stub whenever the processor executes a BRK instruction, or when an interface
card triggers a non-maskable interrupt (/NMI). To simplify the design of the
debugger, the Apple IIGS Monitor should be responsible for the following:

o saving all machine state information in locations that the
 debugger can access
o setting the machine to a known state
o passing control to an arbitrary debugger
o restoring the remembered machine state upon regaining control from
 the debugger
o resurrecting the interrupted process

The Monitor is designed to provide all of the services above for the BRK
instruction, but only the third for /NMI interrupts. In addition, Apple II
family systems are generally intolerant of /NMI interrupts. In this Technical
Note we concentrate on the means by which you can install your own custom BRK
handler, although we also briefly examine /NMI considerations.

Dealing With BRK

A BRK interrupt handler may reside at any address in memory. The Monitor
passes control to your code by executing a JSL instruction; consequently, your
routine must terminate with an RTL instruction. To install your BRK handler,
simply load it into memory, call the Miscellaneous Tool Set GetVector routine
to fetch the address of the current BRK handler, put that address in a safe
place, then supply the address of your handler to the Miscellaneous Tool Set

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 125 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

SetVector routine. To deactivate your handler, restore the previous handler
address using SetVector as follows:

;
; NOTE: All Listings are in APW assembler format.
;

INSTMYBRK anop ;Example code to install user's BREAK handler.
 PushLong #0 ;Space for function call result.
 PushWord #$1C ;We want BREAK vector address.
 _GetVector ;Make the call using standard macro.

; The stack now holds address of the current break handler.
 PLA ;Get and save low word of address...
 STA SBRKADR
 PLA ; ...and now high word.
 STA SBRKADR+2
 PushWord #$1C ;We want to change BREAK vector address.
 PushLong #MYHANDLR ;Address of user's BRK handler.
 _SetVector ;Make the call using standard macro.

; Custom handler is in place, now go off and do whatever we like...

DEACMYBRK anop ;Example code to deactivate the BRK handler.
 PushWord #$1C ;We want to change BREAK vector address.
 PushLong SBRKADR ;The previous BRK handler address.
 _SetVector ;Make the call using standard macro.

Upon entry to your code, the machine will be in eight-bit native mode.
Specifically, the m and x bits will be set (forcing eight-bit accumulator,
memory access, and index registers), the processor will be running at the
normal (1 MHz) speed, all memory shadowing will be enabled, and both the
direct page and data bank registers will be reset to zero. The same
conditions must hold when your BRK handler returns control to the Monitor.
While your code is active, however, it is free to affect the machine state in
arbitrary ways, including (but not limited to) widening the registers,
increasing the clock rate, and disabling shadowing. Before returning control
to the Monitor, your break handler must also clear the processor's carry flag,
as an indication that the BRK was indeed serviced by an external handler.
(Note: The default BREAKVECTOR points to a "no-op" handler that simply sets
the carry flag to indicate that there is no external handler available, and it
then executes an RTL.)

When a BRK occurs, the processor saves the machine's state in the BRK.VAR
area, and you may obtain this address with the Miscellaneous Tool Set GetAddr
routine as follows:

 PushLong #0 ; space for result
 PushWord #9 ; we want BRK.VAR address
 _GetAddr ; make the call using standard macro

; The stack now holds the address of the BRK.VAR area, expressed as a long
word (four bytes).

Coping With /NMI

Handling /NMI interrupts is, by far, a trickier proposition than fielding BRK

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 126 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

instructions. For example, the user-definable /NMI jump-vector, /NMI
($0003FB), only has room in its three-byte JMP-absolute instruction for a two-
byte address. Because of this size limitation, at least the "front end" of
any /NMI handler must reside in bank $00. In addition, the Monitor does not
"condition" the system in any way before transferring control through the /NMI
hook, so the system could be in native mode, emulation mode, or any hybrid
mode (with any screen condition) upon entry to your handler. (Note: Although
the 65816 processor provides for separate /NMI vector addresses in native and
emulation modes, the Apple IIGS implementation of these two vectors pass
control to the same user hook at $0003FB.) The processor only saves minimal
machine state information when an /NMI occurs; if the handler needs to
preserve more than the program counter and status register (which are saved
automatically), then it must do so explicitly. Because the 65816 assumes any
program running in emulation mode has its program bank register in bank zero,
it will not save the program bank register for any program running in
emulation mode outside of bank zero. Code which runs in this manner will
always crash if it makes any attempt to return from the interrupt. Finally,
/NMI interrupts can create havoc with disk access and other aspects of the
system; consequently, the only way you can safely use /NMI interrupts is as a
one-way "escape hatch" to emergency debugging code.

Here are some ground rules for /NMI interrupt handlers.

o On entry, store any interesting registers or machine state in RAM
 space owned by the handler.
o Determine whether the processor is in emulation mode or native
 mode.
o Take appropriate action, depending upon the processor mode.
o Under no circumstances try to return from the interrupt! Restart
 the system instead.

To install an /NMI handler, load it into some free RAM in bank $00, put the
two-byte address currently at location /NMI+1 in a safe place, then replace it
with the address of your handler. To deactivate your handler (assuming
nothing has yet invoked it), simply restore the previous handler address to
/NMI+1.

END OF FILE TN.IIGS.001

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 127 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.002
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#2: Transforming I/O Subroutines for Use in "Native" Mode

Revised by: Pete McDonald November 1988
Written by: Pete McDonald October 1986

This Technical Note outlines a number of techniques useful when transforming
Apple II I/O subroutines for use in the "native" Apple IIGS environment.

The Apple IIGS execution environment represents quite a departure from the
environment to which the average Apple II developer is accustomed. This fact
results in a number of unique problems when one attempts to convert existing
Apple II applications for use in the "native" Apple IIGS environment. (Note:
If you intend to let your application remain an eight-bit "classic" Apple II
application, then you can ignore the information this Technical Note
presents.)

I/O subroutines which depend upon critically timed code present some of the
biggest conversion problems due to two major issues. In the native IIgs
environment, you cannot guarantee that there will be memory available in a
given bank, and I/O locations are not available in every bank.

There are a number of possible solutions to this problem. Which ones you
should use depend upon what the program in question is doing. This Note
attempts to describe some of the problem situations and possible solutions.

Examine the 6502 code segment below. It serves no useful purpose, other than
to illustrate a simple manifestation of the problem. Assume IoLoc is a
location in the $C000 - $CFFF range of memory.

 Loop LDA IoLoc
 DEY
 BPL Loop

Because the $C000 - $CFFF range of memory in bank 2 or higher contains RAM
instead of I/O circuitry unless hardware shadowing is enabled, if you place
the fragment above in one of these banks, it will have no effect on the I/O
device you intend it to control.

There are two possible solutions in this case. Either change the instruction
LDA IoLoc so it uses long addressing, thereby forcing the CPU to reference the
the proper bank. (Note: The problem with this is the long version of LDA
requires an extra CPU cycle to execute. If the code segment is timing
critical, then this method is likely to be unacceptable.) Alternately, in the
timing-critical case, we could set the data bank register before entering the
loop which would mean the LDA IoLoc would take the same number of cycles as it

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 128 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

did previously, thus leaving the timing loop unchanged.

These solutions seem pretty easy; therefore, you know there is a catch. The
catch, unfortunately, is that most code is not isolated as in the example.
Specifically, code commonly tries to load from or store to some location in
memory other than the I/O location at the same time it is trying to access the
I/O location.

Take, for example, the following fragment:

 Loop LDA Data,y
 STA IoLoc
 DEY
 BPL Loop

In this example, we assume that the label Data refers to some kind of table
which normally resides in the same bank as the program. Now if you set the
data bank register to access I/O locations, then the reference to Data will
also reference the same bank as the I/O; this solution is likely not
acceptable. One thing you can do is move the data table to the direct page
(zero page for 6502 programmers), but now the LDA Data,y instruction will take
one less cycle to execute. There is a solution, although it is a little
complicated. If we set the direct page register to a non page-aligned
location, then we effectively apply a one-cycle penalty to all direct page
references and solve our problem.

Of course, nothing is ever as simple as it seems. What happens to references
to other direct page locations that expect to operate without the one-cycle
penalty? To properly address this question, I would need much more space than
I have here, so in lieu of further examples, I offer some general information.
(As an aside, I used these techniques to transform the old "Apple II Disk II
formatter module" for use in any bank of memory in the native IIGS
environment. I accomplished this using, almost exclusively, editor find and
replace commands, and I finished in hours instead of the days which would have
been required to completely rewrite the program.)

In addition to the techniques already covered, there are a few other things
which may be necessary to complete a transformation (they were necessary in
the case of the formatter module).

As I already mentioned, one problem is what to do in the case where a program
references I/O, local program-bank data, and the zero-page. In this case,
significant rewrites could be required, but not necessarily.

In the case of the disk formatter, it turned out that some modules used both
normal zero-page addressing and normal 16-bit absolute indexed addressing.
Since the transformation process dictates that we change 16-bit absolute
addressing to direct-page addressing with a non page-aligned direct page,
there could have been a problem had both uses of the direct page been timing
critical. Fortunately, by treating each module of the program separately,
when I needed both types of addressing, only one was critical. The solution
was to set the direct page to a non page-aligned value in some modules and to
a page-aligned value in others. There are some minor logistical issues when a
direct page's base address can be at either $xxx0 or $xxx1, the biggest of
which is keeping track of which is in effect at a given point and knowing to
reference the label as label, label+1, or label-1, depending upon the
particular case.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 129 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

With the formatter transformation, there was one other major issue: there are
not direct-page versions of all the 16-bit absolute addressing modes (i.e.,
one cannot convert 16bitaddress,x to 8bitaddress,x). In the case of the
formatter, I was able to solve this by reversing all the register use (i.e.,
all LDY instructions became LDX instructions, all STY instructions became STX
instructions, etc.).

There are still a number of other ways in which one can approach these issues;
one that comes to mind would be using some form of the new stack-relative
addressing modes to yield yet another range of semi-independently accessible
addresses.

The real point of this Technical Note is that with a little thought and
effort, one can successfully convert a large subset of likely configurations
for use in the native IIGS environment without major rewrites. The bottom
line is to be creative!

Further Reference
o Programming the 65816 Including the 6502, 65C02, and 65802 (Eyes/Lichty)
o Apple IIGS Firmware Reference

END OF FILE TN.IIGS.002

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 130 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.003
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#3: Window Information Bar Use

Revised by: Dan Oliver November 1988
Written by: Dan Oliver October 1986

This Technical Note details the use of a window's information bar, including a
code sample which places a menu in an information bar.

Apple IIGS window information bars are not as straightforward as other window
features, and one reason for this is the small amount of space originally
allocated for their processing. If you feel your application can benefit from
the use of information bars, you can implement them, and this Technical Note
explains how to do it and includes some suggestions for their use. The code
samples below demonstrate how to place a menu bar in an information bar, but
your use of information bars is not limited to those described here.

Information Bar Initialization

You can create an information bar in a window when you create the window by
setting the following fields in the parameter list you pass to NewWindow:

wFrame Set bit 4.

wInfoHeight Set to the height of the information bar (should not exceed
 window height).

wInfoDefProc Set to the address of the information bar definition
 procedure (see below).

If you create a window as visible, the Window Manager will call your
information bar definition procedure (InfoDefProc) before returning from
NewWindow. If you have to create the contents of the information bar after
the window, you will have a problem since the Window Manager will expect your
InfoDefProc to draw things which do not yet exist. You can solve this problem
by creating the window as invisible, creating the contents of the information
bar, then showing the window. Another solution would be to detect, in the
InfoDefProc, that the contents of the information bar do not yet exist.

Below is an example of initializing a window's information bar to contain a
menu bar. The three key fields of the parameter list which you pass to
NewWindow are as follows:

wFrame Set bit 4 = 1 and bit 5 = 0 for an invisible window; the
 other bits do not affect the information bar, so you can set

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 131 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 them as you wish.

wInfoHeight Assuming you are using a system menu bar and initializing it
 before the window, set to the height FixMenuBar returned
 when you created the system menu bar. If you would rather
 use an absolute value, which we do not advise, you could use
 14 which should be about right for the current system font.

wInfoDefProc Set to the address of the InfoDefProc, in this case
 draw_info.

After you create the window, but before you show it, you can create the menu
bar to place in the information bar. The code to create the menu bar might
look like the following:

window Direct page location that contains pointer to window's port.
;
; --- Create a menu bar --

;
 pha Space for result.
 pha
 pea $FFFF Set "use current port" flag.
 pea $FFFF
 _NewMenuBar Create a menu bar.
 pla Get returned menu bar handle.
 sta <menuBar Remember menu bar handle.
 pla
 sta <menuBar+2
;
;
; --- Store menu bar's handle in the window's InfoRefCon -------------------------

;
 pei <menuBar+2 Pass menu bar handle.
 pei <menuBar
 pei <window+2 Window to set refCon.
 pei <window
 _SetInfoRefCon Store menu bar handle in window's
infoRefCon.
;
;
; --- Make the window's menu bar the current menu bar ----------------------------

;
 pei <menuBar+2 Pass menu bar handle.
 pei <menuBar
 _SetMenuBar Make new menu bar the current menu bar.

;
;
; --- Get the RECT of the window's information bar -------------------------------

;
 pea tempRect|-16 Pass pointer of RECT.
 pea tempRect
 pei <window+2 Pass pointer of window.
 pei <window

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 132 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 _GetRectInfo tempRect = interior RECT of window's Info
Bar.

; --- Dereference menu bar handle --

;
 ldy #2
 lda [menuBar],y
 tay
 lda [menuBar]
 sta <menuBar Now menuBar is the pointer to the Menu
Bar.
 sty <menuBar+2
;
;
; --- Set size of menu bar ---

;
;
 lda <tempRect+y1
 dec a Overlap top side.
 ldy #CtlRect+y1
 sta [menuBar],y
;
 lda <tempRect+x1
 dec a Overlap left side.
 ldy #CtlRect+x1
 sta [menuBar],y
;
 lda <rect+y2
 inc a Overlap bottom side.
 ldy #CtlRect+y2
 sta [menuBar],y
;
;
; --- Set flag to tell Menu Manager to draw menu in current port -----------------

;
 ldy #CtlOwner+2 Set high bit in CtlOwner.
 lda [menuBar],y
 ora #$8000
 sta [menuBar],y
;
;
; --- Create the menus and add them to the window's menu bar ---------------------

;
 lda #4
loop pha Save index into menu list.
 tay Switch index to Y.
;
 pha Space for return value.
 pha
 lda menu_list+2,y Pass address of menu/item lines.
 pha
 lda menu_list,y
 pha

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 133 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 _NewMenu
; Menu handle already on stack.
 pea 0 Insert menu list at front of list.
 _InsertMenu Add my menus to the system menu bar.
;
 pla
 sec
 sbc #4
 bpl loop
;
;
; --- Initialize the size of the menu bar and menus ------------------------------

;
 pha Space for returned bar height.
 _FixMenuBar Fix up positions in the menu bar.
 pla Discard height of menu bar.
;
;
; --- Restore the system menu bar as the current menu ----------------------------

;
 pea 0 Pass flag for system menu bar.
 pea 0
 _SetMenuBar Make system menu bar current.

The window's menu bar is now initialized, and you can make the window visible
with a call to ShowWindow; the InfoDefProc will draw the menu bar.

Information Bar Definition Procedure (InfoDefProc)

The InfoDefProc is slightly misleading; it is only responsible for drawing the
interior, above the background, of the information bar. The InfoDefProc is
not responsible for defining the information bar, drawing the frame and
background, testing for hits, or tracking the user. The InfoDefProc is
located inside your application, and the Window Manager calls it whenever it
needs to draw the part of the window frame that contains the information bar.
Each window with an information bar can have its own InfoDefProc, or they can
call share a common InfoDefProc. When the Window Manager calls your
InfoDefProc, it sets the proper port, the Window Manager's port, and the
proper state, an origin local to the window frame and clipped to any windows
above. The direct page and data bank are not defined and should be considered
unknown.

The Window Manager passes your InfoDefProc the following information:

o Pointer to the information bar's interior rectangle (less frame), local
 coordinates.
o Value of the window's wInfoRefCon, set and used only by your application.
o Pointer to the window's port (do not switch to this port for drawing).

A window that has an information bar containing a menu bar (handle stored in
the window's InfoRefCon) might have a InfoDefProc as follows:

draw_info START
;

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 134 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

theWindow equ 6 Offset to the information bar owner
window.
infoRefCon equ theWindow+4 Offset to the window's information bar
RefCon.
infoRect equ infoRefCon+4 Offset to the information bar's enclosing
RECT.
;
 phd Save original direct page.
 tsc Switch to direct page in stack.
 tcd
;
;
; --- Draw the window's menu bar in the window's information bar -----------------

;
 pei infoRefCon+2 Pass handle of window's menu bar handle.
 pei infoRefCon
 _SetMenuBar Make the window's menu bar the current
menu bar.
;
 _DrawMenuBar Draw the window's menu bar, as requested.
;
 lda #0 Zero is the flag for the system menu bar.
 pha
 pha
 _SetMenuBar Make the system menu bar current again.
;
;
; --- Remove input parameters from the stack -------------------------------------

; ldx #12
 ply Pull original direct page off stack, save
in Y.
;
 tsc Move direct page point to stack.
 tcd
 lda 2,s Move return address down over input
parameters.
 sta 2,x
 lda 0,s
 sta 0,x
;
 tsc Adjust stack for stripped input
parameters.
 phx Number of bytes of input parameters.
 clc
 adc 1,s Add number of input parameters to stack
pointer.
 tcs And reset stack.
;
 tya Restore original direct page.
 tcd
;
 rtl Return to Window Manager.
 END

Information Bar Environment

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 135 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

An information bar is part of a window's frame, that is, not part of the
window's content region. Because it is part of the frame, an information bar
is in the Window Manager's port, so before an interaction (drawing or mouse
selecting), the proper port (Window Manager's) must be in the proper state.
The proper state means the origin must be at the window's upper-left corner
and clipped to any windows above.

When the Window Manager calls the InfoDefProc it sets the proper port to the
proper state; however, to interact with the information bar outside the
InfoDefProc, you must set the proper port the the proper state. You can
accomplish this with a call to StartInfoDrawing. When the interaction is
completed, you must allow the Window Manager to return its port to a general
state via a call to EndInfoDrawing. You are in a special state that requires
some constraints (discussed later) between the calls to StartInfoDrawing and
EndInfoDrawing.

Here is an example of interacting with our window's menu bar.

;
poll pha Space for return value.
 pea %0000111101101110 Pass event mask to use.
 pea TaskRec|-16 Pass pointer to Task record.
 pea TaskRec
 _TaskMaster
 pla Get returned value.
 beq poll Does event need further processing?
;
;
; --- Handle button down in window's information bar -----------------------------

;
 cmp #InInfo In Information bar?
 bne poll
;
 pha Space for result.
 pha
 lda TaskRec+TaskData+2 Pass pointer of window.
 pha
 lda TaskRec+TaskData
 pha
 _GetInfoRefCon Get menu bar handle from window's
InfoRefCon.
 pla
 sta menuBar
 pla
 sta menuBar+2
;
;
; --- Switch to proper port in proper coordinate system --------------------------

;
 pea tempRect|-16 Pass pointer to RECT to store info bar
RECT.
 pea tempRect
 lda TaskRec+TaskData+2 Pass pointer of window.
 pha
 lda TaskRec+TaskData

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 136 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 pha
 _StartInfoDrawing
;
;
; --- Handle menu selection from window's menu bar -------------------------------

;
 pea TaskRec|-16 Pass pointer to Task record for
MenuSelect.
 pea TaskRec
 pei menuBar+2 Pass handle of menu bar.
 pei menuBar
 _MenuSelect Let user make selection.
;
 lda event+TaskData Get the item's ID number.
 beq exit Was a selection made?
;
 _EndInfoDrawing Switch back to original port.

;
; (Handle the menu selection.)
;
; The EndInfoDrawing followed by the StartInfoDrawing call is only
; needed when code between them calls the Window Manager.
;
 pea tempRect|-16 Pass pointer to RECT to store info bar
RECT.
 pea tempRect
 lda TaskRec+TaskData+2 Pass pointer of window.
 pha
 lda TaskRec+TaskData
 pha
 _StartInfoDrawing Switch to the proper port in the proper
state.
;
 pea 0 Pass unhilite flag.
 lda TaskRec+TaskData+2 Pass menu's ID number.
 pha
 _HiliteMenu Unhilite menu's title.
;
;
; --- Clean up and return to polling ---

;
exit _EndInfoDrawing Switch back to original port.
;
 pea 0 Make system menu bar current.
 pea 0
 _SetMenuBar
;
 jmp poll Return to polling user.
;

Information Bar Shutdown

When the Window Manager closes the window, it is up to you to resolve any
shutdown necessities associated with the information bar. Using our window

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 137 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

menu bar example, the close window might look like the following:

;
 pei menuBar+2 Pass handle of menu bar
 pei menuBar
 _SetMenuBar
;
 pha Space for returned menu handle.
 pha
 pea 2 ID number of second menu.
 _GetMHandle Get the menu's handle.
 _DisposeMenu Free menu record and associated data.
;
 pha Space for returned menu handle.
 pha
 pea 1 ID number of first menu.
 _GetMHandle Get the menu's handle.
 _DisposeMenu Free menu record and associated data.
;
 pea 0 Make system menu bar current.
 pea 0
 _SetMenuBar
;
 pha Space for menu bar's handle.
 pha
 pei <window+2 Pass pointer of window to close.
 pei <window
 _GetInfoRefCon Get the InfoRefCon from the window.
 _DisposeHandle Free menu bar record.
;
 pei <window+2 Pass pointer of window to close.
 pei <window
 _CloseWindow Now the window can be closed.
;

The type of shutdown you use depends upon the contents of the information bar.

Why didn't I put a DisposeMenuBar call in the Menu Manager? I didn't think of
it until a week too late. Sorry.

Other Information Bar Uses

The following suggestions are only theories and have not been tested.

o Display text information, as in Macintosh Finder windows.
o Split window. Like the content region, the information bar could be large
 enough to hold data.
o Hold controls. You could scroll data in the content region while keeping
 the controls which affect the display in place and within the user's]
 reach. (Note: The Control Manager currently will not allow controls it
 creates in an information bar. In this case, NewControl would be using a
 port that is not in your window's port, namely the Window Manager's port.)

Further Reference
o Apple IIGS Toolbox Reference, Volumes 1 & 2

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 138 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

END OF FILE TN.IIGS.003

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 139 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.004
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#4: Changing Graphics Modes in Mid-Application

Revised by: Dan Oliver November 1988
Written by: Dan Oliver October 1986

This Technical Note discusses how to switch between the two graphics modes,
320 and 640 horizontal resolution, while running an application which uses the
Window, Control, and Menu Managers.

Why Change Resolution?

Why not? There are certain applications where the ability to run in both
modes is essential; most graphics applications fall into this catagory. Other
applications might switch modes to provide features which their competitors
lack; a financial application might display figures in 640 mode and charts in
320 mode. Still other applications may want to give the user the choice. A
word processor might seem useful only in 640 mode, but what if the user wants
to print greeting cards with pictures? The user does not need the line length
provided in 640 mode but does need the added color of 320 mode for the
pictures.

Let me preach a little. I have worked on other machines with different
graphic modes and learned some things that might be of use to application
programmers. Many application programmers fight mode switching with either
rhetoric or apathy, then when users expect their software to run in either
mode, they become frustrated when it does not allow switching. To avoid the
problem of frustrating the user, you can provide mode switching (which is not
as hard as you might think).

How To Change Modes

First, I will assume we are in an application which is running with a system
menu bar, a few visible windows with scroll bars, and one window with some
standard controls. At some point, the user decides to change modes, possibly
via a menu item thoughtfully provided by the application programmer. Your
change mode handler might look like the following:

;
; --- This step is necessary if QuickDraw Auxiliary is started -------------------

 _QDAuxShutDown ;Shut down QDAux first
; --

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 140 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 _QDShutdown ;Shut down QuickDraw.
 ;This will turn graphics off so you will see
 ;the text screen for a second (a
advertisement
 ;might go here).
;
 lda <mode ;Variable that holds current resolution.
 eor #$0080 ;Flip the mode bit, $0000 = 320, $0080 =
640.
 sta <mode ;New value will be used to start the new
mode.
;
 pei <QDzpage ;Pass the direct pages allocated for
QuickDraw.
 pei <mode ;New mode.
 pei <QDwidth ;0 for screen width; other numbers for
printing
 pei <MyID ;Pass my ID number.
 _QDStartup ;Restart QuickDraw in the new mode.
;
 _GrafOff ;Turn screen off because changing mode
 ;may not be pretty.
; --- This step is necessary if you need QuickDraw Auxiliary --------------------

 _QDAuxStartUp ;Start QDAux again
; --

;
;
; --- Fix up the cursor for the new mode ---

;
 pea 0 ;Pass minimum cursor X position.
 lda #319 ;Maximum X position for 320 mode.
 ldx <mode ;320 or 640 mode?
 beq store
 lda #639 ;Maximum X position for 640 mode.
store pha ;Pass maximum cursor X position.
 pea 0 ;Pass minimum Y cursor position.
 pea 199 ;Pass maximum Y cursor position.
 _ClampMouse ;Clamp the cursor to the new screen size.
;
 _HomeMouse ;Move the cursor to 0,0 to make sure
 ;it is on screen.
 _ShowCursor ;Make cursor visible.
;
;
; --- Tell tools about the change --

;
 _WindNewRes ;Tell Window Manager about the change.
 _MenuNewRes ;Tell Menu Manager about the change.
 _CtlNewRes ;Tell Control Manager about the change.
;
;
; --- Fix the screen to look good --

;

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 141 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

; Here you might want to change the color of the desktop, windows, menus or
; controls to look good for the new mode.
;
; See example below.
;
; --- Redraw the screen in the new mode --

;
 pea 0 Pass flag to draw entire screen.
 pea 0
 _RefreshDesktop Draw entire screen.
;
 _GrafOn Now show the new screen.
;

That is not too bad, but I left out the fun part. Before the RefreshDesktop
there is a section named "Fix up the screen to look good." This section is
where you might want to put some color into windows, controls, and menus if
you are switching to 320 mode; changing colors is not required, but there are
some things which are.

When switching from 640 mode to 320 mode, some windows (both visible and
invisible) might be positioned off the screen in 320 mode. The first way to
handle this problem is easy for you, the programmer, but not so great for the
user: close all the windows before changing modes, then position them
correctly when the user opens them in the new mode. The second way to handle
the problem is to walk the window list and move all the windows, maybe even
change their sizes. You could double each window's horizontal starting
position and width when switching from 320 mode to 640 mode and halve it when
changing from 640 mode to 320 mode. The vertical position and height will be
okay. An example of the second method is given below.

Windows with vertical scroll bars in the window frame are the same width when
you change modes, so switching from 320 mode to 640 mode results in a narrower
bar while changing from 640 mode to 320 mode produces a wider bar. The bars
change to the correct size as soon as the user resizes the window since
SizeWindow deletes the old scroll bars and allocates new ones according to the
current mode. If, as suggested above, you resize all the windows after the
mode change and before calling RefreshDesktop, you should be in good shape.
If you choose not the follow this recommendation, you should call SizeWindow
for every window with scroll bars and change the size of each window at least
one pixel since SizeWindow will not do anything if the passed size is not
different than the current size.

You should dispose of scroll bars in a window's content region and recreate
them; this is not nice, but very few applications have scroll bars in a
window's content region.

WindNewRes resets the desktop shape and pattern and the Window Manager's icon
font to their defaults for the new mode, so if you changed any of these, you
must add to or subtract from the desktop again and reinitialize to your custom
pattern or icon font again.

CtlNewRes resets the Control Manager's icon font to the default for the new
mode, so if you changed the Control Manager's icon font, you must reinitialize
to your icon font again.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 142 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Repositioning and Resizing Windows in the New Mode

Here is an example of how to reposition and resize windows in the new mode.

; QuickDraw and the tools have already been reinitialized in the new mode.
;
; mode = $0000 if in 320 mode, $0080 if in 640 mode.
;
BoundsRect equ 8 ;Offsets in port record from QuickDraw
document.
PortRect equ 16
;
;
 pha ;Space for result.
 pha
 _FrontWindow ;Start with the top most window, this
assumes
 bra enter ;there are no invisible windows ahead of the
 ;active window in the window list.
;
;
loop ldy #BoundsRect+2
 lda [window],y ;Get window's starting horizontal position.
 eor #$FFFF ;Convert to screen coordinate (negate it).
 inc a
 asl a ;Double it if we're going to 640 mode.
 ldx <mode ;Going to 320 or 640 mode?
 bne store1 ;Ready if we're going to 640.
 lsr a ;Otherwise, undo the doubling,
 lsr a ;and halve the starting horizontal position.
store1 pha ;Pass window's new X starting position.
 ldy #BoundsRect
 lda [window],y ;Get window's starting vertical position.
 eor #$FFFF ;Convert to screen coordinate.
 inc a
 pha ;Pass window's current Y starting position.
 pei <window+2 ;Pass window to move.
 pei <window
 _MoveWindow ;Move the window to its new position.
;
 ldy #PortRect+6 ;Get window's current width.
 lda [window],y ;(This assumes the window's origin is 0,0.)
 asl a ;Double the window's width if going to 640
mode.
 ldx <mode ;Going to 320 or 640 mode?
 bne store2 ;Ready if we're going to 640.
 lsr a ;Otherwise, undo the doubling,
 lsr a ;and halve the window's width.
store2 pha ;Pass window's new width.
 ldy #PortRect+4
 lda [window],y ;Get window's height.
 pha ;Pass window's current height.
 pei <window+2 ;Pass window to resize.
 pei <window
 _SizeWindow ;Resize the window.
;
 pha ;Space for result.
 pha

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 143 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 pei <window+2 ;Pass pointer to window we just processed.
 pei <window
 _GetNextWindow ;Get the pointer to the next window.
;
enter pla ;Remember the pointer to this window.
 sta <window
 pla
 sta <window+2
;
 ora <window ;Are there any more windows?
 bne loop
;

WindNewRes

Generally, WindNewRes does the following:

o closes its port
o opens its port again, now in the new mode
o reinitializes the desktop size
o chooses the proper icon font for close and zoom boxes
o reinitializes the desktop pattern
o changes the SCB byte of each window's port to the new mode
o recomputes the VisRgn for each window

MenuNewRes

Generally, MenuNewRes does the following:

o closes its port
o opens its port again, now in the new mode
o reinitializes internal parameters, like vertical line width, for the new
 mode
o reinitializes the color palette via InitPalette
o subtracts the system menu bar from the desktop (this is why you must call
 WindNewRes first)
o draws the system menu bar

CtlNewRes

Generally, CtlNewRes does the following:

o chooses the proper icon font for radio button, check box, grow box and
 scroll bar arrows
o reinitializes internal parameters, like vertical line width, for the new
 mode

END OF FILE TN.IIGS.004

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 144 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.005
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#5: Window and Menu Titles

Revised by: Matt Deatherage November 1988
Written by: Dan Oliver October 1986

This Technical Note discusses spacing for both window and menu titles.

Strings used for window titles should always have a space as the first and
last characters. This spacing is especially important for windows that use a
lined window title bar since, without the beginning and ending space, the line
pattern in the title bar runs against the title. Since there will be window
editor desk accessories which allow the user to change the title bar pattern
without the application knowing, you should pad your window titles with spaces
even if you are using black window title bars.

The Window Manager does not force spaces on either side of titles to optimize
the window frame drawing speed; it is much faster to let the text punch a hole
in the title bar pattern than to compute the rectangle, fill it, and draw the
text.

To provide the user with a consistent visual interface, you should also pad
your menu titles with spaces. If you use either one or two spaces (the Apple
IIGS Finder has used two) before and after each menu title, your menu titles
will be consistent and balanced (two spaces work well in 640 mode where one
space usually suffices for 320 mode). Although it is true that a menu bar
will look about the same if the first menu title has two spaces before it and
no space following it and all the other menu titles have four spaces before
them, when the user pulls down the menu, the Menu Manager's highlighting will
clearly (and embarrassingly) show the spaces in the menu titles.

If you would like to place the Apple menu differently, you must use Menu
Manager calls since you cannot place spaces around the at sign (@) which the
Menu Manager uses to represent the Apple logo in a menu title. The easiest
way to accomplish this is calling SetMTitleStart to set the starting position
for the leftmost title (usually the Apple menu) within the current menu bar.
The Apple IIGS Finder has used a value of 10 ($0A) pixels.

END OF FILE TN.IIGS.005

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 145 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.006
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#6: QuickDraw II Pattern Data Structure

Revised by: Dave Lyons July 1989
Written by: Guillermo Ortiz December 1986

Some QuickDraw II calls require a pen pattern as input or return one as
output; regardless of the drawing mode (320 mode or 640 mode), a pen pattern
takes 32 bytes.
Changed since November 1988: Starting with System Software 5.0, all 32
bytes are significant if bit 15 of the current port's arcRot field is set.
Changed wording to cover QuickDraw II patterns in general, instead of pen
patterns only.

Early QuickDraw II documentation described the pattern data structure as
follows:

TYPE
 nibble = 0..15;
 twobit = 0..3;
 Pattern = RECORD CASE MODE OF
 mode320:(PACKED ARRAY [0..63] OF nibble); { 32 bytes }
 mode640:(PACKED ARRAY [0..63] OF twobit); { 16 bytes }
 END;

This declaration could lead one to believe that 16 bytes are enough when
making calls to QuickDraw II in 640 mode. This is not true. A pattern
always takes 32 bytes; QuickDraw II calls that copy or construct patterns
access all 32 bytes. That means it is never safe to pass the address of a
16-byte area as a pattern. Toolbox calls that return data into your buffer
overwrite 16 bytes immediately following your buffer. Calls that copy data
from your buffer access those extra 16 bytes, possibly including soft switches
or reserved space in the memory map.

The difference between modes is that QuickDraw II normally ignores the second
16 bytes if the current port's locInfo indicates 640 mode. Starting with
System Software 5.0, all 32 bytes of patterns are significant in 640 mode when
bit 15 of the current port's arcRot field has been set with SetArcRot. In
this case, patterns are 16 pixels wide and 8 pixels high.

Further Reference

 o Apple IIGS Toolbox Reference, Volume 2
 o System Software 5.0 documentation (APDA)

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 146 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

END OF FILE TN.IIGS.006

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 147 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.007
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#7: Halt Mechanism in IIGS SANE

Revised by: Guillermo Ortiz & Matt Deatherage November 1988
Written by: Guillermo Ortiz December 1986

This Technical Note formerly described a bug of SANE on the Apple IIGS which
caused it to jump through location $00/0018 instead of through the HALT vector
in the SANE direct page.

The bug which caused SANE on the Apple IIGS to jump through location $00/0018
instead of through the HALT vector in the SANE direct page was fixed in the
Apple IIGS ROM 2.0. You should not have to write a special case to handle
this bug since it is reasonable to expect users to have the updated ROM which
is offered as a free upgrade from Apple.

END OF FILE TN.IIGS.007

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 148 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.008
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#8: Elems Functions in IIGS SANE

Revised by: Matt Deatherage November 1988
Written by: Guillermo Ortiz December 1986

This Technical Note discusses a problem which existed with the Elems functions
in the IIGS SANE Tool Set 1.0. Current IIGS System Disks contain a patch
which corrects this problem.

Calls to any of the Elems functions in version 1.0 of the IIGS SANE Tool Set
may return an invalid result unless you are evaluating data which resides in
bank $00 due to a problem with the Elems parameter passing mechanism. These
results are random because when SANE checks the validity of its input, it uses
values that have no relations to the actual ones, and once it completes the
validation, it uses the real operands.

All System Disks released on or after December 1, 1986 include a RAM patch
which fixes the Elems parameter passing mechanism; therefore, you should not
have to write a special case to handle this problem if you are shipping your
application with the most recent Apple IIGS System Disk. You should contact
Apple Software Licensing at Apple Computer, Inc.; 20525 Mariani Avenue, M/S
38-I; Cupertino, CA 95014 or (408) 974-4667 to obtain the most recent version
of the Apple IIGS System Disk.

Further Reference
o Apple Numerics Manual

END OF FILE TN.IIGS.008

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 149 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.009
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#9: IIGS Sound Expansion Connector:
 Analog Input/Output Impedances

Revised by: Jim Merritt & Jim Mensch November 1988
Written by: Jim Merritt December 1986

This Technical Note discusses the impedances of the analog signal pins on the
IIGS sound expansion connector since an interface to this connector must take
the impedance of the pins into account to function properly.

The analog output impedance of pin 3 depends upon the characteristics of the
5503 sound synthesis chip in any particular IIGS machine. Across systems,
this impedance may range from 4.5 K ohms to 9 K ohms.

Pin 1, the A/D input, presents a dynamic load to the source, drawing at 10 K
ohms for approximately 500 ns during every sample period. It is reasonable,
however, to treat the input pin as if it presents a continuous load of 10 K
ohms without compromising the interface or the fidelity of the input sample.

Consult the Apple IIGS Hardware Reference for further technical information
about the Ensoniq 5503 sound synthesis chip used in the IIGS.

Further Reference
o Apple IIGS Hardware Reference

END OF FILE TN.IIGS.009

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 150 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.010
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#10: InvalRgn Twist

Revised by: Steven Glass November 1988
Written by: Guillermo Ortiz April 1987

InvalRgn(RgnHandle) accumulates the region to which RgnHandle points into the
update region of the current window's port; in the process, it makes the
region global, thus causing problems if later calls expect the region to still
be local.

The region you pass to InvalRgn is local to the window to which it is related;
however, InvalRgn returns the region in global coordinates. To preserve the
original region for your use after the call to InvalRgn, you should duplicate
it and use the copy to make the call then dispose of the copy when InvalRgn
returns. The following example demonstrates the process:

 void MyInvalReg(RegHandle)

 handle RegHandle;
 {
 handle AuxHandle;

 AuxHandle = NewRgn(); /* create room */
 CopyRgn(RegHandle,AuxHandle); /* make a copy */
 InvalRgn(AuxHandle); /* do it with the copy */
 DisposeRgn(AuxHandle); /* now get rid of it! */
 }

Further Reference
o Apple IIGS Toolbox Reference, Volume 2

END OF FILE TN.IIGS.010

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 151 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.011
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#11: Ensoniq DOC Swap-Mode Anomaly

Revised by: Jim Mensch November 1988
Written by: Jim Merritt April 1987

Under certain conditions, the IIGS Ensoniq Digital Oscillator Chip (DOC)
inserts a spurious zero-crossing byte into the output sample stream. The
output sample waveform may mask the anomaly, but if it does not, the user may
hear intermittent clicks or even a more pervasive "static." This Technical
Note discusses the situations in which the DOC produces this spurious zero
crossing, as well as strategies to avoid or mask this undesirable behavior.

Background

The Ensoniq DOC in the Apple IIGS is actually a microprocessor dedicated to
producing sound. Like a time-sharing computer, the DOC continually scans
through its array of sound oscillators, proceeding from lower-numbered
oscillators to higher-numbered ones, and updates the signal output level of
each active one to match that indicated by the oscillator's current sample
byte.

An oscillator can operate in any one of several functional modes, as described
in the Apple IIGS Hardware Reference. Here, however, we are concerned only
with swap mode, where two consecutive oscillators are considered as a single
generator. The low-numbered oscillator in the pair is always even. For
example, the pairs of oscillators 0 & 1, 2 & 3, ... , 12 & 13, and 14 & 15
constitute generators. The IIGS Sound Tool Set - the FFStartSound call in
particular - configures the oscillators it uses to operate in swap mode. In
swap mode, the even-numbered oscillator plays its waveform first, halts its
own playback, then starts its partner which also plays its waveform, halts its
own playback upon exhausting its waveform, and restarts the even-numbered
oscillator. At any time between the start of any particular FFStartSound call
and the time the oscillator finishes playing a wave, the Sound Tool Set
interrupt handler may be busy transferring waveform information from the IIGS
main RAM to the dormant oscillator's buffer in DOC RAM. Since one oscillator
is producing sound while the Sound Tool Set interrupt handler is transferring
waveform information to the other oscillator, you can use a generator pair to
produce continuous sound of arbitrary length, and you are limited only by the
amount of memory you can devote to the waveform in the main RAM.

Each oscillator draws its output samples from a dedicated buffer in DOC RAM,
the size and location of which are specified by parameters to the FFStartSound
call. The maximum size for an oscillator buffer is 32K, but since buffers may
neither coincide nor overlap, the practical maximum may be lower when more

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 152 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

than one generator is active. For instance, if four generators (eight paired
oscillators) are active simultaneously, the maximum buffer size is 8K, since
eight non-overlapping buffers of 8K each would occupy the entire 64K available
in the DOC RAM.

The Problem

Whenever a swap occurs from a higher-numbered oscillator to a lower-numbered
one, the output signal from the corresponding generator temporarily falls to
the zero-crossing level (silence); this anomaly does not occur during swaps
from lower-numbered oscillators to higher-numbered ones. The spurious level
change lasts no longer than a single sample period, at which time the
interrupted waveform resumes. However, even this tiny glitch in the output
can be audible as a pop or click; the further away the waveform is from the
zero crossing when the swap interrupts it, the louder the ear will perceive
the pop or click. When high-to-low swaps occur with great frequency, the pops
and clicks happen so often that they are perceived as gentle, but pervasive,
static.

Several Workarounds

There is no ideal solution to the problem of signal interruption in swap mode.
This problem is an anomaly of the DOC design, which may or may not be
addressed in later versions of the chip. However, we have found three general
strategies for mitigating the audible damage to the output waveform caused by
the chip's undesirable behavior.

Minimize Oscillator Swaps per Unit Time

The more often swaps from high-numbered oscillators to low-numbered ones
occur, the more obtrusive the brief signal interruptions will seem. To
minimize the interruptions, you must make the oscillators play for a longer
period of time before swapping to their partners. This means that they must
play at slower output sample rates, use larger buffers in DOC RAM, or use the
two in tandem. Commensurate with the number of active generators you wish to
use and the level of output signal fidelity that you desire, always specify
the largest DOC buffer size and the lowest output sample rate that you
possibly can. Remember that a large number of active generators implies a
very small maximum buffer size for any particular oscillator, so you should
always try to minimize the number of generators that are active at any one
time. As a rough benchmark, the clicks of signal interruption begin to blend
into highly audible static when you specify buffers smaller than 8K for use at
the maximum-fidelity output sample rate of about 26 kHz. (Note: The DOC
supports greater sample rates, but these rates are limited by the output
filtering on the IIGS which permits no greater signal fidelity than that
possible using the 26 kHz rate.) Our figures suggest that output fidelity
must suffer, or signal noise must increase, when more than four generators
(eight oscillators in swap mode) are operating simultaneously.

Avoid Silent or Quiet Passages

The signal content of your waveform can hide the additional noise caused by
the "swap-mode anomaly." The more complex and louder a waveform, the less
your ear will perceive the brief interruption that occurs whenever a higher-
numbered oscillator swaps to a lower-numbered one; pop and rock music is far
less susceptible to this problem than classical, folk, or jazz pieces, which

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 153 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

typically include many quiet passages. In addition, a signal that naturally
contains a large amount of "pink noise," such as recordings of rainstorms or
the surf at the beach, can mask the anomalous noise altogether.

Arrange for Swaps to Occur at or Near Zero Crossings

If the high-to-low swap occurs at a time when the normal output signal level
sits at or near the zero crossing, the swap will cause little or no audible
damage to the waveform. When reproducing arbitrary sampled sound, it is
almost impossible to insure that the output signal level is near the zero
crossing. However, when constructing long waveforms for playback, you may be
able to sidestep the chip's anomalous behavior by ensuring that the waveform
values lie at or near $80 at the end of every waveform segment, where a
waveform segment spans twice the length of one oscillator buffer. For
example, if you specify a buffer size of 4K, make sure that your constructed
waveform crosses the baseline after every 8,192 samples, and for 16K buffers,
make sure that the waveform makes a zero crossing after every 32K.

The length of the waveform segment should be twice the buffer length only if
you are going to reproduce the waveform exactly once per FFStartSound call.
It may be necessary to shorten the length of the waveform segment to exactly
the specified DOC buffer length if you use the nextwave_start parameter in the
FFStartSound parameter block to invoke automatic looping of the waveform. In
other words, you may need to arrange for twice as many zero crossings in your
constructed waveform in the looping case as you would under normal
circumstances since subsequent repetitions of the waveform during the single
FFStartSound call may begin with either the even or odd oscillator, depending
upon which member of the pair was active when the previous repetition ended.
If the playback of a waveform starts with the odd oscillator, then the odd-to-
even swaps will occur at different points in the waveform than they would when
the playback starts with the even oscillator.

Also note that the use of larger buffers causes a progressively longer
disabling of interrupts while the Sound Tool Set moves the waveform into the
DOC RAM.

Further Reference
o Apple IIGS Toolbox Reference, Volume 2
o Apple IIGS Hardware Reference

END OF FILE TN.IIGS.011

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 154 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.012
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#12: Tool Set Interdependencies

Revised by: Matt Deatherage July 1989
Written by: Jim Merritt April 1987

This Technical Note lists all known interdependencies between system tool sets
on the Apple IIGS.
Changes since November 1988: Added System Software 5.0.

A tool set is dependent upon another if you must start the latter before
starting the former. You should start tool sets in the order listed below.
Names marked with an asterisk (*) indicate a recommendation to start the
corresponding tool set, but the order is not required for operation of the
dependent tool. Apple recommends using StartUpTools to start up all the tool
sets your application needs. See the System Software 5.0 documentation.

Tool Set Interdependencies

Tool Locator Tool #1 ($01)
 No dependencies. Always start this tool set before any others.

Memory Manager Tool #2 ($02)
 Tool Locator (#1)

Miscellaneous Tools Tool #3 ($03)
 Tool Locator (#1)
 Memory Manager (#2)

QuickDraw II Tool #4 ($04)
 Tool Locator (#1)
 Memory Manager (#2)
 Miscellaneous Tools (#3)

Desk Manager Tool #5 ($05)
 Tool Locator (#1)
 Memory Manager (#2)
 Miscellaneous Tools (#3)
 QuickDraw II (#4)
 Event Manager (#6)
 Window Manager (#14)
 Control Manager (#16)
 Menu Manager (#15)
 Line Edit (#20)
 Dialog Manager (#21)

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 155 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Scrap Manager (#22)

Event Manager Tool #6 ($06)
 Tool Locator (#1)
 Memory Manager (#2)
 Miscellaneous Tools (#3)

Scheduler Tool #7 ($07)
 Tool Locator (#1)
 Memory Manager (#2)
 Miscellaneous Tools (#3)

Sound Tools Set Tool #8 ($08)
 Tool Locator (#1)
 Memory Manager (#2)
 Miscellaneous Tools (#3)

Apple Desktop Bus (ADB) Tool #9 ($09)
 Tool Locator (#1)

SANE (Standard Apple Numeric Environment) Tool #10 ($0A)
 Tool Locator (#1)
 Memory Manager (#2)

Integer Math Tools Tool #11 ($0B)
 Tool Locator (#1)

Text Tools Tool #12 ($0C)
 Tool Locator (#1)

Window Manager Tool #14 ($0E)
 Tool Locator (#1)
 Memory Manager (#2)
 Miscellaneous Tools (#3)
 QuickDraw II (#4)
 Event Manager (#6)
 Control Manager (#16)
 * Menu Manager (#15)
 * Line Edit (#20) For AlertWindow call only
 * Font Manager (#27) For AlertWindow call only
 * Resource Manager (#30) For using resources in Window
 Manager calls.

Menu Manager Tool #15 ($0F)
 Tool Locator (#1)
 Memory Manager (#2)
 Miscellaneous Tools (#3)
 QuickDraw II (#4)
 Event Manager (#6)
 * Window Manager (#14)
 * Control Manager (#16)
 * Resource Manager (#30) For using resources in Menu
 Manager calls.

Control Manager Tool #16 ($10)
 Tool Locator (#1)
 Memory Manager (#2)
 Miscellaneous Tools (#3)

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 156 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 QuickDraw II (#4)
 Event Manager (#6)
 Window Manager (#14)
 Control Manager (#16)
 * Menu Manager (#15)
 * QuickDraw Auxiliary (#18) For statText controls.
 * Line Edit (#20) For editLine controls.
 * Font Manager (#27) For statText controls.
 * List Manager (#28) For list controls.
 * Resource Manager (#30) For using resources in Control
 Manager calls.
 * Text Edit (#34) For editText controls.

Note: You should consider the Window, Control, and Menu Managers as one unit
 and start them in the given order.

System Loader Tool #17 ($11)
 Tool Locator (#1)
 Memory Manager (#2)
 Miscellaneous Tools (#3)

QuickDraw Auxiliary Routines Tool #18 ($12)
 Tool Locator (#1)
 Memory Manager (#2)
 Miscellaneous Tools (#3)
 QuickDraw II (#4)
 * Font Manager (#27)

Note: QuickDraw Auxiliary uses the Font Manager in the picture drawing
 routines. For proper operation, you should start the Font Manager
 before using the QuickDraw Auxiliary picture routines; however, the
 picture routines do not fail if the Font Manager is not present.

Print Manager Tool #19 ($13)
 Tool Locator (#1)
 Memory Manager (#2)
 Miscellaneous Tools (#3)
 QuickDraw II (#4)
 QuickDraw Auxiliary (#18)
 Event Manager (#6)
 Window Manager (#14)
 Control Manager (#16)
 Menu Manager (#15)
 Line Edit (#20)
 Dialog Manager (#21)
 List Manager (#28)
 Font Manager (#27)

Line Edit Tool #20 ($14)
 Tool Locator (#1)
 Memory Manager (#2)
 Miscellaneous Tools (#3)
 QuickDraw II (#4)
 Event Manager (#6)
 * QuickDraw Auxiliary (#18) For Text2 items; see below
 Scrap Manager (#22)
 * Font Manager (#27) For Text2 items; see below

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 157 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Dialog Manager Tool #21 ($15)
 Tool Locator (#1)
 Memory Manager (#2)
 Miscellaneous Tools (#3)
 QuickDraw II (#4)
 Event Manager (#6)
 Window Manager (#14)
 Control Manager (#16)
 Menu Manager (#15)
 * QuickDraw Auxiliary (#18) For Text2 items; see below
 Line Edit (#20)
 * Font Manager (#27) For Text2 items; see below

Note: Line Edit, the Dialog Manager, and the Control Manager require the
 presence of the Font Manager and QuickDraw Auxiliary if you use
 LETextBox2, statText controls, or LongStatText2 items which require any
 font styling (e.g., outline, boldface, etc.).

Scrap Manager Tool #22 ($16)
 Tool Locator (#1)
 Memory Manager (#2)

Standard File Operations Tool #23 ($17)
 Tool Locator (#1)
 Memory Manager (#2)
 Miscellaneous Tools (#3)
 QuickDraw II (#4)
 Event Manager (#6)
 Window Manager (#14)
 Control Manager (#16)
 Menu Manager (#15)
 Line Edit (#20)
 Dialog Manager (#21)
 * List Manager (#28)
 * Resource Manager (#30) For using resources in
 Standard File Operations
 calls.

Note: Standard File 3.0 and later use the List Manager for displaying a list
 of file names. Although Standard File functions properly if the
 application has not started the List Manager, it saves time if the
 application does so.

Note Synthesizer Tool #25 ($19)
 Tool Locator (#1)
 Memory Manager (#2)
 Sound Tools (#8)

Note Sequencer Tool #26 ($1A)
 Tool Locator (#1)
 Memory Manager (#2)
 Sound Tools (#8)
 Note Synthesizer (#25)

Note: The Note Sequencer automatically handles the start and shutdown of the
 Free-Form Sound Tools (#8) and the Note Synthesizer (#25), so programs
 that use the Note Sequencer must not execute start or shutdown calls
 for those tools. Automatic start does not imply automatic loading.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 158 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 If you plan to use the Note Sequencer, you must still load and install
 the Free-Form Sound Tool and the Synthesizer Tool explicitly through
 calls to the Tool Locator routines LoadTools or LoadOneTool or by
 calling the System Loader and Tool Locator directly in appropriate
 cases.

Font Manager Tool #27 ($1B)
 Tool Locator (#1)
 Memory Manager (#2)
 * Miscellaneous Tools (#3) For ChooseFont call only
 QuickDraw II (#4)
 * Integer Math Tools (#11) For ChooseFont call only
 * Window Manager (#14) For ChooseFont call only
 * Control Manager (#16) For ChooseFont call only
 * Menu Manager (#15) For FixFontMenu call only
 * List Manager (#28) For FixFontMenu
 and ChooseFont calls
 * Line Edit (#20) For ChooseFont call only
 * Dialog Manager (#21) For ChooseFont call only

List Manager Tool #28 ($1C)
 Tool Locator (#1)
 Memory Manager (#2)
 Miscellaneous Tools (#3)
 QuickDraw II (#4)
 Event Manager (#6)
 Window Manager (#14)
 Control Manager (#16)
 * Menu Manager (#15)

Audio Compression and Expansion (ACE) Tool #29 ($1D)
 Tool Locator (#1)
 Memory Manager (#2)

Resource Manager Tool #30 ($1E)
 Tool Locator (#1)
 Memory Manager (#2)

MIDI Tools Tool #32 ($20)
 Tool Locator (#1)
 Memory Manager (#2)
 Miscellaneous Tools (#3)
 Sound Manager (#8)
 * Note Synthesizer (#25)

Note: The MIDI Tools require the Note Synthesizer if you intend to use the
 MIDI clock feature. If you are not using the MIDI clock, the Note
 Synthesizer is not required.

Text Edit Tool #34 ($22)
 Tool Locator (#1)
 Memory Manager (#2)
 Miscellaneous Tools (#3)
 QuickDraw II (#4)
 Event Manager (#6)
 Window Manager (#14)
 Menu Manager (#15)
 Control Manager (#16)

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 159 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 QuickDraw Auxiliary (#18)
 Scrap Manager (#22)
 Font Manager (#27)
 * Resource Manager (#30) For using resources in Text
 Edit calls.

Recommended Start Order

A close look at the preceding information will reveal apparent "circular
dependencies" between various tool sets (i.e., two or more tool sets may
depend upon each other). To resolve the issue of which tool set to start
first in such a situation, here is a list of the most commonly used tool sets,
given in the order in which an application should start them. You may start
those tools which are indented at a specific level at that time or any time
thereafter.

 Tool Locator (#1)
 ADB Tools (#9)
 Integer Math Tools (#11)
 Text Tools (#12)
 Memory Manager (#2)
 SANE (#10)
 ACE (#29)
 Resource Manager (#30)
 Miscellaneous Tools (#3)
 Scheduler (#7)
 System Loader (#17) LoaderStartup does nothing.
 QuickDraw II (#4)
 QuickDraw II Auxiliary (#18)
 Event Manager (#6)
 Window Manager (#14)
 Control Manager (#16)
 Menu Manager (#15)
 LineEdit (#20)
 Dialog Manager (#21)
 either
 Sound Tools then (#8)
 Note Synthesizer (#25)
 or
 Note Sequencer (#26)
 MIDI Tools (#32)
 Standard File Operations (#23)
 Scrap Manager (#22)
 Desk Manager (#5)
 List Manager (#28)
 Font Manager (#27)
 Print Manager (#19)
 Text Edit (#34)

Note: Although you may start the sound-related tools any time after the
 Miscellaneous Tools, we recommend you start them after most of the
 Desktop-related tools.

Further Reference

 o Apple IIGS Toolbox Reference, Volumes 1 & 2

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 160 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

END OF FILE TN.IIGS.012

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 161 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.013
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#13: ROM 1.0 Modem Firmware Bug

Revised by: Matt Deatherage November 1988
Written by: Mike Askins April 1986

This Technical Note formerly discussed a bug involving buffering and serial
port setting commands in the modem firmware in ROM 1.0.

Apple IIGS ROM 2.0 fixes a bug involving buffering and serial port setting
commands in the modem firmware. You should not have to write a special case
to handle this bug since it is reasonable to expect users to have the updated
ROM which is offered as a free upgrade from Apple.

END OF FILE TN.IIGS.013

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 162 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.014
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#14: Standard File Calls and GrafPort Records

Revised by: Matt Deatherage November 1988
Written by: Guillermo Ortiz June 1987

This Technical Note formerly described how Standard File 1.1 and earlier did
not preserve the GrafPort around Standard File calls and recommended that you
save and restore the GrafPort around Standard File calls.

Standard File 2.0 fixes a bug present in earlier versions which did not
preserve the GrafPort around Standard File calls. You should not have to
write a special case to handle this bug since it is reasonable to expect users
to be running your program from a current System Disk (Standard File 2.0 is
available in System Disks after 1.1).

You can still save and restore the GrafPort around Standard File calls as it
will still work, but doing so will increase the size of your code and cause
unnecessary overhead during execution.

END OF FILE TN.IIGS.014

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 163 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.015
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#15: InstallFont and Big Fonts

Revised by: Eric Soldan & Matt Deatherage July 1989
Written by: Guillermo Ortiz June 1987

When the Font Manager executes InstallFont, it may try to scale the selected
font if bit 15 of the ScaleWord is clear; a font larger than 32K causes this
call to fail.
Changes since November 1988: Noted System Software 5.0 enhancements.

The Font Manager cannot scale a font which is larger than 32K, so InstallFont
will fail if scaling is required and the desired font exceeds this limit. If
the call fails for this reason, it will report an FMScaleSizeErr ($1B0C)
error.

This is not the same situation as when there is not enough memory available to
hold a newly scaled font. The situation will generate Memory Manager errors.

System Software 5.0 can scale fonts to be larger than 32K, so there is no
longer the limit imposed by System Disk 4.0 and earlier. In addition, System
Software 5.0 can handle font sizes up to 255 points, if memory is available.
Note that this is a different situation than trying to scale a font which was
originally larger than 32K, but both work under 5.0.

END OF FILE TN.IIGS.015

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 164 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.016
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#16: Notes on Background Printing

Revised by: Mike Askins November 1988
Written by: Mike Askins June 1987

This Technical Note attempts to pinpoint some of the common problems people
encounter when using background printing as available through the serial
firmware.

Calling Sequence

 Init call Starts the serial firmware
 SetOutBuff Specifies a buffer to place data to be printed
 Places data in buffer (amount < buffer size)
 SendQueue Starts the background printing process

Correctly Making the SendQueue Call

The Apple IIGS Firmware Reference incorrectly documents the parameters you
pass to SendQueue. The correct specification of the recharge address does not
correspond to the standard method of passing a full 32-bit address. Set the
parameters as follows:

 SendQueue
 Launches background printing.

 CmdList DFB $04 ;Parameter Count
 DFB$18 ;Command Code
 DW $00 ;Result Code (output)
 DW DataLength
 DFB RechargeAddress (bank)
 DFB RechargeAddress (high)
 DFB RechargeAddress (low)
 DFB $00

Using the Default Buffer

You can use the area which the firmware reserves for transparent buffering to
place data for background printing. This is advantageous since the firmware
calls the Memory Manager to allocate space for the buffer (you must allocate
the space from the Memory Manager if you use the SetOutBuff call to set up a
buffer).

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 165 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

To use the serial firmware's buffer, you must first enable buffering by
initializing the port with PINIT and sending it the string "^IBE" with PWRITE.
Once you enable buffering, call GetOutBuff to find the size and location of
the buffer, then place your data (buffersize - 1) in the buffer and call
SendQueue.

Data Size

Make sure that the amount of data you place in the buffer is at least one byte
less than the size of the buffer since the firmware uses one byte of the
buffer for bookkeeping purposes; if you place too much data in the buffer, it
will continually print the buffer's contents and never call your recharge
routine.

The Recharge Routine

You should treat the recharge routine as an interrupt handler and execute it
at interrupt time. Interrupts are disabled at this time, and it is illegal to
enable them within the recharge routine. Like all interrupt handlers, the
recharge routine should take care of its business as quickly as possible then
exit; any excessive delays cause interrupt dependent processes (e.g.,
AppleTalk) to fail. You should also remember that most of the system code is
non-reentrant; you should use the Scheduler when calling system code which may
have been running when the serial interrupt that invoked the recharge routine
occurred.

The serial firmware is not generally reentrant and does not interact with the
Scheduler. If you want to make serial firmware calls (through $C1xx, $C2xx)
from your recharge routine, you must preserve MSLOT (the byte at $0007F8)
across those calls. Be aware that any non-recharge code must not make calls
to the serial firmware that will disrupt the background printing process;
sending the string "^BD" (disable buffering command), for example, is
guaranteed to confuse a running background printing process.

Further Reference
o Apple IIGS Firmware Reference

END OF FILE TN.IIGS.016

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 166 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.017
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#17: Application Memory Management and the MMStartUp User ID

Revised by: Steven Glass & Rich Williams November 1988
Written by: Jim Merritt June 1987

This Technical Note describes a technique which permits an application to
dispose of any memory it has used with a single Memory Manager call without
clobbering other system components or itself.

Ground Rules for Application Memory Usage

Apple IIGS programs must be responsible for allocating and disposing of any
memory they use, over and above that which the operating system itself gives
them. In general, no IIGS program should use any memory except that which the
Memory Manager has explicitly granted to it. A program may request additional
memory for its own use at any time with one or more calls to the NewHandle
routine. At program termination, the application is responsible for
explicitly disposing of any memory that it explicitly acquired, and if it
fails to do so, it could leave the IIGS memory management system in a
corrupted state.

You may dispose of memory on a handle-by-handle basis, or you may dispose of
it en masse by calling DisposeAll, but you should never use DisposeAll with
the user ID that the MMStartUp routine provides. This user ID is the "master
user ID" for the application, and it tags the memory space which the operating
system reserves for the program's code and static data at load time. Calling
DisposeAll with this user ID results in immediate deallocation of the memory
in which the calling program resides; therefore, an application which
allocates dynamic data space using only the user ID that MMStartUp gives it
should not use DisposeAll to deallocate that space, but rather use
DisposeHandle to deallocate it handle by handle.

Cleaning Up With DisposeAll

It is possible, however, for a program to use a different, unique user ID when
allocating its own RAM, then pass that user ID to DisposeAll when it
terminates to deallocate all of its private memory at once without endangering
itself or other parts of the IIGS system. With this technique, the question
is how best to acquire a new user ID? One method to acquire a new user ID is
to request a completely new one of the appropriate type from the User ID
Manager in the Miscellaneous Tools. In this case, when the application
terminates, it must not only deallocate the memory it used, but also the
additional user ID which it requested from the User ID Manager.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 167 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Actually, it is not necessary for a program to acquire a completely new user
ID to use DisposeAll without clobbering itself. Instead, the application may
modify the auxID field of the master user ID which MMStartUp assigns to create
a unique user ID for allocating its own memory. The 16-bit user ID contains
the auxID field in bits $8 - $B. The value of this field, which may range
from $0 to $F, is always zero in the application's master user ID, but you can
fill it with any non-zero value to create up to 15 new and distinct user IDs,
each of which you can pass to NewHandle to allocate memory.and to DisposeAll
to deallocate memory without endangering the memory tagged by the master user
ID. The following assembly code fragment illustrates this technique:

 ; assumes full native mode
 pushword #0 ; room for user ID
 _MMStartUp
 pla ; master user ID
 sta MasterID
 ora #$0100 ; auxID:= 1

 ; (COULD HAVE BEEN ANYTHING FROM $1 to $F)

 sta MyID ; use this to allocate private memory
 ...
 etc.
 ...

 ; ready to exit program
 pushword MyID
 _DisposeAll ; dumps only my own RAM

; now do any remaining processing related to termination

You do not need to explicitly deallocate any user ID that you derive by
changing the auxID field of a valid master user ID. When the system (usually
the one to deallocate the master) deallocates the master user ID, it also
deallocates its derivatives.

One Word of Caution

Several of the Memory Manager's "All" calls (e.g., DisposeAll) treat a zeroed
auxID field as a wildcard which matches any value that the field may contain,
thus if you call DisposeAll with the application's master user ID (where the
auxID field is zero), the Memory Manager will not only deallocate all memory
belonging to the master user ID, but also all handles and memory segments that
are associated with user IDs which are derived from that master. The
operating system's QUIT mechanism typically executes such a call when cleaning
up after a normal (i.e., non-restartable) application to keep the memory
management system from clogging. This action is purely a defensive measure,
and well-behaved applications - particularly restartable ones - should dispose
of their own memory and never rely upon the operating system to clean up after
them.

Further Reference
o Apple IIGS Toolbox Reference, Volume 1

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 168 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

END OF FILE TN.IIGS.017

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 169 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.018
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#18: Do-It-Yourself SCC Interrupts

Revised by: Mike Askins, Matt Deatherage & Jim Mensch November 1988
Written by: Mike Askins June 1987

This Technical Note describes how to get the IIGS to pass control to you for
SCC interrupt handling when you are not using the serial firmware.

The Apple IIGS serial firmware is a robust environment for almost every serial
programming application; however, there may be times when you must go around
the firmware to handle things yourself (despite popular belief, these times
are the exception rather than the rule). If you want to handle SCC interrupts
on the IIGS without using the serial firmware, there are two procedures you
may follow.

The first method calls your interrupt handling routine instead of the built-in
serial firmware when an interrupt is generated. This routine is always the
second one called when an interrupt occurs (AppleTalk is first) and should
give your routine plenty of time to handle the interrupt. You must confirm
that the serial port was the source of the interrupt. If so, perform your
task, clear the carry bit and perform an RTL. If not, set the carry bit and
perform an RTL. You enter your routine in full-native mode with an eight-bit
accumulator and registers, and you must exit the same way. Your routine must
also preserve the data bank register. Implementing this method is easy. To
do so, simply use GetVector and SetVector in the Miscellaneous Tools to save
the current vector (always a good idea so you can replace it when your
interrupt handler is removed) and replace it with a vector to your routine.
The reference number for the SCC interrupt vector is $0009.

The second method calls your interrupt handler last. It simply tells one of
the serial ports not to claim a generated interrupt. Control then passes
through the entire interrupt handling chain to the user interrupt vector at
$3FE and $3FF. The procedure for implementing this method follows:

1. Set your bank $00 handling address at the usual place in $3FE and
 $3FF.
2. Set a system interrupt flag byte, SerFlag. The ROM version
 determines the method of finding the address of SerFlag. In ROM
 2.0 and later, you can get the address with a call to the
 Miscellaneous Tools GetAddr using a reference number of $000E.
 Although you should not need to write a special case for earlier
 ROM versions, you can do so if you wish; the address of SerFlag in
 ROM 1.0 is $E10104. Refer to the Apple II Miscellaneous Technical
 Note #7 for information on identifying Apple IIGS ROM versions.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 170 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Once you have the correct address of SerFlag, preserve the byte's current
 value, then turn on the bits in the byte which reflect the port from
 which you will be handling interrupts. The bits for the different ports
 are as follows:

 Port 1: ORA #%00111000
 Port 2: ORA #%00000111

 When you are finished handling interrupts from the chosen port (i.e.,
 when you terminate), you should restore the byte to its original value.

Further Reference
o Apple IIGS Toolbox Reference Manual, Volume 1
o Apple IIGS Firmware Reference Manual
o Apple II Miscellaneous Technical Note #7, Apple II Family Identification

END OF FILE TN.IIGS.018

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 171 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.019
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#19: Multichannel Output with the Apple IIGS Note Synthesizer

Revised by: Jim Mensch November 1988
Written by: John Worthington & Jim Merritt June 1987

This Technical Note discusses multichannel sound with the IIGS Note
Synthesizer.

It is possible to play multichannel sound using the IIGS Note Synthesizer Tool
Set. The Ensoniq Digital Oscillator Chip (DOC) supports 16 independent output
channels. Since only the low three bits of the output channel number are
available through the IIGS sound expansion connector, multichannel circuitry
may only decode eight output channels (zero through seven). Output channel
eight maps onto channel zero, channel nine onto channel one, etc., and this
mapping continues through all 16 channels.

The setting of the high nibble of the DOCMode byte in a waveform of the
waveList portion of the instrument definition determines the routing of output
from a Note Synthesizer instrument to a particular channel (the actual DOCMode
information is in the low nibble of the DOCMode byte). You may assign each
separate element in a waveList to a different output channel to create
multisampled instruments in which some samples play on the left speaker and
others on the right.

Apple standards require stereo expansion cards to map all even output channels
to the right and odd channels to the left. To be compatible with cards that
decode more than two of the chip's output channels, software should use
channel zero for right and channel one for left. This convention ensures that
output is always positioned properly in the stereo space with channel zero
information going to the right front and channel one information going to the
left front.

Further Reference
o Apple IIGS Toolbox Reference, Volume 2
o Apple IIGS Toolbox Reference Update

END OF FILE TN.IIGS.019

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 172 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.020
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#20: Catalog of APW Language Numbers

Revised by: Matt Deatherage July 1989
Written by: Jim Merritt August 1987

This Technical Note lists all APW language numbers which Apple II Developer
Technical Support has currently assigned, and it discusses a new scheme for
future assignments. This Note obsoletes any publications bearing this
information with earlier publication dates.
Changes since November 1988: Added Resource Description languages.

Apple II Developer Technical Support assigns and catalogues all official APW
language numbers, and effective May 1988, we have a new scheme for these
numbers. First, we list the APW languages which do not follow the new scheme;
inclusion of a language on this list does not imply the language product
exists or ever will exist under APW.

 Number Language Code Use
 __
 $0 PRODOS Text file (File Type $04)
 $1 Text APW text file
 $2 ASM6502 6502 Assembler
 $3 ASM65816 65816 Assembler
 $4 BASIC Byte Works BASIC
 $5 BWPASCAL Byte Works Pascal
 $6 EXEC Command file
 $7 SMALLC Byte Works small C
 $8 BWC Byte Works C
 $9 LINKED APW linker command language
 $A CC APW C
 $B PASCAL APW Pascal
 $C COMMAND Byte Works command-processor window
 $1E TMLPASCAL TML Pascal
 __

Under the new scheme, we define the high byte of the APW language number as a
vendor number and the low byte as a language number. To form the APW language
number, combine the vendor number with the language number. The following is
a list of currently defined vendors and languages; inclusion of a vendor on
this list does not imply the vendor is developing, or ever will be developing,
any of the language products listed for APW.

 Vendor Number Vendor Name

 $0 Apple Computer

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 173 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 $1 The Byte Works
 $2 TML Systems
 $3 Zedcor
 $4 RavenWare

 Language Number Language Name

 $2 6502 Assembler
 $3 65816 Assembler
 $4 BASIC
 $A C
 $B Pascal
 $C Command-processor window
 $D Forth
 $E Small C
 $F Lisp
 $10 Modula-2
 $11 FORTRAN
 $12 Logo
 $13 Prolog
 $14 COBOL
 $15 Resource Description

If, as an Apple Partner or Associate, you need a new language number for a
language processor not currently covered on this list or a vendor number,
write to:

 Apple II Developer Technical Support
 Apple Computer, Inc.
 20525 Mariani Avenue, M/S 75-3T
 Cupertino, CA 95014
 ATTN: APW Language Number Administration

Note: Language number assignments are considered provisional until the
 applicant submits proof of publication of a language processor using the
 assigned number. Acceptable proof must include a complete specification
 for the language that the processor recognizes, as well as photocopies
 of public notices that discuss the terms and details of publication
 (e.g., newspaper and magazine ads, software reviews, brochures,
 circulars, electronic mail solicitations, etc.). Unless a developer has
 made prior arrangements with Apple II Developer Technical Support, we
 rescind a provisional language number assignment after a period of one
 calendar year from the date of assignment if a developer does not submit
 the required proof of publication.

Further Reference

o Apple IIGS Programmer's Workshop Reference

END OF FILE TN.IIGS.020

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 174 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.021
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#21: DMA Compatibility for Expansion RAM

Revised by: Glenn A. Baxter November 1988
Written by: Jim Merritt August 1987

This Technical Note discusses the Apple IIGS Extended Memory Slot
specification.

The Apple IIGS Extended Memory Slot specification provides for DMA access to
no more than four rows of RAM on a single board through the CROW0 and CROW1
signals. Expansion board designs that involve more than four rows of RAM are
not compatible with DMA accesses. Each of the four rows can hold either 256K
or 1 MB of data. The design of the Fast Processor Interface (FPI) imposes
this limit. Each row can be organized in any of the following configurations
to yield the respective board capacities assuming there are no more than four
rows:

 Chips Configuration Board Capacity
 8 256K x 1 DRAM 1 MB
 8 1 MB x 1 DRAM 4 MB
 2 256K x 4 DRAM 1 MB
 2 1 MB x 4 DRAM 4 MB

The CROW0 and CROW1 signals properly decode the row addresses for both normal
and DMA cycles. The Extended Memory Slot interface does not support the
latching of bank address information off the data bus during a DMA cycle, and
a card which attempts to latch the bank address will likely get the last CPU
cycle's bank address. Getting the last address is not a problem if it
accidently happens to be the bank to which you wish to talk, but this is
rarely the case. The card gets the last CPU cycle's bank address because DMA
essentially shuts off the CPU, so it cannot emit the bank address. The FPI,
which contains the DMA bank address register ($C037), does not emit the DMA
bank address either, thus preventing bus contention with the processor as it
is being removed from that bus. The DMA bank address register inside the FPI
affects the addressing and control information that the Extended Memory Slot
sees; it does not affect the data bus. Therefore, during DMA, the bank
address time is filled with what is essentially random bank address
information. Using this random information could result in damaging the
contents of the memory (destroying little things like the operating system).

Suppose a card were designed to latch the bank address directly from the data
bus with the rising edge of the PH2 clock signal. It could use the bank
address to derive the proper RAM row address and never bother with CROW0 and
CROW1 at all. Directly latching the bank address would permit the card to
accommodate any desired RAM arrangement in 64K increments, including an odd

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 175 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

number of rows. Although the technique is valid during CPU cycles, it does
not work during DMA cycles since the FPI never emits the DMA bank address onto
the data bus. During DMA cycles, any card that tries to latch the bank
address directly, instead latches the bank address that was put on the data
bus during the last CPU cycle, which is probably the wrong value.

Currently, there does not seem to be a solution for the DMA situation. There
the possibility of "limited DMA compatibility." An example of a limited-
compatibility card would be one with six banks of memory. It's lower four
banks are DMA compatible since they use the CROW0 and CROW1 lines, but the
upper two banks do not work properly with DMA. This limited approach should
be safe, but it is not guaranteed since DMA cards are sometimes aware of the
total system memory and may expect, quite reasonably, to have access to all
of the memory when in fact it does not. There are currently no "memory
intelligent" DMA cards, but that could change at any point. The best we can
suggest at this time is for hardware developers to build only four-row cards
allowing up to 4 MB of memory, which is sufficient for most current
applications.

Further Reference
o Apple IIGS Hardware Reference

END OF FILE TN.IIGS.021

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 176 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.022
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#22: Proper Unloading of Dynamic Segments

Revised by: Lou Infeld, Matt Deatherage,
 Jim Mensch & Eric Soldan November 1988
Written by: Guillermo Ortiz October 1987

This Technical Note discusses strategies that programs may use to deal with
dynamic segments.

An application which uses dynamic segments must unload them by hand when it
needs the memory they occupy since the system does not automatically release
this memory. This requirement poses some interesting problems for any
developer using dynamic segments to ensure that an application runs within a
given memory configuration, and this Technical Note presents the issues and
some possible avenues for attacking the problems.

Which Segments to Unload?

Unloading One Segment at a Time

First, we have a global programming problem: what to do when the application
needs more memory and cannot get it? The normal impulse, unloading arbitrary
dynamic segments until we satisfy the memory need, presents another question:
how does the application recognize which segments are loaded but have not
participated in the current chain of events? In other words, how can the
application be sure it does not have to return control to a segment it wants
to unload?

Since the system provides no mechanism to track the chain of active calls, you
need to program the application to allow for such bookkeeping. Some
alternatives are as follows:

1. Eliminate interdependencies between dynamic segments. Thus, a
 subroutine in one segment can be sure that code from another,
 disposable, segment has not called it. For instance, you can
 often make initialization code fully independent of code in other
 segments.

2. Write dynamic segments in such a way that there is only one entry
 point to each one and establish a list of counters in the main
 static segment; every time the entry point gets control it
 increments the counter, and it decreases the counter every time it
 passes back control. If at any given moment the application needs
 more memory, it can check the list and unload those segments with

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 177 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 empty (zero) counters.

It is possible to imagine more complicated scenarios, such as how to recover
if the segments you need to load fragment memory in such a way that there is
not enough contiguous memory available to satisfy allocation needs. We leave
these possibilities as exercises for the curious reader.

Unloading All Segments at Once

Another technique is to unload all dynamic segments in the main logic of the
program. You can accomplish this with one Unload Segment By Number ($0C) call
specifying zero for the load segment number. Unloading all dynamic segments
is not as inefficient as it sounds because the System Loader does not reload a
needed dynamic segment from the corresponding load file if the system has not
yet purged it from memory.

How Best to Unload the Segments

Obtaining the Address of a Dynamic Segment

Once we know what we want to unload, we have the more specific problem of
deciding which call to use in unloading the segment. One option is, very
appropriately, Unload Segment ($0E). However, the APW Assembler may object to
references to dynamic segments other than a JSL unless you tell it otherwise.

The APW Assembler uses the DYNCHK directive to allow access to labels or data
in dynamic segments without generating errors. With DYNCHK ON, the APW
assembler gives an error message if you access any label in a dynamic segment
with any instruction other than JSL. Turning DYNCHK OFF allows you to make
any reference to dynamic segment labels without error, although this is
usually not valid (see below). DYNCHK OFF allows code like the following to
assemble properly:

 Pushlong #DynSegAddr ; push the jump table address
 _UnloadSegment ; and unload the segment!

It is then your responsibility to ensure that this code is not executed unless
that dynamic segment is currently loaded. Note that DYNCHK OFF also causes
CODECHK OFF, thus APW does not tell you if you accidentally use JSR to address
a label in a different (static or dynamic) segment. Checking for this is your
responsibility. Also note that there is no equivalent of DYNCHK in the MPW
IIGS cross-development system; the default is the equivalent of DYNCHK OFF.

If you choose to leave DYNCHK ON, you have to use other methods to find the
address of a label in a dynamic segment. Below is an example which shows a
way of getting the address of a dynamic segment which will link correctly with
DYNCHK ON. Suppose we have the following code in a static segment:

 LABEL JSL FOO

If FOO is in a dynamic segment, then we can obtain the address of FOO at run
time using the following code:

 LDA LABEL+1
 STA ADDRESS
 LDA LABEL+3
 STA ADDRESS+2

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 178 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

The address obtained in this way is the address of the jump table entry for
FOO . You can use this address in the Unload Segment call since the System
Loader recognizes the address as a jump table address. Note that since the
address is a jump table entry, nothing other than passing control to this
address is valid. Doing any other kinds of operations (like loading or
storing data) at that label causes problems. LDA DynSegAddr does not give you
the first byte at DynSegAddr, but rather the first byte of the jump table to
DynSegAddr. Also note that good programming practice dictates that all access
to dynamic segments occur via JSL instructions.

If you decide which segments to unload using the scheme described in
alternative two above, you again have several options. Most of these options
depend upon your preferences for the DYNCHK directive. If you choose to turn
DYNCHK OFF, you can actually code a table of segment addresses into your
program. The System Loader patches the address at the time of execution with
jump-table addresses, and you can unload segments that way. If you leave
DYNCHK ON, you must obtain the address of each dynamic segment at the time of
execution yourself.

We presented an assembly language example of this earlier. The following code
segment demonstrates how a function in C can return the address of its
location in RAM:

 char *Seg2Address()
 {
 char *address
 asm
 {
 phk
 phk
 lda #Seg2Address
 sta address
 pla
 and 0x00FF
 sta address+2
 }
 return(address);
 }

Note that the glue in APW C 1.0 for Unload Segment is broken and actually
calls Unload Segment By Number. This is fixed in APW C 1.0.1 and later and in
all versions of MPW IIGS C.

Using Unload Segment By Number

As mentioned earlier, you can also use Unload Segment By Number ($0C) to
unload dynamic segments. This call takes user ID, load file number, and load
segment number as parameters, and it is reasonable to assume at this time that
the load file number has a value of one for most programs. The trick here is
getting to know, in advance, the load segment number of any segment the
application may want to dispose of at a specified moment during its execution.

The idea of a table again comes to mind since each dynamic segment could store
its own number there the first time its gets control for all the other
segments to see. In this case, it is also possible for the application to
initialize the table with the segment numbers. An application can determine
its own load segment numbers when you compile it since you can specify into

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 179 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

which load segment you wish to place any object segment. However, you must
exercise care when linking to preserve this order.

Unloading Segments Before Running Out of Memory

If all the dynamic segments are independent modules, it is possible to
implement a second approach: instead of waiting until the application runs
out of memory to begin unloading segments, unload each segment immediately
after it returns control to the code that called it. With this approach, you
cut the application's overhead and know that at any given moment, you have the
maximum amount of memory available. The System Loader introduces some extra
overhead of its own of course, but if the segment is still in memory, it
should not be too much. The following code example illustrates this
technique:

 JSL DynSegAddr ; call the dynamic segment
 ; (it does its work before returning)
 Pushlong #DynSegAddr ; push the jump table address
 _UnloadSegment ; and unload the segment!

Further Reference
o Apple IIGS Programmer's Workshop Assembler Reference
o ProDOS 16 Technical Reference
o GS/OS Reference, Volume 2

END OF FILE TN.IIGS.022

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 180 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.023
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#23: Toolbox Use of DOC RAM

Revised by: Matthew Denman & Matt Deatherage November 1988
Written by: Jim Merritt October 1987

This Technical Note explains why you must be careful about which values you
store in the first page of the Ensoniq Digital Oscillator Chip (DOC) RAM when
using Note Synthesizer and MIDI Tool Sets on the Apple IIGS.

The Apple IIGS Note Synthesizer uses an oscillator as a free-running timer to
clock the update of waveform envelopes when the DOC sounds notes. To act as a
timer, the oscillator "plays" the contents of bytes $00 - $FF in DOC RAM at
zero volume. Once it scans through the entire "waveform buffer," the
oscillator generates an interrupt, which the appropriate Note Synthesizer
routines service.

When using the Note Synthesizer or the Note Sequencer without the MIDI Tool
Set, there is no need to avoid using DOC RAM locations $00 - $FF for general
waveform storage. More than one oscillator can play from the same waveform
buffer at the same time, so the function of the timer oscillator does not
affect normal use of the DOC for sound generation purposes in any way.
However, you should not fill the first page of DOC RAM with waveforms that are
delimited by zero bytes (as is sometimes appropriate in special situations,
discussion of which is beyond the scope of this Note). The presence of zero
bytes in the first page of DOC RAM can cause serious system performance
degradation and can even cause the system to hang. In particular, it is
always inappropriate to store arbitrary, non-waveform data in the first page
of DOC RAM since such data often includes zero bytes (which would be corrupted
were you to remove or modify them).

The Apple IIGS MIDI Tool Set also uses bytes $00 - $FF of DOC RAM for timing
purposes, but it uses a different oscillator than the Note Synthesizer. If
you want MIDI time stamping, you may not use the first page (bytes $00 - $FF)
of DOC RAM for your own purposes since the MIDI Tool Set uses the contents of
those bytes for time-stamping purposes.

You may use the MIDI, Note Synthesizer, and Note Sequencer Tool Sets together,
but you must not use bytes $00 - $FF of DOC RAM for any purpose if using MIDI
time stamping, nor store zero bytes in this area when using the Note
Synthesizer. You might consider it appropriate to avoid using the first page
of DOC RAM, if possible, to facilitate adding MIDI support to your application
at a later date.

END OF FILE TN.IIGS.023

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 181 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.024
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#24: Apple IIGS Toolbox Reference Updates

Revised by: Matt Deatherage November 1988
Written by: Rilla Reynolds October 1987

This Technical Note formerly documented changes to the Apple IIGS Toolbox
Reference manuals. Please contact Apple II Developer Technical Support at the
address listed in Apple II Technical Note #0 if you have additional
corrections or suggestions for any of the Apple IIGS Toolbox documentation.

The information formerly contained in this Note is now documented in the Apple
IIGS Toolbox Reference Update beta draft (Product Number K2B005) issued in
September 1988 and available from the Apple Programmer's and Developer's
Association (APDA). This manual draft contains changes to the Toolbox since
the original manuals were compiled, facts about the Toolbox which were not
originally covered in the manuals, and corrections to the manuals. This draft
includes the previously undocumented Audio Compression and Expansion, Note
Synthesizer, Note Sequencer, and Midi Tools Tool Sets.

Further Reference:
o Apple IIGS Toolbox Reference, Volumes 1 & 2
o Apple IIGS Toolbox Reference Update

END OF FILE TN.IIGS.024

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 182 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.025
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#25: Apple IIGS Firmware Reference Updates

Revised by: Jim Luther May 1989
Written by: Rilla Reynolds October 1987

This Technical Note includes updates to the May 1987 edition of the Apple IIGS
Firmware Reference, published by Addison-Wesley (Part Number 030-3121-A). The
new Monitor commands require an Apple IIGS revised ROM (Part Number 342-0077-
B), which is available without charge from an authorized Apple dealer. Please
contact Apple II Developer Technical Support at the address listed in Apple II
Technical Note #0 if you have additional corrections or suggestions for this
manual.
Changes since November 1988: Added corrections to Chapter 5, pages 94, 105,
& 106, on the serial-port firmware and changed the diagram in Chapter 7, page
140, on the SmartPort firmware.

Contents

 Page vii, Chapter 7 SmartPort Firmware: Change "Generic SmartPort
 calls 121" to "Standard and Extended SmartPort calls 121."

Chapter 3: System Monitor Firmware

 Page 24, Table 3-1 (continued), Monitor commands grouped by
 type: Add a miscellaneous-type and a debugging-type Monitor command to
 the table, as follows:

 Command type Command format
 ...
 Quit Monitor Q
 Install Visit Monitor and MemoryPeeker desk accessories #
 ...
 Enter mini-assembler !
 Set flags (e, m, x) for full-native mode Control-N

 Page 43, Back to BASIC: The last paragraph should read: "If you are
 using DOS 3.3 or ProDOS(R), use the Monitor Q (Quit) command to return to
 the language you were using with your program and variables intact."

 Page 48, Table 3-6, Commands for program execution and
 debugging: Add a Monitor command to the table:

 Command type Command format

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 183 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 ...
 Enter mini-assembler !
 Set flags (e, m, x) for full-native mode Control-N

 Page 66, after final paragraph: Add a new Monitor instruction heading
 and description:

 Native Mode Set Control-N (Native Mode)

 Control-N sets the m, x, e flags to 0 for full-native mode. All
 other registers are unchanged.

 Page 67, after final paragraph: Add a new Monitor instruction heading
 and description:

 Turn on ROM Desk Accessories, #

 Enables the currently available ROM desk accessories, Visit Monitor
 and Memory Peeker. These desk accessories remain active in the desk
 accessory menu until power is shut off. Control-Open Apple-Reset has
 no affect on these items. To exit the Visit Monitor desk accessory,
 press Control-Y then press Return. To exit the Memory Peeker desk
 accessory, press Q.

Chapter 5: Serial-Port Firmware

 Page 82, Compatibility: The second half of the third sentence in the
 first paragraph should read: "...the Apple IIGS hardware is different from
 that used on the SSC."

 Page 91, Input buffering, BE and BD: This heading should be
 "Input/Output buffering, BE and BD."

 Page 94, Table 5-6: The Extended Interface footnote which states, "If the
 function call returns with the carry bit set..." is incorrect. For Apple
 IIGS ROM 01, the Extended Serial Interface does not return the error
 condition in the carry bit. Programs using the Extended Serial Interface
 should check for a non-zero result value in the result code rather than the
 carry bit to determine if an error has occurred. For additional error
 handling information using the Extended Interface, see Apple IIGS Technical
 Note #50, Extended Serial Interface Error Handling.

 Page 95, Error handling: The second sentence should read: "If the
 character has a framing or parity error (assuming that the parity option is
 not set to None), the character is deleted from the input stream and the
 appropriate mode bit is set."

 Page 96, Note: The Note should read: "The InQStatus elapsed-time
 counter functions correctly only if a heartbeat interrupt task has been
 started. A heartbeat interrupt task is a set of functions called by
 interrupt code that run automatically at one-thirtieth of a second
 intervals.

 Page 96, Interrupt notification: The fourth sentence in the first
 paragraph should be: "The system interrupt handler will transfer control
 to the user's interrupt vector at $03FE in bank $00."

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 184 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Page 100, SetModeBits: The first sentence in the paragraph following
 the CMDLIST should read: "Use this call to alter any of the mode bits
 whose function is described below."

 Page 105, GetIntInfo: The command list should read:

 CMDLIST DFB $03 ;Parameter count
 DFB $0C ;Command code
 DW $00 ;result code (output)
 DW $00 ;interrupt setting (output)
 DL Completion address ;(output)

 The following should be added after the command list, "Note: The
 Parameter count of $03 is correct even though there are four parameters."

 Page 106, SetIntInfo: The command list should read:

 CMDLIST DFB $03 ;Parameter count
 DFB $0D ;Command code
 DW $00 ;result code (output)
 DW Interrupt setting ;(input)
 DL Completion address ;(input)

 The following should be added after the command list, "Note: The
 Parameter count of $03 is correct even though there are four parameters."

Chapter 7: SmartPort Firmware

 Page 120, Issuing a call to SmartPort: The standard and extended
 SmartPort call examples should be:

 This is an example of a standard SmartPort call:

 SP_CALL JSR DISPATCH ;Call SmartPort command dispatcher
 DC i1'CMDNUM' ;This specifies the command type
 DC i2'CMDLIST' ;Word ptr to param list in bank $00
 BCS ERROR ;Carry is set on an error

 This is an example of an extended SmartPort call:

 SP_EXT_CALL JSR DISPATCH ;Call SmartPort command dispatcher
 DC i1'CMDNUM+$40' ;This specifies the ext cmd type
 DC i4'CMDLIST' ;Pointer to the parameter list
 BCS ERROR ;Carry is set on an error

 Page 121, Generic SmartPort calls: Change occurrences of "Generic
 SmartPort Calls" to "Standard and Extended SmartPort calls in the header
 and the first sentence.

 Page 122, Statcode = $00: Change the function of bit 0 to: "1 =
 Device currently open (character devices only) or disk switched (block
 device only)."

 Page 124: SmartPort device types should be same as those documented in
 Apple II SmartPort Technical Note #4, SmartPort Device Types.

 Page 125, SmartPort driver status: This section should read: "A

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 185 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 status call with a unit number of $00 and a status code of $00 is a request
 to return the status of the SmartPort driver. This function returns the
 number of devices as well as the current interrupt status. Devices should
 return $00 in the reserved bytes and exit with a transfer count of $0008.
 The format of the status list returned is as follows:

 STATLIST Byte 0 Number of devices
 Byte 1 Reserved
 Byte 2 $00 Vendor Unknown
 $01 Apple
 $02...$FF Vendor Unique
 Byte 3 Reserved
 Byte 4 Reserved
 Byte 5 Reserved
 Byte 6 Reserved
 Byte 7 Reserved

 The number of devices field is a 1-byte field indicating the total number
 of devices connected to the slot or port. This number will always be in
 the range 0 to 127.

 Vendors must request a Vendor ID Assignment from Apple II Developer
 Technical Support before using a specific value in byte two.

 Page 125, Possible errors: Add the following:
 $1F No interrupt. Interrupts not supported.
 $2B No write. Disk write-protected.
 $2F Offline. Disk off-line or no disk in drive.

 Page 126, ReadBlock: Add a sentence at the end of the first paragraph
 which reads, "On return, the X and Y registers indicate the number of bytes
 transferred."

 Page 131, Open: The following changes apply for the CMDNUM:

 Standard call Extended call
 CMDNUM $06 $46

 Page 132, Read: Add a sentence at the end of the first paragraph which
 reads, "On return, the X and Y registers indicate the number of bytes
 transferred."

 Page 140, Figure 7-8, Disk-sector format: Change to the following:

 |13 |F|D|A|9|T|S|S|F|A|D|A|F|1 |F|D|A|A|S|699 |4|D|A|F|
 |5-Nibble|F|5|A|6|r|e|i|o|d|E|A|F|5-Nibble|F|5|A|D|e|GCR | |E|A|F|
 |SelfSync| | | | |a|c|d|r|r| | | |SelfSync| | | | |c|Nibbles |C| | | |
 |Fields | | | | |c|t|e|m|s| | | |Fields | | | | |t|Fields |h| | | |
 | | | | | |k|o| |a|L| | | | | | | | |o| |e| | | |
 | | | | | | |r| |t|R| | | | | | | | |r| |c| | | |
 | | | | | | | | | |C| | | | | | | | | | |k| | | |
 | | | | | | | | | | | | | | | | | | | | |s| | | |
 | | | | | | | | | | | | | | | | | | | | |u| | | |
 | | | | | | | | | | | | | | | | | | | | |m| | | |

 A SelfSync Field is four 20 microsecond selfsync nibbles written as
 a sequence of five 16 microsecond nibbles.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 186 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Page 140, ResetHook: The Control code and Control list should be:

 Control Code Control list
 $06 Count low byte $04
 Count high byte $00
 Hook reference number $xx, $00, $00, $00

 Page 143, UniDiskStat: The Status code and Status list should be:

 Status Code Status list
 $05 Byte $04
 Soft error $00
 Retries $xx
 A register after execute $xx
 Y register after execute $xx
 P register after execute $xx
 Byte $xx

 Page 152, Passing parameters to a ROM disk: Add a sentence to the
 end of the second paragraph which reads: "These locations will not be
 preserved between SmartPort calls."

 Page 156, Table 7-6, SmartPort error codes: Add the following error
 code:

 Acc value Error type Description
 $69 IOTERM I/O terminated due to new line

 Page 166, Table 7-8, Standard command packet contents":
 Byte 3 descriptions should read "Byte 2 of param list."
 Byte 4 descriptions should read "Byte 3 of param list."
 Byte 5 descriptions should read "Byte 4 of param list."
 Byte 6 descriptions should read "Byte 5 of param list."
 Byte 7 descriptions should read "Byte 6 of param list."
 Byte 8 descriptions should read "Byte 7 of param list."
 Byte 9 descriptions should read "Byte 8 of param list."

Chapter 9: Apple DeskTop Bus Microcontroller

 Page 191, Sync, $07: The first sentence should read: "This command
 performs the three preceding commands in sequence."

 Page 194, Receive Bytes, $48: The fourth sentence should read: "The
 second byte value is a combination of the device address in the high nibble
 and the ADB command in the low nibble (see the Apple IIGS Hardware
 Reference)."

Chapter 10: Mouse Firmware

 Page 201: Mouse button positions should be changed as follows:

 o X data byte
 If bit 7 = 0, then mouse button 1 is down.
 If bit 7 = 1, then mouse button 1 is up.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 187 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 o Y data byte
 If bit 7 = 0, then mouse button 0 is down.
 If bit 7 = 1, then mouse button 0 is up.

 Page 205, Figure 10-1, Position and status information:
 Bit 7 description should be: "Currently, button 0 is up/down (0/1)."
 Bit 6 description should be: "Previously, button 0 was up/down (0/1)."

Appendix B: Firmware ID Bytes

 Page 223, Table B-2, Register bit information: Change the table to
 show that Bits 7-0 of the Y register hold the ROM version number, and the X
 register is reserved. In addition, the table description should read:
 "The Y register contains the machine ID and the ROM version number. The X
 register is reserved."

 Page 249, COUT1: In the third sentence, change the value of line feed
 from $8C to $8A.

 Page 277, RDALTZP: Change the comment to read: "Bit 7 = 1 if alt zp
 enabled."

Further Reference:

 o Apple IIGS Firmware Reference

END OF FILE TN.IIGS.025

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 188 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.026
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#26: ROM Revision Summary

Revised by: Matt Deatherage September 1989
Written by: Rilla Reynolds October 1987

This Technical Note summarizes revisions to the Apple IIGS ROM.
Changes since November 1988: Revised to cover ROM 3.

Apple currently supports two configurations of the Apple IIGS ROM, ROM 1 and
ROM 3. In August 1989, Apple IIGS computers began shipping with a 256K ROM,
referred to as version 3 or ROM 3 (ROM 2 was skipped since there was already
enough confusion about the first version, ROM 0, and the second version, ROM
1). System Software continues to support ROM 1, but it no longer supports ROM
0. Authorized Apple dealers can upgrade older systems (i.e., machines with
serial numbers lower than E704...) to ROM 1 upon request.

ROM 1 requires System Software 2.0 or later, while ROM 3 requires System
Software 5.0 or later. Although applications may work using older system
software releases, they may not function properly due to the coordination of
system software and ROM revisions.

Changes from ROM 0 to ROM 1

ADB

 o Absolute ADB devices are now supported correctly.
 o ADB fatal system error code is now $0911 instead of $0400.
 o ADBReset routine now delays about 160 microseconds before reading
 the buttons.
 o ADBStatus TRUE is now $FFFF instead of $0001.
 o All ADB error codes now include the tool number.
 o SRQrmv no longer crashes when you make the call with a command
 pending.

AppleDisk 3.5

 o AppleDisk 3.5 Macintosh block reads and writes now work as
 documented.
 o Extended status call now returns bit 0 = 1 if AppleDisk 3.5 media
 has been switched since the last READ, WRITE, or FORMAT.
 o New AppleDisk 3.5 status calls have been implemented to get
 internal variable and work buffer starting addresses.

AppleTalk

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 189 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 o Link Access Protocol (LAP) inter-packet gap now handles added SCC
 delay.
 o Name Binding Protocol (NBP) now considers uppercase and lowercase
 characters identical.
 o A nonexistent protocol no longer hangs the dispatcher.

Desk Manager

 o SaveScreen and RestoreScreen now work.

Event Manager

 o Now auto-key events are not posted in the queue unless the queue
 is empty.
 o EMStartUp and EMShutDown code has been optimized.
 o Event Manager now returns an error instead of crashing when there
 is an attempt to post an invalid event.

Integer Math

New Changes:
 o Optimized the multiply routine.
RAM patches moved to ROM:
 o Changes to FixMul, FixRatio, and SDivide.
 o SDivide recovers from a divide by zero operation.
 o New calls: FracMul, FixDiv, FracDiv, FixRound, FracSqrt, FracCos,
 FracSin, FixATan2, HiWord, LoWord, Long2Fix, Fix2Long, Fix2Frac,
 Frac2Fix, Fix2X, Frac2X, X2Fix, X2Frac.

Memory Manager

 o Optimized Purge and Compact for banks 0 and 1 and moved from RAM
 to ROM.
 o RAM patches and enhancements moved to ROM.
 o RAMdisk now returns bytes transferred count on DIB call.
 o SetHandleSize makes a handle temporarily unpurgeable while
 changing handle size.

Miscellaneous Tools

RAM patches and enhancements moved to ROM:
 o AbsClamp fixes.
 o Battery RAM routines work if data bank is set to a bank other than
 bank data is in.
 o Firmware entry calls now return processor status in high byte
 instead of low byte.
 o GetAddr with ref number $000E returns SerFlag address for SCC
 interrupts (useful if not using serial firmware).
 o ID manager can reuse discarded IDs.
 o Keyboard interrupts now enable VBL interrupts.
 o Munger now works with 1-char strings and returns with A=0.
 o New SysBeep call.
 o PackBytes and UnpackBytes return with A=0.
 o ReadBParam and ReadBRAM error codes corrected.
 o WriteBParam and WriteBRAM do not return error codes (this is a
 documentation change).
 o WriteTimeHex Bad Parameter error code is now $31.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 190 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Monitor

 o 80-column screens maintained if break occurs and Pascal protocol
 in effect.
 o AppleSoft tabbing in 80-column mode now works correctly.
 o Control Panel's Maximum RAM Disk Size increased to 8128K instead
 of 4096K.
 o Firmware version number returned is $1 instead of $0.
 o Interrupts now disabled during paddle read routines.
 o Interrupts re-enabled after fatal system error (for debug DAs).
 o Mouse clamps with positive minimum and negative maximum works
 (e.g., $6000 min, $8000 max).
 o New monitor command, pound sign (#), installs monitor entry and
 memory peeker classic desk accessories (unless already installed),
 accessible via the Control Panel. Reinstalled automatically on
 reset; disabled by power off only.
 o New monitor command, Control-N, clears m, e, and x bits for native
 mode. (Control-R still switches to 8-bit, emulation mode.)
 o RESET entry point at $00FA62 sets state register to $0C and shadow
 register to $08.
 o Shadowing of the Super Hi-Res area in Bank 1 is no longer enabled
 automatically.
 o WAIT routine now always exits with C=1.

QuickDraw II

RAM patches and enhancements moved to ROM:
 o 640-mode pen masks now work when portRect origin not a multiple of 8.
 o Arcs, ovals, and round rects can be drawn across bank boundaries.
 o Changes to round drawing routines: PPToPort, GetFontLore,
 GetROMFont, and InflateTextBuffer.
 o Current bank bytes 100...106 no longer modified by scaling and
 mapping calls.
 o FontFlags 1 and 2 added for pen width and color control.
 o FramePoly returns with A=0.
 o GetPort returns all four bytes of GrafPort.
 o HideCursor and ShowCursor work correctly with obscured cursor.
 o MapRgn now works on rectangular regions.
 o Pixel painting routines support QuickDraw Auxiliary Tool Set
 stretching and shrinking.
 o PPToPort now clips correctly to the current portRect.
 o QDStartUp and QDShutDown save and restore the scan line interrupt
 vector.
 o RectInRgn bug fixed.
 o ScrollRect works when the ClipRgn and VisRgn are not rectangular.
 o SetSysFont works.
 o StdPixels now returns with A=0 if the pen is not visible.
 o Text underline bug fixed.
 o TextBounds works.
New QuickDraw changes:
 o Busy flag now maintained correctly by ClosePort, OffsetRgn,
 InsetRgn, KillPoly, FillRect, FrameOval, PaintOval, EraseOval,
 InvertOval, FillOval, FrameArc, PaintArc, EraseArc, InvertArc,
 FillArc, FrameRRect, PaintRRect, EraseRRect, InvertRRect, and
 FillRRect.
 o Cursor appears in correct Super Hi-Res mode as determined by the
 low byte's bit 7 (320/640) of the MasterSCB.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 191 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

SANE

 o Elems now can be called from any part of memory.
 o HALT exception jumping through the incorrect vector fixed.
 o Integer overflow during conversion reported.
 o STATUS call moved to ROM.

Scheduler

 o Scheduler now accepts a flush function call.
 o Task-handling RAM patch (on System Disk 1.0 and later) moved to
 ROM.

Serial I/O

 o First character after an XON is no longer trashed when buffering
 is not enabled.
 o If serial mode bit 17 = 1, parity and framing error suppression
 are defeated.
 o Parity, baud, and data format commands work with buffering.
 o STATUS call will not report that a character is ready if the
 character arrives with a parity or framing error.
 o STATUS call works correctly with XON/XOFF protocol.

SmartPort

 o PR#5, following a PR#5 with I/O error (i.e., no disk in drive),
 now boots as expected.
 o SmartPort manipulates only Slot 6 motor on detect so the IWM can
 run in fast mode.

Sound

 o Fixed bug in FFStopSound call.
 o Fixed low-level RAM read/write bug.
 o Interrupts are disabled when the internal bell is active.
 o Interrupts no longer need to be disabled when accessing sound RAM.
 o New sound diagnostics with the following error codes: $0C001 =
 failed RAM data test, $0C002 = RAM address test, $0C003 = register
 data test, and $0C004 = control register test.
 o Sound Manager RAM patches and enhancements moved to ROM.

Text Tools

RAM patches moved to ROM:
 o RAM patches moved to ROM for Writing and ErrorWriting routines.
 o TextInit Illegal device error now is in 16-bit mode instead of 8.

Tool Locator

 o Optimized tool dispatcher.
 o ROM tools present on a memory expansion card are installed.

Changes from ROM 1 to ROM 3

ROM 3 is 256K (double the size of ROM 1) and contains several tools which do

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 192 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

not exist in ROM 1. The patch file TS3 fixes known bugs in ROM 3 which were
discovered after it was frozen. ROM 3 tools are basically System Software 5.0
tools, and the System Software 5.0 documentation covers these tools in detail.
This Note only documents non-tool changes.

AppleDisk 3.5 and SmartPort

 o Use new routines for all block reads to fast RAM to eliminate
 double buffering.
 o The extended DIB status call returns the device subtype byte $C1.
 o Fixed anomalies described in SmartPort Technical Note #6, Apple
 IIGS SmartPort Errata.
 o Fixed a ROM 1 bug that caused Write Protected to be returned with
 higher priority than Device Offline for the ProDOS STATUS call.

AppleTalk

 o AppleTalk moved to slots 1 and 2 from slot 7.

Control Panel CDA

 o The original Options menu is now the Keyboard menu and does not
 contain mouse parameters.
 o A new Mouse menu is present. The new keyboard microcontroller
 allows finer control of mouse tracking, so a selection procedure
 better than yes or no is present. Parameters are also available
 to set the keyboard mouse feature, which allows the numeric keypad
 to emulate a mouse.
 o Added an option to resize the RAM disk on the next reset in the
 RAM Disk menu. This option resets to No after one reboot and
 resizing so the RAM disk is not accidently reformatted on every
 boot thereafter.
 o If slot 7 is set to AppleTalk, the Control Panel displays a
 warning if neither slot 1 nor slot 2 is similarly set.
 o The Printer Port and Modem Port menus now display only those
 parameters that may be changed if AppleTalk is the selection for
 those ports.
 o The RAM disk no longer has minimum and maximum settings, but
 rather one RAM disk size setting.

Monitor

 o Enhanced memory searching commands to automatically cross bank
 boundaries.
 o Added Step and Trace debugging functions.
 o Now provide vectors for the same functionality as the GS/OS System
 Service calls MEMORY_MOVER, DYN_SLOT_ARBITER and SET_SYS_SPEED in
 bank $E1.
 o Now resize the RAM disk when the system is rebooted with the
 Control-Open Apple-Shift-Reset key combination.
 o Handle text page 2 shadowing and power-up bits in the new CYA
 chip.
 o Flash the border if the sound volume is set to zero and a beep is
 necessary.
 o In ROM 1 and earlier, the Miscellaneous Tools mouse firmware
 called the 8-bit mouse routines in the $C400 space to do the work.
 In ROM 3, the 8-bit routines call the 16-bit routines to read the
 hardware. This change effectively means those programs which use

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 193 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 16-bit mouse calls (including desktop applications through the
 Event Manager) may use the mouse when slot 4 is set to Your Card.
 o Slots 1 and 2 may now be set to Printer, Modem, AppleTalk, or Your
 Card. With System Software 5.0, slot 7 does not need to be set to
 AppleTalk to use an AppleTalk network, although one can do it for
 compatibility. There is no transparent printing firmware in slot 7.
 o The Alternate Display Mode CDA no longer sets the system to fast
 speed when normal speed is selected in the Control Panel.
 o Added a new command, {val}=V, to set the video screen display I/O
 switches when resuming a program.
 o Control-T command now works as a toggle--executing it once changes
 to text mode, but now executing it again switches back to the
 previous video mode You may change this saved video mode with
 the =V command.
 o Battery RAM value $59 now controls the presence of the Visit
 Monitor and Memory Peeker CDAs. If this byte has the high bit set
 at boot time, the CDAs are automatically installed.
 o The Monitor and Memory Peeker both allow the use of Control-X to
 terminate a long display (i.e., a handle list or memory dump).

Serial I/O

 o XON and XOFF are no longer sent with the high bit set when
 buffering is enabled.
 o Terminal mode cursor is more consistent with the rest of the
 system.
 o Extended Interface calls now return errors in the carry and the
 accumulator.

Toolbox

The following tools are now in ROM:

 o Window Manager
 o Menu Manager
 o Control Manager
 o Line Edit
 o Dialog Manager
 o Scrap Manager
 o Font Manager
 o List Manager

Further Reference

 o Apple IIGS Firmware Reference
 o Apple IIGS Toolbox Reference
 o Apple IIGS Technical Note #52, Loading and Special Memory
 o SmartPort Technical Note #6, Apple IIGS SmartPort Errata

END OF FILE TN.IIGS.026

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 194 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.027
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#27: Graphics Image File Formats

Revised by: Matt Deatherage November 1988
Written by: Steve Glass, Eagle Berns, Art Cabral,
 Pete McDonald & Rilla Reynolds October 1987

This Technical Note formerly described the file formats for Apple IIGS
graphics image files. File formats are now documented in Apple II File Type
Notes under corresponding file types and auxiliary types:

File Type $C0
 Auxiliary Type $0000 "PaintWorks" Packed Format
 Auxiliary Type $0001 PackBytes Packed Format
 Auxiliary Type $0002 "Apple Preferred" Packed Format

File Type $C1
 Auxiliary Type $0000 32K unpacked picture image
 Auxiliary Type $0001 Unpacked QuickDraw II picture

Further Reference
o Apple II File Type Notes

END OF FILE TN.IIGS.027

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 195 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.028
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#28: Interface Card Design Guidelines

Revised by: Matt Deatherage November 1988
Written by: Cameron Birse October 1987

This Technical Note describes suggested dimensions for interface cards for the
Apple IIGS and Apple IIe upgraded sytems.

|----------------------7.00"----------------------|
__ __ __
The 7" dimension is specified for slots		
1-3 because of the optional fan which		
mounts on the power supply.		
	2.75"	
		3.05"
SLOTS 1 - 3		
_____________________________ __	__	
 |__________________|_|______
 |-------2.950"-----|-|-.375"

 |-------------------------10.00"-----------------------------------|
 |-----2.25"----|-----------------------7.75"-----------------------|
 | __ __ __
 | _ ~ | | |
 | _ ~ | | |
 ____ _ ~ | | |
		2.75"	
2.20"		3.05"	
	SLOTS 4 - 7		
 __ |__ __|__ |
 |__________________|_|______
 |-------2.950"-----|-|-.375"

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 196 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 |-------------------------10.00"-----------------------------------|
 |-----2.25"----|-----------------------7.75"-----------------------|
 | __ __
 | _ ~ | |
 | _ ~ | |
 ____ _ ~ | |
 | | | |
 | | |2.75"
 | | | |
2.20"| | |
 | | SLOTS 4 - 7 | |
 | | | |
 ____|_______ _________________ _______________________|_____
.35" |-.750-| | | | .630" -|
 ____|______|________________| |__|_________________________|__
 |--------3.02"----------| | | |
 |---------------------6.385"-------------|--|----------3.215"---------|
 .40"

END OF FILE TN.IIGS.028

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 197 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.029
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#29: Monochrome High-Resolution Mode

Revised by: Rilla Reynolds November 1988
Written by: Rilla Reynolds October 1987

This Technical Note discusses a 280 x 192 monochrome high-resolution mode
available on the Apple IIGS and useful for clarifying some graphics.

You can select a 280 x 192 monochrome high-resolution mode on the Apple IIGS
with the following steps:

1. Select Monochrome and 40-column from the Control Panel (which sets
 the 40-column soft switch and bit 5 in $C029).
2. Select Hi-Res graphics mode (which sets GR and HIRES soft
 switches).
3. Read from to write to $C05E (AN3).

To deselect the mode, read from or write to $C05F.

A monochrome double high-resolution mode also exists on the IIGS, and you
follow the same procedure outlined above to access it.

You can use the monochrome mode to display sharper graphics-mode text and fine
lines for applications which do not require color. Note that Applesoft BASIC
also supports the monochrome video mode.

The soft switches you must access in software to enable the monochrome high-
resolution mode are as follows:

 GR $C050
 HIRES $C057
 40COL $C00C (for monochrome double hi-res, use 80COL at $C00D)
 AN3 OFF $C05E

In addition, you must set bit 5 of the register at $C029, and you must use a
read-modify-write sequence since $C029 is a multi-function register.

You can manipulate all of the soft switches listed above from the IIGS
Monitor, except 40COL.

END OF FILE TN.IIGS.029

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 198 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.030
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#30: Apple IIGS Hardware Reference Updates

Revised by: Rilla Reynolds November 1988
Written by: Rilla Reynolds October 1987

This Technical Note includes updates to the July 1987 edition of the Apple
IIGS Hardware Reference, published by Addison-Wesley (Part Number 030-3120-A).
Please contact Apple II Developer Technical Support at the address listed in
Apple II Technical Note #0 if you have additional corrections or suggestions
for this manual.

Chapter 3: Memory

 Page 36, Table 3-2, Bits in the State Register: bit 2, value 1
 description should read, "LCBNK2: If this bit is 1, language-card RAM
 bank 2 is selected."

Chapter 6: The Apple Desktop Bus

 Page 130, Table 6-9, Command byte syntax: The first row in the
 table should read:

 x x x x 0 0 0 0 Send Reset

 and not

 A(3) A(2) A(1) A(0) 0 0 0 0 Device Reset

 Page 131, Device Reset: Replace "Device Reset" with "Send Reset." The
 paragraph should be: "When a device receives a Send Reset command, it will
 clear all pending operations and data, and will initialize to the power-on
 state. The Send Reset command is not device-specific; it is sent to all
 devices simultaneously."

 Pages 138-139, Collision detection: The fourth sentence in the last
 paragraph should be: "By using the Listen register 3 command, the host can
 move the device with the activator pressed."

Chapter 7: Built-in I/O Ports and Clock

 Page 146, Table 7-3, Disk-port soft switches:
 $C0E8 Drive disabled

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 199 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 $C0E9 Drive enabled
 $C0EA Drive 1 select
 $C0EB Drive 2 select

 In addition to the corrections listed for Table 7-3, the reference to
 "spindle motor switches" in the paragraph following the table should be
 replaced with "drive enable switches."

 The following text and table should also be added:

 The drive enable switches and the drive select switches control the state
 of the disk port signals DR1 and DR2. The following table shows the
 relationship between these.

 Soft Switches Disk Port Signals
 $C0E8 $C0E9 $C0EA $C0EB DR1 DR2
 1 o o o 0 0
 o 1 1 o 1 0
 o 1 o 1 0 1

 1 = asserted state 0 = negated state o = do not care

 Page 147, The Mode register: The IWM Mode register is a write-only
 register, so disregard the advice to use only a read-modify-write
 instruction sequence when manipulating bits.

 Pages 147-8, Table 7-5, Bits in the Mode register: Switch the
 given values and descriptions for bits 1, 2, and 4 as follows:

 Bit Value Description
 4 0 7-MHz read-clock speed selected. Set to 0 for all Apple
 IIGS disk accesses.
 1 8-MHz read-clock speed selected.
 2 0 1-second timer selected. When the current disk drive is
 deselected, the drive will remain enabled for 1 second
 if this bit is set.
 1 1-second timer is not selected.
 1 0 Synchronous handshake protocol selected; for 5.25-inch
 Apple disk drives.
 1 Asynchronous handshake protocol selected; for all except
 5.25-inch Apple disk drives.

Chapter 8: I/O Expansion Slots

 Page 167, Direct memory access: DMA bank register location is $C037.

Further Reference:
o Apple IIGS Hardware Reference

END OF FILE TN.IIGS.030

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 200 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.031
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#31: Redirecting Output in APW C

Revised by: Guillermo Ortiz November 1988
Written by: Guillermo Ortiz November 1987

This Technical Note presents a sample program which shows how to send output
to different devices under the Apple Programmer's Workshop (APW) shell.

Many programmers find the ability to redirect output an expecially useful
feature. The following is a sample C program which allows this redirection
through an APW shell command. Note that this is not applicable to MPW IIGS C
since it is not part of the APW environment.

 /*
 redirect.c
 Testing the shell REDIRECT command within APW C
 Demonstrates how to send the output to different devices,
 a disk file, the printer, and then back to the screen
 last modified by Guillermo Ortiz 09/21/87

 NOTE: This program checks no errors whatsoever. It expects to
 be able to open the file with no problems and expects the
 printer to be readily available.

 Also remember that for this test to work the file has to be of
 the type 'EXE' (executable from the shell only.)
 */

 #include <types.h>
 #include <misctool.h>
 #include <stdio.h>
 #include <shell.h>
 #include <string.h>

 char timestrg[20]; /* string to store the ascii time */
 char myfile[80]; /* string to store the filename */
 char str[80]; /* dummy string */
 int dev=0x0001; /* standard output */
 int app=0x0000; /* app=0 file is deleted, other will append */

 PrintToFile()
 {
 printf("Please enter the output filename: \n");
 gets(myfile);
 if (strlen(myfile)==0)

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 201 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 {
 printf("Error in entering the filename, quit.\n");
 exit(0);
 }

 /* REDIRECT call requires pascal string */
 c2pstr(myfile);

 /* use the REDIRECT shell command to redirect the output to the file */
 REDIRECT(dev, app, myfile);

 /* now print a few lines of text */
 printf("This is my first line of text.\n");
 printf("And this is the second line.\n");
 printf("Finally the third and last line of text.\n");

 }

 PrintToPrinter()
 {
 /* now redirect to output to the .PRINTER. */
 REDIRECT(dev, app, "\010.PRINTER.");

 printf("We should now be going to the printer.\n");
 ReadAsciiTime(timestrg);
 printf ("The time now is %s\n",timestrg);
 }

 BackToScreen()
 {
 /* Last REDIRECT the output back to the screen. */
 REDIRECT(dev, app, "\010.CONSOLE.");

 printf("The testing of REDIRECTing the output is done.\n");
 ReadAsciiTime(timestrg);
 printf ("The time now is %s\n",timestrg);
 }

 main()
 {
 ReadAsciiTime(timestrg);
 printf ("The starting time is %s\n",timestrg);

 PrintToFile();
 PrintToPrinter();
 BackToScreen();
 }

Further Reference
o Apple IIGS Programmer's Workshop Reference
o Apple IIGS Programmer's Workshop C Reference

END OF FILE TN.IIGS.031

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 202 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.032
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#32: /INH Line Anomaly

Revised by: Glenn A. Baxter & Rob Moore November 1988
Written by: Glenn A. Baxter December 1986

This Technical Note describes a hardware anomaly which affects the use of the
/INH line on the Apple IIGS.

The Apple IIGS maps logical addresses in main and auxiliary RAM spaces to
physical RAM devices in such a way that using the /INH line can cause bus
contention under certain conditions. This Note describes the problem and
suggests a solution strategy.

In the Apple IIGS, main memory resides within four physical 64 x 4 DRAMs.
Memory is logically mapped into two separate banks of 64K x 8. The logical
map of main memory is slightly different than what one might expect. Owing to
the demands of new video modes on the IIGS, the DRAMs need a greater amount of
time to perform their function. The easiest way to allocate time in a fixed,
time-based system is to use a memory interleaving mechanism, and the IIGS
implements its video in this fashion.

As a result of this interleaving scheme, the logical map of main and auxiliary
memory does not correspond directly to physical DRAMs, but are split in three
places. The split looks like the following:

 First Physical 64K Second Physical 64K
 Main Memory $0000 - $5FFF Auxiliary Memory $0000 - $5FFF
 Auxiliary Memory $6000 - $9FFF Main Memory $6000 - $9FFF
 Main Memory $A000 - $FFFF Auxiliary Memory $A000 - $FFFF

Only part of the first physical bank of RAM is inhibited when /INH is brought
low; therefore, the /INH function only works between $0000 - $5FFF and $A000 -
$FFFF in main memory and $6000 - $6FFF in auxiliary memory. If a card
attempts to inhibit main memory in the range of $6000 - $9FFF or auxiliary
memory in the ranges $0000 - $5FFF or $A000 - $FFFF, bus contention results as
both the Mega II and the 74HCT245 buffer device attempt to drive the bus
simultaneously (which can damage the Mega II).

Because earlier Apple II systems do not arrange their physical memory as
described above, cards which use the /INH line may be compatible with the
Apple][+ and IIe, but not with the IIGS. To be compatible with all Apple II
systems, a card should include an address mask that will prevent /INH from
going low when the address in in the sensitive ranges of main or auxiliary
memory. The following logic equation represents an appropriate blocking
signal for main memory inhibition:

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 203 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 BLOCK = /A15 * A14 * A13 ;BLOCK $6000-$7FFF
 + A15 * /A14 * /A13 ;BLOCK $8000-$9FFF

END OF FILE TN.IIGS.032

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 204 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.033
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#33: ERRORDEATH Macro

Revised by: Jim Mensch & Matt Deatherage November 1988
Written by: Allan Bell, Apple Australia & Jim Merritt December 1987

This Technical Note presents a short macro which an assembly language program
can invoke to handle fatal error conditions.

Early versions of Apple-approved sample assembly language code for the Apple
IIGS often invoked an APW macro named ERRORDEATH. This macro generated code
that was appropriate for handling situations where program execution simply
could not proceed due to "fatal" errors, such as a failure to load one or more
tools that are required to display more sophisticated error dialogs or the
inability to allocate sufficient direct page space for essential tool sets.
The macro libraries of prototype APW systems included ERRORDEATH, but the
release version does not to promote the use of more sophisticated error
handling techniques in commercial software packages. The MPW IIGS release
never included ERRORDEATH.

Below are two versions of ERRORDEATH; one is compatible with official standard
releases of APW and the other with MPW IIGS. While Apple recommends avoiding
the use of ERRORDEATH in software intended for commercial release, we feel the
code is still useful for providing minimal error handling capability in
prototype code and a brief, yet sophisticated, example of macro construction.

APW Assembler version: MPW IIGS Assembler version:
 MACRO MACRO
&lab ERRORDEATH &text ErrorDeath &text
&lab bcc end&syscnt bcc @EDeathEnd
 pha pha
 pea x&syscnt|-16 pea @Message>>16
 pea x&syscnt pea @Message
 ldx #$1503 ldx #$1503
 jsl $E10000 jsl $E10000
x&syscnt dc i1'end&syscnt-x&syscnt-1' @Message dc.B @EDeathEnd-@Message-1
 dc c"&text" dc.B &text
 dc i1'13',i1'13' dc.B 13
 dc c'Error was $' dc.B 'Error Was $'
end&syscnt anop @EDeathEnd
 MEND MEnd

The "active ingredient" in the ERRORDEATH macro is the call to SysFailMgr
($1503), which is made if carry is set at the time control passes to the
beginning of the expanded macro code sequence. The APW and MPW IIGS assembler
macro expansion mechanisms insert the value represented by the character

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 205 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

string argument marker, &text, into the generated code stream and provide
SysFailMgr with a pointer to that string. The pseudo-argument, &syscnt,
generates unique labels in the positions occupied by the expressions x&syscnt
and end&syscnt, which makes it possible to invoke ERRORDEATH more than once
during any particular source assembly. In the MPW IIGS version of the macro,
the MPW IIGS assembler creates a unique label for any label beginning with the
at sign (@), effectively doing the equivalent of the &syscnt in the APW
version.

To use ERRORDEATH, simply invoke it after any code sequence or subroutine call
that sets the carry when it encounters an error (clears it, otherwise) and
leaves an appropriate error code in the accumulator. Note that all ProDOS and
Toolbox calls observe this convention. When control passes to the beginning
of the ERRORDEATH code sequence, the CPU should be in full-native mode, which
means the emulation bit should be clear and the accumulator and index
registers should be 16-bits wide). Here is a small code segment which
demonstrates invoking the macro:

 pushword #21 ; Dialog Manager
 pushword #0 ; Use any version
 _LoadOneTool

 ; If carry is now SET, following macro terminates program execution
 ; with the "sliding Apple" error screen.

 IfWeGoofed ERRORDEATH 'Cannot load Dialog Manager!'

 ; *** If no error, normal execution continues here ***

END OF FILE TN.IIGS.033

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 206 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.034
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#34: Low-Level QuickDraw II Routines

Revised by: Keith Rollin, Steven Glass, Matt Deatherage
 & Eric Soldan January 1989
Written by: Steven Glass May 1988

This Technical Note describes the low-level routines which QuickDraw II uses
to do much of the work in standard calls and mechanisms for calling these
routines and accessing their data.
Changed since November 1988: Expanded the section on "Dealing with the
Cursor" and documented a bug in ShieldCursor.

QuickDraw II lets you customize low-level drawing operations by intercepting
the "bottleneck procedures." QuickDraw II calls an appropriate "bottleneck
proc" every time it receives a call to draw an object, measure text, or deal
with pictures. For example, if an application calls PaintOval, QuickDraw II
calls StdOval to do the real work, and if an application calls InvertRgn,
QuickDraw II calls StdRgn to do the work.

Installing your own bottleneck procedures is a little bit tricky. The
QuickDraw II SetStdProcs call accepts a pointer to a 56-byte ($38 hex) record
and fills that record with the addresses of the standard bottleneck procedures
of QuickDraw II. You may modify this record by replacing those addresses with
the addresses of your own custom bottleneck procedures minus one. (QuickDraw
II pushes the address on the stack and executes an RTL to it, so the address
in the record must point to the byte before the routine.) After installing
your own procedures, you use SetGrafProcs to tell QuickDraw II about them.
The format of this call is as follows (taken from the E16.QUICKDRAW file in
APW):

 ostdText GEQU $00 ; Pointer - QDProcs -
 ostdLine GEQU $04 ; Pointer - QDProcs -
 ostdRect GEQU $08 ; Pointer - QDProcs -
 ostdRRect GEQU $0C ; Pointer - QDProcs -
 ostdOval GEQU $10 ; Pointer - QDProcs -
 ostdArc GEQU $14 ; Pointer - QDProcs -
 ostdPoly GEQU $18 ; Pointer - QDProcs -
 ostdRgn GEQU $1C ; Pointer - QDProcs -
 ostdPixels GEQU $20 ; Pointer - QDProcs -
 ostdComment GEQU $24 ; Pointer - QDProcs -
 ostdTxMeas GEQU $28 ; Pointer - QDProcs -
 ostdTxBnds GEQU $2C ; Pointer - QDProcs -
 ostdGetPic GEQU $30 ; Pointer - QDProcs -
 ostdPutPic GEQU $34 ; Pointer - QDProcs -

The following code fragment shows how you might replace the StdRect procedure

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 207 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

with your own for a given window:

 pha ; open a test window
 pha
 PushLong #MWindData ; standard setup for NewWindow
 _NewWindow
 _SetPort

 PushLong #MyProcs ; get a record to modify
 _SetStdProcs

 ldy #ostdRect ; get the low word of my rectangle routine
 lda #myRect-1 ; (minus one) and patch it in to the record
 sta myProcs,y
 lda #^myRect ; do the same for the high word
 sta myProcs+2,y

 PushLong #MyProcs ; install the procs
 _SetGrafProcs

The interface to bottleneck procedures is different from the interface to
other QuickDraw II routines; you do not make calls via the tool dispatcher and
you pass most parameters on the direct page and in registers (rather than on
the stack). To write your own bottleneck procedures, you have to know where
the inputs to each call are kept and how to call the standard procedures from
inside your own procedures.

The standard bottleneck procedures are accessed through vectors in bank $E0.

 StdText $E01E04
 StdLine $E01E08
 StdRect $E01E0C
 StdRRect $E01E10
 StdOval $E01E14
 StdArc $E01E18
 StdPoly $E01E1C
 StdRgn $E01E20
 StdPixels $E01E24
 StdComment $E01E28
 StdTxMeas $E01E2C
 StdTxBnds $E01E30
 StdGetPic $E01E34
 StdPutPic $E01E38

When you call any of the standard procedures, the first direct page of
QuickDraw II is active. If you pass variables on any direct page other than
the first (direct page locations greater than $FF), you can use a simple trick
to access them. For example, to access TheFillPat ($10E) without changing the
direct page register:

 ldx #$100 ;offset to second DP
 lda >$OE,X ;gets "DP" location $10E

Certain locations on the direct page are always valid:

 PortRef $24
 MaxWidth $20
 MasterSCB $08

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 208 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 UserID $0A

DrawVerb is usually valid, but not always:

 DrawVerb $38

Each of the bottleneck procedures uses the direct page differently.

QuickDraw II has an interesting bug relating to the standard conic bottleneck
procedures. If you replace any of the standard procedures with your own,
QuickDraw II does not perform some of the setups it normally would before
calling the standard conic procedures (stdRRect, stdOval, stdArc). For
example, if you replace StdRect with a custom rectangle routine, but leave the
other conic pointers alone (as shown in the code fragment above), QuickDraw II
will not do all of the normal setups when calling the standard conic routines.
To deal with this bug of QuickDraw II, you must patch out the additional
bottleneck procedures and set up those direct pages locations yourself, or the
results will not be what you expect. The QuickDraw II direct-page variables
you must initialize yourself in this instance are bulleted (o) below.

StdText
 DrawVerb $38 Describes the kind of text to draw. There
 are three possible values:
 DrawCharVerb 0
 DrawTextVerb 1
 DrawCStrVerb 2
 TextPtr $DA If the draw verb is DrawTextVerb or
 DrawCStrVerb, TextPtr points to the text
 buffer or C string to draw.
 TextLength $D8 If the draw verb is DrawTextVerb,
 TextLength contains the number of bytes in
 the text buffer.
 CharToDraw $D6 If the draw verb is DrawCharVerb,
 CharToDraw contains the character to draw.

StdLine
 Y1 $A6 Starting Y value for the line to draw
 X1 $A8 Starting X value for the line to draw
 Y2 $AA Ending Y value for the line to draw
 X2 $AB Ending X value for the line to draw
 Rect2 $AE Exactly the same thing as Y1, X1, Y2 and
 X2 in the top, left, bottom, and right of
 the rectangle

StdRect
 DrawVerb $38 One of the following five drawing verbs:
 Frame 0
 Paint 1
 Erase 2
 Invert 3
 Fill 4
 Rect1 $A6 The rectangle to draw in standard form
 (top, left, bottom, right)
 TheFillPat $10E The pattern to use for the rectangle if
 the verb is Fill

Note: The QuickDraw II Auxiliary SpecialRect call does not use the
rectangle bottleneck procedures.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 209 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

StdRRect
 DrawVerb $38 One of the following five drawing verbs:
 Frame 0
 Paint 1
 Erase 2
 Invert 3
 Fill 4
 Rect1 $A6 The boundary rectangle for the round
 rectangle
 OvalRect $295 A copy of the boundary rectangle for the
 round rectangle
 OvalHeight $208 The oval height for the rounded part of
 the round rectangle
 OvalWidth $20A The oval width for the rounded part of the
 round rectangle
 o ArcAngle $D2 Must be 360
 o StartAngle $D4 Must be zero
 TheFillPat $10E The pattern to use for the round rectangle
 if the verb is Fill

StdOval
 DrawVerb $38 One of the following five drawing verbs:
 Frame 0
 Paint 1
 Erase 2
 Invert 3
 Fill 4
 Rect1 $A6 The boundary rectangle for the oval
 OvalRect $295 A copy of the boundary rectangle for the
 oval
 o OvalHeight $208 Must be the height of the oval
 o OvalWidth $20A Must be the width of the oval
 o ArcAngle $D2 Must be 360
 o StartAngle $D4 Must be zero
 TheFillPat $10E The pattern to use for the oval if the
 verb is Fill

StdArc
 DrawVerb $38 One of the following five drawing verbs:
 Frame 0
 Paint 1
 Erase 2
 Invert 3
 Fill 4
 Rect1 $A6 The boundary rectangle for the arc
 o OvalWidth $20A Must be the width of the boundary
 rectangle for the arc
 ArcAngle $D2 The number of degrees the arc will sweep
 StartAngle $D4 The starting position of the arc
 TheFillPat $10E The pattern to use for the arc if the verb
 is Fill

StdPoly
 DrawVerb $38 One of the following five drawing verbs:
 Frame 0
 Paint 1
 Erase 2

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 210 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Invert 3
 Fill 4
 RgnHandleA $50 The handle to the polygon data structure
 TheFillPat $10E The pattern to use for the polygon if the
 verb is Fill

StdRgn
 DrawVerb $38 One of the following five drawing verbs:
 Frame 0
 Paint 1
 Erase 2
 Invert 3
 Fill 4
 RgnHandleC $70 The handle to the region to draw
 TheFillPat $10E The pattern to use for the region if the
 verb is Fill

StdPixels
 SrcLocInfo $CC The LocInfo record for the source pixel
 map
 DestLocInfo $0C The LocInfo record for the destination
 pixel map
 SrcRect $DC The source rectangle for the operation in
 local coordinates for the source pixel map
 (as described in the source LocInfo
 record)
 DestRect $1C The destination rectangle for the
 operation in local coordinates for the
 destination pixel map (as described in the
 destination LocInfo record)
 XferMode $E4 The mode to use for data transfer
 RgnHandleA $50 The handle to the first region to which
 drawing is clipped (usually the ClipRgn
 from the GrafPort) A NIL handle is not
 allowed. To signify no clipping, pass a
 handle to the WideOpen region, which is
 defined as 10 bytes:

 Length $A (word)
 -MaxInt -$3FFF (word)
 -MaxInt -$3FFF (word)
 +MaxInt +$3FFF (word)
 +MaxInt +$3FFF (word)

 RgnHandleB $60 The handle to the second region to which
 drawing is clipped (usually the VisRgn
 from the GrafPort) A NIL handle is not
 allowed. To signify no clipping, pass a
 handle to the WideOpen region.
 RgnHandleC $70 The handle to the second region to which
 drawing is clipped (usually the mask
 region from the CopyPixels or the
 PaintPixels call) A NIL handle is not
 allowed. To signify no clipping, pass a
 handle to the WideOpen region.

StdComment
 TheKind $A6 The kind of input for the comment

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 211 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 TheSize $A8 The number of bytes to put into the
 picture
 TheHandle $AA The data to put into the picture

StdTxMeas
 DrawVerb $38 Describes the kind of text to draw. There
 are three possible values:
 DrawCharVerb 0
 DrawTextVerb 1
 DrawCStrVerb 2
 TextPtr $DA If the draw verb is DrawTextVerb or
 DrawCStrVerb, TextPtr points to the text
 buffer or C string to draw.
 TextLength $D8 If the draw verb is DrawTextVerb,
 TextLength contains the number of bytes in
 the text buffer.
 CharToDraw $D6 If the draw verb is DrawCharVerb,
 CharToDraw contains the character to
 measure.
 TheWidth $DE The resulting width should be put here.

StdTxBnds
 DrawVerb $38 Describes the kind of text to draw. There
 are three possible values:
 DrawCharVerb 0
 DrawTextVerb 1
 DrawCStrVerb 2
 TextPtr $DA If the draw verb is DrawTextVerb or
 DrawCStrVerb, TextPtr points to the text
 buffer or C string to draw.
 TextLength $D8 If the draw verb is DrawTextVerb,
 TextLength contains the number of bytes in
 the text buffer.
 CharToDraw $D6 If the draw verb is DrawCharVerb,
 CharToDraw contains the character to draw.
 RectPtr $D2 Indicates the address to put the resulting
 rectangle.

StdGetPic
 This call takes input on the stack rather than the direct page. This is
 the one standard bottleneck procedure which you call with the direct
 page register set to something other than the direct page of QuickDraw
 II; it is set to a part of the stack.

 Stack Diagram on Entrance to StdGetPic
 Previous Contents
 DataPtr Pointer to destination buffer
 Count Integer (unsigned) (bytes to read)
 RTL Address 3 bytes
 ----------------- Top of Stack

 Stack Diagram just before exit from StdGetPic
 Previous Contents
 RTL Address 3 bytes
 ----------------- Top of Stack

StdPutPic
 This call takes input on the stack rather than the direct page; however,

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 212 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 unlike StdGetPic, the direct page for QuickDraw II is active when you
 call this routine.

 Stack Diagram on Entrance to StdPutPic

 Previous Contents
 DataPtr Pointer to source buffer
 Count Integer (unsigned) (bytes to read)
 RTL Address 3 bytes
 ----------------- Top of Stack

 Stack Diagram just before exit from StdPutPic

 Previous Contents
 RTL Address 3 bytes
 ----------------- Top of Stack

Dealing with the Cursor

The cursor can get in your way when you want to draw directly to the screen.
QuickDraw II has two low-level routines which help you avoid this problem:
ShieldCursor and UnshieldCursor. ShieldCursor tells QuickDraw II to hide the
cursor if it intersects the MinRect and to prevent the cursor from moving
until you call UnshieldCursor.

There is a bug in ShieldCursor for System Disks 4.0 and earlier. This bug is
related to the routine ObscureCursor. When the cursor is obscured,
ShieldCursor does not prevent the cursor from moving; therefore, the user is
able to move the cursor during a QuickDraw II operation, and this movement may
disturb the screen image.

Calls to ShieldCursor must be balanced by calls to UnshieldCursor. You may
not call ShieldCursor successively without calling UnshieldCursor after each
call to ShieldCursor. There is no error checking, so careless use of these
routines will result in an unusable system.

MinRect is the smallest possible rectangle which encloses all the pixels that
may be affected by a drawing call. You keep MinRect on the direct page and
usually calculate it by intersecting the rectangle of the object you are
drawing with the BoundsRect, PortRect, boundary box of the VisRgn, and the
boundary box of the ClipRgn. You must set up MinRect yourself.

ShieldCursor also looks at two other fields on the direct page of QuickDraw
II. ImageRef is a long word located at $0E. If ImageRef does not point to
$E12000, QuickDraw II assumes you are not drawing to the screen, so it does
not have to shield the cursor. BoundsRect is a rectangle located at $14, and
QuickDraw II uses it to translate MinRect into global coordinates. These
values are generally correct, but under the following known circumstance, they
are not and ShieldCursor will not function properly:

1. You have just drawn to an off-screen GrafPort with QuickDraw II.
2. You switch to a GrafPort on the screen.
3. You call ShieldCursor.

ImageRef and BoundsRect are not updated until QuickDraw II is actually
committed to drawing, thus, these values are still for the off-screen GrafPort
in this case, even though you switched to a GrafPort on the screen.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 213 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Therefore, when you call ShieldCursor, you have to make sure that these values
are current. (If these values are current, ShieldCursor will work correctly,
no matter what the circumstances.)

You can find the location of the QuickDraw II direct page with the GetWAP
call. For speed reasons, you may not want to make the GetWAP call for each
ShieldCursor call. You may wish to get the work area pointer value after
starting QuickDraw II and store it for future reference.

Calling ShieldCursor:
1. Set direct page for QuickDraw II.
2. Set MinRect, ImageRef, and BoundsRect.
3. Call ShieldCursor.

Calling UnshieldCursor:
1. Set direct page for QuickDraw II.
2. Call UnshieldCursor.

ShieldCursor $E01E98
 MinRect $00
 ImageRef $0E
 BoundsRect $14

UnshieldCursor $E01E9C

Further Reference

o Apple IIGS Toolbox Reference, Volume 2

END OF FILE TN.IIGS.034

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 214 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.035
###

Apple II
Technical Notes

 Developer Technical Support
Apple IIGS
#35: Printer Driver Specifications

Revised by: Matt Deatherage & Suki Lee September 1989
Written by: Dan Hitchens May 1988

This Technical Note describes the routines and internal structures needed to
design a printer driver for the Apple IIGS system, and you should reference it
in conjunction with the Apple IIGS Toolbox Reference manuals. An overview and
associated parameters for each of the printer driver routines are in the Print
Manager chapter, and you should reference these for a complete picture.
Changed since March 1989: Added System Software 5.0 calls and the new
driver structure.

Printing Modes

There are two printing modes: immediate and deferred.

 o Immediate mode (also known as draft mode), uses the technique of
 printing immediately. As you make QuickDraw II calls, you
 immediately generate commands which cause printing to occur. This
 mode is the fastest form of printing, but it can only print
 characters in the printer's native mode. (However, the
 LaserWriter translates the QuickDraw II calls into PostScript
 calls which can produce high-quality pixelmap images.)

 o Deferred mode (sometimes referred to as spooling), uses the
 technique of capturing the QuickDraw II calls for each page in a
 picture file and plays them back at a later time. To produce
 high-quality pixelmap images, you must use deferred mode because
 of the memory constraint of not being able to draw a complete page
 in memory at one time. Due to this limitation, we draw a band (a
 partial page) at a time. We create a GrafPort which corresponds
 to the band and play the picture file back, thus causing the saved
 commands to draw only the images which fall within the band. Once
 the pixel image for the band is generated, we can send it to the
 printer one pixel at a time.

File Structure

The user can install new printer drivers into the system by copying a printer
driver file into a subdirectory called DRIVERS within the SYSTEM subdirectory.
The printer driver file must be of type $BB and have an auxiliary type of
$0001.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 215 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Print Driver Calls

A printer driver must support the following calls:

 PrDefault $0913 Sets print record to default
 PrValidate $0A13 Validates print record
 PrStlDialog $0B13 Performs a style dialog
 PrJobDialog $0C13 Performs a job dialog
 PrPixelMap $0D13 Prints a pixelmap
 PrOpenDoc $0E13 Opens the document
 PrCloseDoc $0F13 Closes the document
 PrOpenPage $1013 Opens a page
 PrClosePage $1113 Closes a page
 PrPicFile $1213 Prints a picture file
 --RESERVED-- $1313
 PrError $1413 Gets the error value
 PrSetError $1513 Sets the error value
 GetDeviceName $1713 Gets device's name
 PrDriverVer $2313 Gets installed driver version

Printer drivers may support the following calls if they use the new driver
structure outlined below:

 PrGetPrinterSpecs $1813 Returns printer type and
 characteristics
 PrGetPageOrientation $3813 Returns page orientation

Print Driver Entry

 o For older drivers, entry is at the first byte (no offset). For newer
 (Print Manager 3.0 and later) drivers, the first word is $0000, indicating
 a new style driver. The next word is a count of how many calls this driver
 supports. All drivers must support the minimum call set. Additional
 calls must be supported in the sequence listed (for example, if a driver
 supports PrGetPageOrientation, it must also support PrGetPrinterSpecs).
 o The content of the x register is calculated beforehand for use as an index
 to the correct routine (see the example and note the specific ordering of
 the routines).
 o There are two long return addresses (six bytes) that have been pushed onto
 the stack. (You must take these addresses into account to access the
 parameters and to return correctly.)

Example

StartOfDriver START

 dc i2 '0' ; new style driver
 dc i2 '16'

 jmp (PrDriverList,x)

PrDriverList dc a4'PrDefault'
 dc a4'PrValidate'
 dc a4'PrStlDialog'
 dc a4'PrJobDialog'
 dc a4'PrPixelMap'

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 216 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 dc a4'PrOpenDoc'
 dc a4'PrCloseDoc'
 dc a4'PrOpenPage'
 dc a4'PrClosePage'
 dc a4'PrPicFile'
 dc a4'InvalidRoutine'
 dc a4'PrError'
 dc a4'PrSetError'
 dc a4'GetDeviceName'
 dc a4'PrDriverVer'
 dc a4'PrGetPrinterSpecs'
 dc a4'PrGetPageOrientation'

Print Driver Exit

You should adjust the stack to use RTL instructions followed by any return
parameters with the two long return addresses. To accomplish this, you will
need to do the following:

 o Eliminate any parameters from the stack which have been passed.
 o Move the long return addresses so that they are before the space for the
 returned parameters (if any).

Example

Figure 1 diagrams the stack just before leaving the print driver:

 | Previous Contents
 +---------------------
 | Results (if any)
 +---------------------
 | RTL2 (3 bytes)
 +---------------------
 | RTL1 (3 bytes)
 +---------------------
 <--- Stack Pointer

 Figure 1-Stack Prior to Exiting the Print Driver

You should do an RTL with the contents of the flags and registers set
appropriately. (See the Return from Call section of the "Using The Apple
Tools" chapter of the Apple IIGS Toolbox Reference.)

Print Record Structure

Since application programs often need to fiddle with parts of the print record
(i.e., the values in the style subrecord), we have defined ways for
applications to interpret the print record, and specifically the style
subrecord.

iDev, the first word of the printer information subrecord, has two defined
values for third-party printer drivers. A value of $8001 indicates a dot-
matrix printer while a value of $8003 indicates a laser printer.

A value of $8001 indicates that fields of the style subrecord should be

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 217 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

interpreted as they are by the ImageWriter driver, as documented in the Apple
IIGS Toolbox Reference. The first seven bits (0-6) of wDev are defined as for
the ImageWriter driver. Bits 7-11 are reserved for Apple's use and must be
set to zero. Bits 12-15 may be used by third-party printer drivers as
necessary; these bits will be set to zero in Apple's drivers.

A value of $8003 indicates that fields of the style subrecord should be
interpreted as they are by the LaserWriter driver. The first four bits (0-3)
of wDev are defined as for the LaserWriter driver. Bits 4-11 are reserved for
Apple's use and must be set to zero. Bits 12-15 may be used by third-party
printer drivers as necessary; these bits will be set to zero in Apple's
drivers.

If an application wishes to take advantages of specific features of a third-
party printer driver, it has to know that it is dealing with that driver.
Since all drivers will look pretty much alike, the Print Manager allows you to
ask for the name of the currently selected printer driver. An application may
make the Print Manager call PMGetPrinterName, which is documented in this
Note. The Print Manager will return the name of the currently selected
printer in a Pascal (length byte) string. The name returned is the name of
the file from which the driver was loaded. If you intend to use this method
to identify a driver, you must inform users not to rename the Printer Driver
file on the boot disk.

The PMGetPrinterName call is as follows:

Note: This is a Print Manager call, not a Printer Driver call.
 It is the only Print Manager call documented in this Note.
 Printer Drivers do not include this call.

PMGetPrinterName ($2813)

Description:
 Returns a Pascal string with the file name of the currently selected
 printer driver.

Passed:
 Longspace LONG Space for result

Returned:
 NamePointer LONG Pointer to a Pascal string of driver
 filename

Print Driver Calls

PrDefault ($0913)

Description:
 Fills the fields of the specified print record with default values for the
 printer.

Passed:
 PrintRecordHandle LONG Handle to the print record

Returned:
 None

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 218 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Performs the following:
 o Validates that PrintRecordHandle is a handle and does nothing if not.
 o Determines the default values for the print record either through tables or
 calculations. The default values should take into account such things as
 paper size and orientation, print mode, printer type, etc.
 o Copies the default values to the print record specified by the
 PrintRecordHandle parameter.

PrValidate ($0A13)

Description:
 Checks the print record to see that it is valid for the currently installed
 printer driver.

Passed:
 PrintRecordHandle LONG Handle to the print record

Returned:
 ChangeFlag WORD Boolean; TRUE if the record is
 adjusted

Performs the following:
 o Checks to see if the print record is from this particular driver.
 o If the print record is not from this driver, it uses the default values for
 this driver.
 o If the print record is from this driver, it makes any changes that might be
 needed (i.e., style, paper size, etc.).

PrStlDialog ($0B13)

Description:
 Performs a style dialog with the user.

Passed:
 PrintRecordHandle LONG Handle to the print record

Returned:
 ConfirmFlag WORD Boolean; TRUE if the dialog is
 confirmed

Performs the following:
 o Conducts a style dialog with the user to determine the page dimensions and
 other information needed for page setup (the initial settings of the dialog
 are derived from the print record).
 o If the user confirms the dialog, the information from the dialog is saved
 in the specified print record, PrValidate is called, and the routine
 returns TRUE.
 o If the user cancels the dialog, the print record is left unchanged, and the
 routine returns FALSE.

Note: The following are items typically found in printer style dialogs:

 o Paper Size (US Letter, US Legal, A4 Letter, B5 Letter, International
 Fanfold)
 o Printing Orientation (Landscape, Portrait)
 o Vertical Sizing (Normal, Intermediate, Condensed)

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 219 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 o Special Effects:
 Font Effects (Font Substitution, Smoothing)
 Reduction or Enlargement
 Gaps or No Gaps between pages

Every printer style dialog should have an OK button (default) and a Cancel
button.

PrJobDialog ($0C13)

Description:
 Performs a job dialog with the user.

Passed:
 PrintRecordHandle LONG Handle to the print record

Returned:
 ConfirmFlag WORD Boolean; True if the dialog is
 confirmed

Performs the following:
 o Conducts a job dialog with the user to determine the print quality, range
 of pages to print, and other specifications. The initial settings are
 derived from the previous PrJobDialog call (or initial default values)
 except the page range which is set to ALL, and the number of copies which
 is set to ONE.
 o If the user confirms the dialog, PrValidate is called, the print record is
 updated, and the routine returns TRUE.
 o If the user cancels the dialog, the print record is left unchanged, and the
 routine returns FALSE.

Note: The following are items typically found in printer job dialogs:

 o Print Quality (Best, Faster, Draft, etc.)
 o Color option
 o Pages (All, Range)
 o Copies
 o Paper Source (paper cassette, manual feed)

Every printer job dialog should have an OK button (default) and a Cancel
button.

PrPixelMap ($0D13)

Description:
 Prints all or part of the specified pixelmap.

Passed:
 srcLocPtr LONG Pointer to the source LocInfo which
 contains the pointer to the pixelmap.
 srcRectPtr LONG Pointer to the rectangle which
 encloses the pixelmap to be printed.
 colorFlag WORD Boolean; FALSE if black and white,
 TRUE if color.

Returned:

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 220 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 None

Performs the following:
 o Calls DevIsItSafe (port driver call) to verify that the port it functioning
 and it is safe to proceed. If it is not functioning, set the internal
 error code to $1302 (Port Not On) and return with an error status.
 o Saves the current port.
 o Turns on the watch cursor to signal the user that it will take some time.
 o Clears the internal error code (default, if no errors occur).
 o Gets a new handle for a print record and set it to the defaults by calling
 PrDefault.
 o If colorFlag is set, sets bit 5 of wdev in prStl of the print record.
 o Do any initialization that might be needed by the driver.
 o Determine the intersection of the two rectangles (rectangle pointed to by
 srcRectPtr and the pixelmap's boundary rectangle from srcLocPtr) and if
 there is no intersection, then nothing is to be printed.
 o Print the pixel image which is within the intersection of the two
 rectangles.
 o Cause a page eject to occur on the printer.
 o Do any clean up that is needed.
 o Turn off the watch cursor by calling InitCursor.
 o Restore the port by calling SetPort.

PrOpenDoc ($0E13)

Description:
 This routine initializes the things needed to open a document. In deferred
 mode, it establishes a GrafPort and makes it the current port for printing.

Passed:
 PrintRecordHandle LONG Handle to the print record
 PrinterPortPtr LONG Pointer to the GrafPort, if desired,
 zero to allocate a new GrafPort
Returned:
 PrinterPortPtrRet LONG Pointer to the GrafPort if the
 PrinterPortPtr was zero

Performs the following:
 o Calls DevIsItSafe (port driver call) to verify that the port is functioning
 and it is safe to proceed.
 o Turns on the watch cursor to signal the user that it will take some time.
 o Validates the print record passed by calling PrValidate.
 o Clears the internal error code (default, if nothing happens).
 o Puts up a dialog indicating that printing is occurring (or preparing to
 print).
 o If the user needs a GrafPort, create one and internally note that one was
 created (PrCloseDoc will need to know that one was created here).
 o Initializes parameters (i.e., page number, document number, etc.).
 o If deferred mode, create an initial page list (an array of handles to
 pictures) for 20 pages (arbitrary number to start).
 o Do other initialization that might be needed to start a print job.

Possible errors:
 $1302 Indicates Port Not On

PrCloseDoc ($0F13)

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 221 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Description:
 Closes the GrafPort being used for printing. For immediate mode, this
 routine ends the printing job. For deferred mode, this routine ends the
 process allowing the job to be printed.

Passed:
 PrintGrafPortPtr LONG Pointer to the GrafPort used for printing

Returned:
 None

Performs the following:
 o Checks that the last print driver call did not cause a Port Not On error.
 If the error occurred, do nothing and return.
 o Call ClosePort (port driver call) to close the port.
 o If the driver allocated a GrafPort in PrOpenDoc, dispose of it.
 o If in immediate mode, do what is needed to shut things down.
 o Takes down the information dialog box from PrOpenDoc.

PrOpenPage ($1013)

Description:
 Begins a new page only if the page falls within the page range specified in
 the job subrecord.

Passed:
 PrintGrafPortPtr LONG Pointer to the GrafPort used for printing
 PageFramePtr LONG Pointer to the scaling parameter,
 zero for none.
Returned:
 None

Performs the following:
 o Looks at the driver's internal error value, and if an error has occurred,
 it returns without doing anything.
 o Increments the page number.
 o Calls SetPort to make the specified port the current port.
 o Initializes the port and zeroes the boundary rectangle so no actual drawing
 will occur.
 o If immediate mode, then do the following:
 If this page is to be printed, install immediate mode procedures by
 doing the following:
 o Create a procedure table (get the standard procedures. from
 SetStdProcs).
 o Put pointers to your procedures into the table and call the
 QuickDraw II routine SetGrafProcs. This will cause QuickDraw
 II calls to print instead of writing to the GrafPort.
 o If deferred mode, then do the following:
 o If the current page is out of the page range, then return without
 doing anything further.
 o If the user passes his own PageFramePtr , then get it.
 o Open a picture by calling OpenPicture and adding its handle to
 the page list array described in PrOpenDoc.
 o Set the ClipRgn and VisRgn to the sizing framing rectangle
 specified by PageFramePtr , or if none was specified, to the
 default of rPage.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 222 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

PrClosePage ($1113)

Description:
 This signals the end of a page.

Passed:
 PrintGrafPortPtr LONG Pointer to the GrafPort used for printing

Returned:
 None

Performs the following:
 o Looks at the driver's internal error value and if a Port Not On error has
 occurred, it returns without doing anything.
 o If immediate mode, do the following:
 o If the current page is within the range of pages to be printed, then
 cause a form feed (unless no gap was specified).
 o If deferred mode, do the following:
 o If there was no picture generated, then do nothing and just return.
 o Call SetPort to make the specified port the current port.
 o Do a ClosePicture to close the picture.

PrPicFile ($1213)

Description:
 Prints a picture file generated in deferred mode.

Passed:
 PrintRecordHandle LONG Handle to the print record
 PrintGrafPortPtr LONG Pointer to the GrafPort used for printing
 StatusRecPtr LONG Pointer to the printer status record

Returned:
 None

Performs the following:
 o Looks at the driver's internal error value and if a Port Not On error has
 occurred, it returns without doing anything.
 o If immediate mode, return without doing anything.
 o If deferred mode, then do the following:
 o If the error code is not zero (errors) then dispose of everything.
 o Put up an information dialog indicating that printing is occurring.
 o If PrintGrafPortPtr is NIL, create one and make a note of it.
 o Call OpenPort to make the GrafPort the current port.
 o If StatusRecPtr is NIL, use an internal one.
 o Initialize the status record and the number of copies counter.
 o If the idle proc in the print record is NIL, point to an internal one.
 o Do The Following For Each Copy:
 o Calculate the number of bands it will take to print one page
 and initialize the page counter.
 o Do The Following For Each Page:
 o Call the idle procedure routine and initialize the
 band counter.
 o Get the handle to the picture associated with the
 current page.
 o Set the dirty flag in the status record to FALSE.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 223 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 o If manual paper feed, put up a dialog and wait for
 a response.
 o Do The Following For Each Band:
 o Call the idle procedure.
 o Calculate the band rectangle and update
 icurband with the current band number.
 o Call the idle proc again.
 o Set the imaging flag in the status record to TRUE.
 o Call InitPort to reinitialize the port.
 o Adjust fields in the port to cause drawing into
 the band buffer.
 o Adjust fields in the location information field
 of the status record and calculate the sizing rectangle.
 o Calculate the boundary rectangle for the band and set
 the port rectangle to it.
 o Set the ClipRgn and the VisRgn to the sizing rectangle.
 o Initialize the band by filling it with white space.
 o Call DrawPicture to draw the picture into the band's
 rectangle.
 o Do whatever is needed to print the pixel image in the
 band's rectangle.
 o Clear the imaging flag.
 o Calculate the next band's position.
 o Increment the band's counter and loop back if not done.
 o If GAP was specified, cause a form feed.
 o Increment the page count to the next page and loop back
 if not done.
 o Increment the number of copies counter and loop back if not done.
 o Free any buffers that you own and close the port.
 o Dispose of the information dialog that you put up.
 o Dispose of each picture in the picture list by calling KillPicture.
 o Dispose of the picture list itself.
 o Reset the cursor.

PrError ($1413)

Description:
 Gets the error code from the last Print Manager call.

Passed:
 None

Returned:
 LastError WORD Result code from last Print Manager call

Performs the following:
 o Gets the driver's internal error value (which was determined by the last
 driver call) and sets the return parameter LastError to it.

Possible Errors:
noError $0000
PrAbort $0080 Indicates print job was aborted
 $1301 Indicates missing drivers
 $1302 Indicates Port Not On
 $1303 Indicates No Print Record
 $1306 Indicates PAP Connection Not Made
 $1307 Indicates Read/Write PAP Error

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 224 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 $1308 Indicates Printer Connection Failed

PrSetError ($1513)

Description:
 Sets the error value.

Passed:
 ErrorNumber WORD Error number to be set

Returned:
 None

Performs the following:
 o Sets the driver's internal error value to the value of the passed
 ErrorNumber parameter.

GetDeviceName ($1713)

Description:
 Used as a communications tool between the printer driver and port driver.

Passed:
 None

Returned:
 None

Performs the following:
 o Calls the port driver routine PrDevPrChanged with the printer name as
 input. This is necessary for drivers that will work over AppleTalk. The
 name passed as the parameter to PrDevPrChanged should be what AppleTalk
 will use in an NBPLookup situation; for AppleTalk, such a name should
 follow NBP conventions.

PrDriverVer ($2313)

Description:
 Returns the version number of the currently installed printer driver.

Passed:
 Wordspace WORD Space for results

Returned:
 versionInfo WORD Printer driver's version number

Performs the following:
 o Gets the internal version number of the printer driver and returns it on
 the stack at versionInfo.

Note: The internal version number is stored
 major byte, minor byte (i.e., $0103 represents version 1.3)

PrGetPrinterSpecs ($1813)

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 225 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Description:
 Returns the type of printer and the printer's characteristics.

Passed:
 Wordspace WORD Space for results
 Wordspace WORD Space for results

Returned:
 PrinterType WORD 0 = undefined
 1 = ImageWriter or ImageWriter II
 2 = ImageWriter LQ
 3 = LaserWriter family (except IISC)
 4 = Epson
 $8001 = generic dot matrix printer
 $8003 = generic laser printer
 PrCharacteristics WORD Bits 15 - 2 = reserved, must be zero
 Bits 1-0: 00 = cannot determine
 01 = black and white
 only
 10 = color capable

Performs the following:
 o Returns characteristics intrinsic for the printer being supported.

PrGetPgOrientation ($3813)

Description:
 Returns the page orientation from the current print record.

Passed:
 Wordspace WORD Space for results

Returned:
 PgOrientation WORD Current page orientation:
 0 = portrait
 1 = landscape

Performs the following:
 o Returns the page orientation from the current page setup information in the
 print record.

Immediate Mode Procedures

To print in the immediate mode, you need to install procedures which will
cause printing when you make QuickDraw II calls (as noted in PrOpenPage).
This section describes the structure and parameters for these routines.

To install the immediate mode procedures, first create a procedure table for
sixteen entries (16*4 bytes) and fill it with the standard procedures by
calling SetStdProcs. Once you have the standard procedures, install the
addresses of your procedures into it and call SetGrafProcs. Installing your
procedure addresses will cause the appropriate QuickDraw II calls to call your
procedures, which, in turn, will perform the actual printing.

The routines that need to be written are known as QuickDraw II "bottleneck

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 226 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

procedures." Access to the routines are from bank $E0 (accessed by doing a
JSL to the appropriate address in bank $E0). When you call any of the
bottleneck procedures, the first direct page of QuickDraw II is active and the
following direct page locations are valid:

 PortRef $24
 MaxWidth $20
 MasterSCB $08
 UserId $0A

Two bottleneck procedures, StdText and StdPixels, are of most concern when
writing immediate mode procedures. (Refer to Apple IIGS Technical Note #34
for more information on bottleneck procedures.)

The routine StdText (standard text) is the standard text drawing routine. To
install this routine into your procedure table (as described above), make it
the first entry (offset of $00). Once it's installed, you can access it by
doing a long call to absolute address $E01E04. Its direct page parameters are
as follows:

 DrawVerb $38 Describes the kind of text to draw. There
 are three possible values:
 DrawCharVerb 0
 DrawTextVerb 1
 DrawCStrVerb 2
 TextPtr $DA If the draw verb is DrawTextVerb or
 DrawCStrVerb, TextPtr points to the text
 buffer or C string to draw.
 TextLength $D8 If the draw verb is DrawTextVerb,
 TextLength contains the number of bytes in
 the text buffer.
 CharToDraw $D6 If the draw verb is DrawCharVerb,
 CharToDraw contains the character to draw.

The routine StdPixels is the standard pixelmap drawing routine. To install
this routine into your procedure table (as described above), put it at offset
$20. Once it's installed, you can access it by doing a long call to absolute
address $E01E24. Its direct page parameters are as follows:

 SrcLocInfo $CC The LocInfo record for the source pixel
 map
 DestLocInfo $0C The LocInfo record for the destination
 pixel map
 SrcRect $DC The source rectangle for the operation in
 local coordinates for the source pixel map
 (as described in the source LocInfo
 record)
 DestRect $1C The destination rectangle for the
 operation in local coordinates for the
 destination pixel map (as described in the
 destination LocInfo record)
 XferMode $E4 The mode to use for data transfer
 RgnHandleA $50 The handle to the first region to which
 drawing is clipped (usually the ClipRgn
 from the GrafPort) A NIL handle is not
 allowed. To signify no clipping, pass a
 handle to the WideOpen region, which is
 defined as 10 bytes:

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 227 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Length $A (word)
 -MaxInt -$3FFF (word)
 -MaxInt -$3FFF (word)
 +MaxInt +$3FFF (word)
 +MaxInt +$3FFF (word)

 RgnHandleB $60 The handle to the second region to which
 drawing is clipped (usually the VisRgn
 from the GrafPort) A NIL handle is not
 allowed. To signify no clipping, pass a
 handle to the WideOpen region.
 RgnHandleC $70 The handle to the second region to which
 drawing is clipped (usually the mask
 region from the CopyPixels or the
 PaintPixels call) A NIL handle is not
 allowed. To signify no clipping, pass a
 handle to the WideOpen region.

Example:

;***
;** Example of Immediate Mode Printer Procedures. **
;***

Immedprocs Start

SrcRect equ $DC
SrcLocInfo equ $CC
DrawVerb equ $38
TextPtr equ $da
TextLength equ $d8
CharToDraw equ $d6

;--
;
; _StdPixels Procedure (Prints Pixelmaps)
;
;--
Pixel Entry

 phb ;save data bank reg on stack
 phk ;get program bank reg.
 plb ;use as data bank reg.

 lda iPrErr ;get errors
 beq Continue ;branch if none
 brl ExitPixel ;branch if errors

Continue anop
;This gets the source rectangle and stores it at PixelRect
 ldx #6
MoveSrc lda SrcRect,x
 sta PixelRect,x
 dex
 dex
 bpl MoveSrc

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 228 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

;This gets the source LocInfo and stores it at PixelLoc
 ldx #16-2
MoveLI lda SrcLocInfo,x
 sta PixelLoc,x
 dex
 dex
 bpl MoveLI

 pushptr PixelLoc ;push pointer to LocInfo
 pushptr PixelRect ;push pointer to rectangle

;++++++++++++++++++++++
; Insert code here to print a pixelmap
; INPUT: PixelLoc LONG, Pointer to pixel LocInfo
; PixelRect LONG, Pointer to pixels BoundsRect
; SP->
;++++++++++++++++++++++

Exitpixel lda #0 ;return with no errors
 clc
 plb ;restore data bank
 rtl ;returnith long

PixelLoc ds 16 ;pixel LocInfo
PixelRect ds 8 ;pixel rectangle

;--
;
; _StdText Procedure (Prints Standard Text)
;
;--
StdText Entry

 phb ;save data bank reg on stack
 phk ;get program bank reg.
 plb ;use as data bank reg.

 pushptr PenPos
 _GetPen ;current pen pos. -> PenPos

;++++++++++++++++++++++
; Insert Code Here to move the printers head to the corresponding
; PenPos position (if needed).
;++++++++++++++++++++++

 pushword #0 ;space for textwidth
 ;(for call to _TextWidth)

 lda DrawVerb ;get DrawVerb
 beq DoCar ;if DrawVerb=0 then DoCar

 cmp #1
 beq Dotext2 ;if DrawVerb=1 then Dotext2
;
;We get here if it's a "C" string (DrawVerb=2)
;

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 229 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

DoCstring anop
 sep #$20
 longa off
;Search down through string looking for terminator to calc. length
 ldy #0
KeepLooking lda [TextPtr],y
 beq TheEnd
 iny
 bra KeepLooking
TheEnd rep #$20
 longa on
 lda TextPtr+2
 pha ;push the pointer to string
 lda Textptr
 pha
 phy ;push the length of sting
 bra Common
;
;We get here if it's just one character (DrawVerb=0)
;
DoCar anop
 pushword #0
 tdc
 clc
 adc #CharToDraw ;calculate addr. of char.
 pha ;push addr. of character
 pushword #1 ;push length of one char.
 bra Common
;
;We get here if it's a string of text (DrawVerb=1)
;
DoText2 anop
 lda TextPtr+2
 pha ;push pointer to the string
 lda Textptr
 pha
 lda TextLength
 pha ;push the strings length
Common lda 5,s ;Dup the last 3 words of
 pha ;the stack (for _TextWidth)
 lda 5,s
 pha
 lda 5,s
 pha
;++++++++++++++++++++++
; Insert code here to print the text
;
; INPUT: TextPointer LONG, Pointer to text to print
; TextLength WORD, No. of bytes to print
; SP->
;++++++++++++++++++++++
 _TextWidth ;get the texts width (DH)
 pushword #0 ;set (DV)=0
 _Move ;move current pen location

ExitText lda #0 ;return with no errors
 clc
 plb ;restore data bank

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 230 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 rtl ;returnith long

PenPos ds 4 ;pen position
 end

Further Reference

 o Apple IIGS Toolbox Reference, Volumes 1 & 2

END OF FILE TN.IIGS.035

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 231 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.036
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#36: Port Driver Specifications

Revised by: Matt Deatherage & Suki Lee September 1989
Written by: Dan Hitchens May 1988

This Technical Note describes how to write your own drivers for Apple IIGS
ports.
Changed since January 1989: Added description of new port driver
structure.

Introduction

A port driver handles certain hardware-specific duties for the Print Manager,
such as initializing firmware and handling low-level hardware handshaking
protocols, if any are implemented. The port driver structure, like the
printer driver structure, insulates the Print Manager from low-level details
of printers and interface cards (or ports) so that the same calls work across
various hardware configurations, provided drivers are installed on the boot
disk.

Note that a port driver could also easily be called a card driver; the term
port is used because the first ones written were for the internal ports of the
Apple IIGS. A port driver could interface any printer (for which there is a
printer driver) with any kind of port or peripheral card that can handle it.
A familiar example would be a parallel printer interface card--a port driver
for a parallel card would enable the Print Manager to print graphics to any
parallel printer connected to it (provided, again, there was a printer driver
for the particular printer installed).

In general, you need a port driver for each port or interface card through
which you intend to print, and a printer driver for each printer to which you
intend to print. On System Disk 4.0, Apple provides port driver files for the
printer port (PRINTER), the modem port (MODEM), a port connected to the
AppleTalk network (APPLETALK), and a parallel printer interface card
(PARALLEL.CARD). Apple also provides printer drivers for the ImageWriter and
ImageWriter II (IMAGEWRITER), the ImageWriter LQ (IMAGEWRITER.LQ), the
LaserWriter family.(LASERWRITER), and an Epson (EPSON). With this
configuration, you can print to any of the printer types above through any of
the ports, cards, or over AppleTalk. Other printer drivers and port drivers
would extend the user's selection of available configurations.

What's in a Port Driver

File Structure

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 232 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Users can install new port drivers into the system by copying a port driver
file into a subdirectory called DRIVERS within the SYSTEM subdirectory or by
running the Installer if the driver is supplied with a script to install it.
The port driver file must be of type $BB. There are two kinds of port
drivers: local drivers, intended to drive a printer connected locally, and
network drivers, which handle printers connected over an AppleTalk network.
Local drivers have an auxiliary type of $0002, and AppleTalk drivers (there
should be only one) have an auxiliary type of $0003.

Port Driver Calls

A port driver must support the following calls:

 PrDevPrChanged $1913
 PrDevStartup $1A13
 PrDevShutDown $1B13
 PrDevOpen $1C13
 PrDevRead $1D13
 PrDevWrite $1E13
 PrDevClose $1F13
 PrDevStatus $2013
 PrDevAsyncRead $2113 (alias PrDevInitBack)
 PrDevWriteBackground $2213 (alias PrDevFillBack)
 PrPortVer $2413
 PrDevIsItSafe $3013

Note that a network port driver has much more work to do than a regular
(local) port or card driver. A local driver only has to worry about one
printer, whereas a network port driver may find that there is not even a
printer available on a running network. The information on network drivers is
provided mostly for informational purposes; you should never find it necessary
to write your own AppleTalk port driver.

Entering and Exiting a Port Driver

Entering and exiting is the same as described for the printer driver calls in
Apple IIGS Technical Note #35, Printer Driver Specifications. The new driver
structure described there applies as well. As of this writing, there are no
optional calls a port driver may support. The documented list must be
supported in its entirety.

PrDevPrChanged $1913

Description:
 The Print Manager makes this call every time the user accepts this port
 driver in the Choose Printer dialog.

Input: LONG printer name pointer

Direct Connect:
 o Makes sure that this port has been set up correctly in the Control Panel
 (parity, baud rate, etc.), and puts up an alert for the user if it has not
 been. Remember that if you change settings, even at the user's request,
 you should change the Battery RAM parameters as well, so the setting
 changes will be reflected when the user enters the Control Panel.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 233 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Network:
 o Copies the printer name to local storage for use in the NBPLookup function
 of the AppleTalk PAPopen and PAPstatus calls, usually by placing it in the
 AppleTalk parameter block. This function is similar to that performed by
 PrStartUp, except that PrDevPrChanged is called whenever the printer is
 changed by the user with the Choose Printer dialog.

PrDevStartUp $1A13

Description:
 This call is not required to do anything. However, if your driver needs to
 initialize itself by allocating memory or other setup tasks, this is the
 place to do it. Network drivers should copy the printer name to a local
 storage area for later use.

Input: LONG printer name pointer
 LONG zone name pointer

Direct Connect:
 o Required to do nothing. This is a good place to do your own set-up tasks,
 if you have any.

Network:
 o Copies the printer name and the zone name to local storage for use in the
 NBPLookup function of the AppleTalk PAPopen and PAPstatus calls, usually by
 placing it in the AppleTalk parameter block.

PrDevShutDown $1B13

Description:
 This call, like PrDevStartUp, is not required to do anything. However, if
 your driver performs other tasks when it starts, from the normal
 (allocating memory) to the obscure (installing heartbeat tasks), it should
 undo them here. If you allocate anything when you start, you should
 deallocate it when you shutdown. Note that this call may be made without a
 balancing PrDevStartUp, so be prepared for this instance. For example, do
 not try to blindly deallocate a handle that your PrDevStartUp routine
 allocates and stores in local storage; if you have not called PrDevStartUp,
 there is no telling what will be in your local storage area.

Input: none

PrDevOpen $1C13

Description:
 This call basically prepares the firmware for printing. It must initialize
 the firmware for both input and output. Input is required so the connected
 printer may be polled for its status.

 A network driver has considerably more work to do, including the
 possibility of asynchronous communications. Details are provided below.

Input: LONG completion routine pointer
 LONG reserved long

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 234 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Direct Connect:
 o Initializes the firmware for input and output, preparing for reading from
 or writing to the printer.
 o If the completion pointer is NIL, then RTL. If it is not NIL, then perform
 a JSL to the completion routine.

Network:
 o Initializes the End-Of-Write parameter in the AppleTalk PAPWrite parameter
 block to zero. Never call AppleTalk INIT to initialize the firmware.
 o If the completion pointer is NIL, then prepares for synchronous
 communications. If it is not NIL, prepares for asynchronous printing.
 o Calls AppleTalk PAPopen to make connection, returning an error if one is
 returned to you.
 o Stores the AppleTalk Session number in the PAPRead, PAPWrite and PAPClose
 parameter blocks.
 o Executes an RTL if there is no completion routine (pointer is NIL),
 otherwise perform a JSL to the completion routine.

PrDevRead $1D13

Description:
 This call reads input from the printer.

Input: WORD space for result
 LONG buffer pointer
 WORD number of bytes to transfer

Output: WORD number of bytes transferred

Direct Connect:
 o Reads a specified number of bytes from the printer into the buffer.

Network:
 o Calls AppleTalk PAPRead to read synchronously. Since there is no
 completion pointer, reading from a network device must always be done
 synchronously. To read asynchronously, use PrDevAsyncRead.

PrDevWrite $1E13

Description:
 Writes the data in the buffer to the printer and calls the completion
 routine.

Input: LONG write completion pointer
 LONG buffer pointer
 WORD buffer length

Direct Connect:
 o Writes the contents of the buffer to the printer.
 o If the completion pointer is NIL, then RTL. If it is not, then perform a
 JSL to the completion routine.

Network:
 o If the completion pointer is NIL, then writing will occur synchronously.
 Otherwise, writing will occur asynchronously.
 o Calls AppleTalk PAPWrite to transfer the contents of the buffer.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 235 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 o If the completion pointer is NIL, then RTL to the caller. Otherwise,
 perform a JSL to the completion routine first, with the error code in the
 accumulator.

PrDevClose $1F13

Description:
 This call is not required to do anything. However, if you allocate any
 system resources with PrDevOpen, you should deallocate them at this time.
 As with start and shutdown, note that PrDevClose could be called without a
 balancing PrDevOpen (the reverse is not true), and you must be prepared for
 this if you try to deallocate resources which were never allocated.

Input: none

Direct Connect:
 o No required function.

Network:
 o Sets End-Of-Write parameter in AppleTalk PAPWrite parameter block to one.
 o Calls PAPWrite with no data.
 o Calls PAPClose.

PrDevStatus $2013

Description:
 This call performs differently for direct connect and network drivers. For
 direct connect drivers, it currently has no required function, although it
 may return the status of the port in the future. For network drivers, it
 calls an AppleTalk status routine, which returns a status string in the
 buffer (normally a string like "Status: The print server is spooling your
 document").

Input: LONG status buffer pointer

Direct Connect:
 o Does nothing.

Network:
 o Calls AppleTalk PAPStatus.

PrDevAsyncRead $2113

Description:
 Since PrDevRead cannot read asynchronously, this call is provided for that
 task. Note that this does nothing for direct connect drivers, and if the
 completion pointer is NIL, it behaves for network drivers exactly as
 PrDevRead does.

Input: WORD space for result
 LONG completion pointer
 WORD buffer length
 LONG buffer pointer

Output: WORD number of bytes transferred

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 236 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Direct Connect:
 o Does nothing.

Network:
 o If the completion pointer is NIL, then performs exactly as PrDevRead.
 o Calls AppleTalk PAPRead; the actual length read is passed back in the
 PAPRead parameter block.
 o Perform a JSL to the completion routine, which returns the length read in
 the X register and an EOF flag in the Y register. As usual, the
 accumulator contains the error code and the carry is set if an error
 occurs.
 o In the case of a synchronous call, it performs a JSL to the completion
 routine, which pushes the length read onto the stack.

PrDevWriteBackground $2213

Description:
 This routine is not implemented at this time.

Input: LONG completion procedure pointer
 WORD buffer length
 LONG buffer pointer

PrPortVer $2413

Description:
 Returns the version number of the currently installed port driver.

Input: WORD space for result

Output: WORD Port driver's version number

Direct Connect and Network:
 o Gets the internal version number of the port driver and returns it on the
 stack.

Note: The internal version number is stored as a major byte and a
 minor byte (i.e., $0103 represents version 1.3)

PrDevIsItSafe $3013

Description:
 This call checks to see if the port or card which your driver controls is
 enabled. It should check at least the corresponding bit of $E0C02D, and
 checking the Battery RAM settings wouldn't hurt any either.

Input: WORD space for result

Output: WORD Boolean indicating if port is
 enabled

Direct Connect and Network:
 o Checks the system to see if the hardware and/or firmware for the card or
 port this driver controls is enabled, and returns TRUE if it is safe to

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 237 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 proceed and FALSE if not. Note that for a port driver that controls an
 interface card, this call should return FALSE if the card is disabled and
 the port is enabled, while for a port driver which controls an Apple IIGS
 internal port, the returned value should be TRUE if the port is enabled and
 FALSE if not.

Further Reference

 o Apple IIGS Toolbox Reference, Volumes 1 & 2
 o Apple IIGS Technical Note #35, Printer Driver Specifications

END OF FILE TN.IIGS.036

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 238 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.037
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#37: Free-Form Synthesizer Tips

Revised by: Jim Mensch November 1988
Written by: Jim Mensch May 1988

This Technical Note is intended to help a person who is unfamiliar with the
Apple IIGS Sound Tool Set use the Free-Form Synthesizer effectively.

The primary function of the Free-Form Synthesizer is to allow an application
program to start one or more complex digitized or computed waveforms playing
on the Apple IIGS without further intervention from the application. The
waveform is a series of bytes, each representing the amplitude of your
outgoing sound at a particular moment in time (defined by the sampling
frequency you set). After a call to FFStartSound, the Sound Tool Set takes
care of all chores involved in loading the DOC RAM, setting up registers, and
actually playing your sound. Once playing, your sound will continue until
either the Sound Tool Set encounters a NIL pointer in the waveform list, or
until you call FFStopSound.

FFStartSound Parameters

FFStartSound has only two parameters: the first a Word containing channel,
generator, and mode information, and the second a Pointer to a parameter
block.

 |15 |14 |13 |12 |11 |10| 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
 |___________| |__________| |___________| |___________|
 | | | |
 | | | |
DOC channel number ($0-$1) | Reserved must be set to 0 |
top 3 bits should be set to 0| |
 | Free-Form Synthesizer = $01
 Generator number ($0-$E) Note Synthesizer = $02
 Reserved = $03-$07
 Application defined = $08-$0F

 Figure 1 - Channel-Generator-Mode Word

The Channel-Generator-Mode Word is broken down into 4 nibbles. The low-order
nibble specifies the particular synthesizer you are using. (Because this Note
is only about the Free-Form Synthesizer, we will be using only a 1 in this
nibble.) The adjacent nibble must be set to 0 for now. The next nibble
specifies which generator to use. The IIGS has 15 generators from which to
choose, and as the application designer, it is up to you to decide which one

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 239 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

to use. It might be appropriate, however, to call FFGeneratorStatus first to
ensure that the generator currently is available. (It could be in use already
by a desk accessory or previously started sound.) The high-order nibble
specifies which channel to use. The IIGS supports two separate sound channels
for output. If you are using a stereo adapter, you could start up many sounds
and route them to either channel 0 or channel 1 to get a full stereo effect.
(The channel is ignored if you are not using a special piece of multi-channel
hardware.)

The parameter block contains parameters describing the sound and how it should
be played. Here is a sample Pascal definition of that parameter block:

 FFParmBlock = record
 waveStart:Ptr;
 waveSize:Integer;
 freqOffset:Integer;
 DOCBuffer:Integer; { High order byte significant }
 bufferSize:Integer; { Low order byte significant }
 nextWave:^FFParmBlock;
 volSetting:Integer;
 end;

The first parameter is a 4-byte address telling the Free-Form Synthesizer
where in memory it can locate your sample data. The next parameter is a word
specifying the number of 256-byte pages of sound you wish to play. The
waveform data should be a series of bytes, each representing one sample. Wave
tables must be exact multiples of 256 bytes.

Note: A zero value in the waveform can cause a sound to stop, so
be sure to check your data to ensure that this does not happen.

The frequency offset parameter specifies the sampling frequency that the Free-
Form Synthesizer should use during playback. This number can be computed by
the following formula:

 freqOffset = ((32*Sample rate in Hertz)/1645)

The frequency offset parameter is the most often misunderstood parameter, so I
will explain a little about sampling rates. The sampling rate is how many
samples (bytes) per second to play. If you have a digitized wave that
represents 2 seconds of sound, and it takes up 44K of memory, then it was
sampled at 22 kHz (which, by the way, is good for full sound reproduction).
The sampling rate must be at least twice that of the maximum fundamental
frequency you want to sample. However, for good sound reproduction, you may
want to sample at least eight times the fundamental frequency in order to
capture the higher harmonics of musical instruments and the human voice.

The DOC starting address and buffer size tell the Free-Form Synthesizer which
portion of the 64K sound RAM to use as a buffer during playback. The wave is
taken from your waveform in chunks and placed in sound RAM for playback. Each
time the buffer nears empty, it will need to be reloaded with more sound. The
size of the buffer specified determines how often the Free-Form Synthesizer
must interrupt the 65816 to reload the buffer. The buffer size must be a
power of two because of the way the sound General Logic Unit (GLU) specifies
addresses. (The value for this parameter must also be a power of two.) A
good length to use would be at least 1/10 second of sound. For example, if
you were using a sampling rate of 16 kHz (16,000 samples per second), you
would want a buffer at least 2,048 bytes long, or about 8 pages. It does not

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 240 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

hurt to round this number up. You manage the DOC RAM, so you should decide
what memory to use. It is usually a good idea to have multiple buffers if you
have a chain of waves. (I like leaving page zero free, as the Note
Synthesizer uses the data in the first 256 bytes, and accidentally placing a
zero in that page could cause it to fail.)

The next wave pointer is a 4-byte pointer to the next parameter block. With
this parameter you can string together many waveforms for more continuous
sound, or you can make your sounds infinitely recursive by pointing back to
the original wave form.

The volume setting is a word which represents the relative playback volume.
It can range from 0 to 255.

Other Tips

When you shut down the Sound Tool Set, it will stop all pending sounds, so be
sure to leave ample time between starting and ending a sound. If you have a
series of wave forms strung together, you can change their parameters on the
fly. Changes take effect as soon as the waveform is started. (You could use
this to find the correct sampling frequency of a wave, by having the next wave
pointer point back to the start of your parameter block. This would cause the
sound to play indefinitely. You then could change the freqOffset value, and
the sound would change each time it is restarted.)

Here is a sample code segment (in APW Assembler format) that creates a 1-kHz
wave in memory sampled at 16 kHz and plays it:

FFSound DATA

theSound ds $2000 ; FFSound wave...
MyFFRecord dc A4'theSound' ; address of wave
 dc i'$20' ; size of wave in pages..
Rate dc i'311' ; 16-kHz sample rate
 dc i'1' ; DOC starting address
 dc i'$0800' ; DOC buffer size
 dc a4'0' ; no next wave
Vol1 dc i'$007F' ; kinda medium..

; 1-kHz triangle wave sampled at 16 kHz one full segment
oneAngle dc i1'$40,$50,$60,$70,$80,$90,$A0,$B0'
 dc i1'$C0,$B0,$A0,$90,$80,$70,$60,$50'
 End

TestFF Start
 Using FFSound
MakeWave ANop
 ldx #$0000
MW0010 txa ; get index
 and #$000F ; use just low nibble as index
 tay ; into triangle wave table
 lda oneAngle,y ;
 sta theSound,X ; and store it into sound buf
 inx
 inx
 cpx #$2000 ; we Done?
 blt MW0010 ; nope better finish

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 241 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 PushWord #$0001
 PushLong #MyFFRecord
 _FFStartSound
 rts
 end

Further Reference
 o Apple IIGS Toolbox Reference, Volume 2

END OF FILE TN.IIGS.037

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 242 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.038
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#38: List Controls in Dialog Boxes

Revised by: Eric Soldan July 1989
Written by: Keith Rollin May 1988

This Technical Note describes how to include a list control into a dialog box.
Sample APW C source code is included.
Changes since November 1988: Added discussion of System Software 5.0
considerations.

The need to put a list control into a dialog box is obvious. The Print
Manager does it. The Font Manager does it. You may want to use one in your
own application to manage a list of data base fields or spreadsheet functions.
However, performing the task is not as obvious as the need.

Given the new features of TaskMaster in System Software 5.0, it is now much
easier to emulate a modal dialog in a normal window. If you need to add a
list control to a modal dialog, you should seriously consider emulating a
modal dialog with a normal window instead of using the Dialog Manager. If you
use the Dialog Manager, the following procedure and sample C fragment
illustrate the technique necessary for adding a list control.

Individual Steps

Basically, there are three check-off items for putting a list control into a
dialog box:

 1. You must install the list explicitly into the dialog box yourself.
 This should be done after you have created the dialog box with a
 call to NewModalDialog or GetNewModalDialog. Do not install it
 as a UserItem or UserCtlItem. Installing it as a UserItem would
 cause the Dialog Manager to place an invisible custom control over
 the list, preventing later use of FindControl to manage it.
 Installing the list as a UserCtlItem does not allow the list
 control to be properly initialized.

 InitValues()
 {
 /* Get a Full Screen, invisible dialog window with only
 a Quit button in it*/
 myDialog = GetNewModalDialog(&PrintDialog);

 /* Add this List Control ourselves */
 myListHndl = CreateList(myDialog,&myList);

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 243 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 /* Get the handle for the Scrollbar Control */
 listScrollHandle = (**myListHndl).ctlListBar;

 /* Save and Zero out the RefCons */
 listRefCons = GetCtlRefCon(myListHndl);
 scrollRefCons = GetCtlRefCon(listScrollHandle);
 ZeroRefCons(); /* This is explained below in item #3 */

 /* Now show the dialog box */
 ShowWindow(myDialog);
 }

 2. Because the list control is not a dialog item, a custom FilterProc
 must be installed for ModalDialog to test for mouse-down events.
 Pass the address of this routine (with the high bit set so that
 default handling of items will be in effect) when you call
 ModalDialog.

 pascal Word myFilterProc(theDialog, theEvent, theItem)
 GrafPortPtr theDialog;
 EventRecord *theEvent;
 long *theItem;

 {
 CtlRecHndl tHandle;

 if ((*theEvent).what == mouseDownEvt) {
 FindControl(&tHandle,(*theEvent).where,theDialog);
 if ((tHandle == myListHndl) || (tHandle == listScrollHandle)) {

 /* Set the RefCons back to the way the list manager
 likes them */
 RestoreRefCons();
 TrackControl((*theEvent).where,(LongProcPtr) -1, tHandle);
 ZeroRefCons();

 /* Tell the Dialog Manager that we handled this event */
 return(true);
 }
 }
 /* We didn't do anything, so return false to get Dialog Manager
 to handle this event */
 return(false);
 }

 3. The Dialog Manager uses the RefCon field of its items (all of
 which are installed as controls). Unfortunately, the List Manager
 also uses the RefCon field for its own purposes. This shared use
 means that a judicious juggling of those values is required. This
 juggling is the reason for the two routines RestoreRefCons and
 ZeroRefCons used above.

 /* Zero out the RefCons for the Dialog Manager */
 ZeroRefCons()
 {
 SetCtlRefCon(0,myListHndl);
 SetCtlRefCon(0,listScrollHandle);

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 244 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 }

 /* Restore the RefCons for the List Manager */
 RestoreRefCons()
 {
 SetCtlRefCon(listRefCons,myListHndl);
 SetCtlRefCon(scrollRefCons,listScrollHandle);
 }

Note: Because the Dialog Manager currently uses the RefCon to keep
 track of which dialog item is identified with which particular
 control, zeroing the RefCon fields can cause a little confusion.
 Specifically, those who would like to do GetFirstDItem from within
 a Standard File call may get a zeroed RefCon as a result. This is
 true for Standard File 3.0 and later (System Software 5.0), as
 this is the first implementation of Standard File to use the List
 Manager.

Putting It All Together

Here are most of the pieces put together. InitTools and ShutDownStuff
routines have been omitted, but they are straightforward.

char **y,*z;
GrafPortPtr myDialog;
ListCtlRecHndl myListHndl;
CtlRecHndl listScrollHandle;
long listRefCons, scrollRefCons;

#define Quit ok

char quitStr[] = "\pQuit";

ItemTemplate quitButton = {
 Quit,
 140,450,154,590,
 buttonItem,
 quitStr,
 0,
 0,
 NULL};

DialogTemplate PrintDialog = {
 30,20,190,620,
 false,
 0,
 &quitButton,
 NULL};

char string1[] = "String1";
char string2[] = "String2";
char string3[] = "String3";
char string4[] = "String4";
char string5[] = "String5";
char string6[] = "String6";

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 245 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

char string7[] = "String7";
char string8[] = "String8";

MemRec myMembers[8] = {
 string1, 00,
 string2, 00,
 string3, 00,
 string4, 00,
 string5, 00,
 string6, 00,
 string7, 00,
 string8, 00};

ListRec myList = {
 40,175,102,400, /* Enclosing Rectangle */
 8, /* Number of List Members */
 6, /* Max Viewable members */
 3, /* Bit Flag */
 1, /* First member in view */
 NULL, /* List control's handle */
 NULL, /* Address of Custom drawing routine */
 10, /* Height of list members */
 5, /* Size of Member Records */
 (MemRecPtr)myMembers,/* Pointer to first element in MemRec[] */
 NULL, /* Becomes Control's refCon */
 NULL /* Color table for list's scroll bar */
 };

/* ************************** */

main()
{
 word what;

 InitTools(); /* initialize tools */
 InitValues(); /* Get dialog box. Install List control */
 do {
 what = ModalDialog((WordProcPtr)((long)myFilterProc | 0x80000000));
 } while (what != Quit);
 ShutDownStuff();
}

pascal Word myFilterProc(theDialog, theEvent, theItem)
 GrafPortPtr theDialog;
 EventRecord *theEvent;
 long *theItem;

{
 CtlRecHndl tHandle;

 if ((*theEvent).what == mouseDownEvt) {
 FindControl(&tHandle,(*theEvent).where,theDialog);
 if ((tHandle == myListHndl) || (tHandle == listScrollHandle)) {

 /* Set the RefCons back to the way the list manager
 likes them */
 RestoreRefCons();
 TrackControl((*theEvent).where,(LongProcPtr) -1, tHandle);

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 246 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 ZeroRefCons();

 /* Tell the Dialog Manager that we handled this event */
 return(true);
 }
 }
 /* We didn't do anything, so return false to get Dialog Manager
 to handle this event */
 return(false);
}

/* Zero out the Refcons for the Dialog Manager */
ZeroRefCons()
{
 SetCtlRefCon(0,myListHndl);
 SetCtlRefCon(0,listScrollHandle);
}

/* Restore the Refcons for the List Manager */
RestoreRefCons()
{
 SetCtlRefCon(listRefCons,myListHndl);
 SetCtlRefCon(scrollRefCons,listScrollHandle);
}

InitValues()
{
 /* Get a Full Screen, invisible dialog window with
 only a Quit button in it */
 myDialog = GetNewModalDialog(&PrintDialog);

 /* Add this List Control ourselves */
 myListHndl = CreateList(myDialog,&myList);

 /* Get the handle for the Scrollbar Control */
 listScrollHandle = (**myListHndl).ctlListBar;

 /* Save and Zero out the RefCons */
 listRefCons = GetCtlRefCon(myListHndl);
 scrollRefCons = GetCtlRefCon(listScrollHandle);
 ZeroRefCons();

 /* Now show the dialog box */
 ShowWindow(myDialog);
}

END OF FILE TN.IIGS.038

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 247 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.039
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#39: Mega II Video Counters

Revised by: Dave Lyons July 1989
Written by: J. Rickard May 1988

This Technical Note describes the Mega II video output registers, which your
applications can use to get information about where the beam is located on the
Apple IIGS display.
Changes since November 1988: Corrected description of when VBL begins
and simplified example code to read the scan line number.

The Mega II controls video timing for the Apple IIGS with a 16-bit counter
split into a 7-bit horizontal and a 9-bit vertical part (Figure 1). The
counter outputs are made available to programs running on the machine through
two addresses in the I/O space, $C02E for the vertical count and $C02F for the
horizontal count. These outputs can be used by a program for finer control
over display update timing.

 | Vertical Counter | Horizontal Counter | | | | | | | | | | | | | | |
 |___________________________________|___________________________|
 | V5| V4| V3| V2| V1| V0| VC| VB| VA|HPE| H5| H4| H3| H2| H1| H0|
 |_______________________________|___|___________________________|
 | $E0C02E | $E0C02F |
 |___|

 Figure 1 - Mega II Video Counter

You can see that one bit of the nine-bit vertical counter is in location
$E0C02F with the seven bits of the horizontal counter. Keep this location in
mind when reading the counters.

The seven-bit horizontal counter starts at $00 and counts from $40 to $7F (the
sequence is $00, $40, $41,...,$7E, $7F, $00, $40,...). The active video time
consists of 40 one microsecond clock cycles starting with $58 and ending
with $7F. Since this count changes at 980 nanosecond intervals, it will
probably be of little use to most programs.

The nine-bit vertical counter ranges from $FA through $1FF (250 through 511)
in NTSC mode (vertical line count of 262) and from $C8 through $1FF (200
through 511) in PAL video timing mode (vertical line count of 312). Vertical
counter value $100 corresponds to scan line zero in NTSC mode. The vertical
count changes at 63.7 microsecond intervals, giving a program time to respond
to a specific count before it changes. The vertical counter byte, at $E0C02E,
only changes half as often (at 127 microsecond intervals) since the lowest bit

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 248 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

of the nine-bit counter is actually stored in the next byte (at $E0C02F).

The nine-bit counter consists of bits VA, VB, VC, V0, V1, V2, V3, V4 and V5.
Bits V0 through V5 can be read as a six-bit value. If this value is between 0
and 23, it is the line on the text screen currently being updated. Other
values indicate the vertical blanking cycle is occurring. Bits VA through VC
can be read as a three-bit value (0-7) indicating which scan line of a text
character (characters are composed of eight lines) is currently being drawn.

The vertical counter can also be used to determine which scan line (0-191 for
most video modes, including high-resolution and double high-resolution, and
0-199 for super high-resolution) is being updated at any given moment.

Example

Suppose you want to repaint a portion of the super high-resolution screen that
will require more time than the vertical blanking period allows. You will
have a tear in your animation when the screen's refresh cycle catches up with
your drawing.

One solution to this problem would be locating the approximate place the tear
occurs and starting your drawing when the system is scanning that line of
graphics. Let's say you are painting an area that is about (for example) 100
pixels wide and 200 pixels tall in 320 mode, and that the tear will occur
somewhere around scan line 80. To avoid the tear, you would wait until the
system is scanning line 80, then you would start redrawing at the top of the
screen. This way, you should be finished drawing when the system is back to
scanning line 80 again and you will have flicker-free screen updating.

The tricky part is trying to determine just when the system is scanning any
given scan line. One way to determine this is to examine the Mega II video
counter registers at $E0C02E (vertical) and $E0C02F (horizontal), described
above. By using some simple arithmetic you can come up with the exact scan
line being updated. The following piece of code computes the current scan
line number (assuming eight-bit native mode):

 lda >$E0C02F
 asl A ;VA is now in the Carry flag
 lda >$E0C02E
 rol A ;roll Carry into bit 0

The result (in A) is the low byte of the vertical counter. This value is 0
for the first scan line, 1 for the second scan line, etc. Values $FA to $FF
are used twice, since you ignore the high byte of the vertical counter. (The
six scan lines immediately above scan line 0 are numbered $0FA to $0FF, and
the six above those are $1FA to $1FF.) The example code leaves the highest
bit of the vertical counter in the Carry flag, if you really want it.

Note that the VBL interrupts always trigger at scan line 192, even in Super
Hi-Res display mode, and that the $C019 soft switch indicates vertical
blanking is in effect starting at scan line 192. Be careful polling for a
specific scan line number--if interrupts are enabled, it is conceivable that
the system will be busy processing an interrupt every time that scan line is
being scanned, so your program will hang forever waiting for it.

Setting a scan line interrupt is another way to determine when a particular
super high-resolution scan line is being drawn. However, you must be careful
in turning scan line interrupts on and off so that you do not interfere with

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 249 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

the cursor in QuickDraw II (which uses scan line interrupts).

Further Reference

 o Apple IIGS Toolbox Reference, Volume 2
 o Apple IIGS Technical Note #40, VBL Signal

END OF FILE TN.IIGS.039

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 250 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.040
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#40: VBL Signal

Revised by: Dave Lyons July 1989
Written by: Rob Moore & Rilla Reynolds May 1988

This Technical Note discusses reading the VBL signal to accomplish smooth
animation.
Changes since November 1988: Noted that vertical blanking does not begin
when you might expect on the Apple IIGS and removed references to the Apple
IIc.

Applications can accomplish smooth animation on the Apple IIGS and Apple IIe
by changing the data on the screen during the time the system is tracing the
unusable area of the display. This time is called "vertical blanking" or
"VBL" in this Note. You can determine the state of the VBL signal by reading
location $C019.

On the Apple IIGS, the $C019 sense of the VBL signal differs from the IIe. On
the IIGS, the screen is blanked when the most significant bit of $C019 is
high (greater than 127 or $7F), while on the IIe, the screen is blanked when
the bit is low (less than 128 or $80).

A VBL interrupt also is available on Apple II systems via the Apple IIGS
Miscellaneous Tool Set or mouse firmware, the Apple IIe mouse card, and the
Apple IIc mouse firmware.

On the Apple IIGS, vertical blanking begins at scan line 192 regardless of the
display mode. When the Super Hi-Res display is visible, vertical blanking
begins eight scan lines before the bottom of the display area. If the VBL
interrupt is enabled, it triggers at scan line 192.

Further Reference

 o Apple IIGS Technical Note #39, Mega II Video Counters

END OF FILE TN.IIGS.040

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 251 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.041
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#41: Font Family Numbers

Revised by: Keith Rollin & Matt Deatherage November 1988
Written by: Rilla Reynolds & Jeff Erickson May 1988

This Technical Note lists fonts and font family numbers as well as
considerations when printing to a LaserWriter printer and a word of caution
about using font family numbers.

The following table lists fonts and their corresponding font family numbers.
All family numbers are listed in decimal format except the first three.

 ID Family Name ID Family Name
 $FFFD Chicago 12 Los Angeles
 $FFFE Shaston 13 Zapf Dingbats*
 $FFFF (no font) 14 Bookman*
 0 System Font 15 Helvetica Narrow*
 1 System Font 16 Palatino*
 2 New York 18 Zapf Chancery*
 3 Geneva 20 Times*
 4 Monaco 21 Helvetica*
 5 Venice 22 Courier*
 6 London 23 Symbol*
 7 Athens 24 Taliesin
 8 San Francisco 33 Avant Garde*
 9 Toronto 34 New Century Schoolbook*
 11 Cairo

Fonts denoted with an asterisk (*) are resident in the ROM on the LaserWriter
Plus, IINT and IINTX printers. The name of Times on these printers is
actually Times-Roman. The decimal font family ID for Shaston (a modified
Helvetica) is 65534 (-2), not 65524 as documented in the Font Manager chapter
of the Apple IIGS Toolbox Reference.

When printing to a LaserWriter printer with the font substitution option
turned on, the system substitutes Times, Helvetica, and Courier for the screen
fonts New York, Geneva, and Monaco respectively.

Prior to System Disk 3.2, all non-LaserWriter fonts (except New York, Geneva,
and Shaston) were converted to Courier when printing. With System Disk 3.2
and later, the LaserWriter driver will print bitmap versions of the screen
fonts if they are non-LaserWriter fonts unless it is driving an original
LaserWriter printer. In this case, fonts which are in ROM on later
LaserWriter printers are converted to Courier unless you download a PostScript
version of the font prior to printing. This difference is a limitation of the

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 252 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

current LaserWriter driver and it occurs even if the font substitution option
is turned off.

Caution

Font family numbers can be arbitrary numbers which the system assigns to
fonts. We recommend that you always ask for a font by name (with the Font
Manager call GetFamNum), then use the returned family number as input to
those calls which require it. (On the Macintosh, the Font/DA Mover checks to
see if a font family number is already in use by the system when it installs
fonts. If it finds that a number is already in use, it changes the current
font number to an unused number. If you move a font from the Macintosh to the
IIGS, the font family number is likely to be arbitrary, as is the font family
number of any user-created fonts.

Further Reference
o Apple IIGS Toolbox Reference, Volumes 1 & 2

END OF FILE TN.IIGS.041

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 253 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.042
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#42: Custom Windows

Written by: Dan Oliver & Keith Rollin November 1988

This Technical Note describes custom windows which are now supported with
Window Manager version 2.2. This Note supersedes all prior documentation on
custom windows.

With Window Manager version 2.2 or later, which is available on Apple IIGS
System Disk 3.2 and later, you may now define your own type of window or
window shape, such as a round or hexagonal window. You also may define a
window which performs tasks that would normally be handled by an application.

To define your own type of window, a custom window, you must write a routine
that performs some window functions. This routine is a window definition
procedure (defProc), and in this case it is a custom window defProc. When the
Window Manager needs to do something window specific, it calls your defProc.

The window defProc is a good part of the Window Manager, and writing one is
not an easy task. A window defProc must perform complicated tasks that are
very dependent on the state of the machine, and it must be very careful not to
disturb the state of the machine. One of the problems in writing a defProc is
knowing when it can do something and when it cannot. It is almost impossible
to document all of the combinations of calls that you can or cannot make from
one part or another of the defProc, and even if all cases were found, the
resulting document would read like something from an obscure government bureau
and probably be even harder to understand.

Now that you know writing a defProc is tough, here's how to make things as
easy as possible. Try to understand how the system interacts with the defProc
and work with the system. For example, a defProc is called to hit test window
parts when the user presses the mouse button. The Window Manager will pass
that part back to the defProc to perform drawing while the Window Manager is
tracking the pressed button. The defProc could keep control when asked to hit
test and perform the tracking itself, but since this is not how the system is
designed to work, your defProc will be hard to write, may not ever work
correctly, and may break in future versions of the Window Manager. Try to
stay on the path outlined in this Technical Note. Also understand that the
interface to definition procedures is as general as possible to allow them to
perform tasks which are as yet unknown. To allow for this future growth, the
outlined path is not always a clear path.

Another way to make things easier is to write conservative code. Do not
assume things like the data bank being set to something nice when the defProc
is called or the caller restoring the direct page pointer upon return if you

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 254 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

have changed it. Use caution. A defProc can be very difficult to debug
because it is not very linear and can be called when you least expect.

Interaction Between the Window Manager and TaskMaster

The Window Manager and TaskMaster actually do much less than many people think
since window definition procedures perform most of the tasks. The definition
procedures handle such things as title bars, information bars, and scroll
bars, while the Window Manager and TaskMaster support these things by passing
requests to the defProc in standard ways. The Window Manager knows that
windows have some shape, overlap, may contain parts, may be invisible, and are
created and deleted, but it does not know much else. TaskMaster knows to call
GetNextEvent and performs some tasks, but much of what many people consider
TaskMaster is contained in the standard document window defProc. In addition
to the list mentioned above, the defProc handles calling TrackGoAway and
scrolling the content. The remainder of this Note describes what is expected
of a defProc and when.

Telling the Window Manager About Your Window

You tell the Window Manager about your custom window when NewWindow creates
it. Instead of passing the parameter list defined in NewWindow, you pass a
pointer to a custom window parameter list. A custom window parameter list is
defined as follows:

 paramID WORD ID of parameter list, zero for custom.
 newDefProc LONG Address of your custom defProc.
 newData BYTE[n] Additional data defined by your defProc.

NewWindow checks the paramID field and calls your defProc with the pointer to
the parameter list. See the wNew operation under Calling the Custom DefProc
for more information.

Once NewWindow creates the window, the Window Manager will always know that it
is defined by your defProc.

Calling the Custom defProc

A window defProc is called with the following items on the stack:

 16 |result | LONG - result returned to Window Manager,
 |___________________________| defined by each operation
 14 |windGlobals | LONG - pointer to Window Globals (defined
below)
 |___________________________|
 12 |OperationCode| WORD - operation number to be performed
 |_____________|_____________
 8 |theWindow | LONG - pointer to window's record
 |___________________________|
 4 |param | LONG - pointer to additional parameter
 |___________________________| defined by each operation
 1 | RTL address | BYTE[3] - long return address
 |____________________|______
 | | <-- Stack Pointer
 | |

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 255 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Figure 1 - Stack Prior to Calling a Window defProc

The defProc must return with the carry flag clear if there was no error or
with the carry flag set and the y register set with an error code if there was
an error.

Window globals (windGlobals) is a pointer to a table of variables which the
Window Manager maintains for use by the defProc. The table is defined as
follows:

 lineW WORD Width of vertical lines (size depends on video
mode).
 titleHeight WORD Height of a standard title bar.
 titleYPos WORD Y offset for the title (in system font) to center in
 a standard title bar.
 closeHeight WORD Height of the close box icon.
 closeWidth WORD Width of the close box icon.
 defWindClr LONG Pointer to the default window color table.
 windIconFont LONG Handle of the current window icon font.
 screenMode WORD TRUE if 640 mode, FALSE if 320 mode.
 pattern BYTE[32] Temporary pattern buffer.
 callerDpage WORD Direct page pointer of the last caller to
TaskMaster.
 callerDataB WORD Data bank of the last caller to TaskMaster
 (bank in both bytes).

Operation numbers are as follows (each operation is described later in its own
section):

 wDraw 0 Draw the window's frame.
 wHit 1 Tell in what region the mouse button was pressed.
 wCalcRgns 2 Calculate wStrucRgn and wContRgn.
 wNew 3 Complete the creation of a window.
 wDispose 4 Complete the disposal of a window.
 wGetDrag 5 Return address that will draw the outline of the
window
 while dragging.
 wGrowFrame 6 Draw the outline of a window being resized.
 wRecSize 7 Return size of the additional space needed in the
window record.
 wPosition 8 Return RECT that is the window's portRect.
 wBehind 9 Return where the window should be placed in the
window list.
 wCallDefProc 10 Generic call to a defProc, defined by the defProc.

wDraw, Operation 0

The wDraw operation draws the window's frame and is only called for visible
windows. This operation draws in local coordinates in the current GrafPort,
which is the Window Manager's GrafPort. When the drawing is finished, the
only states of the GrafPort that may have changed are the pen pattern, the
fill pattern, and the pen size, as all other states must be the same as when
the defProc was called. This means that if you change the font to print some
text, you must save and restore the original font. For the pen, PenNormal
will restore the pen to an acceptable state.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 256 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Param is defined as follows:

 Bit 31 1 to highlight the indicated part, 0 to unhighlight.
 Bits 0-30 The part to draw (either highlighted or unhighlighted):
 0 Draw the window's entire frame, including any frame
 controls and the items listed below. Note that you
 should check the window's fHilited flag to determine
 how to draw the frame.
 1 Draw the go-away region.
 2 Draw the zoom region.
 3 Draw the information bar.

Result returned must be zero and the carry flag must be clear.

The Window Manager will draw the content.

Need to Redraw Your Window?

If your custom window defProc gets called to change some item in its window
record (see wCallDefProc below), you may want to redraw your window. For
instance, if your application makes a SetWTitle call, you would want to draw
the name of the new title on the screen.

The routine wCallDefProc can call the wDraw routine to do this drawing.
However, it should bracket the calls to wDraw with two Window Manager calls
that save and restore some internal variables:

 StartFrameDrawing $5A0E
 PUSH:LONG Pointer to the window record (not the GrafPort)

This call does the setup for drawing a window frame and is only called by a
window definition procedure before drawing the frame. You should call
EndFrameDrawing when finished drawing.

 EndFrameDrawing $5B0E
 No input or output

This call restores the Window Manager variables after a call to
StartFrameDrawing and is only called by a window definition procedure after
drawing a window frame.

wHit, Operation 1

The wHit operation is called to hit test the window's frame. Given a set of
screen coordinates, this operation should return what part, if any, of the
window is at that coordinate. This operation is only called for visible
windows. The current port will be that of the Window Manager and the window
frame will be in local coordinates.

Param is defined as:

 Bits 0-15 Vertical (Y) coordinate in local coordinates.
 Bits 16-31 Horizontal (X) coordinate in local coordinates.

Result returned must be one of the following values and the carry flag must be
clear:

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 257 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 wNoHit 0 Not on the window at all.
 wInDrag 20 Coordinates are in the window's drag region (title bar).
 wInGrow 21 Coordinates are in the window's grow region (size box).
 wInGoAway 22 Coordinates are in the window's go-away region (close
box).
 wInZoom 23 Coordinates are in the window's zoom region (zoom box).
 wInInfo 24 Coordinates are in the window's information bar.
 wInFrame 27 Coordinates are in the window, but not in any of the
 other areas.
 xx Any code the application can handle (bit 15 is
 reserved for theWindow Manager)

wCalcRgns, Operation 2

The wCalcRgns operation, which is called only for visible windows, is used to
calculate the window's entire region (frame plus content called StrucRgn) and
just its content region (called ContRgn). Both regions must be set to global
coordinates, and both will already be allocated with their handles stored in
the window record's wStrucRgn and wContRgn fields.

Use the portRect and the boundsRect of the window's GrafPort to calculate
these two regions. The port will have been set from the information passed to
NewWindow along with any size changes. A method for obtaining the global RECT
of the content is given below. Refer to the QuickDraw II chapter in the Apple
IIGS Toolbox Reference for a full description of ports. When calculating the
regions, do not change the clip region (ClipRgn) or the visible region
(VisRgn) of the GrafPort.

Param is not defined and should not be used.

Result returned must be zero and the carry flag must be clear.

 IN: window = pointer to window record.
 OUT: rect = global RECT of window's content.

 ldy #wPort+portRect+y1
 lda [<window],y
 ldy #wPort+portInfo+boundsRect+y1
 sec
 sbc [<window],y
 sta <rect+y1
 ;
 ldy #wPort+portRect+x1
 lda [<window],y
 ldy #wPort+portInfo+boundsRect+x1
 sec
 sbc [<window],y
 sta <rect+x1
 ;
 ldy #wPort+portRect+y2
 lda [<window],y
 ldy #wPort+portInfo+boundsRect+y1
 sec
 sbc [<window],y
 sta <rect+y2
 ;

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 258 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 ldy #wPort+portRect+x2
 lda [<window],y
 ldy #wPort+portInfo+boundsRect+x1
 sec
 sbc [<window],y
 sta <rect+x2

Although there are other ways to obtain the global RECT of the content, this
example gives the correct method. You should never rely on the top and left
side of the portRect being zero.

wNew, Operation 3

The wNew operation is called to perform any additional initialization that may
be required for a custom window. The following items are already done for the
window:

o If a window record is supposed to be allocated, it is. All fields, other
 than those fields listed below, are set to zero
o A port opens in the window record's wPort field.
o The window is added to the Window Manager's window list, and the wNext
 field is set.
o The wDefProc, wStrucRgn, wContRgn and wUpdate regions are set with the
 handles of the allocated regions. It is the responsibility of the defProc
 to define the shape of the wStrucRgn and wContRgn regions.
o The fAllocated and fHilited bits in the wFrame field of the window record
 are set (see the window record definition for a definition of these bits)
 and should not be disturbed; all other bits in wFrame are set to zero. The
 defProc should set the fCtlTie, fVis and fQContent bits, and it can set and
 use other bits in the wFrame field as it wishes.
o It is the responsibility of the defProc to set the wRefCon, wContDraw, and
 wFrameCtls fields, the bits already mentioned in the wFrame field, and any
 other fields which it defines in the wCustom part of the window record.

Param is a pointer to the parameter list pointer which was passed to
NewWindow.

Result returned must be zero and the carry flag must be clear.

wDispose, Operation 4

The wDispose operation is called to perform any additional disposal that may
be required of a custom window. This operation is called before the Window
Manager performs any disposal actions on the window.

Param is not defined and should not be used.

Result should be FALSE to continue disposal or TRUE to abort the disposal. In
either case, the carry flag should be clear. Returning TRUE would be very
unusual and should be carefully thought out. After returning FALSE, the
Window Manager will erase the window, remove the window from the Window
Manager's window list, free any controls in the window's wControls and
wFrameCtl lists, free the handles in the wStrucRgn, wContRgn and wUpdateRgn
fields, close the window's GrafPort, and free its record if it is allocated
(see the wFrame field).

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 259 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

wGetDrag, Operation 5

The wGetDrag operation is called to get the address of a routine that will
draw an outline of the window.

Param is not defined and should not be used.

Result returned must be the address of a frame outline routine or zero for a
default frame; the default frame is the bounds RECT of the strucRgn. The
frame outline routine is called from DragRect with dragRectPtr set to the
bounds RECT of the strucRgn. Your routine is called with the following
parameters:

 PUSH:WORD - delta X
 PUSH:WORD - delta Y
 PUSH:BYTE[3] - return address

Your routine should draw or erase the outline of the object in its new
position using the passed deltas. You have several different methods of
determining whether to erase or draw and how to compute the position of the
object, the easiest method being to draw the outline using XOR mode. The
first time your routine is called, you draw. The next time your routine is
called, you erase. Your routine should draw in the current port. The current
pen pattern will be the pattern pointed to by dragPatternPtr from DragRect and
the pen mode is XOR.

You also need to know where to draw the outline. One way is to offset the
starting RECT (dragRectPtr) by the given deltas. You should make a copy of
the bounds RECT of the strucRgn when wGetDrag is called. Modify that
rectangle with the deltas to obtain the rectangle to frame.

wGrowFrame, Operation 6

The wGrowFrame operation is called to draw an outline of the window when the
window is being resized.

This operation should use the current port, pen pattern, and pen mode. The
frame should be drawn with only the following QuickDraw II calls: Line,
LineTo, FrameRect, FrameRgn, FramePoly, FrameOval, FrameRRect, and FrameArc
(the Invert equivalents to Frame could also be used). You want to use the
current GrafPort setting with only certain QuickDraw II calls since this
routine will be called an even number of times; the first time it is called to
draw the frame and the next time to erase that which it drew the first time.
If it needs to use QuickDraw II calls other than those listed above, this
operation handler could keep track of odd and even calls to know whether to
draw or erase the frame.

Param is a pointer to the following parameter list:

 newSize RECT Rectangle that defines the new size.
 drawFlag WORD TRUE to draw the frame, FALSE to erase.
 startRect RECT Bounds of wStrucRgn when dragging started.
 deltaY WORD Vertical movement since starting to drag (signed).
 deltaX WORD Horizontal movement since starting to drag (signed).

Result should be:

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 260 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 ____________...____________________________
 | 31| 30| 29|...| 6 | 5 | 4 | 3 | 2 | 1 | 0 |
 ____________...____________________________
 | |
 TRUE if newSize RECT has been +-- TRUE if frame drawn,
 recomputed, FALSE if newSize FALSE to draw default frame.
 RECT OK.

The Window Manager assumes that the frame of the grow outline is the same as
the bounds of the window's wStrucRgn. This RECT is stored in the startRect of
the parameter list and does not change through out the dragging. The next
assumption is that the window grows from the lower right corner. As the
cursor moves, the lower right corner of the RECT in newSize changes. However,
if these assumptions are not correct for a custom window they can be
overridden by changing the RECT in newSize (by using startRect or the window's
record and the deltas) and returning TRUE for bit 1 in Result. The carry flag
should return clear.

wRecSize, Operation 7

The wRecSize operation is called to ask how large a window record should be
allocated.

Note: The window pointer passed in theWindow is not valid for this call.

Param is the parameter list pointer that is passed to NewWindow.

Result is the number of additional bytes required in the window record. The
standard window record header will always be allocated.

Example:

If your custom window needs a one word field in the window record for your own
use you would return 2 in Result. The Window Manager takes Result and adds to
it the size of the standard record header of 212 bytes and allocates a window
record that is 214 bytes long in this case. Your one word field is at the end
of the standard window record header with an offset of 212 bytes.

If there is some error, return the carry flag set with an error code in the y
register, which will cause NewWindow to abort and return the error code to the
application which called it. If there is no error, return the carry flag
clear.

Window Record Already Allocated?

If the window record is already allocated then Result should be the pointer to
the window record with bit 31 of the pointer set to TRUE. Generally, window
records are allocated (refer to Window Record Definition at the end of this
Note for more information about window records).

wPosition, Operation 8

Param is the parameter list pointer that is passed to NewWindow.

Result is a pointer to the RECT that will be the window's portRect, and you

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 261 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

should return the carry flag clear.

wBehind, Operation 9

Param is the parameter list pointer that is passed to NewWindow.

Result is where the window should be placed in the window list. A long
$FFFFFFFF means insert the window as the top window while a long $00000000
means to insert it as the bottom window. Any other value is a pointer to the
window behind which this window should be placed. You should return the carry
flag clear.

wCallDefProc, Operation 10

WCallDefProc is a generic call to the defProc that is defined by the defProc.
With this call a window defProc can define many special functions.

The input to the defProc is:

 param = pointer to the following parameter table:

 dRequest WORD Requested operation number.
 paramID WORD Parameter block type:
 $0000-$7FFF reserved by system ($0000 defined below).
 $8000-$FFFF reserved for custom defProcs.
 newParam BYTE[n] New parameter field used by some operations.

The paramID field defines dRequest, which in turn defines newParam and the
result of the wCallDefProc call. You can think of dRequest as the operation
number passed to the defProc. Here is an example of how the paramID defines
dRequest: if paramID is zero, dRequest 3 is defined as wSetPage (defined
below); but if paramID is $8345 (or any number other than zero), dRequest 3
could be defined as something entirely different.

The following dRequest values are defined for wCallDefProc operations with a
paramID of zero. Your defProc should check for handling only these codes. In
the future, codes 34 and greater may be defined, and your defProc should know
not to handle them.

 wSetOrgMask 0 wGetInfoDraw 17
 wSetMaxGrow 1 wGetOrigin 18
 wSetScroll 2 wGetDataSize 19
 wSetPage 3 wGetZoomRect 20
 wSetInfoRefCon 4 wGetTitle 21
 wSetInfoDraw 5 wGetColorTable 22
 wSetOrigin 6 wGetFrameFlag 23
 wSetDataSize 7 wGetInfoRect 24
 wSetZoomRect 8 wGetDrawInfo 25
 wSetTitle 9 wGetStartInfoDraw 26
 wSetColorTable 10 wGetEndInfoDraw 27
 wSetFrameFlag 11 wZoomWindow 28
 wGetOrgMask 12 wStartDrawing 29
 wGetMaxGrow 13 wStartMove 30
 wGetScroll 14 wStartGrow 31
 wGetPage 15 wNewSize 32
 wGetInfoRefCon 16 wTask 33

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 262 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

wSetOrgMask 0
 newParam = WORD - window's origin mask.
 result = None.

 Called when SetOriginMask is called.

wSetMaxGrow 1
 newParam = WORD - maximum window height.
 WORD - maximum window width.
 result = None.

 Called when SetMaxGrow is called.

wSetScroll 2
 newParam = WORD - number of pixels to scroll when arrow is
 selected.
 result = None.

 Called when SetScroll is called.

wSetPage 3
 newParam = WORD - pixels to scroll when page region is selected.
 result = None.

 Called when SetPage is called.

wSetInfoRefCon 4
 newParam = LONG - value passed to info bar draw routine
 (app's use only).
 result = None.

 Called when SetInfoRefCon is called.

wSetInfoDraw 5
 newParam = LONG - address of info bar draw routine.
 result = None.

 Called when SetInfoDraw is called.

wSetOrigin 6
 newParam = WORD - flag, TRUE to scroll content.
 WORD - window's Y origin.
 WORD - window's X origin.
 result = None.

 Called when SetContentOrigin is called.

wSetDataSize 7
 newParam = WORD - height of window's data area.
 WORD - width of window's data area.
 result = None.

 Called when SetDataSize is called.

wSetZoomRect 8
 newParam = LONG - pointer to new zoom RECT.
 result = None.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 263 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Called when SetZoomRect is called.

wSetTitle 9
 newParam = LONG - pointer to new title.
 result = None.

 Called when SetWTitle is called.

wSetColorTable 10
 newParam = LONG - pointer to new color table.
 result = None.

 Called when SetFrameColor is called.

wSetFrameFlag 11
 newParam = LONG - pointer to new zoom RECT.
 result = None.

 Called when SetWFrame is called.

wGetOrgMask 12
 newParam = None.
 result = WORD - window's origin mask.

wGetMaxGrow 13
 newParam = None.
 result = Low word is window's maximum height when grown.
 High word is window's maximum width when grown.

 Called when GetMaxGrow is called.

wGetScroll 14
 newParam = None.
 result = Low word is number of pixels to scroll when arrow is
 selected.

 Called when GetScroll is called.

wGetPage 15
 newParam = None.
 result = Low word is pixels to scroll when page region is selected.

 Called when GetPage is called.

wGetInfoRefCon 16
 newParam = None.
 result = Value passed to info bar draw routine.

 Called when GetInfoRefCon is called.

wGetInfoDraw 17
 newParam = None.
 result = Address of info bar draw routine.

 Called when GetInfoDraw is called.

wGetOrigin 18

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 264 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 newParam = None.
 result = Low word is content's Y origin.
 High word is content's X origin.

 Called when GetContentOrigin is called.

wGetDataSize 19
 newParam = None.
 result = Low word is window's data height.
 High word is window's data width.

 Called when GetDataSize is called.

wGetZoomRect 20
 newParam = None
 result = Pointer to window's current zoom RECT.

 Called when GetZoomRect is called.

wGetTitle 21
 newParam = None
 result = Pointer to window's title.

 Called when SetWTitle is called.

wGetColorTable 22
 newParam = None.
 result = Pointer to window's color table.

 Called when SetFrameColor is called.

wGetFrameFlag 23
 newParam = None.
 result = Low word is window's wFrame field.

 Called when SetWFrame is called.

wGetInfoRect 24
 newParam = LONG - pointer to place to store info bar's enclosing RECT.
 result = None.

 Called when GetRectInfo is called.

wGetDrawInfo 25
 newParam = None.
 result = None.

 Called when DrawInfoBar is called.

wGetStartInfoDraw 26
 newParam = LONG - pointer to place to store info bar's enclosing
 RECT.
 result = None.

 Called when StartInfoDrawing is called.

wGetEndInfoDraw 27
 newParam = None.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 265 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 result = None.

 Called when EndInfoDrawing is called.

wZoomWindow 28
 newParam = None.
 result = None.

 Called when ZoomWindow is called.

wStartDrawing 29
 newParam = None.
 result = None.

 Called when StartDrawing is called.

wStartMove 30
 newParam = WORD - new y position (global).
 WORD - x position (global).
 result = Low word is new y position (global).
 High word is x position (global).

 Called before MoveWindow moves a window.

wStartGrow 31
 newParam = None.
 result = None.

 Called before GrowWindow tracks the growing of a window.

wNewSize 32
 newParam = LONG - pointer to:
 WORD - proposed new height.
 WORD - proposed new width.
 These two values can be changed.
 result = Low word TRUE if only uncovered content should be drawn.
 FALSE if entire content should be redrawn.

 Called by SizeWindow before it resizes a window. The new height and
 width can be changed by modifying the words pointed to by the pointer in
 newParam.

wTask 33
 newParam = LONG - pointer to task record.
 WORD - result from FindWindow.
 result = Low word is code returned by TaskMaster (zero if handled).
 High word is task performed. Returned in TaskData if code
 is 0.

 Called from TaskMaster when it cannot handle a task. If the user
 presses the mouse button over a window, TaskMaster will call FindWindow
 to find out what part of the window. TaskMaster will then handle the
 task if FindWindow returns wInMenuBar or bit 15 of the window pointer is
 set (system window). Otherwise, the result of FindWindow is passed to
 wTask to be handled or not.

 If the defProc can handle the task it should do so and return zero in
 the low word of the result (which will be the result to the application

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 266 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 returned from TaskMaster) and a code of the task performed in the high
 word of the result (which is returned to the application in its task
 record TaskData field). Fields in the task record may also be modified
 to return parameters to the application as this is the same record
 passed to TaskMaster.

 If the defProc cannot handle the task, it should return the result from
 FindWindow (the second field in newParam) in the low word of the result.
 The high word of the result is not used.

 For example, the standard document window defProc handles the following
 results from FindWindow if the taskMask record allows.

 wInContent Brings the window to the top.
 wInDrag Calls DragWindow.
 wInGrow Brings the window to the top. If it is already on the
 top, it calls GrowWindow and SizeWindow.
 wInGoAway Calls TrackGoAway.
 wInZoom Calls TrackZoom and ZoomWindow.
 wInInfo Brings the window to the top.
 wInFrame Brings the window to the top. If it is already on the
 top, checks if it is on one of the window's scroll
 bars, tracks it, and scrolls the window's content as
 needed.

 A custom window defProc can return any code (bit 15 is used for system
 windows) it wants when it is called to do a hit test. This code would
 be that returned by FindWindow, and the application would have to know
 about the code if it called FindWindow instead of TaskMaster. If
 TaskMaster is used, the code that FindWindow returns is passed back to
 your defProc with a wCallDefProc and wTask. The defProc could perform
 any task it wanted: change colors, eject a disk, run a spelling
 checker, or anything else.

Window Record Definition

 0 |wNext | LONG - Pointer to next window record,
 |______________________|_ zero is end of list.
 4 |wPort /// | BYTE[170] - Window's GrafPort.
 |________________________|
 174 |wDefProc | LONG - Address of window's definition
 |______________________| procedure.
 178 |wRefCon | LONG - Reserved for application's use.
 |______________________|
 182 |wContDraw | LONG - Address of routine that will draw
 |______________________| window's content.
 186 |wReserved | LONG - Reserved by the Window Manager,
 |______________________| do not use.
 190 |wStrucRgn | LONG - Handle of window's structure region.
 |______________________|
 194 |wContRgn | LONG - Handle of window's content region.
 |______________________|
 198 |wUpdateRgn | LONG - Handle of window's update region.
 |______________________|
 202 |wCtls | LONG - Handle of first control in
 |______________________| window's content.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 267 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 206 |wFrameCtls | LONG - Handle of first control in
 |______________________| window's frame.
 210 |wFrame | WORD - Flags that define window.
 |___________|
 212 |wCustom ... BYTE[n] - Additional data space defined by
 |___________... window's definition procedure.

The changes use some vacant space under the window port and add the wReserved
field to the record for future expansion.

In addition to defining the window record, the wFrame field needs to be
further defined. In the diagram below the shaded bits are reserved for use by
each window defProc (the values shown are those used by the standard document
window defProc). Bits not shaded are reserved by the Window Manager and are
applicable to all windows.

Further Reference
o Apple IIGS Toolbox Reference, Volume 1
o System Disk 4.0 Release Notes

END OF FILE TN.IIGS.042

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 268 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.043
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#43: Undocumented Feature of CalcMenuSize

Written by: Dan Oliver November 1988

This Technical Note documents that CalcMenuSize can accept a parameter of
$FFFF to recalculate menus with uninitialized heights and widths.

The newWidth and newHeight parameters of CalcMenuSize can be the actual new
width and height or zero to automatically compute the width and the height.
In addition to these two possibilities, you can also pass $FFFF in newWidth,
newHeight, or even both to tell CalcMenuSize to automatically compute the
width and height only if the current setting is zero. Here are some examples
of how these three, previously undocumented features might be used:

Pass a New Value

Pass a new value when you need the width and height to be a specific size.

Pass $0000

Pass $0000 when you want to compute a new value regardless of the current
value. You could compute a new value after you add or delete a new item or
change its title since the current values for width and height are set to the
current size which may be incorrect due to the change. Passing $0000 adjusts
the menu size according to the new menu items.

Pass $FFFF

Pass $FFFF when you want to compute a new value only when the current value is
zero, as when the menu is first created. FixMenuBar passes $FFFF to compute
sizes for only those menus with widths and heights of zero.

Further Reference
o Apple IIGS Toolbox Reference, Volume 1

END OF FILE TN.IIGS.043

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 269 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.044
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#44: GetPenState and SetPenState Record Error

Written by: Keith Rollin November 1988

This Technical Note corrects an error in the record used for GetPenState and
SetPenState.

The Apple IIGS Toolbox Reference, Volume 2 incorrectly describes the record
used to save and restore information about the drawing pen in Figure 16-38 on
page 16-238. The include files for the Apple Programmer's Workshop (APW) and
the Macintosh Programmer's Workshop IIGS (MPW IIGS) assemblers and C compilers
also reflect this error. The correct record is as follows:

 Offset Field Description

 $0 |__ __|
 $1 |__ psPenLoc __| LONG - Point specifying pen
 $2 |__ __| location
 $3 |____________________|
 $4 |__ __|
 $5 |__ psPenSize __| LONG - Point specifying pen size
 $6 |__ __|
 $7 |____________________|
 $8 |__ psPenMode __| WORD - Pen mode
 $9 |____________________|
 $A | |
 | |
 | psPenPat | 32 bytes - Pen pattern
 | |
 $21 |____________________|
 $22 | |
 | |
 | psPenMask | 8 bytes - Pen mask
 | |
 $31 |____________________|
 $32

END OF FILE TN.IIGS.044

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 270 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.045
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#45: Parameters for GetFrameColor

Revised by: Matt Deatherage September 1989
Written by: Dan Oliver November 1988

This Technical Note formerly attempted to correct the description of the
parameters passed to and returned from the routine GetFrameColor in the Window
Manager chapter of the Apple IIGS Toolbox Reference. This call works as
documented since System Software 3.2; therefore, former versions of this Note
were incorrect.
Changes since November 1988: Corrected our error. Sorry for any
inconvenience.

This Note formerly stated the following: "The Apple IIGS Toolbox Reference,
Volume 2 incorrectly describes the parameters passed to and returned from
GetFrameColor on page 25-57."

However, this is incorrect. Beginning with System Software 3.2, GetFrameColor
works as documented in the Apple IIGS Toolbox Reference, Volume 2. Prior to
System Software 3.2, the call did not work at all. We apologize for any
inconvenience this confusion may have caused.

Further Reference

 o Apple IIGS Toolbox Reference, Volume 2

END OF FILE TN.IIGS.045

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 271 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.046
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#46: DrawPicture Data Format

Written by: Jeff Erickson & Keith Rollin November 1988

This Technical Note describes the internal format of the QuickDraw II picture
data structure.

This Technical Note presents the internal format of the QuickDraw II picture
data structure for informational purposes only. You should not use this
information to write your own bottleneck procedures; the only routines which
should create and read PICT format files are those provided in QuickDraw II.
If we added new objects to the picture definition, your program would not
operate on new pictures. This Note documents this information for debugging
purposes only.

Picture Data Structure Definition

Pictures are stored in memory in the following format:

They begin with a WORD which indicates the mode of the port which was used to
record when the picture was created. This information is useful when the
picture is played back, possibly in a different graphics mode.

Following the WORD is a RECT which indicates the frame of the picture and is
used for scaling when you redraw the picture. Following the RECT is the
version number of this PICT format, then a series of word-sized opcodes which
describe the sequences of QuickDraw II commands that were used to create the
picture.

Name Description Size (bytes)
pictSCB picture's scan line control byte 2 (high byte = 0)
picFrame picture's boundary rectangle 8
version picture version 2 (Currently $8211)
opcode operation code 2
<data> operation data variable, depending on opcode
:
opcode operation code 2
<data> operation data variable, depending on opcode

Opcodes

As mentioned above, pictures are described by a series of opcodes which are
used to record the QuickDraw II commands that created the picture. These

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 272 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

opcodes are two bytes long and are usually followed by a number of parameters.

All currently defined opcodes and their parameters are listed below. Any
opcodes not listed here are reserved.

Opcode Name Description Parm Bytes Parameter Description
$0000 NOP no operation 0 none
$0001 ClipRgn clip to a region [region size] region
$0002 BkPat background pattern 32 background pattern (8x8
 pixels)
$0003 TxFont text font 4 Font Manager font ID
 (long)
$0004 TxFace text face 2 text face (word)
$0005 TxMode text mode 2 text mode (word)
$0006 SpExtra space extra 4 space extra (fixed)
$0007 PnSize pen size 4 pen size (point)
$0008 PnMode pen mode 2 pen mode (word)
$0009 PnPat pen pattern 32 pen pattern (8x8 pixels)
$000A FillPat fill pattern 32 fill pattern (8x8
 pixels)
$000B OvSize oval size 4 oval size (point)
$000C Origin origin 4 origin (point)
$000D TxSize text size 2 text size (word)
$000E FGColor foreground color 2 color (word)
$000F BGColor background color 2 color (word)
$XX11 Version version 0 none: high byte=version
 (currently $82)
$0012 ChExtra character extra 4 char. extra (fixed)
$0013 PnMask pen mask 8 mask (8 bytes)
$0014 ArcRot arc rot 2 Reserved (related to
 things drawn with
 patterns). (word)
$0015 FontFlags font flags 2 font flags (word)
$0020 Line line 8 pnLoc (point), newPt
 (point)
$0021 LineFrom line from pen loc. 4 newPt (point)
$0022 ShortLine short line 6 pnLoc (point), dv, dh
 (signed bytes)
$0023 ShortLFrom ditto from pen loc 2 dv, dh (signed bytes)
$0028 LongText long text 5+text txLoc (point), count
 (byte), text
$0029 DHText hor. offset text 2+text dh (unsigned byte),
 count (byte), text
$002A DVText vert. offset text 2+text dv (unsigned byte),
 count (byte), text
$002B DHDVText offset text 3+text dv, dh (unsigned bytes),
 count (byte), text
$002C RealLongText very long text 6+text txLoc (point), count
 (word), text

Opcodes between $0030 and $008C are a combination of a graphic verb and a
graphic object, as listed below (where "V" stands for the graphic verb, and
"X" is a stands for the graphic object). For example, $0069 means
PaintSameArc, and is followed by two one-word parameters.

Graphic Verbs:

$00X0 Frame... frame something [Specific to object type

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 273 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 see below.]
$00X1 Paint... paint something
$00X2 Erase... erase something
$00X3 Invert... invert something
$00X4 Fill... fill something
$00XV+8 ...Same... draw same thing somehow [See below; {braced}
 parms do not appear.]

Graphic Objects:

$003V ...Rect draw a rectangle somehow 8 (0 if - SameRect) {rect
 (2 points)}
$004V ...RRect draw a round rect somehow 8 (0) {rect (2 points)}
$005V ...Oval draw an oval somehow 8 (0) {rect (2 points)}
$006V ...Arc draw an arc somehow 12 (4) {rect (2 points)},
 start, arc angle (words)
$007V ...Poly draw a polygon somehow [polygon size] (0){polygon}
$008V ...Rgn draw a region somehow [region size] (0) {region}
$0090 BitsRect copybits, rect clipped variable* (see below, but
 without maskRgn)
$0091 BitsRgn copybits, rgn clipped variable* (see below)
$00A1 LongComment long comment 4+data kind (word), size
 (word), data

*Bits... data:

origSCB original scan line control byte 2 SCB (word --
 high byte = 0)
BWvsColor black and white vs. color 2 reserved (word)
width width of pixel image in bytes 2 width (word)
boundsRect bounds rectangle 8 rect (2 points)
srcRect source rectangle 8 rect (2 points)
destRect destination rectangle 8 rect (2 points)
mode transfer mode 2 pen mode (word)
maskRgn mask region (BitsRgn ONLY!) [region size] region
pixData pixel image [pixdata size] width*
 (bounds.bottom-
 bounds.top)

Differences Between IIGS Pictures and Macintosh Pictures

1. QuickDraw II pictures are modeled after PICT2 on the Macintosh,
 which use two bytes for its opcodes and data (the exception to
 this is the $11 (version) opcode, which is followed by a one-byte
 parameter). Macintosh PICT 1.0 formats, which use one-byte
 opcodes, would have to undergo extensive modifications to be
 displayed on the IIGS.
2. There is no EndOfPicture opcode on the IIGS as there is on the
 Macintosh. Also, the first word of the picture is a pictSCB, not
 the length of the picture. The picture size is determined solely
 by the size of the handle on the IIGS. There is also no picture
 header on the IIGS as on the Macintosh.
3. The number sex of the Macintosh is opposite that of the Apple
 IIGS. The Macintosh stores the high bytes of words and long words
 first, whereas the IIGS stores the low byte first.
4. The following Macintosh picture opcodes are not available on the
 IIGS: txRatio, PackBitsRect, PackBitsRgn, shortComment,

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 274 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 EndOfPicture.
5. QuickDraw II defines the following opcodes that the Macintosh does
 not: ChExtra ($12), PnMask ($13), ArcRot ($14), FontFlags ($15),
 and RealLongText ($2C).

Notes on the Interpretation of IIGS Pictures

o The state of the pen, the clip region, various patterns and
 colors, and the origin of the current port is saved before a
 picture is drawn, and restored afterwards. The current port is
 set up in a default state equivalent to that of a newly created
 port just before drawing begins. Picture opcodes act just like
 their QuickDraw II tool counterparts, with a few exceptions.
o Two pen locations are tracked as the picture is drawn, one for
 lines and one for text. Thus, LineFrom always draws from the end
 of the last line, regardless of any intermediate text opcodes.
o Text calls do not change the position of the "text pen," as do
 normal QuickDraw II text calls. Thus, if a picture contains two
 lines of text, the second one directly below the first, the second
 will be stored using a DVtext opcode.
o DrawPicture performs considerable setup before it draws pictures.
 Among other things, it calls InstallFont, which is a Font Manager
 call. If you are going to support pictures in your application,
 you should load and start the Font Manager.

Further Reference
o Apple IIGS Toolbox Reference, Volume 2

END OF FILE TN.IIGS.046

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 275 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.047
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#47: What SetDataSize Does

Written by: Keith Rollin November 1988

This Technical Note clears up any ambiguity in the description of the
SetDataSize call.

The Apple IIGS supports windows that contain scroll bars in their frames.
These scroll bars are handled by TaskMaster and differ from Macintosh scroll
bars in that the size of the "thumb" or "elevator" is used to indicate the
size of the visible area of the document in relation to the total size of the
document (the "data size"). Initially, the visible size and the data size are
defined by the parameter list passed to NewWindow; however, either of these
can be changed by SizeWindow and SetDataSize, respectively.

SetDataSize is used to not only change the range of scrolling allowed, but
also to redraw the size of the thumb to reflect the fact that the data size
has changed with respect to the visible area. However, page 25-97 of the
Apple IIGS Toolbox Reference contains the following description of
SetDataSize:

 "Sets the height and width of the data area of a specified window.
 Setting these values will not change the scroll bars or generate
 update events."

When the manual states that SetDataSize "will not change the scroll bars," it
is referring to the location, or value, of the thumb. Assume a situation
where you have a word processor that scrolls the page using TaskMaster scroll
bars. If you delete a range of text, you would also shorten the entire size
of the document. Calling SetDataSize to reflect that would indeed change the
size of the thumb, but it would not change its location. If you were already
scrolled to the bottom of the document when you called SetDataSize, the thumb
would become larger (to reflect the fact the the total data size became
smaller with respect to the visible data size) and overwrite the down arrow of
the scroll bar. To prevent this situation from occurring, you should also
change the origin of the window with SetContentOrigin before calling
SetDataSize.

Further Reference
o Apple IIGS Toolbox Reference, Volume 2

END OF FILE TN.IIGS.047

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 276 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.048
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#48: All About AlertWindow

Revised by: Dave Lyons July 1989
Written by: Dan Oliver & Keith Rollin November 1988

This Technical Note documents a new call in the Window Manager which eases the
creation of Alert windows.
Changes since November 1988: Documented new features and behavior of
AlertWindow in System Software 5.0.

AlertWindow is available in Window Manager version 2.2 and later (Apple IIGS
System Disk 3.2 and later). This call takes three parameters which are used
to create a dialog box with text, buttons, and an optional icon.

AlertWindow works by taking a pointer to an "alert string." This alert string
defines the size and location of the alert window, specifies what icon (if
any) it uses, defines the text it displays, and indicates the number of
buttons and their names which it displays.

The alert string is a very powerful and complicated structure to be able to
specify all of this information, and it is even more powerful with the added
capability of "substitution strings." Substitution strings work in a manner
similar to ParamText substitutions; certain sections of the text are
designated as variables to be replaced by other text when you display the
dialog.

The Call

AlertWindow ($590E)

 input: WORD Space for result.
 WORD alertFlags. Bit 0 is 0 if substitution strings are C-
 type strings (NULL terminated), 1 if they are Pascal-
 type strings (leading length byte). Bits 1 and 2 are
 00 if alertStrRef is a pointer, 01 if it is a handle,
 and 10 if it is a resource ID (the resource type is
 $8015).
 LONG Pointer to substitution string array; anything if no
 substitutions are to be made.
 LONG alertString (see alertFlags)
 output: WORD Button number that was selected where 0 is the first
 button title in the alert string, 1 is the next button
 title, and 2 is the third.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 277 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

The Format of the Alert String

Size Character

The first character of the alert string is the size character, which indicates
the size of the alert window. The character can be ASCII 1-9 to indicate any
one of nine standard alert window sizes. The goal of standard sizes is to
have alert windows that can contain the same amount of message text in 320
mode or 640 mode, without changing the size. However, making this happen may
require some careful message and button text composition.

 Size Character Approximate Maximum # of Characters

 1 30
 2 60
 3 110
 4 175
 5 110
 6 150
 7 200
 8 250
 9 300

The following table shows the dimensions of the standard alert windows. This
table gives an idea of the size of each window. Application code should not
rely on the exact widths, heights, or position of standard windows. If an
application needs an exact window size, it can specify zero as the size
character and use the next eight bytes as four word-sized integers which
specify the rectangle of the window.

Character Height 320 Width 320 Height 640 Width 640

 1 46 152 46 200
 2 62 176 54 228
 3 62 252 62 300
 4 90 252 72 352
 5 54 252 46 400
 6 62 300 54 452
 7 80 300 62 500
 8 108 300 72 552
 9 134 300 80 600
 0 (Character followed by 4 integers that represent size and position.)

Icon Number

The next character is the icon number. The icon number can be 0-9 where:

 0 = No icon.
 1 = custom icon, followed by:
 LONG Pointer to image data.
 WORD Number of bytes image data is wide.
 WORD Number of scan lines image data is high.
 2 = Stop icon.
 3 = Note icon.
 4 = Caution icon.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 278 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 5 = Disk icon.
 6 = Disk swap icon.
 7 - 9 = Reserved--do not use.

Separator Character

The next character is a separator character. The separator can be any
character and cannot appear in the message text or button strings. The
separator is used to separate the message from the first button string and
each button string from each other. For purposes of standardization the slash
(/) might be a good choice, unless you will be substituting pathnames (see the
section "Don't Use Separator Characters in Substitution Strings").

Message Text

Following the separator character is the message text. Any characters which
LETextBox2 allows are valid in the message text. See the section "Special
Characters" for additional message text functions. The total size of the
message text, after string substitution, is limited to 1,000 characters.

Button Strings

The first character after the separator character following the message text
is the beginning of the first button's title. The title can be followed with
either another separator character and button title or a string termination
character (i.e., zero (0)) to end the alert string. A total of three button
titles may be included at the end of the alert string. These buttons are
evenly spaced and centered at the bottom of the alert window. The width of
each button is the same size and is set according to the widest button title.
The total size of the button text, after string substitution, is limited to 80
characters.

Termination of Alert String

A zero ($00) comes after the last button title to end the alert string.

The Substitution Strings

The message text and button strings can contain special characters that are
replaced by substitution strings when you display the alert window.

Special Characters

The following special characters can be embedded in the message text and
button strings of an alert. If you want the special character itself to
appear in the body of the text, enter it twice in the string.

 ^ If a caret (^) is the first character in a button
 string, the button is the default button. The default
 button is the button selected if the user presses the
 Return key or the Enter key. This button also has a
 bold outline on the screen. Only one button can be
 the default button. After the caret, the button title
 must follow like any other title (including other
 special characters).

 Note: If the caret is to appear in the message

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 279 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 text, it must be entered twice, side-by-side. A
 single caret in message text has no effect and
 is deleted from the message.

 # Substitute with a standard string. The pound sign (#)
 must be followed by an ASCII character. Characters 0-
 6 can be used (7-9 are reserved and should not be
 used) where:

 #0 is replaced by OK
 #1 is replaced by Cancel
 #2 is replaced by Yes
 #3 is replaced by No
 #4 is replaced by Try Again
 #5 is replaced by Quit
 #6 is replaced by Continue

 * Substitute with the given string. The asterisk (*)
 followed by ASCII character in the range 0-9 denotes
 that a substitution string should be inserted at that
 point. The asterisk and the following character are
 replaced by the corresponding string in the
 substitution array. A pointer to the substitution
 array is one of the parameters passed to AlertWindow
 and is defined as an array of LONG pointers where:

 LONG[0] Pointer to the string that
 substitutes for *0.
 LONG[1] Pointer to the string that
 substitutes for *1.
 LONG[2] Pointer to the string that
 substitutes for *2.
 LONG[3] Pointer to the string that
 substitutes for *3.
 LONG[4] Pointer to the string that
 substitutes for *4.
 LONG[5] Pointer to the string that
 substitutes for *5.
 LONG[6] Pointer to the string that
 substitutes for *6.
 LONG[7] Pointer to the string that
 substitutes for *7.
 LONG[8] Pointer to the string that
 substitutes for *8.
 LONG[9] Pointer to the string that
 substitutes for *9.

 Substitution strings can be a C-type (NULL-
 terminated), Pascal-type (a string prefixed with a
 length byte), or Return-terminated. NULL- and Return-
 terminated strings are selected by passing 0 to
 AlertWindow as the string flag. Pascal strings are
 selected by passing 1.

 Elements do not need to be defined if they are not
 referenced in the alert.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 280 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Don't Use Separator Characters in Substitution Strings

Do not include a separator character in any substitution strings. Beginning
with System Software 5.0, substitutions are performed before the alert string
is scanned for separators. For example, if the separator character is a slash
and a pathname containing several slashes is substituted for the string, the
resulting alert will contain several more buttons than expected.

Examples

Following are some examples of alert strings that can be passed to AlertWindow
in APW 65816 assembler syntax.

A simple alert string:

 dc c'13/Text of Message/Button 1',il'0'---
 \ \ \ \
 Size 50 high Icon Message Button Title Zero terminates alert.
 by 200 wide.

 |--------------------------------------|
 | #################################### |
 | # ______ # |
 | # | Note | Text of Message # |
 | # | Icon | # |
 | # |______| # |
 | # # |
 | # _____________ # |
 | # / \ # |
 | # | Button 1 | # |
 | # _____________/ # |
 | # # |
 | #################################### |
 |--------------------------------------|

A more complex alert string:

 dc c'51/This is the *0 of *3 alert *2*1 and standard'
 dc c'text called "#4" /'
 dc c'^#0,Really/*4/Yo!',il'0'

|---|
| ### |
| # ______ # |
#	Stop	This is the message text of an alert window and #
#	Icon	standard text called "Try Again." #
#	______	#
# #		
# ============= _____________ _____________ #		
# // \\ / \ / \ #		
#		OK, Really
# \\ // _____________/ _____________/ #		
# ============= #		
###		

 Where substitution array =

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 281 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 dc i4'sub0,sub1,sub2,sub3,sub4'
 sub0 dc c'message text',il'0'
 sub1 dc c'dow',il'0'
 sub2 dc c'win',il'13'
 sub3 dc c'an',il'0'
 sub4 dc c'Door #2',il'0'

END OF FILE TN.IIGS.048

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 282 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.049
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#49: Rebooting (Really)

Revised by: Matt Deatherage January 1989
Written by: Matt Deatherage & Jim Merritt November 1988

This Technical Note discusses rebooting the Apple IIGS from software.
Changed since November 1988: Corrected two assembly-language
instructions in the FROMNATV routine in the example code.

In days gone by, many Apple II applications had a Quit menu option.
Unfortunately, a large number of these simply rebooted the machine. Today,
this is far from desirable. Even with the advantages of GS/OS-reduced booting
time (around 34 seconds with an Apple 3.5 Drive), waiting for the operating
system to reload, as well as wiping out any ongoing tasks by desk accessories
(such as an alarm clock) makes the standard ProDOS 8 or GS/OS QUIT call much
more attractive.

However, there are still instances where an application may wish to require
the user to reboot. A common example might be a game. The game might use
GS/OS in a completely standard way, but if you QUIT from the program GS/OS
booted into, you will be returned to the same program. Since most
applications will boot into the Finder, this is not a widespread problem.
However, the Finder must also provide the reboot option, and alternate program
selector applications may wish to provide this functionality as well.

The Easy Way

GS/OS provides a mechanism for rebooting with the OSShutdown call. This call,
documented in GS/OS Reference, Volume 1, will either reboot the system (after
first shutting down all loaded and generated drivers and closing all open
sessions) or will shut down everything and present a dialog box which states,
"You may now power down your Apple IIGS safely." A Restart button is provided
which allows the user to reboot without pressing Control-Open Apple-Reset .

Note: When using System Disk 4.0, if the Window Manager is active
when you issue the OSShutdown call, there must be at least one
open window; it need not be visible, but it must be open. This
will be fixed in the next revision of GS/OS.

The OSShutdown call also provides a way to resize the internal RAM disk (named
/RAM5 by default). Most programs have absolutely no need to use this
mechanism, and should avoid it whenever possible. A notable exception would
be a third-party RAM disk utility which uses a battery backup, which may need
to make changes which require resizing the RAM disk. Of course, such a
utility should ask the user to ensure that erasing the RAM disk content is

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 283 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

acceptable. Resizing the RAM disk is only possible when using the OSShutdown
call; any other method you may be using to accomplish this function from
software will break in the future.

If you are using GS/OS, you should always use OSShutdown. You must not reboot
the system in any other fashion. The OSShutdown mechanism provides a
convenient and supported way to restart or shut down the system. Doing it
another way can easily cause a loss of data.

The Hard Way

Programs not using GS/OS have a little more work to do. The supported non-
GS/OS method of rebooting is similar to the method used on 8-bit machines:
change the value of POWERUP ($00/03F4) and do a long jump to RESET ($FA62).
However, there are a few catches:

1. The jump must be made in emulation mode.
2. Interrupts must be disabled.
3. The data bank register must be set to zero.
4. The direct page must be zero.
5. ROM firmware must be visible in the memory map.
6. Internal interrupt sources (such as the ones for AppleTalk) must be
 shut down.

Simply disabling interrupts without shutting down AppleTalk interrupt sources
inside the system will cause the system to hang when the jump to RESET is
made. Turning off these internal interrupt sources is accomplished by
changing softswitch values at $C039 (SCCAREG), $C041 (INTEN), and $C047
(CLRVBLINT).

The following code example demonstrates the correct method:

POWRUP equ $0003F4 ;the power-up byte in bank zero
STATEREG equ $C068 ;ROM/RAM state register
CLRVBLINT equ $C047 ;clear VBL interrupt flags register
INTEN equ $C041 ;interrupt enable register
SCCAREG equ $C039 ;SCC register
RESET equ $00FA62 ;ROM reset entry point
;
FROMNATV anop ;enter here from native mode
 sei ;disable interrupts
 pea 0
 pea 0 ;push four zero bytes on the stack
 plb ;pull data bank register
 plb ;(twice to balance the stack)
 pld ;pull 16-bit data bank register
 sec
 xce ;go into emulation mode
 longa off
 longi off
FROMEMUL anop ;enter here from emulation mode
 sei ;disable interrupts for people entering here
 dec POWRUP ;invalidate the power up byte
 lda #$0C ;ROM parameters
 sta STATEREG ;swap in the ROM and everything else out
 stz CLRVBLINT ;clear VBL interrupts

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 284 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 stz INTEN ;turn off internal interrupt sources
 lda #$09
 sta SCCAREG ;shut down SCC interrupt sources
 lda #$C0
 sta SCCAREG
 jml RESET ;and off we go into the wild blue yonder

These methods of restarting the system are presented for those applications
that absolutely must do so. Rebooting is not a suggested way of ending an
application and the techniques described in this Note should be used with
extreme caution.

Further Reference

o Apple IIGS Firmware Reference
o GS/OS Reference, Volume 1

END OF FILE TN.IIGS.049

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 285 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.050
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#50: Extended Serial Interface Error Handling

Written by: Dan Strnad January 1989

This Technical Note discusses error reporting by the Extended Serial
Interface.

For Apple IIGS ROM 01, the Extended Serial Interface does not return the error
condition in the carry bit. Programs using the Extended Serial Interface
should check for a non-zero result value in the result code rather than the
carry bit to determine if an error has occurred. The following eight-bit APW
code demonstrates this error checking using the SetDTR command. The SetDTR
routine zeros the result bytes if no error has occurred.

 LONGA OFF ;PREPARE ASSEMBLER FOR EMULATION MODE
 LONGI OFF
 65C02 ON
 KEEP SETDTR2
 START
SLOT EQU $01
 SEC ;SET EMULATION MODE
 XCE
 JMP BEGIN
CMDLST DC H'03' ;PARAMETER COUNT
 DC H'0B' ;SETDTR COMMAND CODE
RESLT DC I'0' ;RESULT CODE (OUTPUT)
DTRSTAT DC I'0' ;BIT 7 IS STATE OF DTR (INPUT)
BEGIN LDA #SLOT ;COMPUTE $CN VALUE TO BE USED
 ORA #$C0
 STA OFFSET+2 ;MODIFY INSTRUCTIONS LOADING OFFSETS
 STA XOFFSET+2
 STA ICALL+2 ;MODIFY INSTRUCTIONS CALLING FIRMWARE
 STA XCALL+2
IOFFSET LDA $C00D ;THIS INSTRUCTION MODIFIED AT RUNTIME
 STA ICALL+1 ;MODIFY JSR TO INIT
XOFFSET LDA $C012 ;THIS INSTRUCTION MODIFIED AT RUNTIME
 STA XCALL+1 ;MODIFY JSR TO EXTENDED SERIAL INTERFACE
ICALL JSR $C000 ;THIS INSTRUCTION MODIFIED AT RUNTIME
 LDA #<CMDLST ;LOW BYTE OF COMMAND LIST
 LDX #>CMDLST ;HIGH BYTE OF COMMAND LIST
 LDY #0 ;24-BIT ADDRESS NOT USED BY 8-BIT PROGRAM
XCALL JSR $C000 ;THIS INSTRUCTION MODIFIED AT RUNTIME
 LDA RESLT ;DID AN ERROR OCCUR?
 BNE ERROR ;YES- HANDLE THE ERROR
 ...
ERROR

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 286 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 ...
 END

END OF FILE TN.IIGS.050

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 287 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.051
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#51: Reserving Memory for the Toolbox

Written by: Eric Soldan January 1989

This Technical Note discusses handling nearly-out-of-memory situations when
working with the IIGS tools.

Introduction

Running out of memory is a concern for most every application. Working with
the Toolbox makes monitoring this situation a little more difficult since your
application is not the only one allocating memory.

Just waiting for an out-of-memory error is not necessarily adequate memory
management. If you execute a NewHandle call successfully, there could be any
amount of memory left, from one byte to nearly all of it. If there is not
much memory left, there might not be enough for the Toolbox. A better scheme
of memory management would be to determine when the tools will need more
memory than is available. You can treat this situation as "out-of-memory" as
well.

The Memory Manager calls to determine how much memory is available are
MaxBlock, FreeMem, and RealFreeMem. However, none of these calls can give you
the complete picture. FreeMem does not count purgeable handles. RealFreeMem
does count purgeable handles, but memory may be very fragmented. MaxBlock can
only tell you if you have enough RAM in a single block to complete a new
handle request, but it does not provide a good indication of when you do not
have enough, since memory may be fragmented.

Another way of determining if you have enough memory is with the NewHandle
call. If you know that you are going to do a sequence of operations that will
not exceed N bytes of RAM, you can try a NewHandle call for that number of
bytes. If it works, dispose the temporary handle and go for it. Of course,
this may leave no memory available for the Toolbox, but you could fix this by
trying a NewHandle of size N+ToolboxNeeds. The problem with this method is
that NewHandle is not the fastest Memory Manager call, and executing it
repeatedly can seriously degrade the performance of your application.

A Suggested Method

Another method of checking for a nearly-out-of-memory condition is to have
your own purgeable handle just for this task. You can use the purgeable
handle as a check for a nearly-out-of-memory situation. If the handle has not
been purged, then you have plenty of memory for the Toolbox, and in the worst

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 288 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

case, the Toolbox will purge your handle if it needs the RAM.

The less often your purgeable handle gets purged, the better performance you
will probably get in nearly-out-of-memory situations. Therefore, the purge
level of this handle should probably be 1. (It might be better to have your
handle purged before several other purgeable handles which are of greater use
and could belong to you or others in the system.) The check to see if a
handle has been purged is very fast. If it has been purged, you will have to
see if it can be reallocated which is not a fast process, so the fewer times
the handle is purged, the faster the check will be and the better your
performance. Unless you are in a nearly-out-of-memory situation, the handle
will not be purged at all, and you will have virtually no overhead for this
process.

This technique could be implemented as follows:

appStart ;
;
;
; Somewhere at start, create a purgeable handle of size N,
; called "loMemHndl", purge level 1.
;
;
 rts

;
; Here's an example of checking for nearly-out-of-memory:
;
 jsr preCheckLoMem
 bcc goForIt
 bcs HandleError ;Handle errors appropriately.
goForIt (_ToolboxCall[s]) ;Make as many as needed.
;
; Here you can make your toolbox calls. Since you prechecked
; for nearly-out-of-memory conditions, you should have no
memory
; errors at this point.
;
; You could also check after calls, as shown here:
;
 (_ToolboxCall)
 jsr checkLoMem ;Call this to see if low.
 bcc noError
 bcs HandleError ;Take care of errors.

noError jsr lifeIsGood
 .
 .
 .
 rts

;

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 289 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

; Here are some sample routines to check for the nearly-out-
of-
; memory condition.
;

checkLoMem bcs retErr
preCheckLoMem lda [loMemHndl]
 ldy #2
 ora [loMemHndl],y
 beq gotPurged
 lda #0
 clc
 rts
gotPurged (Try reallocating it into loMemHndl, purge level 1.)
 (If you can't, you will get a $0201 error. You may wish to
 return the $201 error, or you may wish to change it into
 your own error code.)
;
retErr rts ;This is a single exit point
 ;whether errors were present
 ;or not.

You can determine the size of this purgeable handle, but, like determining
what size stack is adequate for an application, there is no single "right"
answer. There are different considerations for size of the purgeable handle
for each application, and these may change during the development process.
Use your best judgement.

Conclusion

This Note is not meant to suggest that nearly-out-of-memory situations
require detection in this way, and there are many applications which
allocate enough RAM when they start (i.e., many paint programs) that if they
get the requested memory, they will not encounter out-of-memory situations
during that session. There may also be other ways for a particular
application to detect and handle nearly-out-of-memory situations, but this
Note addresses this situation in a general way and offers only one solution
for your consideration.

Further Reference:

o Apple IIGS Toolbox Reference, Volumes 1 & 2

END OF FILE TN.IIGS.051

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 290 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.052
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#52: Loading and Special Memory

Revised by: Eric Soldan July 1989
Written by: Eric Soldan January 1989

This Technical Note discusses strategies for preventing applications from
loading into special memory.
Changes since January 1989: Modified code sample so the Loader no longer
disposes of some segments before a Restart call is complete.

The System Loader loads your application starting at the lowest memory
location possible. If you allow your program to load into special memory, the
Loader first tries bank $01. If your program cannot load into special memory,
it starts at bank $02. Either way, the Loader progresses to higher banks, and
eventually, it may even try loading into bank $E1, which contains the super
hi-res screen.

The problem with allowing your application to load into special memory is that
the super hi-res screen is part of special memory. If you have a desktop
application, part of your application may load into the super hi-res screen,
and when you try to start QuickDraw II, it fails because the screen memory is
already allocated.

When QuickDraw II fails because your program loaded into the SHR screen, it
seems reasonable to assume that the Loader put your program there because it
needed the RAM which special memory provides. This logic seems to make sense,
but it is not completely reliable. The Loader tries to put your program into
special memory before it tries purging dormant applications. This means that
the more programs that run from the Finder that set the GS/OS or ProDOS 16
"restartable from memory" bit, the more likely it is that the next application
launched that can load into special memory will load into the super hi-res
screen.

For this reason, it is important not to let your application load into special
memory, or at least not load into the super hi-res screen. If your
application is not allowed to load into special memory, then the Loader will
purge other dormant applications to make space for yours. One way to
accomplish this is when linking your application. You can set the "no special
memory" bit in the OMF KIND field of applications using OMF 2.0 or later, but
this also prohibits your application from using bank $01.

Another way to avoid loading into the super hi-res screen is to have your
initial segment allocate the super hi-res screen. You can accomplish this by
starting QuickDraw II in your initial segment, then the rest of your program
cannot load into the already-allocated super hi-res screen. This strategy

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 291 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

could fail if the initial segment loaded into the super hi-res screen, but
this is very unlikely and can be prevented by flagging the initial segment to
only load into non-special memory. You can do this by setting the "no special
memory" bit in the KIND field only for the initial segment.

Here's an example of such an initial segment in MPW IIGS format:

**
*
* You may wish to do this stuff in the initial segment of your
* application. The initial segment should be set so that it does not
* load into special memory, or else it is possible that it would load
* into the super hi-res screen. If this occurred, then QuickDraw II would
* not be able to be started.
*
* Once QuickDraw II is started, the super hi-res screen is taken,
* therefore the rest of the application can not load into it. Therefore,
* special memory is generally an acceptable place for the rest of the
* application to load, since the special memory needed for the screen
* is already taken.
*
* If the performance of your application would be adversely affected
* by memory fragmentation, then you should also consider purging
* other dormant applications and dormant tools, and then compacting
* memory. This will prevent fragmentation as much as possible
* while your application is loading. It also has the cost of longer
* startup time since some tools may have to be reloaded. This is the
* only way to be sure that tools that you don't want are removed
* from memory before the rest of your application tries to load
* around them.
*
* The Finder is a dormant application when your application is
* launched. This will cause the Finder to be thrown out of memory,
* and it will have to be reloaded when your application is quit.
*
**

 case on

 include 'e16.memory'
 include 'm16.memory'
 include 'm16.quickdraw'

screenMode equ $80
AppMaxWidth equ 160 ;Double this is your application
 ;will print in BetterText mode.

initialScreen PROC

myID equ 1 ;long
zpagehndl equ myID+4 ;long

stkAfterLocals equ zpagehndl+4

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 292 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

directReg equ stkAfterLocals
retAddr equ directReg+2
passedParms equ retAddr+3

 phd ;Set up stack frame.
 tsc
 sec
 sbc #stkAfterLocals-1
 tcs
 tcd
 pha
 _MMStartUp
 pla
 sta myID ;Get the userID

 pha
 _HLockAll ;Lock down the rest of ourselves, in
 ;case we are being restarted. The
 ;loader does not prelock down stuff,
 ;so we would be disposing of the rest
 ;of ourselves.

 pea $1000
 _PurgeAll ;Purge other dormant applications.
 ;This is optional.
 pea $4000
 _PurgeAll ;Purge dormant tools.
 ;This is optional.

 _CompactMem ;Clean up memory. This is advised.

 pha ;Make direct space for QuickDraw.
 pha
 pea $300>>16 ;Hi-byte of $300 address.
 pea $300
 pei myID
 pea attrLocked+attrFixed+attrPage+attrBank
 lda #0
 pha
 pha
 _NewHandle
 plx
 stx zpagehndl
 plx
 stx zpagehndl+2
 bcc @a
 ERRORDEATH 'Out of bank 0 memory'

@a lda zpagehndl
 sta >qdstarthndl ;Used for disposing handle at shutdown.
 txa
 sta >qdstarthndl+2
 lda [zpagehndl] ;Start up QuickDraw. This protects
 pha ;screen ram from the rest of the
 pea screenMode ;application from loading into it.
 pea AppMaxWidth
 pei myID
 _QDStartUp

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 293 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 bcc @b
 ERRORDEATH 'Can''t start up QuickDraw'
@b ;Do title screen here.
 tsc
 clc
 adc #stkAfterLocals-1
 tcs
 pld
 rtl

qdstarthndl dc.l 0

 ENDP
 END

Further Reference:

 o GS/OS Reference, Volume 1
 o MPW IIGS Tools Reference
 o APW Assembler Reference

END OF FILE TN.IIGS.052

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 294 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.053
###

Apple II
Technical Notes

 Developer Technical Support
Apple IIGS
#53: Desk Accessories and Tools

Written by: Matt Deatherage & Jim Mensch March 1989

This Technical Note describes new guidelines for developers to help
applications and desk accessories live together in the same system at the same
time.

Introduction

Desk accessories vary widely in complexity. Classic Desk Accessories (CDAs)
range from simple status-reporting programs to complete system-level debugging
utilities, and similarly, New Desk Accessories (NDAs) range from static
windows with pictures to nearly full-fledged applications.

This Note presents some new guidelines aimed at helping developers of both
applications and desk accessories to get their products to work together now
and in the future.

Tool Sets

The greatest current conflict between applications and desk accessories,
especially NDAs, is the use of system tool sets. The Apple IIGS Toolbox
Reference, Volume 1, defines which tools are available for use by NDAs. The
Desk Manager requires starting the following tool sets before calling
FixAppleMenu (which installs the names of the NDAs in the Apple menu):

 Tool Locator (#1)
 Memory Manager (#2)
 Miscellaneous Tools (#3)
 QuickDraw II (#4)
 Event Manager (#5)
 Window Manager (#14)
 Menu Manager (#15)
 Control Manager (#16)
 LineEdit (#20)
 Dialog Manager (#21)
 Scrap Manager (#22)

Since the Desk Manager requires starting these tools before calling
FixAppleMenu, NDAs may assume that these tools are all present and running, so
they do not need to check for their presence.

In addition to these requirements by the Desk Manager, Apple II Developer
Technical Support strongly recommends that all applications start the

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 295 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

following tools:

 QuickDraw Auxiliary (#16)
 Font Manager (#27)

These two additional tools are so widely used by desk accessories that they
should be present. An NDA may not assume their presence, but any application
that calls FixAppleMenu should also start these two tools.

The Golden NDA Guideline

Developers who wish to maintain maximum compatibility between their NDAs and
applications, both now and in the future, should consider every environment
change they make with the following Golden NDA Guideline firmly in mind:

 "I, an NDA, pledge not to alter the environment of the application
 under which I run, and I will behave in such a way that the
 application runs the same whether I am present or not."

Of course, this guideline does not include such necessary tasks as the normal
(and reasonable) allocation of memory. An application must be prepared to
handle a memory allocation call by a desk accessory, operating system, or even
a tool at unexpected times. The guideline does, however, mean that your desk
accessory cannot change the operating environment, including such things as
the presence of tools and operating system parameters. The following sections
detail some of the most important ways of following the Golden NDA Guideline.

Desk Accessory Guidelines

Extra Tools

o If an NDA wishes to use a tool which is not available in the standard
 list (e.g., Standard File), it should check to see if the tool is
 already running. If it is not running, the NDA must use LoadOneTool to
 load it, then it must start the tool before using it. When finished
 with the tool, the NDA must shut it down and unload it with
 UnloadOneTool.

o If an NDA wishes to use a tool which is not available in the standard
 list and the NDA wants to use it in a non-modal fashion, then it has
 even more work to do. In addition to the conditions set for a tool
 which is not available in the standard list, if your NDA uses a tool in
 a non-modal fashion, you must shut it down and unload it when your
 window is deactivated.

 The Golden NDA Guideline shows why this is true. If your NDA started a
 tool which the application was going to use but had not yet started
 (i.e., the Font Manager), and your NDA does not shut it down when the
 application takes control of the system, the application will get error
 $1B01 (Font Manager Already Started) when it makes the FMStartUp call,
 and this error can cause the application to fail.

 Therefore, when your window is deactivated, if you shut down all the
 tools you have started, the application will be free to start those
 tools which it requires. When your window is reactivated, you must
 check the status of each tool in question then reload and restart those

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 296 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 which are not present before reusing them.

 In this case, the Golden NDA Guideline means that an application must
 not be forced to check the status of a tool which it has not started.
 Applications are not required to do so, and most of them do not.

o Sound tools provide the one exception to the rule of freely using a
 tool which is already started. Refer to the section on System
 Parameters for more details on using sound tools.

o An NDA must not shut down tools which it has not started. If you
 start a tool then shut it down when finished with it, you must be sure
 not to accidently shut it down the next time your window is deactivated.

o A CDA is nearly always modal, but it has the capability to install
 HeartBeat Tasks and other ways of being called after returning to an
 application (which could be running under ProDOS 8). If a CDA installs
 a method of performing tasks after the user has returned to the
 application, it must be careful not to use any tools which are not
 started, since the list of available tools for NDAs does not hold true
 for CDAs.

System Parameters

o A desk accessory (CDA or NDA) must not change a system resource or
 parameter which cannot be restored to its original condition. A
 trivial, but illustrative, example of this is the number of times a
 pull-down menu item blinks when you select it. This number (three by
 default) may be changed with the SetMItemBlink call, but there is not
 corresponding GetMItemBlink call, so you cannot retrieve the current
 value. Therefore, a desk accessory must not change this parameter, and
 the same rule applies to any other system parameter for which you cannot
 determine a current value.

o This idea extends to calling tool startup functions. Even if a tool's
 startup function does not return an error if the tool is already active,
 it may reset certain parameters upon which the application depends. An
 example of this is TLStartUp for the Tool Locator. A seemingly
 innocuous call, TLStartUp actually disconnects any user tool sets
 present, which, in this case, would most likely have been installed by
 the current application.

 A desk accessory should not call any tool's startup function if the
 tool is already active. The one exception to this rule is the Memory
 Manager's MMStartUp call, which a desk accessory may make to obtain its
 User ID. MMStartUp may be considered equivalent to a GetMyID call.

o A desk accessory cannot use any of the sound tools if they are
 already started. This is contrary to all other tool sets, but it is
 required in this case since there is no memory management of the sound
 RAM. If the Sound Tools (#8) are started, the application has exclusive
 control of the 64K DOC RAM used to play sounds. Anything your desk
 accessory might put there is likely to overwrite information the
 application needs.

 Saving and restoring DOC RAM around desk accessory usage is not
 sufficient. Many of the sound functions are interrupt-driven, altering
 the contents of DOC RAM only at sound interrupts, so your desk accessory

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 297 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 might attempt to replace parts of DOC RAM which are being played. Since
 there is no memory management of DOC RAM, desk accessories must avoid
 the sound functions of the IIGS if the application is already using
 them.

o A desk accessory must not install user tool sets, because there is no
 arbitration of user tool set numbers.

Application Guidelines

To coexist peacefully with desk accessories, particularly NDAs, applications
generally need to follow the guidelines listed in the Desk Manager chapter of
the Apple IIGS Toolbox Reference, Volume 1. However, those applications which
wish to ensure maximum compatibility now and in the future will also want to
adhere to the following:

o Don't just start the Scrap Manager--use it. Many desk accessories are
 capable of cutting and pasting information between themselves and your
 application, but they cannot do so if you do not use the Scrap Manager.
 If you handle the Edit menu functions privately, without placing the
 information on your internal clipboard in the public scrap, a desk
 accessory will not be able to access it. This inability to share
 information frustrates both the users and the developers who write desk
 accessories.

o Start tools at the beginning of your application and leave them
 started. Every time you call SystemTask or TaskMaster, a desk accessory
 might take control of the system, and if your application has shut down
 a tool that a desk accessory found running and is using, it might not be
 able to complete an operation. For example, a desk accessory might be
 using the Print Manager, having found it started by your application.
 If your application takes control of the system and shuts down the Print
 Manager while the desk accessory is printing a document, the desk
 accessory will not be able to finish when it regains control.

 For maximum compatibility, do not shut down any tools which were ever
 active when you called SystemTask or TaskMaster. You can start more
 tools, but do not shut down those which are already active. If you
 intend to start a tool and not keep it started, use it then shut it down
 immediately, being sure not to call SystemTask or TaskMaster during that
 time.

o An application with some memory to spare can save NDAs time by
 providing them the additional tools which they are most likely to use.
 If a desk accessory wishes to use the List Manager and your application
 starts it, the desk accessory will naturally run faster since it will
 succeed on the ListStatus call every time and can avoid loading and
 starting the tool on every activation.

 The most common tools which desk accessories require besides those
 available in the standard Desk Manager set are QuickDraw Auxiliary
 (#16), the Print Manager (#19), Standard File (#24), the Font Manager
 (#27), and the List Manager (#28). QuickDraw Auxiliary and the Font
 Manager are especially important--not only do they work well together,
 but they are also widely used. In addition, FMStartUp can take a long
 time, and waiting for it every time you activate an NDA window gets
 really frustrating. Many desk accessories also use the Print Manager,

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 298 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 the List Manager, and Standard File, and if they are always available,
 desk accessories will work more smoothly with your application.

Further Reference:

 o Apple IIGS Toolbox Reference, Volume 1
 o Programmer's Introduction to the Apple IIGS

END OF FILE TN.IIGS.053

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 299 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.054
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#54: MIDI Drivers

Written by: Jim Mensch May 1989

This Technical Note describes how to write a driver for use with the Apple
IIGS MIDI tools.

Apple ships two drivers with the MIDI tool set, APPLE.MIDI and CARD6850.MIDI,
respectively. These drivers are adequate for almost all MIDI hardware
currently on the market for the Apple IIGS; however, if your hardware is not
compatible with either of these drivers, you will have to write your own.
This Note includes all the information you need to create a MIDI driver.

Purpose of the Driver and Description of Hardware Requirements

The Apple MIDI tools communicate to the MIDI world via a simple driver. The
driver's function is managing the transmission and reception of single bytes
of MIDI data between the tools and the particular MIDI hardware involved. The
MIDI tools operate on the assumption that the hardware has a method of
interrupting the system when a character has been received and when a
character can be transmitted. Since there is quite a bit of overhead in
processing MIDI data, and since MIDI data can comes across a standard MIDI bus
at a rate of over 3000 bytes per second, it is suggested that you provide a
means for your device to buffer a few characters to reduce system overhead
caused by interrupts if you are designing hardware to be used with the MIDI
tools.

Format of the Driver File

The driver file is a standard OMF load file, which can be created with any of
the popular Apple IIGS assemblers. The file must start with a dispatch table
that contains the addresses of the standard driver routines. All driver
routines must be in the same segment as the dispatch table. The dispatch
table should have 13 four-byte entries, each of which contains the address of
the appropriate routine minus one. Table 1 contains addresses of routines in
the MIDI driver to perform specific functions.

 Call Function

 Init Called to initialize the port and prime
 the driver
 ShutDown Called to close the port and clean up

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 300 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 after driver
 Reset Called at reset time by the MIDI tools
 IntHandler Called when your interrupt occurs
 PollRecv Poll input the port for data
 RecvIntOn Turns on receiver interrupts
 RecvIntOff Turns off receiver interrupts
 PollXmit Polls the transmitter to see if another
 character can be sent
 XmitIntOn Enables transmitter interrupts
 XmitIntOff Disables transmitter interrupts
 NotImp Currently unused
 NotImp Currently unused
 NotImp Currently unused

 Table 1-MIDI Driver Function Routines

Routine Calling Conventions

All driver routines are called with full 16-bit mode enabled and should exit
the same way. On entry to each routine, the accumulator contains the direct
page pointer that the driver should use if it wants to use the MIDI tools'
direct page. It is the driver's responsibility to set the direct page
register and restore it on exit. All other parameters are passed on the stack
and should be removed from the stack before the routine exits. The MIDI tools
set aside 128 bytes of space on the passed direct page for use by the driver.
They are bytes $80–$FF.

If you want to report an error inside of any routine (except IntHandler), set
the carry flag on exit and load the accumulator with the error code. Use
predefined error codes whenever possible. If you need to report a device
specific error, use errors in the range $C0–$FF. The MIDI tools will set the
high byte of the error code properly for you, so you do not need to do it
yourself. Table 2 lists all of the potential predefined error codes.

 Error Code Error Definition

 miToolsErr ($2004) The required tools were not started
 miNoBufErr ($2007) No buffer is currently allocated
 miDevNotAvail ($2080) Requested device is not
 available
 miDevSlotBusy ($2081) Requested slot is already in use
 miDevBusy ($2082) Requested device is already in use
 miDevOverrun ($2083) Device overrun by incoming MIDI
 data
 miDevNoConnect ($2084) No connection to MIDI
 miDevReadErr ($2085) Framing error in received MIDI
 data
 miDevVersion ($2086) ROM version is incompatible with
 driver
 miDevIntHndlr ($2087) Conflicting interrupt handler
 installed

 Table 2-Predefined Error Codes

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 301 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

The Driver Routines

Init

This routine is called by the MIDI tools when it wants to initialize your port
and tell the driver to prepare itself for the rest of the calls. Figure 1
shows how the stack looks on entry to this call.

 | previous contents |
 |-------------------|
 | long space | LONG - Space for result
 | |
 |-------------------|
 | NewIntAddr | LONG - Pointer to MIDI tools int vector
 | |
 |-------------------|
 | SlotNum | WORD - Number of slot/port to use
 |-------------------|
 | SlotFlag | WORD - 0=Internal port 1=card in slot
 |-------------------|
 | UserID | WORD - User ID of current application
 |-------------------|
 | RTL | RTL |
 |-------------------|
 | RTL |
 |---------| <------ Stack Pointer

 Figure 1–The Stack on Entry to Init

The Init routine should first test to see if the port specified by SlotFlag
and SlotNum is available for use. SlotNum is the number of the slot or the
port that the user has requested for use, and SlotFlag indicates whether it is
a built-in port or a card in a slot. After determining that the requested
device is available, you should initialize the device, allocate any memory
that your driver may require (beyond what is available in the direct page),
and set the proper system interrupt vector to the address passed in
NewIntAddr. Before setting the vector, be sure to save the old value, as the
MIDI tools expect the result from this routine to be the old address stored in
the vector. On exit, the stack should contain the return address and the old
vector address.

ShutDown

This routine is called when the MIDI tools want your driver to release the
MIDI device and prepare to be unloaded. Figure 2 shows how the stack looks on
entry to this call.

 | previous contents |
 |-------------------|
 | OldIntVector | LONG - Old interrupt vector pointer
 | |
 |-------------------|
 | RTL | RTL |
 |-------------------|
 | RTL |
 |---------| <------ Stack Pointer

 Figure 2–The Stack on Entry to ShutDown

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 302 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Your routine should change the interrupt vector that you used to OldIntVector.
It should then deallocate all the memory that it allocated, disable all
interrupts on the device, and if needed, tell the system that you are no
longer using the port in question.

Reset

This routine is called when the system has been reset by the user. Figure 3
shows how the stack looks on entry to this call.

 | previous contents |
 |-------------------|
 | OldIntVector | LONG - Old interrupt vector pointer
 | |
 |-------------------|
 | RTL | RTL |
 |-------------------|
 | RTL |
 |---------| <------ Stack Pointer

 Figure 3–The Stack on Entry to Reset

All you should do at this point is attempt to deallocate any memory you were
using and disable interrupts on the device you were using.

Note: Do not set the interrupt vector to OldIntVector, instead
 remove the value from the stack and dispose of it.

IntHandler

The IntHandler routine is called by the MIDI tools when an interrupt occurs
for the vector that you are using. The MIDI driver performs some setup then
calls your routine. This routine does not have any parameters on the stack.

Once called, your IntHandler routine should test the port to see if an
interrupt has occurred on your device. If your device did not cause the
interrupt, you should set the carry and exit as quickly as possible, reducing
the system interrupt overhead.

If your device caused the interrupt, you should test the receiver to see if
any bytes of data are waiting to be read. If there is data waiting, you
should load that data into the accumulator and perform a JSL to the following
code:

 InBufGlue PEA $0400
 PHD
 RTL

This code calls the MIDI tools and tell them to accept the character in the
accumulator into its input buffer. After accepting the data, control is
passed back to the instruction following your JSL. If you received a byte of
data and an error occurred during reception, you should load the number of the
error code into the y register and perform a JSL to the following code:

 InErrGlue PEA $0500
 PHD
 RTL

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 303 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Again, you will regain control right after the JSL. Once in your interrupt
routine, you may perform the calls above for as much data as you like. For
example, if your device has a three-byte buffer, you could call InBufGlue once
for each waiting character, thus reducing your interrupt overhead and possibly
preventing unneeded interrupts.

If the transmitter on your device is ready to send data, you should perform a
JSL to the following code:

 OutBufGlue PEA $8400
 PHD
 RTL

This routine will return with the carry set if no data is waiting to be
transmitted or the carry clear if data is available. If data is waiting, the
next character to send will be in the accumulator, and you should simply send
it at that time. If no more data is available, you should disable transmitter
interrupts and exit. The MIDI tools will re-enable transmitter interrupts the
next time it has data to send.

PollRecv

The PollRecv (Poll Receive) routine is called by the MIDI tools every now and
then to see if any data might be waiting to be read. There are no parameters
on the stack for this call. Your driver should test to see if any data is
available and transmit it all to the MIDI tools via the InBufGlue described in
the IntHandler description.

PollXmit

The PollXmit (Poll Transmit) routine is called by the MIDI tools when any data
is added to the MIDI output buffer. There are no parameters on the stack for
this routine. Your driver should enable transmitter interrupts, test to see
if it can send any data immediately, and if it can, call OutBufGlue as
described int the IntHandler description to get data to send.

XmitIntOn and RecvIntOn

These routines are called when the MIDI tools want to explicitly enable
transmitter or receiver interrupts. They have no parameters on the stack and
should, when called, enable transmitter interrupts for XmitIntOn and receiver
interrupts for RecvIntOn.

XmitIntOff and RecvIntOff

These routine are called when the MIDI tools want to explicitly disable
transmitter or receiver interrupts. They have no parameters on the stack and
should, when called, disable transmitter interrupts for XmitIntOff and
receiver interrupts for RecvIntOff.

NotImp

These routines are not yet implemented, but your driver should be ready to
handle a call to them. When called, they should clear the accumulator, clear
the carry and perform an RTL back to the MIDI tools.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 304 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

A MIDI Driver Skeleton

You can use the following sample code as a basis for a MIDI driver. It is not
a complete driver in itself, and you will need to add code where comments with
asterisks (***) appear for it to be functional. This example is in MPW IIGS
assembler format.

**
*
* MIDI.DRVR.Aii
*
* (C) Copyright Apple Computer, Inc. 1988
* All rights reserved.
*
* by Don Marsh & Jim Mensch
* 10/26/88
*
* This is a shell that can be used to create custom MIDI drivers for use with
* the Apple MIDI tool set. This shell is not functional, but can be used as a
* starting point for creating your own custom MIDI drivers.
*
* Files: System Macros and equates
*
*
*
* Modification History:
*
* Version 1.0 Mensch
*
* 10/26/88
*
* Create first draft
*
**
*
 Include 'E16.MIDI'
 Include 'M16.MiscTool'
 Include 'E16.MiscTool'
 Include 'M16.util'

;
; Direct page usage Note:
; MIDI drivers may use the upper half ($80-$FF) of the MIDI direct page. When
; a MIDI driver routine is called the Accumulator will contain the direct page
; pointer for the MIDI tool set. If your driver requires more storage than
; 128 bytes, it will have to allocate them itself using the memory manager.

theuserID equ $80 ; location to store the passed user ID
PortInUse equ theuserID+2 ; storage for the port number in use
deref equ PortInUse+2
Temp equ Deref+4
 EJECT

**

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 305 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

*
*
DispatchTable RECORD
*
* Description: Every MIDI Driver must start with a driver dispatch table
* that contains the entry point minus 1 of each of the
* required entry points.
*
*
* Inputs: None
*
* Outputs: None
*
* External Refs:
 Import DRVRInit
 Import DRVRShutDown
 Import DRVRReset
 Import DRVRIntHandler
 Import DRVRPollRecv
 Import DRVRRecvIntOn
 Import DRVRRecvIntOff
 Import DRVRPollXmit
 Import DRVRXmitIntOn
 Import DRVRXmitIntOff
 Import DRVRNotImplemented
*
* Entry Points: None
*
**
*

 DC.L DRVRInit
 DC.L DRVRShutDown
 DC.L DRVRReset
 DC.L DRVRIntHandler
 DC.L DRVRPollRecv
 DC.L DRVRRecvIntOn
 DC.L DRVRRecvIntOff
 DC.L DRVRPollXmit
 DC.L DRVRXmitIntOn
 DC.L DRVRXmitIntOff
 DC.L DRVRNotImplemented
 DC.L DRVRNotImplemented
 DC.L DRVRNotImplemented

; a few of the routines will need a temporary storage location that can be
; used even after the direct page is set back to what it was, This is a good
; place to put it!

ErrorCode ds.W 1 ; temporary holder of an error code
 EndR

 EJECT

**
*
*

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 306 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

DRVRInit PROC
*
* Description: This is called by the MIDI Tools when it needs to Init
* your MIDI Driver. This is usually in response to a MIDIxxx
* call made by the application.
* When this routine is called, you should allocate any buffer
* space that you will need beyond the direct page, you should
* enable the interrupts on your MIDI Device, and then set the
* appropriate system interrupt vector and return the old vector
* value. If the init works fine, clear the carry and return.
* If an error occurs return the appropriate error code
* in the Accumulator, and set the carry.
*
*
* Inputs: UserID:Word ID of application, for mem allocation
* SlotFlag:Word 0 for internal port/ 1 for slot
* SlotNum:Word number of slot/port to use
* NewIntVector:Long address to give system as its new
* interrupt vector. This routine is in the
* MIDI tool set, and it performs needed
* setup before it calls your interrupt
* routine
*
* Outputs: OldIntVector:Long Address interrupt vector used to have
*
* External Refs: None
*
* Entry Points: None
*
**
*
; Offsets for parameters on the stack

ProcStatus equ 1
OldDPage equ ProcStatus+1
ReturnAddress equ OldDPage+2
UserID equ ReturnAddress+3
SlotFlag equ UserID+2
SlotNum equ SlotFlag+2
NewIntVector equ SlotNum+2
OldIntVector equ NewIntVector+4
ParmBytes equ 10
ParmEnd equ ReturnAddress+ParmBytes

; first disable interrupts since we are going to be setting up interrupt
; vectors and enabling interrupt generating hardware. We wouldn't want an
; interrupt to go off before we were ready to handle it! Then set us up to
; use the MIDI direct page.

 php ; save the old proc status
 phd ; save the old direct page
 tcd ; Set Direct page to the one passed
 SEI ; and disable interrupts

; now get the user ID and save it, and allocate any buffers that we may need
; Since most drivers will never need more than 128 bytes of storage we will
; not allocate any storage space

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 307 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 lda UserID,s ; first save the user ID for later
 sta theUserID ; in our section of the MIDI DPage

; *** Insert any memory allocation needed here ***

; Next, you should check the slot flag and number to see if they are
; compatible with this driver. If they are, you should continue and
; initialize the proper port. If they are not proper, you should exit with
; an error. For this example, I will be testing the SlotFlag, to see if
; it is set to external.

 lda SlotFlag,s ; first test the slot flag to be sure
 bne FlagOK ; its non-zero.

 ldy #miDevNotAvail ; if its zero, signal not available
 bra InitError ; and exit via error routine

FlagOK lda SlotNum,s ; Now save the slot number in
 sta PortInUse ; our data area

; *** At this point you should test the firmware in the desired slot to be
; sure that the card you want is properly installed, if it is not then you
; should pass back the appropriate error ***

; Now that you know that you have the proper slot information and you have
; tested to be sure that you have the hardware needed for the driver it is
; time for you to initialize the interface and to enable its interrupts.

; *** Install code to initialize your hardware/interrupts here ***

; Now that the Port has been properly initialized, you must set up the proper
; system interrupt vector. Since we required an external card above it would
; make sense that you need to use the "Other unspecified interrupt handler"
; vector (Number $0017). But first, remember to get the original vector
; pointer because we must return it to the MIDI tools.

 PushLong #0 ; space for result
 PushWord #otherIntHnd ; vector to retrieve
 _GetVector ; and get the vector in question
 PullLong Temp ; place in storage for a sec

 lda Temp ; now place it on the stack
 sta OldIntVector ; as the result of this function
 lda Temp+2
 sta OldIntVector+2

 lda NewIntVector ; now move the MIDI Interrupt routine
 sta Temp ; pointer into temporary storage
 lda NewIntVector+2
 sta Temp+2

 PushWord #otherIntHnd ; now set the vector to point to
 PushLong Temp ; the MIDI drivers interrupt routine
 _SetVector

; The driver is now all set up, pull off the passed parms and we are done!
Done ldy #0 ; set the error code to 0. No error
;

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 308 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

; This is the alternate label for the Done routine that should be called when
; an error has occurred.
InitError
 lda ReturnAddress,s ; Move the return address below the
 sta ParmEnd,s ; parameters
 lda ReturnAddress+1,s
 sta ParmEnd+1,s

 pld ; get the direct page back
 plp ; get the processor status back

 tsc ; now adjust the stack pointer
 sec ; so that the parameters are gone
 sbc #ParmBytes
 tcs ; now the return address is on Top

 tya ; put any error into <A>
 cmp #1 ; set the carry if non-zero
 RTL ; and return

 EndP

 EJECT
**
*
*
DRVRShutDown PROC
*
* Description: This routine will be called whenever the MIDI Tools want
* to cause your driver to let go of the port it was using.
*
*
* Inputs: OldIntVector:Long Address to place back into the system
* interrupt vector you were using
*
* Outputs: Carry clear if successful
* Carry set if not, error in <A>
*
* External Refs:
 Import DrvrRecvIntOff
 Import DRVRXMitIntOff
*
* Entry Points:
*
**
*
 With DispatchTable

ProcStatus equ 1
OldDPage equ ProcStatus+1
ReturnAddress equ OldDPage+2
OldIntVector equ ReturnAddress+3
ParmBytes equ 4
ParmEnd equ ReturnAddress+ParmBytes

; first disable interrupts since we are going to be setting up interrupt
; vectors We wouldn't want an interrupt to go off before we were ready
; to handle it! Then set us up to use the MIDI direct page.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 309 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 php ; save the old proc status
 phd ; save the old direct page
 tcd ; Set Direct page to the one passed
 SEI ; and disable interrupts

 lda #0 ; zero out the temp error code
 sta >ErrorCode
; Now First, re-install the old interrupt vector

 lda OldIntVector ; get the old vector off the stack
 sta Temp ; and save it in globals for a sec
 lda OldIntVector+2
 sta Temp+2

 PushWord #otherIntHnd ; now set the vector to point to
 PushLong Temp ; its original routine.
 _SetVector

; Next, turn off the interface hardware, and tell it to stop generating
; interrupts. We can share some code here and call our DRVRRecvIntOff and
; DRVRXmitIntOff routines. Always remember load the direct page into the
; accumulator.

 tdc ; get direct page into <A>
 jsl DRVRXmitIntOff ; and turn off transmitter interrupts

 tdc
 jsl DRVRRecvIntOff ; and now receiver interrupts.

; *** Usually turning off interrupts will be all that you would need to do at
; this point, however, if your interface card requires extra shutdown code
; this is where you would place it ***

; *** If you allocated any memory in the DRVRInit call, this is the place to
; get rid of it.

; If an error were to occur in this routine, you should simply store the error
; number in our temporary error code variable like this
;
; lda #ErrorNumber
; Sta >ErrorCode

Done
; Now that we are done shutting down the driver, pull off the passed data
; and end.
 pld ; first retrieve the old dpage
 plp ; and processor status

 Longa Off ; next move the return address
 SEP #$20 ; we need a short acc for this trick

 pla ; pull the 3 byte return address
 ply ; into <A> and <Y>

 plx ; now remove the remaining bytes
 plx ; of passed parameters

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 310 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 phy ; and restore the return address
 pha

 Longa On
 REP #$30 ; and turn back on full 16-bit mode

 lda >ErrorCode ; retrieve the error code
 cmp #1 ; and set the carry if non-zero
 RTL
 EndP

 EJECT

**
*
*
DRVRReset PROC
*
* Description: This routine will be called whenever MIDIReset is called.
* and that should only happen when an actual reset occurred.
* It should in most cases perform the exact same functions
* as MIDI Shutdown.
*
*
* Inputs: OldIntVector:Long Original contents of interrupt vector
*
* Outputs: None
*
* External Refs:
*
* Entry Points:
*
**
*

 jmp DRVRShutDown

 EndP

 EJECT
**
*
*
DRVRIntHandler PROC
*
* Description: This routine is the very core of the MIDI driver. It takes
* care of passing data back and forth between the MIDI tools
* and your hardware. It will be called for both input and
* output.
*
*
* Inputs: None
*
* Outputs: Carry set if interrupt not serviced
*
* External Refs:
 Import DRVRXmitIntOff

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 311 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

*
* Entry Points:
 Export InBufGlue
 Export InErrGlue
 Export OutBufGlue
*
**
*

 phd ; first, save the current dpage
 tcd ; and use the MIDI DPage

; The first thing the interrupt routine should do is to test to see if the
; interrupt was actually generated by our port. If it was then we should
; handle it, but if not, we should simply exit this routine with the carry
; set as fast as we can, so that the next interrupt handler will get it
; in a timely manner.

; *** Insert code here to test to see if the original interrupt was yours ***

 beq ServicePort ; if it was our, handle it

; If the interrupt was not ours, set the carry and leave
 pld ; restore the direct page
 sec
 rtl

ServicePort ; the interrupt was ours, continue

; This routine should test the interrupt again, too see if the port is ready
; to transmit or receive, If it is ready to transmit or receive, it should
; then call the ServiceRecv, or ServiceXMit routines

; *** Insert code here to test for receive

 bne ServiceRecv ; if chars waiting try receive it

; If no more characters are waiting, see if we are ready to transmit any
; characters.

 bne ServiceXMit ; if can send a character do it

; If both the above tests fail, then exit the interrupt handler for now
 pld ; restore the direct page
 clc ; clear the carry to indicate serviced
 RTL ; and return

; The following routine ServiceRecv will be called when a character is waiting
; It should retrieve that character, pass it to the MIDI drivers, and then
; branch back to the beginning of ServicePort, to see if any more chars are
; waiting.
ServiceRecv

; *** Place code here that retrieves a byte of data from the port ***

; Call MIDI tools this way if no error has occurred on receive (<A>
; contains the data read)
RecvOK

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 312 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 jsl InBufGlue ; call the MIDI tools
 bra ServicePort ; and check for more data in or out

; Call MIDI this way if a reception error has occurred (<A> contains the
; data read)
RecvErr
 ldy #miDevReadErr ; load Y with the error
 jsl InErrGlue ; call the midi tools
 bra ServicePort

; The routine ServiceXmit will be called when the port is ready to send data.
; it will actually call the MIDI tools and get a character to send.
ServiceXmit

 jsl OutBufGlue ; call the MIDI tools for the next char
 bcs NoMoreData ; if the carry set then no data to send

; *** at this point the byte to transmit is in <A>, place your code to output
; it thru the port here ***

; Now that the data has been sent, you can either loop thru ServicePort again,
; or you could simply end and wait for the next interrupt to send another
; character. This sample will simply exit at this point
 bra Done ; after sending the character end.

; NoMoreData is called when the MIDI Tools said that they did not have any
; more data to transmit, so we should turn off transmitter interrupts at
; this point in case our device likes to keep interrupting if its empty.
NoMoreData
 phd ; push the direct page reg on the stack
 jsl DRVRXmitIntOff ; enable xmit interrupts
Done
 pld ; restore the DPage
 clc ; signal the interrupt as handled
 rtl ; and get outta here!

; The routine inbufglue should be called when you received a character from
; your port with no error and you want to pass it to the MIDI tools.
InBufGlue pea $0400 ; push on the long address of the
 phd ; direct page and a proc status byte
 RTL ; and jump back to the MIDI tools

; The routine inErrGlue should be called when you received a character from
; your port and an error has occurred. In this case, it should still be passed
; to the MIDI driver, as it may still be useful
inErrGlue pea $0500 ; push on the long address of the
 phd ; direct page and a proc status byte
 RTL ; and jump back to the MIDI tools

; The routine OutBufGlue should be called when you are ready to send a char
; out your port. The MIDI tools will will return with the character to send
; in <A>. If the MIDI tools have no more characters to send then OutBufGlue
; will return with the carry set.
OutBufGlue pea $8400 ; push on the long address of the
 phd ; direct page and a proc status byte
 RTL ; and jump back to the MIDI tools
 EndP

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 313 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 EJECT
**
*
*
DRVRPollRecv PROC
*
* Description: This routine is called by the MIDI tools when it wants to
* pool the port for data instead of waiting for an interrupt.
* its function is similar to that of the our interrupt handler
* except that it only does input.
*
* Inputs: None
*
* Outputs: Carry set if interrupt not serviced
*
* External Refs:
 Import InBufGlue
 Import InErrGlue
*
* Entry Points: None
*
**
*

 phd ; first, save the current dpage
 tcd ; and use the MIDI DPage
 php
 SEI

ServicePort ; the interrupt was ours, continue

; This routine should test the port too see if the port has any data for use
; to receive. If it does, it calls the MIDI tools and hands it off. Also note
; this routine will turn off interrupts, since we wouldn't want any stray
; receiver interrupts to spoil our fun and grab the data from us. (This is
; very important for certain types of ports which may signal that the port
; is ready and the generate an interrupt, thus leaving us in a situation where
; our interrupt routines could steal the interrupt right out from under us
; before we fetched it, thus allowing us to possibly double post a character.

; *** Insert code here to test for received data ***

 bne ServiceRecv ; if chars waiting try receive it

; If no more data is waiting exit this routine.
 plp
 pld ; restore the direct page
 clc ; clear the carry no errors possible
 RTL ; and return

; The following routine ServiceRecv will be called when a character is waiting
; It should retrieve that character, pass it to the MIDI drivers, and then
; branch back to the beginning of ServicePort, to see if any more chars are
; waiting.
ServiceRecv

; *** Place code here that retrieves a byte of data from the port ***

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 314 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

; Call MIDI tools this way if no error has occurred on receive (<A> contains
; the data read)
RecvOK
 jsl InBufGlue ; call the MIDI tools
 bra ServicePort ; and check for more data in or out

; Call MIDI this way if a reception error has occurred (<A> contains the
; data read)
RecvErr
 ldy #miDevReadErr ; load Y with the error
 jsl InErrGlue ; call the midi tools
 bra ServicePort
 EndP
 EJECT

**
*
*
DRVRPollXMit PROC
*
* Description: This routine is called when the MIDI tools wants to start
* an output stream. The tool set calls this routine for the
* first character of data, and then this routine is
* responsible for enabling transmitter interrupts and sending
* the character.
*
*
* Inputs: None
*
* Outputs: Carry set if interrupt not serviced
*
* External Refs: None
 Import OutBufGlue
 Import DRVRXmitIntOn
*
* Entry Points: None
*
**
*

 phd ; first, save the current dpage
 tcd ; and use the MIDI DPage
 php ; disable interrupts as we are now going
 SEI ; to turn on xmitter interrupts.

; First see if the port is ready to send any data, if not simply exit

; *** Insert code here to test if output is ready ***

 bcs Done ; if not, then simply end

; The port is ready to accept a character for output so, call MIDI tools
; to get the next character

 jsl OutBufGlue ; get the next character
 bcs Done ; if carry set, no chars to xmit so end

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 315 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 pha ; save the character to send
 phd ; push the direct page reg on the stack
 jsl DRVRXmitIntOn ; enable xmit interrupts
 pla ; retrieve the character to send

; *** Insert code here to transmit a character ***
Done
 plp ; get the old interrupt status
 pld ; get the old direct page
 lda #0 ; no errors are possible
 clc
 rtl

 EndP

 EJECT

**
*
*
DRVRXmitIntOn PROC
*
* Description: This routine will be called when the MIDI tools need to
* enable transmitter interrupts on your device.
*
*
* Inputs: None
*
* Outputs: None
*
* External Refs:
*
* Entry Points:
*
**
*

 php ; save proc status/interrupt state
 phd ; save the old direct page
 tcd ; use the MIDI tools DPage
 SEI ; disable interrupts

; *** Insert code here to enable transmitter interrupts on your device

 pld ; recover old direct page
 plp ; recover old interrupt state
 lda #0 ; and return no-error (none possible)
 clc
 rtl
 EndP

**
*
*
DRVRXmitIntOff PROC
*
* Description: This routine will be called when the MIDI tools need to

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 316 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

* Disable transmitter interrupts on your device.
*
*
* Inputs: None
*
* Outputs: None
*
* External Refs:
*
* Entry Points:
*
**
*

 php ; save proc status/interrupt state
 phd ; save the old direct page
 tcd ; use the MIDI tools DPage
 SEI ; disable interrupts

; *** Insert code here to Disable transmitter interrupts on your device

 pld ; recover old direct page
 plp ; recover old interrupt state
 lda #0 ; and return no-error (none possible)
 clc
 rtl
 EndP

 EJECT

**
*
*
DRVRRecvIntOn PROC
*
* Description: This routine will be called when the MIDI tools need to
* enable receiver interrupts on your device.
*
*
* Inputs: None
*
* Outputs: None
*
* External Refs:
*
* Entry Points:
*
**
*

 php ; save proc status/interrupt state
 phd ; save the old direct page
 tcd ; use the MIDI tools DPage
 SEI ; disable interrupts

; *** Insert code here to enable receiver interrupts on your device

 pld ; recover old direct page

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 317 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 plp ; recover old interrupt state
 lda #0 ; and return no-error (none possible)
 clc
 rtl
 EndP

**
*
*
DRVRRecvIntOff PROC
*
* Description: This routine will be called when the MIDI tools need to
* Disable receiver interrupts on your device.
*
*
* Inputs: None
*
* Outputs: None
*
* External Refs:
*
* Entry Points:
*
**
*

 php ; save proc status/interrupt state
 phd ; save the old direct page
 tcd ; use the MIDI tools DPage
 SEI ; disable interrupts

; *** Insert code here to Disable receiver interrupts on your device

 pld ; recover old direct page
 plp ; recover old interrupt state
 lda #0 ; and return no-error (none possible)
 clc
 rtl
 EndP

**
*
*
DRVRNotImplemented PROC
*
* Description: Dummy routine, should leave the stack alone and return
* no error
*
*
* Inputs: None
*
* Outputs: None
*
* External Refs:
*
* Entry Points:

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 318 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

*
**
*
 lda #0
 clc
 RTL
 EndP

 END

Further Reference:

 o Apple IIGS Toolbox Reference Update

END OF FILE TN.IIGS.054

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 319 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.055
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#55: Avoiding ClrHeartBeat

Written by: Matt Deatherage July 1989

This Technical Note lists changes to the description for ClrHeartBeat. This
information supersedes the description in the Apple IIGS Toolbox Reference
Manual.

The Apple IIGS Toolbox Reference Manual gives the following cautionary note in
the description for the call ClrHeartBeat:

 "A desk accessory may have installed tasks in the Heartbeat
 Interrupt Task queue. If you make a ClrHeartBeat call, you will
 remove those tasks. Therefore, under normal circumstances you
 should not make this call."

This isn't rude enough to get the point across to some people, so we'll try
again:

The Heartbeat Interrupt Task queue does not belong to the application.
Different portions of System Software can, and will, install Heartbeat Tasks.
If these tasks are removed, anything from a system crash to media corruption
may result. Nothing but System Software should make this call.

Further Reference

 o Apple IIGS Toolbox Reference Manual

END OF FILE TN.IIGS.055

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 320 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.056
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#56: Managing Dynamic Segments

Written by: Eric Soldan July 1989

This Technical Note discusses application difficulties when transferring
control to dynamic segments during low-memory conditions.

Dynamic segments have a drawback in low-memory situations. If the Loader
cannot load the dynamic segment because there is not enough memory, it cannot
just return to the application with an out-of-memory error since your program
may have pushed parameters onto the stack which the dynamic segment would have
removed. If this is the case, the Loader does not have a valid return
address, so it cannot return to the application; therefore, it gives a fatal
error and dies. Because of this problem, an application must make sure that
there is sufficient memory available before calling the dynamic segment.

Just checking the amount of free memory does not guarantee that the dynamic
segment will load. If memory is fragmented, the Loader may not be able to
allocate a block large enough to load the segment, even if the total amount of
free memory is greater than the size of the segment. Just checking MaxBlock
is not a good solution either, since it can indicate that there is not enough
free memory to load the segment when it is actually available. However,
calling MaxBlock is preferable to just checking the amount of free memory,
since not attempting to load the dynamic segment will not cause a fatal error.

Using the method of checking for out-of-memory conditions outlined in Apple
IIGS Technical Note #51, Reserving Memory for the Toolbox, guarantees that
there is sufficient space for the dynamic segment. This method involves
maintaining a purgeable handle to a segment of memory at least as large as the
dynamic segment and relocation dictionary. Before loading the dynamic
segment, check to see if the handle has been purged. If it has not been
purged, then you can load the dynamic segment without worrying about a fatal
error from the Loader due to an out-of-memory condition. If it has been
purged and you cannot reallocate it, then you know that there is not enough
free memory available to load the dynamic segment.

Further Reference

 o GS/OS Reference, Volume 2
 o Apple IIGS Technical Note #51, Reserving Memory for the Toolbox

END OF FILE TN.IIGS.056

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 321 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.057
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#57: Preventing Memory Compacting and Purging

Written by: Dave Lyons July 1989

This Technical Note discusses a flag byte at location $E100CB that debugging
utilities can use to temporarily prevent the Memory Manager from moving or
purging memory.

If the byte at location $E100CB is non-zero, the Memory Manager will not move
any memory blocks, and it will not purge any blocks while trying to allocate
memory (PurgeHandle and PurgeAll will still purge blocks).

Debugging utilities may temporarily increment this byte to allocate memory in
situations when it is not safe for existing memory blocks to be moved or
purged.

This flag byte is for use only by debugging aids and System Software. It
would be mind-numbingly stupid for an application to use this flag instead of
using HLock and HUnlock, since the advantages of a Memory Manager architecture
with relocatable blocks would be lost.

END OF FILE TN.IIGS.057

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 322 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.058
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#58: Keyboard Modifiers Register Anomaly

Written by: Dave Lyons July 1989

This Technical Note discusses an anomaly with the keyboard modifiers register
at location $C025 which prevents it from always properly reflecting the state
of the Control and Shift keys.

There are two cases where pressing the Control key turns on the Shift bit
instead of the Control bit in the keyboard modifiers register:

 o An arrow key (or a Control key equivalent to an arrow key) is
 being held down and is repeating
 o The Space bar or Delete key is being held down and repeating with
 the Fast Space/Delete option selected in the Control Panel

Since the Event Manager reads the modifiers byte, desktop applications may be
affected by this anomaly.

Further Reference

 o Apple IIGS Hardware Reference

END OF FILE TN.IIGS.058

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 323 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.059
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#59: Do Not Create Zero-Length Text Scraps

Written by: Dave Lyons July 1989

This Technical Note describes a problem with PutScrap if used to create a
zero-length text scrap.

Do not create a text scrap (scrap type $0) with length zero. LEFromScrap in
System Software 5.0 and earlier does not expect an existing text scrap to be
empty, and it will trash random memory if it is. It is okay for there to be
no text scrap, but if one exists it must have a non-zero length.

Even if your application does not cause a call to LEFromScrap, other
applications and desk accessories have to live with what you put on the
clipboard, so do not allow this condition to arise.

Further Reference

 o Apple IIGS Toolbox Reference, Volume 2

END OF FILE TN.IIGS.059

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 324 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.060
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#60: Care and Feeding of NewMenu

Written by: Dave Lyons July 1989

This Technical Note discusses NewMenu in System Software 5.0 and earlier,
where it does not expect its string parameter to cross a bank boundary. Make
sure it doesn't.

NewMenu takes a pointer to a string; this string must not cross a bank
boundary. If it does, a menu containing random garbage may result.

If your NewMenu strings are contained in your code segments, everything is
fine--code segments cannot cross bank boundaries. Depending on your
development environment, strings that are not in a code segment may or may not
be allowed to cross bank boundaries. If you can find no other way to
guarantee the strings will not cross a bank boundary, use NewHandle to
allocate blocks with attributes $4010 (fixed, no bank cross) and copy the
strings to these blocks.

If you create menus from resources, be sure the resources have their
noBankCross attribute bits set. Note that a memory block that can cross a
bank boundary usually does not, so your application may be working by
accident.

Further Reference

 o Apple IIGS Toolbox Reference, Volume 1

END OF FILE TN.IIGS.060

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 325 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.061
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#61: Window Title Handles

Written by: Dave Lyons July 1989

This Technical Note discusses extensions to SetWTitle and GetWTitle in System
Software 5.0 and later which allow handles to be used as window titles.

Prior to System Software 5.0, window titles were pointers to Pascal-style
strings (with a leading length byte), but now window titles can be stored in
handles, with bit 31 of titlePtr set to indicate that the parameter is
actually a handle.

Once you call SetWTitle with a handle for the title parameter, the handle
belongs to the Window Manager,which will dispose of it when the window is
closed or retitled. You must not dispose of the handle yourself, and you must
not change the data it contains.

Further Reference

 o Apple IIGS Toolbox Reference, Volume 2

END OF FILE TN.IIGS.061

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 326 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.062
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#62: No Non-Solid Window Background Patterns

Written by: Dave Lyons July 1989

This Technical Note discusses why window background patterns should always be
solid; non-solid patterns are not always drawn with the expected alignment.

When the Window Manager erases part of a window's content area to its port's
background pattern, it is not always aligned with already-drawn parts of the
window. With a solid background pattern, this has no visible effect; however,
if you try to use a grid, for example, the effect is obvious.

To simulate a non-solid background pattern, just erase the desired area to the
pattern you want in your update routine. For best results, use a solid
background pattern of the color most common in the pattern you really want.

For example, if you want a white grid on a black background, give the window a
solid black background pattern, and use FillRect during the update routine to
draw the grid. If you keep the default white background pattern, the end
result will be the same, but your window content will briefly be solid white
before your update routine fills it with your pattern.

Further Reference

 o Apple IIGS Toolbox Reference, Volume 2

END OF FILE TN.IIGS.062

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 327 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.063
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#63: Master Color Values

Written by: Jim Luther July 1989

This Technical Note documents master color values used for the Apple IIGS
text, text background, and border colors.

There are times when you may want to make parts of the IIGS Super Hi-Res
screen the same color as the text, text background, and border colors. This
is particularly useful when using the Apple II Video Overlay Card. Table 1
lists each color using the names from the Control Panel CDA, the color
register values used for that color by the color registers, and the master
color value used for that color by the Super Hi-Res screen.

 Color Color Register Master Color
 Name Value Value

 Black $0 $0000
 Deep Red $1 $0D03
 Dark Blue $2 $0009
 Purple $3 $0D2D
 Dark Green $4 $0072
 Dark Gray $5 $0555
 Medium Blue $6 $022F
 Light Blue $7 $06AF
 Brown $8 $0850
 Orange $9 $0F60
 Light Gray $A $0AAA
 Pink $B $0F98
 Light Green $C $01D0
 Yellow $D $0FF0
 Aquamarine $E $04F9
 White $F $0FFF

 Table 1-Master Color Values

The Apple IIGS Hardware Reference documents the color registers at $C022 and
$C034, and the Apple IIGS Toolbox Reference, Volume 2 documents the master
color values.

Further Reference

 o Apple IIGS Hardware Reference, pp. 58, 76-78

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 328 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 o Apple IIGS Toolbox Reference, Volume 2, pp. 16-31

END OF FILE TN.IIGS.063

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 329 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.064
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#64: Apple IIGS Installer and Installer Scripts

Revised by: Jim Luther September 1989
Written by: Jim Luther & "Jay" Schaffer July 1989

This Technical Note describes how the Apple IIGS Installer program executes
script files and documents how to write script files for it. Note that some
of the information in this Note is specific to Installer V1.10.
Changes since July 1989: Changed the sourcePrefix and sourcePathname
field descriptions, since sourcePrefix must not be empty if any sourcePathname
fields are partial pathnames.

Introduction

The Apple IIGS Installer, a utility program that is included with Apple IIGS
System Software, can be used to install System Software or applications on a
given volume. "Scripts" control the Installer, and they are simply lists of
files with information about where and how to install those files. The user
interface of the Installer is described in the Apple IIGS System Tools Manual.
This Note describes how the Installer executes scripts and how to write
scripts to install your applications.

Installer Setup on Disk

Setting up the Installer on your application disk is a simple procedure.

 1. Copy the Installer program to your application disk.
 2. Create a subdirectory (folder) named Scripts at the same directory
 level as the Installer program.
 3. Copy your scripts into the Scripts subdirectory.

How the Installer Processes Scripts

The Installer reads script files into memory in their entirety, parses them,
strips them of all comments, compacts them, then verifies them. It then
checks the scriptFlags field to see if a Caution alert should be displayed.
This facility permits the script writer to force the user to read the script's
help message and make a choice to either continue with file manipulations or
skip the installation altogether, which is especially useful when a script
installation would be inappropriate on a certain volume.

The Installer then executes the script in two passes. The first pass

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 330 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

determines if the update can be completed by calculating the total size of the
files to be deleted from the destination volume and of the files to be
installed. If there is not sufficient room on the destination volume, the
Installer determines the amount of additional space required to complete
installation (number of blocks needed divided by two, plus one), reports this
result to the user in terms of kilobytes, then terminates execution of the
script. It is impossible to determine directory block requirements with
complete accuracy. The Installer's space calculation algorithms are good, but
they are not perfect.

If the first pass determines that there is sufficient room for the complete
update, the Installer continues with the second pass, deleting and copying
files in accordance with the instructions contained in the script flags. The
Installer "blindly" unlocks locked files and folders, creates necessary
subdirectories if they do not already exist, and replaces requested files
without regard to version numbers or creation dates of existing files.

The user may terminate execution of any script (and of those which follow) by
pressing the Open Apple-Period key combination. The Installer checks
for key-down events between every file transfer and at the end of the first
pass. If the user requests termination, the Installer warns of the
possibility of leaving an unknown mix of file versions on the volume and gives
the user the opportunity to continue with the installation or to terminate as
requested. (See the "Error Handling" section for more details.)

Scripts are typically written with the ability to remove all of their related
files from a particular volume (i.e., in case of an accidental installation);
however, they do not have the ability to remove directories which contain
files (even if the script installed them), and they can neither recover nor
list files which were deleted during the installation process.

After processing all the instructions in a script, the Installer checks to see
if additional scripts are selected, and, if they are, it executes them in the
order in which they appear in the update selection window until all scripts
are successfully completed. Once all selected scripts are completed, the
Installer notifies the user that the installation or removal process was
successful.

It is important to note several facts about script execution:

 o Each script is processed from beginning to end as if it were the
 only script selected.
 o If the execution of a script generates an error, or if the user
 terminates further processing of a script, the queue is cleared of
 any additional scripts waiting to be executed and control returns
 to the user.
 o It is possible for the Installer to execute several scripts
 successfully before encountering one which cannot be executed due
 to insufficient space on the destination volume.
 o All selected scripts use the folder that the user selects as the
 "Application Folder."

If a user installs or removes system files (i.e., tools, fonts, drivers, etc.)
from the boot volume, it may create problems. Therefore, whenever a system
level update occurs on a boot volume, the Installer disables all desk
accessories and closes the Sys.Resources file. When the user quits the
Installer after a system level update, it alerts the user of the need to
restart the system, and the default response to this alert is to restart.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 331 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Error Handling

User Cancel Request

If the user cancels script execution any time after it has started (i.e., by
pressing the Open-Apple-Period key combination), the Installer treats
it as an error condition since there is likely an unknown mix of file versions
on the volume. In this case, the Installer gives the user the opportunity to
continue with the installation or to terminate as requested. A user-initiated
cancel request is not acknowledged until the current file copy or delete
request is complete. Terminating script execution also clears the queue of
other scripts waiting for execution and returns control to the user.

Non-Recoverable Errors

Some errors are simply fatal. If a directory or file is corrupted, the media
is bad, or the selected script is longer than 65,535 bytes, the Installer
halts execution of the script and alerts the user that a fatal error has
occurred with a Stop alert box. Clicking the OK button in this alert box
clears the queue of other scripts waiting for execution and returns control to
the user.

Script Errors and File Not Found Errors

When the Installer detects a script error or a File Not Found error, it
reports the name of the source file and destination file it was processing
with the normal error message. This additional information should help script
writers find the offending fileSpecification field. If the error is
associated with the header, no filename is reported. This condition clears
the queue of other scripts waiting for execution and returns control to the
user.

Volume Not Found Errors

Volume Not Found errors produce a dialog box prompting the user to insert the
missing volume. If the user clicks the OK button, the Installer attempts the
file access call again, but if the user clicks the Cancel button, the
Installer flags it as an error condition, clears the queue of other scripts
waiting for execution, and returns control to the user.

Script File Composition

A script is simply a list of instructions for the Installer, and it can
specify that files be copied from a source volume to a destination volume (or
directory, when applicable) or that files be removed from a destination
volume. Script files are ASCII files (file type $04) containing printable
ASCII characters (i.e., with the high-bit clear). The directory in which the
Installer resides must contain a directory named Scripts, in which all script
files visible to that copy of the Installer must be located. Script files may
not exceed 65,535 bytes in length. Any attempt to execute a script larger
than this size produces a non-recoverable error.

A script consists of a header field followed by any number of
fileSpecification and comment fields. These fields are separated by tildes
(~). Two consecutive tildes signal the end of the script, and any additional

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 332 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

characters past the end of script marker are ignored. Figure 1 shows the
syntax diagram for a script.

 ________ ____
 __>| header |__>(~~)__>
 |________| \ ___ ___________________ / (____)
 __>(~)___>| fileSpecification |_ |
 / (___) \ |___________________| \ |
 | | _________ | |
 | __>| comment |______________/
 | |_________| \
 _____________________________________/

 Figure 1-Script Syntax Diagram

header Field

The header field consists of the scriptIdentifier, scriptVersion, scriptFlag,
scriptName, and scriptHelp fields, and it may also contain an optional
sourcePrefix field. These fields supply the installer with general
information about the script file. No comments are permitted within the
header field. Figure 2 shows the syntax diagram for the header field.

 ___>| scriptIdentifier |__
 |__________________| \
 _________________________/
 / __________________
 __>| scriptVersion |__
 |__________________| \
 _________________________/
 / __________________
 __>| scriptFlag |__
 |__________________| \
 _________________________/
 / __________________
 __>| scriptName |__
 |__________________| \
 _________________________/
 / __________________
 __>| scriptHelp |________>
 |__________________| \ /
 _________________________/ |
 / __________________ |
 __>| sourcePrefix |_____/
 |__________________|

 Figure 2-header Field Syntax Diagram

The scriptIdentifier field identifies the text file as a script file, and it
consists of eight characters ("SCRIPT" followed by two carriage returns, or 53
43 52 49 50 54 0D 0D in hexadecimal). Figure 3 shows the syntax diagram for
the scriptIdentifier field.

 __>("SCRIPT" followed by 2 carriage return characters)__>
 (___)

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 333 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Figure 3-scriptIdentifier Field Syntax Diagram

The scriptVersion field defines the minimum version of the Installer program
that can read and execute the instructions in this script file. It should
normally consist of seven characters ("V1.10" followed by two carriage
returns, or 56 31 2E 31 30 0D 0D in hexadecimal).

Version 1.0 of the Installer moves only the data fork and does not return an
error. For compatibility with the original release of the Installer, the
value of scriptVersion is V1.00. Scripts which move extended files (i.e.,
files with resource forks) or work with an AppleShare volume must have a
scriptVersion of V1.10. Figure 4 shows the syntax diagram for the
scriptVersion field.

 __
 __>("V1.10" followed by 2 carriage return characters)__>
 (__)

 Figure 4-scriptVersion Field Syntax Diagram

The scriptFlag field defines the directory requirements of the script file.
The first character of the scriptFlag field must be either the uppercase
character "R" (indicating that the installation must occur at the root
directory, such as in a System Software update) or the uppercase character "X"
(indicating that the user must specify the directory where installation should
take place).

The second character of the scriptFlag field must be either an uppercase or
lowercase character "R" (indicating that the Remove command is valid for this
script) or an uppercase or lowercase character "N" (indicating that the Remove
command is not valid and the button should be dimmed and inactive). If this
character is lowercase, before any file manipulations begin, the Installer
displays a Caution alert with the contents of the scriptHelp field and button
controls to permit the user to choose whether to execute the script or to skip
it and go to the next script, if any.

For example, a scriptFlag field might contain the following four characters:
"Rr" followed by two carriage returns, or 52 52 0D 0D in hexadecimal. Figure
5 shows the syntax diagram for the scriptFlag field.

 ___ ___ ______________________________
 _____>(R)_________>(R)______>(2 carriage return characters)__>
 \ (___) / \ (___) / (______________________________)
 | ___ | | ___ |
 __>(X)__/ |__>(r)__/|
 (___) | (___) |
 | ___ |
 |__>(N)__/|
 | (___) |
 | ___ |
 ___>(n)___/
 (___)

 Figure 5-scriptFlag Field Syntax Diagram

The scriptName field defines the name of the script as it appears in the
Installer's script selection window. It is recommended that care be taken to
use a name that fits within the display window. This field consists of any

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 334 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

number of characters ending with a carriage return and may not include a tilde
or carriage return. An example of scriptName might be: "Example Script"
followed by a carriage return, or 45 78 61 6D 70 6C 65 20 53 63 72 69 70 74 0D
in hexadecimal. Figure 6 shows the syntax diagram for the scriptName field.

 __
 ________>(any character except ~ and carriage return)_____
 \ / (__) \ \
 | ___/ |
 | __/
 |/
 | _________________
 ______________________________________>(carriage return)__>
 (_________________)

 Figure 6-scriptName Field Syntax Diagram

The scriptHelp field defines the text which appears when the user clicks the
Help button. It is recommended that care be taken to ensure the text fits
within the help window. This field consists of any number of characters
ending with two backslashes (\\) and a carriage return. It may not include
two consecutive backslashes or a tilde; however, it may include carriage
returns. An example of scriptHelp might be: "Help\\" followed by a carriage
return, or 48 65 6C 70 5C 5C 0D in hexadecimal. Figure 7 shows the syntax
diagram for the scriptHelp field.

 ________>(any character except \\ and ~)_____
 \ / (_______________________________) \ \
 | ______________________________________/ |
 | ___/
 |/
 | __________________________________
 ________>(\\ followed by a carriage return)__>
 (__________________________________)

 Figure 7-scriptHelp Field Syntax Diagram

The optional sourcePrefix field is the prefix used with source files defined
by partial pathnames. Either slashes (/) or colons (:) may be used as the
pathname separator character. If there is no sourcePrefix, this entry must be
empty. If no sourcePrefix is specified, all sourcePathname fields used within
fileSpecification fields must be full pathnames. An example of a sourcePrefix
might be: ":System.Disk:System", or 3A 53 79 73 74 65 6D 2E 44 69 73 6B 3A 53
79 73 74 65 6D in hexadecimal. Figure 8 shows the syntax diagram for the
sourcePrefix field. GS/OS Reference defines legal pathnames and prefixes.

 __>(legal GS/OS prefix)__>
 (____________________)

 Figure 8-sourcePrefix Field Syntax Diagram

fileSpecification Field

A fileSpecification field contains the instructions to copy a file to or
remove a file from the destination volume (or directory, when applicable). A
fileSpecification field is composed of the fileSpecWorkspace, fileSpecFlags,

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 335 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

fileTypeAuxType, createDateTime, sourcePathname, and destinationPathname
fields. The script may contain as many fileSpecification fields as necessary.
Figure 9 shows the syntax diagram for the fileSpecification field.

 ___>| fileSpecWorkspace |__
 |_____________________| \
 ____________________________/
 / _____________________
 __>| fileSpecFlags |__
 |_____________________| \
 ____________________________/
 / _____________________
 __>| fileTypeAuxType |__
 |_____________________| \
 ____________________________/
 / _____________________
 __>| createDateTime |__
 |_____________________| \
 ____________________________/
 / _____________________
 __>| sourcePathname |________>
 |_____________________| \ /
 ____________________________/ |
 / _____________________ |
 __>| destinationPathname |_____/
 |_____________________|

 Figure 9-fileSpecification Field Syntax Diagram

The fileSpecWorkspace field is 16 bytes that the Installer uses for work
space, it can contain any character except a tilde, and it may not begin with
a tilde or an asterisk (*). It is suggested that 15 readable characters
followed by a carriage return might be easiest to see and count. An example
of fileSpecWorkspace might be: ":::Workspace:::" followed by a carriage
return, or 3A 3A 3A 57 6F 72 6B 73 70 61 63 65 3A 3A 3A 0D in hexadecimal.
Figure 10 shows the syntax diagram for the fileSpecWorkspace field.

 __>(any 1 character except ~ and *)__
 (________________________________) \
 ________________________________/
 / ____________________________
 __>(any 15 characters except ~)__>
 (____________________________)

 Figure 10-fileSpecWorkspace Field Syntax Diagram

The fileSpecFlags tell the Installer what this fileSpecification does. The
fileSpecFlags field consists of the requiredFlag field followed by the
optionalFlags field and a carriage return. Figure 11 shows the syntax diagram
for the fileSpecFlags field.

 ______________ _______________ _________________
 __>| requiredFlag |__>| optionalFlags |__>(carriage return)__>
 |______________| |_______________| (_________________)

 Figure 11-fileSpecFlags Field Syntax Diagram

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 336 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

The requiredFlag field tells the Installer what to do with this
fileSpecification when the Install or Remove buttons are used. The
requiredFlag field must start with only one of the following characters: 1,
2, 3, or 4, and it must end with a carriage return. Any number of characters
(except tilde and carriage return) may fall between the flag character and
the ending carriage return. These additional characters are ignored by the
Installer, making it possible to place comments within a requiredFlag field.
Figure 12 shows the syntax diagram for the requiredFlag field.

The four requiredFlag characters tell the installer the following:

 1 If the user clicks the Install button, delete the
 destinationPathname from the destination volume, if it exists, and
 copy the file from the source volume. If the user clicks the
 Remove button, delete the destinationPathname from the destination
 volume, if it exists.
 2 If the user clicks the Install button, delete the
 destinationPathname from the destination volume, if it exists, and
 copy the file from the source volume. If the user clicks the
 Remove button, do nothing.
 3 If the user clicks the Install button, delete the
 destinationPathname from the destination volume, if it exists. If
 the user clicks the Remove button, delete the destinationPathname
 from the destination volume, if it exists.
 4 If the user clicks the Install button, delete the
 destinationPathname from the destination volume, if it exists. If
 the user clicks the Remove button, do nothing.

 ______>(1)______
 \ (___) / \
 | ___ | |
 |__>(2)__/| |
 | (___) | |
 | ___ | |
 |__>(3)__/| |
 | (___) | |
 | ___ | |
 ___>(4)___/ |
 (___) |
 _______________/|
 / |
 | ______________________________________
 | __ \
 __>(any character except ~ and carriage return)_____ |
 / (__) \ \|
 ___/ |
 _____________________/
 / _________________
 __>(carriage return)__>
 (_________________)

 Figure 12-requiredFlag Field Syntax Diagram

The optionalFlags field gives the Installer additional duties to perform with
this fileSpecification when the Install or Remove buttons are used. The five
option fields, B, C, D, F, and U (must be uppercase), within the optionalFlags

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 337 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

field are formatted the same as the requiredFlag field. Figure 13 shows the
syntax diagram for the optionalFlags field.

The five optionalFlags characters tell the installer the following:

 B This flag instructs the Installer to replace the boot code on
 blocks zero and one of the destination volume. The boot code
 replacement fileSpecification is reserved for use by Apple
 Computer, Inc.
 C The creation date and time of the file designated by the
 sourcePathname field must match the createDateTime entry in this
 fileSpecification field.
 D The designated destinationPathname should be deleted if, and only
 if, it has a creation date and time that is older than
 createDateTime. This flag must be used with a "4" requiredFlag.
 F The file type and auxiliary type of the file designated by the
 sourcePathname must match the fileTypeAuxType field in this
 fileSpecification field.
 U Update (replace) the existing destinationPathname only if it
 exists. This flag must be used with a "1" or a "2" requiredFlag.

______>(B)__
 \ (___) \ __ / \
 | __>(any character except ~ and carriage return)__/ |
 | / (__) \ |
 | ___/ |
 | ___________________________/
 | / _________________
 | __>(carriage return)_________
 | ___ (_________________) \
 |__>(C)___ |
 | (___) \ __ / \ |
__>(any character except ~ and carriage return)__/	
/ (__) \	
___/	

_____________________________(carriage return)<__________________/	
/ ___ (_________________)	
__>(D)___	
(___) \ __ / \	
__>(any character except ~ and carriage return)__/	
/ (__) \	
___/	

_____________________________(carriage return)<__________________/	
/ ___ (_________________)	
__>(F)___	
(___) \ __ / \	
__>(any character except ~ and carriage return)__/	
/ (__) \	
___/	

_____________________________(carriage return)<__________________/	
/ ___ (_________________)	
__>(U)___	
(___) \ __ / \	
__>(any character except ~ and carriage return)__/	

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 338 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

/ (__) \	
___/	

_____________________________(carriage return)<__________________/	
/ (_________________)	
 ___>

 Figure 13-optionalFlags Field Syntax Diagram

The fileTypeAuxType field is used if the "F" optionalFlags field is present in
the fileSpecification field. If the fileTypeAuxType field is used, it must
start with a fileType field and an auxType field and must end with a carriage
return. Any number of characters (except tilde and carriage return) may fall
between the auxType field and the ending carriage return. These additional
characters are ignored by the Installer, making it possible to place comments
within the fileTypeAuxType field. If the "F" optionalFlags field is not used,
then the fileTypeAuxType field must be only a carriage return. For a list of
current file types and auxiliary types, see the Apple II File Type Notes.
Figure 14 shows the syntax diagram for the fileTypeAuxType field.

 ___>(carriage return)__>
 \ __________ _________ / (_________________)
 __>| fileType |__>| auxType |________/
 |__________| |_________| \ /
 ________________________/ _______________________
 / __ \
 __>(any character except ~ and carriage return)__/
 / (__) \
 ___/

 Figure 14-fileTypeAuxType Field Syntax Diagram

The fileType part of the fileTypeAuxType field consists of four, and only
four, hexadecimal digits. These four digits identify a GS/OS file type if the
"F" optionalFlags field is present in the fileSpecification field. An example
of fileType might be: "00B3", or 30 30 42 33 in hexadecimal. Figure 15 shows
the syntax diagram for the fileType field.

 __>(four and only four hexadecimal digits)__>
 (_______________________________________)

 Figure 15-fileType Field Syntax Diagram

The auxType part of the fileTypeAuxType field consists of eight, and only
eight, hexadecimal digits. These eight hexadecimal digits identify a GS/OS
auxiliary type if the "F" optionalFlags field is present in the
fileSpecification field. An example of auxType might be: "00000000", or 30 30
30 30 30 30 30 30 in hexadecimal. Figure 16 shows the syntax diagram for the
auxType field.

 __>(eight and only eight hexadecimal digits)__>
 (___)

 Figure 16-auxType Field Syntax Diagram

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 339 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

The createDateTime field is used if the "C" or "D" optionalFlags fields are
present in the fileSpecification field. If the createDateTime field is used,
it must start with a date field, a single space and a time field and must end
with a carriage return. Any number of characters (except tilde and carriage
return) may fall between the time field and the ending carriage return. These
additional characters are ignored by the Installer, making it possible to
place comments within the createDateTime field. If the "C" or "D"
optionalFlags fields are not used, then the createDateTime field must be only
a carriage return. Figure 17 shows the syntax diagram for the createDateTime
field.

 __>(carriage return)__>
 \ ______ _______ ______ / (_________________)
 __>| date |__>(space)__>| time |__ |
 |______| (_______) |______| \ |
 _____________________________/ __________________
 / __ \
 __>(any character except ~ and carriage return)__/
 / (__) \
 ___/

 Figure 17-createDateTime Field Syntax Diagram

The date subfield of the createDateTime field is nine ASCII characters
consisting of the day of the month, a space, a three-character month
abbreviation, a space, and the year. The day of the month is a two-character
number between 01 and 31. The month abbreviation may be "Jan", "Feb", "Mar",
"Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", or "Dec" in any
combination of uppercase and lowercase characters. The year is a two-
character number between 00 and 99. An example of the date subfield might be:
"31 Mar 57", or 33 31 20 4D 61 72 20 35 37 in hexadecimal. Figure 18 shows
the syntax diagram for the date subfield.

 _________________________________ _______
 __>(two and only two decimal digits)__>(space)__
 (_________________________________) (_______) \
 ___/
 / ____________________________________ _______
 __>(three character month abbreviation)__>(space)__
 (____________________________________) (_______) \
 ___/
 / _________________________________
 __>(two and only two decimal digits)__>
 (_________________________________)

 Figure 18-date Field Syntax Diagram

The time subfield of the createDateTime field is five ASCII characters
consisting of the military format hour of the day, a colon, and the minute of
the hour. The hour of the day is a two-character number between 00 and 23.
The minute of the hour is a two-character number between 00 and 59. An
example of the time subfield might be: "08:30", or 30 38 3A 33 30 in
hexadecimal. Figure 19 shows the syntax diagram for the time subfield.

 __>(two and only two decimal digits)__

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 340 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 (_________________________________) \
 _____________________________________/
 / _______ _________________________________
 __>(colon)__>(two and only two decimal digits)__>
 (_______) (_________________________________)

 Figure 19-time Field Syntax Diagram

The sourcePathname field describes the name and location of the source file.
The sourcePathname field consists of a valid GS/OS pathname followed by a
carriage return. If the sourcePathname is a partial pathname, the
sourcePrefix in the header field is used to complete the full pathname. If no
sourcePrefix is specified in the header field, all sourcePathname fields must
be full pathnames. If the fileSpecFlags indicate removal only, then the
sourcePathname is a carriage return only. No optional comments are permitted
in this field. Figure 20 shows the syntax diagram for the sourcePathname
field. GS/OS Reference defines legal pathnames and prefixes.

 _____________________________________>(carriage return)__>
 \ ______________________ / (_________________)
 __>(valid GS/OS pathname)__/
 (______________________)

 Figure 20-sourcePathname Field Syntax Diagram

The destinationPathname field describes the name and location of the
destination file. The destinationPathname field consists of a valid GS/OS
partial pathname (the prefix has already been set by the Installer to the
location of the destination directory, either the root directory or a user
selected directory) followed by a carriage return. No optional comments are
permitted in this field. Figure 21 shows the syntax diagram for the
destinationPathname field. GS/OS Reference defines legal pathnames and
prefixes.

Note that GS/OS now allows filenames to contain both uppercase and lowercase
characters. Although filenames are not case sensitive, you should be
consistent in your use of uppercase and lowercase usage in the
destinationPathname field. Whatever you use here is what everyone sees.

 ______________________________ _________________
 __>(valid GS/OS partial pathname)__>(carriage return)__>
 (______________________________) (_________________)

 Figure 21-destinationPathname Field Syntax Diagram

comment Field

The comment field allows commenting script files. A comment field must begin
with an asterisk. The Installer ignores all characters within a comment
field, except tilde, and the comment field ends at the first tilde
encountered. Figure 22 shows the syntax diagram for the comment field.

 __>(*)_______________________________________>
 (___) \ ________________________ /
 __>(any character except ~)__/
 / (________________________) \
 _______________________________/

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 341 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Figure 22-comment Field Syntax Diagram

Examples

Now that the script language is described, it's time to look at a couple of
example scripts. The first example, CD-ROM from the System.Tools disk,
installs the files necessary for you to use CD-ROM drives. The CD-ROM script
is an example of using the Installer to install or update existing software.
The second example, Advanced Disk Utility from the System.Tools disk, installs
the files necessary to update the Advanced Disk Utility program. The Advanced
Disk Utility script is an example of using the Installer to install an
application in any directory on the destination volume. In both examples
(Examples 1 and 2), carriage returns are shown with a paragraph mark ([p]) since
they are used as delimiters within scripts.

The CD-ROM Script

The header field starts with "SCRIPT" to identify this text file as a script
file. The scriptVersion is "V1.10" because this script may have to copy the
resource fork of a file. The scriptFlag field is "RR", which tells the
Installer to install at the root directory level and that the Remove button is
valid for this script. The second "R" character in the scriptFlag field is
uppercase, which tells the Installer not to display a Caution alert with the
contents of the scriptHelp field. The scriptName field is "CD-ROM". The
scriptName is shown in the Installer's list of scripts. The scriptHelp field
(everything between the scriptName field and the "\\" delimiter) is the text
that will be displayed if the Installer's Help button is used. The
sourcePrefix is ":SYSTEM.TOOLS". That is the name of the volume where the
source files for this update are found.

After the header field, there is a single comment field and then five
fileSpecification fields. The comment field starts at the asterisk after the
first tilde and ends at the next tilde. All five fileSpecification fields
start with the suggested 16-byte fileSpecWorkSpace (":::WorkSpace:::[p]") and
end at the next tilde.

The first, fourth, and fifth fileSpecification fields use the "1"
requiredFlag. This flag tells the Installer to copy the sourcePathname to the
destinationPathname if the Install button is used, or to delete the
destinationPathname if the Remove button is used. Notice the three blank
lines after the "1" requiredFlag. The first blank line marks the end of the
fileSpecFlags. The fileTypeAuxType field, the second blank line, is blank
because the "F" optionalFlags field is not used. The createDateTime field,
the third blank line, is blank because the "C" and "D" optionalFlags are not
used.

The second fileSpecification field uses the "3" requiredFlag to tell the
Installer to delete the destinationPathname, "System:Drivers:SCSI.Driver", if
either the Install or the Delete button is used. SCSI.Driver is the interim
SCSI driver from System Software 4.0. The sourcePathname field, the fourth
blank line after the "3" requiredFlag, is not needed since the "3"
requiredFlag is used.

The third fileSpecification field uses the "2" requiredFlag to tell the
Installer to delete the destinationPathname, "System:Drivers:SCSI.Manager" if
the Install button is used. The Installer does not delete the

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 342 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

destinationPathname if the Remove button is used. The "2" requiredFlag
prevents this script from removing SCSI.Manager, which might have been
installed by another script.

Two consecutive tildes after the fifth fileSpecification field signal the end
of this script.

SCRIPT[p]
[p]
V1.10[p]
[p]
RR[p]
[p]
CD-ROM[p]
This script installs the files necessary for you to use CD-ROM drives. The
selected disk must be a startup disk.\\[p]
:SYSTEM.TOOLS~*[p]
 This is the Installer script necessary to move the CD-ROM files from
:SYSTEM.TOOLS to the user's startup disk.[p]
~:::Workspace:::[p]
1[p]
[p]
[p]
[p]
System:FSTs:HS.FST[p]
System:FSTs:HS.FST[p]
~:::Workspace:::[p]
3[p]
[p]
[p]
[p]
[p]
System:Drivers:SCSI.Driver[p]
~:::Workspace:::[p]
2[p]
[p]
[p]
[p]
System:Drivers:SCSI.Manager[p]
System:Drivers:SCSI.Manager[p]
~:::Workspace:::[p]
1[p]
[p]
[p]
[p]
System:Drivers:SCSICD.Driver[p]
System:Drivers:SCSICD.Driver[p]
~:::Workspace:::[p]
1[p]
[p]
[p]
[p]
System:Desk.Accs:CDRemote[p]
System:Desk.Accs:CDRemote[p]
~~

 Example 1-CD-ROM Script

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 343 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

The Advanced Disk Utility Script

The header field starts with "SCRIPT" to identify this text file as a script
file. The scriptVersion is "V1.10" because this script may have to copy the
resource fork of a file. The scriptFlag field is "XR", which tells the
Installer the user must specify the directory where the installation should
take place and that the Remove button is valid for this script. The second
character (R) in the scriptFlag field is uppercase, which tells the Installer
not to display a Caution alert with the contents of the scriptHelp field.
The scriptName field is "Advanced Disk Utility". The scriptName will be shown
in the Installer's list of scripts. The scriptHelp field (everything between
the scriptName field and the "\\" delimiter) is the text that will be
displayed if the Installer's Help button is used. The sourcePrefix is
":SYSTEM.TOOLS". That is the name of the volume where the source files for
this update are found.

After the header field, there is a single comment field then one
fileSpecification field. The comment field starts at the asterisk after the
first tilde and ends at the next tilde. The fileSpecification field starts
with the suggested 16-byte fileSpecWorkSpace (":::WorkSpace:::[p]") and ends at
the next tilde.

The fileSpecification field uses the "1" requiredFlag. This tells the
Installer to copy the sourcePathname to the destinationPathname if the Install
button is used or to delete the destinationPathname if the Remove button is
used.

Two consecutive tildes signal the end of this script.

SCRIPT[p]
[p]
V1.10[p]
[p]
XR[p]
[p]
Advanced Disk Utility[p]
This script installs the files necessary to update the Advanced Disk Utility
program. These files will be installed on the selected disk.\\[p]
:SYSTEM.TOOLS~*[p]
 This is the Installer script necessary to update the Advanced Disk Utility
file from :SYSTEM.TOOLS to the user's disk.[p]
~:::Workspace:::[p]
1[p]
[p]
[p]
[p]
Adv.Disk.Util[p]
Adv.Disk.Util[p]
~~

 Example 2-Advanced Disk Utility Script

Further Reference

 o Apple IIGS System Tools Manual

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 344 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 o GS/OS Reference

END OF FILE TN.IIGS.064

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 345 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.065
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#65: Control-^ is Harder Than It Looks

Written by: Dave Lyons September 1989

This Technical Note describes a problem using Control-^ to change the text
cursor with programs that use GETLN.

On the Apple IIGS, typing Control-^ changes the cursor to the next character
typed. This feature works properly from the keyboard, but there is a problem
when programs print the control sequence. Try entering the following from
AppleSoft to demonstrate this problem:

 NEW
 PRINT CHR$(30);"_"

It changes the cursor into a blinking underscore, as expected. But now enter
the following:

 12345 HOME
 LIST

You should see 2345 HOME, which demonstrates that the first character is
ignored. This is a problem with GETLN, which AppleSoft uses to read each line
of input. Even if your program does not use this routine, you should be aware
of this problem since it will occur the next time another program uses GETLN.

Since changing the cursor works fine when done from the keyboard, the way to
work around this problem is to have your program simulate the appropriate
keypresses for GETLN.

 301: CLD ; required by BASIC.SYSTEM
 302: STA ($28),Y ; remove cursor if present
 304: LDY $0300 ; get index into simulated-keys list
 307: LDA $310,Y ; get a simulated keypress
 30A: INC $0300 ; point to the next key for next time
 30B: RTS ; return the key to GETLN

 310: 9E DF 8D ; Ctrl-^, underscore, return

 100 POKE 768,0:PRINT CHR$(4);"IN#A$301":REM Start getting simulated keys
 110 INPUT "";A$
 120 PRINT CHR$(4);"IN#0":REM Get real keys again

From an assembly-language program, the equivalent of IN#A$301 is storing $01
and $03 in locations $38 and $39, while the equivalent of INPUT is JSR $FD6A

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 346 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

(GETLN). (Store a harmless prompt character, like $80, into location $33
first.)

Further Reference

 o Apple IIGS Firmware Reference, p. 77

END OF FILE TN.IIGS.065

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 347 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.066
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#66: ExpressLoad Philosophy

Written by: Matt Deatherage September 1989

This Technical Note discusses the ExpressLoad feature and how it relates to
the standard Loader and your application.

Speedy the Loader Helper

ExpressLoad is a GS/OS feature which is usually present with System Software
5.0. The system does not load it on machines with 512K or less RAM, and there
is always the chance that someone has removed it from the System directory.

ExpressLoad operates on Object Module Format (OMF) files which have been
"expressed," using either the APW tool Express (or it's MPW counterpart,
ExpressIIGS) or created that way by a linker. Expressed files contain a
dynamic data segment named either ExpressLoad or ~ExpressLoad at the beginning
of the file. (Current versions of Express and ExpressIIGS create ~ExpressLoad
segments, which is the preferred naming convention; older versions created
ExpressLoad segments, and should be re-Expressed for future compatibility.)
This segment contains information ExpressLoad uses to load the files more
quickly than the System Loader, including such things as file offsets to
segment headers, mappings of old segment numbers to new segment numbers (these
files may have their segments rearranged for optimal performance), and file
offsets to relocation dictionaries.

Two Loaders, Two Missions, One Function

The System Loader's function is to interpret OMF. It takes files on disk (or
in memory) and transforms them from load files into relocated 65816 code. It
does this very well, but in a very straightforward way. For example, when the
System Loader sees the instruction to right-shift a value n times, it loads a
register with the value and performs a right-shift n times.

ExpressLoad has a different mission. It relies upon the System Loader to
handle OMF in a straightforward fashion so it can concentrate upon handling
the most common OMF cases in the fastest possible way. For example, when
asked for a specific segment in a load file, the System Loader "walks" the OMF
until it finds the desired segment. ExpressLoad, however, goes directly to
the desired segment since an Expressed file contains precalculated offsets to
each segment in the ExpressLoad segment.

Since ExpressLoad focuses on the common things performed by the majority of

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 348 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

applications, it may not support those applications which rely upon certain
features of OMF or the System Loader. In these cases, the System Loader loads
the file as is expected.

ExpressLoad always gets first crack at loading a file, and if it is an
Expressed file that ExpressLoad can handle, it loads it. If the file is not
an Expressed file, the System Loader loads it instead. It is the same process
when working with a file that has already been loaded (i.e., loading or
unloading segments).

Because an Expressed file is a standard OMF file with an additional segment,
Expressed files are almost fully compatible with the System Loader (although
it cannot load them any faster than before). Refer the following section for
potential problems.

Working With ExpressLoad

As ExpressLoad is intimate in its relationship with the System Loader, most
applications work seamlessly with it; however, there are some potential
problems about which you should be aware.

 o Don't mix Expressed files and normal OMF files with the same user
 ID. For example, if your application uses InitialLoad with a
 separate file, make sure that if it and your main application
 share the same user ID that they are both either Expressed files
 or normal OMF files.

 o Don't use a user ID of zero. In the past, use of zero told the
 System Loader to use the current user ID; however, now both the
 System Loader and ExpressLoad have a current user ID. Be specific
 about user IDs when loading.

 o Avoid loading and unloading segments by number. Since Expressed
 files may have their segments rearranged, if an Expressed file is
 loaded by the System Loader, references to segments by number may
 be incorrect.

 o Avoid using GetLoadSegInfo. This call returns System Loader data
 structures which are not supported by ExpressLoad.

 o Don't try to load segments in files which have not been loaded
 with the call InitialLoad. This process was never a very good
 idea, and it is now apt to cause problems.

 o Don't close files with a reference number of zero. ExpressLoad
 (and now, the System Loader) keep your file open if there are
 dynamic segments, so the file won't have to be opened again to
 load them. Closing a file with a reference number of zero may
 close your application behind the Loader's back. (It also closes
 the resource fork of your application, which is another good
 reason not to do it.)

 o Don't have segments that link to other files. ExpressLoad does
 not support this type of link.

Further Reference

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 349 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 o GS/OS Reference

END OF FILE TN.IIGS.066

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 350 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.067
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#67: LaserWriter Font Mapping

Written by: Suki Lee & Jim Luther September 1989

This Technical Note discusses the methods used by the Apple IIGS Print Manager
to map IIGS fonts to the PostScript(R) fonts available with an Apple
LaserWriter printer.

Version 2.2 and earlier of the Apple IIGS LaserWriter driver depend solely
upon font family numbers as unique font identifiers. There is a table built
into the driver which maps the known font family numbers to the built-in
LaserWriter family fonts. Any fonts which are not built-in are created in the
printer from its bitmap font strike. Under this implementation, all font
family numbers not known at the time the driver was written print using bitmap
fonts. This driver knows nothing of any other fonts which may reside in the
printer.

There have been many requests for the driver to take advantage of other
available PostScript fonts to get high quality output from the LaserWriter.
PostScript fonts from Adobe's font library, or from other PostScript font
manufacturers, can be downloaded to the printer from a Macintosh and remain in
the printer for use until power off. Currently there is no means to download
a PostScript font with an Apple IIGS.

The Apple IIGS LaserWriter driver version 3.0 makes use of most resident
PostScript fonts in the LaserWriter when requested. If the font is not
available, then the bitmap font is used. The driver queries the printer at
the start of a job for the font directory listing. The listing consists of
names of all the fonts in the printer, built-in or downloaded. This
information is kept locally for look up using the name of the requested font.

Issues

All Apple IIGS fonts contain a family name and a family number. The Apple
IIGS currently identifies fonts using the family number; however, this
identification method may change in the future, due to the complexity of
tracking unique matches between font family names and font family numbers.

PostScript identifies its fonts by name (case sensitive) and knows nothing of
any font family numbering system, Macintosh or Apple IIGS, which might be
attached to a particular font. Most PostScript font families include plain,
bold, italic and bold italic fonts. Some fonts families may also have serif
and sans serif fonts or fonts of different weights (line thickness). These
fonts are generally named by adding a style suffix to the base family name.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 351 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Unfortunately, there is no uniform method for naming fonts, since most fonts
were named by their designers and many of the names have historical
significance.

The three examples shown in Table 1 show three variations of the plain font,
two variations of the bold style, three variations of the italic style, and
three variations of the bold italic style. There are others such as
ZapfChancery-MediumItalic, Korinna-KursivRegular, and LetterGothic-Slanted
which all denote the italic style of the respective font family.

Style Font names

plain Helvetica Times-Roman AvantGarde-Book
bold Helvetica-Bold Times-Bold AvantGarde-Demi
italic Helvetica-Oblique Times-Italic AvantGarde-BookOblique
bold italic Helvetica-BoldOblique Times-BoldItalic AvantGarde-DemiOblique

 Table 1-Example Font Names

The Macintosh LaserWriter driver uses a mapping scheme to compose a full
PostScript font name. It relies on the Font Family Definition Record 'FOND'
resource to provide a style mapping table containing the appropriate suffixes.

Since there are no similar resource on the Apple IIGS, the Apple IIGS
LaserWriter driver adopts the following approach. The driver has full
knowledge of all LaserWriter family built-in fonts (see Table 2 for a list of
these built-in fonts) and uses the correct name for all style variations of
the fonts. For all other fonts, the driver uses a standard set of suffixes
for the style modifications. These suffixes are -Bold, -Italics, and
-BoldItalics. The appropriate suffix is appended to the family name of the
font, and this name is used to search the font directory table obtained from
querying the printer. If a match is found, the document is printed using the
corresponding PostScript font. If no match is found, then the driver tries to
find the plain form of the font and creates the style modification in
PostScript. A bitmap of the font is downloaded to the printer if these two
searches fail.

If you are shipping your application with the intention of taking advantage of
PostScript fonts when printing to a LaserWriter, please be sure to provide an
Apple IIGS font whose family name is identical to the PostScript font family
name.

 LaserWriter LaserWriter Plus and
 LaserWriter II

 Courier AvantGarde(R)
 Helvetica(R) Bookman(R)
 Symbol Courier
 Times(R) Helvetica
 Helvetica-Narrow
 NewCenturySchlbk
 Palatino(R)
 Symbol
 Times
 ZapfChancery(R)
 ZapfDingbats(R)

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 352 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Table 2-Built-in LaserWriter Fonts

Further Reference

 o Apple IIGS Toolbox Reference, Volumes 1 & 2
 o Apple LaserWriter Reference

PostScript is a registered trademark of Adobe Systems Incorporated.
Helvetica, Palatino, and Times are registered trademarks of Linotype Co.
ITC Avant Garde, ITC Bookman, ITC Zapf Chancery, and ITC Zapf Dingbats are
registered trademarks of International Typeface Corporation.

END OF FILE TN.IIGS.067

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 353 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.068
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#68: Tips for I/O Expansion Slot Card Design

Written by: Rob Moore & Jim Luther September 1989

This Technical Note points out several potential problem areas developers
should know about when designing I/O expansion slot cards for the Apple IIGS.

This Note is written for experienced design engineers. It is not intended to
be a tutorial on Apple IIGS I/O expansion card design techniques, but rather
to point out possible problem areas and pitfalls to help developers produce
successful and reliable expansion cards.

The 65C816 PH2 Clock versus the Expansion Slot PH0 Clock

It is important to understand the timing of the 65C816 Phase 2 clock (PH2) on
the IIGS, because several of the expansion slot signals are actually related
to the PH2 clock timing, rather than the 1 MHz Phase 0 clock (PH0) available
at the expansion slots. Unlike the Apple IIe, the PH2 clock at the CPU is not
the same as the PH0 clock found at the expansion slots. The PH2 clock runs at
a variety of periods, depending on whether the CPU is doing a normal 350
nanosecond 2.8 MHz cycle, a extended 700 nanosecond RAM refresh cycle, an
isolated slow cycle, or consecutive 980 nanosecond 1.024 MHz slow cycles.
During isolated slow cycles, or the first of a series of consecutive slow
cycles, the fast side of the system must wait to synchronize with the 1 MHz
side of the system. This synchronization results in an average cycle time of
about 1.5 microseconds.

 Cycle Type Low High Period

 Normal 2.8-MHz cycle 140ns 210ns 350ns
 Refresh extended cycle 140ns 560ns 700ns
 Isolated 1-MHz cycle 140ns typ. 1.33 msecs avg. ≈1.5 msecs
 Consecutive 1-MHz cycles 140ns 840(980)ns 980ns

 Table 1-PH2 Clock Times

The Mega II Select Signal

On the Apple IIGS, the Mega II select signal (/M2SEL) is used as the enable to
the slower, 1 MHz side of the system. It goes active (low) whenever the 1 MHz
side RAM or I/O areas are accessed. Accesses that cause /M2SEL to be asserted
include shadowed video writes, any accesses to internal I/O or expansion card

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 354 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

slots, and accesses to banks $E0 and $E1. Accesses to any expansion card ROM
areas that are set to Internal ROM with the Slot register do not assert the
/M2SEL signal and run at the 2.8 MHz speed rather than the normal 1 MHz
expansion card speed. Also, accesses to the Shadow register ($C035), CYA
register ($C036), or DMA bank register ($C037), and reads from the Slot
register ($C02D) or State Register ($C068) run at full speed since they are
done wholly on the fast side of the system.

/M2SEL can be viewed as an extension of the address bus on the expansion
slots. When it is active, it indicates that the CPU is running synchronized
with the 1 MHz side of the system and the address on the address lines is a
valid Apple II address in the 128K main or auxiliary memory space.

The Mega II Bank 0 Signal

The Mega II bank 0 signal (M2B0) provides the least significant bit of the CPU
or DMA bank address to the 1 MHz side of the system. It is normally tri-
stated and goes active for 140 nanoseconds, starting 140 nanoseconds after the
PH0 clock falls. During the 140 nanosecond active period, M2B0 will be high
whenever the CPU is accessing bank $E1 (with the exceptions noted previously)
or doing a shadowed video write or I/O access in bank $01. Note that M2B0
does not reflect the state of the RAMRD, RAMWRT, ALTZP, 80STORE, or PAGE2 soft
switches that allow access to the auxiliary 64K through bank $00. It only
indicates accesses to bank $E1 or shadowed accesses through bank $01.

It is generally safe to latch the state of M2B0 by using the falling edge of
the Q3 clock. Even though M2B0 will be tri-stated at the about the same time
as Q3 falls, the turn-off and float time on M2B0 will generally provide
sufficient hold time provided that there is not more than 1 LS TTL load on
M2B0.

 ____ ________________________
 PH0 ________________________/ ______

 _______________| _______________ ______
 Q3 ____/ |________/ ________/
 |
 |
 ______|_
 M2B0 _____________/ | ______________________________________
 ______|_/
 |
 |<- Latch state of M2B0 here

 Figure 1-When to Latch State of M2B0

The Apple Video Overlay card uses M2B0 to detect writes to main and auxiliary
RAM so that it can capture writes to the Apple IIGS video display buffers into
its on-card display buffer. M2B0 is designed for this sort of thing and isn't
of much use in most other applications. Note that M2B0 is only available on
slot 3.

Using the Ready Signal

The Ready (RDY) input to the 65C816 is used to prevent a CPU cycle from

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 355 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

completing until the expansion card has accepted the data output or has its
input data available.

When the RDY input to a 65C02 or 6502 is held low, the processor continues to
output the same address until RDY is released and the CPU completes the
current cycle.

In the Apple IIGS, the 65C816 samples the RDY input when the PH2 clock goes
low, and if RDY is low, the current CPU cycle does not complete and the
address continues to be emitted. However, the bank address is not emitted
while the clock is low if RDY is held low. To deal with this situation, the
FPI (Fast Processor Interface) custom IC in the Apple IIGS uses a transparent
latch to capture the bank address from the CPU. The latch is transparent
while the PH2 clock is low and holds the bank address while the PH2 clock is
high. If RDY is low, the CPU emits an invalid bank address, so the FPI holds
the latch closed while RDY is low. This action is normally completely
transparent to cards in the Apple IIGS expansion slots, but if an expansion
card asserts RDY while the PH2 clock is low, it is likely to cause the FPI to
latch an invalid bank address, because the latch could close before the bank
address from the CPU is available on the data lines.

To avoid unpredictable results, RDY should only be asserted or deasserted when
/M2SEL is low and when PH0 is high, or when /DEVSEL, /IOSEL or /IOSTRB are
active. When /M2SEL, /DEVSEL, /IOSEL or /IOSTRB are active, you are
guaranteed that the 65C816 is running at 1 MHz and is properly synchronized to
the 1 MHz side of the system. RDY should be stable at least 60 nanoseconds
before the falling edge of PH0 to allow for about a 25 nanosecond skew between
the PH0 slot clock and the PH2 CPU clock. Figure 2 shows where it is safe to
assert or deassert RDY. Limiting changes to RDY to the time when PH0 is high
guarantees that it does not change while the CPU is outputting the bank
address.

The RDY line should be driven with an open-collector driver.

 ->| |<- 35ns min
 ____ ______________________________________|___|
PH2 _____/ | |________
 | |
 | ->||<- 25ns min
 ____ |___________________|____|
PH0 ________________________| | |_______
 | | |
 _____________ | | | _____
/M2SEL _______________|___________________|____|_/
 | | |
 |<----------------->| |
 Safe to assert | |
 or deassert | |
/NMI, __ |____|_______
/IRQ, \| |
/RST, __/|____|_______
RDY | |
 ->| |<- 60ns min

 Figure 2-Control Signal Setup Time

Interrupt Request, Non-Maskable Interrupt, and Reset

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 356 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

The Interrupt Request (/IRQ), the Non-Maskable Interrupt (/NMI) and the Reset
(/RST) signals are all interrupt lines that are sampled by the CPU when the
PH2 clock falls. If they are valid 30 nanoseconds before the PH2 clock falls,
they are recognized on the following cycle. If this setup time is not met,
they may not be recognized until the second following cycle . Since there can
be up to a 25 nanosecond skew between the PH0 and PH2 clocks, these signals
should be valid 60 nanoseconds before PH0 falls if they are to be recognized
on the following cycle. Figure 2 shows the correct setup time for these
signals.

All three signals are all active-low and must be driven with open-collector
drivers.

Note: Interrupt vectors are always pulled from ROM regardless of
 whether or not the language card soft-switches have ROM enabled,
 providing that the I/O shadowing for banks $00/01 is enabled--which
 it always is when running Apple IIGS or Apple II system software.

Direct Memory Access

The Direct Memory Access (/DMA) signal is used to temporarily halt the CPU and
allow expansion cards direct access to the system RAM to transfer data at high
speeds. Since the 65C816 is fully static while the PH2 clock is high (unlike
the 6502), /DMA may be asserted for as long as necessary on the Apple IIGS.

The /DMA signal should be asserted and deasserted within the 100 nanosecond
period after PH0 falls, and the DMA address should be emitted by the expansion
card about 30 nanoseconds later. In any case, the address should be stable on
the address bus no later than 120 nanoseconds after PH0 falls. This
guarantees that there is enough time for the address to be decoded and for
/M2SEL and M2B0 to be asserted by the FPI chip if the DMA transfer is to the 1
MHz side of the system. The bank address must be stored in the DMA bank
register at location $C037 before using DMA.

/DMA is a active-low signal and should be driven with an open-collector
driver. The Apple IIGS provides a pullup for /DMA, but since the pullup is a
fairly high value, it is a good idea for an expansion card that has asserted
/DMA to momentarily pull it high for a few nanoseconds when deasserting it.

Note that there is a minor hardware bug in the Apple IIGS that could cause
problems for developers who are unaware of it. If the CPU is currently
pulling an interrupt vector when the /DMA signal is asserted, and if the DMA
address is accessing the language card ($D000-$FFFF) space in a bank of memory
where I/O and language card emulation is enabled (normally banks $00, $01, $E0
and $E1), DMA reads access ROM rather than RAM. This happens because the
CPU's Vector Pull (VP) signal is active while the DMA cycle is active. Since
most expansion cards that use DMA are also associated with some corresponding
firmware or software driver, it's a good idea to disable interrupts prior to
doing the DMA transfer, then re-enable interrupts as soon as possible after
the transfer is complete. If interrupts are off too long, AppleTalk shuts
down any connections to file servers because the system does not respond to
AppleTalk "tickle" transactions while interrupts are disabled.

We recommend that the DMA be done with the Apple IIGS running at 1 MHz. If
DMA is started during a 1 MHz cycle (/M2SEL asserted), the system continues to
run slow while the /DMA signal is active.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 357 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Avoiding "Bus Fights"

The data bus on the Apple IIGS (and Apple IIe) expansion slots is a
multiplexed bus that is used to carry both CPU and video display data. While
PH0 is low, the bus is used to transfer data from the system RAM to the video
display circuitry. When PH0 is high, the bus is available for CPU data
transfers. To avoid potential (or actual) bus fights, it is helpful to avoid
driving read data from an expansion card onto the bus immediately after PH0
rises. Since the video read data is driven out onto the expansion slots, and
expansion card read data is driven in from the slots, it takes a finite period
of time for the bus buffers to turn around. If a card drives data onto the
expansion slot data bus immediately after PH0 rises, there may be a bus fight
between the expansion card trying to drive the bus, and the Apple IIGS (or
Apple IIe) bus buffers, which may not have turned around yet. A similar
problem can occur if an expansion card leaves its read data on the bus too
long after PH0 falls.

On the Apple IIGS, the data buffers turn around in 30 nanoseconds or less from
the PH0 edges. Developers can avoid bus fights by simply using 74LS or 74HCT
series parts and relying upon typical delay stackups to delay driving the data
bus for approximately 30 nanoseconds. A more solid technique is using the
first rising edge of the 7M clock, after PH0 rises. This method may require
an additional flip-flop, but it guarantees the desired delay. On the other
hand, expansion card read data buffers should be turned off as soon as
possible when PH0 falls to avoid a fight when the data buffers turn back out
again. Figure 3 shows the recommended data transfer timing for the data bus.

 __ |___________________________|
PH0 ___________________________| |_______
 | |
 ___ ___ ___ ___| |___ ___ ___ |___
7M __/ ___/ ___/ ___/ |___| ___/ ___/ ___| ___
 | | |
 Recommended Delay ->| |<- |
 __ __________________________|_ |_______________________|| _____
D7-D0 \/ Video Data | _| Data from I/O Card ||/
 __/__________________________|_/ |_______________________||_____
 | | ||
 0 to 30ns (as short as possible) ->||<-

 Figure 3-Recommended Data Transfer Timing

Ground Noise

Since the Apple II expansion slots were designed with only one ground pin,
complex expansion cards sometimes have problems with excessive ground noise--
especially in the IIGS, where the signals typically have faster rise and fall
times. To reduce ground noise as much as possible, it is helpful to bypass
all four supply voltages (+5 volt, +12 volt, -5 volt, -12 volt) to ground with
electrolytic or solid tantalum capacitors, even if all the available voltages
are not used on the expansion card. This additional bypassing has the effect
of providing an improved ground by providing additional AC ground paths
through the various supply pins.

To maintain a consistent ground quality over the board area on two-layer

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 358 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

boards, it is important to properly grid the Vcc and ground traces and to fill
in unused areas with ground plane.

Expansion Card Power Consumption

The Apple IIe and Apple IIGS expansion slot specifications indicate a total of
500 mA of +5 volt, 250 mA of +12 volt, 200 mA of -5 volt, and 200 mA of -12
volt power is available to all the expansion slots. With design improvements,
the power required by disk drives has been reduced. Also, the Apple IIGS
power supply is conservatively designed so there is somewhat more power
available than indicated on the original specification. However, there is not
unlimited power available, and expansion card developers should minimize power
consumption as much as possible. Minimization can be accomplished by using
CMOS wherever possible, using ROMs or RAMs with "power-down" mode when they
are not enabled, and generally being careful to minimize parts count.

Since the Apple IIGS was released, several "super" expansion cards have become
available. These cards typically provide a lot of performance and
functionality, but in most cases, the power consumed by one card is more than
the specified power available to all the expansion slots. Generally these
cards work without problems. However, when several "super" cards are
installed in a IIGS system, the total power drawn can exceed the available
power supply capacity. This increase in power dissipation within the IIGS
case can cause excessive heating and other associated problems when the
internal case temperatures exceed the design specifications. This could
conceivably damage the IIGS power supply. Please minimize the power
requirements of expansion card designs wherever possible to avoid these
problems.

Further Reference

 o Apple IIGS Hardware Reference
 o Apple IIGS Firmware Reference
 o Apple IIGS Technical Note #28, Interface Card Design Guidelines
 o Apple IIGS Technical Note #32, /INH Line Anomaly

END OF FILE TN.IIGS.068

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 359 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.069
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#69: The Ins and Outs of Slot Arbitration

Written by: Matt Deatherage September 1989

This Technical Note discusses the concept of a 14-slot Apple IIGS system
through dynamic software slot arbitration. It presents concepts of which all
IIGS programmers should be aware for full compatibility.

History

The Apple II has always had seven slots. In some cases (e.g., IIe), one of
the slots was handled specially by the hardware, or (e.g., IIc) there was no
hardware present for peripheral cards at all. But there have always been
seven "slots" with firmware at location $Cn00 (where n is the slot number).
If there was no firmware, there was no peripheral connected.

With the introduction of the Apple IIGS, the Apple II family saw its first 14-
slot system. Seven hardware slots are provided for peripheral cards (like on
the IIe), and seven internal "ports" with connectors on the back panel are
provided by the system (like on the IIc). Since $C800 and above cannot be
used for additional slots (that space is shared between all interface cards),
each of the seven internal ports is matched with one of the slots, and either
the port or the slot is enabled at any given time. The IIGS hardware allows
switching between the two, so all fourteen slots could be used more or less
simultaneously.

This situation posed a problem--the Apple II had only a disk operating system,
not an overall operating system. Access to non-disk devices (i.e., character
devices, like a serial card) was not arbitrated by the system in any way. The
world was used to seven, and only seven, slots. Attempting to use more in a
shared system such as the IIGS resulted in somebody jumping to slot firmware
that somebody else had switched out. This tended to crash the system.

Then came GS/OS. With its centralized mechanism for dispatching to all
devices connected to a system, GS/OS provides hope (for the first time) that a
central routing mechanism can dynamically arbitrate between slots and ports,
allowing the use of all 14 at one time. This is called dynamic slot
arbitration, and is handled by a portion of GS/OS referred to as the Slot
Arbiter.

Although the Slot Arbiter does not function in System Software 5.0 or
earlier, it may function in the future. A skeleton is present in version 5.0
and later that accepts Slot Arbiter calls, but the skeleton does not actually
switch any slots. This Note details the Slot Arbiter functionality and shows

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 360 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

how to switch slots under System Software 5.0 and later in a way which will
not interfere with slot arbitration when it becomes available.

Note: The Slot Arbiter must not be used unless GS/OS is the
 current operating system.

The Slot Arbiter

The Slot Arbiter is accessed through the GS/OS system service call vector
DYN_SLOT_ARBITER ($01FCBC). On ROM 03 and later, the vector is duplicated at
$E10208. Entry to the Slot Arbiter is via a JSL instruction, and exit is via
RTL. The parameters are as follows:

Entry:
 A = Slot to be selected (defined below)
 X = Undefined (or Bit Encoded Slot Configuration)
 Y = Undefined
 B = Undefined
 D = Undefined
 P = N V M X D I Z C E
 x x 0 0 0 x x x 0

Exit:
 A = Error Code
 X = Bit Encoded Slot Configuration
 Y = Undefined
 B = Unchanged
 D = Undefined
 P = N V M X D I Z C E
 x x 0 0 0 x x 0 0 If A = $0000 (no error)
 x x 0 0 0 x x 1 0 If A = $0010 (slot not available)

The slot number in the A register tells the Slot Arbiter what you are
requesting. Bits 0-2 are the slot number in the range 0 through 7. Bit 3 is
set if you are requesting an external slot and clear if you are requesting an
internal port. Taken together, bits 0-3 give slot numbers of $0-$7 for
internal ports and $9-$F for external slots. This is the same way that slot
numbers are returned by the GS/OS DInfo command.

Bits 8 and 9 of the slot number indicate the action you wish the Slot Arbiter
to take. A value in these two bits of 00 asks the Slot Arbiter to switch in
the slot identified in bits 0 through 3. If both bits are set to 11, the Slot
Arbiter restores all the slots to match the Bit Encoded Slot Configuration
present in the X register. Bit Encoded Slot Configurations are discussed in
the next section of this Note. Values other than 00 or 11 in bits 8 and 9 are
reserved and must not be used by applications.

Bit 15 of the slot number is set if the slot selection has no slot
dependencies. When the Slot Arbiter is asked to switch in a slot with no slot
dependencies, it does no actual switching, although it returns a Bit Encoded
Slot Configuration in the X register. The slot number and the definitions of
the individual bits are illustrated in Figure 1.

 ___________________|___________
 |F|E|D|C|B|A|9|8|7|6|5|4|3|2|1|0|
 |_|_________|___|_______|_|_____|
 | | | | | |___ Slot
 | | | | |_______ 0 = Internal; 1 = External

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 361 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 | | | |____________ Zero
 | | |__________________ Call Type Identifier
 | | 00 = Slot Request
 | | 11 = Select by Bit Encoded
 | | Slot Configuration
 | |_________________________ Zero
 |_______________________________ Slot Dependent or Slot Independent

 Figure 1-Slot Number and Bit Definitions

Bit Encoded Slot Configurations

Every call to the Slot Arbiter returns (on exit) a miniature picture of the
slot configuration in the X register (as it was on entry). This picture has
one bit set for each of the 14 slots; if the bit is set, then the
corresponding slot is switched in. Bits 0 and 8 are reserved and are always
clear. This picture is called a Bit Encoded Slot Configuration.

Since each external slot has the same number as an internal port (with bit 3
set), and since such pairs share the same address space, it follows that both
of them may not be enabled at the same time. For example, port 5 and slot 5
($D) both may not be enabled. This makes the high byte of the Bit Encoded
Slot Configuration the eXclusive-OR of the low byte (excluding bits 0 and 8,
which are always clear). Figure 2 illustrates the Bit Encoded Slot
Configuration.

 |F|E|D|C|B|A|9|8|7|6|5|4|3|2|1|0|
 |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_ 0
 | | | | | | | | | | | | | | |___ 1 = slot 1 active
 | | | | | | | | | | | | | |_____ 1 = slot 2 active
 | | | | | | | | | | | | |_______ 1 = slot 3 active
 | | | | | | | | | | | |_________ 1 = slot 4 active
 | | | | | | | | | | |___________ 1 = slot 5 active
 | | | | | | | | | |_____________ 1 = slot 6 active
 | | | | | | | | |_______________ 1 = slot 7 active
 | | | | | | | |_________________ 0
 | | | | | | |___________________ 1 = slot 9 active
 | | | | | |_____________________ 1 = slot 10 active
 | | | | |_______________________ 1 = slot 11 active
 | | | |_________________________ 1 = slot 12 active
 | | |___________________________ 1 = slot 13 active
 | |_____________________________ 1 = slot 14 active
 |_______________________________ 1 = slot 15 active

 Figure 2-Bit Encoded Slot Configuration

By fully using the slot number parameter, the Slot Arbiter returns any aspect
of the current slot configuration. Following are a few examples:

 Slot number Action Taken by Slot Arbiter

 $8000 Returns current Bit Encoded Slot
 Configuration in the X register. This
 number asks the Slot Arbiter to switch in
 with no slot dependencies (no switching),
 so it just returns the Bit Encoded Slot
 Configuration.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 362 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 $0300 Restore from Bit Encoded Slot
 Configuration. This command, when paired
 with the one above, can be used to save
 and restore a slot environment.
 $0005 Asks the Slot Arbiter for internal port 5.

The Impact on Applications and Drivers

Applications which correctly do all input and output through GS/OS are
affected by slot arbitration, except that they find more devices available.
GS/OS uses the slot number parameter in the Device Information Block to call
the Slot Arbiter, making sure the slot is available for the device before it
gets control. However, there are some applications (such as peripheral card
configuration programs) which go directly to firmware or hardware, not using
GS/OS. Perhaps the card has no ROM, so there is no generated driver, or
perhaps there is no loaded driver and the generated driver does not control
certain aspects of the hardware. In any case, such applications are directly
impacted by slot arbitration.

Slot Searching

The first problem is finding the hardware. In a 14-slot system, it's not
suitable to just look for ID bytes between $C100 and $C700--two peripherals may
be sharing each of those pages of slot ROM space. Drivers must examine all 14
slots, with the aid of the Slot Arbiter. The following sample code
demonstrates this technique:

find_slot lda #$8000 ; request current Bit Encoded Slot
Configuration
 jsl slot_arbiter
 phx ; save it on the stack

 lda #$000F ; start with slot 15
 sta slot_number ; be sure of the data bank when
 ; doing this!

slot_search lda slot_number ; get the slot number to examine
 jsl slot_arbiter ; and ask for it
 bcs continue_search ; if an error, then don't look here
 jsr check_for_hw ; this routine looks for your
hardware
 bcc found_my_hw ; if found it, we're done searching
continue_search dec slot_number ; try the next lower slot
 bpl slot_search ; (if there are any left, of course)

found_my_hw plx ; get Bit Encoded Slot Configuration
 ; from stack
 lda #$0300 ; and tell the Slot Arbiter to
 ; restore from it
 jsl slot_arbiter

; We're done. Our slot number is in the location slot_number.

Note: You must restore the previous slot configuration when
 searching for a slot. This is vital to device drivers during the
 Drvr_Startup call, and failure to do so at other times may break

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 363 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 older, seven-slot applications.

The Slot Arbiter attempts to maintain a static seven-slot system for
applications as reflected by the user's Control Panel settings. This system
allows older applications to continue to work, as something they find in an
older, seven-slot scan is still present. Newer applications may wish to
consider implementing a 14-slot scan, but any slot not present in the static
seven-slot environment requires a call to the Slot Arbiter before and after
every access to that device. The overhead in such instances may be
intolerable. Apple recommends that if an application requires hardware that
cannot be found in a seven-slot scan, it request the user to set the Control
Panel to make the hardware available and restart the system.

Using Slot-Dependent Hardware

Applications which have slot dependencies must call the Slot Arbiter before
each use of the slot in question. Since Slot Arbitration changes the
environment to which Apple IIGS programs have become accustomed, everyone has
a better chance of working by sticking to the general Apple IIGS rule of "put
back what you use when you're done with it." Ask for the slot, use it, then
restore the previous Bit Encoded Slot Configuration. (If you use multiple
slots, you might wish to get the Bit Encoded Slot Configuration, save a copy,
modify it to reflect the slots you want, and restore from the modified
version.)

Note: Peripherals accessed through GS/OS do not have to call the
 Slot Arbiter; GS/OS handles this task automatically.

There are certain applications with more specialized needs, such as high-
speed, single character input or output. In such cases, the Slot Arbiter may
be a bottleneck. When a slot is not switched, the Slot Arbiter returns
quickly, but when a slot must be switched, it takes a significant amount of
time. Doubling that significant time for switching in and restoring gives a
substantial overhead for each hardware access, which may be too much for some
applications.

Note: It is far better to write a GS/OS driver to deal with hardware
 than to write a slot-dependent application to control it. A slot-
 dependent application must deal with the Slot Arbiter, and the user must
 quit the current application to run your application just to change some
 aspect of the hardware. Writing a GS/OS driver lets any application,
 desk accessory, or CDev control your hardware with regular GS/OS calls.

Problems with Slot-Dependent Tools

Code designed before the Slot Arbiter may have slot-dependencies that cause
unexpected problems when dynamic slot arbitration is fully implemented. This
list includes some of the Apple IIGS System Software. Specifically, the Text
Tools and the FWEntry call in the Miscellaneous Tools present problems with
dynamic slot arbitration.

Text Tools

When using the Text Tools to specify a device for input, output, or error, the
value specified (a four-byte parameter) is assumed to be a slot number if it
is in the range 0-7. The Text Tools were not designed to use Slot Arbiter-
style slot numbers, and this causes a compatibility problem.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 364 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

The Text Tools were modified in System Software 5.0 to recognize Slot Arbiter-
style slot numbers where possible. The trick is that it's not possible as
often as we'd like. External slots are specified by using slot numbers 9
through 15; if such a slot number is used as input to a Text Tools call, the
appropriate Slot Arbiter call is made and that external slot is used if it can
be made available. However, internal port numbers are in the range 1-7--the
same range used by the old Text Tools to indicate which of two peripherals was
switched in for a particular slot. The Text Tools cannot assume that you are
requesting an internal slot when using a slot number between one and seven.

For example, your old application might do a seven-slot search and find a
parallel printer card in slot 1 (where the Control Panel setting for that slot
is "Your Card"). If the Text Tools assumed all slot numbers in the range one
through seven meant internal ports, your application would actually access the
internal port 1 firmware every time it tried to access the parallel card it
found in slot 1; this problem occurs since old applications don't know and
don't care about internal or external slots.

The Text Tools may be used to access any external slot (if available), but
they may only be used to access internal ports that are set to internal in the
Control Panel. The Text Tools slot numbers zero through seven always match
the Control Panel settings.

Apple strongly recommends that the Text Tools not be used. GS/OS character-
based drivers are preferable for standard character input and output. The
Text Tools may be used for specialized purposes; however, you cannot access
some internal ports and other components of the system that are not well-
behaved. Doing so could cause your application to trash memory or media. You
must assume these risks when using the Text Tools.

FWEntry

The Miscellaneous Tools call FWEntry should not be used to access entry points
on a peripheral card (entry points in the $Cxxx range). As discussed, a
poorly-behaved routine could switch the slot from one you've identified to
something else between the time you identify the slot and issue the FWEntry
call. Furthermore, the space between $C800 through $CFFF cannot be identified
as belonging to any given slot, and the Slot Arbiter more or less guarantees
that it won't be what you expect. Accesses to peripheral card ROM space
($Cxxx) should only be made by GS/OS drivers. FWEntry must not be used to
access $Cxxx addresses.

FWEntry is still safe to use for addresses in the $D000-$FFFF range.

Further Reference

 o Apple IIGS Toolbox Reference, Volume 2
 o Apple IIGS Firmware Reference
 o Apple IIGS Hardware Reference
 o GS/OS Reference

END OF FILE TN.IIGS.069

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 365 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.IIGS.070
###

Apple II
Technical Notes

 Developer Technical Support

Apple IIGS
#70: Fast Graphics Hints

Written by: Don Marsh & Jim Luther September 1989

This Technical Note discusses techniques for fast animation on the Apple IIGS.

QuickDraw II gives programmers a very generalized way to draw something to the
Super Hi-Res screen or to other parts of Apple IIGS memory. Unfortunately,
the overhead in QuickDraw II makes it an unacceptable tool for all but simple
animations. If you bypass QuickDraw II, your application has to write pixel
data directly to the Super Hi-Res graphics display buffer. It also has to
control the New-Video register at $C029, and set up the scan-line control
bytes and color palettes in the graphics display buffer. Chapter 4 of the
Apple IIGS Hardware Reference documents where you can find the graphics
display buffer in memory and how the scan-line control bytes, color palettes,
and pixel data bytes are used in Super Hi-Res graphics mode. The techniques
described in this Note should be used with discretion--we do not recommend
bypassing the Apple IIGS Toolbox unless it is absolutely necessary.

Map the Stack Onto Video Memory

To achieve the fastest screen updates possible, you must remove all
unnecessary overhead from the instructions that perform graphics memory
writes. The obvious method for achieving sequential writes to the graphics
memory uses an index register, which must be incremented or decremented
between writes. These operations can be avoided by using the stack. Each
time a byte or word is pushed onto the stack, the stack pointer is
automatically decremented by the appropriate amount. This is faster than
doing an indexed store followed by a decrement instruction.

But how is the stack mapped onto the graphics memory? The stack can be
located in bank $01 instead of bank $00 by writing to the WrCardRAM auxiliary-
memory select switch at $C005. Bank $01 is shadowed into $E1 by clearing bit
3 of the Shadow register at $C035. Under these conditions, if the stack
pointer is set to $3000, the next byte pushed onto the stack is written to
$013000, then shadowed into $E13000. The stack pointer is automatically
decremented so the stage is set for another byte to be written at $E12FFF.

Warning: While the stack is mapped into bank $01, you may not call
 any firmware, toolbox or operating system routines (ProDOS
 8 or GS/OS). Don't even think about it.

Unroll All Loops

Another source of overhead is branching instructions in loops. By "straight-

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 366 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

lining" the code to move up a scan-line's worth of memory at one time, branch
instructions are avoided. Following is an example of this technique.

 lda |164,y ; accumulator is 16 bits for
 pha ; best efficiency
 lda |162,y
 pha
 lda |160,y
 pha

In this example, the Y register is used to point to data to be moved to the
graphics memory, and hard-coded offsets from the Y register are used to avoid
register operations between writes.

Hard-Code Instructions and Data

In desperate circumstances, it is necessary to remove overhead from the
previous code example. This can be accomplished by hard-coding pixel data
into your code instead of loading pixel values from a separate data space and
transferring them to the graphics memory (as in the example). If you are
writing an arbitrary pattern of three or fewer constant values to the screen,
for example, the following method is the fastest known:

 lda #val1
 ldx #val2
 ldy #val3
 pha ; arbitrary pattern of pushes
 phx
 phy
 phy
 phx

In cases where many different values must be written to the screen, pixel data
can be written to the screen using immediate push instructions:

 pea $5389 ; some arbitrary pixel values
 pea $2378
 pea $A3C1
 pea $39AF

Your program can generate this mixture of PEA instructions and pixel data
itself, or it could load pixel data that already has PEA instructions
intermixed (thus increasing the data size by one half).

Be Aware of Slow-Side and Fast-Side Synchronization

Estimating execution speed by counting instruction cycles is always a
challenging task on the IIGS, but it is particularly tricky when one is
writing to the graphics memory. The graphics memory resides in the side of
the IIGS system controlled by the 1 MHz Mega II chip, which means that during
all writes to this memory, the fast side of the system controlled by the Fast
Processor Interface (FPI) chip must be synchronized with slow side of the
system controlled by the Mega II, even if the system is running code at full
native speed. This synchronization is performed automatically and
transparently by the FPI in the IIGS, and it isn't normally of concern to the
programmer. Animation programmers must worry about synchronization delays,
however, because slight changes in graphics update code may change the

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 367 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

frequency of these delays, and hence the speed of the program. In practical
terms, this means that one loop writing data to the graphics memory may run at
the same speed as a second loop with a higher cycle count.

A careful analysis of the synchronization problem leads to the following
tables, which are useful as a rough estimate of the speed attained by
different pieces of code. Each entry is based on the number of cycles
consumed during consecutive write instructions. For example, a series of PEA
instructions requires five cycles for each 16-bit write. A short PHA
instruction followed by a branch requires six cycles for each 8-bit write.

 Fast Cycles per Write (byte) Actual Speed (microseconds/byte)
 __
 3 to 5 2.0
 6 to 8 3.0
 9 to 11 4.0
 __

 Fast Cycles per Write (word) Actual Speed (microseconds/word)
 __
 4 to 6 3.0
 7 to 8 4.0
 9 to 11 5.0
 __

The times given in the tables apply only if the same number of fast cycles
separate each consecutive write operation. The first write operation in a set
of write instructions usually takes longer than subsequent writes, because the
potentially long synchronization operation is accomplished at that time.
Unpredictable delays caused by memory refresh slow things down further,
although refresh delays byte-wide writes more often than word-wide writes.
Therefore, it is usually preferable from a speed standpoint to use word-wide
writes to the graphics memory.

For more information on synchronization cycle timing within the IIGS, see
Chapter 2 of the Apple IIGS Hardware Reference and Apple IIGS Technical Note
#68, Tips for I/O Expansion Slot Card Design.

Use Change Lists

The timing data given in the preceding section shows that it is not possible
to perform full-screen updates in the time it takes the IIGS to scan the
entire screen. In fact, it would be difficult to update more than one-sixth
of the screen in one scan time. Therefore, it is necessary to update only
those pixels which have actually changed from the previous frame of animation.
One method of doing this is to precalculate the pixels which change by
comparing each frame against the preceding frame. For interactive animation,
fast methods must be developed for predicting which areas of the screen must
be updated (a determination of the exact pixels might require more computation
than the actual update would require).

Using the Video Counters

To achieve "tear-free" screen updates, it is necessary to monitor the location
of the scan-line beam when writing to graphics memory. As described in Apple
IIGS Technical Note #39, Mega II Video Counters, the VertCnt and HorizCnt Mega
II video counter registers at $C02E-C02F allow you to determine which scan
line is currently being drawn.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 368 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

By using only the VertCnt register and ignoring the low bit of the 9-bit
vertical counter stored in HorizCnt, you can determine within 2 scan lines
which scan line is currently being drawn. The VertCnt video counter contains
the number of the current scan line divided by two, offset by $80. For
example, if the scan-line beam was currently refreshing either scan line four
or five, VertCnt would contain $82 (4/2 + $80 or 5/2 + $80). Vertical
blanking happens during VertCnt values $7D through $7F and $E4 through $FF.

Clever updates can modify twice as many pixels on the screen by sacrificing
some smoothness, running at 30 frames per second instead of 60. The technique
is as follows:

 1. Wait for the scan line beam to reach the first scan line.
 2. Start updates from the top of the screen, being careful not to
 pass the scan line beam.
 3. Continue updates while the scan line beam progresses toward the
 bottom of the screen, then goes into vertical blanking, then
 restarts at the top of the screen.
 4. Finish the update before the scan line beam catches the update
 point.

Careful use of this method allows a frame to be updated during two scans of
the screen instead of just one. If you are not sufficiently careful, tearing
results.

Note: The Apple IIGS main logic board Mega II-VGC registers and
 interrupts are not synchronous to the Apple II Video Overlay Card
 video and therefore should not be used for time synchronization
 with the Apple II Video Overlay Card video output. However, they
 can be used for time synchronization with the Apple IIGS video
 output. See the Apple II Video Overlay Card Development Kit for
 more information.

Interrupts

It is not possible to support interrupts while sustaining a high graphics
update rate, unless jerkiness or tearing is acceptable. Be aware that many
system activities such as GS/OS and AppleTalk depend on interrupts and do not
function if interrupts are disabled.

Further Reference

 o Apple IIGS Firmware Reference
 o Apple IIGS Hardware Reference
 o Apple II Video Overlay Card Development Kit
 o Apple IIGS Technical Note #39, Mega II Video Counters
 o Apple IIGS Technical Note #40, VBL Signal
 o Apple IIGS Technical Note #68, Tips for I/O Expansion Slot Card Design

END OF FILE TN.IIGS.070

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 369 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.ImWr.001
###

Apple II
Technical Notes

 Developer Technical Support

ImageWriter
#1: Custom Font Selection

Revised by: Matt Deatherage November 1988
Written by: Rilla Reynolds October 1986

This Technical Note documents an ImageWriter II firmware bug which affects
custom font selection.

Due to an ImageWriter II firmware bug, the ESC ' command neither selects nor
reselects custom font 1 after custom font 2 is selected, unless you fix an
errant pointer with the following command sequence first:

 7-bit mode: ESC Z 00 20 ESC D 00 20 ESC '
 8-bit mode: ESC Z 00 20 ESC '

The ESC ' command works correctly on an ImageWriter I, but the sequence above
is also acceptable; therefore, it is in your best interest to always utilize
the given sequence to select custom font 1. It is possible that the printer
was initialized and custom font 2 was selected long before your program was
launched.

END OF FILE TN.ImWr.001

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 370 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.MemX.001
###

Apple II
Technical Notes

 Developer Technical Support

Memory Expansion Card
#1: Questions and Answers

Revised by: Mike Askins & Matt Deatherage November 1988
Written by: Cameron Birse April 1986

This Technical Note documents many of the questions and answers concerning the
Memory Expansion Card which are not covered in its manual.

Question: What screen holes does the Memory Expansion Card firmware use?
Answer: The Memory Expansion Card uses the following screen holes:

 $478 + slot numbanks number of 64K banks (256K = $04, 512 = $08)
 $4F8 + slot powerup powerup byte ($A5)
 $578 + slot power2

 These screen holes are not cast in concrete and may change with a
 new revision of the firmware.

Question: Why does RESET turn off the Memory Expansion Card registers until
 an access to the $Cn00 space?
Answer: The reason $Cn00 enables the registers was to optimize speed and
 the number of pins and logic on the custom gate array. The boot
 scan hits $Cn00 anyway and enables the registers.

Question: Will any access (read, write, or status) to the firmware cause the
 Memory Expansion Card to format itself?
Answer: Yes, any access to the firmware will cause it to format itself to
 the current operating system (DOS 3.3, Pascal, or ProDOS),
 assuming it is not already formatted.

Question: Why isn't the Memory Expansion Card marked as a non-interruptible
 device? What if an interrupt occurred during access to the card
 and the interrupt handler also accessed the card?
Answer: The Memory Expansion Card is not marked as a non-interruptible
 device because it would not be fatal to have an interrupt occur
 during an access to the device. Obviously, the interrupt handler
 would have to save and restore the registers as well as update the
 "free block" bitmap, so when the handler returns control the
 program does not overwrite the new data. The reason other devices
 are marked as non-interruptible is due to timing dependent read
 and write requirements.

Question: Why does the Memory Expansion Card fail to format if the powerup
 screen hole contains the value $A0?

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 371 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Answer: The firmware checks the screen holes for $A0 values, and if they
 are all $A0, it assumes that someone made a mistake and cleared
 the screen improperly, filling the screen holes with spaces. In
 this case, the firmware does not want to reformat and lose all the
 files on the RAM disk.

Question: The code at $Cn5A has the following sequence, and does not seem to
 make sense:

 LDA #$1
 LDY $42
 CMP #4
 BCS Cn8E

 Shouldn't the CMP #4 be a CPY #4?
Answer: Yes, this is a known bug that will be fixed if the ROMs are ever
 revised. The bug by itself was not considered significant enough
 to justify a revision. Note that this is corrected in the Memory
 Expandable Apple IIc.

Question: If DOS formats the Memory Expansion Card, ProDOS cannot reformat
 it without a power down or using a ProDOS application which
 formats disks. In other words, it does not reformat itself when I
 boot into a new operating system. Isn't that a bit severe?
Answer: This is no different than any other disk device. ProDOS does not
 have a format command, so you cannot just format from ProDOS
 without having the formatter installed and some means for calling
 it. Additionally this was done intentionally so that you could
 load DOS files into the RAM card and be able to boot ProDOS and
 use the CONVERT program to convert the DOS files to ProDOS.

END OF FILE TN.MemX.001

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 372 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Misc.001
###

Apple II
Technical Notes

 Developer Technical Support

Apple II Miscellaneous
#1: 80-Column Screen Dump

Revised by: Pete McDonald November 1988
Written by: Greg Seitz December 1984

This Technical Note presents an example assembly language program which dumps
the contents of the 80-column text screen to whatever is connected to COUT.

0000: 1 *
0000: 2 * 80-column screen dump
0000: 3 *
0000: 4 * By
0000: 5 * Greg Seitz
0000: 6 * 12-Jul-84
0000: 7 *
0000: 8 * This program will allow you to dump the contents
0000: 9 * of your 80-column text screen to whatever device is
0000: 10 * connected through COUT. If it is still connected to
0000: 11 * the screen, you will obviously be printing back
0000: 12 * what you were reading.
0000: 13 *
0000: FBC1 14 BASCALC EQU $FBC1 ;convert A reg to line addr
on scrn
0000: FDED 15 COUT EQU $FDED ;A register out as ASCII
0000: C001 16 SET80COL EQU $C001 ;enable page 1/2 switches to
control aux
0000: C055 17 TXTPAGE2 EQU $C055 ;page 2 or Aux depending
0000: C054 18 TXTPAGE1 EQU $C054 ;page 1 or main depending
0000: 0028 19 BASL EQU $28 ;BASCALC puts base addr. here
0000: 0029 20 BASH EQU $29 ;and high byte here.
0000: 21 *
1000: 1000 22 ORG $1000 ;or anywhere
1000: 1000 23 SCREENDMP EQU *
1000:A2 00 24 LDX #0 ;START AT LINE 0
1002: 25 *
1002:8A 26 SCRNLP TXA ;CALL BASCALC
1003:20 C1 FB 27 JSR BASCALC ;FOR ADDRESS OF LINE X
1006:A0 00 28 LDY #00 ;DO 80 CHARS STARTING FROM
CHARACTER 0
1008: 29 *
1008: 1008 30 SCRNLP2 EQU *
1008:8D 01 C0 31 STA SET80COL ;SET UP FOR MAIN/AUX
SWITCHING
100B:8D 55 C0 32 STA TXTPAGE2 ;START ON AUX

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 373 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

100E:98 33 TYA ;GET CURRENT INDEX FOR DIVIDE
BY 2
100F:48 34 PHA ;SAVE ACTUAL COLUMN NUM WE'RE
ON
1010:4A 35 LSR ;COLUMN/2=ODD OR EVEN BRANCH
IF EVEN
1011:90 03 1016 36 BCC SCRNDMP1 ;TAKEN IF EVEN SINCE STATE IS
PROPER
1013:8D 54 C0 37 STA TXTPAGE1 ;ELSE IF ODD TURN ON MAIN MEM
1016: 38 *
1016: 1016 39 SCRNDMP1 EQU *
1016:A8 40 TAY ;USE COLUMN/2 FOR INDEX NOW
1017:B1 28 41 LDA (BASL),Y ;GRAB THE CHARACTER
1019:8D 54 C0 42 STA TXTPAGE1 ;SEL MAIN SO IT SEES RIGHT
SCREEN HOLES
101C:20 ED FD 43 JSR COUT ;PRINT THE CHARACTER
101F:68 44 PLA ;RECOVER COLUMN NUM
1020:A8 45 TAY ;INTO Y FOR NEXT TRIP
1021:C8 46 INY ;NEXT COLUMN NUM
1022:C0 50 47 CPY #80 ;ANY MORE?
1024:90 E2 1008 48 BCC SCRNLP2 ;TAKEN IF YES
1026:A9 8D 49 LDA #$8D ;ELSE CARRIAGE RETURN
1028:20 ED FD 50 JSR COUT ;OUT
102B:A9 8A 51 LDA #$8A ;LINE FEED
102D:20 ED FD 52 JSR COUT ;OUT
1030:E8 53 INX ;NEXT LINE
1031:E0 18 54 CPX #24 ;ANYMORE?
1033:90 CD 1002 55 BCC SCRNLP ;TAKEN IF YES
1035:60 56 RTS

 FBC1 BASCALC ? 29 BASH 28 BASL FDED COUT
 C054 TXTPAGE1 C055 TXTPAGE2 ?1000 SCREENDMP 1016 SCRNDMP1
 1008 SCRNLP2 1002 SCRNLP C001 SET80COL
** SUCCESSFUL ASSEMBLY := NO ERRORS
** ASSEMBLER CREATED ON 15-JAN-84 21:28
** TOTAL LINES ASSEMBLED 56
** FREE SPACE PAGE COUNT 84

END OF FILE TN.Misc.001

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 374 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Misc.002
###

Apple II
Technical Notes

 Developer Technical Support

Apple II Miscellaneous
#2: Apple II Family Identification Routines 2.1

Revised by: Matt Deatherage & Keith Rollin November 1988
Revised by: Pete McDonald January 1986

This Technical Note presents a new version of the Apple II Family
Identification Routine, a sample piece of code which shows how to identify
various Apple II computers and their memory configurations.

Why Identification Routines?

Although we present the Apple II family identification bytes in Apple II
Miscellaneous Technical Note #7, many people would prefer a routine they can
simply plug into their own program and call. In addition, this routine serves
as a small piece of sample code, and there is no reason for you to reinvent
the wheel.

Most of the interesting part of the routine consists of identifying the memory
configuration of the machine. On an Apple IIe, the routine moves code into
the zero page to test for the presence of auxiliary memory. (A IIe with a
non-extended 80-column card is a configuration still found in many schools
throughout the country.)

The actual identification is done by a table-lookup method.

What the Routine Returns

This version (2.1) of the identification routine returns several things:

o A machine byte, containing one of seven values:
 $00 = Unknown machine
 $01 = Apple][
 $02 = Apple][+
 $03 = Apple /// in emulation mode
 $04 = Apple IIe
 $05 = Apple IIc

 In addition, if the high bit of the byte is set, the machine is a
 IIGS or equivalent. For all current Apple IIGS computers, the
 value returned in machine is $84 (high bit set to signify Apple
 IIGS and $04 because it matches the ID bytes of an enhanced Apple
 IIe).
o A ROMlevel byte, indicating the revision of the firmware in the

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 375 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 machine. For example, there are currently five revisions of the
 IIc, two of the IIe (unenhanced and enhanced), and two versions of
 the IIGS ROM (there will always be some owners who have not yet
 upgraded). These versions are identified starting at $01 for the
 earliest. Therefore, the current IIc will return ROMlevel = $04,
 the current IIGS will return ROMlevel = $02, etc. The routine
 will also return correct values for future versions of the IIGS,
 as a convention has been established for future ROM versions of
 that machine.
o A memory byte, containing the amount of memory in the machine.
 This byte only has four values--0 (undefined), 48, 64, and 128.
 Extra memory in an Apple IIGS, or extra memory in an Apple IIe or
 IIc Memory Expansion card, is not included. Programs must take
 special considerations to use that memory (if available), beyond
 those considerations required to use the normal 128K of today's
 IIe and IIc.
o If running on an Apple IIGS, three word-length fields are also
 returned. These are the contents of the registers as returned by
 the ID routine in the IIGS ROM, and they indicate several things
 about the machine. See Apple II Miscellaneous Technical Note #7
 for more details.

In addition to these features, most of the addressing done in the routine is
by label. If you wish things to be stored in different places, simply
changing the labels will often do it.

Limitations and Improvements

As sample code, you might have already guessed that this is not the most
compact, efficient way of identifying these machines. Some improvements you
might incorporate if using these routines include:

o If you are running under ProDOS, you can remove the section that
 determines how much memory is in the machine (starting at exit,
 line 127), since the MACHID byte (at $BF98) in ProDOS already
 contains this information for you. This change would cut the
 routine down to less than one page of memory.
o If you know the ROM is switched in when you call the routine, you
 can remove the sections which save and restore the language card
 state. Be careful in doing so, however, because the memory-
 determination routines switch out the ROM to see if a language
 card exists.
o If you need to know if a IIe is a 64K machine with a non-extended
 80-column card, you may put your own identifying routines in after
 line 284. NoAux is only reached if there is an 80-column card but
 only 64K of memory.

How It Works

The identification routine does the following things:

o Disables interrupts
o Saves four bytes from the language card areas so they may be restored
 later
o Identifies all machines by a table look-up procedure
o Calls 16-bit ID routine to distinguish IIGS from other machines of any

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 376 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 kind, and returns values in appropriate locations if IIGS ID routine
 returns any useful information in the registers
o Identifies memory configuration:
 o If Apple /// emulation, there is 48K
 o If Apple][or][+, tests for presence of language card and returns
 64K if present, otherwise, returns 48K
 o If Apple IIc or IIGS, returns 128K
 o If Apple IIe, tries to identify auxiliary memory
 o If reading auxiliary memory, it must be there
 o If reading alternate zero page, auxiliary memory is present
 o If none of this is conclusive:
 o Exchanges a section of the zero page with a section of code
 that switches memory banks. The code executes in the zero
 page and does not get switched out when we attempt to
 switch in the auxiliary RAM.
 o Jumps to relocated code on page zero:
 o Switches in auxiliary memory for reading and writing
 o Stores a value at $800 and sees if the same value
 appears at $C00. If so, no auxiliary memory is
 present (the non-extended 80-column card has sparse
 memory mapping which causes $800 and $C00 to be the
 same location).
 o Changes value at $C00 and sees if the value at $800
 changes as well. If so, no auxiliary memory. If not,
 then there is 128K available
 o Switches main memory back in for reading and writing
 o Puts the zero page back like we found it
 o Returns memory configuration found (either 64K or 128K)
o Restores language card and ROM state from four saved bytes
o Restores interrupt status
o Returns to caller

SOURCE FILE #01 =>ID2.1

0000: 1 lst on
----- NEXT OBJECT FILE NAME IS ID2.1.OBJ
2000: 2000 2 org $2000
2000: 3 **
2000: 4 * *
2000: 5 * Apple II Family Identification Program *
2000: 6 * *
2000: 7 * Version 2.1 *
2000: 8 * *
2000: 9 * September, 1988 *
2000: 10 * *
2000: 11 * Includes support for revisions to IIc *
2000: 12 * firmware, and IIgs identification too *
2000: 13 * *
2000: 14 **
2000: 15 *
2000: 16 *
2000: 17 * First, some global equates for the routine:
2000: 18 *
2000: 0001 19 IIplain equ $01 ;Apple II
2000: 0002 20 IIplus equ $02 ;Apple II+
2000: 0003 21 IIIem equ $03 ;Apple /// in emulation mode
2000: 0004 22 IIe equ $04 ;Apple IIe
2000: 0005 23 IIc equ $05 ;Apple IIc

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 377 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

2000: 24 *
2000: 0001 25 safe equ $0001 ;start of code relocated to
zp
2000: 0006 26 location equ $06 ;zero page location to use
2000: 27 *
2000: 00FB 28 xce equ $FB ;65816 XCE instruction
2000: 29 *
2000: 00AA 30 test1 equ $AA ;test byte #1
2000: 0055 31 test2 equ $55 ;lsr of test1
2000: 0088 32 test3 equ $88 ;test byte #3
2000: 00EE 33 test4 equ $EE ;test byte #4
2000: 34 *
2000: 0400 35 begpage1 equ $400 ;beginning of text page 1
2000: 0800 36 begpage2 equ $800 ;beginning of text page 2
2000: 0C00 37 begsprse equ $C00 ;byte after text page 2
2000: 38 *
2000: C000 39 clr80col equ $C000 ;disable 80-column store
2000: C001 40 set80col equ $C001 ;enable 80-column store
2000: C002 41 rdmainram equ $C002 ;read main ram
2000: C003 42 rdcardram equ $C003 ;read aux ram
2000: C004 43 wrmainram equ $C004 ;write main ram
2000: C005 44 wrcardram equ $C005 ;write aux ram
2000: C013 45 rdramrd equ $C013 ;are we reading aux ram?
2000: C016 46 rdaltzp equ $C016 ;are we reading aux zero
page?
2000: C018 47 rd80col equ $C018 ;are we using 80-columns?
2000: C01A 48 rdtext equ $C01A ;read if text is displayed
2000: C01C 49 rdpage2 equ $C01C ;read if page 2 is displayed
2000: C050 50 txtclr equ $C050 ;switch in graphics
2000: C051 51 txtset equ $C051 ;switch in text
2000: C054 52 txtpage1 equ $C054 ;switch in page 1
2000: C055 53 txtpage2 equ $C055 ;switch in page 2
2000: C080 54 ramin equ $C080 ;read LC bank 2, write
protected
2000: C081 55 romin equ $C081 ;read ROM, 2 reads write
enable LC
2000: C08B 56 lcbank1 equ $C08B ;LC bank 1 enable
2000: 57 *
2000: E000 58 lc1 equ $E000 ;bytes to save for LC
2000: D000 59 lc2 equ $D000 ;save/restore routine
2000: D400 60 lc3 equ $D400
2000: D800 61 lc4 equ $D800
2000: 62 *
2000: FE1F 63 idroutine equ $FE1F ;IIgs id routine
2000: 64 *
2000: 65 * Start by saving the state of the language card banks and
2000: 66 * by switching in main ROM.
2000: 67 *
2000:08 68 strt php ;save the processor state
2001:78 69 sei ;before disabling interrupts
2002:AD 00 E0 70 lda lc1 ;save four bytes from
2005:8D F1 21 71 sta save ;ROM/RAM area for later
2008:AD 00 D0 72 lda lc2 ;restoring of RAM/ROM
200B:8D F2 21 73 sta save+1 ;to original condition
200E:AD 00 D4 74 lda lc3
2011:8D F3 21 75 sta save+2
2014:AD 00 D8 76 lda lc4
2017:8D F4 21 77 sta save+3

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 378 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

201A:AD 81 C0 78 lda $C081 ;read ROM
201D:AD 81 C0 79 lda $C081
2020:A9 00 80 lda #0 ;start by assuming unknown
machine
2022:8D E8 21 81 sta machine
2025:8D E9 21 82 sta romlevel
2028: 83 *
2028:A5 06 84 IdStart lda location ;save zero page locations
202A:8D F5 21 85 sta save+4 ;for later restoration
202D:A5 07 86 lda location+1
202F:8D F6 21 87 sta save+5
2032:A9 FB 88 lda #$FB ;all ID bytes are in page $FB
2034:85 07 89 sta location+1 ;save in zero page as high
byte
2036:A2 00 90 ldx #0 ;init pointer to start of ID
table
2038:BD F7 21 91 loop lda IDTable,x ;get the machine we are
testing for
203B:8D E8 21 92 sta machine ;and save it
203E:BD F8 21 93 lda IDTable+1,x ;get the ROM level we are
testing for
2041:8D E9 21 94 sta romlevel ;and save it
2044:0D E8 21 95 ora machine ;are both zero?
2047:F0 1C 2065 96 beq matched ;yes - at end of list - leave
2049: 97 *
2049:E8 98 loop2 inx ;bump index to loc/byte pair
to test
204A:E8 99 inx
204B:BD F7 21 100 lda IDTable,x ;get the byte that should be
in ROM
204E:F0 15 2065 101 beq matched ;if zero, we're at end of
list
2050:85 06 102 sta location ;save in zero page
2052: 103 *
2052:A0 00 104 ldy #0 ;init index for indirect
addressing
2054:BD F8 21 105 lda IDTable+1,x ;get the byte that should be
in ROM
2057:D1 06 106 cmp (Location),y ;is it there?
2059:F0 EE 2049 107 beq loop2 ;yes, so keep on looping
205B: 108 *
205B:E8 109 loop3 inx ;we didn't match.Scoot to the
end of the
205C:E8 110 inx ;line in the ID table so we
can start
205D:BD F7 21 111 lda IDTable,x ;checking for another machine
2060:D0 F9 205B 112 bne loop3
2062:E8 113 inx ;point to start of next line
2063:D0 D3 2038 114 bne loop ;should always be taken
2065: 115 *
2065: 2065 116 matched equ *
2065: 117 *
2065: 118 * Here we check the 16-bit ID routine at $FE1F. If it
2065: 119 * returns with carry clear, we call it again in 16-bit
2065: 120 * mode to provide more information on the machine.
2065: 121 *
2065:38 122 idIIgs sec ;set the carry bit
2066:20 1F FE 123 jsr idroutine ;Apple IIgs ID Routine

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 379 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

2069:90 03 206E 124 bcc idIIgs2 ;it's a IIgs or equivalent
206B:4C A2 20 125 jmp exit ;nope, go check memory
206E:AD E8 21 126 idIIgs2 lda machine ;get the value for machine
2071:09 80 127 ora #$80 ;and set the high bit
2073:8D E8 21 128 sta machine ;put it back
2076:18 129 clc ;get ready to switch into
native mode
2077:FB 130 dfb xce ;this is a 65816 XCE
instruction
2078:08 131 php ;save the processor status
2079:C2 30 132 dfb $C2,$30 ;REP 30, sets 16-bit
registers
207B:20 1F FE 133 jsr $FE1f ;call the ID routine again
207E:8D EB 21 134 sta IIgsA ;16-bit store!
2081:8E ED 21 135 stx IIgsX ;16-bit store!
2084:8C EF 21 136 sty IIgsY ;16-bit store!
2087:28 137 plp ;restores 8-bit registers
2088:FB 138 dfb xce ;switches back to whatever it
was before
2089: 139 *
2089:AC EF 21 140 ldy IIgsY ;get the ROM vers number
(starts at 0)
208C:C0 02 141 cpy #$02 ;is it ROM 01 or 00?
208E:B0 01 2091 142 bcs idIIgs3 ;if not, don't increment
2090:C8 143 iny ;bump it up for romlevel
2091:8C E9 21 144 idIIgs3 sty romlevel ;and put it there
2094:C0 01 145 cpy #$01 ;is it the first ROM?
2096:D0 0A 20A2 146 bne IIgsOut ;no, go on with things
2098:AD F0 21 147 lda IIgsY+1 ;check the other byte too
209B:D0 05 20A2 148 bne IIgsOut ;nope, it's a IIgs successor
209D:A9 7F 149 lda #$7F ;fix faulty ROM 00 on the
IIgs
209F:8D EB 21 150 sta IIgsA
20A2: 20A2 151 IIgsOut equ *
20A2: 152 *
20A2: 153 **
20A2: 154 * This part of the code checks for the *
20A2: 155 * memory configuration of the machine. *
20A2: 156 * If it's a IIgs, we've already stored *
20A2: 157 * the total memory from above. If it's *
20A2: 158 * a IIc, we know it's 128K; if it's a *
20A2: 159 *][+, we know it's at least 48K and *
20A2: 160 * maybe 64K. We won't check for less *
20A2: 161 * than 48K, since that's a really rare *
20A2: 162 * circumstance. *
20A2: 163 **
20A2: 164 *
20A2:AD E8 21 165 exit lda machine ;get the machine kind
20A5:30 14 20BB 166 bmi exit128 ;it's a 16-bit machine (has
128K)
20A7:C9 05 167 cmp #IIc ;is it a IIc?
20A9:F0 10 20BB 168 beq exit128 ;yup, it's got 128K
20AB:C9 04 169 cmp #IIe ;is it a IIe?
20AD:D0 03 20B2 170 bne contexit ;yes, go muck with aux memory
20AF:4C 4E 21 171 jmp muckaux
20B2:C9 03 172 contexit cmp #IIIem ;is it a /// in emulation?
20B4:D0 6E 2124 173 bne exitII ;nope, it's a][or][+
20B6:A9 30 174 lda #48 ;/// emulation has 48K

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 380 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

20B8:4C BD 20 175 jmp exita
20BB:A9 80 176 exit128 lda #128 ;128K
20BD:8D EA 21 177 exita sta memory
20C0:AD 00 E0 178 exit1 lda lc1 ;time to restore the LC
20C3:CD F1 21 179 cmp save ;if all 4 bytes are the same
20C6:D0 18 20E0 180 bne exit2 ;then LC was never on so
20C8:AD 00 D0 181 lda lc2 ;do nothing
20CB:CD F2 21 182 cmp save+1
20CE:D0 10 20E0 183 bne exit2
20D0:AD 00 D4 184 lda lc3
20D3:CD F3 21 185 cmp save+2
20D6:D0 08 20E0 186 bne exit2
20D8:AD 00 D8 187 lda lc4
20DB:CD F4 21 188 cmp save+3
20DE:F0 38 2118 189 beq exit6
20E0:AD 88 C0 190 exit2 lda $C088 ;no match! so turn first LC
20E3:AD 00 E0 191 lda lc1 ;bank on and check
20E6:CD F1 21 192 cmp save
20E9:F0 06 20F1 193 beq exit3
20EB:AD 80 C0 194 lda $C080
20EE:4C 18 21 195 jmp exit6
20F1:AD 00 D0 196 exit3 lda lc2
20F4:CD F2 21 197 cmp save+1 ;if all locations check
20F7:F0 06 20FF 198 beq exit4 ;then do more more else
20F9:AD 80 C0 199 lda $C080 ;turn on bank 2
20FC:4C 18 21 200 jmp exit6
20FF:AD 00 D4 201 exit4 lda lc3 ;check second byte in bank 1
2102:CD F3 21 202 cmp save+2
2105:F0 06 210D 203 beq exit5
2107:AD 80 C0 204 lda $C080 ;select bank 2
210A:4C 18 21 205 jmp exit6
210D:AD 00 D8 206 exit5 lda lc4 ;check third byte in bank 1
2110:CD F4 21 207 cmp save+3
2113:F0 03 2118 208 beq exit6
2115:AD 80 C0 209 lda $C080 ;select bank 2
2118:28 210 exit6 plp ;restore interrupt status
2119:AD F5 21 211 lda save+4 ;put zero page back
211C:85 06 212 sta location
211E:AD F6 21 213 lda save+5 ;like we found it
2121:85 07 214 sta location+1
2123:60 215 rts ;and go home.
2124: 216 *
2124:AD 8B C0 217 exitII lda lcbank1 ;force in language card
2127:AD 8B C0 218 lda lcbank1 ;bank 1
212A:AE 00 D0 219 ldx lc2 ;save the byte there
212D:A9 AA 220 lda #test1 ;use this as a test byte
212F:8D 00 D0 221 sta lc2
2132:4D 00 D0 222 eor lc2 ;if the same, should return
zero
2135:D0 12 2149 223 bne noLC
2137:4E 00 D0 224 lsr lc2 ;check twice just to be sure
213A:A9 55 225 lda #test2 ;this is the shifted value
213C:4D 00 D0 226 eor lc2 ;here's the second check
213F:D0 08 2149 227 bne noLC
2141:8E 00 D0 228 stx lc2 ;put it back!
2144:A9 40 229 lda #64 ;there's 64K here
2146:4C BD 20 230 jmp exita
2149:A9 30 231 noLC lda #48 ;no restore - no LC!

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 381 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

214B:4C BD 20 232 jmp exita ;and get out of here
214E: 233 *
214E:AE 1A C0 234 muckaux ldx rdtext ;remember graphics in X
2151:AD 1C C0 235 lda rdpage2 ;remember current video
display
2154:0A 236 asl A ;in the carry bit
2155:A9 88 237 lda #test3 ;another test character
2157:2C 18 C0 238 bit rd80col ;remember video mode in N
215A:8D 01 C0 239 sta set80col ;enable 80-column store
215D:08 240 php ;save N and C flags
215E:8D 55 C0 241 sta txtpage2 ;set page two
2161:8D 51 C0 242 sta txtset ;set text
2164:AC 00 04 243 ldy begpage1 ;save first character
2167:8D 00 04 244 sta begpage1 ;and replace it with test
character
216A:AD 00 04 245 lda begpage1 ;get it back
216D:8C 00 04 246 sty begpage1 ;and put back what was there
2170:28 247 plp
2171:B0 08 217B 248 bcs muck2 ;stay in page 2
2173:8D 54 C0 249 sta txtpage1 ;restore page 1
2176:30 03 217B 250 muck1 bmi muck2 ;stay in 80-columns
2178:8D 00 C0 251 sta $c000 ;turn off 80-columns
217B:A8 252 muck2 tay ;save returned character
217C:8A 253 txa ;get graphics/text setting
217D:30 03 2182 254 bmi muck3
217F:8D 50 C0 255 sta txtclr ;turn graphics back on
2182:C0 88 256 muck3 cpy #test3 ;finally compare it
2184:D0 2F 21B5 257 bne nocard ;no 80-column card!
2186:AD 13 C0 258 lda rdramrd ;is aux memory being read?
2189:30 2F 21BA 259 bmi muck128 ;yup, there's 128K!
218B:AD 16 C0 260 lda rdaltzp ;is aux zero page used?
218E:30 2A 21BA 261 bmi muck128 ;yup!
2190:A0 2A 262 ldy #done-start
2192:BE BC 21 263 move ldx start-1,y ;swap section of zero page
2195:B9 00 00 264 lda safe-1,y ;code needings safe location
during
2198:96 00 265 stx safe-1,y ;reading of aux mem
219A:99 BC 21 266 sta start-1,Y
219D:88 267 dey
219E:D0 F2 2192 268 bne move
21A0:4C 01 00 269 jmp safe ;jump to safe ground
21A3:08 270 back php ;save status
21A4:A0 2A 271 ldy #done-start ;move zero page back
21A6:B9 BC 21 272 move2 lda start-1,y
21A9:99 00 00 273 sta safe-1,y
21AC:88 274 dey
21AD:D0 F7 21A6 275 bne move2
21AF:68 276 pla
21B0:B0 03 21B5 277 bcs noaux
21B2:4C BA 21 278 isaux jmp muck128 ;there is 128K
21B5: 279 *
21B5: 280 * You can put your own routine at "noaux" if you wish to
21B5: 281 * distinguish between 64K without an 80-column card and
21B5: 282 * 64K with an 80-column card.
21B5: 283 *
21B5: 21B5 284 noaux equ *
21B5:A9 40 285 nocard lda #64 ;only 64K
21B7:4C BD 20 286 jmp exita

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 382 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

21BA:4C BB 20 287 muck128 jmp exit128 ;there's 128K
21BD: 288 *
21BD: 289 * This is the routine run in the safe area not affected
21BD: 290 * by bank-switching the main and aux RAM.
21BD: 291 *
21BD:A9 EE 292 start lda #test4 ;yet another test byte
21BF:8D 05 C0 293 sta wrcardram ;write to aux while on main
zero page
21C2:8D 03 C0 294 sta rdcardram ;read aux ram as well
21C5:8D 00 08 295 sta begpage2 ;check for sparse memory
mapping
21C8:AD 00 0C 296 lda begsprse ;if sparse, these will be the
same
21CB:C9 EE 297 cmp #test4 ;value since they're 1K apart
21CD:D0 0E 21DD 298 bne auxmem ;yup, there's 128K!
21CF:0E 00 0C 299 asl begsprse ;may have been lucky so we'll
21D2:AD 00 08 300 lda begpage2 ;change the value and see
what happens
21D5:CD 00 0C 301 cmp begsprse
21D8:D0 03 21DD 302 bne auxmem
21DA:38 303 sec ;oops, no auxiliary memory
21DB:B0 01 21DE 304 bcs goback
21DD:18 305 auxmem clc
21DE:8D 04 C0 306 goback sta wrmainram ;write main RAM
21E1:8D 02 C0 307 sta rdmainram ;read main RAM
21E4:4C A3 21 308 jmp back ;continue with program in
main mem
21E7:EA 309 done nop ;end of relocated program
marker
21E8: 310 *
21E8: 311 *
21E8: 312 * The storage locations for the returned machine ID:
21E8: 313 *
21E8:00 314 machine dfb $00 ;the type of Apple II
21E9:00 315 romlevel dfb $00 ;which revision of the
machine
21EA:00 316 memory dfb $00 ;how much memory (up to 128K)
21EB:00 00 317 IIgsA dw $0000 ;16-bit field
21ED:00 00 318 IIgsX dw $0000 ;16-bit field
21EF:00 00 319 IIgsY dw $0000 ;16-bit field
21F1:00 00 00 00 320 save dfb 0,0,0,0,0,0 ;six bytes for saved data
21F7:01 01 B3 38 321 IDTable dfb 1,1,$B3,$38,$00 ;Apple][
21FC:02 01 B3 EA 322 dfb 2,1,$B3,$EA,$1E,$AD,$00 ;Apple][+
2203:03 01 B3 EA 323 dfb 3,1,$B3,$EA,$1E,$8A,$00 ;Apple ///
(emulation)
220A:04 01 B3 06 324 dfb 4,1,$B3,$06,$C0,$EA,$00 ;Apple IIe
(original)
2211:04 02 B3 06 325 dfb 4,2,$B3,$06,$C0,$E0,$00 ;Apple IIe
(enhanced)
2218:05 01 B3 06 326 dfb 5,1,$B3,$06,$C0,$00,$BF,$FF,$00 ;Apple IIc
(original)
2221:05 02 B3 06 327 dfb 5,2,$B3,$06,$C0,$00,$BF,$00,$00 ;Apple IIc
(3.5 ROM)
222A:05 03 B3 06 328 dfb 5,3,$B3,$06,$C0,$00,$BF,$03,$00 ;Apple IIc
(Mem. Exp)
2233:05 04 B3 06 329 dfb 5,4,$B3,$06,$C0,$00,$BF,$04,$00 ;Apple IIc
(Rev. Mem.
Exp.)

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 383 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

223C:05 05 B3 06 330 dfb 5,5,$B3,$06,$C0,$00,$BF,$05,$00 ;Apple IIc
Plus
2245:00 00 331 dfb 0,0 ;end of table

 21DD AUXMEM 21A3 BACK 0400 BEGPAGE1 0800 BEGPAGE2
 0C00 BEGSPRSE ?C000 CLR80COL 20B2 CONTEXIT 21E7 DONE
 20E0 EXIT2 20A2 EXIT 20BB EXIT128 ?20C0 EXIT1
 20F1 EXIT3 20FF EXIT4 210D EXIT5 2118 EXIT6
 20BD EXITA 2124 EXITII 21DE GOBACK ?2065 IDIIGS
 206E IDIIGS2 2091 IDIIGS3 FE1F IDROUTINE ?2028 IDSTART
 21F7 IDTABLE 05 IIC 04 IIE 21EB IIGSA
 20A2 IIGSOUT 21ED IIGSX 21EF IIGSY 03 IIIEM
? 01 IIPLAIN ? 02 IIPLUS ?21B2 ISAUX E000 LC1
 D000 LC2 D400 LC3 D800 LC4 C08B LCBANK1
 06 LOCATION 2038 LOOP 2049 LOOP2 205B LOOP3
 21E8 MACHINE 2065 MATCHED 21EA MEMORY 21A6 MOVE2
 2192 MOVE 21BA MUCK128 ?2176 MUCK1 217B MUCK2
 2182 MUCK3 214E MUCKAUX 21B5 NOAUX 21B5 NOCARD
 2149 NOLC ?C080 RAMIN C018 RD80COL C016 RDALTZP
 C003 RDCARDRAM C002 RDMAINRAM C01C RDPAGE2 C013 RDRAMRD
 C01A RDTEXT ?C081 ROMIN 21E9 ROMLEVEL 01 SAFE
 21F1 SAVE C001 SET80COL 21BD START ?2000 STRT
 AA TEST1 55 TEST2 88 TEST3 EE TEST4
 C050 TXTCLR C054 TXTPAGE1 C055 TXTPAGE2 C051 TXTSET
 C005 WRCARDRAM C004 WRMAINRAM FB XCE
** SUCCESSFUL ASSEMBLY := NO ERRORS
** ASSEMBLER CREATED ON 15-JAN-84 21:28
** TOTAL LINES ASSEMBLED 331
** FREE SPACE PAGE COUNT 81

Further Reference
o Apple II Miscellaneous Technical Note #7, Apple II Family Identification

END OF FILE TN.Misc.002

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 384 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Misc.003
###

Apple II
Technical Notes

 Developer Technical Support

Apple II Miscellaneous
#3: Super Serial Card Firmware Bug

Revised by: Matt Deatherage November 1988
Written by: Cameron Birse November 1985

This Technical Note documents two bugs in the Super Serial Card firmware.

The Super Serial Card (SSC) firmware does not access location $CFFF to clear
the $C800 space before jumping into its bank-switched ROM in that area.

By omitting this access, the Super Serial Card can cause a slot data bus
conflict when a ROM of equal or greater strength on another card "owns" the
$C800 space when the Super Serial Card wants to use it. For example, the
UniDisk 3.5 controller card uses the same 74LS245 octal bus driver as the
Super Serial Card. If you are using the UniDisk 3.5 card and switch to the
Super Serial Card firmware, there will be a bus conflict . The SSC is trying
to switch in its own $C800 space while the UniDisk 3.5 card is trying to keep
the $C800 space, since no one cleared it by accessing $CFFF. Since both have
the same capability to drive the bus, neither wins the battle.

An easy solution to this problem is to reference $CFFF before calling any of
the Pascal entry points on the Super Serial Card. For example:

NEWSLOT STA $CFFF ;reset the slot ROM space
 LDA Char ;Char = character to output
 LDX #$Cn ;n = slot number
 LDY #$n0
 STX MSLOT ;MSLOT = $7F8, always set it up
 JSR PWRITE ;now call the Pascal routine of your choice

This bug is in the Pascal entry points; the BASIC entry point does not have
this problem as there is a STA $CFFF instruction at $Cn1B.

This example code stores the slot number (in the form $Cn) in MSLOT, a screen
hole used to tell the system which peripheral card had control when an
interrupt occurred. The Super Serial Card firmware does set up MSLOT, but
does not do so until long after it has enabled its $C800 space. If an IRQ
comes through the system between the call to the card and when the card stores
MSLOT, the system will crash.

Both bugs can be avoided by using the sample code to call entry points on the
Super Serial Card.

Further Reference

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 385 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

o Apple IIe Technical Reference Manual

END OF FILE TN.Misc.003

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 386 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Misc.004
###

Apple II
Technical Notes

 Developer Technical Support

Apple II Miscellaneous
#4: AppleWorks Keys

Revised by: Matt Deatherage May 1989
Written by: J.D. Eisenberg June 1985

This Technical Note formerly described information concerning AppleWorks(TM),
which is now published by CLARIS.
Changes since November 1988: Updated the CLARIS mailing address.

This Note formerly discussed sections of AppleWorks 1.2 and 1.3 code which
checked for keypresses to allow other applications to tap into certain
routines. For information on AppleWorks, contact CLARIS at:

 CLARIS
 5201 Patrick Henry Drive
 P.O. Box 58168
 Santa Clara, CA 95052-8168

 Technical Information
 Telephone: (415) 962-0371
 AppleLink: Claris.Tech

 Non-Technical Information
 Telephone: (415) 962-8946
 AppleLink: Claris.CR

In addition to the support available from CLARIS, Bob Lissner, the author of
AppleWorks, maintains a bulletin board for AppleWorks-related information.
You can obtain technical information and file formats from this system as well
as submit your comments in writing. You can reach this system at (702) 831-
1722.

END OF FILE TN.Misc.004

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 387 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Misc.005
###

Apple II
Technical Notes

 Developer Technical Support

Apple II Miscellaneous
#5: AppleWorks File Formats

Revised by: Matt Deatherage May 1989
Revised by: Matt Deatherage November 1988

This Technical Note formerly documented the file formats for AppleWorks(TM),
which is now published by CLARIS.
Changes since November 1988: Updated the CLARIS mailing address.

This Note formerly documented the file formats available in AppleWorks and ///
E-Z Pieces (AppleWorks for the Apple ///). This information is now documented
in three File Type Notes:

 AppleWorks Data Base $19
 AppleWorks Word processor $1A
 AppleWorks Spreadsheet $1B

For additional information on AppleWorks, contact CLARIS at:

 CLARIS
 5201 Patrick Henry Drive
 P.O. Box 58168
 Santa Clara, CA 95052-8168

 Technical Information
 Telephone: (415) 962-0371
 AppleLink: Claris.Tech

 Non-Technical Information
 Telephone: (415) 962-8946
 AppleLink: Claris.CR

In addition to the support available from CLARIS, Bob Lissner, the author of
AppleWorks, maintains a bulletin board for AppleWorks-related information.
You can obtain technical information and file formats from this system as well
as submit your comments in writing. You can reach this system at (702) 831-
1722.

Further Reference

 o Apple II File Type Note $19
 o Apple II File Type Note $1A
 o Apple II File Type Note $1B

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 388 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

END OF FILE TN.Misc.005

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 389 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Misc.006
###

Apple II
Technical Notes

 Developer Technical Support

Apple II Miscellaneous
#6: IWM Port Description

Revised by: Glenn A. Baxter November 1988
Written by: Cameron Birse February 1986

This Technical Note documents the IWM port pin assignments on various
machines.

Apple IIGS Disk Port Pin Assignments

 Signal Name Disk Port Pins (DB-19)
 Phase 0 11
 Phase 1 12
 Phase 2 13
 Phase 3 14
 /WReq 15
 Dr1 17
 Rd 18
 Wr 19
 Wrt Prot 10
 Dr2 9
 HeadSel 16
 Gnd 1,2,3
 3.5Disk 4
 -12v 5
 +5v 6
 +12v 7,8

Apple IIe UniDisk 3.5 Controller Disk Port Pin Assignments

 Signal Name Disk Port Pins (DB-19)
 Phase 0 11
 Phase 1 12
 Phase 2 13
 Phase 3 14
 /WrtReqII 15
 /HstEnbl 17
 Rd 18
 Wr 19
 Wrt Prot 10
 No Connection 9,16
 Gnd 1,2,3,4
 -12v 5
 +5v 6
 +12v 7,8

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 390 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Apple IIc Disk Port Pin Assignments

 Signal Name Disk Port Pins (DB-19)
 Phase 0 11
 Phase 1 12
 Phase 2 13
 Phase 3 14
 /WrtReq 15
 /Enbl 2 17
 Rd 18
 Wr 19
 Wrt Prot 10
 No Connection 16
 Gnd 1,2,3,4
 -12v 5
 +5v 6
 +12v 7,8
 External Interrupt 9

 Note: On the Apple IIc Plus,
 the disk port pins are driven
 by a custom ASIC instead of by
 the IWM chip.

Macintosh Disk Port Pin Assignments

 Signal Name Disk Port Pins (DB-19)
 Phase 0 11
 Phase 1 12
 Phase 2 13
 Phase 3 14
 /WrtReq 15
 /Enbl 2 17
 Rd 18
 Wr 19
 PWM 10
 HdSel 16
 GND 1,2,3,4
 -12v 5
 +5v 6
 +12v 7,8

END OF FILE TN.Misc.006

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 391 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Misc.007
###

Apple II
Technical Notes

 Developer Technical Support

Apple II Miscellaneous
#7: Apple II Family Identification

Revised by: Matt Deatherage November 1988
Written by: Cameron Birse December 1986

This Technical Note describes the ROM identification bytes in the Apple II
family.

To identify which computer of the Apple II family is executing your program,
you must check the following identification bytes. These bytes are in the
main bank of main ROM (shadowed on the Apple IIGS), and you should make sure
that this bank is switched in before making decisions based on the contents of
these locations.

Machine $FBB3 $FB1E $FBC0 $FBBF
Apple][$38 [$60] [$2F]
Apple][+ $EA $AD [$EA] [$EA]
Apple /// (emulation) $EA $8A
Apple IIe $06 $EA [$C1]
Apple IIe (enhanced) $06 $E0 [$00]
Apple IIc $06 $00 $FF
Apple IIc (3.5 ROM) $06 $00 $00
Apple IIc (Org. Mem. Exp.) $06 $00 $03
Apple IIc (Rev. Mem. Exp.) $06 $00 $04
Apple IIc Plus $06 $00 $05
Apple IIGS (See below)

Note: Values listed in square brackets in the table are provided
for your reference only. You do not need to check them to
conclusively identify an Apple II.

The ID bytes for an Apple IIGS are not listed in the table since they match
those of an enhanced Apple IIe. Future 16-bit Apple II products may match
different Apple II identification bytes for compatibility reasons, so to
identify a machine as a IIGS or other 16-bit Apple II, you must make the
following ROM call:

 SEC ;Set carry bit (flag)
 JSR $FE1F ;Call to the monitor
 BCS OLDMACHINE ;If carry is still set, then old machine
 BCC NEWMACHINE ;If carry is clear, then new machine

In all the current, standard Apple II ROMs, $FE1F contains an RTS. In the
Apple IIGS, there is a routine that returns compatibility information in the
A, X, and Y registers:

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 392 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Bit Accumulator X Register Y Register
Bit 15 Reserved Reserved Machine ID Number
 (0 = Apple IIGS)
Bit 14 Reserved Reserved Machine ID Number
Bit 13 Reserved Reserved Machine ID Number
Bit 12 Reserved Reserved Machine ID Number
Bit 11 Reserved Reserved Machine ID Number
Bit 10 Reserved Reserved Machine ID Number
Bit 9 Reserved Reserved Machine ID Number
Bit 8 Reserved Reserved Machine ID Number
Bit 7 Reserved Reserved ROM version number
Bit 6 1 if system has memory expansion slot Reserved ROM version number
Bit 5 1 if system has IWM port Reserved ROM version number
Bit 4 1 if system has a built-in clock Reserved ROM version number
Bit 3 1 if system has desktop bus Reserved ROM version number
Bit 2 1 if system has SCC built-in Reserved ROM version number
Bit 1 1 if system has external slots Reserved ROM version number
Bit 0 1 if system has internal ports Reserved ROM version number

Note: In emulation or eight-bit mode, only the lower eight bits
are returned.

This ROM call is enough to determine if a machine is an Apple IIGS or
equivalent.

Note: The original Apple IIGS ROM returns a faulty value in the
accumulator. The value returned is $xx1F and should be $xx7F. If
you see a $0000 in the Y register (i.e., Apple IIGS, ROM version
$00), you should assume that the accumulator value is $xx7F.

The current Apple IIGS ROM (ROM version $01) sets all the registers correctly
before returning from this call.

Further Reference
o Miscellaneous Technical Note #2,
 Apple II Family Identification Routines 2.1

END OF FILE TN.Misc.007

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 393 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Misc.008
###

Apple II
Technical Notes

 Developer Technical Support

Apple II Miscellaneous
#8: Pascal 1.1 Firmware Protocol ID Bytes

Revised by: Matt Deatherage November 1988
Written by: Cameron Birse December 1986

This Technical Note documents the Pascal 1.1 Firmware Protocol ID bytes for
Apple II peripheral cards and ports.

Background

Apple II Pascal 1.1 introduced a firmware protocol called, not surprisingly,
the Pascal 1.1 Firmware Protocol. A card following this protocol could be
identified by the following ID bytes, where n is the slot in which the card
resides:

Address Value Definition
$Cn05 $38 ID byte (from Pascal 1.0)
$Cn07 $18 ID byte (from Pascal 1.0)
$Cn0B $01 Generic signature of cards with Pascal 1.1 Protocol
$Cn0C $ci Device signature byte

$Cn0C was interpreted as two nibbles. The high-order nibble, c, was defined
as the device signature. This signature was a pre-defined value determining
what kind of device was connected (i.e., printer, modem, joystick, clock,
etc.). The low-order nibble, i, was defined as a unique identifier, so you
could tell one printer from another, for example.

Developer Technical Support no longer maintains a list of assignments for the
i nibble in this protocol. Since, by definition, the Pascal 1.1 Protocol only
has room for 16 uniquely identified devices of each signature, it is easy to
see that the Apple II family has outgrown the definition.

Following is a table which lists the values of the Pascal 1.1 Firmware
Protocol ID bytes for some Apple products which follow the protocol. Previous
versions of this Note listed ID bytes for products which did not follow the
protocol. Do not attempt to identify devices which do not follow the
protocol by checking these ID bytes. This method will not work and should be
avoided.

For example, trying to conclusively identify a 3.5" disk drive, SCSI hard
drive, memory expansion card, or other SmartPort device using these ID bytes
could be disastrous. For any SmartPort device, you should look for the ProDOS
Block Device ID bytes ($Cn01 = $20, $Cn03 = $00, $Cn05 = $03), then look for
the additional SmartPort ID byte ($Cn07 = $00). Once you have identified

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 394 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

SmartPort, you should make a SmartPort STATUS call to determine the nature and
types of connected devices. By this definition, ProDOS block devices and
SmartPort devices cannot follow the Pascal 1.1 Firmware Protocol.

Pascal 1.1 Devices

 $Cn05 $Cn07 $Cn0B $Cn0C
Apple II Peripheral Cards
Super Serial Card (or port) $38 $18 $01 $31
Apple 80 Column Card $38 $18 $01 $88
Apple II Mouse Card $38 $18 $01 $20

Apple IIc Ports
1st version $FBBF = $FF
Slot 1 (Serial Port) $38 $18 $01 $31
Slot 2 (Serial Port) $38 $18 $01 $31
Slot 3 (80 Columns) $38 $18 $01 $88
Slot 4 (Mouse) $38 $18 $01 $20

2nd version $FBBF = $00
Slot 1 (Serial Port) $38 $18 $01 $31
Slot 2 (Serial Port) $38 $18 $01 $31
Slot 3 (80 Columns) $38 $18 $01 $88
Slot 4 (Mouse) $38 $18 $01 $20
Slot 7 (AppleTalk) $38 $18 $01 $31

3rd version $FBBF = $03, 4th version $FBBF = $04, and 5th version $FBBF
= $05
Slot 1 (Serial Port) $38 $18 $01 $31
Slot 2 (Serial Port) $38 $18 $01 $31
Slot 3 (80 Columns) $38 $18 $01 $88
Slot 7 (Mouse) $38 $18 $01 $20

Apple IIGS Ports (ROM 1.0 and 2.0)
Slot 1 (Serial Port) $38 $18 $01 $31
Slot 2 (Serial Port) $38 $18 $01 $31
Slot 3 (80 Columns) $38 $18 $01 $88
Slot 4 (Mouse Port) $38 $18 $01 $20
Slot 7 (AppleTalk) $38 $18 $01 $31

ProDOS and SmartPort Devices

 $Cn01 $Cn03 $Cn05 $Cn07
Generic ProDOS Block Device $20 $00 $03 $xx
SmartPort Device $20 $00 $03 $00

END OF FILE TN.Misc.008

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 395 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Misc.009
###

Apple II
Technical Notes

 Developer Technical Support

Apple II Miscellaneous
#9: AppleSoft Real Variable Storage

Revised by: Pete McDonald November 1988
Written by: Cameron Birse December 1986

This Technical Note discusses real variable storage in AppleSoft BASIC.

In AppleSoft BASIC, real variables (non-array) are stored sequentially
starting at the address pointed to by locations $69 and $6A. The first two
bytes are the name of the variable, the third is the exponent, and the fourth
through seventh are the mantissa.

Exponent The top bit of this byte is the sign of the exponent. This sign
 bit is the opposite of normal sign bits, since zero is negative
 and one is positive. The remainder of the byte minus one is the
 value of the exponent (i.e., 84 is a positive exponent of 3).

Mantissa The mantissa is a binary fraction with the first bit being the
 sign bit (normal this time with zero being positive and one
 negative), and the remaining bits are fractional values starting
 with .5, .25, .125, etc.

The equation which follows is: 2^(Exponent-1) * 1.Mantissa

Examples

A = 3 (real variable equal to 3)

The seven bytes look like: 41 00 Variable name = A
 82 Exponent = 1
 40 00 00 00 Mantissa = .5

which works out as: 2^1 * 1.5 = 3

B = 5 (real variable equal to 5)

The seven bytes look like: 42 00 Variable name = B
 83 Exponent = 2
 20 00 00 00 Mantissa = .25

which works out as: 2^2 * 1.25 = 5

Further Reference

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 396 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

o AppleSoft BASIC Programmer's Reference Manual

END OF FILE TN.Misc.009

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 397 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Misc.010
###

Apple II
Technical Notes

 Developer Technical Support

Apple II Miscellaneous
#10: 80-Column GetChar Routine

Revised by: Dave Lyons September 1989
Written by: Cameron Birse December 1986

This Technical Note presents an 80-column GetChar routine.
Changes since November 1988: Added discussion of single-character input
on the unenhanced Apple IIe.

The following is an example of how to display a string on the 80-column
screen, reposition the cursor at the beginning of the string, and use the
right arrow to get characters which are already there or accept new characters
in their place. The routine is a simple BASIC program which displays the
string and repositions the cursor before getting incoming characters. If the
character input is a right arrow, the program calls the assembly language
routine to get the character from screen memory at the current cursor
location.

10 PRINT CHR$ (4);"bload getchar.0": REM first install assembly routine
20 B$ = "hello"
30 PRINT CHR$ (4);"pr#3"
40 PRINT B$;:B$ = ""
50 A = PEEK (1403): REM get horiz location
60 A = A - 5: REM move cursor to beginning of string
70 POKE 1403,A
80 GET A$: REM get a character
90 IF A$ = CHR$ (21) THEN GOSUB 130: REM if char is forward arrow,
 handle with assembly routine (GETCHAR)
100 IF A$ = CHR$ (27) THEN 170: REM if esc key then we're done
110 PRINT A$;:B$ = B$ + A$
120 GOTO 80
130 CALL 768: REM GETCHAR
140 A = PEEK (6)
150 A$ = CHR$ (A)
160 RETURN
170 PRINT : PRINT : PRINT B$: REM and we're done

An assembled listing of the assembly language GetChar routine follows. It
works on the Apple IIe and later.

SOURCE FILE #01 =>GETCHAR
----- NEXT OBJECT FILE NAME IS GETCHAR.0
0300: 0300 1 ORG $300
0300: C01F 2 RD80VID EQU $C01F ;80 COLUMN STATE
0300: C054 3 TXTPAGE1 EQU $C054 ;TURN OFF PAGE 2 (READ)

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 398 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

0300: C055 4 TXTPAGE2 EQU $C055 ;TURN ON PAGE 2 (READ)
0300: C000 5 CLR80COL EQU $C000 ;TURN OFF 80 STORE (WRITE)
0300: C001 6 SET80COL EQU $C001 ;TURN ON 80 STORE (WRITE)
0300: 0028 7 BASL EQU $28 ;BASE ADDRESS OF SCREEN
LOCATION
0300: 0029 8 BASH EQU $29
0300: 057B 9 OURCH EQU $57B ;80 COLUMNS HORIZ. POSITION
0300: 05FB 10 OURCV equ $5fb ;80 col vertical pos
0300: 0006 11 char equ 6 ;place to hand character back
to basic
0300: 12 *
0300: 13

0300: 14 * GETCHAR - This routine gets an ascii character from the
*
0300: 15 * 80 column display memory of the Apple IIe. It assumes
*
0300: 16 * that main memory is switched in and that the base addrs
*
0300: 17 * of the line has already been calculated and resides
*
0300: 18 * in BASL and BASH. It is meant to be called from BASIC
*
0300: 19 * as follows:
*
0300: 20 * CALL 768
*
0300: 21 * A = PEEK (6)
*
0300: 22 * A$ = CHR$(A)
*
0300: 23 * As you can see, the character is returned in location
*
0300: 24 * $6 in zero page. This routine is offered as an example.
*
0300: 25 * No guaranties are made regarding its fitness for any
*
0300: 26 * purpose. By Cameron Birse 6/10/86
*
0300: 27

0300: 28 *
0300: 0300 29 getchr equ * ;get the char at the current
cursor loc.
0300:A9 01 30 lda #$01 ;mask for horiz test
0302:2C 7B 05 31 bit OURCH ;are we in main or aux mem?
0305:D0 17 031E 32 bne main ;if bit 0 of OURCH is set,
then main mem
0307: 0307 33 aux equ *
0307:AD 7B 05 34 lda OURCH ;get horiz pos.
030A:18 35 clc ;clear the carry for divide
030B:6A 36 ror a ;divide by two
030C:A8 37 tay ;put the result in y
030D:8D 01 C0 38 sta SET80COL ;turn on 80 store
0310:AD 55 C0 39 lda TXTPAGE2 ;flip to aux text page
0313:B1 28 40 lda (basl),y ;get the character
0315:85 06 41 sta char
0317:AE 54 C0 42 ldx TXTPAGE1 ;turn off aux text page

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 399 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

031A:8D 00 C0 43 sta CLR80COL ;turn off 80 store
031D:60 44 rts
031E: 031E 45 main equ *
031E:AD 7B 05 46 lda OURCH ;get horiz pos.
0321:18 47 clc ;clear the carry for divide
0322:6A 48 ror a ;divide by two
0323:A8 49 tay ;put the result in y
0324:B1 28 50 lda (basl),y ;get the character
0326:85 06 51 sta char
0328:60 52 rts

Reading a Single Character

While the 80-column firmware is active (whether in 40- or 80-column mode), the
RDKEY routine on the unenhanced Apple IIe unexpectedly allows the user to
press ESC and move the cursor around the screen the same way RDCHAR does.

AppleSoft's GET statement uses RDKEY, so it behaves the same way. The ESC
keypress is never returned, so users have problems if you use GET and expect
them, for example, to press ESC to return to the previous menu. At this
point, the cursor turns into an inverse plus sign (+) and your program is
still waiting for a keypress. The user presses ESC a few more times, watching
the cursor alternate between an inverse plus sign and an inverse blank, and
then turns off the computer in search of a more exciting activity, like
throwing darts at your disk.

If your program can run on the unenhanced IIe, either leave the 80-column
firmware turned off (PRINT CHR$(21) to make sure it's off), or read keypresses
by polling the keyboard register directly:

 1000 IF PEEK(-16384)<128 THEN 1000 : REM Wait for a keypress
 1010 A$ = CHR$(PEEK(-16384)-128) : REM Read the key
 1020 POKE -16368,0 : REM Clear the keyboard strobe

or

 0300: LDA $C000 ; check for a keypress
 0303: BPL $0300 ; keep waiting
 0306: AND #$7F ; turn off bit 7
 0308: STA $C010 ; clear the keyboard strobe

Note that these code fragments don't display a cursor while waiting for a key.

Further Reference

 o Apple IIGS Firmware Reference
 o Apple IIe Technical Reference Manual
 o Apple IIc Technical Reference Manual

END OF FILE TN.Misc.010

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 400 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Misc.011
###

Apple II
Technical Notes

 Developer Technical Support

Apple II Miscellaneous
#11: Examining the $C800 Space from AppleSoft

Revised by: Matt Deatherage May 1989
Written by: John Bennett August 1987

This Technical Note discusses examining the $C800 space from AppleSoft BASIC
with PEEK statements.
Changed since January 1989: Corrected the revision author name.

Both the 6502 and 65816 microprocessors perform a false read during absolute-
indexed instructions. When AppleSoft interprets a PEEK statement, it
performs an absolute-indexed LDA instruction with a base address such that a
false read from $CFxx is performed. This read takes place during the formula
translation of the expression passed to PEEK, not during the actual loading of
the value.

Some peripheral cards have been designed to deselect their $C800 ROM space
any time a $CF value is placed on the high-order address lines of the address
bus. Therefore, if you use the AppleSoft PEEK statement to examine an address
in the $C800 space of such a peripheral card, the $C800 space will be turned
off when the statement is interpreted, and the value returned by the statement
will not reflect the actual value in the $C800 ROM.

The 65C02, on the other hand, has been designed so that a false read is not
performed for an absolute-indexed LDA instruction. As a result, if the PEEK
statement is used to examine the $C800 space of the same peripheral card on an
enhanced Apple IIe (or any other Apple II with a 65C02 installed), the $C800
space will not be deselected, and the value returned by the statement will
accurately reflect the value in the $C800 ROM.

If it is absolutely necessary to examine the $C800 space from an AppleSoft
BASIC program, it is safer to use a assembly-language routine to examine the
addresses and pass the results to the BASIC application.

END OF FILE TN.Misc.011

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 401 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Misc.012
###

Apple II
Technical Notes

 Developer Technical Support

Apple II Miscellaneous
#12: The Apple II Firmware WAIT Routine

Revised by: Matt Deatherage November 1988
Written by: Matt Deatherage May 1988

This Technical Note expands on the already documented descriptions of the
Apple II firmware WAIT routine, which guaranteed a minimum, not an exact,
specified delay.

As described in the Apple IIe Technical Reference Manual and the Apple IIc
Technical Reference Manual, the WAIT routine located in ROM at $FCA8 waits for
a certain amount of time before returning to the calling program. The delay
is listed in the IIe manual as being 1/2(26+27A+5A^2), where A is the value in
the accumulator when WAIT is called. The value returned by this expression is
the number of clock cycles taken by the routine, not the amount of time that
passes while it waits. To obtain the elapsed time in microseconds, you must
multiply the result by the scaling factor 14 / 14.318181.

Different formulas have appeared in different firmware listings published by
Apple in the past, but the above formula is in all current publications, and
has been verified as correct by Developer Technical Support. If there were
nothing in the system except a 65C02 (or 65816) microprocessor, this formula
would be completely accurate. However, this is not the case in an Apple II,
as there are interrupts, changing system speeds, fast and slow RAM, and
numerous other additions to the system that can cause extra overhead when a
routine is executed.

For these reasons, the WAIT routine should be used only as a minimum delay.
It should not be expected to wait for exactly the time specified by the WAIT
formula.

The Apple IIGS Firmware Reference correctly notes this fact, as well as
including the scaling factor (14 / 14.318181) to return the minimum delay in
microseconds without further calculation.

Further Reference
o Apple IIGS Firmware Reference
o Apple IIe Technical Reference Manual
o Apple IIc Technical Reference Manual

END OF FILE TN.Misc.012

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 402 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Misc.014
###

Apple II
Technical Notes

 Developer Technical Support

Apple II Miscellaneous
#14: Guidelines for Telecommunication Programs

Written by: Matt Deatherage July 1989

This Technical Note discusses recommended guidelines to ensure future
compatibility and maintain workable standards for telecommunication programs.

Telecommunication programs have always been a particularly troublesome area on
the Apple II as far as standards are concerned. Exiting from terminal
programs often leaves the system in an unbalanced state or leaves strange and
unknown things upon the user's disks. Yet complying with standards would not
only make life easier for the users, it's not that hard for developers to do.
This Note lists the primary guidelines Apple II telecommunication program
developers should keep foremost in their minds.

Talking to the Hardware

Communicating with the modem through the interface provided by the user isn't
always the easiest task in the world. It often just can't be done at
acceptable speeds when using high-level software routines, and sometimes it
can't even be done at the firmware level. It's widely known that the Super
Serial Card can't keep up with 9600 bps communication unless a low-level
driver uses the 6551 chip on the card directly--the firmware just can't do it.
The Apple IIGS serial port firmware can easily keep up with 9600 bps, but the
GS/OS generated character drivers for those ports can't do single character
I/O at that speed.

In general, programs must use the highest level interface available to them
that functions to specifications. If dealing with speeds of less than 9600
baud in 16-bit mode, on the Apple IIGS, use the GS/OS drivers. Remember that
any GS/OS driver owns the slot or port it controls, and going around the
drivers causes problems. High-speed, highly-configurable loaded drivers for
the serial ports may ship with the System Software in the future, and it would
be unfortunate if your terminal program was the one that caused the driver to
break.

For speeds of 9600 bps or higher with System Software 5.0, the driver can't
help you. It is necessary to go directly to the firmware or hardware and risk
of future incompatibility. Remember that the firmware must be called from
bank zero emulation mode. If single character I/O isn't necessary, the driver
can handle speeds of 9600 bps when used in multicharacter input or output.

Note: In the future, System Software may include loaded drivers
 for the serial ports. An application can tell whether a driver is

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 403 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 generated or loaded by examining bit 14 of the characteristics
 word returned by the GS/OS DInfo call--a generated driver has this
 bit set. A loaded driver may be able to handle 9600 bps single-
 character I/O, but a generated one may not.

File Transfer Considerations

Transferring files is probably the most important function of a
telecommunication program. However, transferring the file's data itself is
not always adequate. Telecommunication programs must find a way to transfer a
file's attributes as well as a file's contents to keep things running
smoothly.

File attributes include the file's type and auxiliary type (necessary fields
for most applications to identify their data files), the size of the file,
creation and modification dates and times, as well as information about how
many forks the file has, what file system it came from, and how the file is
stored on disk. In addition, when asked, GS/OS returns in its option_list
information about the file that the native file system uses but GS/OS does not
(information such as access privileges, native file types and creator types,
parent directory IDs, extended attribute records and other information as
important to the native file system as file type and auxiliary type are to
GS/OS).

Any telecommunication program can devise a way to keep such attributes with a
file when the file is transferred between two machines that are both running
the program in question. It is a much trickier task to address the issue of
keeping all file attributes with files regardless of the programs involved
in the transfer. An industry-wide standard is necessary for such integration.

The Binary II standard, devised by Gary B. Little (and documented in the Apple
II File Type Note for File Type $E0, Auxiliary Type $8000), has been accepted
as a standard for maintaining these attributes for a number of years. Many
major telecommunication programs already incorporate support for this
standard; Apple urges those that don't to consider doing so at their earliest
convenience.

Binary II is designed to keep attributes with files on the fly--it is not an
archival standard and should not be used as such. A standard like Binary II
should always be used to keep attributes with a file; confusing it with an
archival standard can result in files being transferred without their own
attributes. Even archival files must be transferred with their attributes.
It is never acceptable to transfer a file without it's attributes.

Archival considerations are a completely separate issue. An archival format
and program must be carefully designed with archiving considerations in mind,
such as manipulating files within the archive, preserving the attributes of
the files archived, and allowing for a myriad of compression schemes. The
NuFX standard (documented in the Apple II File Type Note for File Type $E0,
Auxiliary Type $8002) is such an archival format, which Apple recommends be
used for those purposes. The program ShrinkIt is an example of a NuFX
archival utility.

In an ideal world, all files would be transferred with their attributes sent
transparently by the telecommunication program. The user would select the
file to send, and the program would automatically send the attributes. When
the program receives a file, it would already have the attributes with the

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 404 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

file, so no postprocessing by the user would be necessary to use the file.

Even archival files such as NuFX should be transferred with all attributes
intact. Although the archival utility may allow the user to select any file
for processing (in case the file's attributes were lost), assuming that this
will happen implies that it's acceptable. It is not. No file should ever be
transferred without all its attributes, down to, and including the GS/OS
option_list, if present.

Apple IIGS Considerations

A few more guidelines for Apple IIGS-specific telecommunication applications
follow:

 o Don't ignore slot configurations. Attempting to use a
 serial port through hardware while an interface card for that slot
 is switched in will break dynamic slot arbitration if, and when,
 it becomes available, unless the application does not use the
 firmware.

 o Be a good neighbor to interrupt handlers. Interrupts will
 be coming through that you did not enable. (This is also true for
 Apple IIe computers with Workstation Cards, but is true for IIGS
 computers even when AppleTalk is not involved.) Programs not
 prepared for this could bring the system down. Stealing main
 interrupt vectors is not a good idea.

 o Don't go stepping on things you don't own. It is better
 to alert the user that a certain resource (like a slot or a port)
 is not available than to blindly switch it in and crash the
 system. Never switch slots without using the Slot Arbiter.

 o Behave yourself. Don't make wild assumptions or do things
 differently just because you're a terminal program and you think
 you have to do it for speed. Most users won't be impressed by a
 terminal program that's fast and robust if it breaks every time
 they activate a desk accessory or if they have to reboot the
 system when they're done with it. Don't compromise system
 integrity for superficial functionality.

Further Reference

 o Apple IIGS Firmware Reference
 o Apple IIGS Hardware Reference
 o Apple II File Type Notes, File Type $E0, Auxiliary Type $8000
 o Apple II File Type Notes, File Type $E0, Auxiliary Type $8002

END OF FILE TN.Misc.014

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 405 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Mous.001
###

Apple II
Technical Notes

 Developer Technical Support

Mouse
#1: Interrupt Environment with the Mouse

Revised by: Matt Deatherage November 1988
Revised by: Rilla Reynolds November 1985

This Technical Note describes the interrupt environment one should take into
account when programming mouse-based applications on the Apple II family of
computers.

Software developers who are writing mouse-based programs in assembly language
need to be concerned about the computer's interrupt environment, even if they
are using the mouse in passive mode. Listed below are several conditions
which assembly language programmers should take into account if their programs
are to run on the Apple II family of computers.

o Do not disable interrupts unless absolutely necessary. If you
 disable them, be sure to re-enable them.
o Disable interrupts when calling any mouse routine. Always use PHP
 and SEI to disable interrupts, then use PLP to re-enable them.
 This method preserves the state of interrupts (enabled or
 disabled).
o Do not re-enable interrupts (PLP) after a call to ReadMouse until
 X and Y data have been removed from the screen holes.
o Disable interrupts (PHP and SEI) before placing position
 information in the screen holes (PosMouse or ClampMouse).
o Enter all mouse routines (except ServeMouse) with the X register
 set to $Cn and Y register set to $n0, where n = the slot number.
o Some programs need to disable interrupts for purposes other than
 reading the mouse. If interrupts are disabled then re-enabled,
 the first call to ReadMouse could return incorrect values;
 subsequent calls to ReadMouse will return correct values until
 interrupts are disabled and re-enabled again. Disabling
 interrupts for mouse calls does not create this problem. If you
 watch numbers from the mouse while moving it in a direction which
 would increase values, you would see something similar to: 6, 7,
 8, 9, 8, 9, 10. In practice, this momentary "glitch" in the
 stream of data has little importance. If you feel you must avoid
 this glitch altogether, do not disable interrupts for more than 40
 microseconds or make sure that at least one mouse interrupt takes
 place after re-enabling interrupts.

END OF FILE TN.Mous.001

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 406 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Mous.002
###

Apple II
Technical Notes

 Developer Technical Support

Mouse
#2: Varying VBL Interrupt Rate

Revised by: Matt Deatherage November 1988
Revised by: Rilla Reynolds November 1985

This Technical Note describes a method to make the AppleMouse peripheral card
interrupt at a rate other than the default 60 Hz. This method does not work
on the Apple IIc or IIGS.

This Technical Note describes a previously undocumented call to the AppleMouse
II firmware which allows the user to set the interrupt rate to 50 or 60 Hz.
(The default is 60 Hz, which keeps the card-generated VBL interrupts
synchronized with the actual VBL rate on standard North American Apples;
European Apples use 50 Hz as a standard.)

 Call: TimeData
 Offset Location: $Cn1C
 Input: Accumulator bit 0: 0 for 60 Hz
 1 for 50 Hz

 Note: All other accumulator bits are reserved, and must be set to 0.

 Output: carry bit clear
 screen holes unchanged

You must make this call just prior to calling InitMouse to be effective. If
you want to change the interrupt rate in the middle of an application, you
must call TimeData with the appropriate value in the accumulator, then call
InitMouse (which generates an interrupt). InitMouse resets the mouse
position, mode, clamps, etc. to their default values. If you fail to call
TimeData, InitMouse will use a default interrupt rate of 60 Hz.

Note: This call exists only on the AppleMouse card for the IIe or
][+ and should only be used when you know you are working with a
IIe or][+. A user may configure a IIGS to 50 Hz by holding down
the Option key while rebooting. The standard North American Apple
IIc will not generate 50 Hz VBL interrupts.

END OF FILE TN.Mous.002

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 407 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Mous.003
###

Apple II
Technical Notes

 Developer Technical Support

Mouse
#3: Mode Byte of the SetMouse Routine

Revised by: Matt Deatherage November 1988
Revised by: Rilla Reynolds November 1985

This Technical Note explains the results of turning the mouse on and off
through the mode byte of the SetMouse routine.

What Turning the Mouse Off Does

In the description of SetMouse and the mouse mode, the low-order bit of the
mouse mode is said to control mouse off and mouse on. This terminology is
somewhat misleading. When this bit is set to 0, the mouse is off only in the
following respects:

1. The mouse position is not tracked; any mouse motion is ignored.
2. ReadMouse calls do not update the status byte or the screen holes,
 except on the IIGS, where ReadMouse always functions the same,
 regardless of mouse on or mouse off.
3. Button and movement interrupts are not generated, regardless of
 the other mouse mode bits. Pure VBL interrupts can still be
 generated, however, if bit 3 is set.

What Turning the Mouse Off Does Not Do

Other mouse functions will continue to work as usual when the mouse is off.
PosMouse and ClearMouse will change the mouse position, ClampMouse will set
new clamp values, etc. In particular:

1. Turning the mouse off and on with the mode byte does not reset any
 mouse values, including position. The mouse position retains the
 last values it had before the mouse was turned off until it is
 turned on again.
2. A mode byte of $08 (mouse off but VBL interrupt on) will generate
 VBL interrupts.

Further Reference
o Apple IIGS Firmware Reference
o Apple IIe Technical Reference Manual
o Apple IIc Technical Reference Manual

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 408 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

END OF FILE TN.Mous.003

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 409 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Mous.004
###

Apple II
Technical Notes

 Developer Technical Support

Mouse
#4: Mouse Firmware Bug Affecting ServeMouse

Revised by: Matt Deatherage November 1988
Revised by: Rilla Reynolds January 1985

This Technical Note documents a bug in the mouse firmware on the AppleMouse
card which affects the way ServeMouse works.

There is a bug in the AppleMouse II 6805 firmware which may affect the way
ServeMouse works in an application. If the application takes more than one
video cycle (normally about 16 ms) to respond to a mouse-generated interrupt,
then ServeMouse will not claim the interrupt. The 6805 returns an interrupt
status byte of $00 (i.e., no mouse interrupt pending), and the 6502 firmware
sets the carry bit (although the interrupt is also cleared by the ServeMouse
call). This situation can be confusing, and under ProDOS or Pascal it can be
lethal. We have identified the following solutions, any of which should work:

If you are not working under an established operating system (i.e., ProDOS or
Pascal):

1. Do not allow unclaimed interrupts to be fatal to your application.
 Ignore them.
2. Always service mouse interrupts within 1/60 of a second. If you
 are forced to disable interrupts for a longer period, first use
 SetMouse to set the mouse mode to 0, then call ServeMouse to clear
 any existing mouse interrupt. After interrupts are re-enabled,
 restore the mouse mode.

If you are working under an established operating system (i.e., ProDOS or
Pascal) for which unclaimed interrupts are fatal and the mouse is not the
only interrupting device:

1. Write the mouse interrupt handler to claim all unclaimed
 interrupts and make sure the mouse interrupt handler is installed
 last, otherwise the interrupt will never get through to any
 interrupt handlers which follow that of the mouse.

Note: This solution may cause cursor flicker by delaying the
application's response to VBL interrupts.

2. Write a spurious interrupt handler (also known as a "daemon"), not
 associated with any device, which claims all unclaimed interrupts
 (i.e., clears the carry bit then exits). For the reason just
 mentioned, this interrupt handler must be installed last.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 410 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Note: Under ProDOS, this limits the number if interrupting devices
to three.

This bug exists in the AppleMouse card, therefore you must deal with it when
you are writing eight-bit programs for the Apple][+, IIe, IIc and IIGS which
use the mouse. The Apple IIGS does not have this bug in its internal mouse
firmware, so sixteen-bit "native" mode programs are not affected by it.

END OF FILE TN.Mous.004

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 411 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Mous.005
###

Apple II
Technical Notes

 Developer Technical Support

Mouse
#5: Check on Mouse Firmware Card

Revised by: Matt Deatherage November 1988
Revised by: Rilla Reynolds November 1985

This Technical Note formerly described a protocol which allowed applications
to check a device which matched the mouse firmware identification for support
of interrupts.

The convention formerly described by this Note has been removed since it
conflicted with the Pascal 1.1 Firmware Protocol. The conflict could cause
Pascal to believe that optional firmware routines were present, when the card
being checked was simply stating that it supported interrupts.

Apple recommends that any mouse-type device which matches the mouse ID bytes
should support interrupts exactly as the Apple mouse firmware does.
Applications which believe they have found an Apple mouse have a reasonable
right to expect that the device they actually have found will behave as an
Apple mouse.

END OF FILE TN.Mous.005

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 412 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Mous.006
###

Apple II
Technical Notes

 Developer Technical Support

Mouse
#6: MouseText Characters

Revised by: Matt Deatherage January 1989
Revised by: Rilla Reynolds November 1985

This Technical Note describes the MouseText character set which is available
on all currently produced Apple II computers.
Changed since November 1988: Corrected typographical errors in the BASIC
and assembly language program examples.

In unenhanced Apple IIe computers, the alternate character set contained two
sets of inverse uppercase characters. In the enhanced Apple IIe, and in all
Apple IIc and IIGS computers, one set of inverse uppercase characters is
replaced by a MouseText character set. MouseText is a set of graphical
characters designed to allow Apple II computers to display a desktop metaphor
on the text screen. The Apple II Desktop Toolkit uses these characters, as do
applications like AppleLink-Personal Edition.

If your program used the set of inverse uppercase characters which were
replaced by MouseText (the set mapped to ASCII values $40-$5F), your program
will display MouseText characters instead of inverse uppercase characters on
all currently-produced Apple II computers. If your program used the other set
of inverse uppercase characters (ASCII values $00-$1F), it will display
inverse capital characters as expected.

The following will help you identify if the changes affect you or not.

1. If your program is written entirely in BASIC or Pascal or your
 assembly language program calls the COUT routine to put characters
 on the screen, you are not affected. The only exception would be
 if you print (POKE) inverse characters directly to the text screen
 in BASIC.
2. If your program uses the standard character set (checkerboard
 cursor) you are not affected.
3. If your program is using the alternate character set (solid
 cursor) and is directly storing values (via POKE) to the text
 display area, you will encounter problems if your character values
 are in the range from 64 ($40) to 95 ($5F). To recreate the
 original display, use values in the range from 0 ($0) to 31 ($1F)
 instead. Note that these lower values display as inverse
 uppercase characters on older machines as well.

Following are the methods recommended for accessing MouseText characters from
various languages:

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 413 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

AppleSoft BASIC

1. Turn on the video firmware with PR#3 (if under DOS 3.3 or
 ProDOS, use PRINT CHR$(4);"PR#3")
2. Enable MouseText characters by printing an ASCII 27 ($1B) to
 the screen.
3. Set inverse printing mode by printing an ASCII 15 ($0F) to the
 screen.

To stop displaying MouseText characters:

1. Disable MouseText characters by printing an ASCII 24 ($18) to
 the screen.
2. Set normal print mode (if desired) by printing an ASCII 14
 ($0E) to the screen.

This short BASIC program displays all MouseText characters under DOS 3.3 and
ProDOS:

 10 D$=CHR$(4)
 20 PRINT D$;"PR#3": REM Turn on the video firmware
 30 PRINT:REM This is so the screen won't be in inverse
 40 PRINT CHR$(15):REM Set inverse mode
 50 PRINT CHR$(27);"ABCEDFGHIJKLMNOPQRSTUVWXYZ@[]^_\";CHR$(24)
 60 PRINT CHR$(14):END

Assembly Language

Assembly language programs are expected to follow the same procedure as
AppleSoft BASIC. Use calls to COUT to print MouseText characters to the
screen. The following is a sample assembly language program which displays
two MouseText characters (which create a folder icon), along with their
inverse uppercase equivalents:

START LDA #$A0 ;USE A BLANK SPACE TO
 JSR $C300 ;TURN ON THE VIDEO FIRMWARE
 LDY #0 ;INITIALIZE COUNTER
LOOP LDA STR,Y ;GET VALUE
 JSR $FDED ;SEND IT THROUGH THE COUT ROUTINE
 INY
 CPY STRLEN
 BNE LOOP ;=>NOT DONE YET
 RTS
STR DFB $1B,$58,$59,$18,$58,$59
 ;MOUSETEXT ON, SHOW, MOUSETEXT OFF, SHOW
STRLEN EQU *-STR ;LENGTH OF STR

Note: Using MouseText on the text screen by directly poking or
storing MouseText character values into the text buffer is not
supported by Apple at this time. Should the MouseText character
set require remapping in the future, those programs which use the
methods outlined in this Note should still work with any new
mapping. Those which directly store MouseText values run the
strong risk of display failure under a new mapping.

Apple II Pascal

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 414 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

1. Output a CHR(27), an escape character, to enable MouseText.
2. Output a CHR(15) to turn on inverse video.
3. Output the appropriate capital letter for the desired MouseText
 character.

A Pascal sample program:

 PROGRAM OUTPUT_MOUSETEXT
 VAR CMD:PACKED ARRAY[0..1] OF 0..255
 BEGIN
 CMD[0]:=27; CMD[1]:=15;
 UNITWRITE(1,CMD,2); {turn on MouseText mode}
 {code to display MouseText
 .
 .
 .
 }
 CMD[0]:=24;
 UNITWRITE(1,CMD,1); {turn off MouseText mode}
 END

Pictorial descriptions of the MouseText character set may be found in the
Apple IIe Technical Reference Manual, the Apple IIc Technical Reference
Manual, and the Apple IIGS Hardware Reference.

Note: The pictures of MouseText characters in these manuals differ
from early implementations. In early MouseText character sets,
the icons mapped to the letters F and G combined to form a
"running man." In current production, these letters are different
pictures (an inverse carriage return symbol and a window title bar
pattern) which form no picture when placed next to each other.
Programs should not attempt to use the running man MouseText
characters.

Further Reference

o Apple IIGS Hardware Reference
o Apple IIe Technical Reference Manual
o Apple IIc Technical Reference Manual

END OF FILE TN.Mous.006

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 415 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Mous.007
###

Apple II
Technical Notes

 Developer Technical Support

Mouse
#7: Mouse Clamping

Revised by: Matt Deatherage November 1988
Written by: Rilla Reynolds October 1986

This Technical Note describes the different methods available for obtaining
mouse clamping values on different Apple II family machines.

AppleMouse Card

The AppleMouse card delivers clamping values on request. There is no specific
mouse routine to obtain the clamping values, but an internal routine may be
used by the mouse card to return them. The values are returned as minimum and
maximum values of X and Y clamps, both low and high bytes.

Note: The following code is the only supported use of the $Cn1A
offset into the mouse card firmware, and this entry point is not
available in any other mouse firmware implementation.

GetClamp LDA #$4E
 STA $478 ;Needed by Mouse Card firmware
 LDA #$00
 STA $4F8 ;Needed by Mouse Card firmware
 STA Tmp ;Zero-page word for indirect addressing
 LDA #CN ;$C<slot>, obtained prior to this rtn
 STA Tmp+1 ;$C<slot>00, Mouse Card firmware main entry
 STA ToCard+2
 LDY #$1A
 LDA (Tmp),Y
 STA ToCard+1 ;Mouse Card firmware GetClamp entry
 LDA #7
 STA BytePtr
 LDY #N0 ;$<slot>0, for Mouse Card firmware
GetByte LDX #CN ;$C<slot>, for Mouse Card firmware
 LDA #0 ;Needed by Mouse Card firmware
 JSR ToCard
 LDA $578 ;Clamp byte returned by Mouse Card firmware
 LDX BytePtr
 STA Byte,X
 DEC $478
 DEX
 STX BytePtr
 BPL GetByte
 RTS

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 416 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

ToCard JMP $0000 ;Operand modified by rtn
Byte DS 8,0 ;MinXH,MinYH,MinXL,MinYL,MaxXH,MaxYH,MaxXL,MaxYL
BytePtr DS 1,0

Apple IIc

For the Apple IIc, you can get clamping values by reading the following
auxiliary memory screen holes:

 $47D MinXL $67D MaxXL
 $4FD MinYL $6FD MaxYL
 $57D MinXH $67D MaxXH
 $5FD MinYH $6FD MaxYH

Apple IIGS

On the Apple IIGS, the Miscellaneous Tool Set call GetMouseClamp returns the
mouse clamp values as four words on the stack. This call is documented in the
Apple IIGS Toolbox Reference, Volume 1.

Further Reference
o Apple IIGS Toolbox Reference, Volume 1

END OF FILE TN.Mous.007

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 417 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Pasc.004
###

Apple II
Technical Notes

 Developer Technical Support

Pascal
#4: Pascal Declarations and the Directory Structure of a Blocked Volume

Revised by: Matt Deatherage November 1988
Revised by: Guillermo Ortiz November 1985

This Technical Note formerly described the declarations your Pascal program
needs to read an Apple II Pascal disk as well as the actual layout of an
Apple-Pascal blocked volume.

The Apple II Pascal 1.3 Manual (pp. IV-14 to IV-16) now documents the
information which this Note formerly discussed.

Further Reference
o Apple II Pascal 1.3 Manual

END OF FILE TN.Pasc.004

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 418 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Pasc.010
###

Apple II
Technical Notes

 Developer Technical Support

Pascal
#10: Configuration and Use of the Apple II Pascal Run-Time Systems

Revised by: Cheryl Ewy November 1988
Revised by: Cheryl Ewy June 1985

This Technical Note describes the Apple II Pascal Run-Time Systems which
permit the "turnkey" execution of application software which has been
developed using Apple Pascal.

System Overview

The Run-Time Systems support only the execution of an application package.
Unlike the Pascal Development System, the Run-Time Systems do not contain the
Assembler, Compiler, Editor, Filer or Linker, nor even an error reporting
mechanism at the system level. System operations such as transferring files,
compacting disks (Krunching), and the reporting of and recovery from errors,
are all left to the application program. It is the software developer's
responsibility to design and implement friendly, entirely self-contained
packages for use with the Run-Time Systems. The safest assumption to make
when developing such packages is that the user is not only unfamiliar with the
facilities of the Pascal Development System, but may also be ignorant of
computer operation and use in general.

The three run-time systems currently available are :

o The 48K Run-Time System V1.2 (standard and stripped)
o The 64K Run-Time System V1.3 (standard only)
o The 128K Run-Time System V1.3 (standard only)

The name of each Run-Time System indicates the minimum amount of RAM necessary
for proper operation. Any additional RAM available will not be used by the
Run-Time Systems.

The 48K Run-Time System has not been updated to version 1.3, as have the 64K
and 128K Run-Time Systems. Thus, the changes and improvements made to Pascal
for version 1.3 are not available in the 48K Run-Time System. Specifically,
the 48K Run-Time System can only use Disk II drives and can only boot from
slot 6. See the Apple II Pascal 1.3 Manual for more information on the
differences between versions 1.2 and 1.3 of Apple II Pascal.

There are two configurations of the 48K Run-Time System available, one of
which provides more free memory for the application package's programs and
data than does the other. Except as noted later, the standard configuration
of the Run-Time System supports all features of the Pascal Development System

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 419 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

that are relevant to turnkey execution of application software. The stripped
configuration lacks set operations and floating-point arithmetic.

Contents of the Apple II Pascal Run-Time System Disks

The following files are contained on the Apple II Pascal 1.2 48K Run-Time
System disk (RT48:):

o RTSTND.APPLE 48K Run-time standard P-machine.
o RTSTRP.APPLE 48K Run-time stripped P-machine.
o SYSTEM.PASCAL 48K Run-time operating system.
o RTBSTND.BOOT Contains the boot code for RTSTND.APPLE.
o RTBSTRP.BOOT Contains the boot code for RTSTRP.APPLE.
o RTBOOTLOAD.CODE Utility program to load 48K Run-time boot
 code onto blocks 0 and 1 of Vendor Product
 disk.

The following files are described below:

o SYSTEM.LIBRARY
o SYSTEM.ATTACH
o RTSETMODE.CODE
o II40.MISCINFO
o II80.MISCINFO
o IIE40.MISCINFO
o SYSTEM.MISCINFO
o SYSTEM.CHARSET

The following files are contained on the Apple II Pascal 1.3 64K Run-Time
System disk (RT64:):

o SYSTEM.APPLE 64K Run-time standard P-machine.
o SYSTEM.PASCAL 64K Run-time operating system.

The following files are described below:

o SYSTEM.LIBRARY
o SYSTEM.ATTACH
o RTSETMODE.CODE
o II40.MISCINFO
o II80.MISCINFO
o SYSTEM.MISCINFO
o SYSTEM.CHARSET

The following files are contained on the Apple II Pascal 1.3 128K Run-Time
System disk (RT128:):

o SYSTEM.APPLE 128K Run-time standard P-machine.
o SYSTEM.PASCAL 128K Run-time operating system.

The following files are described below, and are identical to the 64K Run-Time
System files:

o SYSTEM.LIBRARY
o SYSTEM.ATTACH
o RTSETMODE.CODE
o SYSTEM.MISCINFO

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 420 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

o SYSTEM.CHARSET

The Development Systems referred to in the following file descriptions are the
Apple II Pascal 1.3 Development System when discussing files on the 64K and
the 128K Run-Time System disks and the Apple II Pascal 1.2 Development System
when discussing files on the 48K Run-Time System disk.

SYSTEM.LIBRARY contains the run-time versions of the same Intrinsic
 Units supplied with the Development System. These
 Units are for use only with the Run-Time System and
 will not execute properly in the Development
 environment. Conversely, only the Units in this
 library, not those on the Development System disks,
 should be used when executing programs in the Run-time
 environment. Note that the developer is free to add
 his own Intrinsic Units to SYSTEM.LIBRARY.
SYSTEM.ATTACH is a run-time version of the dynamic driver-attachment
 program described in Apple II Pascal Device and
 Interrupt Support Tools. This version may only be
 used with the Run-Time Systems.
RTSETMODE.CODE is a utility program that permits the vendor to arm or
 disarm any or all of four system options: Filehandler
 Overlay, Single Drive System, Ignore External
 Terminal, and Get/Put and Filehandler Overlay.
MISCINFO files are identical to those supplied on the
 Development System disks and are supplied here only
 for the sake of redundancy.
SYSTEM.CHARSET is identical to the file supplied with the Development
 System; it is included here only for the sake of
 redundancy. This file is needed on the Vendor Product
 Disk only if TURTLEGRAPHICS is used.

Of the files supplied on the Run-Time System disks, the final Vendor Product
Disk should contain only the Run-time P-machine (SYSTEM.APPLE, RTSTND.APPLE,
or RTSTRP.APPLE), SYSTEM.PASCAL, SYSTEM.LIBRARY, the appropriate MISCINFO file
renamed to SYSTEM.MISCINFO, and, optionally, SYSTEM.CHARSET. SYSTEM.ATTACH,
with its attendant data files should be included on the Vendor Product Disk if
special device drivers must be bound into the system for use by the
Application Package. All other files on the Run-Time System disks are used in
creating and configuring the Vendor Product Disk.

Operation

The term Vendor Product Disk, as used throughout this Technical Note, refers
to the primary (boot) disk in a turnkey application package, which is assumed
to contain the following software: the Run-time P-machine, the Run-time
Operating system, a SYSTEM.LIBRARY file, a SYSTEM.MISCINFO file, and the files
comprising the application package's programs (and any necessary data). In
most instances, the Vendor Product Disk will be the only software disk in the
package. Larger systems, however, may also include other disks that contain
additional software and data which will not fit on the boot disk.

Note that the main application program must be named SYSTEM.STARTUP, so the
Run-Time System can find it when booting.

A two-stage boot process can be used with the 64K and 128K Run-Time Systems if
the necessary boot files listed above cannot fit on a single disk. In this

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 421 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

case, the primary boot disk would contain only the Run-time P-machine. A
second-stage boot disk would contain the remainder of the files. A two-stage
boot process cannot be used with the 48K Run-Time System.

The Boot Process

The boot code (contained in blocks 0 and 1 of the boot disk) is loaded into
memory by the Autostart ROM. It checks for the P-machine file and loads it
into RAM. The P-machine, in turn, brings in and initializes the Run-time
operating system. (In the case of a two-stage boot, the message "Insert boot
disk with SYSTEM.PASCAL on it, then press RETURN" appears after the P-machine
has been loaded. The user should then insert the second-stage boot disk and
press the Return key, which results in the Run-time operating system being
loaded and initialized.) The first noteworthy action taken by the operating
system is to execute SYSTEM.ATTACH, if that utility program is available on
the Vendor Product Disk. Remember that SYSTEM.ATTACH must not be present on
the Vendor Product Disk unless special, low-level I/O drivers must be bound
into the system. As explained more fully in Apple II Pascal Device and
Interrupt Support Tools, SYSTEM.ATTACH uses two special data files and will
fail if these files are not present on the boot disk. Putting SYSTEM.ATTACH
on the Vendor Product Disk without also providing the required data files
insures consistent failure of the system boot process. It is possible to
include SYSTEM.ATTACH on the Vendor Product Disk, while defeating the
automatic execution of it at boot time, by changing its name.

The boot process culminates when the main application program, SYSTEM.STARTUP,
is loaded and executed. Any failure during the boot process is fatal.
Whenever possible, a failure will display the following message:

SYSTEM FAILURE NUMBER nn. PLEASE REFER TO PRODUCT MANUAL.

Here, nn refers to the actual number reported when the failure occurs. This
number corresponds to one of the following failures:

 01 Unable to load specified program
 02 Specified program file not available
 03 Specified program file is not code file
 04 Unable to read block zero of specified file
 05 Specified code file is un-linked
 06 Conflict between user and intrinsic segments
 07 UNASSIGNED ERROR CODE
 08 Required intrinsics not available
 09 System internal inconsistency
 10 Can't load required intrinsics/Can't open library file
 11 Specified code file must be run under the 128K system
 12 Original disk not in boot drive

Clearly, these messages are useful as debugging tools as well as in mechanisms
for field failure reporting. The Product Manual mentioned in the bootstrap
failure message is, of course, the vendor's own product manual. It is the
responsibility of the vendor to enumerate and explain for the user the
situations in which bootstrap failures may occur, as well as suggest remedies
for these failures.

General Considerations

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 422 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Once the program is loaded and running, operation proceeds normally and may
even include removal of the system disk. (It is, however, the responsibility
of the application package to protect itself against the possibility that the
system disk will not be on-line when a segment must be loaded or when a
specific subprogram must be chained to. At such times, the application
software should first determine whether or not the required disk is on-line,
and, if not, suspend operation, after giving a suitable prompt, until the user
has inserted the disk in the appropriate drive.) Any errors that occur during
execution of the application package cause the system to transfer program
control to a specific procedure in the currently-executing application
program, where code intended to respond to errors is assumed to exist. If any
program in the application system terminates without chaining to another one,
the Run-time system reboots into SYSTEM.STARTUP.

Specifications

Available Configurations

The memory requirements of different applications impose the need for
different Run-Time Systems. The developer should choose one of the systems as
the target environment, and keep its limitations and capabilities in mind
during design and implementation of the application package. Apple currently
supports the following Run-Time Systems:

o The 48K Run-Time System V1.2 (standard and stripped)
o The 64K Run-Time System V1.3 (standard only)
o The 128K Run-Time System V1.3 (standard only)

The difference between the standard and stripped versions of the 48K Run-Time
System is that the stripped version does not support set operations or
floating point arithmetic, thereby making more memory available for the
application.

The chart below summarizes the amount of free memory that is available under
the different Run-Time Systems for use by the application package. Note that
when swapping is set to level 1, the amount of memory available to the
application package is increased by approximately 3660 bytes.

 | No Swapping | Swapping on
 | | byte level
 __________________|_________________|_________________
 48K Standard | 23372 bytes | 27040 bytes |
 48K Stripped | 25676 bytes | 29344 bytes |
 64K | 40290 bytes | 43958 bytes |
 128K (code) | 40758 bytes | 44410 bytes |
 128K (data) | 44502 bytes | 44526 bytes |

 Figure 1-Free Memory in Run-Time Systems

Note: The amount of free memory available with the 64K Run-Time
System is reduced by 1024 bytes if it is operating in 40-column
mode. Similarly, the amount of free memory available for data in
the 128K Run-Time System is reduced by 1024 bytes if the system is
operating in 40-column mode.

There is another level of swapping (level 2) which provides an additional 810
bytes of usable memory, however, using GET or PUT to disk will be slow if

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 423 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

swapping level 2 is selected since these routines will have to be loaded from
disk repeatedly. READ and WRITE to disk will also be slow since they use GET
and PUT. BLOCKREAD, BLOCKWRITE, UNITREAD, and UNITWRITE will be unaffected.

Swapping can be set to the desired level by using RTSETMODE (described later)
or by calling a procedure in CHAINSTUFF before chaining to another subprogram.
See the Apple II Pascal 1.3 Manual for further information on swapping.

Use Environment

The hardware environment must include the following:

48K Run-Time System An Apple][or][+ with 48K of RAM (minimum), or an
 Apple IIe, IIc or IIGS.
64K Run-Time System An Apple][or][+ with 48K of RAM and an Apple
 Language Card, or an Apple IIe, IIc or IIGS.
128K Run-Time System An Apple IIe with an Extended 80-Column Text Card, an
 Apple IIc or an Apple IIGS.
All Run-Time Systems At least one disk drive in slot 4, 5, or 6. Video
 screen or external terminal (video screen preferred).

Note that the Run-Time Systems support all standard Apple peripheral cards.
Other cards may not operate properly, especially if they include firmware that
depends upon specific internal characteristics of the P-machine or operating
system. SYSTEM.ATTACH must be used by those vendors who wish to reconfigure
the BIOS (Basic I/O Subsystem) to support non-standard peripheral devices.
Through the ATTACH facility, it is possible to assign new physical devices to
any of the existing logical I/O units in the Pascal system, as well as retain
the standard device assignments while adding new devices to the system.
Drivers prepared for use with SYSTEM.ATTACH are bound into the system
dynamically when it boots. Note that the addition of special I/O drivers to
the system will reduce the amount of free memory available for use by the
applications code, since drivers are loaded on the Pascal system heap. For
more information, see Apple II Pascal Device and Interrupt Support Tools.

Restrictions and Considerations

1. SYSTEM.ATTACH and the CHAINSTUFF, LONGINTIO, and PASCALIO units in
 SYSTEM.LIBRARY make assumptions about the internal structure of
 the Pascal operating system. Because the internals of the Run-
 time operating systems are different from those in the Development
 System, only the versions of CHAINSTUFF, LONGINTIO, PASCALIO and
 SYSTEM.ATTACH that are supplied on the Run-Time System disks
 should be used in the Run-time execution environment. (These
 special versions should never be used in the Development
 environment.)

2. The units TRANSCEND and TURTLEGRAPHICS employ floating-point
 operations, so software intended to be executed under the 48K
 stripped Run-Time System should not use them. For software that
 employs the TURTLEGRAPHICS procedure TURNTO, note that turns
 through right angles and null angles are treated as special cases,
 and the TURTLEGRAPHICS unit uses only integer arithmetic in
 calculating the trigonometric values needed to execute them.
 TURTLEGRAPHICS may be used under the 48K stripped Run-Time System
 if the turtle is allowed to make only right-angle turns (i.e., the
 HILBERT demonstration program on the APPLE3: disk). Attempts to
 draw arbitrary curves, as demonstrated in the GRAFDEMO program on

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 424 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 APPLE3:, will produce execution errors in the 48K stripped Run-
 time environment.
3. Pascal's special function keys retain their meanings in the Run-
 Time Systems. The following keys have special meanings:

 Control-@ Break
 Control-A Switch to alternate half of screen
 Control-F Flush screen display
 Control-S Freeze (Stop) screen display
 Control-Z Initiate auto-follow mode
 Control-W, Control-E Upper/lower case activation
 Control-R, Control-T Reverse video toggles
 Control-K Left square bracket
 Shift-M Right square bracket

 Note: Some of these special function keys are ignored by
 Pascal if it is running on an Apple IIe, IIc or IIGS. Also,
 it is possible to disable some of these special key
 functions. See Apple II Pascal 1.3 Manual for complete
 details.

4. The Run-Time System will operate correctly only with programs that
 have been prepared for execution in the Apple II Pascal
 environment.using Apple's Pascal compiler or Pascal-system
 assembler on either an Apple II or an Apple ///.

5. The Run-Time System is optimized for operation with Apple's built-
 in video output screen. There is no easy way for a turnkey
 package to reconfigure its host Run-Time System to use the random-
 cursor facilities of any arbitrary external terminal. Therefore,
 it is expected that users of the system will be operating with the
 standard Apple video screen and not an external terminal. Any
 program that makes use of screen control, such as clearing the
 screen, random cursor addressing, or backspacing, is not likely to
 work properly on an external terminal. To avoid this problem, the
 Run-Time System contains a switch which can be set through the
 RTSETMODE program (explained below). When set, this switch causes
 the system to ignore an external terminal, if one is connected.
 Simple programs that do not make use of any screen control may
 leave the external terminal switched in without any adverse
 consequences.

Run-Time System Configuration Utilities

RTSETMODE (provided with all Run-Time Systems)

Flags which note the state of four system options are contained within a
special part of the directory of any Run-Time System boot disk. (These flags
will not normally be present on disks prepared for or used with the Pascal
Development System.) When a flag is set (TRUE), the corresponding system
option is enabled. The option is disabled when the corresponding flag is
reset (FALSE). At boot time, the option flags are checked and are used during
a dynamic configuration process which occurs before the application software
is executed.

The RTSETMODE utility is used by the application developer to set or reset the
option flags, according to the requirements of the application package. In

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 425 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

operating RTSETMODE, the developer first selects the Pascal volume to be
affected, then answers four yes-or-no questions by pressing the Y or N keys,
respectively. Responding to any prompt for input by pressing only the Return
key causes immediate termination of the program.

Answering yes to any of the following questions arms the indicated option
(setting the corresponding flag), while answering no disarms the option (and
resets the corresponding flag).

 Arm Filehandler Overlay Option? Arming this option sets OS
 swapping to level 1. Operating System code related to disk file
 opening and closing is swapped into memory as needed by the
 application software, thus freeing approximately 3660 bytes of RAM
 for use by the application.

 Arm Single-drive System Option? With this option armed, the
 initial boot process is finished, the Pascal system will not
 assume the availability of any disk drives other than the boot
 drive. Specifically, volume searches will be limited to the boot
 drive. The application may still use Apple Pascal's UNITREAD and
 UNITWRITE procedures to access any other drives which may be
 connected to the system.

 Arm Ignore External Terminal Option? Arming this option insures
 that the Pascal system will always operate in 40-column mode,
 regardless of whether or not an external terminal interface or 80-
 column card is available.

 Arm Get/Put and Filehandler Overlay Option? Arming this option
 sets OS swapping to level 2. Operating System code related to
 disk file opening and closing, as well as GET and PUT to disk is
 swapped into memory as needed. (See above for more information on
 swapping level 2.)

After the four-question sequence, RTSETMODE asks the user to confirm that all
information input to that point is correct and should be used to update the
Vendor Product Disk. If so, an attempt is made to update the disk's directory
with the new set of option flags, and RTSETMODE finishes by reporting the
success or failure of the update operation.

Developers should note that only exact copies of a Run-time boot disk will
retain its option flags. Transferring the Run-Time System and applications
software from disk to disk on a file-by-file basis will not transfer the
option flags between the disks. For this reason, it is recommended that
RTSETMODE be applied to the product master of any package based on Run-time
immediately prior to releasing that master to production, to insure the
correct status of the option flags.

If a two-stage boot will be used for a run-time application, RTSETMODE must be
run on both boot disks since the flags are checked by both the P-machine and
the operating system.

RTBOOTLOAD (48K Run-Time System only)

This program is used to transfer to the Vendor Product Disk the proper boot
code for the chosen 48K Run-time configuration (STND or STRP). Responding to
any prompt for input by pressing only the Return key results in immediate
termination of the program. RTBOOTLOAD first asks for the name of the file

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 426 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

which contains the appropriate boot code (either RTBSTND.BOOT or
RTBSTRP.BOOT). The filename must be entered exactly as it appears in the
directory (including a volume prefix if the file is not on the default
volume), or the program will not be able to find the file, and will repeat its
request for a filename. Once it has fetched the boot code, RTBOOTLOAD asks
for the volume name of the Vendor Product Disk, then waits for the user to
press the space bar (thus providing the user with an opportunity to insert the
selected volume, if necessary) before attempting to transfer the boot
information. The success or failure of the transfer is reported before
RTBOOTLOAD terminates. This program is only supplied on the 48K Run-Time
System disk and should never be used to transfer boot information to a disk
which contains the 64K or 128K Run-Time Systems, as doing so will prevent the
systems from booting correctly.

Error Handling

If an error in execution or I/O occurs during program operation, the Run-Time
System attempts to let the application package itself acknowledge, and if
possible, recover from the error condition. As with the Pascal Development
environment, the application developer is free to use the $I- and $R- compiler
options to assume localized, programmatic control of the corresponding error
situations.

When the Run-Time System detects an error, it stores the error number in
IORESULT and calls PROCEDURE NUMBER TWO of the currently-executing program.
This is the procedure in segment number 1 that has been given the procedure
number 2 by the compiler. In other words, it is the first one declared after
the program heading that is not itself a unit or segment procedure, or within
a unit or segment procedure. In a compiler listing, PROCEDURE NUMBER TWO may
be identified as those lines whose S (segment) number is 1, and whose P
(procedure) number is 2.

PROCEDURE NUMBER TWO may be declared as a forward procedure since the
procedure number is assigned at the forward declaration.

From now on, PROCEDURE NUMBER TWO will usually be called the error handler,
since it must always be reserved by the application programmer for the sole
purpose of handling errors. The error handler may not have any parameters,
and must always be declared as a PROCEDURE, never as a FUNCTION.

The error handler can determine what kind of error has occurred by checking
the value of the IORESULT function. In the Development System, this function
is restricted to containing the codes for any I/O errors that might occur
during execution. In the Run-Time Systems, IORESULT has been extended to
report all system errors, as well as the usual I/O errors.

Here are all the values IORESULT can assume during Run-time execution:

 00 No error 100 Unknown Run-time error
 01 Bad block, parity error 101 Value range error
 02 Illegal unit number 102 No procedure in segment table
 03 Illegal I/O request 103 Exit from uncalled procedure
 04 Data-com timeout 104 Stack overflow
 05 Volume went off-line 105 Integer overflow
 06 File lost in directory 106 Divide by zero
 07 Bad file name 107 Nil pointer reference
 08 No room on volume 108 Program interrupted by user

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 427 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 09 Volume not found 109 System I/O error
 10 File not found 110 User I/O error
 11 Duplicate directory entry 111 Unimplemented instruction
 12 File already open 112 Floating point error
 13 File not open 113 String overflow
 14 Bad input format 114 Programmed HALT
 16 Disk is write-protected 115 Programmed breakpoint
 17 Illegal block number 116 Codespace overflow
 18 Illegal buffer address
 19 Must read a multiple of 512 bytes
 20 Unknown ProFile error
 64 Device error

It is recommended that a program's error handler should simply report system
error for all cases except those which are relevant to the program. Global
state variables in the program may be used to help determine the nature of the
problem and report it to the user. Note that a system reboot occurs if an
attempt is made to exit the program (without chaining to another).

After the error handler finishes its operation, control returns to the caller
of the procedure where the error occurred (unless the error was fatal). In
this way, program operation may be continued, cleanly and simply, after an
error is handled. The caller of a failure-prone procedure can set and test
status flags to determine whether or not the called procedure completed its
operation and either repeat the procedure call or perform an alternative
action.

In developing particularly large systems where program chaining is used, the
application programmer should remember that each chained program must reserve
PROCEDURE NUMBER TWO as an error handler.

Following are two programming examples. The first shows a typical error
handler routine, and the second is a program fragment that demonstrates an
error recovery technique.

(* EXAMPLE #1 -- ERROR HANDLER *)

 (* THE FOLLOWING PROCEDURE IS ONLY *)
 (* CALLED BY THE OPERATING SYSTEM *)

 PROCEDURE ErrorHandler;

 PROCEDURE Message(Space: Boolean; S: String);
 VAR Ch : Char;
 BEGIN (* Message *)
 WriteLn;
 WriteLn('*** ',S);
 IF Space THEN
 BEGIN
 Write('*** Press SPACE-BAR to continue');
 REPEAT
 Read(Keyboard, Ch)
 UNTIL ((Ch = ' ') AND (NOT EoLn));
 END;
 END (* Message *);

 BEGIN (* ErrorHandler *)
 IF (IOResult = 14) THEN

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 428 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 Message(True,'That is not a legal integer!')
 ELSE IF (IOResult = 106) THEN
 Message(True,'Division by zero is impossible!')
 ELSE BEGIN
 Message(False,'System error. Please reboot.');
 WHILE True DO (* Hang *);
 END;
 END (* ErrorHandler *);

 (* END OF EXAMPLE #1 *)

 (* EXAMPLE #2 -- ERROR RECOVERY USING ERROR HANDLER OF EXAMPLE #1 *)

 PROCEDURE Calculator;
 (* Features recovery from input or arithmetic error. *)
 TYPE Order = (First, Second);
 VAR A,B : Integer;
 Flag : Boolean;

 PROCEDURE GetNumber(Which: Order; VAR Number: Integer);
 BEGIN
 Write('Input the');
 IF (Which = First) THEN
 Write(' first')
 ELSE Write(' second');
 Write(' number: ');
 Read(Number); ReadLn;
 Flag := True;
 END (* GetNumber *);

 PROCEDURE Answer;
 VAR R : Real;
 BEGIN
 R := A / B; (* Bombs if B=0 *)
 WriteLn;
 WriteLn(A,' divided by ',B,' is ',R);
 END (* Answer *);

 BEGIN (* Calculator *)
 REPEAT
 Flag := False;
 WriteLn;
 WriteLn;
 REPEAT
 GetNumber(First,A)
 UNTIL Flag;
 Flag := False;
 WriteLn;
 REPEAT
 GetNumber(Second,B)
 UNTIL Flag;
 Answer;
 UNTIL Eof;
 END (* Calculator *);

 (* END EXAMPLE #2 *)

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 429 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

To illustrate the effect of the Run-Time System's error handling mechanism,
here is the interaction between user and machine during a typical run of the
above Calculator program. User-input is terminated by a press of the Return
key in all cases except the first and last. In the first case, the error
handler is invoked during the erroneous numeric input. In the last case, the
system accepts and acts upon a Control-C signal before the user has a chance
to press any other keys.

 Input the first number: N

 *** That is not a legal integer!

 Input the first number: 16

 Input the second number: 0

 *** Division by zero is impossible!

 Input the first number: 16

 Input the second number: 2

 16 divided by 2 is 8

 Input the first number: <Control-C>

As soon as the user presses Control-C, the Run-time system detects the end of
the standard input file (EOF), and reboots (right back into Calculator).

Differences between the Pascal Development Systems
and the Run-Time Systems

Although the Run-Time Systems will run most Pascal code files exactly as does
the Pascal Development System, the application developer must be aware of
important differences between the two environments. As mentioned above, there
is no system-level handling of any type of error that may occur, including
stack overflow, arithmetic errors, or bad disk reads. It is left to the
application package to respond to all error conditions. The typical user will
not have access to (nor knowledge of) the Pascal Formatter or Filer.

Many programs which fit comfortably in the 64K Development System environment
may fail to execute at all under the 48K Run-Time System due to the difference
in available user memory. Similarly, programs developed with the 128K
Development System may fail to execute under the 64K Run-Time System for the
same reason. While large systems can be made to fit within the confines of a
particular Run-time environment, this is possible only through use of Apple
Pascal's program segmentation (overlay) and chaining facilities. It is
suggested, however, that much thought and care be taken when using chaining
and segmentation in software design, since these facilities, by their very
nature, involve time-consuming disk accesses. Application software that
abuses chaining or segmentation, or employs them in a careless fashion, may
easily waste a large amount of time in disk thrashing, especially if swapping
is being used. Finally, an application package runs the risk of massive
failure unless calls to program overlays and chaining are preceded by checks
that the expected disk is in the appropriate drive. This is especially
important when the target machine includes only one disk drive (as is
frequently the case).

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 430 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

The following items are never present in the Run-Time Systems:

o System HOMECURSOR, CLEARSCREEN, and CLEARLINE functions
o System prompt function
o Compiler, Assembler, Linker, Editor, and Filer
o IDSEARCH and TREESEARCH procedures

Programs that make use of information stored in specific memory locations
within the Development System P-machine or that make assumptions about static
or dynamic memory allocation at the operating system level (i.e., for the
purpose of accessing system data structures) are likely to function
incorrectly when executed in the Run-time environment. This failure to run is
due to the code reorganization, compaction, and optimization that was
necessary to produce the Run-Time Systems.

Creation of Vendor Product Disks

The following steps can be used as a guide for creating a Vendor Product Disk:

1. Format a disk using the Pascal Development System Formatter.
2. Transfer the files SYSTEM.APPLE (or RTSTND.APPLE or RTSTRP.APPLE),
 SYSTEM.PASCAL, SYSTEM.LIBRARY, SYSTEM.MISCINFO, and SYSTEM.CHARSET
 (if needed) from the Run-Time System disk to the Vendor Product
 Disk.
3. Transfer the code file or files for the application to the Vendor
 Product Disk. The main code file for the application must be
 named SYSTEM.STARTUP.
4. Run the Pascal Development System Library program to add any
 needed library units to SYSTEM.LIBRARY on the Vendor Product
 Disk.
5. Run RTBOOTLOAD to load the appropriate bootstrap code from RT48:
 onto the Vendor Product Disk. (48K Run-Time Systems Only)
6. Run RTSETMODE if you wish to arm the Filehandler Overlay option,
 the Single-Drive System option, the Ignore External Terminal
 option, or the Get/Put and Filehandler Overlay option.

Vendor Product Disks, or other disks which contain 48K Run-Time System
software should be copied using only whole-volume transfer mechanisms, such as
that provided by the Pascal system Filer. A succession of individual file
transfers, or a wildcard transfer (such as transferring #4:= to #5:$), will
only copy files from one disk to another. They will not copy the crucial 48K
Run-time boot code between disks. Only whole-volume transfers (such as #4: to
#5:, or SOUP: to NUTS:) will result in complete copies, containing the proper
boot information.

Vendor Product Disks, or other disks which contain 64K or 128K Run-Time System
software can be copied using either whole volume or individual file transfers
since they do not contain special bootstrap information.

Apple FORTRAN and the Run-Time Systems

Apple FORTRAN programs will execute correctly under the Apple II Pascal Run-
Time Systems (48K and 64K only), as long as no execution errors or untrapped
I/O errors occur. Using only FORTRAN, it is impossible to produce object code
that contains the specially-placed error-handling procedure to which control

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 431 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

is transferred in the event of an untrapped error during Run-time execution.
Furthermore, the FORTRAN Run-Time Support Library includes system-level code
for handling FORTRAN I/O errors independently of the Apple Pascal system's own
error-handling facilities. Execution of this special code will always lead to
a system reboot in the Run-time environment.

Users who wish to provide turnkey packages based on FORTRAN object-code are
advised to link the FORTRAN object-code to a Pascal host, as explained in the
Apple FORTRAN Language Reference Manual. The only live code which the Pascal
host must contain is the error-handling procedure that the Run-Time Systems
require for robust execution of turnkey software.

Further Reference
o Apple II Pascal 1.3 Manual
o Apple II Pascal Device and Interrupt Support Tools
o Apple FORTRAN Language Reference Manual

END OF FILE TN.Pasc.010

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 432 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Pasc.012
###

Apple II
Technical Notes

 Developer Technical Support

Pascal
#12: Disk Formatter Routine

Revised by: Cheryl Ewy & Dan Strnad November 1988
Revised by: Cheryl Ewy June 1985

This Technical Note documents the Apple II Pascal 1.3 Disk Formatter routine.

Introduction

Integrating the Pascal Disk Formatter utility into your application program
will free the user from having to format Pascal disks prior to running your
program. Error codes that specify any problems encountered during the
formatting process are returned. The disk contains the following files:

FORMATTER.TEXT is a sample Pascal host program that illustrates the use of the
formatter routine.

FORMDISK.TEXT is an assembly language function that is linked to your Pascal
host program. It contains the code to format disks in ProDOS blocked devices
and calls the ASMFORMAT function to format disks in Disk II drives.

ASMFORMAT.TEXT is the Disk II formatter, an assembly language procedure that
must be specially handled (see below).

BOOTTRACKS.DATA is a data file that is used to create the formatter data file.
It contains boot blocks for both Disk II drives and ProDOS blocked devices and
a blank disk directory.

MAKEFMT.TEXT, MAKEFMT.CODE are a Pascal program that will create the required
formatter data file.

FORMATTER.DATA is a complete formatter data file (identical to that supplied
with the Apple II Pascal 1.3 Development System).

FORMATTER.CODE is the formatter program supplied with the Apple II Pascal 1.3
Development System.

All programs are supplied in source (and where appropriate, as code files) so
that you may modify them for your own particular purposes.

ASMFORMAT - The Disk II Formatter Routine

The file ASMFORMAT.TEXT contains a proprietary subroutine that performs the

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 433 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

actual formatting of Disk II disks. It is written in 6502 assembly language
suitable for assembly by the Apple II or Apple /// Pascal Assembler. This
code requires special handling by the host program to ensure a reliable
format. It contains critical timing code, and because of this, it must be
located on a page boundary in memory (a location of the form xx00, e.g., 3D00,
2000, etc.). To do this, it must be assembled ABSOLUTE and you must use ORG
to place it on particular page boundary. It comes supplied at location 3D00,
which is the location used by the formatter routine supplied with the Apple II
Pascal 1.3 Development System (FORMATTER.CODE). If you need to move it to
another particular location you must change the .ORG statement in the file to
the new address. The formatter will not work reliably if it is not on a page
boundary. The code itself is 1082 bytes in length.

Because of the special nature of this code, it must be loaded by the Pascal
host program at the chosen location. The following sample code illustrates
how this is done:

 TYPE MEMARRAY = PACKED ARRAY [0..1535] OF 0..255;

 MEMPTR = RECORD CASE BOOLEAN OF
 TRUE: (ADDR: INTEGER);
 FALSE: (MEM: ^MEMARRAY);
 END;

 VAR LOADPTR: MEMPTR; {this is the pointer to the absolute memory
 location where the Disk II formatter routine
 will be loaded.}

 {the following code will load the Disk II formatter routine
 from the formatter data file into memory at a fixed location}

 RESET(DATAFILE, '%FORMATTER.DATA');

 LOADPTR.ADDR := 15616; {this value is the absolute memory location
 where the code is to be loaded. In this
 example, 15316 is the decimal equivalent of
 the memory address 3D00.}

 BLOCKSREAD := BLOCKREAD(DATAFILE, LOADPTR.MEM^, 3);
{the above line will load three blocks (the Disk II formatter code) from the data
file into
the memory space specified in LOADPTR}

The Disk II formatter routine assumes that the A register has been setup with
the slot number and drive number of the disk which is to be formatted.
FORMDISK sets up this information before doing a JSR to the Disk II formatter
routine. The contents of the A register are defined as follows:

 Bit 7 Drive number. 0=Drive 1, 1=Drive 2
 Bits 6-4 Slot number. 100=4, 101=5, 110=6. No other slots are
 supported.
 Bits 3-0 Reserved; must be set to zero.

After the Disk II formatter routine is called, it returns an error code in the
A register. FORMDISK then returns this error code to the host program. The
error codes are listed in the following section.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 434 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

FORMDISK - The Main Formatter Routine

The file FORMDISK.TEXT is an assembly language function that is assembled and
linked to your Pascal host program. This function determines whether the
drive containing the disk to be formatted is a Disk II drive or a ProDOS
blocked device. If it is a Disk II drive, FORMDISK invokes the Disk II
formatter routine with the required parameters as described in the previous
section. If the drive is a ProDOS blocked device, FORMDISK sets up the proper
parameters and executes a format call to the device. FORMDISK will return an
error code back to the Pascal host after the formatting is complete. The call
to this function is shown below:

 VAR ERRCODE: INTEGER; {the error code returned}
 VOLNUM: INTEGER; {the volume (unit) number of the disk}
 ERRCODE := FORMDISK(VOLNUM); {the function call}

There are six possible error codes returned by FORMDISK. They indicate
problems that may have occurred during the formatting process. They are as
follows:

Error code Error Possible causes

00 No Error Formatting successfully completed

39 Unable to format the disk No disk in drive; drive door not
 closed; bad media

43 Disk is write-protected Disk is write-protected; disk is
 pushed halfway into drive,
 activating the write-protect switch

47 No disk in drive The disk drive is empty. This error
 is only reported for ProDOS block
 devices. If a Disk II drive is empty,
 error #39 is returned.

51 Drive speed is too slow The drive motor speed requires
 adjustment, it is too slow. This
 erroris only reported for Disk IIs.

52 Drive speed is too fast The drive motor speed requires
 adjustment, it is too fast. This
 error is only reported for Disk IIs.

To use the FORMDISK function requires that you modify one .EQU statement in
the source file (FORMDISK.TEXT) to specify the location of the Disk II
formatter routine in memory. Currently, the statement reads as follows:

 DO_FORMAT .EQU 3D00 ;memory address of the Disk II formatter routine

If you decide to relocate the Disk II formatter routine, simply change this
value to reflect the new memory address, then reassemble FORMDISK. The
FORMDISK function does a JSR to this value to invoke the Disk II formatter
routine.

Note: The value used in the .ORG in ASMFORMAT and the .EQU in
FORMDISK must match.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 435 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Making a Formatter Data File

To use the formatter requires a data file that contains three pieces:

1. The Disk II formatter routine code, to be loaded into memory.
2. The boot code that is written to blocks 0 and 1 of the formatted
 disk.
3. A blank UCSD Pascal directory that is written to block 2 of the
 formatted disk.

The formatter disk comes with the second and third parts in the file
BOOTTRACKS.DATA. This four-block file contains the boot blocks for Disk II
drives and ProDOS blocked devices and the blank directory. Once the Disk II
formatter routine has been assembled (to ASMFORMAT.CODE) it must be
concatenated to the BOOTTRACKS.DATA file to make the formatter data file. The
Disk II formatter routine code occupies the first 3 blocks of the formatter
data file, which is then followed by the contents of the BOOTTRACKS.DATA file.
Because the assembler puts special informational content blocks into a code
file, a special program is required to copy only the blocks containing the
code of the Disk II formatter routine. This is the program MAKEFMT.CODE.
This program copies blocks 1, 2, and 3 of ASMFORMAT.CODE to blocks 0, 1, and 2
of the file FORMATTER.DATA. It then copies blocks 0, 1, 2, and 3 of the file
BOOTTRACKS.DATA to blocks 3, 4, 5, and 6 of the file FORMATTER.DATA. This
makes the required formatter data file (7 blocks in size) that will be used by
the Pascal host program. MAKEFMT requires that the files ASMFORMAT.CODE and
BOOTTRACKS.DATA be on the prefix volume. Set the Pascal prefix to this volume
and X(ecute MAKEFMT. It will create the file FORMATTER.DATA on the same
volume. The source for this program is included so that you may modify it as
needed.

The Pascal Host Program

It is up to you to write the Pascal host program. On the disk is a sample
program (the Apple II Pascal 1.3 Formatter) that you may study. It
illustrates the above techniques. The primary functions of the Pascal host
are to:

1. Open the FORMATTER.DATA file.
2. Read blocks 0 - 2 into a memory location that is on a page
 boundary.
3. Read blocks 3 - 6 into a 2,048 byte buffer.
4. Call the assembly language function FORMDISK with the volume
 number of the drive containing the disk to be formatted.
5. Examine the error code returned. If there is an error then report
 it to the user, otherwise continue.
6. Use UNITSTATUS to determine whether the drive is a Disk II or a
 ProDOS blocked device and how many blocks are on the disk.
7. Use the number of blocks returned by UNITSTATUS to update the
 maximum block number information in the blank directory.
8. If the drive is a Disk II, use UNITWRITE to write blocks 0 - 2
 from the buffer to blocks 0 - 2 on the newly formatted disk.
9. If the drive is a ProDOS blocked device, use UNITWRITE to write
 block 3 from the buffer to block 0 on the newly formatted disk,
 then use it again to write block 2 from the buffer to block 2 on
 the disk.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 436 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

The following code is an example of how to read in the blocks from the
FORMATTER.DATA file, determine the drive type, update the directory, and write
the boot blocks and directory to the newly formatted disk:

 TYPE BYTARRAY = PACKED ARRAY [0..1] OF 0..255;

 VAR BUFFER: PACKED ARRAY [0..2048] OF 0..255;

 NUMBLOCKS : INTEGER;

 TRIX : RECORD CASE BOOLEAN OF
 TRUE : (INT : INTEGER);
 FALSE : (BYT : BYTARRAY);
 END;

 {read in the boot blocks and directory}
 NUMBLOCKS := BLOCKREAD (DATAFILE, BUFFER, 4, 3);

 {determine type of disk drive and number of blocks on the disk}
 UNITSTATUS (VOLNUM, NUMBLOCKS, 1);

 {update maximum number of blocks in blank directory}
 TRIX.INT := NUMBLOCKS;
 BUFFER[1038] := TRIX.BYT[0];
 BUFFER[1039] := TRIX.BYT[1];

 {write out the boot blocks and directory to a Disk II disk}
 UNITWRITE (VOLNUM, BUFFER, 1536, 0);

 {write out the boot block and directory to a ProDOS blocked device disk}
 UNITWRITE (VOLNUM, BUFFER[1536], 512, 0);
 UNITWRITE (VOLNUM, BUFFER[1024], 512, 2);

A dynamic variable can also be used as the buffer so that your program can
reclaim the buffer space for its own use after the formatting is completed:

 TYPE BUFFER = PACKED ARRAY [0..2048] OF 0..255;

 VAR BUFPTR : ^BUFFER;
 OLDPTR : ^INTEGER;

 {mark the beginning of usable space}
 MARK (OLDPTR);
 {allocate space for the buffer}
 NEW (BUFPTR);
 {read in the boot blocks and directory}
 NUMBLOCKS := BLOCKREAD (DATAFILE, BUFPTR^, 4, 3);
 {write out the boot blocks and directory to a Disk II disk}
 UNITWRITE (VOLNUM, BUFPTR^, 1536, 0);
 {release the space used by the buffer}
 RELEASE (OLDPTR);

In Review

The following is a step-by-step review of how to use the formatting routine.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 437 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 1. Determine where in memory you wish to load the Disk II formatter
 routine. Remember it must be on a page boundary.
 2. Edit the file ASMFORMAT.TEXT, and change the value in the .ORG
 statement to be the memory address chosen.
 3. Assemble ASMFORMAT.TEXT to ASMFORMAT.CODE.
 4. X(ecute MAKEFMT to make the required FORMATTER.DATA file.
 5. Edit the file FORMDISK.TEXT and change the line

 DO_FORMAT .EQU 3D00

 to reflect the new memory location (same value as in the .ORG
 statement above).
 6. Assemble FORMDISK.TEXT to FORMDISK.CODE.
 7. Write the Pascal host program using the above techniques for
 loading the Disk II formatter routine, calling the FORMDISK
 function, updating the blank directory, and writing the boot
 blocks and directory. Remember error reporting.
 8. Compile the Pascal host.
 9. Link the Pascal host to the file FORMDISK.CODE, thus linking the
 FORMDISK function into your program.
10. With the linked Pascal host program and the FORMATTER.DATA file
 you can now format disks.

END OF FILE TN.Pasc.012

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 438 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Pasc.014
###

Apple II
Technical Notes

 Developer Technical Support

Pascal
#14: Apple Pascal 1.3 TREESEARCH and IDSEARCH

Revised by: Cheryl Ewy November 1988
Written by: Cheryl Ewy June 1985

This Technical Note describes the TREESEARCH and IDSEARCH routines which were
built into Pascal 1.2 and earlier, but which are separate entities for Pascal
1.3.

Introduction

In Apple II Pascal versions 1.0 through 1.2, TREESEARCH and IDSEARCH were
special-purpose built-in routines which could be called from within a Pascal
program. The routines existed primarily for use by the Compiler and Libmap
but were also available for use by applications. In Apple II Pascal 1.3, the
routines were removed due to space requirements. Since some applications use
these routines, they are being supplied as 6502 codefiles which can be linked
to Pascal programs. To use the routines, the Pascal host program must declare
them as EXTERNAL (see the following sections for details). After compiling
the host program, use the Linker to link the file TRS.CODE (TREESEARCH) or the
file IDS.CODE (IDSEARCH).

The TREESEARCH Function

TREESEARCH is a fast assembly language function for searching a binary tree
with a particular kind of structure. The external declaration is:

 FUNCTION TREESEARCH (ROOTPTR : ^NODE;
 VAR NODEPTR : ^NODE;
 NAMEID : PACKED ARRAY [1..8] OF CHAR) :INTEGER;
 EXTERNAL;

The call syntax is:

 RESULT := TREESEARCH (ROOTPTR, NODEPTR, NAMEID);

where ROOTPTR is a pointer to the root node of the tree to be searched,
NODEPTR is a reference to a pointer variable to be updated by TREESEARCH, and
NAMEID contains the eight-character name to be searched for in the tree.

The nodes in the binary tree are assumed to be linked records of the type:

NODE = RECORD

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 439 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 NAME : PACKED ARRAY[1..8] OF CHAR;
 LEFTLINK, RIGHTLINK : ^NODE;

 {other fields can be anything}

 END;

The actual names of the type and the field identifiers are not important;
TREESEARCH assumes only that the first eight bytes of the record contain an
eight-character name and are followed by two pointers to other nodes.

It is also assumed that names are not duplicated within the tree and are
assigned to nodes according to an alphabetical rule; for a given node, the
name of the left subnode is alphabetically less than the name of the node, and
the name of the right subnode is alphabetically greater than the name of the
node. Finally, any links that do not point to other nodes should be NIL.

TREESEARCH can return any of three values:

 0 The name passed to TREESEARCH (as the third parameter) has been
 found in the tree. The node pointer (second parameter) now points
 to the node with the specified name.
 1 The name is not in the tree. If it is added to the tree, it
 should be the right subnode of the node pointed to by the node
 pointer.
 -1 The name is not in the tree. If it is added to the tree, it
 should be the left subnode of the node pointed to by the node
 pointer.

The TREESEARCH function does not perform any type checking on the parameters
passed to it.

The IDSEARCH Procedure

IDSEARCH is a fast assembly language procedure that scans Apple II Pascal
source text for identifiers and reserved words. Note that IDSEARCH recognizes
only identifiers and reserved words--you have to scan for special characters
and comments yourself.

The external declaration is:

 PROCEDURE IDSEARCH (VAR OFFSET:INTEGER;
 VARBUFFER:BYTESTREAM);
 EXTERNAL;

The call syntax is:

 IDSEARCH (OFFSET, BUFFER);

To use IDSEARCH, you must include the following declarations in your program.
Note that the variables (except BUFFER) must be declared in exactly the order
and types shown.

TYPE

 {SYMBOL is the enumerated type of symbols in the Apple // Pascal
language}

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 440 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 SYMBOL = (IDENT,COMMA,COLON,SEMICOLON,LPARENT,RPARENT,DOSY,TOSY,
 DOWNTOSY,ENDSY,UNTILSY,OFSY,THENSY,ELSESY,BECOMES,LBRACK,
 RBRACK,ARROW,PERIOD,BEGINSY,IFSY,CASESY,REPEATSY,WHILESY,
 FORSY,WITHSY,GOTOSY,LABELSY,CONSTSY,TYPESY,VARSY,PROCSY,
 FUNCSY,PROGSY,FORWARDSY,INTCONST,REALCONST,STRINGCONST,
 NOTSY,MULOP,ADDOP,RELOP,SETSY,PACKEDSY,ARRAYSY,RECORDSY,
 FILESY,OTHERSY,LONGCONST,USESSY,UNITSY,INTERSY,IMPLESY,
 EXTERNLSY,OTHERWSY);

 {The reserved words corresponding to the above symbols are as follows -

 DOSY - DO WITHSY - WITH RELOP - IN
 TOSY - TO GOTOSY - GOTO SETSY - SET
 DOWNTOSY - DOWNTO LABELSY - LABEL PACKEDSY - PACKED
 ENDSY - END CONSTSY - CONST ARRAYSY - ARRAY
 UNTILSY - UNTIL TYPESY - TYPE RECORDSY - RCORD
 OFSY - OF VARSY - VAR FILESY - FILE
 THENSY - THEN PROCSY - PROCEDURE USESSY - USES
 ELSESY - ELSE FUNCSY - FUNCTION UNITSY - UNIT
 BEGINSY - BEGIN PROGSY - PROGRAM INTERSY -.INTERFACE
 IFSY - IF SEGMENT IMPLESY -.IMPLEMENTATION
 CASESY - CASE FORWARDSY - FORWARD EXTERNLSY - EXTERNAL
 REPEATSY - REPEAT NOTSY - NOT OTHERWSY - OTHERWISE
 WHILESY - WHILE MULOP - AND,DIV,MOD
 FORSY - FOR ADDOP - OR }

 {OPERATOR expands the multiplicative (MULOP), additive (ADDOP) and
 relational (RELOP) operators}

 OPERATOR = (MUL,RDIV,ANDOP,IDIV,IMOD,PLUS,MINUS,OROP,LTOP,LEOP,
 GEOP,GTOP,NEOP,EQOP,INOP,NOOP);

 ALPHA = PACKED ARRAY [1..8] OF CHAR;

VAR
 {the next four variables must be declared in the order shown}
 OFFSET : INTEGER;
 SY : SYMBOL;
 OP : OPERATOR;
 ID : ALPHA;

IDSEARCH begins by looking for an identifier at the character pointed to by
BUFFER[OFFSET] and assumes that this character is alphabetic. IDSEARCH
produces the following results:

o BUFFER[OFFSET] points to the character following the identifier
 just found.
o ID contains the first eight alphanumeric characters of the
 identifier just found, left justified and padded with spaces as
 necessary.
o SY contains the symbol associated with the identifier just found
 if the identifier is a reserved word or IDENT if the identifier is
 not a reserved word. For example, the identifier MOD translates
 to MULOP; the identifier ARRAY translates to ARRAYSY, and the
 identifier MYLABEL translates to IDENT.
o OP contains the operator value which corresponds to the identifier
 just found if the identifier is an operator, or NOOP if the

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 441 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 identifier is not an operator. For example, the identifier MOD
 translates to IMOD, the identifier ARRAY translates to NOOP, and
 the identifier MYLABEL translates to NOOP.

The following is an example of calling IDSEARCH:

 BEGIN
 IF BUFFER[OFFSET] IN ['A'..'Z','a'..'z'] THEN
 IDSEARCH (OFFSET, BUFFER);
 END;

The following is an algorithmic representation of IDSEARCH:

 PROCEDURE IDSEARCH (VAR OFFSET:INTEGER; VAR BUFFER:BYTESTREAM);
 BEGIN
 ID := ScanIdentifier (OFFSET, BUFFER);
 SY := LookUpReservedWord (ID);
 OP := LookUpOperator (ID);
 END;

ScanIdentifier increments OFFSET until BUFFER[OFFSET] is no longer part of an
identifier, copying the first eight alphanumeric characters passed into ID
(left justified, padding with spaces).

LookUpReservedWord translates an identifier into the associated symbol
(defaulting to IDENT).

LookUpOperator translates an identifier into the associated operator
(defaulting to NOOP).

END OF FILE TN.Pasc.014

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 442 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Pasc.015
###

Apple II
Technical Notes

 Developer Technical Support

Pascal
#15: Apple II Pascal SHORTGRAPHICS Module

Revised by: Cheryl Ewy & Dan Strnad November 1988
Written by: Cheryl Ewy December 1983

This Technical Note describes the Apple II Pascal SHORTGRAPHICS routine, which
is available as part of the 48K Run-Time System.

Introduction

Many applications, especially those designed to use the 48K Run-Time System,
run out of memory quickly if they use the TURTLEGRAPHICS unit provided with
the standard SYSTEM.LIBRARY.

This document describes a library unit called SHORTGRAPHICS which removes the
relative polar coordinate features of TURTLEGRAPHICS to save memory.

General Comments

If your application uses (or can be modified to use) only those TURTLEGRAPHICS
procedures which refer to absolute screen coordinates, you can use the
SHORTGRAPHICS unit. The SHORTGRAPHICS unit has the same segment numbers
assigned to it, as does TURTLEGRAPHICS, thus you may not use both in the same
program.

Deletions

The following routines are not available in the SHORTGRAPHICS unit:

 PROCEDURE TURN(ANGLE: INTEGER);
 PROCEDURE TURNTO(ANGLE: INTEGER);
 PROCEDURE MOVE(DIST: INTEGER);
 FUNCTION TURTLEANG: INTEGER;

Additions

The following definitions have been added to the INTERFACE section of
SHORTGRAPHICS:

 TYPE
 FONT=PACKED ARRAY[0..127,0..7] OF 0..255;

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 443 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 VAR
 FONTPTR:^FONT;

The variable FONTPTR is a pointer to the memory area used by the WCHAR and
WSTRING procedures to display text on the graphics screen.

Thus, if you have a character set named KATAKANA.FONT, you could load it into
memory and use it as follows:

 VAR
 SPECIALFONT:^FONT; (* where the new font goes *)
 SAVEFONT:^FONT; (* to save pointer to standard font area *)

 PROCEDURE LOADFONT;
 VAR
 F:FILE;
 NIO:INTEGER;
 BEGIN
 NEW(SPECIALFONT);
 RESET(F,'KATAKANA.FONT');
 NIO:=BLOCKREAD(F,SPECIALFONT^,2,0);
 CLOSE(F)
 END;

 PROCEDURE USESPECIAL;
 BEGIN
 SAVEFONT:=FONTPTR; (* save standard font pointer *)
 FONTPTR:=SPECIALFONT; (* and point to special font *)
 END;

 PROCEDURE USENORMAL;
 BEGIN
 FONTPTR:=SAVEFONT (* restore pointer to normal font *)
 END;

Memory Considerations

When the system is booted, the heap pointer is normally below the start of
high-resolution page one. The TURTLEGRAPHICS unit automatically sets the heap
pointer above high-resolution page one. This protects the high-resolution
page from being overwritten by your program, but it also prevents you from
using the space between the original top of the heap and the start of high-
resolution page one for your own variables.

SHORTGRAPHICS does not protect the high-resolution page, thus you may use this
extra space for yourself. The following code will check to see if you have n
bytes available between the top of the heap and high-resolution page one. If
the room is not available, the heap pointer will be jumped to the top of the
high-resolution page.

 PROCEDURE MAKEROOM(N:INTEGER);
 CONST
 BOTTOM=8192;

 TOP=16384;
 VAR
 CHEAT:RECORD CASE BOOLEAN

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 444 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 TRUE:(IPART:INTEGER);
 FALSE:(PPART:^INTEGER);
 END;
 BEGIN
 MARK(CHEAT.PPART);
 IF (CHEAT.IPART+N)>=BOTTOM THEN BEGIN
 CHEAT.IPART:=TOP;
 RELEASE(CHEAT.PPART)
 END
 END;

Thus, if you wanted to allocate a special font (which requires 1,024 bytes)
below the high-resolution page, you could use this code:

 MAKEROOM(1024);
 NEW(SPECIALFONT);

If there are at least 1,024 bytes beneath the high-resolution page, the new
font will be allocated there. If there is not enough space there, the new
font will be allocated above the high-resolution page.

All of these heap allocations should be done as the very first actions of your
program. When you finish allocating your variables, you should invoke the
following procedure to make sure the heap pointer is above high-resolution
page one (thus protecting it).

 PROCEDURE PROTECT;
 CONST
 TOP=16384;
 VAR
 CHEAT:RECORD CASE BOOLEAN OF
 TRUE:(IPART:INTEGER);
 FALSE:(PPART:^INTEGER);
 END;
 BEGIN
 MARK(CHEAT.PPART);
 IF CHEAT.IPART<TOP THEN BEGIN
 CHEAT.IPART:=TOP;
 RELEASE(CHEAT.PPART);
 END;
 END;

Warning: Every program written using SHORTGRAPHICS is unprotected
from a heap which grows large enough to go into the high-
resolution page one area. Therefore, every program using
SHORTGRAPHICS should protect page one by using PROCEDURE
PROTECT. You should protect page one even if the program
does not use the space below it.

Code Length

When you look at TURTLEGRAPHICS with the LIBRARY program, the code segment has
a length of 5,230 bytes and the data segment a length of 386 bytes.
SHORTGRAPHICS has a code segment 3,140 bytes in length and a data segment of
18 bytes. Thus, in a test of a null program, you have 2,458 bytes more space
available.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 445 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Files on the Disk

The following files are on the SHORT GRAPHICS disk:

SHORT.CODE Contains the SHORTGRAPHICS code. You can use it as a
 library or use the library program to add it to
 SYSTEM.LIBRARY in place of TURTLEGRAPHICS.
KATAKANA.FONT A sample font used to demonstrate the use of alternate
 fonts.
SYSTEM.CHARSET The letters in this character set are not as wide as
 those found in the SYSTEM.CHARSET supplied with the
 Development System and the Run-Time Systems.
TEST.TEXT, TEST.CODE A sample program showing some of the concepts
 discussed in this Technical Note.

Interface Listing of the SHORTGRAPHICS Unit:

The following is the interface section of the SHORTGRAPHICS unit:

UNIT SHORTGRAPHICS; INTRINSIC CODE 20 DATA 21;

 INTERFACE
 TYPE

SCREENCOLOR=(none,white,black,reverse,radar,black1,green,violet,white1,
 black2,orange,blue,white2);

 FONT=PACKED ARRAY[0..127,0..7] OF 0..255;

 VAR
 FONTPTR:^FONT;

 PROCEDURE INITTURTLE;
 PROCEDURE MOVETO(X,Y: INTEGER);
 PROCEDURE PENCOLOR(PENMODE: SCREENCOLOR);
 PROCEDURE TEXTMODE;
 PROCEDURE GRAFMODE;
 PROCEDURE FILLSCREEN(FILLCOLOR: SCREENCOLOR);
 PROCEDURE VIEWPORT(LEFT,RIGHT,BOTTOM,TOP: INTEGER);
 FUNCTION TURTLEX: INTEGER;
 FUNCTION TURTLEY: INTEGER;
 FUNCTION SCREENBIT(X,Y: INTEGER): BOOLEAN;
 PROCEDURE DRAWBLOCK(VAR SOURCE; ROWSIZE,XSKIP,YSKIP,WIDTH,
 HEIGHT,XSCREEN,YSCREEN,MODE:
 INTEGER);
 PROCEDURE WCHAR(CH: CHAR);
 PROCEDURE WSTRING(S: STRING);
 PROCEDURE CHARTYPE(MODE: INTEGER);

END OF FILE TN.Pasc.015

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 446 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.Pasc.016
###

Apple II
Technical Notes

 Developer Technical Support

Pascal
#16: Driver to Have Two Volumes on One 3.5" Disk

Revised by: Guillermo Ortiz, Cheryl Ewy & Dan Strnad November 1988
Written by: Guillermo Ortiz October 1986

This Technical Note discusses how to install a driver to have more than one
volume on a 3.5" 800K disk under Apple II Pascal.

For the sake of simplicity,.we will limit the discussion to the following
case: we want to have two 400K volumes on the boot 3.5" disk. For such a
scenario, Unit #4 occupies the first 800 blocks and Unit #20 uses blocks 800
to 1599 as shown here:

 First Volume Unit #4 Second Volume Unit #4
 __|_________________________________|___________________________________|__
 | Blocks (0 .. 799) | Blocks (800 .. 1599) |

 +-- Directory Unit #4 +-- Directory Unit #20
 | blocks (2 .. 5) | blocks (802 .. 805)
 | |

 | | | | | | |
 |_|___|_____________________________|_|___|_____________________________|__
 | \ | \
 | \ Boot Blocks (0 .. 1) | \ Pseudo Boot Blocks (800 .. 801)

 Figure 1-Block Diagram for 3.5" Disk

There are four calls a device driver has to handle, UNITCLEAR, UNITSTATUS,
UNITREAD, and UNITWRITE. For the first one, our driver will only return since
the device is already on-line. For a blocked device, UNITSTATUS returns the
number of blocks available, in this case UNITSTATUS (20) = 800.

In the case of UNITREAD and UNITWRITE, all the driver has to do is add the
offset of 800 to the number of the block requested then jump to the BIOS
routine with the unit number set to four. Our driver is basically a
dispatcher that directs the disk access to the proper blocks.

When this driver is present, the application must be very careful about making
sure the right disk is in the drive when accessing the second volume; any
access to Unit #20 could damage a normal volume present in the drive.

Once the driver is ready, it is necessary to format a disk with the special
directories. With the listings for the driver we have included the source of

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 447 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

a sample formatting program.

Once the disk is ready we proceed to transfer all system files to it including
SYSTEM.ATTACH, ATTACH.DRIVERS (containing our driver), and ATTACH.DATA. This
last file reflects the following information:

 Driver Name - FAKEDISK - Not Aligned
 Attached to #20 {Can change if desired}
 Unit #s to be init at boot time - 20
 This driver CAN be placed in the first HiRes screen {Change if needed}
 This driver CAN be placed in the second HiRes screen{Change if needed}
 This driver does not use interrupts
 Driver does not have transient initialization code

The code has comments that explain it fairly well; for more information on
drivers in general and how to use the attach tools please refer to Apple II
Pascal Device and Interrupt Support Tools.

;
; Disk Driver
; by Guillermo Ortiz
; 03/25/86
;
; This driver will allow splitting a 3.5 disk in two pieces of 400K
; each, therefore permitting more than 77 files per disk. It
; is required to "format" the disk with two directories, one at
; block 0 .. 5 and the other at block 800 .. 805, each with a
; length of 800 blocks. Names must be different!

; The ancient admonition:
;
; This is a sample!
; No claims are made regarding the fitness of this code for
; any particular purpose.

ROUTINE .EQU 02 ; For indirect jumping
RETURN .EQU 04 ; Back to Pascal
BUFF .EQU 06 ; Where to put stuff

 .PROC FAKEDISK

; At this level we could have some code to differentiate
; between different pseudo volumes if we had more than
; two pseudo-volumes per disk.
; In this example we use Unit # 20 for the second part.
; Using units 13 and up let us keep the "standard" drives available
; In any UNIT call X Register contains the type of call
; as follows:

 CPX #04
 BEQ STATUS ; X = 4
 CPX #02
 BEQ INIT ; X = 2

 STA TEMP1
 STY TEMP1+1 ; Saving A, Y and X
 STX TEMP1+2 ; for future use

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 448 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

; We make the assumption that the disk split is the
; System Volume, so we get the logical volume number for
; Unit # 4 from the DISKNUM table;
; see Apple // Pascal Device and Interrupt
; Support Tools manual for details.

 TSX ; Gimmie the stack pointer
 LDA 0FEB6 ; Logical volume for boot disk
 STA 109,X ; so read from that disk

; Our fiddling is complete now let's finish checking
; the call in order to make the jump

 LDA TEMP1+2 ; X contains the call code
 BEQ READ ; X = 0
 CMP #01
 BEQ WRITE ; X = 1

; Here we could have
; instructions to report some undefined control code.
; This driver will only CRASH!!!

 BRK ; Bumm!!!

; Now the real stuff

READ .EQU *
 JSR SETUP ; Modify the stack
 LDY #19. ; Index for Reading from disk
 BNE GET ; Nice way of jumping

WRITE .EQU *
 JSR SETUP ; Modify the stack
 LDY #16. ; Index for WRITE to CONSOLE

GET LDA @0E2,Y ; $E2 contains a pointer to the jump vector
 STA ROUTINE ; Set low byte of address
 INY
 LDA @0E2,Y ; Get high byte of address
 STA ROUTINE+1 ; and set it off

 LDX TEMP1+2 ; Restore
 LDY TEMP1+1 ; all registers
 LDA TEMP1 ; before jump

 JMP @ROUTINE ; and Go!

; INIT will only pass back the no_error IORESULT

INIT .EQU *
 LDX #00 ; No error
 RTS ; Go back

STATUS PLA ; Get
 STA RETURN ; return
 PLA ; address

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 449 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 STA RETURN+1
 PLA ; Get
 STA BUFF ; Pascal
 PLA ; Buffer
 STA BUFF+1 ; address
 PLA ; Dump control
 PLA ; word
 LDY #00
 LDA #20 ; Set
 STA @BUFF,Y ; the number of blocks
 INY ; to
 LDA #03 ; 800
 STA @BUFF,Y
 LDX #00
 LDA RETURN+1 ; and
 PHA
 LDA RETURN
 PHA
 RTS ; Return!

; To any request for READ/WRITE we'll add 800 to the
; number of the block needed.

SETUP .EQU *
 LDA 103,X ; Get Block number low
 CLC ; Set up for addition
 ADC #20 ; Offset block count by 800
 STA 103,X ; and restore
 LDA 104,X ; Get Block number high
 ADC #03 ; 800 = $320
 STA 104,X ; and restore
 RTS ; Go back

TEMP1 .BLOCK 3 ; Temporary storage area

 .END

The driver requires that the disk be formatted in a special way. Run the
following program to create your volume.

program REFORMAT;

{By Guillermo Ortiz
 03/27/86
}

{This program takes a newly formatted 3.5 disk and lays down two
 directories transforming the volume into two 400K pseudo-volumes to be
 used with the driver FAKEDISK which assigns Unit # 20 to the second
 part of the disk.
}

CONST MAXDIR = 77; {Max number of files per volume}
 VIDLENGTH = 7; {Max chars in volume name}

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 450 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 TIDLENGTH = 15; {Max chars per file ID}
 FBLKSIZE = 512; {Number of bytes per block}
 DIRBLK = 2; {We are reading the directory}

type daterec = packed record
 month:0..12; {0 --> Meaningless date}
 day: 0..31; {Day of month}
 year:0..100 {100 --> dated volume is temp}
 end;

 vid = string [vidlength]; {Volume ID}
 dirrange = 0 .. maxdir; {Number of files on disk}
 tid = string[tidlength]; {File ID}
 filekind = (untypedfile,xdskfile,codefile,textfile,infofile,
 datafile,graffile,fotofile,securdir);

{Now the real directory layout}
 direntry =
 packed record
 dfirstblk:integer; {1st physical disk address}
 dlastblock:integer; {block after last used block}
 case dfkind:filekind of
 securdir,untypedfile: {Volume info only in dir[0]}
 (filler1: 0..2048; {Waste 13 bits}
 dvid: vid; {Name of volume}
 deovblk: integer; {Last block in volume}
 dnumfiles:dirrange; {Number of files in directory}
 dloadtime:integer; {Time of last access}
 dlastboot:daterec); {Most recent date setting}
 xdskfile,codefile,textfile,infofile,datafile,
 graffile,fotofile: {Regular file info}
 (filler2: 0..1024; {Waste 12 bits}
 status: boolean; {For filer wildcards}
 dtid: tid; {Name of file}
 dlastbyte:1..fblksize; {Bytes in last block of file}
 daccess: daterec) {Date of last modification}
 end; {Of the whole directory record}

 directory = array [dirrange] of direntry;

var dirinfo:directory; {The directory goes here}
 UNITNUM:INTEGER;
 CH:CHAR;

PROCEDURE DOSTUFF;
{Function CHECK will read the directory from a freshly formatted
 3.5 disk, then DOSTUFF will make changes so it has only 800 blocks and
 a name HALFONE: and will write it back to block 2; then we will
 change the name to HALFTWO: and will write to block 802 as
 the directory for our second pseudo-volume.
}

BEGIN
 with dirinfo[0] do
 begin
 deovblk:=800; {Cut it in half}

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 451 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 dvid:='HALFONE';
 end;
 unitwrite(UNITNUM,dirinfo,sizeof(dirinfo),dirblk); {Put back main directory}
 DIRINFO[0].DVID:='HALFTWO';
 unitwrite(UNITNUM,dirinfo,sizeof(dirinfo),dirblk+800) {Write second dir.}
end; {Of DOSTUFF}

FUNCTION CHECK:BOOLEAN;

{Reads the directory from the target disk, if possible, warns the user
 of the certain destruction of the current directory and checks the
 size of the volume so that the program doesn't use other than 3.5
 disks.
 }

BEGIN
 CHECK:=FALSE;
 DIRINFO[0].DLASTBLOCK:=-999; {Make sure we read from a disk}
 UNITREAD(UNITNUM,DIRINFO,SIZEOF(DIRINFO),DIRBLK);
 IF DIRINFO[0].DLASTBLOCK= 6 THEN {IS THIS A PASCAL DISK?}
 BEGIN
 IF DIRINFO[0].DEOVBLK <> 1600 THEN
 BEGIN
 WRITELN('SORRY THIS PROGRAM IS INTENDED FOR 3.5 DISKS ONLY');
 EXIT(CHECK)
 END;
 WRITE('WE ARE ABOUT TO PERMANENTLY DESTROY ');
 WRITELN(DIRINFO[0].DVID,':');
 WRITE('IS IT OK? --> ');
 REPEAT
 READ(KEYBOARD,CH)
 UNTIL CH IN ['Y','N','n','y'];
 WRITELN(CH);
 IF CH IN ['Y','y'] THEN
 CHECK:=TRUE
 END
 ELSE
 BEGIN
 WRITELN;
 WRITELN;
 WRITELN('CAN NOT READ DIRECTORY')
 END
END {OF CHECK};

PROCEDURE GETNUM;

{Prompts the user for the Unit Number of the target disk,
 checks the validity of the input and returns when provided with
 a reasonable value.
 }

VAR I:INTEGER;

BEGIN
 WRITELN;

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 452 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 WRITELN('PLEASE ENTER THE NUMBER OF THE UNIT CONTAINING THE DISK');
 WRITE('TO BE REFORMATTED (PRESS <ESCAPE> TO EXIT) --> ');
 UNITNUM:=0;
 REPEAT
 BEGIN
 WRITE(CHR(5)); {Cursor ON}
 READ(CH); {For the prompt}
 WRITE(CHR(6)); {and then OFF for speed and elegance(?)}
 IF EOLN THEN
 IF (UNITNUM IN [4,5,9..12]) THEN
 EXIT(GETNUM)
 ELSE
 FOR I:= 1 TO 32 - UNITNUM DO {Kind of crude but ...}
 WRITE(CHR(8)); {to go back to the same place}
 IF ORD(CH) = 27 THEN
 BEGIN
 WRITELN;
 WRITELN('YOU ASKED FOR IT!!!');
 WRITE(CHR(5)); {Turn cursor ON before we exit}
 EXIT(PROGRAM)
 END;
 IF (ORD(CH) = 8) AND (UNITNUM > 0) THEN
 BEGIN
 IF UNITNUM < 10 THEN
 UNITNUM:=0
 ELSE
 UNITNUM:=UNITNUM DIV 10;
 WRITE(CHR(8),' ',CHR(8)) {To delete previous entry}
 END
 ELSE
 BEGIN
 IF (UNITNUM = 0) AND (CH IN ['1','4','5','9']) THEN
 UNITNUM:=ORD(CH)-ORD('0')
 ELSE
 IF (UNITNUM=1) AND (CH IN ['0','1','2']) THEN
 UNITNUM:=10*UNITNUM+ORD(CH)-ORD('0')
 ELSE
 IF ORD(CH) > 31 THEN
 WRITE(CHR(8),' ',CHR(8)) {Unwanted stuff,so ...}
 END {get rid of it. }
 END
 UNTIL FALSE; {No Exit here.}
 WRITELN
END {OF GETNUM};

BEGIN {main}
 WRITELN;
 WRITELN;
 WRITELN('WE ARE ABOUT TO REFORMAT A VOLUME SO IT WILL CONTAIN TWO');
 WRITELN('400K PSEUDO-VOLUMES. MAKE SURE YOU MARK THE DISK CLEARLY');
 WRITELN('SO YOU DON''T FORGET');
 WRITELN;
 WRITELN;
 REPEAT
 GETNUM
 UNTIL CHECK;
 DOSTUFF;

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 453 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 WRITE(CHR(5)); {Don't forget to turn cursor ON}
 writeln;
 WRITELN('AWAAAAAY!!!')
end.

If two volumes are not enough, you can modify this example to support more
than two per disk; the key is to keep in mind that when the call comes to the
driver, the accumulator contains the number of the Unit the for which the call
is intended. After checking this number the driver could decide what offset
it has to add to access the correct volume.

Of course the formatter program would have to change accordingly, laying down
the directories for the new volumes with the appropriate names and sizes.

The same scheme can be applied to any device that Pascal can directly
recognize (i.e., the Apple Memory Expansion Card, ProFile hard disk, etc.).

Further Reference
o Apple II Pascal Device and Interrupt Support Tools

END OF FILE TN.Pasc.016

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 454 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.001
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#1: The GETLN Buffer and a ProDOS Clock Card

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald November 1985

This Technical Note describes the effect of a clock card on the GETLN buffer.

ProDOS automatically supports a ThunderClock(TM) or compatible clock card when
the system identifies it as being installed. When programming under ProDOS,
always consider the impact of a clock card on the GETLN input buffer ($200 -
$2FF). ProDOS can support other clocks which may also use this space.

When ProDOS calls a clock card, the card deposits an ASCII string in the GETLN
input buffer in the form: 07,04,14,22,46,57. This string translates as the
following:

 07 = The month, July (01=Jan,...,12=Dec)
 04 = The day of the week, Thurs.(00=Sun,...,06=Sat)
 14 = The date (00 to 31)
 22 = The hour, 10 p.m. (00 to 23)
 46 = The minute (00 to 59)
 57 = The second (00 to 59)

ProDOS calls the clock card as part of many of its routines. Anything in the
first 17 bytes of the GETLN input buffer is subject to loss if a clock card is
installed and is called.

In general, it has been the practice of programmers to use the GETLN input
buffer for every conceivable purpose. Therefore, an application should never
store anything there. If your application has a future need to know about the
contents of the $200 - $2FF space, you should transfer it to some other
location to guarantee that it will remain intact, particularly under ProDOS,
where a clock card may regularly be overwriting the first 17 bytes.

The ProDOS 8 Technical Reference Manual contains more information on the clock
driver, including the necessary identification bytes, how the ProDOS driver
calls the card, and how you may replace this routine with your own.

Further Reference
o ProDOS 8 Technical Reference Manual

END OF FILE TN.PDOS.001

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 455 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.002
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#2: Porting DOS 3.3 Programs to ProDOS and BASIC.SYSTEM

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald November 1985

This Technical Note formerly described the DOSCMD vector of BASIC.SYSTEM.

This Note formerly described the DOSCMD vector of BASIC.SYSTEM, which can be
used to let BASIC.SYSTEM interpret ASCII strings as disk commands in much the
same way DOS 3.3 did. The ProDOS 8 Technical Reference Manual now contains
this information in Appendix A.

Further Reference
o ProDOS 8 Technical Reference Manual

END OF FILE TN.PDOS.002

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 456 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.003
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#3: Device Search, Identification, and Driver Conventions

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald November 1985

This Technical Note formerly described how ProDOS 8 searches for devices and
how it deals with devices which are not Disk II drives.

This Note formerly described how ProDOS 8 searches for devices and how it
deals with devices which are not Disk II drives; this information is now
contained in section 6.3 of the ProDOS 8 Technical Reference Manual.

Note: The information on slot mapping on page 113 of the manual
and on page 2 of the former edition of this Technical Note is
incorrect. ProDOS itself will mirror SmartPort devices from
slot 5 into slot 2 under certain conditions. Devices should not
be mirrored into slots other than slot 2. For more information,
see ProDOS 8 Technical Note #20, Mirrored Devices and SmartPort.

Further Reference
o ProDOS 8 Technical Reference Manual
o ProDOS 8 Technical Note #20, Mirrored Devices and SmartPort

END OF FILE TN.PDOS.003

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 457 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.004
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#4: I/O Redirection in DOS and ProDOS

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald November 1985

This Technical Note discusses I/O redirection differences between DOS 3.3 and
ProDOS.

Under DOS 3.3, all that is necessary to change the I/O hooks is installing
your I/O routine addresses in the character-out vector ($36-$37) and the key-
in vector ($38-$39) and notifying DOS (JSR $3EA) to take your addresses and
swap in its intercept routine addresses.

Under ProDOS, there is no instruction installed at $3EA, so what do you do?

You simply leave the ProDOS BASIC command interpreter's intercept addresses
installed at $36-$39 and install your I/O addresses in the global page at
$BE30-$BE33. The locations $BE30-$BE31 should contain the output address
(normally $FDF0, the Monitor COUT1 routine), while $BE32-$BE33 should contain
the input address (normally $FD1B, the Monitor KEYIN routine).

By keeping these vectors in a global page, a special routine for moving the
vectors is no longer needed, thus, no $3EA instruction. You install the
addresses at their destination yourself.

If you intend to switch between devices (i.e., the screen and the printer),
you should save the hooks you find in $BE30-$BE33 and restore them when you
are done. Blindly replacing the values in the global page could easily leave
you no way to restore input or output to the previous device when you are
done.

END OF FILE TN.PDOS.004

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 458 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.005
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#5: ProDOS Block Device Formatting

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald October 1985

This Technical Note formerly described the ProDOS FORMATTER routine.

The ProDOS 8 Update Manual now contains the information about the ProDOS
FORMATTER routine which this Note formerly described. This routine is
available from Apple Software Licensing at Apple Computer, Inc., 20525 Mariani
Avenue, M/S 38-I, Cupertino, CA, 95014 or (408) 974-4667.

Note: This routine does not work properly with network volumes on
either entry point. You cannot format a network volume with
ProDOS 8, nor can you make low-level device calls to it (as
FORMATTER does in ENTRY2 to determine the characteristics of a
volume). As a general rule, it is better to use GET_FILE_INFO to
determine the size of the volume since ProDOS MLI calls work with
network volumes.

Further Reference
o ProDOS 8 Update Manual

END OF FILE TN.PDOS.005

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 459 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.006
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#6: Attaching External Commands to BASIC.SYSTEM

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald December 1985

This Technical Note formerly described how to attach an external command to
BASIC.SYSTEM.

The ProDOS 8 Technical Reference Manual, Appendix A now documents the
information which this Note formerly covered about installing an external
command into BASIC.SYSTEM to be treated as a normal BASIC.SYSTEM command.

Further Reference
o ProDOS 8 Technical Reference Manual

END OF FILE TN.PDOS.006

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 460 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.007
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#7: Starting and Quitting Interpreter Conventions

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald December 1985

This Technical Note formerly described conventions for a ProDOS application to
start and quit.

Section 5.1.5 of the ProDOS 8 Technical Reference Manual now documents the
conventions a ProDOS application should follow when starting and quitting,
which were formerly covered in this Note as well as ProDOS 8 Technical Note
#14, Selector and Dispatcher Conventions.

Further Reference
o ProDOS 8 Technical Reference Manual

END OF FILE TN.PDOS.007

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 461 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.008
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#8: Dealing with /RAM

Revised by: Matt Deatherage November 1988
Written by: Kerry Laidlaw October 1984

This Technical Note formerly described conventions for dealing with the built-
in ProDOS 8 RAM disk, /RAM.

Section 5.2.2 of the ProDOS 8 Technical Reference Manual now documents the
conventions on how to handle /RAM, including how to disconnect it, how to
reconnect it, and precautions you should follow if doing either, which were
covered in this Note. The manual also includes sample source code.

Executing the sample code which comes with the manual to disconnect /RAM has
the undesired effect of decreasing the maximum number of volumes on-line when
used with versions of ProDOS 8 prior to 1.2. This side effect is because
earlier versions of ProDOS 8 do not have the capability to remove the volume
control block (VCB) entry which is allocated for /RAM when it is installed.

In later versions of ProDOS 8 (1.2 and later), this problem no longer exists,
and you should issue an ON_LINE call to a device after disconnecting it. This
call returns error $28 (no device connected), but it also erases the VCB entry
for the disconnected device.

Further Reference
o ProDOS 8 Technical Reference Manual
o ProDOS 8 Update Manual

END OF FILE TN.PDOS.008

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 462 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.009
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#9: Buffer Management Using BASIC.SYSTEM

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald October 1985

This Technical Note discusses methods for allocating buffers which will not be
arbitrarily deallocated in BASIC.SYSTEM.

Section A.2.1 of the ProDOS 8 Technical Reference Manual describes in detail
how an application may obtain a buffer from BASIC.SYSTEM for its own use. The
buffer will be respected by BASIC.SYSTEM, so if you choose to put a program or
other executable code in there, it will be safe.

However, BASIC.SYSTEM does not provide a way to selectively deallocate the
buffers it has allocated. Although it is quite easy to allocate space by
calling GETBUFR ($BEF5) and also quite easy to deallocate by calling FREEBUFR
($BEF8), it is not so easy to use FREEBUFR to deallocate a particular buffer.

In fact, FREEBUFR always deallocates all buffers allocated by GETBUFR. This
is fine for transient applications, but a method is needed to protect a static
code buffer from being deallocated by FREEBUFR for a static application.

Location RSHIMEM ($BEFB) contains the high byte of the highest available
memory location for buffers, normally $96. FREEBUFR uses it to determine the
beginning page of the highest (or first) buffer. By lowering the value of
RSHIMEM immediately after the first call to GETBUFR, and before any call to
FREEBUFR, we can fool FREEBUFR into not reclaiming all the space. So although
it is not possible to selectively deallocate buffers, it is still possible to
reserve space that FREEBUFR will not reclaim.

Physically, we place the code buffer between BASIC.SYSTEM and its buffers, in
the space from $99FF down.

After creating the protected static code buffer, we can call GETBUFR and
FREEBUFR to maintain temporary buffers as needed by our protected module.
FREEBUFR will not reclaim the protected buffer until after RSHIMEM is restored
to its original value.

The following is a skeleton example which allocates a two-page buffer for a
static code module, protects it from FREEBUFR, then deprotects it and restores
it to its original state.

START LDA #$02 ;get 2 pages
 JSR GETBUFR
 LDA RSHIMEM ;get current RSHIMEM

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 463 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 SEC ;ready for sub
 SBC #$02 ;minus 2 pages
 STA RSHIMEM ;save new val to fool FREEBUFR
 JSR FREEBUFR ;CALL FREEBUFR to deallocate.

At this point, the value of RSHIMEM is the page number of the beginning of our
protected buffer. The static code may now use GETBUFR and FREEBUFR for
transient file buffers without fear of freeing its own space from RSHIMEM to
$99FF.

To release the protected space, simply restore RSHIMEM to its original value
and perform a JSR FREEBUFR.

END LDA RSHIMEM ;get current val
 CLC ;ready for ADD
 ADC #2 ;give back 2 pages
 STA RSHIMEM ;tell FREEBUFR about it
 JSR FREEBUFR ;DO FREEBUFR
 RTS

You can reserve any number of pages using this method, as long as the amount
you reserve is within available memory limits.

Further Reference
o ProDOS 8 Technical Reference Manual

END OF FILE TN.PDOS.009

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 464 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.010
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#10: Installing Clock Driver Routines

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald November 1985

This Technical Note formerly described how to install a clock driver routine
other than the default.

Section 6.1.1 of the ProDOS 8 Technical Reference Manual documents how to
install a clock driver other than the default ThunderClock(TM) driver or the
Apple IIGS clock driver into ProDOS 8, which this Note formerly covered.

Further Reference
o ProDOS 8 Technical Reference Manual
o ProDOS 8 Technical Note #1, The GETLN Buffer and a ProDOS Clock Card

END OF FILE TN.PDOS.010

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 465 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.011
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#11: The ProDOS 8 MACHID Byte

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald November 1985

This Technical Note describes the machine ID byte (MACHID) which ProDOS
maintains to help identify different machine types.

ProDOS 8 maintains a machine ID byte, MACHID, at location $BF98 in the ProDOS
8 global page. Section 5.2.4 of the ProDOS 8 Technical Reference Manual
correctly documents the definition of this byte.

MACHID has become less robust through the years. Although it can tell you if
you are running on an Apple][,][+, IIe, IIc, or Apple /// in emulation mode,
it cannot tell you which version of an Apple IIe or IIc you are using, nor can
it identify an Apple IIGS (it thinks a IIGS is an Apple IIe). However, the
byte still provides a quick test for two components of the system which you
might wish to identify: an 80-column card and a clock card.

Bit 1 of MACHID identifies an 80-column card. ProDOS 8 Technical Note #15,
How ProDOS 8 Treats Slot 3 explains how this identification is determined.
Note that on an Apple IIGS, this bit is always set, even if the user selects
Your Card in the Control Panel for slot 3. The bit is set since ProDOS 8
versions 1.7 and later switch out a card in slot 3 in favor of the built-in
80-column firmware, unless the card in slot 3 is an 80-column card. ProDOS 8
behaves in the same manner on an Apple IIe as well.

Bit 0 of MACHID identifies a clock card. Note that on an Apple IIGS, this bit
is always set since the IIGS clock cannot be switched out of the system. Due
to these unchangeable settings, the value of MACHID on the Apple IIGS is
always $B3, as it is on any Apple IIe with an 80-column card and a clock card.

Further Reference
o ProDOS 8 Technical Reference Manual
o Apple IIGS Hardware Reference Manual
o ProDOS 8 Technical Note #15, How ProDOS 8 Treats Slot 3
o Miscellaneous Technical Note #7, Apple II Family Identification

END OF FILE TN.PDOS.011

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 466 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.012
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#12: Interrupt Handling

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald November 1985

This Technical Note clarifies some aspects of ProDOS 8 interrupt handlers.

Although the ProDOS 8 Technical Reference Manual (section 6.2) documents
interrupt handlers and includes a code example, there still remain a few
unclear areas on this subject matter; this Note clarifies these areas.

All interrupt routines must begin with a CLD instruction. Although not
checked in initial releases of ProDOS 8, this first byte will be checked in
future revisions to verify the validity of the interrupt handler.

Although your interrupt handler does not have to disable interrupts (ProDOS 8
does that for you), it must never re-enable interrupts with a 6502 CLI
instruction. Another interrupt coming through during a non-reentrant
interrupt handler can bring the system down.

If your application includes an interrupt handler, you should do the following
before exiting:

1. Turn off the interrupt source. Remember, 255 unclaimed interrupts
 will cause system death.
2. Make a DEALLOC_INTERRUPT call before exiting from your
 application. Do not leave a vector installed that points to a
 routine that is no longer there.

Within your interrupt handler routines, you must leave all memory banks in the
same configuration you found them. Do not forget anything: main language
card, main alternate $D000 space, main motherboard ROM, and, on an Apple IIe,
IIc, or IIGS, auxiliary language card, auxiliary alternate $D000 space,
alternate zero page and stack, etc. This is very important since the ProDOS
interrupt receiver assumes that the environment is absolutely unaltered when
your handler relinquishes control. In addition, be sure to leave the language
card write-enabled.

If your handler recognizes an interrupt and services it, you should clear the
carry flag (CLC) immediately before returning (RTS). If it was not your
interrupt, you set set the carry (SEC) immediately before returning (RTS). Do
not use a return from interrupt (RTI) to exit; the ProDOS interrupt receiver
still has some housekeeping to perform before it issues the RTI instruction.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 467 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Further Reference
o ProDOS 8 Technical Reference Manual

END OF FILE TN.PDOS.012

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 468 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.013
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#13: Double High-Resolution Graphics Files

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald November 1985

This Technical Note formerly described a proposed file format for Apple II
double high-resolution graphics images.

The information formerly in this Note, the proposed file format for Apple II
double high-resolution graphics images, is now covered in the Apple II File
Type Notes, File Type $08.

Further Reference
o Apple II File Type Notes, File Type $08

END OF FILE TN.PDOS.013

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 469 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.014
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#14: Selector and Dispatcher Conventions

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald December 1985

This Technical Note formerly described conventions for a ProDOS application to
start and quit.

Section 5.1.5 of the ProDOS 8 Technical Reference Manual now documents the
conventions a ProDOS application should follow when starting and quitting,
which were formerly covered in this Note as well as ProDOS 8 Technical Note
#7, Starting and Quitting Interpreter Conventions.

Further Reference
o ProDOS 8 Technical Reference Manual

END OF FILE TN.PDOS.014

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 470 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.015
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#15: How ProDOS 8 Treats Slot 3

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald November 1985

This Technical Note describes how ProDOS 8 reacts to non-Apple 80-column cards
in slot 3 and how it identifies them.

The ProDOS 8 Update Manual now documents much of the information which was
originally covered in this Note about how ProDOS 8 reacts to non-Apple 80-
column cards in slot 3. However, since there is still some confusion on the
issue, we summarize it again in this Note.

On an Apple][+, ProDOS 8 considers the following four Pascal 1.1 protocol ID
bytes sufficient to identify a card in slot 3 as an 80-column card and mark
the corresponding bit in the MACHID byte: $C305 = $38, $C307 = $18, $C30B =
$01, $C30C = $8x, where x represents the card's own ID value and is not
checked. On any other Apple II, the following fifth ID byte must also match:
$C3FA = $2C. This fifth ID byte assures ProDOS 8 that the card supports
interrupts on an Apple IIe. Unless ProDOS 8 finds all five ID bytes in an
Apple IIe or later, it will not identify the card as an 80-column card and
will enable the built-in 80-column firmware instead. In an Apple IIc or IIGS,
the internal firmware always matches these five bytes (see below).

If you are designing an 80-column card and wish to meet these requirements,
you must follow certain other considerations as well as matching the five
identification bytes; the ProDOS 8 Update Manual enumerates these other
considerations.

The ProDOS 8 Update Manual notes that an Apple IIGS does not switch in the 80-
column firmware if it is not selected in the Control Panel. However, due to a
bug in ProDOS 8 versions 1.6 and earlier, it switches in the 80-column
firmware unconditionally. ProDOS 8 cannot respect the Control Panel setting
for 80-column firmware in certain situations; it cannot operate in a 128K
machine in a 128K configuration (including /RAM) without the presence of the
80-column firmware, since it must utilize the extra 64K. This is just one of
the reasons ProDOS 8 does not recognize a card in slot 3 if it is not an 80-
column card, as outlined above.

With ProDOS 8 version 1.7 and later, an Apple IIGS behaves exactly like an
Apple IIe with respect to slot 3. If a card is slot 3 is selected in the
Control Panel, ProDOS 8 ignores it in favor of the built-in 80-column
firmware--unless the card matches the five identification bytes listed above.
This works the same on a Apple IIe.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 471 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Further Reference
o ProDOS 8 Technical Reference Manual
o ProDOS 8 Update Manual
o ProDOS 8 Technical Note #11, The ProDOS 8 MACHID Byte

END OF FILE TN.PDOS.015

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 472 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.016
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#16: How to Format a ProDOS Disk Device

Revised by: Matt Deatherage November 1988
Revised by: Pete McDonald November 1985

This Technical Note supplements the ProDOS 8 Technical Reference Manual in its
description of the low-level driver call that formats the media in a ProDOS
device.

The ProDOS 8 Technical Reference Manual describes the low-level driver call
that formats the media in a ProDOS device, but it neglects to mention the
following:

1. It does not work for Disk II drives or /RAM, both of which ProDOS
 treats specially with built-in driver code.
2. ProDOS has no easy way to tell you whether a device is a Disk II
 drive or /RAM.

Once ProDOS finishes building its device table, which it does when it boots,
it no longer cares about what kind of devices exist, so it does not keep any
information about the different types of devices available. ProDOS identifies
Disk II devices and installs a built-in driver for them. When it has
installed all devices which are physically present, ProDOS then installs /RAM,
in a manner similar to Disk II drives, by pointing to the driver code which is
within ProDOS itself. This method presents a problem for the developer who
wishes to format ProDOS disks since the Disk II driver and the /RAM driver
respond to the FORMAT request in non-standard ways, yet there is no
identification in the global page that tells you which devices are Disk II
drives or /RAM.

The Disk II driver does not support the FORMAT request, and the /RAM driver
responds by "formatting" the RAM disk and also writing to it a virgin
directory and bitmap; neither of these two cases is documented in the ProDOS 8
Technical Reference Manual. To write special-case code for these two device
types, you must be able to identify them, and the method for identification is
available in ProDOS 8 Technical Note #21: Identifying ProDOS Devices.

You should note, however, that AppleTalk network volumes cannot be formatted;
they return a DEVICE NOT CONNECTED error for the FORMAT and any low-level
device call. You may access AppleTalk network volumes through ProDOS MLI
calls only.

Also note that Apple licences a ProDOS 8 Formatter routine, which correctly
identifies and handles Disk II drives and /RAM. You should contact Apple
Software Licensing at Apple Computer, Inc., 20525 Mariani Avenue, M/S 38-I,

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 473 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Cupertino, CA, 95014 or (408) 974-4667 if you wish to license this routine.

Further Reference
o ProDOS 8 Technical Reference Manual
o ProDOS 8 Update Manual
o ProDOS 8 Technical Note #21, Identifying ProDOS Devices

END OF FILE TN.PDOS.016

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 474 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.017
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#17: Recursive ProDOS Catalog Routine

Revised by: Keith Rollin & Matt Deatherage November 1988
Written by: Greg Seitz December 1983

This Technical Note presents an assembly language example of a recursive
directory reading routine which is AppleShare compatible.

This Note presents a routine in assembly language for recursively cataloging a
ProDOS disk, and if you apply this technique to the volume directory of a
disk, it will display the name of every file stored on the disk. The routine
displays the contents of a given directory, the volume directory in this case,
then displays the contents of every directory contained within the initial
directory.

Previous versions of the Note recommended reading the directory with
READ_BLOCK ProDOS calls. This method will still work in most cases, but Apple
Computer no longer endorses it since block-level access is not allowed to
AppleShare file servers under ProDOS. (A file server cannot handle one
machine connected to it changing files and directories on a block level while
it is trying to arbitrate usage between other machines at the file level. A
block-level change behind the server's back could easily mess things up
catastrophically.)

If you are willing to use a different approach, however, you can read the
directory just as easily using READ calls. Instead of using directory
pointers to decide which block to read next, we simply read the directory and
display filenames as we go, until we reach a subdirectory file. When we reach
a subdirectory, the routine saves the necessary variables, plunges down one
level of the tree structure, and catalogs the subdirectory. You repeat the
process if you find a subdirectory at the current level. When you reach the
EOF of any directory, the routine closes the current directory and pops back
up one level, and when it reaches the EOF of the initial directory, the
routine is finished.

The code example on the following pages includes a simple test of the ReadDir
routine, which is the actual recursive catalog routine. Note that the simple
test relies upon the GETBUFR routine in BASIC.SYSTEM to allocate a buffer;
therefore, as presented, the routine requires the presence of BASIC.SYSTEM.
The actual ReadDir routine requires nothing outside of the ProDOS 8 MLI.

01 RECURSIVE.S ProDOS Catalog Routine 27-AUG-88 16:20 PAGE 2

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 475 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

----- NEXT OBJECT FILE NAME IS CATALOG.OBJ
0800: 0800 2 org $800
0800: 3 ***
0800: 4 *
0800: 5 * Recursive ProDOS Catalog Routine
0800: 6 *
0800: 7 * by: Greg Seitz 12/83
0800: 8 * Pete McDonald 1/86
0800: 9 * Keith Rollin 7/88
0800: 10 *
0800: 11 * This program shows the latest "Apple Approved"
0800: 12 * method for reading a ProDOS directory. With
0800: 13 * the advent of AppleTalk for the Apple II, using
0800: 14 * _READBLOCK to read the directory will no longer
0800: 15 * work. This routine has been re-written to read
0800: 16 * directories by opening them as files, and
0800: 17 * performing simple _READ commands.
0800: 18 *
0800: 19 ***
0800: 20 *
0800: 21 * Equates
0800: 22 *
0800: 23 * Zero page locations
0800: 24 *
0800: 0080 25 dirName equ $80 ; pointer to directory name
0800: 0082 26 entPtr equ $82 ; ptr to current entry
0800: 27 *
0800: 28 *
0800: 29 * ProDOS command numbers
0800: 30 *
0800: BF00 31 MLI equ $BF00 ; MLI entry point
0800: BEF5 32 GetBufr equ $BEF5 ; BASIC.SYSTEM get buffer
routine
0800: 33 *
0800: 00C7 34 GetPCmd equ $C7 ; Get Prefix
0800: 00C8 35 OpenCmd equ $C8 ; Open a file command
0800: 00CA 36 ReadCmd equ $CA ; Read a file command
0800: 00CC 37 CloseCmd equ $CC ; Close a file command
0800: 00CE 38 SetMCmd equ $CE ; Set File Position command
0800: 39 *
0800: 40 *
0800: 41 * Offsets into the directory
0800: 42 *
0800: 0000 43 oType equ $0 ; offset to file type byte
0800: 0023 44 oEntLen equ $23 ; length of each dir. entry
0800: 0024 45 oEntBlk equ $24 ; entries in each block
0800: 0025 46 oEntDir equ $25 ; entries in entire directory
0800: 47 *
0800: 48 *
0800: 49 * Monitor routines
0800: 50 *
0800: FDED 51 cout equ $FDED ; output a character
0800: FD8E 52 crout equ $FD8E ; output a RETURN
0800: 53 *
0800: 54 ***
0800: 55 *
0800: 0800 56 Start equ *
0800: 57 *

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 476 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

0800: 58 * Simple routine to test the recursive ReadDir

01 RECURSIVE.S ProDOS Catalog Routine 27-AUG-88 16:20 PAGE 3

0800: 59 * routine. It gets an I/O buffer for ReadDir, gets
0800: 60 * the current prefix, sets the depth of recursion
0800: 61 * to zero, and calls ReadDir to process all of the
0800: 62 * entries in the directory.
0800: 63 *
0800:A9 04 64 lda #4 ; get an I/O buffer
0802:20 F5 BE 65 jsr GetBufr
0805:B0 17 081E 66 bcs exit ; didn't get it
0807:8D DD 09 67 sta ioBuf+1
080A: 68 *
080A:20 00 BF 69 jsr MLI
080D:C7 70 db GetPCmd
080E:EE 09 71 dw GetPParms
0810:B0 0C 081E 72 bcs exit
0812: 73 *
0812:A9 00 74 lda #0
0814:8D D2 09 75 sta Depth
0817: 76 *
0817:A9 F1 77 lda #nameBuffer
0819:A2 0B 78 ldx #<nameBuffer
081B:20 1F 08 79 jsr ReadDir
081E: 80 *
081E: 081E 81 exit equ *
081E:60 82 rts
081F: 83 *
081F: 84 ***
081F: 85 *
081F: 081F 86 ReadDir equ *
081F: 87 *
081F: 88 * This is the actual recursive routine. It takes as
081F: 89 * input a pointer to the directory name to read in
081F: 90 * A,X (lo,hi), opens it, and starts to read the
081F: 91 * entries. When it encounters a filename, it calls
081F: 92 * the routine "VisitFile". When it encounters a
081F: 93 * directory name, it calls "VisitDir".
081F: 94 *
081F: 95 ***
081F: 96 *
081F:85 80 97 sta dirName ; save a pointer to name
0821:86 81 98 stx dirName+1
0823: 99 *
0823:8D DA 09 100 sta openName ; set up OpenFile params
0826:8E DB 09 101 stx openName+1
0829: 102 *
0829: 0829 103 ReadDir1 equ * ; recursive entry point
0829:20 54 08 104 jsr OpenDir ; open the directory as a
file
082C:B0 1F 084D 105 bcs done
082E: 106 *
082E:4C 48 08 107 jmp nextEntry ; jump to the end of the loop
0831: 108 *
0831: 0831 109 loop equ *
0831:A0 00 110 ldy #oType ; get type of current entry
0833:B1 82 111 lda (entPtr),y

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 477 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

0835:C9 00 112 cmp #0 ; inactive entry?
0837:F0 0F 0848 113 beq nextEntry ; yes - bump to next one
0839:29 F0 114 and #$F0 ; look at 4 high bits
083B:C9 D0 115 cmp #$D0 ; is it a directory?
083D:F0 06 0845 116 beq ItsADir ; yes, so call VisitDir

01 RECURSIVE.S ProDOS Catalog Routine 27-AUG-88 16:20 PAGE 4

083F:20 9A 08 117 jsr VisitFile ; no, it's a file
0842:4C 48 08 118 jmp nextEntry
0845: 0845 119 ItsADir equ *
0845:20 A1 08 120 jsr VisitDir
0848: 0848 121 nextEntry equ *
0848:20 68 09 122 jsr GetNext ; get pointer to next entry
084B:90 E4 0831 123 bcc loop ; Carry set means we're done
084D: 084D 124 done equ *
084D: 125 *
084D:20 00 BF 126 jsr MLI ; close the directory
0850:CC 127 db CloseCmd
0851:E7 09 128 dw CloseParms
0853: 129 *
0853:60 130 rts
0854: 131 *
0854: 132 ***
0854: 133 *
0854: 0854 134 OpenDir equ *
0854: 135 *
0854: 136 * Opens the directory pointed to by OpenParms
0854: 137 * parameter block. This pointer should be init-
0854: 138 * ialized BEFORE this routine is called. If the
0854: 139 * file is successfully opened, the following
0854: 140 * variables are set:
0854: 141 *
0854: 142 * xRefNum ; all the refnums
0854: 143 * entryLen ; size of directory entries
0854: 144 * entPtr ; pointer to current entry
0854: 145 * ThisBEntry ; entry number within this block
0854: 146 * ThisEntry ; entry number within this dir.
0854: 147 * ThisBlock ; offset (in blocks) into dir.
0854: 148 *
0854:20 00 BF 149 jsr MLI ; open dir as a file
0857:C8 150 db OpenCmd
0858:D9 09 151 dw OpenParms
085A:B0 3D 0899 152 bcs OpenDone
085C: 153 *
085C:AD DE 09 154 lda oRefNum ; copy the refnum return-
085F:8D E0 09 155 sta rRefNum ; ed by Open into the
0862:8D E8 09 156 sta cRefNum ; other param blocks.
0865:8D EA 09 157 sta sRefNum
0868: 158 *
0868:20 00 BF 159 jsr MLI ; read the first block
086B:CA 160 db ReadCmd
086C:DF 09 161 dw ReadParms
086E:B0 29 0899 162 bcs OpenDone
0870: 163 *
0870:AD 14 0A 164 lda buffer+oEntLen ; init 'entryLen'
0873:8D D7 09 165 sta entryLen
0876: 166 *

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 478 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

0876:A9 F5 167 lda #buffer+4 ; init ptr to first entry
0878:85 82 168 sta entPtr
087A:A9 09 169 lda #<buffer+4
087C:85 83 170 sta entPtr+1
087E: 171 *
087E:AD 15 0A 172 lda buffer+oEntblk ; init these values based on
0881:8D D5 09 173 sta ThisBEntry ; values in the dir header
0884:8D D8 09 174 sta entPerBlk

01 RECURSIVE.S ProDOS Catalog Routine 27-AUG-88 16:20 PAGE 5

0887:AD 16 0A 175 lda buffer+oEntDir
088A:8D D3 09 176 sta ThisEntry
088D:AD 17 0A 177 lda buffer+oEntDir+1
0890:8D D4 09 178 sta ThisEntry+1
0893: 179 *
0893:A9 00 180 lda #0 ; init block offset into dir.
0895:8D D6 09 181 sta ThisBlock
0898: 182 *
0898:18 183 clc ; say that open was OK
0899: 184 *
0899: 0899 185 OpenDone equ *
0899:60 186 rts
089A: 187 *
089A: 188 ***
089A: 189 *
089A: 089A 190 VisitFile equ *
089A: 191 *
089A: 192 * Do whatever is necessary when we encounter a
089A: 193 * file entry in the directory. In this case, we
089A: 194 * print the name of the file.
089A: 195 *
089A:20 A7 09 196 jsr PrintEntry
089D:20 8E FD 197 jsr crout
08A0:60 198 rts
08A1: 199 *
08A1: 200 ***
08A1: 201 *
08A1: 08A1 202 VisitDir equ *
08A1: 203 *
08A1: 204 * Print the name of the subdirectory we are looking
08A1: 205 * at, appending a "/" to it (to indicate that it's
08A1: 206 * a directory), and then calling RecursDir to list
08A1: 207 * everything in that directory.
08A1: 208 *
08A1:20 A7 09 209 jsr PrintEntry ; print dir's name
08A4:A9 AF 210 lda #'/'|$80 ; tack on / at end
08A6:20 ED FD 211 jsr cout
08A9:20 8E FD 212 jsr crout
08AC: 213 *
08AC:20 B0 08 214 jsr RecursDir ; enumerate all entries in
sub-dir.
08AF: 215 *
08AF:60 216 rts
08B0: 217 *
08B0: 218 ***
08B0: 219 *
08B0: 08B0 220 RecursDir equ *

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 479 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

08B0: 221 *
08B0: 222 * This routine calls ReadDir recursively. It
08B0: 223 *
08B0: 224 * - increments the recursion depth counter,
08B0: 225 * - saves certain variables onto the stack
08B0: 226 * - closes the current directory
08B0: 227 * - creates the name of the new directory
08B0: 228 * - calls ReadDir (recursively)
08B0: 229 * - restores the variables from the stack
08B0: 230 * - restores directory name to original value
08B0: 231 * - re-opens the old directory
08B0: 232 * - moves to our last position within it

01 RECURSIVE.S ProDOS Catalog Routine 27-AUG-88 16:20 PAGE 6

08B0: 233 * - decrements the recursion depth counter
08B0: 234 *
08B0:EE D2 09 235 inc Depth ; bump this for recursive
call
08B3: 236 *
08B3: 237 * Save everything we can think of (the women,
08B3: 238 * the children, the beer, etc.).
08B3: 239 *
08B3:A5 82 240 lda entPtr
08B5:48 241 pha
08B6:A5 83 242 lda entPtr+1
08B8:48 243 pha
08B9:AD D3 09 244 lda ThisEntry
08BC:48 245 pha
08BD:AD D4 09 246 lda ThisEntry+1
08C0:48 247 pha
08C1:AD D5 09 248 lda ThisBEntry
08C4:48 249 pha
08C5:AD D6 09 250 lda ThisBlock
08C8:48 251 pha
08C9:AD D7 09 252 lda entryLen
08CC:48 253 pha
08CD:AD D8 09 254 lda entPerblk
08D0:48 255 pha
08D1: 256 *
08D1: 257 * Close the current directory, as ReadDir will
08D1: 258 * open files of its own, and we don't want to
08D1: 259 * have a bunch of open files lying around.
08D1: 260 *
08D1:20 00 BF 261 jsr MLI
08D4:CC 262 db CloseCmd
08D5:E7 09 263 dw CloseParms
08D7: 264 *
08D7:20 20 09 265 jsr ExtendName ; make new dir name
08DA: 266 *
08DA:20 29 08 267 jsr ReadDir1 ; enumerate the subdirectory
08DD: 268 *
08DD:20 56 09 269 jsr ChopName ; restore old directory name
08E0: 270 *
08E0:20 54 08 271 jsr OpenDir ; re-open it back up
08E3: 272 *
08E3: 273 * Restore everything that we saved before
08E3: 274 *

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 480 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

08E3:68 275 pla
08E4:8D D8 09 276 sta entPerBlk
08E7:68 277 pla
08E8:8D D7 09 278 sta entryLen
08EB:68 279 pla
08EC:8D D6 09 280 sta Thisblock
08EF:68 281 pla
08F0:8D D5 09 282 sta ThisBEntry
08F3:68 283 pla
08F4:8D D4 09 284 sta ThisEntry+1
08F7:68 285 pla
08F8:8D D3 09 286 sta ThisEntry
08FB:68 287 pla
08FC:85 83 288 sta entPtr+1
08FE:68 289 pla
08FF:85 82 290 sta entPtr

01 RECURSIVE.S ProDOS Catalog Routine 27-AUG-88 16:20 PAGE 7

0901: 291 *
0901:AD D6 09 292 lda ThisBlock ; reset last position in dir
0904:0A 293 asl a ; = to block # times 512
0905:8D EC 09 294 sta Mark+1
0908:A9 00 295 lda #0
090A:8D EB 09 296 sta Mark
090D:8D ED 09 297 sta Mark+2
0910: 298 *
0910:20 00 BF 299 jsr MLI ; reset the file marker
0913:CE 300 db SetMCmd
0914:E9 09 301 dw SetMParms
0916: 302 *
0916:20 00 BF 303 jsr MLI ; now read in the block we
0919:CA 304 db ReadCmd ; were on last.
091A:DF 09 305 dw ReadParms
091C: 306 *
091C:CE D2 09 307 dec Depth
091F:60 308 rts
0920: 309 *
0920: 310 ***
0920: 311 *
0920: 0920 312 ExtendName equ *
0920: 313 *
0920: 314 * Append the name in the current directory entry
0920: 315 * to the name in the directory name buffer. This
0920: 316 * will allow us to descend another level into the
0920: 317 * disk hierarchy when we call ReadDir.
0920: 318 *
0920:A0 00 319 ldy #0 ; get length of string to
copy
0922:B1 82 320 lda (entPtr),y
0924:29 0F 321 and #$0F
0926:8D 53 09 322 sta extCnt ; save the length here
0929:8C 54 09 323 sty srcPtr ; init src ptr to zero
092C: 324 *
092C:A0 00 325 ldy #0 ; init dest ptr to end of
092E:B1 80 326 lda (dirName),y ; the current directory name
0930:8D 55 09 327 sta destPtr
0933: 328 *

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 481 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

0933: 0933 329 extloop equ *
0933:EE 54 09 330 inc srcPtr ; bump to next char to read
0936:EE 55 09 331 inc destPtr ; bump to next empty location
0939:AC 54 09 332 ldy srcPtr ; get char of sub-dir name
093C:B1 82 333 lda (entPtr),y
093E:AC 55 09 334 ldy destPtr ; tack on to end of cur. dir.
0941:91 80 335 sta (dirName),y
0943:CE 53 09 336 dec extCnt ; done all chars?
0946:D0 EB 0933 337 bne extloop ; no - so do more
0948: 338 *
0948:C8 339 iny
0949:A9 2F 340 lda #'/' ; tack "/" on to the end
094B:91 80 341 sta (dirName),y
094D: 342 *
094D:98 343 tya ; fix length of filename to
open
094E:A0 00 344 ldy #0
0950:91 80 345 sta (dirName),y
0952: 346 *
0952:60 347 rts
0953: 348 *

01 RECURSIVE.S ProDOS Catalog Routine 27-AUG-88 16:20 PAGE 8

0953: 0001 349 extCnt ds 1
0954: 0001 350 srcPtr ds 1
0955: 0001 351 destPtr ds 1
0956: 352 *
0956: 353 *
0956: 354 ***
0956: 355 *
0956: 0956 356 ChopName equ *
0956: 357 *
0956: 358 * Scans the current directory name, and chops
0956: 359 * off characters until it gets to a /.
0956: 360 *
0956:A0 00 361 ldy #0 ; get len of current dir.
0958:B1 80 362 lda (dirName),y
095A:A8 363 tay
095B: 095B 364 ChopLoop equ *
095B:88 365 dey ; bump to previous char
095C:B1 80 366 lda (dirName),y
095E:C9 2F 367 cmp #'/'
0960:D0 F9 095B 368 bne ChopLoop
0962:98 369 tya
0963:A0 00 370 ldy #0
0965:91 80 371 sta (dirName),y
0967:60 372 rts
0968: 373 *
0968: 374 ***
0968: 375 *
0968: 0968 376 GetNext equ *
0968: 377 *
0968: 378 * This routine is responsible for making a pointer
0968: 379 * to the next entry in the directory. If there are
0968: 380 * still entries to be processed in this block, then
0968: 381 * we simply bump the pointer by the size of the
0968: 382 * directory entry. If we have finished with this

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 482 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

0968: 383 * block, then we read in the next block, point to
0968: 384 * the first entry, and increment our block counter.
0968: 385 *
0968:AD D3 09 386 lda ThisEntry ; dec total entries
096B:D0 05 0972 387 bne skip1
096D:CE D4 09 388 dec ThisEntry+1
0970:30 33 09A5 389 bmi DirDone ; done with this directory
0972:CE D3 09 390 skip1 dec ThisEntry
0975: 391 *
0975:CE D5 09 392 dec ThisBEntry ; dec count for this block
0978:F0 10 098A 393 beq ReadNext ; done w/this block, get next
one
097A: 394 *
097A:18 395 clc ; else bump up index
097B:A5 82 396 lda entPtr
097D:6D D7 09 397 adc entryLen
0980:85 82 398 sta entPtr
0982:A5 83 399 lda entPtr+1
0984:69 00 400 adc #0
0986:85 83 401 sta entPtr+1
0988:18 402 clc ; say that the buffer's good
0989:60 403 rts
098A: 404 *
098A: 098A 405 ReadNext equ *
098A:20 00 BF 406 jsr MLI ; get the next block

01 RECURSIVE.S ProDOS Catalog Routine 27-AUG-88 16:20 PAGE 9

098D:CA 407 db ReadCmd
098E:DF 09 408 dw ReadParms
0990:B0 13 09A5 409 bcs DirDone
0992: 410 *
0992:A9 F5 411 lda #buffer+4 ; set entry pointer to
beginning
0994:85 82 412 sta entPtr
0996:A9 09 413 lda #<buffer+4
0998:85 83 414 sta entPtr+1
099A: 415 *
099A:AD D8 09 416 lda entPerBlk ; re-init 'entries in this
block'
099D:8D D5 09 417 sta ThisBEntry
09A0:CE D5 09 418 dec ThisBEntry
09A3:18 419 clc ; return 'No error'
09A4:60 420 rts
09A5: 421 *
09A5: 09A5 422 DirDone equ * ; return 'All Done!'
09A5:38 423 sec ; return 'an error occurred'
09A6:60 424 rts
09A7: 425 *
09A7: 426 ***
09A7: 427 *
09A7: 09A7 428 PrintEntry equ *
09A7: 429 *
09A7: 430 * Using the pointer to the current entry, this
09A7: 431 * routine prints the entry name. It also pays
09A7: 432 * attention to the recursion depth, and indents
09A7: 433 * by 1 space for every level.
09A7: 434 *

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 483 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

09A7:AD D2 09 435 lda Depth ; init counter for indenting
09AA:8D D1 09 436 sta PrntCnt
09AD:4C B5 09 437 jmp spcDec
09B0:A9 A0 438 spcloop lda #$A0 ; print a space for indenting
09B2:20 ED FD 439 jsr cout
09B5: 09B5 440 spcDec equ *
09B5:CE D1 09 441 dec PrntCnt ; any more indenting?
09B8:10 F6 09B0 442 bpl spcloop ; yes - keep going
09BA: 443 *
09BA:A0 00 444 ldy #0 ; get byte that has the
length byte
09BC:B1 82 445 lda (entPtr),y
09BE:29 0F 446 and #$0F ; get just the length
09C0:8D D1 09 447 sta PrntCnt ; put it into our counter
09C3: 09C3 448 PrntLoop equ *
09C3:C8 449 iny ; bump to the next char.
09C4:B1 82 450 lda (entPtr),y ; get next char
09C6:09 80 451 ora #$80 ; COUT likes high bit set
09C8:20 ED FD 452 jsr cout ; print it
09CB:CE D1 09 453 dec PrntCnt ; printed all chars?
09CE:D0 F3 09C3 454 bne PrntLoop ; no - keep going
09D0:60 455 rts
09D1: 456 *
09D1: 0001 457 PrntCnt ds 1 ; counter for printing
09D2: 458 *
09D2: 459 ***
09D2: 460 *
09D2: 461 * Some global variables
09D2: 462 *
09D2: 0001 463 Depth ds 1 ; amount of recursion
09D3: 0002 464 ThisEntry ds 2 ; abs entry number

01 RECURSIVE.S ProDOS Catalog Routine 27-AUG-88 16:20 PAGE 10

09D5: 0001 465 ThisBEntry ds 1 ; entry in this block
09D6: 0001 466 ThisBlock ds 1 ; block with dir
09D7: 0001 467 entryLen ds 1 ; length of each directory
entry
09D8: 0001 468 entPerBlk ds 1 ; entries per block
09D9: 469 *
09D9: 470 ***
09D9: 471 *
09D9: 472 * ProDOS command parameter blocks
09D9: 473 *
09D9: 09D9 474 OpenParms equ *
09D9:03 475 db 3 ; number of parms
09DA: 0002 476 OpenName ds 2 ; pointer to filename
09DC:00 00 477 ioBuf dw $0000 ; I/O buffer
09DE: 0001 478 oRefNum ds 1 ; returned refnum
09DF: 479 *
09DF: 09DF 480 ReadParms equ *
09DF:04 481 db 4 ; number of parms
09E0: 0001 482 rRefNum ds 1 ; refnum from Open
09E1:F1 09 483 dw buffer ; pointer to buffer
09E3:00 02 484 reqAmt dw 512 ; amount to read
09E5: 0002 485 retAmt ds 2 ; amount actually read
09E7: 486 *
09E7: 09E7 487 CloseParms equ *

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 484 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

09E7:01 488 db 1 ; number of parms
09E8: 0001 489 cRefNum ds 1 ; refnum from Open
09E9: 490 *
09E9: 09E9 491 SetMParms equ *
09E9:02 492 db 2 ; number of parms
09EA: 0001 493 sRefNum ds 1 ; refnum from Open
09EB: 0003 494 Mark ds 3 ; file position
09EE: 495 *
09EE: 09EE 496 GetPParms equ *
09EE:01 497 db 1 ; number of parms
09EF:F1 0B 498 dw nameBuffer ; pointer to buffer
09F1: 499 *
09F1: 0200 500 buffer ds 512 ; enough for whole block
0BF1: 501 *
0BF1: 0040 502 nameBuffer ds 64 ; space for directory name

01 SYMBOL TABLE SORTED BY SYMBOL 27-AUG-88 16:20 PAGE 11

 09F1 BUFFER 095B CHOPLOOP 0956 CHOPNAME CC CLOSECMD
 09E7 CLOSEPARMS FDED COUT 09E8 CREFNUM FD8E CROUT
 09D2 DEPTH 0955 DESTPTR 09A5 DIRDONE 80 DIRNAME
 084D DONE 09D8 ENTPERBLK 82 ENTPTR 09D7 ENTRYLEN
 081E EXIT 0953 EXTCNT 0920 EXTENDNAME 0933 EXTLOOP
 BEF5 GETBUFR 0968 GETNEXT C7 GETPCMD 09EE GETPPARMS
 09DC IOBUF 0845 ITSADIR 0831 LOOP 09EB MARK
 BF00 MLI 0BF1 NAMEBUFFER 0848 NEXTENTRY 24 OENTBLK
 25 OENTDIR 23 OENTLEN C8 OPENCMD 0854 OPENDIR
 0899 OPENDONE 09DA OPENNAME 09D9 OPENPARMS 09DE OREFNUM
 00 OTYPE 09A7 PRINTENTRY 09D1 PRNTCNT 09C3 PRNTLOOP
 CA READCMD 0829 READDIR1 081F READDIR 098A READNEXT
 09DF READPARMS 08B0 RECURSDIR ?09E3 REQAMT ?09E5 RETAMT
 09E0 RREFNUM CE SETMCMD 09E9 SETMPARMS 0972 SKIP1
 09B5 SPCDEC 09B0 SPCLOOP 0954 SRCPTR 09EA SREFNUM
?0800 START 09D5 THISBENTRY 09D6 THISBLOCK 09D3 THISENTRY
 08A1 VISITDIR 089A VISITFILE
** SUCCESSFUL ASSEMBLY := NO ERRORS
** ASSEMBLER CREATED ON 15-JAN-84 21:28
** TOTAL LINES ASSEMBLED 502
** FREE SPACE PAGE COUNT 81

Further Reference
o ProDOS 8 Technical Reference Manual

END OF FILE TN.PDOS.017

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 485 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.018
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#18: /RAM Memory Map

Revised by: Matt Deatherage November 1988
Written by: Pete McDonald December 1986

This Technical Note describes the block to actual memory location mapping of
/RAM.

 Blocks Address Range

 | $70-$7F | $E000-$EFFF |

 | $68-$6F | $D000-$DFFF | (Bank 2)

 | $60-$67 | $D000-$DFFF | (Bank 1)

 | $4E-$5C | $A200-$BFFF |

 | $3D-$4C | $8200-$A1FF |

 | $2C-$3B | $6200-$81FF |

 | $1B-$2A | $4200-$61FF |

 | $0A-$19 | $2200-$41FF |

 | $5D-$5F | $1A00-$1FFF |

 | $4D | $1800-$19FF |

 | $3C | $1600-$17FF |

 | $2B | $1400-$15FF |

 | $1A | $1200-$13FF |

 | $09 | $1000-$11FF |

 | $08 | $2000-$21FF |

 | $02 | $0E00-$0FFF |

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 486 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 | $03 | Bitmap* |

Notes:
* Synthesized.
1. Blocks 0, 1, 4, 5, 6, and 7 do not exist.
2. Block $7F contains the Reset, IRQ, and NMI vectors and is normally
 marked as used.
3. The memory from $0C00 - $0DFF is a general purpose buffer used by the
 /RAM driver.

END OF FILE TN.PDOS.018

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 487 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.019
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#19: File Auxiliary Type Assignment

Revised by: Matt Deatherage November 1988
Written by: Matt Deatherage May 1988

This Technical Note describes file auxiliary type assignments.

The information in a ProDOS file auxiliary type field depends upon its primary
file type. For example, the auxiliary type field for a text file (TXT, $04)
is defined as the record length of the file if it is a random-access file, or
zero if it is a sequential file. The auxiliary type field for an
AppleWorks(TM) file contains information about the case of letters in the
filename (see Apple II File Type Notes, File Types $19, $1A, and $1B). The
auxiliary type field for a binary file (BIN, $06) contains the loading address
of the file, if one exists.

Auxiliary types are now used to extend the limit of 256 file types in ProDOS.
Specific auxiliary types can be assigned to generic application file types.
For example, if you need a file type for your word-processing program, Apple
might assign you an auxiliary type for the generic file type of Apple II word
processor file, if it is appropriate.

An application can determine if a given file belongs to it by checking the
file type and the auxiliary type in the directory entry. Other programming
considerations include the following:

1. If your program displays auxiliary type information, it should
 include all auxiliary types, not just selected ones. Try to
 display the auxiliary type information stored in the directory
 entry, just as you would display hex codes for file types for
 which you do not have a more descriptive message to display.
2. Programs should not store information in an undefined auxiliary
 type field. Storing the record length in a text file is fine, and
 it is even encouraged, but storing the number of words in a text
 file in that text file's auxiliary type field might cause problems
 for those programs which expect to find a record length there.
 Similarly, storing data in the auxiliary type field will cause
 problems if your data matches an auxiliary type which is assigned.
 To avoid these problems, only store defined items in a file's
 auxiliary type field. If you do not know of a definition for a
 particular file type's associated auxiliary type, do not store
 anything in its field.

To request a file type and auxiliary type, please send Apple II Developer
Technical Support a description of your proposed file format, along with a

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 488 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

justification for not using existing file and auxiliary types. We will
publish this information publicly, unless you specifically prohibit it, since
we feel doing so enables the exchange of data for those applications who
choose to support other file formats.

Further Reference
o ProDOS 8 Technical Reference Manual
o ProDOS 16 Technical Reference

END OF FILE TN.PDOS.019

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 489 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.020
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#20: Mirrored Devices and SmartPort

Revised by: Matt Deatherage November 1988
Written by: Matt Deatherage May 1988

This Technical Note describes how ProDOS 8 reacts when more than two SmartPort
devices are connected, how applications using direct device access should
behave, and other related issues. This Note supersedes Section 6.3.1 of the
ProDOS 8 Technical Reference Manual.

Although SmartPort theoretically can handle up to 127 devices connected to a
single interface (in practice, electrical considerations curtail this
considerably), ProDOS 8 can handle only two devices per slot. This is because
ProDOS uses bit 7 of its unit_number is used to distinguish drives from each
other, and a single bit cannot distinguish more than two devices.

When it boots, ProDOS checks each interface card (or firmware equivalent in
the IIc or IIGS) for the ProDOS block-device signature bytes ($Cn01 = $20,
$Cn03 = $00, and $Cn05 = $03), so it can install the appropriate device-driver
address in the system global page. If the signature bytes match, ProDOS then
checks the SmartPort signature byte ($Cn07 = $00), and if that byte matches
and the interface is in slot 5 (or located at $C500 in the IIc or IIGS),
ProDOS does a SmartPort STATUS call to determine how many devices are
connected to the interface. If only one or two drives are connected to the
interface, ProDOS installs its block-device entry point (the contents of $CnFF
added to $Cn00) in the device-driver vector table, which starts at $BF10. In
this particular instance, ProDOS would put the vector at $BF1A for slot 5,
drive 1, and if two drives were found, at $BF2A for slot 5, drive 2 .

If the interface is in slot 5 and more than two devices are connected, ProDOS
copies the same block-device entry point that it uses for slot 5, drives 1 and
2 in the device driver table entry for slot 2, drive 1, and if four drives are
connected, for slot 2, drive 2. Further in the boot process, if ProDOS finds
the interface of a block device in slot 2 (not possible on a IIc), it replaces
the vectors copied from slot 5 with the proper device-driver vectors for slot
2; this is the reason mirroring is disabled if there is a ProDOS device in
slot 2. Note that non-ProDOS devices (i.e, serial cards and ports, etc.) do
not have vectors installed in the ProDOS device-driver table, so they do not
interfere with mirroring.

When ProDOS makes an MLI call with the unit_number of a mirrored device, it
sets up the call to the device driver then goes through the vector in the
device-driver table starting at $BF00. When the block device driver (located
on the interface card or in the firmware) gets this MLI call, it checks the
unit number which is stored at $43 and verifies if the slot number (bits four,

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 490 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

five, and six) is the same as that of the interface. If it is not, the ProDOS
block device driver of the interface realizes it is dealing with a mirrored
device, internally adds three to the slot number and two to the drive number,
then processes it, returning the desired information or data to ProDOS.

If an application must make direct device-driver calls (something which is
not encouraged), it should first check devlst (starting at $BF32) to verify
that the unit_number is from an active device. In addition, the application
should mask off or ignore the low nibble of entries in devlst and know that
one less than the number of devices in the list is stored at $BF31 (devcnt).
The application then should use the unit_number to get the proper device-
driver vector from the ProDOS global page; the application should not
construct the vector itself, because this vector would be invalid for a
mirrored device.

The following code fragment correctly illustrates this technique. It is
written in 6502 assembly language and assumes the unit_number is in the
accumulator.

devcnt equ $BF31
devlst equ $BF32
devadr equ $BF10
devget sta unitno ; store for later compare instruction
 ldx devcnt ; get count-1 from $BF31
devloop lda devlst,x ; get entry in list
 and #$F0 ; mask off low byte
devcomp cmp unitno ; compare to the unit_number we filled in
 beq goodnum ;
 dex
 bpl devloop ; loop again if still less than $80
 bmi badunitno ; error: bad unit number
goodnum lda unitno ; get good copy of unit_number
 lsr a ; divide it by 8
 lsr a ; (not sixteen because devadr entries are
 lsr a ; two bytes wide)
 tax
 lda devadr,x ; low byte of device driver address
 sta addr
 lda devadr+1,x ; high byte of device driver address
 sta addr+1
 rts
addr dw 0 ; address will be filled in here by goodnum
unitno dfb 0 ; unit number storage

Similarly, applications which construct firmware entry points from user input
to "slot and drive" questions will not work with mirrored devices. If an
application wishes to issue firmware-specific calls to a device, it should
look at the high byte of the device-driver table entry for that device to
obtain the proper place to check firmware ID bytes. In the sample code above,
the high byte would be returned in addr+1. For devices mirrored to slot 2
from slot 5, this technique will return $C5, and ID bytes would then be
checked (since they should always be checked before making device-specific
calls) in the $C500 space. Applications ignoring this technique will
incorrectly check the $C200 space.

Further Reference
o ProDOS 8 Technical Reference Manual

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 491 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

o ProDOS 8 Technical Note #21, Identifying ProDOS Devices

END OF FILE TN.PDOS.020

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 492 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.021
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#21: Identifying ProDOS Devices

Revised by: Dave Lyons & Matt Deatherage July 1989
Written by: Matt Deatherage & Dan Strnad November 1988

This Technical Note describes how to identify ProDOS devices and their
characteristics given the ProDOS unit number. This scheme should only be used
under ProDOS 8.
Changes since November 1988: Added a section on things to avoid.

There are various reasons why an application would want to identify ProDOS
devices. Although ProDOS itself takes great pains to treat all devices
equally, it has internal drivers for two types of devices: Disk II drives and
the /RAM drive provided on 128K or greater machines. Because all devices
really are not equal (i.e., some cannot format while others are read-only,
etc.), a developer may need to know how to identify a ProDOS device.

Although the question of how much identification is subjective for each
developer, ProDOS 8 offers a fair level of identification; the only devices
which cannot be conclusively identified are those devices with RAM-based
drivers, and they could be anything. The vast majority of ProDOS devices can
be identified, however, so you could prompt the user to insert a disk in
UniDisk 3.5 #2, instead of Slot 2, Drive 2, which could be confusing if the
user has a IIc or IIGS.

Note that for the majority of applications, this level of identification is
unnecessary. Most applications simply prompt the user to insert a disk by its
name, and the user can place it in any drive which is capable of working with
the media of the disk. You should avoid requiring a certain disk to be in a
specific drive since doing so defeats much of the device-independence which
gives ProDOS 8 its strength.

When you do need to identify a device (i.e., if you need to format media in a
Disk II or /RAM device), however, the process is fairly straightforward. This
process consists of a series of tests, any one of which could end with a
conclusive device identification. It is not possible to look at a single ID
byte to determine a particular device type. You may determine rather quickly
that a device is a SmartPort device, or you may go all the way through the
procedure to identify a third-party network device. For those developers who
absolutely must identify devices, we present the following discussion.

Isn't There Some Kind of "ID Nibble?"

ProDOS 8 does not support an "ID nibble." Section 5.2.4 of the ProDOS 8

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 493 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Technical Reference Manual states that the low nibble of each unit number in
the device list "is a device identification: 0 = Disk II, 4 = Profile, $F =
/RAM."

When ProDOS 8 finds a "smart" ProDOS block device while doing its search of
the slots and ports, it copies the high nibble of $CnFE (where n is the slot
number) into the low nibble of the unit number in the global page. The low
nibble then has the following definition:

 Bit 3: Medium is removable
 Bit 2: Device is interruptible
 Bit 1-0: Number of volumes on the device (minus one)

As you can see, it is quite easy for the second definition to produce one of
the original values (e.g., 0, 4, or $F) in the same nibble for completely
different reasons. You should ignore the low nibble in the unit number in the
global page when identifying devices since the first definition is
insufficient to uniquely identify devices and the second definition contains
no information to specifically identify devices. Once you do identify a
ProDOS block device, however, you may look at $CnFE to obtain the information
in the second definition above, as well as information on reading, writing,
formatting, and status availability.

When identifying ProDOS devices, we start with a list of unit numbers for all
currently installed disk devices. As we progress through the identification
process, we will identify some devices while we will not know about others
until the end of the process.

Starting with the Unit Number

ProDOS unit numbers (unit_number) are bytes where the bits are arranged in the
pattern DSSS0000, where D = 0 for drive one and D = 1 for drive two, SSS is a
three-bit integer with values from one through seven indicating the device
slot number (zero is not a valid slot number), and the low nibble is ignored.

To obtain a list of the unit numbers for all currently installed ProDOS disk
devices, you can perform a ProDOS MLI ON_LINE call with a unit number of $00.
This call returns a unit number and a volume name for every device in the
device list. ProDOS stores the length of the volume name in the low nibble of
the unit number which ON_LINE returns; if an error occurs, the low nibble will
contain $0 and the byte immediately following the unit number will contain an
error code. For more information on the ON_LINE call, see section 4.4.6 of
the ProDOS 8 Technical Reference Manual. We will discuss the error codes in
more detail later in this Note.

To identify the devices in the device list, we need to know in which physical
slot the hardware resides, so we can look at the slot I/O ROM space and check
the device's identification bytes. Note that the slot-number portion of the
unit number does not always represent the physical slot of the device, rather,
it sometimes represents the logical slot where you can find the address of the
device's driver entry point in the ProDOS global page. For example, if a
SmartPort device interface in slot 5 has more than two connected devices, the
third and fourth devices will be mapped to slot 2; this mapping gives these
two devices unit numbers of $20 and $A0 respectively, but the device's driver
entry point will still be in the $C5xx address space.

ProDOS 8 Technical Note #20, Mirrored Devices and SmartPort, discusses this

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 494 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

kind of mapping in detail. It also presents a code example which gives you
the correct device-driver entry point (from the global page) given the unit
number as input. We repeat this code example below for your benefit. It
assumes the unit_number is in the accumulator.

devcnt equ $BF31
devlst equ $BF32
devadr equ $BF10
devget sta unitno ; store for later compare instruction
 ldx devcnt ; get count-1 from $BF31
devloop lda devlst,x ; get entry in list
 and #$F0 ; mask off low nibble
devcomp cmp unitno ; compare to the unit_number we filled in
 beq goodnum ;
 dex
 bpl devloop ; loop again if still less than $80
 bmi badunitno ; error: bad unit number
goodnum lda unitno ; get good copy of unit_number
 lsr a ; divide it by 8
 lsr a ; (not sixteen because devadr entries are
 lsr a ; two bytes wide)
 tax
 lda devadr,x ; low byte of device driver address
 sta addr
 lda devadr+1,x ; high byte of device driver address
 sta addr+1
 rts
addr dw 0 ; address will be filled in here by goodnum
unitno dfb 0 ; unit number storage

Warning: Attempting to construct the device-driver entry point from
 the unit number is very dangerous. Always use the
 technique presented above.

Network Volumes

AppleTalk volumes present a special problem to some developers since they
appear as "phantom devices," or devices which do not always have a device
driver installed in the ProDOS global page. Fortunately, the ProDOS Filing
Interface (PFI) to AppleTalk provides a way to identify network volumes
through an MLI call. The ProDOS Filing Interface call FIListSessions is used
to retrieve a list of the current sessions being maintained through PFI and
any volumes mounted for those sessions. The following presents an example:

Network JSR $BF00 ;ProDOS MLI
 DFB $42 ;AppleTalk command number
 DW ParamAddr ;Address of Parameter Table
 BCS ERROR ;error occurred

ParamAddr DFB $00 ;Async Flag (0 means synchronous only)
 ;note there is no parameter count
 DFB $2F ;command for FIListSessions
 DW $0000 ;AppleTalk Result Code returned here
 DW BufLength ;length of the buffer supplied
 DW BufPointer ;low word of pointer to buffer
 DW $0000 ;high word of pointer to buffer

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 495 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 ;(THIS WILL NOT BE ZERO IF THE BUFFER IS
 ;NOT IN BANK ZERO!!!)
 DFB $00 ;Number of entries returned here

If the FIListSessions call fails with a bad command error ($01), then
AppleShare is not installed; therefore, there are no networks volumes mounted.
If there is a network error, the accumulator will contain $88 (Network Error),
and the result code in the parameter block will contain the specific error
code. The list of current sessions is placed into the buffer (at the address
BufPointer in the example above), but if the buffer is not large enough to
hold the list, it will retain the maximum number of current sessions possible
and return an error with a result code of $0A0B (Buffer Too Small). The
buffer format is as follows:

SesnRef DFB $00 ;Sessions Reference number (result)
UnitNum DFB $00 ;Unit Number (result)
VolName DS 28 ;28 byte space for Volume Name
 ;(starts with a length byte)
VolumeID DW $0000 ;Volume ID (result)

This list is repeated for every volume mounted for each session (the number is
placed into the last byte of the parameter list you passed to the ProDOS MLI).
For example, if there are two volumes mounted for session one, then session
one will be listed two times. The UnitNum field contains the slot and drive
number in unit-number format, and note that bit zero of this byte is set if
the volume is a user volume (i.e., it contains a special "users" folder).
This distinction is unimportant for identifying a ProDOS device as a network
pseudo-device, but it is necessary for applications which need to know the
location of the user volume. Note that if you mount two servers or more with
each having its own user volume, the user volume found first in the list
(scanned top to bottom) returned by FIListSessions specifies the user volume
that an application should use. See the AppleShare Programmer's Guide for the
Apple IIGS (available from the Apple Programmer's and Developer's Association
(APDA)) for more information on programming for network volumes.

If you keep a list of all unit numbers returned by the ON_LINE call and mark
each one "identified" as you identify it, keep in mind that the unit numbers
returned by FIListSessions and ON_LINE have different low nibbles which should
be masked off before you make any comparisons.

Note: You should mark the network volumes as identified and not
 try to identify them further with the following methods.

What Slot is it Really In?

Once you have the address of the device driver's entry point and know that the
device is not a network pseudo-device, you can determine in what physical slot
the device resides. If the high byte of the device driver's entry point is of
the form $Cn, then n is the physical slot number of the device. A SmartPort
device mirrored to slot 2 will have a device driver address of $C5xx, giving 5
as the physical slot number.

If the high byte of the device driver entry point is not of the form $Cn,
then there are three other possibilities:

 o The device is a Disk II with driver code inside ProDOS.
 o The device is either /RAM with driver code inside ProDOS or a

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 496 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 third-party auxiliary-slot RAM disk device with driver code
 installed somewhere in memory.
 o The device is not a RAM disk but has a RAM-based device driver,
 like a third-party network device.

Auxiliary-slot RAM disks are identified by convention. Any device in slot 3,
drive 2 (unit number $B0) is assumed to be an auxiliary-slot RAM disk since
ProDOS 8 will not recognize any card which is not an 80-column card in slot 3
(see ProDOS 8 Technical Note #15). There is a chance that some other kind of
device could be installed with unit number $B0, but it is not likely.

To identify various kinds of auxiliary-slot RAM disks, you must obtain the
unit number from the ProDOS global page. The list of unit numbers starts at
$BF32 (DEVLST) and is preceded by the number of unit numbers minus one
(DEVCNT, at $BF31). You should search through this list until you find a unit
number in the form $Bx; if the unit number is $B3, $B7, $BB, or $BF, you can
assume the device to be an auxiliary-slot RAM disk which uses the auxiliary
64K bank of memory present in a 128K Apple IIe or IIc, or a IIGS. If the unit
number is one of the four listed above, you must remove this device to safely
access memory in the auxiliary 64K bank, but if the unit number is not one of
the four listed above, you can assume the device to be an auxiliary-slot RAM
disk which does not use the normal bank of auxiliary memory. (Some third-
party auxiliary-slot cards contain more than one 64K auxiliary bank; the
normal use of this memory is as a RAM disk. If the RAM-based driver for this
kind of card does not use the normal auxiliary 64K bank for storage, it should
have a unit number other than one of the four listed above.) If the unit
number is not one of the four listed above, you may safely access the
auxiliary bank of memory without first removing this device.

Section 5.2.2.3 of the ProDOS 8 Technical Reference Manual contains a routine
which disconnects the appropriate RAM disk devices in slot 3, drive 2, without
removing those drivers which do not use that bank, to allow use of the
auxiliary 64K bank.

Note: Previous information from Apple indicated that /RAM could be
 distinguished from third-party RAM disks by a driver address of
 $FF00. Although the address has not changed, some third-party
 drivers may have addresses of $FF00 as well, although this is not
 supported. /RAM always has a driver address of $FF00 and unit
 number $BF, although any third-party RAM disk could install itself
 with similar attributes.

For Disk II devices, the three-bit slot number portion of the unit_number will
always be the physical slot number. Disk II devices can never be mirrored to
another slot (the Disk II driver does not support it); therefore, it will be
in the physical slot represented in the unit number which ProDOS assigns when
it boots.

If the high byte of the device driver's entry point is not of the form $Cn,
then you should assume that the slot number is the value SSS in the unit
number (this is equivalent to assuming the device is a Disk II) for the next
step, which is checking the I/O space for identification bytes.

What to Do With the Slot Number

Once you have the slot number, you can look at the slot I/O ROM space to
determine the kind of device it is. As described in the ProDOS 8 Technical

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 497 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Reference Manual, ProDOS looks for the following ID bytes in ROM to determine
if a ProDOS device is in a slot:

 $Cn01 = $20
 $Cn03 = $00
 $Cn05 = $03

If you use the slot number, n, you obtained above, and the three values listed
above are not present, then the device has a RAM-based driver and cannot
further be identified.

If the three values previously discussed are present, then examination of
$CnFF will give more information. If $CnFF = $00, the device is a Disk II.
If $CnFF is any value other than $00 or $FF ($FF signifies a 13-sector Disk
II, which ProDOS does not support), the device is a ProDOS block device.

For ProDOS block devices, the byte at $CnFE contains several flags which
further identify the device; these flags are discussed in section 6.3.1 of the
ProDOS 8 Technical Reference Manual.

SmartPort Devices

Many of Apple's ProDOS block devices follow the SmartPort firmware interface.
Through SmartPort, you can further identify devices. Existing SmartPort
devices include SCSI hard disks, 3.5" disk drives and CD-ROM drives, with many
more possible device types.

If $Cn07 = $00, then the device is a SmartPort device, and you can then make a
SmartPort call to get more information about the device, including a device
type and subtype. The SmartPort entry point is three bytes beyond the ProDOS
block device entry point, which you already determined above. The method for
making SmartPort calls is outlined in the Apple IIc Technical Reference Manual
and the Apple IIGS Firmware Reference.

The most useful SmartPort call to make for device identification is the STATUS
call with statcode = 3 for Return Device Information Block (DIB). This call
returns the ASCII name of the device, a device type and subtype, as well as
the size of the device. Some SmartPort device types and subtypes are listed
in the referenced manuals, with a more complete list located in the Apple IIGS
Firmware Reference. A list containing SmartPort device types only is provided
in SmartPort Technical Note #4, SmartPort Device Types.

RAM-Based Drivers

One fork of the identification tree comes to an end at this point. If the
high byte of the device driver entry point was not $Cn and the device was not
/RAM, we assumed it was a Disk II and used the slot number portion of the unit
number to examine the slot ROM space. If the ROM space for that slot number
does not match the three ProDOS block device ID bytes, it cannot be a Disk II.
Having ruled out other possibilities, it must be a device installed after
ProDOS finished building its device table. Perhaps it is a third-party RAM
disk driver or maybe a driver for an older card which does not match the
ProDOS block device ID bytes.

Whatever the function of the driver, you can identify it no further. It quite
literally could be any kind of device at all, and with neither slot ROM space

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 498 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

to identify nor a standard location to compare the device driver entry point
against, the best you can do is consider it a "generic device" and go on.

But Is It Connected, and Can I Read From It?

Just because a ProDOS device is in the table does not mean it is ready to be
used. There is always the possibility that the drive has no media in it.
Back in the beginning, we made an ON_LINE call with a unit number of $00. If
the volume name of a disk in that device could not be read, or another error
occurred, ProDOS 8 would return the error code to us in the ON_LINE buffer
immediately following the unit number. Those errors possible include:

 $27 I/O error
 $28 No Device Connected
 $2B Write Protected
 $2F Device off-line
 $45 Volume directory not found
 $52 Not a ProDOS disk
 $55 Volume Control Block full
 $56 Bad buffer address
 $57 Duplicate volume on-line

Note that error $2F is not listed in the ProDOS 8 Technical Reference Manual.

By convention, we interpret I/O error to mean the disk in the drive is either
damaged or blank (not formatted). We interpret Device off-line to mean that
there is no disk in the drive. We interpret No Device Connected to mean the
drive really does not exist (for example, asking for status on a second Disk
II when only one is connected).

If no error occurred for a unit number in the ON_LINE call (the low nibble of
the unit number is not zero), the volume name of the disk in the drive follows
the unit number.

Things To Avoid

The ProDOS device-level STATUS call generally returns the number of blocks on
a device. Applications should not try to identify 3.5" drives by doing a
ProDOS or SmartPort STATUS call and comparing the number of blocks to 800 or
1,600. The correct way to identify a 3.5" drive is by the Type field in a
SmartPort STATUS call.

Don't assume the characteristics of a device just because it is in a certain
slot. For example, be prepared to deal with 5.25" disk drives in slots other
than 6. Don't assume that slot 6 is associated with block devices at all--
there could be a printer card installed.

Avoid reinstalling /RAM when your application finds it removed. If you remove
/RAM, you should reinstall it when you're done with the extra memory; however,
if your application finds /RAM already gone, you do not have the right to
just reinstall it. A driver of some kind may be installed in auxiliary
memory, and arbitrary reinstallation of /RAM could bring the system down.

Further Reference

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 499 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 o ProDOS 8 Technical Reference Manual
 o AppleShare Programmer's Guide for the Apple IIGS
 o ProDOS 8 Technical Note #15, How ProDOS 8 Treats Slot 3
 o ProDOS 8 Technical Note #20, Mirrored Devices and SmartPort

END OF FILE TN.PDOS.021

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 500 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.022
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#22: Don't Put Parameter Blocks on Zero Page

Written by: Dave Lyons July 1989

Putting ProDOS 8 parameter blocks on zero page ($00-$FF) is not recommended.

It is not a good idea to put the parameter blocks for ProDOS 8 MLI calls on
zero page. This is not forbidden by the ProDOS 8 Technical Reference Manual,
but then again, it also doesn't tell you not to put parameter blocks in ROM,
in the $C0xx soft switch area, or just below the active part of the stack.

If you do put MLI parameter blocks on zero page, your application may break
in the future.

If your parameter block comes between $80 and $FF, it won't work with
AppleShare installed.

Further Reference

 o ProDOS 8 Technical Reference Manual

END OF FILE TN.PDOS.022

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 501 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.023
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#23: ProDOS 8 Changes and Minutia

Written by: Matt Deatherage July 1989

This Technical Note documents the change history of ProDOS 8 through V1.8, and
it supersedes the information on this topic in the ProDOS 8 Technical
Reference Manual and the ProDOS 8 Update.

Changes? You're kidding.

No. One of the side effects of evolving technology is that eventually little
things (like the disk operating system) have to change to support the new
technologies. Every time Apple changes ProDOS 8, the manuals can't be
reprinted. For one thing, it takes a long time to turn out a manual, by which
time there's often a new version done which the new manual doesn't cover. For
another thing, programmers and developers don't tend to purchase revised
manuals (our informal research shows that more people have up-to-date Apple
/// RPS documentation than have up-to-date Apple IIc documentation--and this
was done before the Apple IIc Plus was released...).

So this Note explains what has changed between ProDOS 8 V1.0 and the current
release, V1.8, which began shipping with System Software 5.0. Table 1 shows
what versions of ProDOS 8 existing documentation covers.

 Version
 Document Number
 __
 ProDOS 8 Technical Reference Manual 1.1.1
 ProDOS 8 Update 1.4
 AppleShare Programmer's Guide to the Apple IIGS 1.5
 __

ProDOS 1.0

This was the first release of ProDOS, which was so unique it didn't even have
to be called ProDOS 8 to distinguish it from ProDOS 16, which we're not
talking about. If you have documentation that predates ProDOS 1.0, you should
seek professional help from APDA at the address listed in Technical Note #0.

ProDOS 1.0.1

 o Fixed a bug in the STATUS call which affected testing for the
 write-protected condition.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 502 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

ProDOS 1.0.2

 o Changed instructions used in interrupt entry routines on the
 global page so the accumulator would not be destroyed.
 o Fixed a bug in the Disk II core routines so the motor would shut
 off after recalibration on an error.

ProDOS 1.1

 o Changed the internal MLI layout for future expandability and
 maintenance.
 o Modified machine ID routines to identify IIc and enhanced IIe
 ROMs.
 o Removed code that allowed ProDOS to boot on 48K machines.
 o Removed the check for the ProDOS version number from the OPEN
 routine.
 o Incremented KVERSION (the ProDOS Kernel version) on the global
 page.
 o Modified the loader routines to reflect the presence of any 80-
 column card following the established protocol (see ProDOS 8
 Technical Note #15, How ProDOS 8 Treats Slot 3). Also, at this
 time, added code to allow slot 3 to be enabled on a IIe if an 80-
 column card following the protocol was found.
 o Added code to turn off all disk motor phases prior to seeking a
 track in the Disk II driver.
 o Fixed a bug to prevent accesses to /RAM after it had been removed
 from the device list.
 o Reduced the size of the /RAM device by one block to protect
 interrupt vectors in the auxiliary language card. The correct
 vectors are installed at boot time.

ProDOS 1.1.1

 o Fixed a Disk II driver bug for mapping into drive 1.
 o Modified machine ID routines to give precedence to identifiable
 80-column cards in slot 3.

ProDOS 8 1.2

 o Changed the name from ProDOS to ProDOS 8 to avoid confusion with
 ProDOS 16, which, again, this Note does not discuss.
 o Introduced the clock driver for the Apple IIGS. The machine
 identification code was changed to indicate the presence of the
 clock on the IIGS.
 o Added preliminary network support by adding the network call and
 preliminary network driver space.
 o Fixed a bug in returning errors from calls to the RAM disk.
 Changed the RAM disk driver to return values of zero on reads and
 ignore writes to blocks zero, one, four, five, six, and seven,
 which are not accessible as storage in the driver's design.
 o Added a new system error ($C) for errors when deallocating blocks
 from a tree file.
 o Fixed a bug in zeroing a Volume Control Block (VCB) when trying to
 reallocate a previously used VCB.
 o Modified the ProDOS 8 loader code to automatically install up to
 four drives in slot 5 if a SmartPort device is found. Removed the
 code to always leave interrupts disabled, which leaves the state
 of the interrupt flag at boot time unchanged while ProDOS 8 loads.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 503 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 o Changed the MLI entry to disable interrupts until after the
 MLIACTV flag is set and other ProDOS parameters are initialized.
 o Modified the QUIT code to allow the Delete key to function the
 same as the left arrow key. Also fixed a bug so screen holes
 would not be trashed in 80-column mode. Crunched code to allow
 soft switch accesses to force 40-column text mode. Fixed a bug so
 the dispatcher would not trash the screen when executed with a NIL
 prefix.
 o Modified the ONLINE call so that it could be made to a device that
 had just been removed from the device list by the standard
 protocol. Previous to this change, a VCB for the removed device
 was left, reducing the number of online volumes by one for each
 such device. From this point on, removing a device should be
 followed by an ONLINE call to the device just removed. The call
 returns error $28 (No Device Connected), but deallocates the VCB.
 o Added a spurious interrupt handler to allow up to 255 unclaimed
 interrupts before system death.
 o Removed the code which invoked low-resolution graphics on system
 death--it had not worked well and the space was needed. The system
 had previously had the ability to display "INSERT SYSTEM DISK AND
 RESTART" without also displaying "-ERR xx", which was removed at
 this point for space reasons since the system wasn't using it (and
 hopefully you weren't, either, since it wasn't documented).
 o Changed MLIACTV to use an ASL instead of an LSR to turn "off" the
 flag.
 o Changed the OPEN call to correctly return error $4B (Unsupported
 Storage Type) instead of error $4A (incompatible file format for
 this version) when attempting to open a file with an unrecognized
 storage type.
 o Fixed an obscure bug involving READ in Newline mode. If the
 requested number of bytes was greater than $FF, and the number of
 bytes in the file after the newline character was read was a
 multiple of $100, then the number of bytes reported transferred by
 ProDOS was equal to the correct number of transferred bytes plus
 $100.
 o Starting with V1.2 on an Apple IIGS, stopped switching slot 3 ROM
 space and left the determination of whether the slot or the port
 was enabled to the Control Panel; however, there was a bug in this
 implementation which was fixed in V1.7 and described in ProDOS 8
 Technical Note #15, How ProDOS 8 Treats Slot 3.
 o Updated the slot-based clock driver's year table through 1991.
 o Added a feature which allows ProDOS 8 to search for a file named
 ATINIT in the boot volume's root directory, to load and execute
 it, then to proceed normally with the boot process by loading the
 first .SYSTEM file. No error occurs if the ATINIT file is not
 found, but any other error condition (including the file existing
 and not having file type $E2) causes a fatal error.
 o Changed loader code so ProDOS 8 could be loaded by ProDOS 16
 without automatically executing the ATINIT and the first .SYSTEM
 file.
 o Changed the device search process in the ProDOS 8 loader so
 SmartPort devices are only installed if they actually exist, and
 Disk IIs are placed with lowest priority in the device list so
 they are scanned last.
 o Forced Super Hi-Res off on an Apple IIGS when a fatal error
 occurs. (Actually, this did not work, but it was fixed in V1.7.)
 o Inserted a patch to fix a bug in the first IIGS ROM that caused
 internal $Cn00 ROM space to be left mapped in if SmartPort failed

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 504 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 to boot.

ProDOS 8 1.3

Warning: This is not a stable version of ProDOS due to an illegal
 65C02 instruction which was added. This version can damage
 disks if used with a 6502 processor.

 o Changed the code that resets phase lines for Disk IIs so phase
 clearing is done with a load instead of a store, since stores to
 even numbered locations cause bus contention, which is major
 uncool. Changed the routine to force access to all eight even
 locations, which not only clears the phases, but also forces read
 mode, first drive, and motor off. DOS used to do this; ProDOS had
 not been doing it. If L7 had been left on when the Disk II driver
 was called and it checked write-protect with L6 high, write mode
 was enabled. Forcing read mode leaves less to chance.
 o Changed deallocation of index blocks so index blocks are not
 zeroed, allowing the use of file recovery utilities. Instead,
 index blocks are "flipped" (the first 256 bytes are exchanged with
 the last 256 bytes).
 o Since the UniDisk 3.5 interface card for the][+ and IIe does not
 set up its device chain unless a ProDOS call is made to it, ProDOS
 STATUS calls are now made to the device before SmartPort STATUS
 calls.

ProDOS 8 1.4

 o Removed an illegal 65C02 instruction which was added in V1.3.
 o Modified the Disk II driver so a routine that should only clear
 the phase lines only clears the phase lines. Also clear Q7 to
 prevent inadvertent writes.

ProDOS 8 1.5

 o ProDOS 8 1.5 is the first version to include network support
 through the ProDOS Filing Interface (PFI) as part of ProDOS 16 or
 on the Apple IIe Workstation Card. Made many changes to internal
 routines for PFI location and compatibility at this point.
 Crunched and moved code for PFI booting and accessibility.
 o Changed some strings to all uppercase internally for string
 comparisons.
 o Removed the generic $42 AppleTalk call which was introduced in
 V1.2, as PFI gets called through the global page.
 o Changed the ASL to clear the MLIACTV flag back to an LSR. This
 doesn't make nested levels of busy states possible, but always
 clears the flag before calling interrupt handling routines that
 check MLIACTV as described in the ProDOS 8 Technical Reference
 Manual.
 o If an Escape key is detected in the keyboard buffer on an Apple
 IIc, it is removed. This is friendly to the Apple IIc Plus, the
 ROM of which does not remove the Escape key it uses to detect that
 the system should be booted at normal speed.

ProDOS 8 1.6

 o Set up a parallel pointer to correct a PFI misinterpretation of an
 internal MLI pointer.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 505 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

ProDOS 8 1.7

 o Made a change to ensure that ProDOS 8 counts the volume's bitmap
 before incrementing the number of free blocks. This fixed a bug
 where an uninitialized location was being incremented and
 decremented, incorrectly reporting a Disk Full error where none
 should have occurred.
 o Changed the handling of slot 3 ROM space to that described in
 ProDOS 8 Technical Note #15, How ProDOS 8 Treats Slot 3.
 o Changed code to permit the invisible bit of the access byte (bit
 2) to be set by applications.

ProDOS 8 1.8

 o Fixed a bug introduced in V1.3. If an error occurs while calling
 DESTROY on a file, the file is not deleted but the index blocks
 are not swapped back to normal position. If a subsequent DESTROY
 of the same file succeeds, the volume's integrity is destroyed.
 Now ProDOS 8 marks the file as deleted, even if an error occurs,
 so any other errors will not cause a subsequent MLI call to trash
 the volume. Note that "undelete" utilities attempting to undelete
 such a file (one in which an error occurred during the DESTROY)
 probably will trash the volume.
 o Fixed the ONLINE call to ignore the unused low nibble of the
 unit_num parameter when deciding how many bytes to zero in the
 application's buffer. This change fixes a bug which zeroed only
 the first 16 bytes of the caller's buffer before filling them if
 an ONLINE call was made with a unit_num of $0X, where X is non-
 zero.
 o When loading on an Apple IIGS, ProDOS 8 now sets the video mode so
 the 80-column firmware is not active when the ProDOS 8 application
 gets control.
 o Changed internal version checking between GS/OS and ProDOS 8.
 Note that GS/OS and ProDOS 8 are still tied to each other--versions
 that didn't come on the same disk can't be used together. The
 methods for checking versions were just altered.
 o Made the backward compatibility check when opening subdirectories
 inactive. The test would always fail when opening a subdirectory
 with lowercase characters in the name (as assigned by the ProDOS
 FST under GS/OS), so the check was removed. Note that using
 earlier versions of ProDOS 8 with such disks will cause errors
 when trying to access files with such directories in their
 pathnames.
 o Expanded the ProDOS 8 loader code to provide for more room for
 future compatibility.

Further Reference

 o ProDOS 8 Technical Reference Manual
 o ProDOS 8 Update
 o AppleShare Programmer's Guide to the Apple IIGS

END OF FILE TN.PDOS.023

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 506 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.024
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#24: BASIC.SYSTEM Revisions

Written by: Matt Deatherage July 1989

This Technical Note documents the change history of BASIC.SYSTEM through V1.3,
which ships with System Software 5.0. V1.0, the initial release, is not
documented in this Note, and V1.1 is described in BASIC Programming with
ProDOS.

V1.1

 o Fixed a bug in variable packing (used by CHAIN, STORE, and
 RESTORE).
 o Changed the interpreter to use the ProDOS startup convention of a
 JMP instruction followed by two $EE bytes and a startup pathname
 buffer.
 o Removed a bad buffer address in the FIELD parameter of the READ
 routine.
 o Fixed a bug in APPEND so calls to OPEN and READ from a random-
 access file would not cause the next call to APPEND to any file to
 use the record length of the random-access file.
 o Added the BYE command to allow ProDOS QUIT calls from BASIC.
 o Removed the limited support for run-time capabilities which had
 been present.

V1.2

 o Changed the CATALOG command to ignore the number of entries in a
 directory when listing it so AppleShare volumes could be cataloged
 properly (this number can change on the fly on an AppleShare
 volume).
 o Fixed another bug in CATALOG so pressing an unexpected key when a
 catalog listing was paused with a Control-S would no longer abort
 the catalog.

V1.3

 o Changed BSAVE so it now truncates the length of the saved file
 when the B parameter is not used. To replace the first part of a
 file without truncation, use the B parameter with a value of zero.
 This behavior with the B parameter is how V1.1 and V1.2 worked
 without the B parameter.
 o Fixed a bug in CHAIN and STORE where they expected one branch to
 go two ways at the same time.
 o Added the MTR command for easier access to the Monitor from BASIC.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 507 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 o Made internal changes to the assembly process for easier project
 management. These changes do not affect the code image.

Further Reference

 o BASIC Programming with ProDOS
 o ProDOS 8 Technical Reference Manual

END OF FILE TN.PDOS.024

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 508 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.PDOS.025
###

Apple II
Technical Notes

 Developer Technical Support

ProDOS 8
#25: Non-Standard Storage Types

Written by: Matt Deatherage April 1989

This Technical Note discusses storage types for ProDOS files which are not
documented in the ProDOS 8 Technical Reference Manual.

Warning: The information provided in this Note is for the use of disk
 utility programs which occasionally must manipulate non-
 standard files in unusual situations. ProDOS 8 programs
 should not create or otherwise manipulate files with non-
 standard storage types.

Introduction

One of the features of the ProDOS file system is its ability to let ProDOS 8
know when someone has put a file on the disk that ProDOS 8 can't access. A
file not created by ProDOS 8 can be identified by the storage_type field.
ProDOS 8 creates four different storage types: seedling files ($1), sapling
files ($2), tree files ($3), and directory files ($D). ProDOS 8 also stores
subdirectory headers as storage type $E and volume directory headers as
storage type $F. These are all described in the ProDOS 8 Technical Reference
Manual.

Other files may be placed on the disk, and ProDOS 8 can catalog them, rename
them, and return file information about them. However, since it does not know
how the information in the files is stored on the disk, it cannot perform
normal file operations on these files, and it returns the Unsupported Storage
Type error instead.

Apple reserves the right to define additional storage types for the extension
of the ProDOS file system in the future. To date, two additional storage
types have been defined. Storage type $4 indicates a Pascal area on a ProFile
hard disk, and storage type $5 indicates a GS/OS extended file (data fork and
resource fork) as created by the ProDOS FST.

Storage Type $4

Storage type $4 is used for Apple II Pascal areas on Profile hard disk drives.
These files are created by the Apple Pascal ProFile Manager. Other programs
should not create these files, as Apple II Pascal could freak out.

The Pascal Profile Manager (PPM) creates files which are internally divided

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 509 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

into pseudo-volumes by Apple II Pascal. The files have the name PASCAL.AREA
(name length of 10), with file type $EF. The key_pointer field of the
directory entry points to the first block used by the file, which is the
second to last block on the disk. As ProDOS stores files non-contiguously up
from the bottom, PPM creates pseudo-volumes contiguously down from the end of
the ProFile. Blocks_used is 2, and header_pointer is also 2. All other
fields in the directory are set to 0. PPM looks for this entry (starting with
the name PASCAL.AREA) to determine if a ProFile has been initialized for
Pascal use.

The file entry for the Pascal area increments the number of files in the
ProDOS directory and the key_pointer for the file points to TOTAL_BLOCKS - 2,
or the second to last block on the disk. When PPM expands or contracts the
Pascal area, blocks_used and key_pointer are updated accordingly. With any
access to this entry (such as adding or deleting pseudo-volumes within PPM),
the backup bit is not set (PPM provides a utility to back up the Pascal area).

The Pascal volume directory contains two separate contiguous data structures
that specify the contents of the Pascal area on the Profile. The volume
directory occupies two blocks to support 31 pseudo-volumes. It is found at
the physical block specified in the ProDOS volume directory as the value of
key_pointer (i.e., it occupies the first block in the area pointed to by this
value).

The first portion of the volume directory is the actual directory for the
pseudo-volumes. It is an array with the following Apple II Pascal
declaration:

TYPE RTYPE = (HEADER, REGULAR)

VAR VDIR: ARRAY [0..31] OF
 PACKED RECORD
 CASE RTYPE OF
 HEADER: (PSEUDO_DEVICE_LENGTH:INTEGER;
 CUR_NUM_VOLS:INTEGER;
 PPM_NAME:STRING[3]);
 REGULAR: (START:INTEGER;
 DEFAULT_UNIT:0.255
 FILLER:0..127
 WP:BOOLEAN
 OLDDRIVERADDR:INTEGER
 END;

The HEADER specifies information about the Pascal area. It specifies the size
in blocks in PSEUDO_DEVICE_LENGTH, the number of currently allocated volumes
in CUR_NUM_VOLS, and a special validity check in PPM_NAME, which is the three-
character string PPM. The header information is accessed via a reference to
VDIR[0]. The REGULAR entry specifies information for each pseudo-volume.
START is the starting block address for the pseudo-volume, and LENGTH is the
length of the pseudo-volume in blocks. DEFAULT_UNIT specifies the default
Pascal unit number that this pseudo-volume should be assigned to upon booting
the system. This value is set through the Volume Manager by either the user
or an application program, and it remains valid if it is not released.

If the system is shut down, the pseudo-volume remains assigned and will be
active once the system is rebooted. WP is a Boolean that specifies if the
pseudo-volume is write-protected. OLDDRIVERADDR holds the address of this
unit's (if assigned) previous driver address. It is used when normal floppy

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 510 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

unit numbers are assigned to pseudo-volumes, so when released, the floppies
can be reactivated. Each REGULAR entry is accessed via an index from 1 to 31.
This index value is thus associated with a pseudo-volume. All references to
pseudo-volumes in the Volume Manager are made with these indexes.

Immediately following the VDIR array is an array of description fields for
each pseudo-volume:

 VDESC: ARRAY [0..31] OF STRING[15]

The description field is used to differentiate pseudo-volumes with the same
name. It is set when the pseudo-volume is created. This array is accessed
with the same index as VDIR.

The volume directory does not maintain the names of the pseudo-volumes. These
are found in the directories in each pseudo-volume. When the Volume Manager
is activated, it reads each pseudo-volume directory to construct an array of
the pseudo-volume names:

 VNAMES: ARRAY [0..31] OF STRING[7]

Each pseudo-volume name is stored here so the Volume Manager can use it in its
display of pseudo-volumes. The name is set when the pseudo-volume is created
and can be changed by the Pascal Filer. The names in this array are accessed
via the same index as VDIR. This array is set up when the Volume Manager is
initialized and after there is a delete of a pseudo-volume. Creating a
pseudo-volume will add to the array at the end.

Pascal Pseudo-Volume Format

Each Pascal pseudo-volume is a standard UCSD formatted volume. Blocks 0 and 1
are reserved for bootstrap loaders (which are irrelevant for pseudo-volumes).
The directory for the volume is in blocks 2 through 5 of the pseudo-volume.
When a pseudo-volume is created, the directory for that pseudo-volume is
initialized with the following values:

dfirstblock = 0 first logical block of the volume
dlastblock = 6 first available block after the directory
dvid = name of the volume used in create
deovblk = size of volume specified in create
dnumfiles = 0 no files yet
dloadtime = set to current system date
dlastboot = 0

The Apple II Pascal 1.3 Manual contains the format for the UCSD directory.
Files within this subdirectory are allocated via the standard Pascal I/O
routines in a contiguous manner.

Storage Type $5

Storage type $5 is used by the ProDOS FST in GS/OS to store extended files.
The key block of the file points to an extended key block entry. The extended
key block entry contains mini-directory entries for both the data fork and
resource fork of the file. The mini-entry for the data fork is at offset +000
of the extended key block, and the mini-entry for the resource fork is at
offset +$100 (+256 decimal).

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 511 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

The format for mini-entries is as follows:

storage_type (+000) Byte The standard ProDOS storage
 type for this fork of the file.
 Note that for regular directory
 entries, the storage type is the
 high nibble of a byte that contains
 the length of the filename as the
 low nibble. In mini-entries, the
 high nibble is reserved and must be
 zero, and the storage type is
 contained in the low nibble.
key_block (+001) Word The block number of the key
 block of this fork. This value and
 the value of storage_type combine to
 determine how to find the data in
 the file, as documented in the
 ProDOS 8 Technical Reference Manual.
blocks_used (+003) Word The number of blocks used by
 this fork of the file.
EOF (+005) 3 Bytes Three-byte value (least
 significant byte stored first)
 representing the end-of-file value
 for this fork of the file.

All remaining bytes in the extended key block are reserved and must be zero.

Further Reference

 o Apple II Pascal ProFile Manager Manual
 o GS/OS Reference
 o ProDOS 8 Technical Reference Manual

END OF FILE TN.PDOS.025

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 512 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.SmPt.001
###

Apple II
Technical Notes

 Developer Technical Support

SmartPort
#1: SmartPort Introduction

Revised by: Matt Deatherage November 1988
Written by: Mike Askins November 1985

This Technical Note formerly introduced the SmartPort firmware interface.

This Note formerly contained a general introduction to the SmartPort firmware
interface. Information on SmartPort as found in the Apple IIe and IIc is now
found in the Apple IIc Technical Reference Manual.

For a more complete reference on SmartPort, including information on Extended
SmartPort (for peripherals which can address more than one 64K bank of memory)
and its parameters, please see chapter 7 of the Apple IIGS Firmware Reference.

Further Reference
o Apple IIGS Firmware Reference
o Apple IIc Technical Reference Manual

END OF FILE TN.SmPt.001

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 513 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.SmPt.002
###

Apple II
Technical Notes

 Developer Technical Support

SmartPort
#2: SmartPort Calls Updated

Revised by: Llew Roberts September 1989
Written by: Mike Askins May 1985

This Technical Note documents SmartPort call information which is not found in
the descriptions of SmartPort in the Apple IIGS Firmware Reference and the
Apple IIc Technical Reference Manual. The device-specific information which
had been included in this Note is now found in these manuals.
Changes since November 1988: Added diagram and information on vendor ID
numbers.

STATUS Calls

A STATUS call with unit number = $00 and status code = $00 is a request to
return the status of the SmartPort host, as opposed to unit numbers greater
than zero which return the status of individual devices. The number of
devices as well as the current interrupt status is returned. The format of
the status list returned is illustrated in Figure 1.

 +------------------+
 Byte 0 | Device Count |
 +------------------+
 Byte 1 | Interrupt Status |
 +------------------+
 Byte 2 | Vendor | $0000 Vendor unknown
 + +---$0001 Apple Computer, Inc.
 Byte 3 | ID | $0002-$FFFF Third-Party Vendor
 +------------------+
 Byte 4 | Interface | _____|___________________|_____
 + +--|F|E|D|C|B|A|9|8|7|6|5|4|3|2|1|0|
 Byte 5 | Version | |_______|_______________|_______|
 +------------------+ | | |
 Byte 6 | Reserved | |Major | Minor |$A=Alpha
 +------------------+ |Release| Release |$B=Beta
 Byte 7 | Reserved | |$E=Experimental
 +------------------+ |$0=Final

 Figure 1-Host General Status Return Information

Stat_list byte 0 Number of devices
 byte 1 Interrupt Status (If bit 6 is set, then no interrupt)
 bytes 2-3 Driver manufacturer (were Reserved prior to May
 1988):

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 514 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 $0000 Undetermined
 $0001 Apple
 $0002-$FFFF Third-party driver
 bytes 4-5 Interface Version
 bytes 6-7 Reserved (must be $0000)

The Number of devices byte tells the caller the total number of devices hooked
to this slot or port.

The Interrupt Status byte is used by programs which try to determine if the
SmartPort was the source of an interrupt. If bit 6 of this byte is clear,
there is a device (or devices) in the chain that require interrupt service.
You cannot use this value to determine which device in the chain is actually
interrupting. Your interrupt handler, having determined that a SmartPort
interrupt has occurred, must poll each device on the chain to find out which
device requires service. The UniDisk 3.5 and Memory Expansion Card do not
generate interrupts, so in these cases, this byte has bit 6 set.

The vendor ID number may be used to determine the manufacturer of a specific
SmartPort peripheral interface card, a useful piece of information when
dealing with device-specific calls. Contact Apple Developer Technical Support
if you require a specific vendor ID number. The version word follows the
SmartPort Interface Version definition described later in this Note.

CONTROL Codes

Before May 1988, control code $04 was defined as device-specific. It is now
defined as EJECT, and all SmartPort devices which support removable media must
support this call. If a device does not support removable media, it should
simply return from this call without an error.

Note that the Apple II SCSI card firmware was revised in early 1988 to support
this change.

INIT

An application should never make an INIT call (SmartPort code $05), since
doing so is likely to destroy operating system integrity and may cause media
damage as well.

If you are writing your own operating system (not encouraged) and need to
reset all SmartPort devices, the INIT call with unit number = $00 will do just
that. Note that SmartPort devices cannot be selectively reset, and INIT must
never be made at all with any unit number other than $00.

SmartPort Interface Version Definition

The SmartPort Interface Version definition uses the most significant nibble of
the word as the major version number, the next two most significant nibbles as
the minor version number, and the least significant nibble as a release
indicator:

 $0 = Final $A = Alpha $B = Beta $E = Experimental

Therefore, the interface version word for an experimental SmartPort interface

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 515 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

1.15 would be $115E while the interface version word for SmartPort interface
2.0 would be $2000. GS/OS driver version numbers also follow this definition.

Further Reference

 o Apple IIGS Firmware Reference
 o Apple IIc Technical Reference Manual
 o Apple IIGS Technical Note #25, Apple IIGS Firmware Reference Updates

END OF FILE TN.SmPt.002

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 516 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.SmPt.003
###

Apple II
Technical Notes

 Developer Technical Support

SmartPort
#3: SmartPort Bus Architecture

Revised by: Matt Deatherage November 1988
Written by: Mike Askins March 1985

This Technical Note formerly described the SmartPort Bus architecture, but
this information is now documented in the Apple IIGS Firmware Reference.

Do not be confused by the name "SmartPort Bus" architecture. The information
in the Apple IIGS Firmware Reference describes the mechanics of how devices
interface with the disk port on a IIGS or IIc and with the UniDisk 3.5
Interface card on a][+ or IIe. It is not necessary to understand this
information to use SmartPort firmware calls, nor do all devices which have
SmartPort firmware necessarily have to connect mechanically through the disk
port or UniDisk 3.5 Interface card.

The physical or electrical side of the hardware is called the "SmartPort Bus,"
while the firmware protocols are called the "SmartPort Interface." Although
the term "SmartPort" can refer to either or both parts, it is most often used
to refer to the SmartPort Interface. Only those developers who are designing
products which will attach to either the IIGS or IIc disk port or to the
UniDisk 3.5 Interface card need be concerned with the SmartPort Bus
architecture. Software developers need not learn about the SmartPort Bus
architecture to use the SmartPort Interface firmware.

Further Reference
o Apple IIGS Firmware Reference

END OF FILE TN.SmPt.003

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 517 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.SmPt.004
###

Apple II
Technical Notes

 Developer Technical Support

SmartPort
#4: SmartPort Device Types

Revised by: Matt Deatherage November 1988
Written by: Rilla Reynolds June 1987

This Technical Note documents additional device types which the SmartPort
firmware recognizes, but which may not be currently documented in the
technical reference manuals which cover SmartPort.

The following is an updated list of possible SmartPort device types, extended
to support an increasing variety of third-party peripheral products. A device
type byte is returned as part of the Device Information Block (DIB) from a
SmartPort STATUS call ($03).

 Type Device
 $00 Memory Expansion Card (RAM disk)
 $01 3.5" disk
 $02 ProFile-type hard disk
 $03 Generic SCSI
 $04 ROM disk
 $05 SCSI CD-ROM
 $06 SCSI tape or other SCSI sequential device
 $07 SCSI hard disk
 $08 Reserved
 $09 SCSI printer
 $0A 5-1/4" disk
 $0B Reserved
 $0C Reserved
 $0D Printer
 $0E Clock
 $0F Modem

It is likely that the SmartPort device type list will expand in the future.
If you are developing a SmartPort device and do not see a suitable device type
in the list, contact Apple II Developer Technical Support at the address
listed in Technical Note #0.

Further Reference
o Apple IIGS Firmware Reference
o Apple IIc Technical Reference Manual

END OF FILE TN.SmPt.004

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 518 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.SmPt.005
###

Apple II
Technical Notes

 Developer Technical Support

SmartPort
#5: SCSI SmartPort Call Changes

Revised by: Llew Roberts January 1989
Written by: Rilla Reynolds & Matt Deatherage May 1988

This Technical Note describes two CONTROL codes which have changed in revision
C of the Apple II SCSI card firmware.
Changes since November 1988: Added compatibility guidelines for future
SCSI products.

Revision C of the Apple II SCSI card firmware includes two CONTROL code
changes.

CONTROL code $04, previously defined as FORMAT, is now defined as EJECT. This
change reflects the revised SmartPort requirement that all devices maintain
CONTROL code $04 as EJECT. See SmartPort Technical Note #2, SmartPort Calls
Updated, for more information.

CONTROL code $15 is now defined as FORMAT instead of RESERVED. Note that
there are two EJECT calls in this version, as CONTROL code $26 is still
defined as EJECT.

To determine which version of the SCSI ROM is on any particular Apple II SCSI
Interface Card, issue a $03 SmartPort STATUS call. The revision C SCSI ROM
will return the word $0200. This does not follow the SmartPort Interface
Version scheme described in SmartPort Technical Note #2. However, future
revisions of the Apple II SCSI card will follow this scheme. Therefore,
applications should expect any SmartPort SCSI firmware to behave as described
in this Note if the version number is $0200 or if it is greater than or equal
to $2000.

To maintain compatibility with future Apple II SCSI products, you should use
the following guidelines:

o Avoid access to the hardware or any RAM locations on the SCSI
 card.
o Do not use the Patch1Call, SetNewSDAT, or SetBlockSize control
 calls.
o For devices with a block size other than 512 bytes, use the
 SmartPort Read and Write calls. Do not use ReadBlock and
 WriteBlock calls for these devices, since they only read or write
 the first 512 bytes of a block. The Read and Write calls may also
 be used for devices with a 512-byte block size.
o Never Reset the SCSI bus.

The Apple II SCSI Card firmware was designed to operate with SCSI CD-ROM and

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 519 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

disk drives only.

Further Reference

o Apple II SCSI Card Technical Reference
o SmartPort Technical Note #2, SmartPort Calls Updated

END OF FILE TN.SmPt.005

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 520 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.SmPt.006
###

Apple II
Technical Notes

 Developer Technical Support

SmartPort
#6: Apple IIGS SmartPort Errata

Written by: Matt Deatherage November 1988

This Technical Note documents two bugs in the Apple IIGS SmartPort firmware.

Developers should be aware of the following two bugs in the Apple IIGS
SmartPort firmware:

1. SmartPort accidentally uses locations $57 through $5A on the zero
 page without saving and restoring them first. There is some
 confusion as to whether these bytes are used on the absolute zero
 page or on the caller's direct page. This is a moot point--
 SmartPort calls are required to be made from full-emulation
 mode. This requirement means the emulation bit must be set and
 the data bank and direct page registers must both be set to zero.
 The bytes are used on the absolute zero page, as that should be
 the direct page when SmartPort is called.
2. If an extended SmartPort CONTROL call is made, the CONTROL list
 must not start at $FFFE or $FFFF of any bank. The IIGS SmartPort
 interface does not increment the bank pointer when moving past the
 two-byte CONTROL list length. If a CONTROL list starts one or two
 bytes before a bank boundary, SmartPort will incorrectly read the
 list from the beginning of that bank, instead of the beginning of
 the next bank.

These bugs will be fixed in any future release of the Apple IIGS firmware.

Further Reference
o Apple IIGS Firmware Reference

END OF FILE TN.SmPt.006

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 521 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.SmPt.007
###

Apple II
Technical Notes

 Developer Technical Support

SmartPort
#7: SmartPort Subtype Codes

Written by: Matt Deatherage November 1988

This Technical Note clarifies information about SmartPort subtype codes.

Following is a definition of the SmartPort subtype code as given in the Apple
IIGS Firmware Reference:

7	6	5	4	3	2	1	0

 | | | | | | | |
 | | | |_____|_____|_____|_____|___ Reserved
 | | |_________________________________ 0 = Removable Media
 | |_______________________________________ 1 = Supports disk-switched
 | errors
 |___ 1 = Supports Extended
 SmartPort

 Figure 1-SmartPort Subtype Byte

Note that the value for subtype is defined for certain characteristics of the
device; it is not assigned to the device as with Smartport device types (see
SmartPort Technical Note #4, SmartPort Device Types for a complete list).

Attempting to distinguish different kinds of the same device by the subtype
field can be confusing. For example, the Apple IIc Plus has an internal 3.5"
disk drive. This drive does not support disk-switched errors nor does it
support Extended SmartPort, and it has removable media. This combination of
features gives it a subtype definition of $00. However, this is the same
subtype returned for a UniDisk 3.5. Any program which finds type $01 (3.5"
Disk) and subtype $00 and assumes the drive is a UniDisk 3.5 will be misled by
any other 3.5" drive matching the characteristics of the UniDisk 3.5.

Some Apple technical manuals state that the subtype byte may be used for
identification purposes, but this cannot be supported if more than one variety
of a specific device has the same characteristics and subtype.

To determine if a particular device type is the subtype you want, you may
examine the name returned in the Device Information Block (DIB) from a STATUS
call with statcode = 3. For 3.5" drives, however, this is not too helpful
(both a UniDisk 3.5 and an Apple 3.5 Drive return DISK 3.5).

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 522 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Because the subtype can not conclusively identify different flavors of 3.5"
drives (and perhaps other individual device types), applications must look
for errors on device specific calls and respond appropriately. Typical errors
returned from making a device-specific call to the wrong device are $21
(BADCTL) and $22 (BADCTLPARM), although these are not the only ones. Also
note that error codes in the range $20 - $2F are duplicated as $60 - $6F, the
difference being that codes in the latter range are returned if the error was
a soft error--a non-fatal error returned when the operation is completed
successfully but an abnormal condition is detected.

The Reserved fields in the SmartPort subtype byte are reserved for future
expansion. Present peripherals must have them set to zero so that they will
not appear to support future features which are not presently defined. For
this reason, programs checking the status of bits in the subtype byte should
do so on a bit-by-bit basis only. For example, if you need to know if a
device supports Extended Smartport, mask off all bits except bit 7 in the
subtype byte before doing any comparisons. Blindly comparing to existing
common subtype values (like $00 and $C0) will cause comparisons to fail when
future bits in the subtype byte are defined.

Further Reference
o SmartPort Technical Note #4, SmartPort Device Types

END OF FILE TN.SmPt.007

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 523 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.SmPt.008
###

Apple II
Technical Notes

 Developer Technical Support

SmartPort
#8: SmartPort Packets

Written by: Llew Roberts May 1989

This Technical Note describes the structure and timing of a sample SmartPort
packet.

SmartPort devices communicate using SmartPort packets. The following packet
shows the timing and content of a SmartPort READBLOCK call. For further
explanation of the structure, please see the Apple IIGS Hardware Reference and
the Apple IIGS Firmware Reference.

Note: The CPU will recognize and act on any packet put on the bus by a
 SmartPort Device.

DATA MNEMONIC DESCRIPTION TIME
(SmartPort Bus) (Relative)

FF SYNC SELF SYNCHRONIZING BYTES 0
3F : : 32 micro Sec.
CF : : 32 micro Sec.
F3 : : 32 micro Sec.
FC : : 32 micro Sec.
FF : : 32 micro Sec.
C3 PBEGIN MARKS BEGINNING OF PACKET 32 micro Sec.
81 DEST DESTINATION UNIT NUMBER 32 micro Sec.
80 SRC SOURCE UNIT NUMBER 32 micro Sec.
80 TYPE PACKET TYPE FIELD 32 micro Sec.
80 AUX PACKET AUXILLIARY TYPE FIELD 32 micro Sec.
80 STAT DATA STATUS FIELD 32 micro Sec.
82 ODDCNT ODD BYTES COUNT 32 micro Sec.
81 GRP7CNT GROUP OF 7 BYTES COUNT 32 micro Sec.
80 ODDMSB ODD BYTES MSB's 32 micro Sec.
81 COMMAND 1ST ODD BYTE = Command Byte 32 micro Sec.
83 PARMCNT 2ND ODD BYTE = Parameter Count 32 micro Sec.
80 GRP7MSB MSB's FOR 1ST GROUP OF 7 32 micro Sec.
80 G7BYTE1 BYTE 1 FOR 1ST GROUP OF 7 32 micro Sec.
98 G7BYTE2 BYTE 2 FOR 1ST GROUP OF 7 32 micro Sec.
82 G7BYTE3 BYTE 3 FOR 1ST GROUP OF 7 32 micro Sec.
80 G7BYTE4 BYTE 4 FOR 1ST GROUP OF 7 32 micro Sec.
80 G7BYTE5 BYTE 5 FOR 1ST GROUP OF 7 32 micro Sec.
80 G7BYTE5 BYTE 6 FOR 1ST GROUP OF 7 32 micro Sec.
80 G7BYTE6 BYTE 7 FOR 1ST GROUP OF 7 32 micro Sec.
BB CHKSUM1 1ST BYTE OF CHECKSUM 32 micro Sec.
EE CHKSUM2 2ND BYTE OF CHECKSUM 32 micro Sec.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 524 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

C8 PEND PACKET END BYTE 32 micro Sec.
00 FALSE FALSE IWM WRITE TO CLEAR REGISTER 32 micro Sec.

Further Reference

 o Apple IIGS Hardware Reference
 o Apple IIGS Firmware Reference

END OF FILE TN.SmPt.008

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 525 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.UDsk.001
###

Apple II
Technical Notes

 Developer Technical Support

UniDisk 3.5
#1: UniDisk 3.5 Internals

Revised by: Matt Deatherage November 1988
Written by: Mike Askins May 1985

This Technical Note formerly described the internals of the UniDisk 3.5, and
this information is now documented in the Apple IIGS Firmware Reference.

This Note formerly documented the internal structure of the UniDisk 3.5,
primarily for those interested in providing copy protection. Apple Computer
no longer supports copy protection schemes, and we strongly urge developers to
make use of alternate methods to limit unauthorized duplication.

The internals of the UniDisk 3.5 are now documented in the Apple IIGS Firmware
Reference.

Further Reference
o Apple IIGS Firmware Reference

END OF FILE TN.UDsk.001

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 526 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.UDsk.002
###

Apple II
Technical Notes

 Developer Technical Support

UniDisk 3.5
#2: UniDisk 3.5 ID Bytes

Revised by: Matt Deatherage November 1988
Written by: Mike Askins May 1985

This Technical Note describes the signature bytes of the UniDisk 3.5.

The signature bytes for the UniDisk 3.5 are the same as those for any
SmartPort device:

 $Cn01 = $20
 $Cn03 = $00 ProDOS Block Device
 $Cn05 = $03

 $Cn07 = $00 SmartPort Interface

where n is the slot number of the device.

When searching the slots for a UniDisk 3.5 it is very important to check all
the signature bytes, since there are other peripherals with similar ID bytes.
Once you find a SmartPort card (or port), you should do a SmartPort STATUS
call to determine which devices are connected to it. Any number of different
devices could match the SmartPort ID bytes, so trying to identify a device
without making a SmartPort STATUS call is very likely to produce inaccurate
results.

Why the UniDisk 3.5 Does Not Auto-Boot on Older Machines

If you look carefully, you will notice that the older (][,][+ and unenhanced
IIe) Autostart Monitor will not boot any SmartPort device because the ID byte
at $Cn07 = $00 instead of $3C (like the old Disk II). If Apple had left the
ID bytes the same as the Disk II, then older versions of Apple II Pascal (1.2
and earlier) would assume that the drive was a Disk II.

Where This Leaves You

The enhanced IIe ROMs, as well as the UniDisk 3.5 IIc ROMs and later (which
you have if you are using a UniDisk 3.5 on a IIc) check only the first three
ID bytes. This check means that they will not only auto-boot the UniDisk 3.5,
but any SmartPort or ProDOS block device. On an older machine, you can boot
one of these devices by typing PR#n from AppleSoft or Cn00G from the Monitor.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 527 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Further Reference
o Apple IIGS Firmware Reference

END OF FILE TN.UDsk.002

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 528 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.UDsk.003
###

Apple II
Technical Notes

 Developer Technical Support

UniDisk 3.5
#3: STATUS Call Bug

Revised by: Matt Deatherage November 1988
Written by: Mike Askins & Cameron Birse September 1984

This Technical Note documents a bug in the ProDOS STATUS call when used with
a UniDisk 3.5.

The Bug

We have found that SmartPort does not return the WRITE PROTECT error on the
STATUS call. (The WRITE call does return the WRITE PROTECT error as
required.)

The bug manifests itself under ProDOS (and not under Pascal, since Pascal does
not require the write protect error to be returned on the STATUS call).
Specifically, if a write-protected disk is present in the UniDisk 3.5, and the
application tries to write less than 512 bytes of data to a file that already
exists on the media, it becomes impossible to finish the write or to close the
file. Many applications ignore errors on close calls and try to reuse the
buffer area which was presumably freed by the close call. This reuse results
in further errors, even if the UniDisk 3.5 is later write-enabled, since
ProDOS still thinks the file is open. This bug also decreases the maximum
number of open files allowed, as the file left open is included in that
number.

The bug also seems to cause the ProDOS CREATE call to fail. When a new file
is created, opened and written to, and the write fails, the file manager does
not deallocate the block that it reserved in the creation attempt. (The RAM
copy of the bitmap seems to get trashed--GET_FILE_INFO calls at this point
report that there are zero blocks available.) If you subsequently write
enable the disk and do the save (with any size file), the file is written to
the disk, and the bitmap is updated. The result is that there is a block
reserved on the disk that no file owns, and that block cannot be freed through
normal ProDOS file calls.

The Solution

Although this problem was fixed in later IIc revisions, the UniDisk 3.5
interface for the Apple][+ and IIe has never been modified. Therefore, if
your application habitually performs the actions outlined above, you may avoid
it by first checking to see if the media is write-protected instead of letting
the buggy ProDOS STATUS call do it for you.

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 529 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

One way to accomplish this would be to issue a SmartPort STATUS call using a
statcode = $00. This call returns four bytes of information, the first of
which is the general status byte. This byte has the following format:

Bit Meaning
 7 0 = character device; 1 = block device
 6 1 = write allowed
 5 1 = read allowed
 4 1 = device on line or disk in drive
 3 0 = format allowed
 2 0 = medium write protected (block devices only)
 1 1 = device currently interrupting (Apple IIc only)
 0 1 = device currently open (character devices only)

As shown in the table, bit 2 of this byte tells you what the ProDOS STATUS
call cannot seem to figure out--the media in the drive is currently write-
protected.

END OF FILE TN.UDsk.003

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 530 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.UDsk.004
###

Apple II
Technical Notes

 Developer Technical Support

UniDisk 3.5
#4: Accessing Macintosh Disks

Revised by: Matt Deatherage November 1988
Written by: Mike Askins May 1985

This Technical Note formerly discussed drive-specific SmartPort calls. These
calls are now documented in the Apple IIGS Firmware Reference. This Note now
describes how to access Macintosh disks from a UniDisk 3.5 disk drive, as this
information was not documented in the manual.

Macintosh Disk Access

The disk data format used in the UniDisk 3.5 is essentially identical to that
used for Macintosh disks. There are three notable differences between the two
formats:

o Macintosh blocks are 524 bytes; UniDisk 3.5 blocks are 512 bytes.
o Macintosh MFS disks are single sided; UniDisk 3.5 disks are double
 sided. (Macintosh HFS disks are double sided.)
o The Macintosh uses a 2:1 physical block interleave; the UniDisk
 3.5 uses a 4:1 interleave.

Accessing Blocks on a Macintosh Disk

Reading from a Macintosh disk is accomplished with the use of the READ command
(as opposed to the READBLOCK command, which enforces 512 byte data.) A call
to load block zero from the Macintosh disk in Unit #1 into memory at $2000
would look like this:

MacRead JSR Dispatch ;Normal SmartPort Entry point
 DFB $08 ;Character READ command code
 DW Cmd_List ;The parameter list
 BCS Error ;Optional error handling...
 ...
Cmd_List DFB $04 ;CharRead has four parameters
 DFB $01 ;Unit number
 DW $2000 ;Buffer address
 DW 524 ;Always transfer 524 bytes
 DFB $00 ;Block (lo)
 DFB $00 ;Block (med)
 DFB $00 ;Block (hi)

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 531 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Writing to a Macintosh disk is accomplished with the use of the WRITE command.
A call to write block zero to the Macintosh disk in Unit #1 with data at
memory location $2000 would look like this:

MacWrite JSR Dispatch ;Normal SmartPort Entry point
 DFB $09 ;Character WRITE command code
 DW Cmd_List ;The parameter list
 BCS Error ;Optional error handling...

The Cmd_List is the same as in the READ example.

Formatting Macintosh Disks

The formatting routine in the UniDisk 3.5 firmware can format single- or
double-sided disks of variable physical block interleave. The parameters
controlling the interleave and the number of disk sides are located in the
controller's zero page and are set to defaults whenever the INIT call is
issued to SmartPort. These parameters can be altered by using the
SET_DOWN_ADR and DOWNLOAD subcalls of the CONTROL call. Once altered, the
FORMAT call uses these values in the formatting process. These zero page
locations and their values are detailed below:

Parameter Location Values
Interleave $0062 $02 = Mac, $04 = UniDisk 3.5
DoubleSided $0063 $00 = Single, $80 = Double-sided

The following code example formats the media in Unit #1 as a Macintosh disk:

MacFormat JSR Dispatch ;Set address to patch interleave
 DFB $04 ;Control call (Set_Down_Adr)
 DW Cmd_ListA ;Parameter List
 BCS Error
;
 JSR Dispatch ;Now patch the interleave byte
 DFB $04 ;Control call (DOWNLOAD)
 DW Cmd_ListB ;Parameter List
 BCS Error
;
 JSR Dispatch ;Set address to patch single sided
 DFB $04 ;Control call (Set_Down_Adr)
 DW Cmd_ListC ;Parameter List
 BCS Error
;
 JSR Dispatch ;Now patch the single sided byte
 DFB $04 ;Control call (DOWNLOAD)
 DW Cmd_ListD ;Parameter List
 BCS Error
;
 JSR Dispatch ;Finally...
 DFB $03 ;This is the actual format call
 DW Cmd_ListE ;Parameter List
 BCS Error
;
 RTS

The parameter lists are as follows:

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 532 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

Cmd_ListA DFB $03 ;All control calls are 3 parms long
 DFB $01 ;Unit #1
 DW Ctrl_ListA ;This has the interleave address
 DFB $06 ;Set_Down_Adr control code

Ctrl_ListA DW $02 ;Two bytes for download address
 DW $0062 ;Interleave address

Cmd_ListB DFB $03 ;All control calls are 3 parms long
 DFB $01 ;Unit #1
 DW Ctrl_ListB ;This has the interleave value
 DFB $07 ;Download control code

Ctrl_ListB DW $01 ;Two bytes for download address
 DFB $02 ;Mac Disk Interleave value

Cmd_ListC DFB $03 ;All control calls are 3 parms long
 DFB $01 ;Unit #1
 DW Ctrl_ListC ;This has the sides byte address
 DFB $06 ;Set_Down_Adr control code

Ctrl_ListC DW $02 ;Two bytes for download address
 DW $0062 ;Interleave address

Cmd_ListD DFB $03 ;All control calls are 3 parms long
 DFB $01 ;Unit #1
 DW Ctrl_ListD ;This has the sides value
 DFB $07 ;Download control code

Ctrl_ListD DW $01 ;Two bytes for download address
 DFB $00 ;Value for single sided disk

Ctrl_ListE DFB $01 ;Format call has just one parameter
 DFB $01 ;Unit number

Note: You may encounter difficulties when switching 400K single-
sided disks and 800K double-sided disks in the same drive. STATUS
requests for the number of blocks on the disk in the drive are
valid for the disk last accessed. Thus, when you READ from an
800K disk, eject it, and insert a 400K disk, a STATUS call will
reveal a size of 800K until a READ or WRITE command is issued.
Applications which intend to handle both 800K and 400K disks
should do a READ before each STATUS call.

Further Reference
o Apple IIGS Firmware Reference
o Apple IIc Technical Reference Manual

END OF FILE TN.UDsk.004

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 533 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

###
FILE: TN.UDsk.005
###

Apple II
Technical Notes

 Developer Technical Support

UniDisk 3.5
#5: Architectural Differences Between 3.5" Drives

Revised by: Matt Deatherage November 1988
Written by: Cameron Birse & Mike Askins October 1986

This Technical Note provides information of interest to those developers
writing low-level software for the UniDisk 3.5 and Apple 3.5 disk drives.

Definition of Drives

It is important to understand the differences between Apple's 3.5" drives if
you are considering writing low-level software for use on the Apple II family
drives.

UniDisk 3.5 is an intelligent drive, meaning that it has a
 microprocessor-based controller inside the drive enclosure
 that communicates with the host computer in an intelligent
 fashion through the IWM port. The host sends commands to
 the intelligent controller in the drive and the controller
 manipulates the drive hardware to read or write, and sends
 the data back to the host in a "packet" format.

Apple 3.5 Drive is an unintelligent drive that depends on the host
 computer to manipulate the drive hardware to read and write
 data to and from the drive. Apple IIGS low-level routines
 for this drive will be essentially the same as those
 downloaded to the UniDisk 3.5 controller RAM, except they
 will reside in the host computer's memory. New device-
 specific control calls must be used for the Apple 3.5 Drive.

Tips for Low-Level Drive Access

The following calls are not guaranteed to be compatible in the future; for the
highest level of compatibility, avoid disk access at this level.

o Identifying the drives: The drives can be identified by first
 searching for a device that has the SmartPort firmware. After
 determining that there is a SmartPort device in the machine,
 perform a STATUS call with the statcode = $03 (return Device
 Information Block (DIB)). In the DIB there is a type byte and a
 subtype byte. The UniDisk 3.5 has a value of $01 for the type
 byte and $00 for the subtype byte. The Apple 3.5 Drive also has a
 value of $01 for the type byte, but its subtype byte value is $C0.
 Be sure to make device-specific calls to ensure drive

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 534 of 535

APPLE][COMPUTER FAMILY TECHNICAL INFORMATION

 identification. See SmartPort Technical Note #7, SmartPort
 Subtype Codes for more details.
o Special routines: In the UniDisk 3.5, there is extra RAM space
 in the controller's memory map for custom read, write and ID
 routines. These routines can be downloaded to the controller from
 the host and executed via the SmartPort. With the Apple 3.5
 Drive, these special routines reside in the host memory.
 Equivalent mark and hook tables for the Apple 3.5 Drive, set by
 control calls through the SmartPort, are supported on the Apple
 IIGS , but are not guaranteed for all drives and CPUs.
o IWM hardware differences: On the UniDisk 3.5, the IWM
 registers are located in the drive's controller memory starting at
 $0A00. On the Apple 3.5 Drive, the IWM registers are located in
 host memory starting at $C0E0 (slot 6 I/O space).
o Speed differences: Downloaded code in the UniDisk 3.5
 controller runs at slightly under 2 MHz, and the cycle times are
 regular. The Apple IIGS running at 1 MHz also has regular cycles,
 however, when running at 2.8 MHz, the timing is complicated by RAM
 refresh and I/O synchronization times. It is best to avoid timing
 critical solutions, or be sure to run at 1 MHz for the Apple 3.5
 Drive.

As always, in order to promote compatibility between your software and future
Apple II systems and to avoid writing utilities which will only work on one
kind of drive, you should avoid low-level calls that are specific to a
particular device or CPU.

Further Reference
o Apple IIGS Firmware Reference

END OF FILE TN.UDsk.005

F I N I S

Apple][Computer Family Technical Documentation
Tech Notes -- Developer CD Volume 2 -- September 1989 -- 535 of 535

