Apple 1l Computer Information e+ Doc# 013 <« Jeppson: Guided Tour of Highway ///

F—
it iteh

oyt oA S BT
AR TSR R q

4

Apple /// Computer Information

DOCUMENT NAME T #

| BT Jowd Terpsos Guwer Tuk oF l
tarwhy W
A R A B P S R S

“"Ex Libris David T. Craig

I

R

“ 55.PICT” 716 KB 2001-08-22 dpi: 600h x 600v pix: 4485h x 5894v
| Source: David T. Craig Page 0001 of 0009 |

Apple 1l Computer Information e+ Doc# 013 <« Jeppson: Guided Tour of Highway ///

AHY 1963

BITS

PSOlts Guided

PRG.‘ES certain agreements, can obtain source materials and technical assistance.

But many bright ideas must incubate and grow and be played with on
the machine before they become sufficiently clear and explicit to warrant
Here is a ragtag assortment of odds and ends from Apple 1, thrown a formal approach to Apple. A lot of maybe-we-coulds must simply have
together almost untainted by logical sequence. Some have already been vanished because the programmer had insufficient information to per-
published elsewhere; some are obtainable in the fine print of Apple man- mit experimentation.
uals; and some are the fruit of personal investigation. Accuracy, particu- A Memory Map. At any one time, the 6502 cpu works with 64K ad-
larly in the latter category, may not be uniformly high. So be warned. dresses arranged as follows:
Let's face it. Extracting information from Apple Computer isn’t the
casiest thing in the world, In fact, it's usually faster, and more fun, to ask ,ggg?;_f:ni ugg? gé'g: ZFG tﬁ)%%?'s'fg::k
the Apple III itself. There is no obvious reason for Apple’s reticence. The
folks at Apple intend, they say, to publish the SOS Reference Manual The system bank is always on-line. It contains SOS.Kernel and other
and, eventually, the Driver Writer's Guide. The reference manual exists goodies. The user banks are switched in and out. Only one user bank is
already, more or less, as a textbook for the Apple 111 Technical Work- on-line at any given moment.

shop. If you're keen on writing assembly language for the 111, by all Table 1 describes the function of pages in the lower system bank.
means take that course. It tells you lots and lots, although not quite Upper System Bank: $A000..FFFF. SOS.Kernel occupies
everything you might wish to know. Inquiries, however, seem to drift off $BC00..FFFF. In the future SOS.Kernel may get longer and extend
into never-never land. down as far as $B800. SOS.Interp, which is “absolute” code, is normally

Why s0 secretive? The effect seems primarily to impede the efforts of loaded below SOS.Kernel. Actually, it is loaded into the highest user
~ould-be Apple 111 programmers, which you might suppose would not bank (bank 6 in a 256K machine) beginning at some predetermined lo-
be in Apple's interest. Maybe they are protecting something else? The cation ($7600 for Pascal). It may then extend upward for any length, up
techniques of RAM-based operating systems may have a more general o the lower end of SOS.Kernel (presently $BC00). Thus it usually over-
applicability . . . perhaps to the Lisa? laps from bank 6, a user bank, into system bank $A000..BBFF, This is

No doubt a recognized software development firm, prepared to sign important because the overlap gives the interpreter sizable area in sys-

“ 56.PICT” 1137 KB 2001-08-22 dpi: 600h x 600v pix: 4659h x 6332v
Page 0002 of 0009 |

| Source: David T. Craig

Apple lll Computer Information e

Doc # 013

» Jeppson: Guided Tour of Highway ///

David T. Craig
736 Edgewater

EX LIBRIS:

[#]

Wichita, Kansas 47230 (USA)

o: “True" zero page. Used early in boot sequence, and as the
zero page for interrupt handlers.
01: “Normal” 6502 stack. Addressed by PHA, JSR, and so on,

whenever bit 2 of environment register ($FFDF) is set. Used as
stack page by interrupt handlers, drivers, and by SOS.Kernel
itself.

02..03: 1/0 buffers for floppy drivers.

04..07: Textpage 1. In eighty-column mode holds screen memory for
even-numbered columns 0,2,..78 (decimal).

08..0B: Text page 2. Memory for odd-numbered columns 1,3,.79
(decimal). Note: Corresponding addresses in TextPage1 and
TextPage?2 are interchanged by the relation: (high byte) XOR
$0C.

0C..OF: Character set.

10..11: File names, prefix, ? access routes to files.

12.13: Used as I/0 bufter tor reading directories.

14: Xbyte page when zero page is $18. Used by SOS.Kernel and
by drivers.

15: Typeahead buffer.

16: Xbyte page when zero page is $1A. Used by interpreter and by
assembly modules included in user programs.

17: Keyboard layout.

18: System zero page. Used by SOS.Kernel and by drivers.

19: SOS data and jump tables.

1A: “User” zero page. Used by interpreter.

1B: “"Alternate” 6502 stack when zero page is $1A (zero page XOR

$01). Used by interpreter. Alternate stack is addressed by
PHA, JSR, and so on, whenever bit 2 of environment
register ($FFDF) is clear.

1C..1D: Route information for open files.

1E.1F: Available for use by interpreter.

Table 1. Lower system bank: pages $00..1F.

- bank—puuff! Suddenly you arez’t.

tem bank for code that is always on-line. Bank-switching must always be
done from system bank. If you switch banks while running in a user

A very short interpreter might lie only in user bank or only in system
bank. The loading site and length are determined by the writer when the
interpreter is created. It is absolute code “.org’d” on the intended load-
ing site.

Usually the upper system bank is all RAM, except for
$FFDO..FFDF and $FFEQ..FFEF, which are the onboard D and E
VIAs (versatile interface adapters). In particular, if bit 6 of the environ-
ment register is clear, then $C000..CFFF is RAM. If that bit is set, then
this area is I/O. There are also $20 bytes of RAM “under” the VIAs at
$FFDO..FFEF. Normally they are off-line. These RAM bytes can be ac-
cessed only by “8F” extended addressing. This small area of RAM is
unique in that it is not disturbed by a control-reset reboot, so that’s
where they keep the last valid clock value—less useful, since you ob-
tained your functioning clock chip.

The RAM of SOS.Kernel area $C000..FFFF can be write-protected
by setting bit 3 of the environment register. Normally this RAM is pro-
tected while the interpreter is running. This is the user environment, and
Apple doesn’t trust you. It is unprotected in the driver, SOS.Kemel,
and interrupt handler environments. Write-protection doesn’t affect
1/0 $C000..CFFF when that is enabled, nor the VIA registers
SFFDO..FFEF.

Highest User Bank: Bank 6 in a 256K Machine. At boot time
SOS.Interp is loaded here, at whatever site the writer has designated, as-
suming, as is usually the case, that the interpreter is not confined entirely
to $A000..BBFF in system bank. Next the drivers are loaded below
SOS.Interp, one after another, in whatever order they are encountered in
SOS.Driver, which is just the reverse of the order listed by the System
Configuration Program. For this purpose 2 modular driver is inet nane

* 57.PICT” 1161 KB 2001-08-22 dpi: 600h x 600V pix: 4820h x 6380v

| Source: David T. Craig

Page 0003 of 0009 |

Apple lll Computer Information e

Doc #013

Jeppson: Guided Tour of Highway ///

swit

AY 1983

SOITALL®

103

iver, no matter how many modular units it may contain. The drivers
tend, cessary, down to the bottom of bank 6. If more space is
eded, continue from the top of the next lower user bank ($9FFF
th bank 5 switched in). Each driver, however, must be completely con-
ined within its bank, so if there is insufficient room for the complete
iver in bank 6 it will be placed entirely in bank 5. Any space left over
Jow the drivers is free and available for requisition by the interpreter.

Interpreter Strategy. Interpreters should never assume they are resi-
=t in the highest bank, even though that is where they are normally
aded. Interpreters will run perfectly well in other banks. All you need
vdo is copy the user bank portion of the interpreter into the correspond-
g bytes in another (free and available) bank. Then switch in that bank
wing careful not to self-destruct) and perform a jump to the first byte of
terpreter code. The interpreter still overlaps into system bank
;A000..BBFF) just the way it always did. Bank-switching affects only
x user bank. Interpreters, therefore, should always find out where they
re by checking the bank register (SFFEF), never by making assump-
ons or by using location $1901, which does contain the highest bank
umber.

This relocation trick can be used for interpreter-switching schemes. A
mall switching interpreter is loaded from disk as the original
;0S.Interp. It is placed entirely in the upper part of the highest user bank,
«ith the drivers immediately below. The switching interpreter, in turn,
oads in another interpreter (perhaps Pascal) but places the user-bank
sortion in a lower bank, where'it runs very happily. The switching inter-
sreter remains in the highest bank, taking up very little room, just wait-
ne for you to call it back by pressing a special key combination (for
«hich you will need a small modification of the console driver). Then the
aitching interpreter can load in, and run, some other interpreter, such as
HasiC.

Use+ Bank 0: “8F" Addressing. The “zero-page anomaly™ in Apple
Al m that every time the 6502 executes a zero-page instruction it ac-
wally operates on the designated zero page, found as the value of the
zero-page register (SFFDO). The same thing happens when the (sixteen-
pit) operand of an instructior has $00 in the high byte, since that also re-
&rs to zero page. Similarly, in extended addressing, if the place you are
seaded has $00 in the high byte of its address, then that is also interpret-

.« as a zero-page location and you are given whatever is the current zero

-age. But that may not be what you want.
Extended addressing looks at a 64K stretch of memory comprising

;w0 consecutive user banks. In extended addressing, $0000 is the bottom

o one user bank and SFFFF is the top of the next higher user bank.
Whichever pair of user banks is active depends on the Xbyte of the ex-
nded address. This works fine except for the lowest page of the lower of
ihe two user banks in the pair. That would have to be addressed as
O0xx/8b. But the high byte of that address is $00, so you are given zero
yage instead.

Normally you get around the zero-page anomaly by decrementing
he Xbyte. Thén you are looking at a different pair of user banks, with
_our target bank as the higher member of the pair. The lowest page of
‘hat bank can then be addressed as $80xx/8b—1. But what about the
lowest page of bank 0? There is no lower user bank to put underneath it
in a pair. Hence 8F addressing.

8F is an Xbyte which, when present, causes the extended addressing
mechanism to look at 64K of memory constructed as follows:

|
0000..1FFF
lower s-bank

A000..FFFF
upper s-bank

2000..9FFF
bank 0

It is almost exactly like system addressing (Xbyte $00), with bank 0
in. (There is one other interesting feature. It is all RAM, in-
clug..., the RAM beneath the VIA registers SFFDO..FFEF.)

Thus if you are doing a lot of talking to user bank 0, you should use
8F as the Xbyte and address the bank as $2000. 9FFF, corresponding to
$0000..7FFF in the bank. Then you can get to the lowest page without
worrying about the zero-page anomaly.

User Bank 0: Graphics. Which, of course, is why you'll want to be
wlking to bank 0. That's where graphics are, when graphics are allo-
cated. Pascal and Basic each provide for allocations of $00, $40, or $80

pages of graphics, depending on the graphics mode. Pascal also allows
$20 pages, which is enough for one lo-res black-and-white buffer. Hi-res
mode appears to interleave two lo-res modes in alternate columns or
groups of pixels, much as eighty-column text interleaves two forty-col-
umn screens.

The number of pages allocated for graphics is stored in location
$1907 in the SOS data area. Presumably this byte is used by the video
generator apparatus, as are surrounding bytes in that area.

In black-and-white lo-res mode (BW280), buffer | runs from
$2000/208F ..3FFF/3F8F (which is $0000..1FFF in bank 0). Buffer 2 is
found in $4000/408F . .SFFE/SFSFE. In buffer 1 the lowest byte ($2000/
208F) represents the upper-left corner of the screen. Each bit repre-
sents one pixel. Successive bytes (and their contained bits) are in order
from the left edge of the screen. One accesses individual bytes by indirect
Y-indexed addressing (extended addressing) off the base address, which
is the leftmost byte in that horizontal row. The following algorithm (for
BW280, buffer 1) relates corresponding bytes in successive rows. It was
discovered empirically and is doubtless pathetically slow.

subtract $0400
if < $2000 then add $2000 and subtract $80
if < $3C00 then add $0400 and subtract $28
add $0400
it >= $4000 then subtract $2000 and add $80
if >= $2400 then subtract $0400 and add $28

next line up:

next line down:

In hi-res mode (BW 560) alternate bytes (gtoups of cight pixels) come
from corresponding bytes of the two lo-res buffers just discussed. Thus
the sequence is $2000, $4000, $2001, $4001. . . . Hi-res buffer 2 is the cor-
responding structure beginning at $6000/608F . In color mode (CP280)
the **upper lo-res buffer” presumably contains color information. We are
not sure about COL140 mode. And we are not sure if the base address
algorithm holds for these modes.

When you are ready for the video generator to display your graph-
ics, it is necessary to fiddle with the soft switches (see table 8). Graphics
information is always taken from bank 0, regardless of which user bank
is switched in. Presumably this is hard-wired, although it is just conceiv-
able that the source bank is software-selected. If so, we don’t know how.

The Text Pages: $0400..07FF and $0800..0BFF. Apple III text
memory is very similar to Apple II; possibly identical for forty-column
mode. In cighty-column mode the two *“textages™ are interleaved: even
columns from $0400..07FF, odd columns from $0800.0BFF. The rea-
son for this peculiar arrangement is found in the direct memory access
(DMA) apparatys of the video generator. When Apple I11 was designed
for an eightycolumn display, the video generator had to call up twice the
amount of information as it did for the forty-column display of Apple I1.
But it did not have twice the time in which to do it. So the memory-fetch
path in Apple 111 was made sixteen bits wide. Every data fetch actually
gets two bytes. The video gencrator uscs both. The 6502 chip uses one
and ignores the other (except in the case of the Xbyte, which is that extra
byte used in extended addressing). The memory fetch does not get two
adjacent bytes. It gets the byte at address and the byte at address: high
byte XOR $0C. Thus a fetch to $0400 also gets the byte from $0800,
which the video generator puts in the odd column. And this is also the
reason why the Xbyte page is related to its zero page by the same rela-
tion, high byte XOR $0C.

The Apple I “screen holes™ are there, but you aren’t supposed to use
them for peripheral card scratchpad space. In the Apple 111 these loca-
tions are used as transfer ports when downloading character sets to the
video generator. But downloading occurs only at boot time or when pro-
grams deliberately change character sets. It is relatively rare. The rest of
the time these locations seem to be idle. It may be that a peripheral card
could use them for a while. But it's illegal according to the definition of
Apple 111

It is possible to write directly to the screen from assembly, bypassing
the console driver. Just put ASCII codes in the appropriate memory lo-
cations. The high bit should be clear for inverse and set for normal, as-
suming you arc using a standard (not inverted) character set.

The bytes in cach horizontal linc are accessed by X-indexed address-
ing’ off the base address, which is the leftmost byte of that line (see table 2).

“ 58.PICT” 1400 KB 2001-08-22 dpi: 600h x 600v pix: 4631h x 6297v
Page 0004 of 0009 |

| Source: David T. Craig

Apple lll Computer Information e

Doc #013

Jeppson: Guided Tour of Highway ///

104

MAY 1983

It column is odd, add $0400 to the address.
Use X index := column DIV 2;

00 0400 08 0428 10 0450
01 0480 09 04A8 11 04DO
02 0500 0A 0528 12 0550
03 0580 0B 05A8 13 05D0
04 0600 0C 0628 14 0650
05 0680 0D 06A8 15 06D0
06 0700 OE 0728 16 0750
07 0780 OF 07A8 17 0700

Table 2. Text screen line numbers versus base addresses.

In cighty-column mode use X := column DIV 2. If the column number
is odd, you must also add $0400 to the base address given in the table.
Altematively, the base address and index may be computed with a mod-
ification of the Apple II subroutine Bascalc (table 3).

Entry: Line, column
Exit : Baseaddress (addrL,H), X-index
bascalc Ida line asl A
pha ora addrL
Isr A sta addrL
and #03 which Ida column
ora #04 Isr A
sta addrH tax
pla bcc $2
and #18 Ida addrH
bce $1 eor #0C
adc #7F sta addrH
$1 sta addrL $2 ns
asl A

Table 3. Subroutine Bascalc.

@ OoTTIIX

the corresponding byte in the second queue ($1580..15FF). The console
driver maintains a count of the current number of characters in the
queue and keeps index pointers to the current front and rear of the
queue.

When a key is pressed, KBD appears at $C000 just as it does in Ap
ple I1. At this time KBDFLG also becomes available at $C008. The ke
board interrupt is cleared with the keyboard strobe, $C010, just as it is ir:
Apple II.

KBD and KBDFLG are picked up by the keyboard (SIR#02) inter-
rupt handler, which is embedded in the console driver. If they'represent
one of the five console control keys, that function is executed immedi-
ately. Otherwise, if a standard key was pressed, KBD would be used as
an index into the keyboard layout look-up table (page $17). KBDFL
and the modified value of KBD are then stored in the typeahead bufil¥lP
The console driver will retrieve them when it feels so inclined.

Before exiting, the keyboard interrupt handler also checks to see if
the “‘any-key” event is armed or if this is the “attention” event ¢haracter.
If so, the handler queues up the appropriate “cvent.” Later, before re-
turning to the user program, SOS checks the event queue and transfers
control to the event handler as a subroutine.

SOS Data and Jump Tables: $1900..19FF. The first few bytes on
page $19 contain important status information (table 4). During ordi-
nary business, some (or all) of these bytes control the video generator
and/or similar accessory apparatus. But when the monitor is running,
they have no perceptible effect. So there must be more than one way to
control the video generator.

The Character Set: $0C00..0F FF. At boot time the system charac-
ter set is loaded from SOS.Driver and stored in these pages. Similarly, if
you download another character set from a program by issuing a
DControl call #16 or #17 to the console driver, the new set is also placed
here. But these pages are not the active character set in current use by the
video generator. This is merely a staging area. From these four pages the
character set is further transferred to the video generator’s storage area,
wherever that is. It is nof in addressable memory. Presumably the ma-
chine contains a 1K RAM chip dedicated for this purpose, analogous to
the ROM chip bencath the Apple II keyboard that contains the charac-
ter set for that machine. In any event, you can change the copy in
$0C00..0FFF all you wish, but nothing happens.

The console driver uses a complex mechanism to transfer the charac-
ter set into the video generator. It sets up an interrupt-driven back-
ground program (spooler) by allocating system internal resources (SIR)
numbers $05, $06, and $10. The video-generator mechanism then inter-
acts with the SIR06 interrupt handler (embedded in the console driver)
to transfer the character definitions at its leisure. The computer’s atten-
tion is returned to the user’s programs, and the video generator inter-
rupts when it feels ready for another swallow. There may be simpler ways
if you are willing to let the main program wait. For an entire character
set the download procedure takes about a second to complete.

The actual transfer involves the E-VIA’s peripheral control register
(SFFEC), interrupt enable register (SFFEE), a couple of sites in $C000
1/0 space (SCODA and $CODB) that are probably soft switches, and the
notorious screen holes. Apparently the interrupt handler moves the char-
acter descriptions piecemeal from the $0C00 area to the screen holes and
then alerts the video generator to move them on from there into its own
dedicated RAM.

This transfer could probably proceed just as easily from any mem-
ory buffer to the screen holes; the $OC00 staging area is merely a conven-
ience. But if you are operating from a background program, and if that
program is the interrupt handler itself, then the buffer must be in system
bank. If the buffer were in a user bank it would surely go off-line due to
bank-switching. Extended addressing is not available for interrupt han-
dlers; it doesn’t work on the true zero page. Hence the SOC00 buffer.

Typehead Buffer: $1500..15FF. Page $15 is set aside for use by the
console driver as a typeahead buffer. It is nothing more than a first-in-
first-out queue. Actually two queues. The first queue ($1500..157F) con-
tains KBD values, which are the ASCII codes generated by the key-
board. For each KBD there is also a KBDFLG byte, the second key-
board byte, which flags the various modifier keys. KBDFLG is stored in

1900: 10 7?7

1901: 06 Highest user memory bank.

1902: 00 Console control #7 and #9. Setting bit 7 suspends screen
output; bit 6 will “flush” screen output. Low nibble: ??

1903: 00 High bit set indicates NMI pending.

1904: 8F ??

1905: 19 ??

1906: 82 Console control #5. Clearing bit 7 turns off video. Bit 8 may .
be involved in graphics. Low nibble contains text mode
[0..2).

1907: 00 Number of pages allocated for graphics.

Table 4. SOS status info. Some bytes control video generator.

Page $19 also contains a jump table beginning at $1910. The jumps
take the form “1913: 4C CA 2 JMP E2CA". The table provides fixed
entry addresses for certain subroutines that appareritly will be supported
in future versions of SOS. The list is in table 5. Those marked with an as-
terisk are documented by Apple and are legal to use. The others . . . well,
they do appear in the jump table.

Access SOS address * = Legal to use

1910 198F Probably debug.

1913 E2CA * AllocSIR: Allocate internal resource.

1916 E352 * DealcSIR: Deallocate internal resource.

1919 E3C2 Disable reset key (unless NMI pending).

191C E3F3 Enable reset key (just sets FFDF bit 4).

191F E41D * Queevent: Queue an event.

1922 E3A9 * SelC800: Grab $C800 expansion space.

1925 EE2A Writes “system failure,” the value of A, and
hangs. i

1928 EE17 * SysErr: reports errors from drivers to caller.

1928 F5C5 ? error number look-up for internal buffer
allocation.

192E F686 ? error number look-up for internal butfer
allocation.

1931 F710 ? error number look-up for internal butfer
allocation.

1934 19D3 Probably debug (AND #20, STA 19D2, RTS).

1985 1910 Probably debug.

Table 5. Supported SOS subroutines.

Page $19 also contains a copyright notice at $1990, a few other data
bytes of mysterious function, and a lot of zeros. The subroutine SysErr
stores the error number at $1980 and the return address at $19FD and
$19FE. The “‘system-failure™ routine uses the end of this page to store the

“ 59.PICT” 1298 KB 2001-08-22 dpi: 600h x 600V pix: 4675h x 6368v

| Source: David T. Craig

Page 0005 of 0009 |

Apple lll Computer Information e

Doc #013

Jeppson: Guided Tour of Highway ///

106

MAY 1983

program counter and all register values for use in debugging. Other SOS
routines store various temporaries on this page.

The copyright notice at $1990 is a good spot if you want to store
things that can be found from the Monitor. If you want to store a lot of
stuff you can also use the character set area.

Those Registers: the Onboard 6522 VIAs. The two VIAs are re-
ferred to as D-VIA (SFFDO..FFDF) and E-VIA (SFFEO..FFEF) re-
spectively. They are fully occupied with Apple 111 hardware manipula-
tions. You cannot, for example, use the VIA timers for your own pur-
poses. The VIAs manage bank-switching, zero-page selection, and much
of the other machinery that permits Apple III to accommodate the 64K
address space of the 6502 cpu chip.

SFFEF: Bank register (E-VIA IORA). The low nibble selects the cur-
rently switched-in bank. The high nibble is generally SF. Attempts to
change the high nibble have no effect. Those four bits are flags for inter-
rupt requests from the slots.

SFFDF: Environment register (D-VIA IORA). Table 6 lists the sig-
nificance of its bits. Apple would be happier if you confined your atten-
tion to bit 7 and didn’t mess with the others. Table 7 contains a variety of
information about the various standard environments.

SFFDO: Zero-page register. Selects the current zero page, which can
be assigned to any page in memory. If alternate stack is enabled (bit 2 of

Value Bit Function Bit=0 Bit=1

01 0 FO00..FFFF RAM ROM

02 1 ROM# ROM#2 ROM#1

04 2 stack N alternate normal (true 0100)
08 3 CO000..FFFF read/write read only

10 4 reset key disabled enabled

20 5 video disabled enabled

40 6 C000..CFFF RAM 170

80 7 clock speed 2MHz 1 MHz

Note: ROM#2 doesn't exist.
Table 6. Environment register ($FFDF).

(Data mostly from unpublished SOS Reference Manual)

User Kernel Driver IRQ Monitor

Environment register $38 $34 $74 $74 $77

Clock speed 2MHz 2 MHz 2 MHz 2MHz 2 MHz

1/0 space disabled disabled enabled enabled enabled

Screen on unchanged unchanged unchanged on

Reset key unlocked unchanged unchanged unchanged unlocked

Write protect readonly r/w riw ’w r/w

Stack alternate normal normal normal normal

ROM disable’ disabled disabled disabled enabled
Zero page $1A $18 $18 $00 $03
Xbyte page $16 $14 $14 none none
Bank register unchanged unchanged unchanged handler's $FO
8502 interrupts enabled enabled enabled disabled 7
Functions allowed:

lssue SOS call yes no no no no

Be interrupted yes yes * withcare withcare n/a

Handle interrupt no no no yes n/a

Queue event yes no yes yes n/a

Handle event yes no no no na

Allocate SIR yes yes yes 77

Call SelC800 see text yes yes yes n/a

Call SysErr no yes yes no na

Note: Upon entry to an interrupt handler X points to a $20 byte
scratchpad area on zero page. These bytes should be addressed
$00,X and so on. If the interrupt source is the onboard ACIA then Y
contains the ACIA status register.

Table 7. The standard environments.

SFFDF is clear) then all stack-using opcodes use the current zero page
XOR $01. Extended addressing, on the other hand, functions only for
zero pages in the range $18..1F. The user zero page is $1A. That’s you
and/or the interpreter. Drivers and SOS.Kernel use $18. Interrupt han-
dlers use $00. SOS is supposed to decide these things; you are not. The
SOS call handling routine even checks to see if the caller’s zero page is
S1A. If not, it crashes the system. Somewhere in darkest Cupertino, Ap-
ple maintains a coven of witch doctors who will cheerfully do unspeak-
able things to your image, should you violate this trust.

SFFDD: “Any-slot” interrupt flag. When a peripheral card in one of
the slots pulls down the interrupt line, the interrupt handler is entered

@SOTTALL

with 6502 interrupts disabled. The interrupt handler is, of course, re-
sponsible for clearing the interrupt condition on the card. If the inter-
rupt handler wishes to enable 6502 interrupts (as it should if it will run
longer than 500 microseconds) then it must also clear the “any-slot” in-
terrupt flag by storing $02 in SFFDD. Otherwise the interrupt manager
will do it for you when the handler exits.

I/0 Space: $C000..CFFF. I/O space is on-line when bit 6 of the en-
vironment register (SFFDF) is set. It is actually $C000..CAFF and
$C800..CFFF. The intervening bytes $C500..C7FF are always RAM.
Table 8 lists those registers of which we have some clue. There are many
mysterious others. When in doubt, there is a good chance that a regis-
ter’s function is similar or identical to its role in Apple II.

C000: KBD. ASCII value of the most recent keypress. »
C008: KBDFLG. Bits are flags for modifier keys.
C010: Clear keyboard strobe.
C020: Deselect all peripheral slots (CFFF more commonly used).
C030: Clicks speaker (Apple Il type).
C040: Beeps speaker (Apple |li type).

Soft switches
C050: Black and white on.
C051: Color on.
C052: Forty-column mode, low-res mode.
C053: Eighty-column mode, hi-res mode.
C054: Display buffer 1.
C055: Display buffer 2.
C056: Text on.
C057: Graphics on.

Peripheral card 1/0 (each slot has $10 bytes)
C090: Slot 1.
COAO: Slot 2. Normally addressed as C080,X
C0BO: Siot3. where X = s0 (slot number in high nibble).
COCO: Slot4. Note: there is no slot 0.

Onboard 6551 ACIA

COF0: ACIADR Data register.
COF1: ACIASR Status register.
COF2: ACIAMR Command mode register.
COF3: ACIACR Control register.
Peripheral card PROM space (one page for each slot)
C100: Slot1.
C200: Slot2.
C300: Siot3.
C400: Siot4. o~

Table 8. 1/0 space: $C000..CFFF.

Notice that the $10 bytes beginning $C080, $CODO, $COEO, and
$COFO are not used for slots in the II1. In Apple II they would be slots 0,
5, 6, and 7 respectively. There may or may not be a clue to their function
in the assignment of various connecting plugs to imaginary slots in emu-
lation mode. For example, SCOF0+ is the ACIA (asynchronous com-
munication interface adapter), as indicated in table 9. The ACIA runs the
serial port, which in emulation mode is assigned to an ethereal slot 7.
Similarly, emulation mode assigns the floppies to slot 6, and the floppy
drivers (buried in SOS.Kernel at $E899) probably access bytes in
$OOEQ..QUEF, and in $CODO0..CODF as well. But this may only be spec-
ulation.

Entry: A = slot number ($00 deselects all slots)
Entry point: (via JMP table) at $1922

E3A9: C9 05 CMP #05 , range check

E3AB: BO 14 * BCS ->E3C1 , error returns carry set
E3AD: 08 * PHP

E3AE: 78 * SEI ; disable 6502 interrupts
E3AF: 8D CO DF * STA DFCO ; save slot number
E3B2: 09 CO * ORA #CO

E3B4: 8D BF E3 * STA E3BF ; build instruction at E3BD
E3B7: 2C 20 CO * BIT CO020 ; deselect strobe
E3BA: 2C FF CF * BIT CFFF ; same

E3BD: 2C FF CO * BIT COFF < ---; becomes CsFF

E3CO: 28 * PLP ; restore 6502 interrupts
E3C1: 60 * RTS

Table 9. SelC800 disassembler listing.

“ 60.PICT” 1151 KB 2001-08-22 dpi: 600h x 600V pix: 4675h x 6344v

| Source: David T. Craig

Page 0006 of 0009 |

Apple lll Computer Information e

Doc #013

Jeppson: Guided Tour of Highway ///

108

@ OTTAIY

MAY 1983

$C800..CFFF is a 2K peripheral card expansion space used *in com-
mon” by all the slots. As in Apple I1 it can be selected by referencing one
of the peripheral card 1/0 locations assigned to that slot. SCFFF does
desclect all slots, but $C020 (formerly the cassette output toggle) is the
preferred Apple 111 deselection strobe.

There are some new rules for using $C800 space that are intended to
mesh with Apple I1I's interrupt-driven operating system. You are sup-
posed to allocate the space prior to use by calling the SOS subroutine
SelCS(D.Thcsbtnumberispassedinthe [A] register on a JSR to the en-
try point at $1922. (See the subroutine listing in table 9.) A value of $00
deselects all slots. Note that SelC800 saves the slot number in SDFCo;
this allows the interrupt manager to restore the proper card allocation
should an interrupt occur. The interrupt manager routinely deselects all
slots on entry and reselects the proper slot on the way out.

The documentation states that SelC800 may be called from any en-
vironment including interpreters (except an NMI handler). This turns
out not to be entirely true. The subroutine builds an instruction on-the-
fly by storing the slot number ORA #CO0 as high byte of the operand in
bit $COFF. The bit instruction then physically enables $C800 space for
that slot. But this area of SOS is write-protected while running in the user
environment, so the STA instruction doesn’t work and the subroutine
fails without notifying you. If you want to call SelC800 from the user en-
vironment you must enable write by clearing bit 3 of the environment
register (SFFDF).

There must be another soft switch somewhere. When you enter the
Monitor (with control-open-apple-reset), it comes up in forty-column
mode. You can change to eighty-column mode with escape-8, and back
again with escape4. From eighty-column mode you might suppose you
could also change back to forty columns by fiddling with the soft
switches, perhaps by reading $C052 and maybe $C054. Things change,
and you can tell it's really trying hard. But no combination quite makes
it. We don’t know why.

System Internal Resources: SIRs. When an interrupt occurs, the in-
terrupt manager must know which interrupt handler goes with which in-

Ink Well version 2.2

Word Processing for the Apple 17/ ™

‘One Big Advantage

(and lots of little ones)

The Big Advantage ... Ink Well displays your
document on the screen just as it will be
printed. You can format your documents
on the screen, and know exactly how
they will look on paper. Ink Well even
shows you where the page breaks will
fall.

The Little Advantages . . . Typewriter Mode,
Merge Print, underlining, double strike,
over print, headers, footers, page
numbering, inbedded control charac-
ters, word wrap, right justification,
centering, adjustable margins and tabs,
find and replace, block movement, and
price . . . only %185,

Foxware Products - (801) 364-0394
165 West Mead Ave., Salt Lake City, Ut. 84101

Apple s a regustered trademark of Apple Computer, Inc.

terrupting device and where the handler address is located in memory.
The SIR allocation scheme provides a look-up table. It also establishes
*“ownership” of a resource in order to prevent squabbles. Resources
should therefore be allocated whether there will be interrupts or not.
Somewhere in your code, place the following data table:

SIRADDR .equ SIRTABLE
SIRTABLE .byte 00 ; SIR#
.byte 00 1 1D code (will be assigned by SOS)
.word handler . interrupt handler address (or
$0000) '
.byte bank , interrupt handler bank

Allocation is performed by JSR AllocSIR ($1913) and dealloca-
tion by JSR DealcSIR ($1916). The 6502 registers must contain: X =
SIRADDR; Y = SIRADDR+1; A = total number of bytes
SIRTABLE. This will be $05, or some multiple of $05 in the event that
several resources are allocated at the same time. AllocSIR refurns with
carry clear if the resource is successfully allocated, .

Table 10 lists the numbers assigned to various resources. ‘Examina-
tion of AllocSIR suggests that the range is $00..17. There are a lot of
question marks. One wonders about the digital/analog audio converter,
the paddle ports, and other mysteries, such as whether the interrupt line
of the MMS58167A clock chip is wired up.

SIR# Resource

00 ?)

01 ACIA

02 keyboard

03 (?) clock chip
04 ?)

05 used by console screen code 22. “SYNC"
06 character set downloader interrupts

-»

07.0F (?)

10 (?) character set downloader
" slot 1

12 slot 2

13 slot 3

14 slot 4

16..17 (?) pseudo slots 5-7

Table 10. Internal system resource numbers (SIRs).

Boot Sequence: On power-up, or after control-reset, the boot proc-
ess begins in ROM#1 (ROM#2 doesn't yet exist). Low-level diagnostics
are performed. Then block 0 is read from the disk in the built-in drive.
This is the SOS boot code and is present or every disk that has been for-
matted by the System Utilities program. It must be present for a success-
ful boot. It consists of one block of *‘absolute™ code and is loaded into
the computer at $A000, where it begins to run.

The boot code begins by locating and switching in the highest bank
of RAM. Then it goes back to the disk and loads in five more blocks
(blocks 1..5). These are placed in $A200..ABEF. Block 1 currently con-
tains all zeros; blocks 2..5 are the disk directory. The boot code then
scans the directory and locates SOS.Kernel, which it loads into memory
at $1E00..73FF.

When SOS.Kernel begins running, it promptly relocates bytes
$3000..73FF into the area $BC00..FFFF. This is the functional
SOS.Kernel. The loader portion is eventually overwritten and discarded.
First, however, it locates and loads SOS.Interp and loads the drivers
from SOS.Driver. It then initializes SOS.Kernel and each of the drivers.
Finally, control is transferred to the first instruction in the interpreter and
you are in business. _

Data Disks: Your Own Boot Code. If you want to end up in Apple
11 native mode, the boot process had better find the SOS boot code in
block 0 on the disk in the built-in drive. Any disks you ever expect to use
as SOS boot disks must have that code. On the other hand, you may
wish to create data disks that have the SOS directory structure but can-
not be booted. Or you may want the disk to boot, but to end up with
some entirely different operating system in the machine, such as an emu-
lator, for example. For either of these alternatives you will want to put
your own code in block 0 on your disk.

You start with a single block: the 512 bytes contained in block 0. It
will be loaded and begin to run at $A000. You may then use the ROM

“ 61.PICT” 1217 KB 2001-08-22 dpi: 600h x 600V pix: 4670h x 6379v

| Source: David T. Craig

Page 0007 of 0009 |

Apple Il Computer Information

Doc # 013

Jeppson: Guided Tour of Highway ///

" 4AY 1983

TOTTALL®

111

subroutines to load in more blocks, so you can actually requisition as
“ich space as you require. At the time your code begins to run, you will

n the Monitor or something very similar. The environment register
reads $77, zero page is $03, and bank 0 is switched in. You have avail-
able all the hardware, including the VIA registers, extended addressing
(with proper zero page), and all the internal resources. You do not, of

ourse, have any of the SOS subroutines and facilities.

Your code should be assembled as “‘absolute™ code by the Pascal
:502 assembler and should be *“.org'd" on $AD00. For data disks it
Jhould end in an infinite loop. Word Juggler, for example, creates data
disks that, when you try to boot them, print “Can’t boot Word Juggler
data disk™ in the middle of the screen and politely hang the computer.

Formatting Data Disks. After you've assembled your own boot
@pde. it is a relatively simple matter to format data disks from applica-
tion programs. It can be done entirely from Pascal and almost entirely
from Basic. From Basic you will also need an invokable module that will
write to a floppy disk by block number, just as Unitwrite will do in Pas-
cal. The assembly source text for such a module is appended at the end of
this article.

The floppy format driver (FMTDX) is activated by issuing a DCon-
trol call, code number 254 (SFE), to the appropriate driver (FMTDI for
the built-in drive). In Pascal this is done with Unitstatus procedure. In Ba-
sic you use the Request.Inv invokable module that comes on the Apple
111 Basic boot disk. If you're working in assembly you just issue SOS call
$83. When the DControl call is issued;'the format process begins imme-
diately. All error checking and confirmation requests must be done by
vour program before you issue the call.

The DControl call must specify a control list buffer. FMTDX.Driver
expects a one-page (256-byte) buffer that will be reproduced on each page
of the new disk. Normally this buffer should contain all zeros. The for-
matter places address code on each track and sector and fills the data

:lds with zeros, or whatever you put in your buffer. Then it quits.

You now have a formatted disk. It is not yet a SOS disk. It contains

neither a directory nor the block 0 boot code. You must store those your-

sell from program buffers using Unitwrite (if you are working in Pas-
cal). If you ever want to use the disk as a SOS boot disk, just copy block
0 from some other boot disk. Otherwise transfer your own code. Re-
member to chop off the header block, which the assembler will have
placed in front of your code. Start the transfer at block 1 of the codefile.

Next you must install a directory. The minimum requirements for a
usable SOS directory are listed in table 11. You must store the indicated
byte values on the disk. Just put them in the proper place in the 512-byte
buffer and write the whole block onto the disk.

The boot code—blocks 0..1 (bytes 0000..03FF on the disk)
Your code, or the SOS code from another boot disk
The directory—blocks 2..5 (bytes 0400..0BFF)

0400: 00 00 03 00
0404: Fx—where x is the length of the desired volume name in the
low nibble. The high nibble should contain F, for root directory
0405: The volume name in ASCII capitals (do not prefix with **/")
0414: 75
0422: C3 27 0C 00 00 06 00 18 01
(These last two words are 0600 = the block number of
the bit map
0118 = 280 dec. = blocks
on volume)
0600: 02 00 04 00
0800: 03 00 05 00
0A00: 04 00 00 00

The bit map—block 6 (bytes 0C00..0CFF) ,
0C00: 01 FF FF FF FF...through byte 0C22

Table 11. Minimum requirements for a SOS disk

Word Juggler manages to write all this information onto the disk by
a short segment of elegant and compact code. The utilitics program uses
the brute-force approach. It simply includes fourteen pages of a stan-
dard SOS structure (mostly zeros) and transfers the whole thing to disk
in one piece. No wonder the utilities program is 123 blocks long.

Unitread and Unitwrite for Basic: an Invokable Module. The

COOL STACK — SENTRY I
IT LOCKS

Locks the Apple Il computer and disk drives to
base plate and separate adhesion plate secured
to table top.

Extends the life and reliability of the computer
and peripheral plug-in boards.

Provides neat and efficient organization of the
entire computer station including manuals and
disks.

Allows fast easy access to inside the computer.

IT COOLS
IT STORES

ITTILTS

matched to the Apple Il computer.

PRINTER PAL — Provides paper storage beneath printer. Paper guides
Models available for most printers.

*APPLE is a trademark of Apple Computer, Inc.
COOL STACK and PRINTER PAL are trademarks of FM), Inc.

., ™

COOL STACK-STANDARD
For those who do not need
the extra security and fre-
quent easy access to inside
the computer. Includes fan
and library rack. Holes pre-
punched to lock in disk
drives and optional Power
Sentry.

PROTECT AND ORGANIZE
Your Apple ll-lle System

Precision all steel construction provides optimum strength and durability color

IT STORES

included.
ITTILTS

1T LOCKS

POWER SENTRY

4 A.C. outlets with transient suppression controlled by a keylock switch.
Separate rocker switch to “RE-BOOT"" the Apple. Includes security bracket
to prevent removal of plugs deterring theft of monitor and printer.
DISKLOK

The DISKLOK prevents unauthorized access or tampering with the Apple Disk
Il drive. DISKLOK can be used on the disk drive alone or with the Cool Stack.
Easily installed utilizing existing holes in disk case.

FOR MORE INFORMATION ON THESE AND OTHER PRODUCTS CONTACT YOUR
DEALER OR: FMJ, Inc., P.O. Box 5281, Torrance, CA 90510 (213) 325-1900

“ 62.PICT” 1069 KB 2001-08-22 d

| Source: David T. Craig

pi: 600h x 600V pix: 4552h x 6308v
Page 0008 of 0009 |

Apple 1l Computer Information e+ Doc# 013 <« Jeppson: Guided Tour of Highway ///

112 @S OTTALY MAY 1983

Device.10.Inv invokable module contains two procedures. In Basic they .macro SOS

are external procedures and require the perform statement (see page 162, .bl;;te %1

Apple Business Basic Manual). it "%2"< >
The procedures are word %2
unitread (% devnum®%, @ but% (0), % length%, % block%) e paramo
unitwrite (% devnum%, @ buf% (0), % length%, % block%) ‘endc
These procedures read from or write to a specified block number .endm

(block%) on the disk in a specified device number (devnum®%). They bRea d oqu 80
transfer (length%) bytes to or from the buffer in memory. The buffer DWrite .equ 81
must contain enough bytes or Unitread will spill data over onto sur- ;

rounding memory with disastrous results. Normally the buffer should be butfer .equ OE8

dimensioned as an integer array; for example, DIM buf%(512). This ' proc unitread.4
buffer will contain more than enough room for two blocks (1,024 bytes). .def return,devnum,param0,param1
Unitwrite is a dangerous procedure. There is absolutely no protec-) .det param2,length,block
tion from errors. It is easy to write all over a disk directory, destroying it ' imp start '

and rendering the entire disk unusable.

3 i .Dl = 1, .D2 = 2, and return .word 0000
The device numbers of the floppy disks are .D1 = 1, .D2 an I o word 2000

S0 on.
After typing in the text, save it to any pathname, perhaps Dcvio_.Text. baramo .byte 00 ; number of parameters
Then assemble it to the corresponding codefile, Devio.Code. Finally, param! .byte 00 ; device number
change the name to Device.IO.Inv. If the assembler is not allowed to ap- rara{:2 .worg butfer ; g;ime; to b:t/ier
: : : leng .Wor 0000 , bytes to read/write
Pend tl‘)te .sum: .code, the file-type designation will get all screwed up and block word 0000 " block number 1o begin
1t won't invoke. read/write
b'lfx’cm pop param8 .word 0000 ; bytes read — result
;'I‘a %1 stant equ *
sta %1+1 pop return
endm pop block - . pop procedure parameters
. : pop len' th
! pop bufter
’.g:aacro 94”1521 Fop aevnum
pha da #05 ; number of parameters for
Ida %1 DRead
pha sta paramO
‘endm Ida devhum . transfer one byte
sta param1
SOS DRead ; issue DRead SOS call
push return
. s
' .proc unitwrite,4
.ref return,devnum,param0,param 1
.ref param2,length,block
' pop return
pop block ; pop procedure parameters
pop length “
pop bufter
Fop devnum
da #04 ; number of parameters for
DWrite
® Totally compatible with all CP/M software. sia param0 .
Jotally P V Ida devnum ; transfer one byte
® Executes the full Z-80, 8080 and 8085 instruction set. sta param1
® Fully compatible with Microsoft disks (no pre-boot SOS DWrite ; issue DWrite SOS call
required). push return
® Does eyerything the other Z-80 cards do plus supports . s
Z-80 interrupts. ' .end

® An on-card ROM eliminates many I.C.'s for a cooler,
less power consuming board.

® Runs on any Apple I, l1+ or lle with at least 48K
memory (80 column card is not required).

XFR.Block is a short Basic program intended to illustrate use of
these procedures. It transfers whole blocks (512 bytes each) between
specified block numbers on (separate) floppy disk drives.

® The Z-80 Plus runs: dBase |l, WordStar, Spell Star, ;g {;‘.‘&Oﬁ;"(@v{g‘;'""mv”
Cobol-80, Fortran-80, Peachtree and all other CP/M ul %o)) -
based software. 348 ggm$ PRINT “Transfer disk blocks utility
® Complete documentation included (user must furnish 50 INPUT “Source device number: ": source%
so.ftware).. 60 INPUT “Destination device number: "; dest%
® High quality P.C. board, gold plated connector, all 70 INPUT “Number of blocks to 'transfer (0..2): *; blks
1.C.’s in high quality sockets, with mil. spec. 80 length% = CONV% (blks * 512)
components used throughout. 90 INPUT “Block number to begin reading: "; readblk%
® Two year warranty. R 100 INPUT “Block number to begin writing: "; writeblk%
Price $139.00 110 PRINT: PRINT “Press any key to begin transfer": GET g$
Add $10.00 I Outside USA. 120 PERFORM unitread (% source%, @ buf% (0), % length%,
ii"p‘lﬁ?féﬁ 2; 34;,[,;{‘ grder to: To Order By Phone Call (214) 492-2027 % readblk%)
7 d. i
D0 box 4703100, Dallas, TX 75247 i JiBm 7 uarsa week 130 PERFORM unitwrite (% dest%, @ buf% (0), % length%,
ANl Orders Shipped Same Day Texas Residents Add 5% Sales Tax % writeblk%)
140 PRINT: PRINT “DONE" | |

“ 63.PICT” 856 KB 2001-08-22 dpi: 600h x 600v pix: 4643h x 6379v
| Source: David T. Craig Page 0009 of 0009 |

