Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

e e R LR T

.nuu..'.;'_lul.a.;x'.:mu;n:.-

R SR ‘ oy
B U Ay T o B e . SO

LR

45

527

N R T R

s
P

DOCUMENT NAME #
SOME WDEAS ABOUT AN APPLE #/

COMPUTER EMULATIR. /DT

“ 110.PICT” 252 KB 2001-08-13 dpi: 300h x 300v pix: 2166h x 2935v
| Source: David T. Craig Page 0001 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

¢

Apple /// Computer

| Emulation Program
Ideas
by
David T. Cralg

' 111, -08-13 dpi: 300h x 300v pix: 2118h x 2628v
ource: David T. Craig Page 0002 of 0064

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

i

Apple IIT Computer Information

Apple IIT Emulator Ideas

Document Table of Contents

Version4 ¢ 12 Dec1997
Version3 ¢ 09 Dec1997
Version2 * 04 Dec1997
Versiont ¢ 28 Nov 1997

“ 112.PICT” 312 KB 2001-08-13 dpi: 600h x 600v pix: 3834h x 5303v
| Source: David T. Craig Page 0003 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

g

Apple 111 Computer Information

Apple 111 Emulator Ideas

Version4 ¢ 12 Dec1997

“ 113.PICT” 311 KB 2001-08-13 dpi: 600h x 600v pix: 3846h x 4888v
| Source: David T. Craig Page 0004 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

& ot

SOME IDEAS ABOUT AN ¢ APPLE /// COMPUTER EMULATOR

David T. Craig -- 12 December 1997 -- Version 4

941 Calle Mejia #1006, Santa Fe, NM 87501 USA
e-mail: 71533.606@compuserve.com

(X3 N
TABLE OF CONTENTS oW GQEADFIL €< .

1.0 PURPOSE ead f)) Z . .

2.0 EMULATOR GOALS 726, Lo (””f"/"'"' 7 /°5¢ #

3.0 EMULATOR USER INTERFACE ik 1 —

4.0 DISK IMAGES ‘ : c). : - ,

5.0 6502 CPU EMULATION An{/f”‘!/"‘ﬁ’ /- freel Wity > a2 3yos ce,

6.0 ROM EMULATION 1/4 p —~ W
7.0 MEMORY -MAPPED I/0 EMULATION “ ?’ €Y chav iet bk = K

8.0 MEMORY BANK SWITCHING EMULATION .

9.0 SOS SYSTEM CALL EMULATION [0— __ 1 Gl extra spcce éc/Laee:‘,\
10.0 DEVICE DRIVER EMULATION G004 . %
11.0 KEYBOARD SUPPORT O bt cormmcu
12.0 MONITOR SUPPORT e wordy.

13.0 APPLE] [EMULATION DISK SUPPORT
14.0 WHAT LANGUAGE SHOULD THE /// EMULATOR BE WRITTEN IN? Cief
15.0 WHAT TARGET MACHINES SHOULD BE SUPPORTED? 10 - NEHF Hgice.
16.0 EMULATOR DEBUGGING FACILITIES L 7 ot fhocs
17.0 EMULATOR MEMORY STRUCTURE 20~ SCrwte JO - chéu se D cms s
18.0 WHAT'S NEXT? Q§7 > b /
19.0 REFERENCES(R /Y% —Dis KBurFeZ 17 hed € b nanes Coyger e

B > . = =
MODIFICATI@{ISTORYQ iv- 35 ?// (oer= &))

' i BPC mae gemers! [T~ EVALE- show offict l’?‘{‘ /’"‘/
28 Nov 1997 -- Version 1 l(/ -) S G ‘0_“ cdr!advz
Created by David T. Craig. W13 Ll Sorag I eds . 5' P

-] - ¢ Vir,

04 Dec 1997 -- Version 2 21 - go@’ljp FonT1X0 A

New sections: MONITOR SUPPORT, EMULATOR DEBUGGING FACILITIES.

Updated sections: DISK IMAGES, MEMORY BANK SWITCHING EMULATOR, SOS SYSTEM CALL
EMULATION, REFERENCES.

Added several good comments by Chris Smolinski (he's writing a /// emulator called
SARA) .

09 Dec 1997 -- Version 3

DISK IMAGES: Updated info about DTCMake3///DiskImage Mac application, made disk image
file an all-text file.

SOS SYSTEM CALL EMULATION: typo Silentypr --> Silentype.

WHAT TARGET MACHINES SHOULD BE SUPPORTED: More pre-68040 Mac comments.

EMULATOR DEBUGGING FACILITIES: typo affects --> affect, added info about
enabling/disabling SOS BRK disassembly, same for ProDOS, added list of emulator
debugging commands.

EMULATOR MEMORY STRUCTURE: New section.

12 Dec 1997 -- Version 4

EMULATOR DEBUGGING FACILITIES: Added examples to every debugging command. Added
commands SNAPSHOTW, SNAPSHOTR, ZPAGE, SPAGE, EPAGE, DRIVERS, macro commands.

Some Ideas about an & Apple /// Computer Emulator -- Version 4
David T Craig - 12 Dec 1997 -1 /23

“ 114.PICT” 663 KB 2001-08-13 dpi: 600h x 600v pix: 4627h x 6118v
| Source: David T. Craig Page 0005 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

& (o

1.0 PURPOSE

This document describes some ideas about implementing a software emulator for the
Apple /// computer. These ideas are based on my experiences with the Apple ///
computer and its software programming. No specific target machine is mentioned in
this document since these ideas should be non-target machine specific. These ideas
are submitted to stimulate thought about such an emulator and hopefully inspire
someone to produce a working Apple /// emulator.

The technical details behind the Apple /// computer, its operating system (SOS), and
/// programs (e.g. AppleWriter ///) are based on my extensive collection of /// :
technical manuals, specification sheets, and many /// technical articles (Dr. John
Jeppson's articles are very exhaustive and full of lots of neat /// techoid stuff).
I have around 15 Apple manuals, the majority of which were published by Apple, which
include user manuals and the technical programming manuals.

For those people seriously interested in implementing an Apple /// emulator program I
highly recommend that they have at least the Apple /// Service Reference Manual.

This manual, which is almost 500 pages long, is the definitive reference for how the
Apple /// computer works. Most of its contents describe theory of operation even
though its title suggests service-type information only. The important features of
this manual for a /// emulator writer are the /// memory map and the /// memory
mapped I/O locations.

I also own an Apple /// computer which still today works very well. I programmed the
/// many moons ago and have worked professionally as an Apple Macintosh computer
programmer since 1984.

Note: All comments are welcome. If you have anything to add or correct please let me
know and I will update the master copy of this document.

2.0 EMULATOR GOALS

The /// emulator should provide a complete emulation environment for the faithful
execution of Apple /// and /// Plus programs. As far as the emulator user is
concerned when they run the emulator program their computer should work just like an
Apple /// computer and all /// visual fidelity should be maintained. Emulation of
the Apple /// Plus computer may also be supported (this means the /// Plus’
interlaced screen). If the /// Plus is supported by the emulator you may want to let
the user specify if they want to run a /// or a /// Plus.

I think it would be beyond neat if the emulator could run Apple's running horses demo
and the other /// demos.

The /// emulator should support an Apple /// computer with at least 256K of memory
and four floppy 140K disks (.D1, .D2, .D3, .D4). Support for 512K of memory may also
exist since the ///'s operating system (SOS) supports up to 512K of memory. Memory
size, if variable, should always be a multiple of 32K. I believe the lowest memory
size supported by the /// (ROM?) is 96K. Support for a ProFile disk may also exist
(for this disk there would need to be a disk image with a size of 5M). The first
floppy disk (.D1l) would correspond to the floppy disk drive that is built into the
Apple ///. The other disks correspond to external disks and should exist as image
files with specific file names (e.g. "Apple 3 D1", "Apple 3 D2", etc). The ProFile
disk image file should also have a specific file name (e.g. "Apple 3 ProFile").

Image file names should have an extension (e.g. ".D3I") since this is needed by PCs.
3.0 EMULATOR USER INTERFACE

When the user runs the Apple /// emulator program the user should see on their
computer screen a screen (or a window representing the screen on GUI systems)

corresponding to the ///’'s screen which the user would see if they were in front of a
real Apple /// computer. All /// text and graphic modes should be supported by the

Some Ideas about an & Apple /// Computer Emulator - Version 4
David T Craig -- 12 Dec 1997 -- 2 /23

“ 115.PICT” 936 KB 2001-08-13 dpi: 600h x 600V pix: 4415h x 6083v

| Source: David T. Craig Page 0006 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

B [t

/// emulator (this includes the special modes supported by the /// Plus and its
interlaced screen architecture).

I recommend that the emulator also support a screen dump facility that writes the
current /// screen to either a text file (for text modes) or to a graphic file (for
graphic modes) or always just creates a graphic file. The screen dump graphic file
should be a standard graphic file for whatever target machine your support (e.g. on
the IBM PC running Windows produce .BMP files, on the Apple Macintosh produce PICT
files). Since the /// supports custom character sets dumping the screen to a PICT
file (or to the target computer's clipboard) may be the best solution.

The emulator screen if implemented in a GUI window may also display a status area at
the bottom of the window. This status area would display at least two lines of text
and would keep the user informed of what the emulator was doing internally.

4.0 DISK IMAGES

The /// emulator should read disk image files which correspond directly to real ///
140K disks. When the /// emulator starts it should look in its folder and if there
exists a /// disk image file the emulator should boot this image. If there are
multiple disk image files then the emulator may want to display a list of these
images and have the user select an image to boot.

The disk images should be exact copies of real /// disks. To make copies of these
disks there should exist an utility program that runs on the /// computer and which
outputs disk block data to the /// serial port (I plan to make this utility and call
it DTCDumpIt). This utility's output should be a hex/ascii dump that specifies block
numbers and has a checksum for each line of data. This utility should ask the user
if it should dump a file or a disk.

On the target machine there should exist a similar utility that inputs the disk block
data and creates a disk image file. I recommend that the transmitted disk block data
consist of a hex dump with block number and checksum information in a human readable
fashion. The receiving program (on the target computer) would read this human
readable information, verify that the data was sent correctly, and produce binary
disk image file images (I plan to create this utility for the Apple Macintosh and
call it DTCMake///DiskImage) .

There should also exist a disk image file for the ///'s Boot ROM (recommended file
name: "Apple 3 Boot ROM"). This image should contain the 4K ROM image. This ROM
should be the Revision 1 ROM (not Revision 0) since this was the last ROM produced
and SOS 1.3 (the last SOS) requires this ROM.

Users should also be able to format a disk image by specifying the disk drive device

name (e.g. .D2). Users should then be able to name the disk image so that they can
use it later. Users should be able to assign specific disk images to specific disk
drives.

I recommend that all disk image files have a very specific internal format. This
format should support the verification of disk image files so that if a disk image
file becomes corrupted in some fashion the /// emulator can detect this corruption,
not use the image, and alert the user.

Note: Support for existing Apple][disk image files may be feasible but I recommend
against this since the format of these images could change.

The proposed image format:

The disk image file contains two parts, a header part and a data part. The header
part appears first followed by the data part. The header part contains
identification and verification information. The data part contains the actual disk
blocks for the /// disk. This file contains only text, no binary data appears here
in any fashion. The only non-text information that can appear in these files is the
Carriage Return (CR) and the Line Feed (LF) characters. The emulator should ignore

Some Ideas about an & Apple /// Computer Emulator - Version 4
David T Craig - 12 Dec 1997 - 3 /23

“ 116.PICT” 952 KB 2001-08-13 dpi: 600h x 600V pix: 4390h x 6083v

| Source: David T. Craig Page 0007 of 0064 |

Apple Il Computer Information

Doc#191 + Apple lll Emulator Ideas

LFs if appropriate.

characters.

Character case is immaterial.

A

All information appears in lines with a maximum length of 255
Blank lines are ignored. The reason for

this format is so these image files can be transferred over the internet without the

need for any binary-to-text conversion.

Also, text-only files can easily be viewed

by people using a word processor.

The header part contains:

Signature
Version
Image Name

Creation Date
Created by Name
Comment

Data Size

Data Checksum
Reserved 1
Reserved 2
Reserved 3
Reserved 4

Tech Comment

Comments

"APPLE /// DISK IMAGE"

"VERSION" version number (e.g. "1")

"IMAGE NAME" name of image, anything the user wants,
most likely the name of the interpreter on the disk,
e.g. "Apple Writer ///"

"CREATED" date image file created, "YYYY-MM-DD"
"CREATED BY" name of person or company who created this image
"COMMENT" comment for anything user wants

"DATA SIZE" size of data part (decimal, e.g. "143360")
"DATA CHECKSUM" hexadecimal checksum (e.g. "FA7C3188")
"RESERVED"

"RESERVED"

"RESERVED"

"RESERVED"

"TECH COMMENT" name of program that this is for

Header Checksum "HEADER CHECKSUM" hexadecimal checksum (e.g. "B97C31D5")

Notes:

The checksum should be calculated as the exclusive-OR of each byte followed by a left
rotation of 1 bit. Checksum starts with zero. Checksums should always be 4 bytes in
size and be stored in the header as an 8 character string.

The Tech Comment's purpose is to allow people who obtain an image file to be able to
contact someone about the file's purpose.

The data part contains lines representing 16 bytes from the original disk. Each line
has a specific format which begins with the starting disk address for the line, 16
bytes, the ASCII equivalent of the 16 bytes, and a checksum for the bytes of the line
with the format:

[00000000] 0123 4567 89ab cdef 0123 4567 89ab cdef [1234567890123456] 12345678
The last line of the file must be the word "FINIS".
Sample disk image file:

APPLE /// DISK IMAGE
VERSION 1

IMAGE NAME Apple Writer ///
CREATED 1997-10-11

CREATED BY David T. Craig
COMMENT Thanks to Paul Lutus
DATA SIZE 16

DATA CHECKSUM FA7C3188
RESERVED

RESERVED

RESERVED

RESERVED

TECH COMMENT For David Craig's /// Emulator - 71533.606@compuserve.com
HEADER CHECKSUM B97C31D5

[00000000] 0123 4567 89ab cdef 0123 4567 89ab cdef [Apple.///.Emul..] FA7C3188

Some Ideas about an & Apple /// Computer Emulator -- Version 4
David T Craig - 12 Dec 1997 - 4 /23

“ 117.PICT” 638 KB 2001-08-13 dpi: 600h x 600V pix: 4426h x 6084v

| Source: David T. Craig Page 0008 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

Cg——

FINIS
5.0 6502 CPU EMULATION
The heart of the /// emulator should be the emulation of the 6502 CPU. The heart may
be referred to as the "6502 engine." The emulator should support all of the 6502
instructions, the 6502 registers, and the special Apple /// registers (e.g. the bank
switch register, the environment register, and the zero-page register). Special

register descriptions and usage can be found in the Apple /// SOS Reference Manual.

The 6502 engine must be smart about accessing memory and use the bank switch and
environment registers correctly.

If this level of the /// emulation is complete and robust the rest of the ///
emulator should work much more easily.

Support for special /// features may also exist at this level of the /// emulator.
For example, the /// emulator may not want to emulate all of the ///'s memory-mapped
I/0 features, but instead intercept access to special areas or routines and call the
target machine's operating system to handle these features. See sections ROM
EMULATION and MEMORY-MAPPED I/O EMULATION for more details.

6.0 ROM EMULATION

The /// emulator should also support as much as possible the ///'s Boot ROM. This
means the Boot ROM's routines should work for the most part as-is.

Note: I have a listing of the Boot ROM which could be useful for this emulation
discussion.

For the Boot ROM's floppy disk I/O support I recommend that all the gory details here
not be supported directly at the memory-mapped I/O level but instead the /// emulator
should emulate this I/O. Specifically, the /// emulator should intercept any access
to the Boot ROM routines which read or write disk blocks and use the appropriate
target machine operating system routines to accomplish this feature.

The /// emulator should also initialize the ROM's character set which the ROM
normally loads into a special RAM chip that is not accessible to the ///'s 6502
processor. See section MEMORY BANK SWITCHING EMULATION for more details.

7.0 MEMORY -MAPPED I /0 EMULATION

All memory-mapped I/O locations that in some way deal with the physical world need to
be handled by the /// emulator. These areas include such addresses as the speaker
addresses. The Apple /// Service Reference Manual provides detailed information
about these addresses.

All accesses to memory by the /// emulator must respect the bank switch and
environment register settings so that the emulator does not try to access a memory-
mapped address when that address is not mapped into the 6502 address space.

Programs which access low-level I/0O locations such as the disk I/O addresses should
not be supported. I assume most /// programs will access hardware components using
SOS or device drivers.

Note: Chris Smolinski says that emulating the low-level stuff on a Power PC-based
Macintosh is not very difficult and works rather fast (he's implemented in his SARA
emulator the ///'s floppy disk I/0).

8.0 MEMORY BANK SWITCHING EMULATION
The /// emulator must also fully support the ///'s bank switched and enhanced

indirect addressing memory architecture. Detailed descriptions and usage of ///
memory handling can be found in the Apple /// SOS Reference Manual.

Some Ideas about an & Apple /// Computer Emulator - Version 4
David T Craig -- 12 Dec 1997 -- 5 /23
“ 118.PICT” 819 KB 2001-08-13 dpi: 600h x 600V pix: 4391h x 6084v
| Source: David T. Craig Page 0009 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

B (o

The /// emulator should also support the ///'s character set RAM chip. This holds
the bitmap descriptions of each of the 128 characters in the /// character. This RAM
area, which is not accessible to the ///'s 6502 CPU, holds 1024 bytes. See the Apple
/// Standard Device Drivers Manual (Console Character Sets section) for more
information.

Note: I believe the storage of the Boot ROM character set is different than the
storage of the character set in the SOS.DRIVER file. I believe the ROM character set
has bits that are reversed compared to the SOS.DRIVER character set.

The storage of text and graphics in memory should be supported also. This should
happen automatically when a /// program writes to the text/graphic memory buffers.
The emulator needs to detect such writes and update its screen as appropriate.

9.0 SOS SYSTEM CALL EMULATION

The majority of system calls to SOS and its drivers should most likely not be
intercepted by the /// emulator. But certain calls may need to be intercepted unless
a lower level of the /// emulator intercepts these feature already. System calls to
SOS or drivers that may need intercepting by the /// emulator could be:

Disk I/O (.D[1-4] and .PROFILE drivers)

Keyboard I/O (.CONSOLE driver) '

Screen I/0 (.CONSOLE and .GRAPHIC drivers)

Sound generation (.AUDIO driver)

Serial port I/O (.RS232 driver)

Silentype Printer (.SILENTYPE) [I'm not sure about support for this]
Clock I/O (Y2K dates may be a problem)

O0OO0OO0OO0OOO

I recommend that the /// emulator intercept all activity dealing with the above and
have the target machine perform the equivalent features. For example, to read or
write a disk block the /// emulator should have a routine that accesses the
appropriate location in the disk image file.

The /// emulator may also provide the user with some type of setup options so that
the user can specify specific properties of some of the above drivers. For example,
if the target machine supports several output ports the emulator may let the user
specify which port to use (e.g. for the .PRINTER driver the user could assign it to a
specific serial or parallel port on the target machine).

Note: The ///'s clock does not support the year 2000 or greater. I think the
emulator should support Y2K dates but I'm not sure if SOS's file system date stamps
will support this easily.

10.0 DEVICE DRIVER EMULATION

This section is for the most part handled by my comments in section SOS SYSTEM CALL
EMULATION. I suspect the programming within the /// emulator for this area could be
the most work since there are lots of device drivers that make up a simple Apple ///
configuration.

One area of device drivers that the /// emulator may not want to emulate is interrupt
handling. Since the emulator does not have physical devices connected to it in any
direct fashion I don't think interrupts exist as far as the emulator is concerned.
Interrupts dealing with disks or the keyboard can be handled at a lower level by
having the /// emulator call the appropriate system call in the target machine.

These low-level I/O handlers should set up the appropriate driver data areas so that
the rest of the ///'s software (SOS and the interpreter) will work correctly. For
example, keyboard I/O should be setup in the /// emulator so that when the keyboard
input memory-mapped I/O location is accessed the target machine OS really reads the
keyboard and sets up the memory-mapped location as appropriate.

11.0 KEYBOARD SUPPORT

Some Ideas about an & Apple /// Computer Emulator -- Version 4
David T Craig - 12 Dec 1997 -- 6 /23

“ 119.PICT” 880 KB 2001-08-13 dpi: 600h x 600v pix: 4391h x 6072v

| Source: David T. Craig Page 0010 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

@ [oe

11.1 User interface support

The /// computer's keyboard layout is basically compatible with modern keyboards.

The /// keyboard does have two extra keys, Open Apple and Closed Apple which are
positioned to the left of the Apple /// keyboard. Also present on the keyboard are
four arrow keys. The emulator should support these keys either directly (i.e., the
target machine has similar keys) or associate other keys with the ///'s special keys
(e.g., the Macintosh computer's two Option keys could be used to simulate the special
Open and Closed Apple keys). The emulator's associated keys need not physically be
in the same location as the ///'s special keys but having them in the general area
will be beneficial.

Note: The /// Plus keyboard contains an extra key, Delete, compared to the ///
keyboard.

11.2 Low-level access

The /// emulator should handle low-level access to the keyboard memory-mapped I/O
locations as detailed in section DEVICE DRIVER EMULATION.

12.0 MONITOR SUPPORT

The emulator should support the Apple's built-in ROM Monitor. Entry to the Monitor
should be similar to how this is done on a real /// (at startup if Open Apple and

Control keys are pressed). The code in the ROM which tests for Monitor entry should
work.
13.0 APPLE] [EMULATION DISK SUPPORT

It would be nice if the /// emulator supported the Apple][Emulation Disk. I'm not
sure of what would be involved here but suspect that if the ///'s 6502 CPU and the
memory-mapped I/0O locations are robustly supported that the][emulation should work
also without any special additional /// emulation features.

Special consideration may need to be given to Apple /// keyboard keys which do not
exist in the Apple][world.][emulation details can be found in the Apple ///
Owner's Guide and the Apple /// Service Reference Manual.

Note: I have a disassembled listing of the Apple][Emulation Disk ROM source listing
which could prove useful in this area.

Further analysis of the][emulation disk's boot sequence needs to be done since I'm
unknowledgable about this area. Also, I've heard that the][emulation accesses an
I/0 location which disables some /// features.

14.0 WHAT LANGUAGE SHOULD THE /// EMULATOR BE WRITTEN IN?

I highly recommend that the /// emulator be written in a high level language such as
Pascal or C. This should make the emulator more compatible with different target
computers and make development and maintenance of the emulator much easier. I
recommend avoiding low-level languages such as assembly.

15.0 WHAT TARGET MACHINES SHOULD BE SUPPORTED?

I recommend that the target machine (or machines) for the emulator be machines that
are commonly used today by most computer users. This means either the IBM PC or the
Apple Macintosh machine family. For the PC world I recommend the /// emulator run
under Windows 95 and Windows NT. For the Macintosh world I recommend the emulator
run on most Macintosh models which means support the Macintosh 512 and above. Color
display should also be supported by the /// emulator (for the Macintosh this means
use Color QuickDraw if the machine supports CQD and if CQD is not supported by a
Macintosh model use the Classic B/W QD and maybe use patterns as "colors").

Some Ideas about an & Apple /// Computer Emulator -- Version 4
David T Craig -- 12 Dec 1997 - 7 /23

“ 120.PICT” 834 KB 2001-08-13 dpi: 600h x 600v pix: 4391h x 6072v
| Source: David T. Craig Page 0011 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

g

Any of these machines should be fast enough to emulate the /// and most likely will
be too fast in many areas. I recommend some type of speed control be built into the
emulator so that users can control how fast the emulator works. For many ///
programs (e.g. AppleWriter /// and VisiCalc ///) emulation speed will be immaterial
since these programs typically wait for the user to enter data and then do their
thing. But for programs such as games the user will want to control the emulator
speed otherwise the game's actions will be super fast and unplayable.

Some people say that the older machines such as pre-68040 Macintoshs will be too slow
for a reasonable /// emulator. I would like to see this /// emulator run on a Mac
512 machine an onwards. Running on a Mac 128 machine seems a problem due to this
machine's small memory size and should not be supported (if a virtual memory scheme
was used by the emulator the Mac 128 could be supported but I think having this extra
level of support in the emulator would not be worth it). I disagree and am willing
to wager a small sum that I'm right.

16.0 EMULATOR DEBUGGING FACILITIES

The emulator should support a comprehensive built-in debugger. This debugger's
purpose should be to let the sophisticated emulator user access any part of the
emulator's /// address space. This should include all of the memory that is
allocated to the /// as its memory. This memory would encompass the 256K (or 512K)
of /// RAM, the /// ROM (4K), the character set RAM (1K), the 6502 registers, and the
special /// registers (e.g. bank register).

This debugger will prove invaluable in diagnosing emulator bugs. Not only will the
user be able to type commands for the debugger but the emulator will be able to send
messages to the debugger.

Logging of all debugger sessions should be stored to a text file for possible
analysis. This text file would be created when the emulator starts. The log file
should be appended to by the emulator. Only the user can delete the file.

The debugger should exist as a separate window that does not in any way affect the
emulator's main window. This window should display only commands that the user
enters or replies returned by the debugger. There should not exist a separate window
area showing things such as the 6502 registers since all such information should
appear in the debugger log file. The window should support at least 80 columns of
text and 24 rows.

The emulator user interface should be based on a simple command line control scheme.
All commands and command outputs should be text-based. This scheme could be based on
the ///'s Monitor's commands or on a little more readable command scheme such as in
Apple's MacsBug debugger. There should be full on-line help that discusses the
debugger commands in general and each command should also have on-line help
available. The debugger should show at the beginning of each line a prompt character
to indicate when it is waiting for a command. I recommend the prompt be the ">"
character. The debugger should also show a cursor which I recommend to be a black
square.

The debugger should support the standard debugging commands such as
displaying/setting memory, displaying/setting registers, and disassembling 6502
instructions. This disassembly should support the special SOS BRK call by listing
the word "BRK/SOS" instead of just "BRK" and following this with the SOS command
number /name and the parameter list address:

SOS CO/CREATE 345A
The user should be able to enable or disable this feature.

Note: It may be good to also support the Apple][ProDOS command calling scheme in
case this emulator ever becomes an Apple][emulator.

The debugger should support break points, single stepping, and timing buckets. The

Some Ideas about an & Apple /// Computer Emulator -- Version 4
David T Craig -- 12 Dec 1997 -- 8 /23

“ 121.PICT” 947 KB 2001-08-13 dpi: 600h x 600V pix: 4403h x 6107v

| Source: David T. Craig Page 0012 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

B oot

timing buckets would be used in conjunction with break points to record how long a
sequence of 6502 instructions took to execute. This can be very useful in locating
emulator bottlenecks. The debugger supports many break point commands since I have a
feeling that this facility will be very powerful and useful during the emulator's
development.

The debugger should support the collection of statistics about the emulator. I
recommend tracking how many times specific 6502 opcodes are executed (obviously, the
debugger would need commands to display and clear this information). I would also
track memory accesses on at least a page (256 bytes) basis.

The debugger should be accessible at any time that the emulator is running. I
recommend some type of key press combination that the emulator would detect and
display the debugger window. Once the debugger window is active it should remain on
the screen until the user closes the window.

The emulator should also support a special key press combination at emulator startup
time that activates the debugger just before the /// ROM is run. This can give the
emulator developer a good way of tracing ROM execution.

The emulator should activate the debugger if any fatal emulation errors are detected
and the debugger should show a message detailing the reason for the activation. All
of these errors display a dump of the 6502 and SOS control registers. Reasons for
debugger activation from the emulator are:

l. A program writes to write-protected memory (e.g. SOS's address space). The
displayed message is "EMULATOR EXCEPTION: WRITING TO WRITE-PROTECTED MEMORY".

2. A program executes an undefined 6502 instruction (e.g. 6502 opcode $02). The
displayed message is "EMULATOR EXCEPTION: UNDEFINED 6502 OPCODE".

When the debugger is initialized (which should be when the emulator starts) the
debugger should check if a text file named "DDT.TXT" exists. If so, the debugger
should read each line from this file and execute it. Obviously, this file should
contain debugger instructions. This can be very useful for setting up commonly used
break points which if you use many would be tedious to type everytime you wanted to
use the emulator.

A memory snapshot facility should also exist. When activated by a debugger command
this facility would write to the host computer's disk a binary file containing a copy
of all the /// memory areas. This snapshot should also be readable by the debugger
so that the user could restart a specific emulation session from the snapshot.

I recommend the following emulator debugger commands which are based on the ///
Monitor commands so that these debugger commands will be familiar to Monitor users.
These commands for the most part have the general syntax of address-command. See my
document "Inside the Apple /// Computer ROM" for a list of the /// Monitor commands.

For information about the Apple][Monitor commands, which the /// Monitor commands
are based upon, see "Apple][Reference Manual" (Chapter 3: The System Monitor, dated
1981) .

Addresses appearing in debugger commands may be prefaced by "N/" where N is a bank
number. For example, to reference address 2000 of bank 4 use 4/2000. If no bank
number precedes an address the current bank is used. To reference a ROM address use a
bank "number" of "R", for example "R/F000". To reference a character set address use
a bank "number" of "C", for example "C/0000". To reference the SOS system bank use
"S", e.g. "S/1400". \K)/C

Commands should be case-insensitive (none of the UNIX case-sensitivity gobbly-gook).

Commands that display more than a screen full of information should either
automatically pause when the screen is full, or the user can use the SPACE key.

Note: Commands using ":" may also use ";" which is easier to type since this

Some Ideas about an & Apple /// Computer Emulator - Version 4
David T Craig - 12 Dec 1997 - 9 /23

“* 122.PICT” 950 KB 2001-08-13 dpi: 600h x 600V pix: 4391h x 6095v

| Source: David T. Craig Page 0013 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas
6 fomste

character does not need the user of the shift key. Same for "<" and "/".

Most debugger command numeric arguments must be specified in hexadecimal. The
exception is the X command which supports hexadecimal, decimal, and binary.

The debugger command parser should be very liberal. This means that users should be
able to include extra spaces (or no spaces) and the command should be parsable. For
example, if a command needs a list of bytes the user should be able to enter any of
the following: "AABBCC", "AA BB CC", " A ABBC C " and the debugger will see these
as "AABBCC".

The debugger should also support a command macro facility. This facility allows you
to define a macro consisting of other debugger commands. Typing the name of the
macro will then type the commands as if you entered them manually.

HELP (or ?) ' twd W wce—

L2 spe
Display debugger on-line help for all commands. Help info should be stored in an
external text file for easier modification. I recommend that this section of this

document be the help file. sl = (4T peat o
Example: HELP w— S howy an L\e(40 G (o all cvedl M}‘""‘
Note, L olio sope WAl == shou gl creds St N4

BYE Neif 4 Shou-t SO cme(

Return to the emulator.

Example: BYE

CARRIAGE RETURN keypress
25?9-"’
Repeat last command.

Example: If the last command was HELP and you press the CARRIAGE RETURN key then HELP
will be displayed and executed again.

SPACE keypress
“Z5ps)
Pause current command's Output . Press again to continue.

Example: If a command is executing and you press the SPACE key the comand's output
will be paused, pressing SPACE again resumes the command's output. Pausing/Resuming
are done on an output line basis only.

DELETE keypress
L LISP

Stop current command's output.

Example: If a command is executing and you press this key then the command will stop
executing and you will be returned to the debugger's prompt.

g0 :$L\0LI le)(L ewl"‘;"“\z
b iy P oaud €
Display 6502 registers and /// system control registers. iy N hgﬁe‘hbo
E le: RD . . . low
xampie bit hames bA hass 5 ﬁ;::k CMmand
A=04 X=01 Y=D8 P=30,/00000011 S=F8 PC=034A : E=77,/01110111 2Z=1A B=03 12 - l
D V=&

STYRNS RR
1 N e 00l e

Some Ideas about an & Apple /// Computer Emulator -- Version 4

T ‘\\.—term‘rf— d;&ﬁ‘) e

h . T Qo
d Ol #Ae David T Craig - 12 Dec 1997 - 10 /23 C catvy

S .5
- Py - R-“t 4
L %lbipszgo %’1MN{%ﬁ3¢P %;— é::

C=Doen (lRe 5 - sty fiy e

“ 123.PICT” 665 KB 2001-08-13 dpi: 600h x 600v pix: 4848h x 6333v
| Source: David T. Craig Page 0014 of 0064 |

Apple Il Computer Information Doc#191 « Apple lll Emul

ator Ideas

byte:SA

Set 6502 A register to byte.
Example: 45:SA -~
byte:sX

Set 6502 X register to byte.
Example: 7B:SX -
byte:SsY

Set 6502 Y register to byte.
Example: FF:SY

byte:SP

Set 6502 P register to byte.
Example: 56:SP “
byte:Ss

Set 6502 S register to byte.

Example: AA:SS -

word:SPC
Set 6502 PC register to word.

2000:SPC —_

Example:

byte:SE
Set /// E system control register to byte.

—

Example: 34:SE

byte:SZ
Set /// Z system control register to byte.
Example: 19:SZ

byte:SB
Set /// B system control register to byte.

Example: 06:SB

/

Some Ideas about an & Apple /// Computer Emulator -- Version
David T Craig - 12 Dec 1997 - 11 /23

“ 124.PICT” 246 KB 2001-08-13 d

4

pi: 600h x 600V pix: 4403h x 6036V

| Source: David T. Craig

Page 0015 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

addrl.addr2

the right of the screen.

|
4/0300- B9OO 080A OAOA 9900 08C8 DOF4 A62B A909 [F..d.uy%"&90@..G]

Dump the contents of the current interpreter's Zero Page (256 bytes).
are commands for the Stack Page and the Extend Page:

SPAGE - stack page
EPAGE - extend page

To dump the pages for SOS (and drivers) use the following commands:

SZPAGE - zero page
SSPAGE - stack page
SEPAGE - extend page

Example: ZPAGE

Zero Page (interpreter)
6D ' 2% 4§ L}

addr:bytes
Store starting at the address the bytes.

Example: 2000:AA BB CC DD EE FF -
2000 : AABBCCDDEEFF e~

addr: 'text'
Store text starting at address (high bit clear).
Example: 2000:'Hello World' -

2000:'David''s Dog' éﬁEE~SE;EEE>DaVld'S Dog

addr:"text"

Store text starting at address (high bit set). /)z///

Example: 2000:"Hello Wbrld" - /*—TD
2000:"David's Do ht/l{»wJ Vaviel's)
2000 "L %/;L”“U ot T e Ml 74

addr3<addrl.addr2M
Move data in address range to address 3.

Example: 2000<3000.3100M —_—- o~

Some Ideas about an % Apple /// Computer Emulator -- Version
David T Craig - 12 Dec 1997 -- 12 /23

“ 125.PICT” 447 KB 2001-08-13 d

4

Dump memory data to screen from address 1 to address 2 and display ASCII character at

Example (é;—u;;s current bw 4): 300.30F > T (ﬁuv:/\/-., 4«;1 4.

Lav-et)

Also supported

1400- 0123456789ABCDEF 0123456789ABCDEF 0123456789ABCDEF 01234567 89ABCDEF
1420- 0123456789ABCDEF 0123456789ABCDEF 0123456789ABCDEF 01234567 89ABCDEF

14E0- 0123456789ABCDEF 0123456789ABCDEF 01234567 89ABCDEF 01234567 89ABCDEF

4

pi: 600h x 600V pix: 4414h x 6048v

| Source: David T. Craig

Page 0016 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

4

addr3<addrl.addr2v

Verify data in address range equals data starting at address 3.

Example: 2000<3000.3100V M e

Displays either "OK" if the verification suceeds, or "MISMATCH" if the verification
fails.

bytes<addrl.addr2S

Search memory in address range for the bytes.

Example: AA<3000.3100S -- searches for byte AA
AABBCC<3000.3100s -- searches for bytes AA BB CC

If a search finds a match then the starting address of the match is displayed,
otherwise "PATTERN NOT FOUND" is displayed. < s)
YATicku Fousd AT G ddr

'text'<addrl.addr2s
Search memory in address range for text (high bit clear).

Example: 'D'<3000.3100S -~ -
'David'<3000.31008 -

"text"<addrl.addr2s
Search memory in address range for text (high bit set).

Example: "D"<3000.3100S -
"David"<3000.3100S ~

disk.block<addrl.addr2w

Write address range to disk # disk starting at disk block. If disk # is not present
then uses disk .D1. Disk should equal 1, 2, 3, or 4. The address range always ends
on a block boundary no matter what you type.

Example: 1.117<2000.21FFW -- write 512 bytes to disk 1 block $117

Note: Disk /// disks contain 280 blocks ($118) sot he block range is 0-117
(hexadecimal) .

disk.block<addrl.addr2R

Read from disk # disk starting at block to the address range. If disk # is not
present then uses disk .Dl1. See the W command for more info.

Example: 1.117<2000.21FFR C{L/read 512 bytes from disk 1 block $117

disk.block-block:DISK

Read block range from disk # disk to a special debugger 4K buffer which is not used
by the emulator. If the typed block range is greater than 4K then only the first 4K
will be read. You can then examine this buffer's contents either with a hex/ascii

Some Ideas about an & Apple /// Computer Emulator -- Version 4
David T Craig -- 12 Dec 1997 -- 13 /23

“ 126.PICT” 502 KB 2001-08-13 dpi: 600h x 600V pix: 4486h x 6095v

| Source: David T. Craig Page 0017 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

& (o

dump or with a disassembly (command L). This command is useful when you want to
examine a disk's contents. For disassembly purposes, you can specify the logical
starting address for the buffer. See the DISKBUFFER command.

To disassemble the special disk buffer (see the L command) use bank X (stands for
"extra") as part of the disassembly address parameter (e.g. "X/100"). Same for
dumping memory or whatever commands you want to use with this special buffer.

Example: 1.0-7:DISK -- read 8 blocks (0 to 7) from disk 1
addr :DISKBUFFER
Set disk buffer starting logical address. Default address is 2000. See the DISK
command . ;?
‘ qu91 (s

Example: A000:DISKBUFFER - - " s

o000 —FFFF
addrl.addr2L

Disassemble instructions in address range. If only addrl appears then disassemble 20
instructions. Disassembly includes the opcode cycle count.

Example: 300L -- assumes bank 4 is current
4/0300- A9 C1 'X.! (2) LDA #s$C1 ;
4/0302- 20 ED FD et (5) JSR S$FDED ;
4/0305- 18 ! (2) CLC ;
4/0306- 69 0A ‘T, (4) ADC #$01 ;
4/0308- C9 DB L (3) CMP #$DB ;
4/030A- DO F6 ! (3) BNE $0302 ;
4/030C- 60 U (4) RTS :
1 2 3 4 5 6 (see Note)
Note: Column 1 = bank register/address
Column 2 = memory bytes
Column 3 = ASCII for the memory bytes
Column 4 = opcode cycle count
Column 5 = disassembled instructions
Column 6 = remark character ";" (optional, see DISASMREM)

L by itself disassembles the next 20 instructions.

DISASMREM

Display ";" after each disassembly line that is produced by the L command. Default
is to not display the remark. Useful if you plan to add comments to a disassembly.
See also DISASMREMOFF.

Example: DISASMREM

DISASMREMOFF
Turn off DISASMREM. See also DISASMREM.

Example: DISASMREMOFF

Some Ideas about an & Apple /// Computer Emulator - Version 4
David T Craig - 12 Dec 1997 -- 14 /23

“ 127.PICT” 496 KB 2001-08-13 dpi: 600h x 600v pix: 4379h x 6095v

| Source: David T. Craig Page 0018 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

i

Call subroutine at the address.

Example: A000G

Jump to the address.

Example: A000J - —

Convert word (or up to 4 hex digits) to hexadecimal, decimal, and binary (X stands

for "translate"). Prefix character for byte determines its base: ,no prefix = hex,
= dec, t = binary. -
Y Yot 1%, 41"44‘6‘(%
Example: AX -> A(16) 10(10) 0000 0000 0000 1010(2) Casiey View
.10X -> A(l6) 10(10) 0000 0000 0000 1010(2) 7
tl1010 -> A(16) 10(10) 0000 0000 0000 1010(2)

FFFFX -> FFFF(16) 65535(10) 1111 1111 1111 1111(2)

addrl.addr2:CS

Calculate and display a checksum for address range. Checksum is a 4 byte quantity
which is calculated the same as the disk image file checksums.

Example: 300.500:CS T T~
CHECKSUM=AF897CEE

Trace instructions starting at the address. Each traced instruction displays
register contents. Press the SPACE to pause the trace, press DELETE to stop the
trace. The displayed registers contain values _after_ the previously listed command

executes.

Example: AQ000T -- assuming bank 4 is current

4/A000- A9 C1 'X.! (2) LDA #$C1

A=Cl X=01 Y=D8 P=30/00000011 S=F8 PC=A002 : E=77,/01110111 Z=1A B=04

4 /A002- 20 ED FD '...' (5) JSR S$FDED

A=Cl X=01 Y=D8 P=30/00000011 sS=F6 PC=FDED : E=77,/01110111 2z=1A B=04
Llsﬂ bt hemes bt hamens

Note: Press the DELETE key to stop the trace, SPACE to pause/resume.

addrss

Single step trace starting at the address. After each step pause and wait for user
to press SPACE to continue or DELETE to stop the single step.

Example: AOOOéj)gé- assuming bank 4 is current

4/A000- A9 C1 'X.! (2) LDA #s$C1
A=Cl X=01 Y=D8 P=30/00000011 S=F8 PC=A002 : E=77,/01110111 Z=1A B=04
L Namyg Mte s
Note: Press SS by itself to single step the next instruction, or press CARRIAGE
RETURN to repeat the SS.

Some Ideas about an & Apple /// Computer Emulator -- Version 4
David T Craig - 12 Dec 1997 - 15 /23

“ 128.PICT” 513 KB 2001-08-13 dpi: 600h x 600v pix: 4391h x 6118v

| Source: David T. Craig Page 0019 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

addr:BP

Set a break point at address. When address is accessed the debugger is entered and
displays the registers. Up to 100 break points should be supported.

Example: A000:BP

addr:BPC
Clear break point at address.

Example: A000:BPC

SOS:BP

Set a break point when a SOS call is made. This means when the BRK opcode is
executed. Same as MO0O0:BP.

Example: SOS:BP

Mopcode:BP
Set a break point when opcode is executed.

Example: M60:BP -- set break point when the RTS instruction (60) is executed.

ROM:BP
Set a break point when a call is made to the ROM.

Example: ROM:BP

addrl.addr2:BPW

Set a break point when any address within address range is written to. BPW = Break
Point Write.

Example: 300.123AR:BPW

addrl.addr2:BPR

Set a break point when any address within address range is read from. BPR = Break
Point Read.

- e
. ViaY oY ted
Example: 300.123A:BPR szq/)ur(1 e &

addr.byte:BPE @/ML'M'L{W 2. \,T{(L L,)»(‘Z o ppPE (G/Z o/‘)‘/o\u ()

Set a break point when the address contents equal the byte value. BPE = Break Point

Equals. er‘ ﬂd[é’l . 11'7{(["[[/7{(/Z © ﬂ,?(:’ (01,2 ﬂf—t/h"{)

Example: 300.AA:BPE

addr.bytel-byte2:BPE

Set a break point when the address contents equal a byte value in the byte range. BPE

Some Ideas about an & Apple /// Computer Emulator - Version 4
David T Craig -- 12 Dec 1997 - 16 /23

* 129.PICT” 405 KB 2001-08-13 dpi: 600h x 600v pix: 4379h x 6107v

| Source: David T. Craig

Page 0020 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

g
b?N(/: /5/0:04 eél«f{/f
Same ryitsy 4 e

= Break Point Equals.

Example: 300.AA-BB:BPE

addr.bytel byte2 ... :BPEA £ —

Set a break point when the address contents equal byte 1 value, or equals byte 2
value, etc. Supports up to 16 byte values. BPEA = Break Point Equals Any.

Example: 300.AABBCCDD:BPEA
300.AA BB CC DD:BPEA

addrl.addr2.bytel byte2 ... :BPEA ~K —

Set a break point when the address range contains any bytes equalling the byte
values. BPEA = Break Point Equals Any.

Example: 300.400.AABBCCDD:BPEA

addrl.addr2.bytel-byte2:BPEA ~& —

Set a break point when the address range contents equal the byte range. BPEA = Break
Point Equals Any.

Example: 300.400.AA-BB:BPEA

Display break point table.
Example: BPD
Address Range BP Setting

1 4/2000-4/21FF BPEA AA-BB

Clear break point table.

Example: BPC

addrl.addr2:TB

Set timing bucket for address range. When address 1 is accessed timing starts. When
address 2 is accessed timing stops. Up to 100 timing buckets should be supported.

Example: AOOO.AlFF:TB

Display timing bucket table. Shows all set timing buckets and the time in 1/60th of
a second and in seconds spent in each bucket.
Example: TBD

Address Range Time (1/60s) Time (secs)

Some Ideas about an & Apple /// Computer Emulator - Version 4
David T Craig -- 12 Dec 1997 -- 17 /23

“ 130.PICT” 404 KB 2001-08-13 dpi: 600h x 600v pix: 4426h x 6130v
| Source: David T. Craig Page 0021 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

1 4/A000-4/A1FF 34 0.567
2 4/A300-4/A310 5 0.083
39 0.650

addr:TBC

Clear timing bucket starting at address.

Example: A000:TBC

Clear timing bucket table.

Example: TBC

error:SOSE

List SOS general error message for the error number. If no error number is present
then list all general errors. Error info should be stored in an external text file
for easier modification. See the SOS Reference Manual for a list of these errors.
Example: 01:SOSE

BADSCNUM - Invalid SOS call number

error:SOSFE

Display SOS fatal error message for the error number. If no error number is present
then list all fatal errors. See the SOS Reference Manual for a list of these errors.

Example: 01:SOSFE

BADBRK - Invalid BRK

command : SOS
Display SOS command name and SOS command area (e.g. file system) for the command
number. If no command number present then list all SOS command numbers and their

names. Command info should be stored in an external text file for easier
modification. See the SOS Reference Manual for a list of these commands.

Example: C0:S0S

CREATE (File System)

Turn on disassembly of SOS calls which displays SOS followed by the command number
and parameter address. The emulator defaults to this.

Example: SOSON

SOSOFF

Some Ideas about an & Apple /// Computer Emulator -- Version 4
David T Craig - 12 Dec 1997 - 18 /23

“ 131.PICT” 398 KB 2001-08-13 dpi: 600h x 600v pix: 4367h x 6048v
| Source: David T. Craig Page 0022 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

g

Turns off SOSON.

Example: SOSOFF

disk:CAT

Display catalog of SOS disk stored in disk # disk. 1Includes recursive list of all
subdirectories. Should show same file info as Apple's System Utilities program.

Note: Other commands that may be supported include CATPASCAL for Apple][Pascal
disks and CATDOS for Apple][DOS disks. This may come in handy if you want to see
what these disks contain if you have them as disk image files.

Example: 1:CAT

disk.file_name:INFO

Displays information about the specified file in the disk. Information includes
standard SOS file information but also block list of all index blocks (if any)
associated with the file and block list of all data blocks for the file.

Example: 1.APPLE3.TEXT:INFO

disk.block:DUMP
Display contents of specified disk block in the standard hex/ascii dump format.

Example: 1.0:DUMP

disk :DRIVERS

Display list of contents of the SOS.DRIVER file stored on the disk. List includes
driver names, driver information, and other items that are in the driver file (e.g.
character sets).

Example: 1:DRIVERS

disk:CHECKIMAGE

Check validity of disk image in disk # disk. Computes header and data part checksums
and compares against the image file's listed checksums.

Example: 1:CHECKIMAGE

Display Driver Information Table (DIT), a data structure maintained by this debugger.
Contains list of all loaded drivers, their names, sizes, and entry point addresses.

Example: DIT

Display Memory Information Table (MIT), a data structure maintained by this debugger.
See section EMULATOR MEMORY STRUCTURE for what this structure contains.

Example: MIT

Some Ideas about an & Apple /// Computer Emulator - Version 4
David T Craig - 12 Dec 1997 -- 19 /23

“ 132.PICT” 488 KB 2001-08-13 dpi: 600h x 600v pix: 4414h x 6084v
| Source: David T. Craig Page 0023 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

4

OPCODES

Display a histogram of opcode execution counts. Includes the actual number of the
counts. Sorted by frequency. Opcodes not executed are listed below the histogram.

Example: OPCODES

LDA 2,188,973 kkkkkhkkhkkhkkhkkhkhhkhhkhhkhhkdhdhhkhhkhhkhhhhkhhkhhhhhkhhkhhkk
STA 12,123 kkkkkkkhkkhkhhkhhkhhohhdokhdhhn
CMP 467 hhkdkhkhkhkhdhkhkkkkk

2,201,563

Unexecuted opcodes: TXS NOP

OPCODESCLR
Reset opcode histogram table.

Example: OPCODESCLR

pagel.page2 :MEMORYR

Display memory write access table. This table lists on a 256 byte page basis counts
for each time the page was read. If pagel.page2 specified then lists only those
pages. If a single page is specified then display only that page's access count.

Example: 0.5:MEMORYR

pagel.page2 :MEMORYW

Display memory read access table. This table lists on a 256 byte page basis counts
for each time the page was written. See MEMORYW for page options.

Example: 0.5:MEMORYW

MEMORYCLR
Reset both memory access tables.

Example: MEMORYCLR

value:SCROLL) SULL N O ~H,%. Cindg 5[_‘4(/[\ nere {L green fﬁ(
P4 de »2—1" P ise mw\r UL"P[L&W\
Set debugger display scrolling rate interline delay. Value is in 1/10th of a second. u

Default is no delay (value = 0). Useful if you want to for example dump lots of
memory and don't want to mess with the SPACE key to read what is displayed. Set the
scrolling delay to a comfortable value, sit back, and enjoy the show.

Example: 10:SCROLL -- sets scrolling delay to 1 second

filename:LOG

Close log file, create a new one with filename, and output all debugger displays to
this new file. Useful if you're running the emulator from a write-protected disk and
you want to re-direct the output to a writable disk file.

Some Ideas about an & Apple /// Computer Emulator - Version 4
David T Craig -- 12 Dec 1997 -- 20 /23

“ 133.PICT” 501 KB 2001-08-13 dpi: 600h x 600V pix: 4659h x 6060v

| Source: David T. Craig Page 0024 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

r

Example: MyDiary:LOG

SNAPSHOTW

Write the contents of all of the emulator's memory to binary file on the host
computer's hard disk. This snapshot could prove useful in diagnosing an emulator
problem. The binary file should be named "Snapshot_YYYYMMDD_HHMMSS.BIN".

Example: SNAPSHOTW

SNAPSHOTRfile-name
Read a snapshot file into the emulator's memory.

Example: SNAPSHOTR Snapshot_19971225_123456.BIN

MACRO name commands

Define a macro name and commands for this macro. You can use any name containing
alphnumeric characters or periods with a maximum length of 31 characters. Up to 25
macros may be defined. All commands are verified and if any syntax errors occur you
will be told and the macro will not be defined. Macro commands cannot include other
macro commands.

Example: MACRO my.dump 300.400 AQ00.A1FF AOOOL

List all defined macros.
Example: MACROL

Name / Contents

Imacro-name

Execute a macro with the name "macro-name". Each command within the macro is
displayed followed by the commands' display.

Example: !my.dump

300.400

A000.ALFF

A00OL cher , ,
FroT doplq cumet Lok Ldmap FovRIA KOS Lo bdney

vERSION

Display debugger version information. Includes version number and creation
date/time.

Some Ideas about an & Apple /// Computer Emulator - Version 4
David T Craig -- 12 Dec 1997 - 21 /23

“ 134.PICT” 425 KB 2001-08-13 dpi: 600h x 600V pix: 4545h x 6095v

| Source: David T. Craig Page 0025 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

[

17.0 EMULATOR MEMORY STRUCTURE

I recommend that the emulator's internal memory structure for the Apple /// memory
resources be structured as follows:

o Memory block containing the size of memory and references to each /// memory bank
(the references can be whatever is appropriate -- on the Mac these could be Mac
memory pointers or handles):)

- number of switchable banks (1..15)

- reference to bank S (32K: 0000-1FFF, AOOO-FFFF) *
- reference to bank 0/$0 - switchable (32k: 2000-9FFF)
- reference to bank 1/$1 - switchable (32k: 2000-9FFF)
- reference to bank 14/$E - switchable (32k: 2000-9FFF)

- reference to Boot ROM ROM address space (4k: FO00O-FFFF)
- reference to Boot ROM RAM address space (4k: FO00O0-FFFF)

- reference to I/O RAM address space (4k: C000-CFFF)

* The system (S) bank is always on-line and is never bank switched. SO0S and part of
the interpreter reside here.

o Memory block containing the 6502 registers:

- Accumulator (A) 8 bits
- X index (X) 8 bits
- Y index (Y) 8 bits
- Status Register (P) 8 bits
- Stack Pointer (S) 8 bits
- Program Counter (PC) 16 bits

o0 Memory block containing the special /// System Control Registers:

- E: Environment Register (FFDF) 8 bits

- Z: Zero Page Register (FFDO) 8 bits

- B: Bank Register (FFEF) 8 bits
18.0 WHAT'S NEXT?

Persons seriously interested in creating an Apple /// emulator program should try to
obtain as much /// technical information as possible. The author has lots of info

which he can copy at minimal charge (10 cents per page plus postage). These persons
should also have access to a working Apple /// computer with a fair number of ///
programs.

Other areas of compatibility should also be investigated that this document does not
address. This includes support for other input devices such as the mouse which does
have a 3rd party driver available.

19.0 REFERENCES

Apple /// Owner's Guide, Apple Computer, 1981

Apple /// Plus Owner's Guide, Apple Computer, 1982

Apple /// System Data Sheet, Apple Computer, July 1983

Apple /// Plus System Data Sheet, Apple Computer, October 1983

Apple /// Standard Device Drivers Manual, Apple Computer, 1981

Some Ideas about an & Apple /// Computer Emulator - Version 4
David T Craig -- 12 Dec 1997 - 22 /23

“ 135.PICT” 575 KB 2001-08-13 dpi: 600h x 600v pix: 4426h x 6107v
| Source: David T. Craig Page 0026 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

@ s

Apple /// SOS Reference Manual, Apple Computer, 1982

Apple /// SOS Device Driver Writer’s Guide, Apple Computer, 1982

Apple /// Service Reference Manual (Level 2), Apple Computer, 1983

/// Bits: John Jeppson’s Guided Tour of Highway ///, Softalk magazine, May 1983
Bank Switch Razzle-Dazzle, Softalk magazine, August 1982

The Apple Nobody Knows, Apple Orchard magazine, Fall 1981

Apple /// Entry Points, Andy Wells, Call-APPLE, October 1981

Inside the Apple /// Computer ROM, David Craig, November 1997

#i##

Some Ideas about an & Apple /// Computer Emulator -- Version 4
David T Craig - 12 Dec 1997 -- 23 /23

“ 136.PICT” 222 KB 2001-08-13 dpi: 600h x 600v pix: 4391h x 6072v
| Source: David T. Craig Page 0027 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

s

Apple I1T Computer Information

LY PN Y O ST IP Py Srfe v 94

Apple 111 Emulator Ideas

Version3 ¢ 09 Dec 1997

“ 137.PICT” 104 KB 2001-08-13 dpi: 300h x 300v pix: 1953h x 2468v
| Source: David T. Craig Page 0028 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

SOME IDEAS ABOUT AN APPLE /// COMPUTER EMULATOR

David T. Craig -- 09 December 1997

941 Calle Mejia #1006, Santa Fe, NM 87501 USA
e-mail: 71533.4043compuserve.com

TABLE OF CONTENTS

PURPOSE

EMULATOR GOALS

EMULATOR USER INTERFACE

DISK IMAGES

6902 CPU EMULATION

ROM EMULATION

MEMORY-MAPPED 1/0 EMULATION

MEMORY BANK SWITCHING EMULATION

505 SYSTEM CALL EMULATION

DEVICE DRIVER EMULATION

KEYBOARD SUPPORT

MONITOR SUPPORT

APPLE 1[I EMULATION DISK SUPPORT

WHAT LANGUAGE SHOULD THE /// EMULATOR BE WRITTEN IN?
WHAT TARGET MACHINES SHOULD BE SUPPORTED?
EMULATOR DEBUGGING FACILITIES

EMULATOR MEMORY STRUCTURE

WHAT“S NEXT?

REFERENCES

a A& & ®» & @ « ®w =
O OO0 0000A0CO OO0 O

VO NONAL WM~ O Q00O U D LN -

MODIFICATION HISTORY

28 Nov 1997 -- Version |
Created by David T. Craig.

04 Dec 1997 -- Version 2

New sections: MONITOR SUPPORT, EMULATOR DEBUGGING FACILITIES.
Updated sections: DISK IMAGES, MEMORY BANK SWITCHING EMULATOR, SO0S
EMULATION, REFERENCES.

Added several good comments by Chris Smolinski.

09 Dec 1997 —-- Version 3

DISK IMAGES: Updated info about DTCMake3///Disklmage Mac application, made disk

image file an all-text file.
508 SYSTEM CALL EMULATION: typo Silentypr --> Silentype.

WHAT TARGET MACHINES SHOULD BE SUPPORTED: More pre-48040 Mac comments.
EMULATOR DEBUGGING FACILITIES: typo affects --> affect, added info about

enabling/disabling 505 BRK disassembly, same for ProD0S, added lis
debugging commands.
EMULATOR MEMORY STRUCTURE: New section.

Some ldeas about an Apple /// Computer Emulator -- Version 3

David T Craig -- 09 Dec 1997 -- 1 / 16
“ 138.PICT” 161 KB 2001-08-13 d

SYSTEM CALL

t of emulator

pi: 300h x 300v pix: 2166h x 3036v

| Source: David T. Craig

Page 0029 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

1.0 PURPOSE

This document describes some ideas about implementing a software emulator for the
Apple /// computer. These ideas are based on my experiences with the Apple ///
computer and its software programming. No specific target machine is mentioned
in this document since these ideas should be non-target machine specific., These
ideas are submitted to stimulate thought about such an emulator and hopefully
inspire someone to produce a working Apple /// emulator.

The technical details behind the Apple /// computer, its operating system ¢50%5),
and /// programs (e.g. AppleWriter ///) are based on my extensive collection of
/// technical manuals, specification sheets, and many /// technical articles (Dr.
John Jeppson‘s articles are very exhaustive and full of lots of neat /// techoid
stuff). 1 have around 15 Apple manuals, the majority of which were published by
Apple, which include user manuals and the technical programming manuals.

For those people seriously interested in implementing an Apple /// emulator
program I highly recommend that they have at least the Apple /// Service
Reference Manual. This manual, which is almost 500 pages long, is the definitive
reference for how the Apple /// computer works. Most of its contents describe
theory of operation even though its title suggests service-type information only.
The important features of this manual for a /// emulator writer are the ///
memory map and the /// memory mapped 1/0 locations,

I also own an Apple /// computer which still today works very well. 1 programmed
the /// many moons ago and have worked professionally as an Apple Macintosh
computer programmer since 1984,

Note: All comments are welcome. If you have anything to add or correct please
let me Know and I will update the master copy of this document.

2.0 EMULATOR GOALS

The /// emulator should provide a complete emulation environment for the faithful
execution of Apple /// and /// Plus programs. As far as the emulator user is
concerned when they run the emulator program their computer should work just like
an Apple /// computer and all // visual fidelity should be maintained. Emulation
of the Apple /// Plus computer may also be supported (this means the /// Plus’
interlaced screen). 1If the /// Plus is supported by the emulator you may want to
let the user specify if they want to run a /// or a /// Plus.

I think it would be beyond neat if the emulator could run Apple’s running horses
demo and the other /// demos.

The /// emulator should support an Apple /// computer with at least 256K of
memory and four floppy 140K disks ¢.D1, .D2, .D3, .D4). Support for 512K of
memory may also exist since the ///“s operating system (50%5) supports up to 512K
of memory. Memory size, if variable, should always be a muttiple of 32K, 1
believe the lowest memory size supported by the /// (ROM?) is 94K. Support for a
ProFile disk may also exist (for this disk there would need to be a disk image
with a size of SM). The first floppy disk ¢(.D1) would correspond to the floppy
disk drive that is built into the Apple ///. The other disks correspond to
external disks and should exist as image files with specific file names (e.g.
"Apple 3 DI, "Apple 3 D2", etc). The ProFile disk image file should alsoc have a
specific file name ¢e.g. "Apple 3 ProFile").

Some Ideas about an Apple /// Computer Emulator -- Version 3
David T Craig -- 09 Dec 1997 -- 2 / 14

“ 139.PICT” 285 KB 2001-08-13 dpi: 300h x 300v pix: 2183h x 3001v

| Source: David T. Craig Page 0030 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

Image file names should have an extension {e.g. ".D31") since this is needed by
PCs,

3.0 EMULATOR USER INTERFACE

When the user runs the Apple /// emulator program the user should see on their
computer screen a screen (or a window representing the screen on GUI systems)
corresponding to the ///’s screen which the user would see if they were in front
of a real Apple /// computer. A1l /// text and graphic modes should be supported
by the /// emulator {this includes the special modes supported by the /// Plus
and its interlaced screen architecture),

1 recommend that the emulator also support a screen dump facility that writes the
current /// screen to either a text file {(for text modes) or to a graphic file
(for graphic modes) or alwaysz just creates a graphic file. The screen dump
graphic file should be a standard graphic file for whatever target machine your
support ¢e.g. on the IBM PC running Windows produce .BMP files, on the Apple
Macintosh produce PICT files). Since the /// supports custom character sets
dumping the screen to a PICT file (or to the target computer’s clipboard) may be
the best solution.

The emulator screen if implemented in a GU! window may also display a status area
at the bottom of the window. This status area would display at least two lines
of text and would Keep the user informed of what the emulator was doing
internally,

4.0 DISK IMAGES

The /// emulator should read disk image files which correspond directly to real
/77 140K disks. When the /// emulator starts it should look in its folder and if
there exists a /// disk image file the emulator should boot this image. 1If there
are multiple disk image files then the emulator may want to display a list of
these images and have the user select an image to boot.

The disk images should be exact copies of real /// disks. To make copies of
these disks there should exist an utility program that runs on the /// computer
and which outputs disk block data to the /// serial port (I plan to make this
utitity and call it DTCDumplIt). This utility’s output should be a hex/ascii dump
that specifies block numbers and has a checksum for each line of data. This
utility should ask the user if it chould dump a file or a disk,

On the target machine there should exist a similar utility that inputs the disk
block data and creates a disk image file., I recommend that the transmitted disk
block data consist of a hex dump with block number and checksum information in a
human readable fashion. The receiving program (on the target computer) would
read this human readable information, verify that the data was sent correctly,
and produce binary disk image file images (I plan to create this utility for the
Apple Macintosh and call it DTCMake///Disklmage).

There chould also exist a disk image file for the ///‘s Boot ROM (recommended
file name: "Apple 3 Boot ROM"). This image should contain the 4K ROM image.
This ROM should be the Revision 1 ROM (not Revision 0) since this was the last
ROM produced and 505 1.3 (the last S0S) requires this ROM.

Users should also be able to format a disk image by specifying the disk drive

Some Ideas about an Apple /// Computer Emulator -- Version 3
David T Craig -- 09 Dec 1997 -- 3 / 14

“ 140.PICT” 273 KB 2001-08-13 dpi: 300h x 300V pix: 2172h x 2995v

| Source: David T. Craig Page 0031 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

device name fe.g. .D2). Users should then be able to name the disk image so that
they can use it later. \Users should be able to assign specific disk images to
specific disk drives.

1 recommend that all disk image files have a very specific internal format. This
format should support the verification of disk image files so that if a disk
image file becomes corrupted in some fashion the /// emulator can detect this
corruption, not use the image, and alert the user.

Note: Support for existing Apple 1[disk image files may be feasible but I
recommend against this since the format of these images could change.

The proposed image format:

The disk image file contains two parts, a header part and a data part. The
header part appears first followed by the data part. The header part contains
identification and verification information. The data part contains the actual
disk blocks for the /// disk. This file contains only text, no binary data
appears here in any fashion. The only non-text information that can appear in
these files is the Carriage Return (CR) and the Line Feed (LF)> characters. The
emulator should ignore LFs if appropriate. A1l information appears in lines with
a maximum length of 2595 characters. Character case is immaterial. Blank lines
are ignored. The reason for this format ic so these image files can be
transferred over the internet without the need for any binary-to-text conversion.
Also, text-only files can easily be viewed by people using a word processor,

The header part contains:

Line Comments

Signature YAPPLE /// DISK IMAGE"

Version "VERSION" version number {e.g. "1")

Image Name "IMAGE NAME" name of image, anything the user wants,

most likely the name of the interpreter on the disk,
e.g. "Apple UWriter ///"

Creation Date "CREATED" date image file created, "YYYY-MM-DD*®

Created by Name "CREATED BY" name of person or company who created this image
Comment "COMMENT" comment for anything user wants

Data Size "DATA SIZE" size of data part {decimal, e.g. "143340")

Data Checksum "DATA CHECKSUM" hexadecimal checksum (e.g. "FA7C3188")
Reserved 1 "RESERVED"

Reserved 2 "RESERVED"

Reserved 3 "RESERVED"

Reserved 4 "RESERVED"

Tech Comment "TECH COMMENT" name of program that this is for

Header Checksum "HEADER CHECKSUM"™ hexadecimal checksum (e.g. "B%7C31D3"*)

Notes:

The checksum should be calculated as the exclusive-OR of each byte followed by a
left rotation of 1 bit. Checksum starts with zero. Checksums should always be 4
brtes in size and be stored in the header as an 8 character string.

The Tech Comment’s purpose is to allow people who obtain an image file to be able
to contact someone about the file’s purpose.

Some Ideas about an Apple /// Computer Emulator -- Version 3
David T Craig -- 09 Dec 1997 -- 4 / 16

“ 141.PICT” 237 KB 2001-08-13 dpi: 300h x 300v pix: 2196h x 3030v

| Source: David T. Craig Page 0032 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

The data part contains lines representing 16 bytes from the original disk. Each
line has a specific format which begins with the starting disk address for the
line, 14 bytes, the ASCII equivalent of the 16 bytes, and a checksum for the
brtes of the line with the format:

(000000001 0123 4567 8%ab cdef 0123 4547 8%ab cdef [1234547890123454]1 12345478
The last line of the file must be the word "FINIS".
Sample disk image file:

APPLE /// DISK IMAGE

VERSION 1

IMAGE NAME Apple Writer ///
CREATED 1997-10-11

CREATED BY David T. Craig
COMMENT Thanks to Paul Lutus
DATA SIZE 16

DATA CHECKSUM FA?7C3188
RESERVED

RESERVED

RESERVED

RESERVED

TECH COMMENT Created for David Craig’s /// Emulator - 71333.4063compuserve.com
HEADER CHECKSUM B%7C31DS

[00000000]1 0123 4547 8%ab cdef 0123 4547 8%ab cdef [Apple.///.Emul..) FA7C3188
FINIS
5.0 46502 CPU EMULATION

The heart of the /// emulator should be the emulation of the 4502 CPU. The heart
may be referred to as the "4502 engine." The emulator should support all of the
6302 instructions, the 4502 registers, and the special Apple /// registers f(e.g.
the bank switch register, the environment register, and the zero-page register).
Special register descriptions and usage can be found in the Apple /// S0S
Reference Manual.

The 6502 engine must be smart about accessing memory and use the bank switch and
environment reqgisters correctly.

1f this level of the /// emulation is complete and robust the rest of the ///
emulator should work much more easily.

Support for special /// features may also exist at this level of the ///
emulator. For example, the /// emulator may not want to emulate all of the ///’s
memory-mapped 1/0 features, but instead intercept access to special areas or
routines and call the target machine’s operating srstem to handle these features.
See sections ROM EMULATION and MEMORY-MAPPED 1/0 EMULATION for more details.

6.0 ROM EMULATION

The /// emulator should also support as much as possible the ///‘s Boot ROM.
This means the Boot ROM‘s routines should work for the most part as-is.

Some Ideas about an Apple /// Computer Emulator -- Version 3
David T Craig -- 09 Dec 1997 —- 5/ 14

“ 142.PICT” 194 KB 2001-08-13 dpi: 300h x 300v pix: 2184h x 3042v
| Source: David T. Craig Page 0033 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

Note: I have a listing of the Boot ROM which could be useful for this emulation
discussion.

For the Boot ROM’‘s floppy disk 1/0 support 1 recommend that all the gory details
here not be supported directly at the memory-mapped 1/0 level but instead the ///
emulator should emulate this 1/0. Specifically, the /// emulator should
intercept any access to the Boot ROM routines which read or write disk blocks and
use the appropriate target machine operating system routines to accomplish this
feature.

The /77 emulator should also initialize the ROM‘s character set which the ROM
normally loads into a special RAM chip that is not accessible to the ///’s 4502
processor. See section MEMORY BANK SWITCHING EMULATION for more details.

7.0 MEMORY-MAPPED 1/0 EMULATION

All memory-mapped 1/0 locations that in some way deal with the physical world
need to be handled by the /// emulator. These areas include such addresses as
the speaker addresses. The Apple /// Service Reference Manual provides detailed
information about these addresses.

All accesses to memory by the /// emulator must respect the bank switch and
environment register settings so that the emulator does not try to access a
memory-mapped address when that address is not mapped into the 4502 address
space.

Programs which access low-level 1/0 locations such as the disk 1/0 addresses
should not be supported. 1 assume most /// programs will access hardware
components using 508 or device drivers.

8.0 MEMORY BANK SWITCHING EMULATION

The /// emulator must also fully support the ///’s bank switched and enhanced
indirect addressing memory architecture. Detailed descriptions and usage of ///
memory handling can be found in the Apple /// S0OS Reference Manual.

The /// emulator should alsoc support the ///‘s character set RAM chip. This
holds the bitmap descriptions of each of the 128 characters in the /// character.
This RAM area, which is not accessible to the ///’s 6502 CPU, holds 1024 bytes.
See the Apple /// Standard Device Drivers Manual (Console Character Sets section)
for more information.

Note: 1 believe the storage of the Boot ROM character set is different than the
storage of the character set in the SOS.DRIVER file. 1 believe the ROM character
set has bits that are reversed compared to the S0S.DRIVER character set.

The storage of text and graphics in memory should be supported also. This should
happen automatically when a /// program writes to the text/graphic memory
buffers. The emulator needs to detect such writes and update its screen as
appropriate.

2.0 S0S SYSTEM CALL EMULATION

The majority of system calls to S0S and its drivers should most likely not be
intercepted by the /// emulator. But certain calls may need to be intercepted
unless a lower level of the /// emulator intercepts these feature already.

Some Ideas about an Apple /// Computer Emulator -- Version 3
David T Craig -- 09 Dec 1997 —- &6 / 16

“ 143.PICT” 252 KB 2001-08-13 dpi: 300h x 300v pix: 2196h x 3036v

| Source: David T. Craig Page 0034 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

System calls to S0S or drivers that may need intercepting by the /// emulator

could be:

o Disk 1/0 ¢.D[1-4]1 and .PROFILE drivers)

o Keyboard 1/0 (.CONSOLE driver)

o Screen 1/0 (.CONSOLE and .GRAPHIC drivers)

¢ Sound generation (.AUDID driver)

o Serial port 1/0 {,R8232 driver)

o Silentype Printer (.SILENTYPE) [I’m not sure about support for thisl
o Clock 170 (Y2K dates may be a problem)

1 recommend that the ./// emulator intercept all activity dealing with the above
and have the target machine perform the equivalent features. For example, to
read or write a disk block the /// emulator should have a routine that accesses
the appropriate location in the disk image file.

The /// emulator may also provide the user with some type of setup options so
that the user can specify specific properties of csome of the above drivers. For
example, if the target machine supports several output ports the emulator may let
the user specify which port to use (e.g. for the .PRINTER driver the user could
assign it to a specific serial or parallel port on the target machine).

Note: The ///‘s clock does not support the year 2000 or greater. I think the
emulator should support Y2K dates but I‘m not sure if 50S‘’s file system date
stamps will support this easily.

10.0 DEVICE DRIVER EMULATION

This section is for the most part handied by my comments in section S0S5 SYSTEM
CALL EMULATION. 1 suspect the programming within the /// emulator for this area
could be the most work since there are lots of device drivers that make up a
simple Apple /// configuration,

One area of device drivers that the /// emulator may not want to emulate is
interrupt handling. Since the emulator does not have physical devices connected
to it in any direct fashion I don’t think interrupts exist as far as the emulator
is concerned. Interrupts dealing with disks or the Keyboard can be handled at a
Tower level by having the /// emulator call the appropriate system call in the
target machine., These low-level 1/0 handlers should set up the appropriate
driver data areas so that the rest of the ///’s software {(S0S and the
interpreter) will work correctly. For example, Keyboard 1/0 should be setup in
the /// emulator so that when the keyboard input memory-mapped 1/0 location is
accessed the target machine 05 really reads the Keyboard and sets up the memory-
mapped location as appropriate.

11.0 KEYBOARD SUPPORT
11.1 User interface support

The /// computer‘s Keyboard layout is basically compatible with modern keyboards.
The /// Keyboard does have two extra Keys, Open Apple and Closed Apple which are
positioned to the left of the Apple /// Keyboard. Also present on the Keyboard
are four arrow Keys. The emulator should support these Keys either directly
(i.e,, the target machine has similar Keys) or associate other Keys with the
///“s special Keys {(e.g., the Macintosh computer’s two Option Keys could be used
to simulate the special Open and Closed Apple Keys). The emulator’s associated

Some Ideas about an Apple /// Computer Emulator -- Version 3
David T Craig -- 09 Dec 1997 —- 7 / 16

“ 144.PICT” 263 KB 2001-08-13 dpi: 300h x 300v pix: 2178h x 3042v

| Source: David T. Craig Page 0035 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

keys need not physically be in the same location as the ///“s special Keys but
having them in the general area will be beneficial.

Note: The /// Plus Keyboard contains an extra Key, Delete, compared to the ///
Keyboard.

11.2 Low-level access

The /// emulator should handle low-level access to the Keyboard memory-mapped 1/0
locations as detailed in section DEVICE DRIVER EMULATION,

12.0 MONITOR SUPPORT

The emulator should support the Apple’s built-in ROM Monitor. Entry to the
Monitor should be similar to how this is done on a real /// {(at startup if Open
Apple and Control kKeys are pressed). The code in the ROM which tests for Monitor
entry should work,

13.0 APPLE 11 EMULATION DISK SUPPORT

It would be nice if the /// emulator supported the Apple 1L Emulation Disk. I’m
not sure of what would be involved here but suspect that if the ///’s 6502 CPU
and the memory-mapped 1/0 locations are robustly supported that the 1[emulation
should work alsoc without any special additional /// emulation features.

Special consideration may need to be given to Apple /// Keyboard Keys which do
not exist in the Apple 1[I world. 1[emulation details can be found in the Apple
/// Dwner’s Guide and the Apple /// Service Reference Manual.

Note: 1 have a disassembled listing of the Apple 1L Emulation Disk ROM source
listing which could prove useful in this area.

Further analysis of the][emulation disk’s boot sequence needs to be done since
I‘m unknowledgable about this area. Also, I’ve heard that the 1[emulation
accesses an 1/0 location which disables some /// features.

14.0 WHAT LANGUAGE SHOULD THE /// EMULATOR BE WRITTEN IN?

I highly recommend that the /// emulator be written in a high level language such
as Pascal or €. This should make the emulator more compatible with different
target computers and make development and maintenance of the emulator much
easier. I recommend avoiding low-level languages such as assembly.

15.0 WHAT TARGET MACHINES SHOULD BE SUPPORTED?

I recommend that the target machine {or machines) for the emulator be machines
that are commonly used today by most computer users. This means either the IBM
PC or the Apple Macintosh machine family. For the PC world ! recommend the ///
emulator run under Windows 93 and Windows NT. For the Macintosh world 1
recommend the emulator run on most Macintosh models which means support the
Macintosh 512 and above. Color display should also be supported by the ///
emulator (for the Macintosh this means use Color QuickDraw if the machine
supports CGD and if COGD is not supported by a Macintosh model use the Classic B/W
30 and maybe use patterns as "colors").

Any of these machines should be fast enough to emulate the /// and most likely

Some lIdeas about an Apple /// Computer Emulator -- Version 3
David T Craig -- 09 Dec 1997 -- 8 / 16

“ 145.PICT” 245 KB 2001-08-13 dpi: 300h x 300v pix: 2190h x 3042v
| Source: David T. Craig Page 0036 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

will be too fast in many areas. 1 recommend some type of speed control be built
into the emulator so that users can control how fast the emulator works. For
many /// programs f{e.g. Applelriter /// and VisiCalc /7)) emulation speed will be
immaterial since these programs typically wait for the user to enter data and
then do their thing. But for programs such as games the user will want to
control the emulator speed otherwise the game’s actions will be super fast and
unplayable.

Some people say that the older machines such as pre-é8040 Macintoshs will be too
slow for a reasonable /// emulator. 1 would liKe to see this /// emulator run on
a Mac 512 machine an onwards. Running on a Mac 128 machine seems a problem due
to this machine’s small memory size and should not be supported (if a virtual
memory scheme was used by the emulator the Mac 128 could be supported but I think
having this extra level of support in the emulator would not be worth it), I
disagree and am willing to wager a small sum that I‘m right.

16.0 EMULATOR DEBUGGING FACILITIES

The emulator should support a comprehensive built-in debugger. This debugger’s
purpose should be to let the sophisticated emulator user access any part of the
emulator’s /// address space. This should include all of the memory that is
allocated to the /// as its memory. This memory would encompass the 236K (or
S12K) of /// RAM, the /// ROM (4K), the character set RAM (1K), the 4502
registers, and the special /// registers (e.qg. bank register).

This debugger will prove invaluable in diagnosing emulator bugs.

Logging of all debugger sessions should be stored to a text file for possible
analysis., This text file would be created when the emulator starts. The log
file should be appended to by the emulator. Only the user can delete the file,

The debugger should exist as a separate window that does not in any way affect
the emulator’s main window. This window should display only commands that the
user enters or replies returned by the debugger. There should not exist a
separate window area showing things such as the 4502 registers since all such
information should appear in the debugger log file. The window should support at
least 80 columns of text and 24 rows.

The emulator user interface should be based on a simple command line control
scheme. All commands and command outputs should be text-based. This scheme
could be based on the ///’s Monitor’s commands or on a little more readable
command scheme such as in Apple’s MacsBug debugger. There should be full on-line
help that discusses the debugger commands in general and each command =hould also
have on-line help available.

The debugger should support the standard debugging commands such as
displaying/setting memory, displaying/setting registers, and disassembling 4502
instructions. This disassembly should support the special S05 BRK call by
listing the word "BRK/S0S" instead of just "BRK" and following this with the S0S
command number/name and the parameter list address:

s0s CO/CREATE 3454
The user should be able to enable or disable this feature.
Note: It may be good to also support the Apple // ProDOS command calling scheme

Some Ideas about an Apple /// Computer Emulator -- Version 3
David T Craig -- 0% Dec 1997 -- 9 / 14

“ 146.PICT” 275 KB 2001-08-13 dpi: 300h x 300v pix: 2184h x 3036v
| Source: David T. Craig Page 0037 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

in case this emulator ever becomes an Apple // emulator.

The debugger should support break points, single stepping, and timing buckets.
The timing buckets would be used in conjunction with break points to record how
long a sequence of 6502 instructions took to execute. This can be very useful in
locating emulator bottlenecks. The debugger supports many break point commands
since I have a feeling that this facility will be very powerful and useful during
the emulator’s development.

The debugger should support the collection of statistice about the emulator. 1
recommend tracking how many times specific 4502 opcodes are executed (obviously,
the debugger would need commands to display and clear this information). 1 would
also track memory accesses on at least a page (256 bytes) basis.

The debugger should be accessible at any time that the emulator is running. |1
recommend some type of Key press combination that the emulator would detect and
display the debugger window. Once the debugger window is active it should remain
on the screen until the user closes the window,

The emulator should also support a special Key press combination at emulator
startup time that activates the debugger just before the /// ROM is run. This
can give the emulator developer a good way of tracing ROM execution.

The emulator should activate the debugger if any fatal emulation errors are
detected. For example, if a /// program attempts to write to write-protected
memory f{e.g. S50S’s address space) then the debugger window should appear stating
the reason for the error.

1 recommend the following emulator debugger commands which are based on the ///
Monitor commands so that these debugger commands will be familiar to Monitor
users, These commands for the most part have the general syntax of address-
command. See my document "Inside the Apple /// Computer ROM" for a list of the
/77 Monitor commands. For information about the Apple 1[I Monitor commands, which
the /// Monitor commands are based upon, see "Apple 1[Reference Manual"™ (Chapter
3: The System Monitor, dated 1981),.

Addresses appearing in debugger commands may be prefaced by "N/" where N is a
bank number. For example, to reference address 2000 of bank 4 use 4/2000. If no
banK number precedes an address the current bank is used.

To reference a ROM address use a bank "number" of "R", for example "R/F000",

To reference a character set address use a bank "number® of "C", for example
"C/0000".

Commands should be case-insensitive.

Commands that display more than a screen full of information should either
automatically pause when the screen is full, or the user can use the SPACE Key.

Note: Commands using ":" may also use ";" which is easier to type since this
character does not need the user of the chift Key. Same for "{" and "/".

HELP (or ?) Display debugger on-tine help for all commands. Help info should be
stored in an external text file for easier modification.

Some Ideas about an Apple /// Computer Emulator -- Version 3
David T Craig -~ 09 Dec 1997 -- 10 / 14

“ 147.PICT” 260 KB 2001-08-13 dpi: 300h x 300v pix: 2196h x 3042v

| Source: David T. Craig Page 0038 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

BYE
CARRIAGE RETURN
SPACE
DELETE
RD
brte:5A
byte:SX
byte:SY
byte:SP
byte:88
word:SPC
byte:SE
byte:52Z
byte:SB

addri.addr2

addr:bytes
addr:”text’
addr:"text"
addr3{addr1.addr2M
addr3{addr!.addr2V
bytes{addr!.addr25
‘text’{addrl.addr25
"text"{addr1.addr2s

disk.block{addr!.addr24d

disk.block<{addri.addr2R

disk.block-block:DISK

Some ldeas about an Apple /// Computer Emulator -- Version 3

Return to the emulator,

Repeat last command.

Pause current command’s output. Press again to continue.
Stop current command’s output.

Display 6302 registers and /// system control registers.

Set 4502 A register to byte.

Set 4502 X register to byte.

Set 4502 Y register to byte.

Set 6502 P register to byte.

Set 4502 S register to byte.
P

Set 6502 PC register to word.

Set /// E system control register to byte.

Set /// 1 system control register to byte.

Set /// B system control register to byte.

Dump memory data to screen from address 1 to address 2 and display
ASCIT character at the right of the screen. E.g., 300.310 displays the
following (this example assumes the current bank is bank 4):
4/0300- B900 080A 0AGA 9700 08C8 DOF4 A42B A%09 [F..d.uy’X'&%03..61
Store starting at the address the bytes.

Store text starting at address (high bit clear).

Store text starting at address (high bit set).

Move data in address range to address 3.

Verify data in address range equals data starting at address 3.
Search memory in address range for the bytes.

Search memory in address range for text (high bit clear).

Search memory in address range for text (high bit set).

Write address range to disk # disk starting at disk block., If disk #
is not present then uses disk .D1,

Read from disk # disk starting at block to the address range. If disk
is not present then uses disk .Di,

Read block range from disk ¥ disk to a special debugger 4K buffer
which is not used by the emulator. You can then examine this buffer’s
contents either with a hex/ascii dump or with a disassembly ({command
L). This command is useful when you want to examine a disk‘s
contents. For disassembly purposes, you can specify the logical
starting address for the buffer. See the DISKBUFFER command.

David T Craig -- 09 Dec 1997 -- 11 / 14
“ 148.PICT” 170 KB 2001-08-13 dpi: 300h x 300V pix: 2172h x 3054v

| Source: David T. Craig

Page 0039 of 0064 |

displays register contents.
DELETE to stop the trace.

Some Ideas about an Apple /// Computer Emulator
David T Craig -- 09 Dec 1997 -- 12 / 14

Press the SPACE to pause the trace,

“ 149.PICT” 160 KB 2001-08-13 d

Apple 1l Computer Information ¢ Doc# 191 < Apple lll Emulator Ideas
To disassemble the special disk buffer (see the L command) use bank S
as part of the disassembly address parameter. Same for dumping memory
or whatever commands you want to use with this special buffer.

addr :DISKBUFFER Set disk buffer starting logical address. Default address is 2000.
See the DISK command.

addri.addr2L Dicassemble instructions in address range. If only addrl appears then
disassemble 20 instructions. Disassembly includes the opcode cycle
count. A sample disassembly follows:

4/0300- A% C1 X (2) LDA #H$Cl :
4/0302- 20 ED FD vea’ (3 JSR $FDED :
4/0305- 18 . (2> CLC H
4/0304- 69 0A T,/ (4) ADC #H$01 s
4/0308- c? DB 0 (3) (MP #¢DB ;
4/030A- D0 Fé ! (3) BNE %0302 H
4/030C- 40 ‘u (4) RTS H
i 2 3 4 3 6 (see Note)
Note: Column 1 = bank register/address
Column 2 = memory bytes
Column 3 = ASCII for the memory bytes
Column 4 = opcode cycle count
Column 5 = disassembled instructions
Column 6 = remark character ;" (optional, see DISASMREM)
L by itself disassembles the next 20 instructions.

DISASMREM Display ";" after each disassembly line that is produced by the L
command. Default is to not display the remark. Useful if you plan to
add comments to a disassembly.

D1SASMREMOFF Turn off DISASMREM.

addrG Call subroutine at the address.

addrJ Jump to the address.

wordX Convert word {or up to 4 hex digits) to hexadecimal, decimal, and
binary. Prefix character for byte determines its base: no prefix =
hex, = dec, t = binary. E.g.,

AX - A1) 10¢10) 0000 0000 0000 1010¢2)
J0X =) A(14) 10¢10> 0000 0000 0000 1010(2)
t1010 =) Ac14) 10¢10> 0000 0000 0000 1010¢2)
FFFFX =) FFFF(16) 45335(10> 1111 1111 1111 11112

addri,.addr2:CS Calcutate and display a checksum for address range. Checksum is a 4
byte quantity which is calculated the same as the disk image file
checksums.

addeT Trace instructions starting at the address. Each traced instruction

press

Version 3

pi: 300h x 300v pix: 2202h x 3036v

| Source: David T. Craig

Page 0040 of 0064 |

Apple Il Computer Information

Doc#191 -

Apple Il Emulator Ideas

addrSS

addr :BP

addr :BPC

S0S:BP

Mopcode :BP

ROM:BP
addr!.addr2R:BP
addr1.addr2W:BP
addr.byte:BPE

addr .bytel-byte2:BPE

addr/bl.b2...:BPEA

addr/bytel-hyte2:BPEA

addr!.addr2/b1...:BPEA

addr1.addr2/b1-b2:BPEA

BPD
BPC

addr1l.addr2:TB

T8D

addr:TBC
TBC

error:S0SE

Some Ideas about an Apple /// Computer

Single step trace starting at the address. After
wait for user to press SPACE to continue
step.

Set a break point at address. When address

is entered and displays the registers. Up to 100
be supported.

Clear break point at address.

Set a break point when a SOS call is made.

opcode is executed. Same as MD0:BP,

Set a break point when opcode is executed.

($80) is executed, Mé&D:BP.

E.g.,

Set a break point when a call is made to the ROM.

Set a break point when any address within address

Set a break point when any address within address

Set a break point when the address contents equal

Set a break
byte range.

point when the address contents equal

Set a break
equals byte

contents equal
up to 14 byte

address
Supports

point when the
2 value, etc.

Set a break point when the address contents equal

Set a break point when the address

the byte values,

range contains

Set a break point when the address

range.

range contents

Display break point table.

Clear break point table.

Set timing bucket for address range. When address
timing starts. When address 2 is accessed timing
timing buckets should be supported.

Display timing bucket table. Shows all
time in 1/60th of a second spent in each bucket.

Clear timing bucket starting at address.
Clear timing bucket table.

for error number.
errors, E.g.,

List 505 general error message
present then list all general

Emulator
David T Craig -- 09 Dec 1997 -- 13 / 14

01:50SE

each step pause and

or DELETE to stop the cingle

is accessed the debugger

break points should

This means when the BRK

to break when RTS

range is written to.

range is read from.
the byte wvalue.

a byte value in the

byte 1 value, or
values,
the byte range.

any bytes equalling

equal the byte

! is accessed
stops. Up to 100

set timing buckets and the

If no error number
-) "BADSCNWM -

-- Version 3

* 150.PICT” 164 KB 2001-08-13 dpi: 300h x 300v pix: 2166h x 3019v

| Source: David T. Craig

Page 0041 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

error:SOSFE

command: S0S

SOSON

SOSO0FF

disk:CAT

disk.file_name:INFD

disk.block:DUMP

di skCHKIMAGE

DIT

MIT

OPCODES

DPCODESCLR

Invalid S80S call number®. Error info should be stored in an
external text file for easier modification.

Display 505 fatal error message for error number. If no error number
present then list all fatal errors. E.g., O01:S508FE -)> *BADBRK -
Invalid BRK*.

Display S0S command name for the command number. If no command number
present then list all S05 command numbers and their names. E.g.,
C0:50S -> CREATE. Command info should be stored in an external text
fite for easier modification.

Turn on disassembly of S80S calls which displays S0S followed by the
command number and parameter address. The emulator defaults to this.

Turns off SOSON.

Display catalog of 505 disk stored in disk # disk. Includes recursive
list of all subdirectories.

Note: Other commands that may be supported include CATPASCAL for Apple
Il Pascal disks and CATDOS for Apple 1[I DOS disks. This may come in
handy if you want to see what these disks contain if you have them as
disk image files.

Displays information about the specified file in the disk,

Information includes standard SD5 file information but also block 1list
of all index blocks (if any) associated with the file and block 1list
of all data blocks for the file,

Display contents of specified disk block in the standard hex/ascii
dump format,

Check wvalidity of disk image in disk # disk. Computes header and data
part checksums and compares against the image file’s listed checksums.

Display Driver Information Table (DIT), a data structure maintained by
this debugger. Contains lYist of all loaded drivers, their names,
sizes, and entry point addresses.

Display Memory Information Table (MIT), a data structure maintained by
this debugger. See section EMULATOR MEMORY STRUCTURE for what this
structure contains.

Display a histogram of opcode execution counts. Includes the actual
number of the counts. Sorted by frequency. Opcodes not executed at
all appear below the histogram. E.g.s

LDA 2,188,973 SEREREEEEXEREEEERFERERHLHEREEERROHERHOOEEEERERE

STA 12,123 SEEEREEERENERRERRRRRRRRRERERER
P 447 REXERRRRRERERRR

Unexecuted opcodes: TXS NOP

Reset opcode histogram table.

Some Ideas about an Apple /// Computer Emulator -- Version 3

David T Craig -- 09 Dec 1997 -- 14 / 14

“ 151.PICT” 178 KB 2001-08-13 dpi: 300h x 300V pix: 2202h x 3060v

| Source: David T. Craig

Page 0042 of 0064 |

Apple Il Computer Information

Doc#191 + Apple lll Emulator Ideas

pagel.pageZ:MEMORYﬁ

pagel.pageZ:MEMORYW

MEMORYCLR

value:SCROLL

filename:LOG

VERSION

17.0

1 recommend that the emulator‘s
memory resources be structured as follows:

o Memory block containing the size of memory and references to each /// memory
bank {(the references can be whatever
Mac memory pointers or handles):

o Memory block containing the 4502 reqgisters:

EMULATOR MEMORY STRUCTURE

number of switchable banks (1..15)

reference

reference
reference

reference

reference
reference

reference

The system (S) bank
S80S and part of the

to

to
to

to

to
to

to

- Accumulator

X index
Y index

Some ldeas about an Apple /// Computer

licts on a 256 byte
1f pagel.page2
is specified

Display memory write access table. This table
page basis counts for each time the page was read.
specified then lists only those pages. If a single page
then display only that page’s access count,

lists on a 256 byte page
See MEMORYW for page

Display memory read access table. This table
basis counts for each time the page was written,
options,

Reset both memory access tables,

Set debugger display scrolling rate interline deltay. Value is in
1/10th of a second. Default is no delay. |Useful if you want to for
example dump lots of memory and don‘t want to mess with the SPACE Key
to read what is displaved. Set the scrolling delay to a comfortable
value, sit back, and enjoy the show.

and output all

Close log file, create a new one with filename,

debugger displays to this new file, Useful if you’re running the
emutator from a write-protected disk and you want to re-direct the
output to a writable disk file,

Display debugger wversion information, Includes wversion number and
creation date/time.

internal memory structure for the Apple ///

is appropriate -- on the Mac these could be

bank § (32K: 0000-1FFF, AOOO-FFFF) #
bank 0/%0 - switchable (32k: 2000-9FFF>

bank 1/%1 - switchable (32k: 2000-9FFF)

bank 14/4E - switchable (32K: 2000-9FFF)

Boot ROM ROM address space {4k: FOOO0-FFFF)

Boot ROM RAM address space (4k: FOO00-FFFF)

1/0 RAM address space (4k: COO0-CFFF)

is always on-line and iz never banK switched.
interpreter reside here.

(A) 8 bits
(X) 8 bits
) 8 bits

Emutator -- Version 3
David T Craig -- 09 Dec 1997 -- 15 / 16

“ 152.PICT” 181 KB 2001-08-13 dpi: 300h x 300V pix: 2196h x 3054v

| Source: David T. Craig

Page 0043 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

- Status Register (P> 8 bits
-~ Stack Pointer {8 8 bits
- Program Counter (PC> 16 bits

o Memory block containing the special /// System Control Registers:

- E: Environment Register (FFDF) 8 bits

- 2: Zero Page Register (FFDO) 8 bits

~ B: Bank Register {FFEF) 8 bits
18.0 WHAT’S NEXT?

Persons ceriously interested in creating an Apple /// emulator program should try
to obtain as much /// technical information as possible. The author has lots of
info which he can copy at minimal charge. These persons should also have access
to a working Apple /// computer with a fair number of /// programs,

Other areas of compatibility should also be investigated that this document does
not address. This includes support for other input devices such as the mouse
which does have a 3rd party driver available.

19.0 REFERENCES

Apple /// Owner’s Guide, Apple Computer, 1981

Apple /// Plus Owner’s Guide, Apple Computer, 1982

Apple /// System Data Sheet, Apple Computer, July 1983

Apple /// Plus System Data Sheet, Apple Computer, October 1983

Apple /// Standard Device Drivers Manual, Apple Computer, 1981

Apple /// S0S Reference Manual, Apple Computer, 1982

Apple /// S0S Device Driver Writer’s Guide, Apple Computer, 1982

Apple /// Service Reference Manual (Level 2), Apple Computer, 1983

/77 Bits: John Jeppson‘s Guided Tour of Highway ///, Softalk magazine, May 1983
Bank Switch Razzle-Dazzle, Softalk magazine, August 1982

The Apple Nobody Knows, Apple Orchard magazine, Fall 1981

Apple /// Entry Points, Andy Wells, Call-APPLE, October 1981

Inside the Apple /// Computer ROM, David Craig, November 1997

Hed

Some ldeas about an Apple /// Computer Emulator ~-- Version 3
David T Craig -- 09 Dec 1997 -- 14 / 14

* 153.PICT” 160 KB 2001-08-13 dpi: 300h x 300V pix: 2166h x 3036v

| Source: David T. Craig Page 0044 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

s

Apple IIT Computer Information

Apple IIT Emulator Ideas

Version2 ¢ 04 Dec 1997

“ 154.PICT” 105 KB 2001-08-13 dpi: 300h x 300v pix: 1923h x 2432v
| Source: David T. Craig Page 0045 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

SOME IDEAS ABOUT AN APPLE /// COMPUTER EMULATOR

David T. Craig -- 04 December 1997

941 Calle Mejia #1004, Santa Fe, NM 87501 USA
e-mail: 71333.606dcompuserve.com

TABLE OF CONTENTS

1.0 PURPOSE

2.0 EMULATOR GOALS

3.0 EMULATOR USER INTERFACE

4.0 DISK IMAGES

5.0 4502 CPU EMULATION

6.0 ROM EMULATION

7.0 MEMORY-MAPPED 1/0 EMULATION

8.0 MEMORY BANK SWITCHING EMULATION

2.0 S0S SYSTEM CALL EMULATION

10.0 DEVICE DRIVER EMULATION

11.0 KEYBOARD SUPPORT

12.0 MONITOR SUPPORT

13.0 APPLE 10 EMULATION DISK SUPPORT

14.0 WHAT LANGUAGE SHOULD THE /// EMULATOR BE WRITTEN IN?
15.0 WHAT TARGET MACHINES SHOULD BE SUPPORTED?
14.0 EMULATOR DEBUGGING FACILITIES

17.0 WHAT’S NEXT?

18.0 REFERENCES

MODIFICATION HISTORY
28 Nov 1997 -- Version |
Created by David T. Craig
04 Dec 1997 -- Version 2

Created several new sections:

12.0 MONITOR SUPPORT, 14.0 EMULATOR DEBUGGING FACILITIES

Updated several sections:

DISK IMAGES, MEMORY BANK SWITCHING EMULATOR, S0S SYSTEM CALL EMULATION,
REFERENCES

Added several good comments by Chris Smalinski

4l~am,es : T.Zlf.?m‘h(.(f | Q'A’

Some Ideas about an Apple /// Computer Emulator -- Version 2
pavid T Craig -- 04 Dec 1997 —-- 1 / 10

“ 155.PICT” 125 KB 2001-08-13 dpi: 300h x 300v pix: 2160h x 2995v
| Source: David T. Craig Page 0046 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

1.0 PURPOSE

This document describes some ideas about implementing a software emulator for
the Apple /// computer. These ideas are based on my experiences with the Apple
/// computer and its software programming. No specific target machine is
mentioned in this document since these ideas should be non-target machine
specific., These ideas are submitted to stimulate thought about such an emulator
and hopefully inspire someone to produce a working Apple /// emulator.

The technical details behind the Apple /// computer, its operating system {(50%),
and /// programs (e.g. AppleWriter ///) are based on my extensive collection of
/// technical manuals, specification sheets, and many /// technical articles
(Dr. John Jeppson‘s articles are very exhaustive and full of lots of neat ///
techoid stuff)>. 1 have around 15 Apple manuals, the majority of which were
published by Apple, which include user manuals and the technical programming
manuals.

For those people seriously interested in implementing an Apple /// emulator
program I highly recommend that they have at least the Apple /// Service
Reference Manual. This manual, which is almost 500 pages long, is the
definitive reference for how the Apple /// computer works. Most of its contents
describe theory of operation even though its title suggests service-type
information only. The important features of this manual for a /// emulator
writer are the /// memory map and the /// memory mapped 1/0 locations.

1 also own an Apple /// computer which still today works very well. 1
programmed the /// many moons ago and have worKed professionally as an Apple
Macintosh computer programmer since 1984.

NOTE: All comments are welcome. If you have anything to add or correct please
let me Know and I will update the master copy of this document.

2.0 EMULATOR GOALS

The /// emulator should provide a complete emulation environment for the
faithful execution of Apple /// and /// Plus programs. As far as the emulator
user is concerned when they run the emulator program their computer should work
Just like an Apple /// computer and all // visual fidelity should be maintained.
Emulation of the Apple /// Plus computer may also be supported (this means the
/// Plus’ interlaced screen), If the /// Plus is supported by the emulator you
may want to let the user specify if they want to run a /// or a /// Plus.

1 think it would be beyond neat if the emulator could run Apple‘s running horses
demo and the other /// demos.

The /// emulator should support an Apple /// computer with at least 254K of
memory and four floppy 140K disks ¢.D1, .D2, .D3, .D4). Support for 512K of
memory may also exist since the ///‘s operating system (S0S) supports up to 512K
of memory. Memory size, if variable, should always be a multiple of 32K, 1
believe the lowest memory size supported by the /// (ROM?) is 94K. Support for
a ProFile disk may also exist (for this disk there would need to be a disk image
with a size of SM), The first floppy disk (.D1) would correspond to the floppy
disk drive that is built into the Apple ///. The other disks correspond to
external disks and should exist as image files with specific file names {e.qg.

Some Ideas about an Apple /// Computer Emulator -- Version 2
David T Craig -- 04 Dec 1997 -— 2/ 10

“ 156.PICT” 281 KB 2001-08-13 dpi: 300h x 300v pix: 2166h x 2977v
| Source: David T. Craig Page 0047 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

*Apple 3 Di", “Apple 3 D2", etc). The ProFile disk image file should also have
a specific file name {e,g. "Apple 3 ProFile").

Image file names should have an extension {e.g. ".D3I") since this is needed by
PCs.

3.0 EMULATOR USER INTERFACE

When the user runs the Apple /// emulator program the user should see on their
computer screen a screen {(or a window representing the screen on GUI systems)
corresponding to the ///’s screen which the user would see if they were in front
of a real Apple /// computer. All /// text and graphic modes should be
supported by the /// emulator (this includes the special modes supported by the
/// Plus and its interlaced screen architecture).

1 recommend that the emulator also support a screen dump facility that writes
the current /// screen to either a text file {for text modes) or to a graphic
file (for graphic modes) or always just creates a graphic file. The screen dump
graphic file should be a standard graphic file for whatever target machine your
support (e.g. on the IBM PC running Windows produce .BMP files, on the Apple
Macintosh produce PICT files). Since the /// supports custom character sets
dumping the screen to a PICT file (or to the target computer’s clipboard) may be
the best soclution.

The emulator screen if implemented in a GUI window may also display a status
area at the bottom of the window. This status area would display at least two
lines of text and would Keep the user informed of what the emulator was doing
internally,

4.0 DISK IMAGES

The /// emulator should read disk image files which correspond directly to real
///7 140K disks. When the /// emulator starts it should look in its folder and
if there exists a /// disk image file the emulator should boot this image. 1If
there are multiple disk image files then the emulator may want to display a list
ot these images and have the user select an image to boot.

The disk images should be exact copies of real /// disks. To make copies of
these disks there should exist an utility program that runs on the /// computer
and which outputs disk block data to the /// serial port (I plan to make this
utility and call it DTCDumplt). This utility’s output should be a hex/ascii
dump that specifies block numbers and has a checksum for each line of data.
This utility should ask the user if it should dump a file or a disk.

On the target machine there should exist a similar utility that inputs the disk
block data and creates a disk image file. 1 recommend that the transmitted disk
block data consist of a hex dump with block number and checksum information in a
human readable fashion. The receiving program {on the target computer) would
read this human readable information, verify that the data was sent correctly,
and produce binary disk image file images (I plan to create this utility —for—fx

-App+e—4¢4—eﬂd—forixz:Apple Macintosh and call it DTCMakegeékamage).

There should also exist a disk image file for the ///‘s Boot ROM {(recommended
file name: "Apple 3 Boot ROM"). This image should contain the 4K ROM image.
This ROM should be the Revision 1 ROM (not Revision 0) since this was the last

Some Ideas about an Apple /// Computer Emulator -- Version 2
David T Craig -—- 04 Dec 1997 -- 3 /7 10

“ 157.PICT” 278 KB 2001-08-13 dpi: 300h x 300v pix: 2172h x 3007v
| Source: David T. Craig Page 0048 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

ROM produced and S0S 1.3 (the last S05) requires this ROM.

Users should alsc be able to format a disk image by specifying the disk drive
device name (e.g. .D2). Users should then be able to name the disk image so
that they can use it later. Users should be able to assing specific disk images
to specific disk drives. ﬁ%sc‘ﬁ}\,

I recommend that all disk image files have a very specific internal format.
This format should support the verification of disk image files so that if a
disk image file becomes corrupted in some fashion the /// emulator can detect
this corruption, not use the image, and alert the user. The proposed image

' V3
format is as follows: h“l‘g ‘” dotn
“

The disk image file contains two parts, a header part and a data part.(The
header part contains identification and verification information. The data part
contains the actual disk blocks for the /// disk. The header part is 512 bytes

in size. pler
(r kel ecchanging)
chanse 4 all ey, no endin

The header part contains (size is in bytes);

Field. Size Comments _Soemat o lensth bk instring,
Signature o 16 Contains *APPLE /// IMAGE * 5f’¢'f‘/‘:““p“{‘(“"‘;‘,s"‘ & diget
Endian Format 2 Contains either "LL" or "BB" [0} %

Version Number 2 Contains "11" for version 1, "22" for version 2, ...

Image Name 128 Name of image, anything the user wants,

most likely the name of the interpreter on the disk, $\(ﬂ‘""‘7l

e.g. "Apple Writer ///" [11 CE-LF
Creation Date 10 Date image file created, format "YYYY-MM-DD"
Modification Date 10 Date image file modified, format "YYYY-MM-DD*®
Created by Name 80 Name of person or company who created this image [11
Comment 128 Comment for anything user wants [11]
Data Part Size 4 Size of data part _ﬁlqeu(b“/
Data Part Checksum 4 Checksum for data part [2] ‘F'N‘Sﬂ
Reserved 130 Reserved for future use, fill with hex $00
Header CheckKsum 4 Checksum for header part [2] ‘“36691
ta 6% < hex dumps Fo0000000% K¢ ¥ ¥ LN
Notes: Srtve dd a ol | hex “"‘F‘ grvg/ o-(—‘lh‘b"‘l L.'w-
o bytes @

[0] The endian format specifies the byte ordering within 2 and 4 byte integer
values. "LL" stands for "Little Endian* and "BB" stands for "Big Endian." This
is needed so disk images created on one type of machine (e.g. IBM PC - Little
Endian) can be correctly read by other machines (e.g. Apple Macintosh - Big
Endian).

[11 A1l strings are stored in the header as Pascal strings which begin with a
single byte specifying the length in bytes of the string’s contents. Pad unused
characters with blanks. c\«\awqe — ‘r\'\'ﬂr\ﬂl ?G&AMKW/ Dpaces

{21 The checksum should be calculated as the exclusive-OR of each byte followed
by a left rotation of | bit. Checksum starts with zero.

Support for existing Apple 1L disk image files may be feasible but I recommend
against this since the format of these images could change.

Some Ideas about an Apple /// Computer Emulator -- Version 2
David T Craig -- 04 Dec 1997 —- 4 / 10

“ 158.PICT” 267 KB 2001-08-13 dpi: 300h x 300v pix: 2343h x 3001v
| Source: David T. Craig Page 0049 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

5.0 6302 CPU EMULATION

The heart of the /// emulator should be the emulation of the 4502 CPU. The
heart may be referred to as the "4502 engine." The emulator should support all
of the 4502 instructions, the 4502 registers, and the special Apple ///
registers (e.g. the bank switch register, the environment register, and the
zero-page register). Special register descriptions and usage can be found in
the Apple /// S0S Reference Manual,

The &502 engine must be smart about accessing memory and use the bank switch and
environment registers correctly.

If this level of the /// emulation is complete and robust the rest of the ///
emulator should work much more easily.

Support for special /// features may also exist at this level of the ///
emulator. For example, the /// emulator may not want to emulate all of the
A7/7's memory-mapped 1/0 features, but instead intercept access to special areas
or routines and call the target machine’s operating system to handle these
features. See sections ROM EMULATION and MEMORY-MAPPED 1/0 EMULATION for more
details.

6.0 ROM EMULATION

The /// emulator should also support as much as possible the ///‘s Boot ROM,
This means the Boot ROM’s routines should work for the most part as-is.

Note: I have a listing of the Boot ROM which could be useful for this emulation
discussion.

For the Boot ROM‘’s floppy disk 1/0 support 1 recommend that all the gory details
here not be supported directly at the memory-mapped 1/0 level but instead the
£// emulator should emulate this 1/0. Specifically, the /// emulator should
intercept any access to the Boot ROM routines which read or write disk blocks
and use the appropriate target machine operating system routines to accomplish
this feature,

The /// emulator should also initialize the ROM’‘s character set which the ROM
normally loads into a special RAM chip that is not accessible to the ///’s 4502
processor. See section MEMORY BANK SWITCHING EMULATION for more details.

7.0 MEMORY-MAPPED 1/0 EMULATION

All memory-mapped I1/0 locations that in some way deal with the physical world
need to be handled by the /// emulator. These areas include such addresses as
the speaker addresses. The Apple /// Service Reference Manual provides detailed
information about these addresses.

All accesses to memory by the /// emulator must respect the bank switch and
environment register settings so that the emulator does not try to access a
memory-mapped address when that address is not mapped into the 4502 address
space.

Programs which access low-level 1/0 locations such as the disk 1/0 addresses
should not be supported. I assume most /// programs will access hardware

Some Ideas about an Apple /// Computer Emulator -- Version 2
David T Craig -- 04 Dec 1997 -—- 5/ 10

“ 159.PICT” 237 KB 2001-08-13 dpi: 300h x 300v pix: 2160h x 3001v
| Source: David T. Craig Page 0050 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

components using 505 or device drivers,
8.0 MEMORY BANK SWITCHING EMULATION

The /// emulator must also fully support the ///’s bank switched and enhanced
indirect addressing memory architecture. Detailed descriptions and usage of ///
memory handling can be found in the Apple /// S0S Reference Manual.

The /// emulator should also support the ///’‘s character set RAM chip. This 12Aﬁ«
holds the bitmap descriptions of each of the 128 characters in the ///

character. This RAM area, which is not accessible to the ///’s 4502 CPU, holds
1024 bytes. See the Apple /// Standard Device Drivers Manual {(Console Character
Sets section) for more information.

Note: 1 believe the storage of the Boot ROM character set is different than the
storage of the character set in the SOS.DRIVER file. 1 believe the ROM
character set has bits that are reversed compared to the SO0S.DRIVER character
set.

The storage of text and graphics in memory should be supported also. This
should happen automatically when a /// program writes to the text/graphic memory
buffers. The emulator needs to detect such writes and update its screen as
appropriate,

9.0 S0S SYSTEM CALL EMULATION

The majority of system calls to 505 and its drivers should most likely not be
intercepted by the /// emulator. But certain calls may need to be intercepted
unless a lower level of the /// emulator intercepts these feature already.

System calls to S80S or drivers that may need intercepting by the /// emulator

could be:

o Disk 1/0 (.D[1-41 and .PROFILE drivers)

o Keyboard 1/0 { .CONSOLE driver)

¢ Screen 1/0 (,CONSOLE and .GRAPHIC drivers?

¢ Sound generation (.AUDIO driver)

o Serial port 1/0 {.R5232 driver?

o Silentypf)Printer (.SILENTYPE) [I‘m not sure about support for thisl
o Clock 1/ e (Y2K datec may be a problem)

1 recommend that the /// emulator intercept all activity dealing with the above
and have the target machine perform the equivalent features. For example, to
read or write a disk block the /// emulator should have a routine that accesses
the appropriate location in the disk image file.

The /// emulator may also provide the user with some type of setup options so
that the user can specify specific properties of some of the above drivers. For
example, if the target machine supports several output ports the emulator may
let the user specify which port to use (e.g. for the .PRINTER driver the user
could assign it to a specific serial or parallel port on the target machine).

Note: The ///‘s clock does not support the year 2000 or greater. I think the
emultator should support Y2K dates but I‘m not sure if 50S8‘s file system date
stamps will support this easily.

Some Ideas about an Apple /// Computer Emulator -- Version 2
David T Craig -- 04 Dec 1997 -- 6 / 10

“ 160.PICT” 239 KB 2001-08-13 dpi: 300h x 300v pix: 2202h x 2983v
| Source: David T. Craig Page 0051 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

10.0 DEVICE DRIVER EMULATION

This section is for the most part handled by my comments in section S0S SYSTEM
CALL EMULATION. I suspect the programming within the /// emulator for this area
could be the most work since there are lots of device drivers that make up a
simple Apple /// configuration.

One area of device drivers that the /// emulator may not want to emulate is
interrupt handling. Since the emulator does not have physical devices connected
to it in any direct fashion I don’t think interrupts exist as far as the
emulator is concerned. Interrupts dealing with disks or the Keyboard can be
handled at a lower level by having the /// emulator call the appropriate system
call in the target machine. These low-level 10 handlers should set up the
appropriate driver data areas so that the rest of the ///’s software (508 and
the interpreter) will work correctly. For example, Keyboard 1/0 should be setup
in the /// emulator so that when the Keyboard input memory-mapped 1/0 location
is accessed the target machine 05 really reads the Keyboard and sets up the
memory-mapped location as appropriate.

11.0 KEYBOARD SUPPORT
11.1 User interface support

The /// computer’s Keyboard layout is basically compatible with modern
keyboards. The /// Keyboard does have two extra Keys, Open Apple and Closed
Apple which are positioned to the left of the Apple /// Keyboard. Alsc present
on the Keyboard are four arrow Keys. The emulator should support these Keys
either directly (i.e., the target machine has similar Keys) or associate other
Keys with the ///‘s special Keys {(e.g., the Macintosh computer’s two Option Keys
could be used to simulate the special Open and Closed Apple Keysd. The
emulator’s ascsociated Keys need not physically be in the same location as the
///'s special Keys but having them in the general area will be beneficial.

NOTE: The /// Plus keyboard contains an extra Key, Delete, compared to the ///
Keyboard.

11.2 Low-level access

The /// emulator should handle low-level access toc the Keyboard memory-mapped
170 locations as detailed in section DEVICE DRIVER EMULATION.

12.0 MONITOR SUPPORT

The emulator should support the Apple’s built-in ROM Monitor. Entry to the
Monitor should be similar to how this is done on a real /// (at startup if Open
Apple and Control Keys are pressed). The code in the ROM which tests for
Monitor entry should work.

13.0 APPLE 10 EMULATION DISK SUPPORT

It would be nice if the /// emulator supported the Apple][Emulation Disk. I‘m
not sure of what would be involved here but suspect that if the ///’s 4302 CPU
and the memory-mapped 1/0 locations are robustly supported that the 1[emulation
should work alsoc without any special additional /// emulation features.

Some Ideas about an Apple /// Computer Emulator -- Version 2
David T Craig -- 04 Dec 1997 -- 7 / 10

“ 161.PICT” 244 KB 2001-08-13 dpi: 300h x 300v pix: 2160h x 3036v
| Source: David T. Craig Page 0052 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

Special consideration may need to be given to Apple /// Keyboard Keys which do
not exist in the Apple 1[I world. 1[emulation details can be found in the Apple
/// Ouner’s Guide and the Apple /// Service Reference Manual.

Note: I have a disassembled listing of the Apple 1[I Emulation Disk ROM source
listing which could prove useful in this area.

Further analysis of the][emulation disk’s boot sequence needs to be done since
I’m unknowledgable about this area. Also, I‘ve heard that the 1[emulation
accesses an 1/0 location which disables some /// features.

14.0 WHAT LANGUAGE SHOULD THE /// EMULATOR BE WRITTEN IN?

I highly recommend that the /// emulator be written in a high level language
such as Pascal or C. This should make the emulator more compatible with
different target computers and make development and maintenance of the emulator
much easier. 1 recommend avoiding low-level languages such as assembly.

15.0 WHAT TARGET MACHINES SHOULD BE SUPPORTED?

I recommend that the target machine {or machines) for the emulator be machines
that are commonly used today by most computer users. This means either the IBM
PC or the Apple Macintosh machine family. For the PC world ! recommend the ///
emulator run under Windows 95 and Windows NT. For the Macintosh world 1
recommend the emulator run on most Macintosh models which means support the
Macintosh 512 and above. Color display should also be supported by the ///
emulator (for the Macintosh this means use Color QuickDraw if the machine
supports CGD and if CQGD is not supported by a Macintosh model use the Classic
B/W QD and maybe use patterns as "colors").

Any of these machines should be fast enough to emulate the /// and most likely
will be too fast in many areas. I recommend some type of speed control be built
into the emulator so that users can control how fast the emulator works. For
many /// programs {e.g. AppleWriter /// and VisiCalc ///) emulation speed will
be immaterial since these programs typically wait for the user to enter data and
then do their thing. But for programs such as games the user will want to
control the emulator speed otherwise the game’s actions will be super fast and
unplayable,

Some people say that the older machines such as (:é?;re-68040 Macintoshs will be
too slow for a reasonable /// emulator. 1 disagree and am willing to wager a

small sum that 1‘m right. T wonld (ke 46 see emul pun m. a Mec 512 maching,

16.0 EMULATOR DEBUGGING FACILITIES <dd it of commands — base
on Macs Buy

The emulator should support a comprehensive built-in debugger. This debugger‘s

purpose should be to let the sophisticated emulator user access any part of the

emulator’s /// address space. This should include all of the memory that is

allocated to the /// as its memory. This memory would encompass the 256K (or

S12K) of /// RAM, the /// ROM (4K), the character set RAM (1K), the 4502

registers, and the special /// registers (e.g. bank register).

This debugger could prove invaluable in diagnosing emulator bugs. qg{}//

The emulator should exist as a seperate window that does not in any way affec

Some Ideas about an Apple /// Computer Emulator -- Version 2
David T Craig -- 04 Dec 1997 -- 8 / 10

“ 162.PICT” 278 KB 2001-08-13 dpi: 300h x 300v pix: 2214h x 3012v

| Source: David T. Craig Page 0053 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

the emulator’s main window,.

The emulator user interface should be based on -a—simpte command)inedgontrel—
schemes All commands and command ocutputs should be text-based. This scheme
could be based on the ///’s Monitor’s commands or on a little more readable
command scheme such as in Apple’s MacsBug debugger. There should be full on-
line help that discusses the debugger commands in general and each command
should also have on-line help available.

Logging of all debugger sessions should be stored to a text file for possib]e-£u4InL
analysis. This text file would be created when the emulator started. The log

file should be appended to by the emulator and only the user can delete the

file.

The debugger should support the standard debugging commands such as
displaying/setting memory, displaying/setting registers, and disassembling 4502
instructions (this disassembly should support the special S0S BRK call).

” g,.%%;”, command to wn —thit OO [0FF
The debugger should support break points, single stepping, and timing buckets.
The timing buckets would be used in conjunction with break points to record how
long a sequence of 4502 instructions took to execute. This can be very useful
in locating emulator bootlenecks.

The debugger should support the collection of statistics about the emulator. 1
recommend tracking how many times specific 4502 opcodes are executed (obviously,
the debugger would need commands to display and clear this information). 1
would also track memory accesses on at least a page (256 bytes) basis.

The debugger should be accessible at any time that the emulator is running. I
recommend some type of Key press combination that the emulator would detect and
display the debugger window. Once the debugger window is active it should
remain on the screen until the user closes the window.

The emulator should also support a special Key press combination at emulator
startup time that activates the debugger just before the /// ROM is run. This
can give the emulator developer a good way of tracing ROM execution.

The emulator should activate the debugger if any fatal emulation errors are
detected. For example, if a /// program attempts to write to write-protected
memory (e.g. S0S‘s address space) then the debugger window should appear stating
the reason for the error.

17.0 WHAT’S NEXT?

Persons seriously interested in creating an Apple /// emulator program should
try to obtain as much /// technical information as possible. The author has
lots of info which he can copy at minimal charge. These persons should also
have access to a working Apple /// computer with a fair number of /// programs.

Other areas of compatibility should also be investigated that this document does
not address. This includes support for other input devices such as the mouse
which does have a 3rd party driver available.

Some Ideas about an Apple /// Computer Emulator -- Version 2
David T Craig -- 04 Dec 1997 —- 9 / 10

“ 163.PICT” 255 KB 2001-08-13 dpi: 300h x 300v pix: 2261h x 3012v
| Source: David T. Craig Page 0054 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

18.0 REFERENCES
Apple /// Owner’s Guide, Apple Computer, 1981

/// Plus Owner‘s Guide, Apple Computer, 1982

:

//7 System Data Sheet, Apple Computer, July 1983

Fg)
o

/// Plus System Data Sheet, Apple Computer, October 1983

ﬁ
o

le /// Standard Device Drivers Manual, Apple Computer, 1981

:

/// 808 Reference Manual, Apple Computer, 1982

=

>
>

Apple /// S0S Device Driver Writer’s Guide, Apple Computer, 1982

Apple /// Service Reference Manual (Level 2), Apple Computer, 1983

£7/ Bits: John Jeppson‘’s Guided Tour of Highway ///, Softalk magazine, May 1983

Bank Switch Razzle-Dazzle , Softalk magazine, August 1982

The Apple Nobody Knows, Apple Orchard magazine, Fall 1981

Apple /// Entry Points, Andy Wells, Call-APPLE, October 1981

Inside the Apple /// Computer ROM, David Craig, November 1997

4

Some Ideas about an Apple /// Computer Emulator -- Version 2
David T Craig -- 04 Dec 1997 -- 10 / 10

“ 164.PICT” 103 KB 2001-08-13 dpi: 300h x 300v pix: 2202h x 2988v
| Source: David T. Craig Page 0055 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

g

Apple I1I Computer Information

BT R P I TP

Apple 111 Emulator Ideas

Version 1 * 28 Nov 1997

“ 165.PICT” 105 KB 2001-08-13 dpi: 300h x 300v pix: 1917h x 2421v
| Source: David T. Craig Page 0056 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

Some ldeas about an Apple /// Computer Emulator

David T. Craig -— 28 November 1997

941 Calle Mejia #1004, Santa Fe, NM 87301 USA
e-mail: 71533.4043compuserve.com

- a8 e e G o o S " A S G S S8 S48 A e . G o S A S T . A - A - - - - - -

__ A
1.0 PURPOSE .,Q’ [w,,r"
2.0 EMULATOR GOALS Chr o
3.0 EMULATOR USER INTERFACE S o
4.0 DISK IMAGES Y
5.0 502 CPU EMULATION P
6.0 ROM EMULATION Py
7.0 MEMORY-MAPPED 1/0 EMULATION ot
8.0 MEMORY BANK SWITCHING EMULATION PR
9.0 S0S SYSTEM CALL EMULATION 1Pl
10.0 DEVICE DRIVER EMULATION o™
11.0 KEYBOARD SUPPORT t
12.0 APPLE 10 EMULATION DISK SUPPORT
13.0 WHAT LANGUAGE SHOULD THE /// EMULATOR BE WRITTEN IN?
14.0 WHAT TARGET MACHINES SHOULD BE SUPPORTED?
15.0 WHAT’S NEXT?
C;&.o [30 REFERENCES . 4)5‘ N)
[0 EMULATOR vmuacma (enrngsy \"3‘ Kh° OV
'@ ’} \ N \ v)
\ \ w W . \‘\’&t"h X \‘(\
“ o\‘ \p & t* UL \v’k”“ ‘\V)ra“ J
N qﬁ)\o»' \’o}, & P N X
0\3‘0\ ‘?‘; N@v@’s@x\t“f
F¥ g Qs T Y N 2
. “' ﬂ L »’ \5 L‘\\: ¢t
r}Q Q b,l' R 0
QV ,aY N0 Tad O

o " S " - o " - -] 2" o "o o T S A T T P P S T O e S e B M P S e . G G S S S S S S = = b S S -

28 Nov 1997 -- Version 1 -- Created by David T. Craig

Some Ideas about an Apple /// Computer Emulator <(version 1) - DTC - 28 Nov 1997 - {1 / 8
“ 166.PICT” 168 KB 2001-08-13 dpi: 300h x 300v pix: 2291h x 2971v

| Source: David T. Craig Page 0057 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

1.0 PURPOSE

This document describes some ideas about implementing a software emulator for
the Apple /// computer. These ideas are based on my experiences with the Apple
/// computer and its software programming. No specific target machine is
mentioned in this document since these ideas should be non-target machine
specific. These ideas are submitted to stimulate thought about such an emulator
and hopefully inspire someone to produce a workKing Apple /// emulator.

The technical details behind the Apple /// computer, its operating system (S0S),
and /// programs (e.g. AppleWriter ///) are based on my extensive collection of
/// technical manuals, specification sheets, and many /// technical articles
(Dr. John Jeppson‘s articles are very exhaustive and full of lots of neat ///
techoid stuff). 1 have around 15 Apple manuals, the majority of which were
published by Apple, which include user manuals and the technical programming
manuals.

For those people seriously interested in implementing an Apple /// emulator
program 1 highly recommend that they have at least the Apple /// Service
Reference Manual. This manual, which is almost 500 pages long, is the
definitive reference for how the Apple /// computer works. Most of its contents
describe theory of operation even though its title suggests service-type
information only. The important features of this manual for a /// emulator
writer are the /// memory map and the /// memory mapped 1/0 locations.

1 also own an Apple /// computer which still today works very well. 1
programmed the /// many moons ago and have workKed professionally as an Apple
Macintosh computer programmer since 1984.

NOTE
All comments are welcome, If you have anything to add or correct please let me
Know and I will update the master copy of this document,.

\?
2.0 EMULATOR GOALS Ty &\\m u\w‘\ S (.eg.\:u\w) .

The /// emulator should provide a complete emulation environment for the
faithful execution of Apple /// and /// Plus programs. As far as the emulator
user is concerned when they run the emulator program their computer should work
Just like an Apple /// computer and all // visual fidelity should be maintained.
Emulation of the Apple /// Plus computer may also be supported (this means the
/// Plus’ interlaced screen). 1f the /// Plus is supported by the emulator you
may want to let the user specify if they want to run a /// or a /// Plus.

mn Swonld he wmwdo b ok 32K Tn e 2K-SILE
The /// emulator should support an Apple /// computer with at least 254K of
memory and four floppy 140K disks (.D1, .D2, .D3, .D4>. Support for 512K of
memory may also exist since the ///’s operating system (80S) supports up to 512K
of memory. Support for a ProFile disk may also exist (for this disk there would
need to be a disk image with a size of SM). The first floppy disk ¢(.D1) would
correspond to the floppy disk drive that is built into the Apple ///. The other
disks correspond to external disks and should exist as image files with specific
file names (e.g. "Apple 3 D1*, "Apple 3 D2®, etc). The ProFile disk image file
should also have a specific file name (e.g. "Apple 3 ProFile"),

3.0 EMULATOR USER INTERFACE

Some Ideas about an Apple /// Computer Emulator (version 1) - DTC - 28 Nov 1997 - 2/ 8
“ 167.PICT” 288 KB 2001-08-13 dpi: 300h x 300V pix: 2243h x 2941v

| Source: David T. Craig Page 0058 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

When the user runs the Apple /// emulator program the user should see on their
computer screen a screen (or a window representing the screen) corresponding to
the ///’s screen which the user would see if they were in front of a real Apple
/// computer. A1l /// text and graphic modes should be supported by the ///
emulator (this includes the special modes supported by the /// Plus and its
interlaced screen architecture),

1 recommend that the emulator also support a screen dump facility that writes
the current /// screen to either a text file (for text modes) or to a graphic
file (for graphic modes) or always just creates a graphic file. The screen dump
graphic file should be a standard graphic file for whatever target machine your
support {e.g. on the IBM PC running Windows produce .BMP files, on the Apple
Macintosh produce PICT files).

4.0 DISK IMAGES .1L
|

The /// emulator should read disk image files which correspowﬁ/directly to real
/// 140K disks. When the /// emulator starts it should look/its folder and if
there exists a /// disk image file the emulator should boot this image. 1I+f
there are multiple disk image files then the emulator may want to display a list
of these images and have the user select an image to boot.

The disk images should be exact copies of real /// disks. To maKe copies of
these disks there should exist an utility program that runs on the /// computer
and which outputs disk block data to the /// serial port. On the target machine
there should exist a similar utility that inputs the disk block data and creates
a disk image file. I recommend that the transmitted disk block data consist of
a hex dump with block number and checksum information in a human readable
fashion. The receiving program (on the target computer) would read this human
readable information, verify that the data was sent correctly, and produce
binary disk image file images. Note: I plan to create such a utility for my

Apple /// and for my Apple Macintosh.) app 31(‘,?)”"“\.\5 Tﬁﬂ (.'DTLD«AL‘:

There should also exist a disk image file for the ///‘s Boot RDM (recommended
file name: "Apple 3 Boot ROM"). This image should contain the 4K ROM image.

Users should also be able to format a disk image by specifying the disk drive
device name (e.g. .D2). \Users should then be able to name the disk image so
that they can use it later.

1 recommend that all disk image files have a very specific internal format.
This format should support the verification of disk image files so that if a
disk image file becomes corrupted in some fashion the /// emulator can detect
this corruption, not use the image, and alert the user. The proposed image
format is as follows:

The disk image file contains two parts, a header part and a data part. The
header part contains identification and verification information. The data part
contains the actual disk bltocks for the /// disk. The header part is 512 byrtes
in size.

The header part contains (size is in bytes);

Field Size Comments

Signature 16 Contains "APPLE /// IMAGE "
2 Yo ¥ Ll\"\X“) Nor

Some Ideas about an Apple /// Computer Emulator (version 1) - DTC - 28 Nov 1997 - 3/ 8

“ 168.PICT” 279 KB 2001-08-13 dpi: 300h x 300v pix: 2154h x 2995v

| Source: David T. Craig Page 0059 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

Endian Format 2 Contains either “LL" or "BB" [01 q/‘“

Image Mame 128 Name of image anything the user wants,
most likely the name of the interpreter on the disk,
e.g. "Apple Writer /77" [1]

Creation Date 10 Date image file created, format "YYYY-MM-DD"
Modification Date 10 Date image file modified, format "“YYYY-MM-DD"

Created by Name 80 Name of person or company who created this image [1]
Comment 128 Comment for anything user wants [1]

Data Part Size 4 Size of data part

Data Part Checksum 4 Checksum for data part [2]

Reserved 132 Reserved for future use, fill with hex %00

Header Checksum 4 Checksum for header part [2]

Notes:

[0) The endian format specifies the byte ordering within 2 and 4 byte integer
values. "LL" stands for "Little Endian* and "BB" stands for "Big Endian." This
is needed so disk images created on one type of machine (e.g. IBM PC - Little
Endian) can be correctly read by other machines (e.g. Apple Macintosh - Big
Endian).

{11 A1l strings are stored in the header as Pascal strings which beginbzithba I
single byte specifying the length in bytes of the string’s contents. w (2]
9 P 9 9 9 7 ///ll“./

[21 The checksum should be calculated as the exclusive~-OR of each byte followed
br a left rotation of 1 bit. CS$ ot 4 at ¢

5.0 6502 CPU EMULATION

The heart of the /// emulator should be the emulation of the 43502 CPU. The
heart may be referred to as the "é502 engine."* The emulator should support all
of the 4502 instructions, the 4502 registers, and the special Apple ///
registers (e.g. the bank switch register, the environment register, and the
zero-page register). Special register descriptions and usage can be found in
the Apple /// S0S Reference Manual.

The 4502 engine must be smart about accessing memory and use the bank switch and
environment registers correctly.

1f this level of the /// emulation is complete and robust the rest of the ///
emulator should work much more easily.

Support for special /// features may also exist at this level of the ///
emulator. For example, the /// emulator may not want to emulate all of the
///'s memory-mapped 1/0 features, but instead intercept access to special areas
or routines and call the target machine’s operating system to handle these
features. See sections ROM EMULATION and MEMORY-MAPPED 1/0 EMULATION for more
details.

é.0 ROM EMULATION

The /// emulator should also support as much as possible the ///‘s Boot ROM.
This means the Boot ROM‘s routines should work for the most part as-is.

Note: I have a listing of the Boot ROM which could be useful for this emulation
discussion.

Some Ideas about an Apple /// Computer Emulator <(version 1) - DTC - 28 Nov 1997 - 4 / 8

“ 169.PICT” 244 KB 2001-08-13 dpi: 300h x 300v pix: 2249h x 3131v
| Source: David T. Craig Page 0060 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

For the Boot ROM‘s floppy disk 1/0 support 1 recommend that all the gory details
here not be supported directly at the memory-mapped 1/0 level but instead the
/// emulator should emulate this 1/0. Specifically, the /// emulator should
intercept any access to the Boot ROM routines which read or write disk blocks
and use the appropriate target machine operating system routines to accomplish
this feature,

The /// emulator should also initialize the ROM’s character set which the ROM
normally loads into a special RAM chip that is not accessible to the ///‘s 4502
processor, See section MEMORY BANK SWITCHING EMULATION for more details.

7.0 MEMORY-MAPPED 170 EMULATION

A1l memory-mapped 1/0 locations that in some way deal with the physical world
need to be handled by the /// emulator. These areas include such addresses as
the speaker addresses, The Apple /// Service Reference Manual provides detailed
information about these addresses.

All accesses to memory by the /// emulator must respect the bank switch and
environment register settings so that the emulator does not try to access a
memory-mapped address when that address is not mapped into the 4502 address
space,

8.0 MEMORY BANK SWITCHING EMULATION

The /// emulator must also fully support the ///’s bank switched and enhanced
indirect addressing memory architecture. The emulator’s 4502 engine 2

Detailed descriptions and usage of /// memory handling can be found in the Apple
/// 505 Reference Manual.

The /// emulator should also support the ///’s character set RAM chip. This
holds the bitmap descriptions of each of the 128 characters in the ///
character. This RAM area, which is not accessible to the ///’s 4502 CPU, holds
1024 bytes. See the Apple /// Standard Device Drivers Manual (Conscle Character
Sets section) for more information.

Note: 1 believe the storage of the Boot ROM character set is different than the
storage of the character set in the SOS.DRIVER file. I believe the ROM
character set has bits that are reversed compared to the S0S.DRIVER character
set.

?.0 S0S SYSTEM CALL EMULATION

The majority of system calls to S0S and its drivers should most likely not be
intercepted by the /// emulator. But certain calls may need to be intercepted
unless a lower level of the /// emulator intercepts these feature already.
System calls to S0S or drivers that may need intercepting by the 74/ emulator
could be: —_

¢

o Disk 1/0 (.D[1-4) and .PROFILE drivers) <
o Keyboard 1/0 (.CONSOLE driver) O&
o Screen 1/0 (.CONSOLE and .GRAPHIC drivers) QV

o Sound generation (.AUDIO driver) .

0 Serial port 1/0 <(.RS232 driver)

Some Ideas about an Apple /// Computer Emulator <(version 1) - DTC - 28 Nov 1997 - 5/ 8

“ 170.PICT” 242 KB 2001-08-13 dpi: 300h x 300v pix: 2154h x 2941v
| Source: David T. Craig Page 0061 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

1 recommend that the /// emulator intercept all activity dealing with the above
and have the target machine perform the equivalent features. For example, to
read or write a disk block the /// emulator should have a routine that accesses
the appropriate location in the disk image file.

The /// emulator may also provide the user with some type of setup options so
that the user can specify specific properties of some of the above drivers. For
example, if the target machine supports several output ports the emulator may
let the user specify which port to use (e.g. for the .PRINTER driver the user
could assign it to a specific serial or parallel port on the target machine).

10.0 DEVICE DRIVER EMULATION

This section is for the most part handled by my comments in section 505 SYSTEM
CALL EMULATION. 1 suspect the programming within the /// emulator for this area
could be the most work since there are lots of device drivers that make up a
simple Apple /// configuration.

One area of device drivers that the /// emulator may not want to emulate is
interrupt handling. Since the emulator deces not have physical devices connected
to it in any direct fashion I don’t think interrupts exist as far as the
emulator is concerned. Interrupts dealing with disks or the Keyboard can be
handled at a lower level by having the /// emulator call the appropriate system
call in the target machine. These low-level 1/0 handlers should set up the
appropriate driver data areas so that the rest of the ///’s software (S0S and
the interpreter) will work correctly. For example, Keyboard 1/0 should be setup
in the /// emulator so that when the Keyboard input memory-mapped 1/0 location
is accessed the target machine 0S5 really reads the Keyboard and sets up the
memory-mapped location as appropriate.

11.0 KEYBOARD SUPPORT
11.1 User interface support

The /// computer’s Keyboard layout is basically compatible with modern
kevboards. The /// Keyboard does have two extra Keys, Open Apple and Closed
Apple which are positioned to the left of the Apple /// Keyboard. Also present
on the Keyboard are four arrow Keys. The emulator should support these Keys
either directly (i.e., the target machine has similar Keys) or associate other
keys with the ///‘s special Keys (e.g., the Macintosh computer’s two Option Keys
could be used to simulate the special Open and Closed Apple Keys). The
emulator’s associated Keys need not physically be in the same location as the
///7’s special Keys but having them in the general area will be beneficial.

Apple /// Plus Note: The /// Plus Keyboard contains an extra Key, Delete,
compared to the /// Keyboard.

11.2 Low-level access

The /// emulator should handle low-level access to the Keyboard memory-mapped
1/0 locations as detailed in section DEVICE DRIVER EMULATION.

12.0 APPLE 1[I EMULATION DISK SUPPORT

1t would be nice if the /// emulator supported the Apple 1[Emulation Disk. 1I’‘m

Some Ideas about an Apple /// Computer Emulator <{version 1) - DTC - 28 Nov 1997 -6 / 8

“ 171.PICT” 261 KB 2001-08-13 dpi: 300h x 300V pix: 2174h x 2942v

| Source: David T. Craig Page 0062 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

not sure of what would be involved here but suspect that if the ///’s 4502 CPU
and the memory-mapped 1/0 locations are robustly supported that the 1[emulation
should work alsoc without any special additional /// emulation features.

Special consideration may need to be given to Apple /// Keyboard Keys which do
not exist in the Apple 1[I world. 1[emulation detajls can be found in the Apple

/// Ouner’s GuideLp KY) and Sewiu Mmuel (pR). oflha \:»'\\%q.t;\abh%f‘
13.0 WHAT LANGUAGE SHOULD THE /// EMULATOR BE WRITTEN IN? am

I recommend highly that the /// emulator be written in a high level language
such as Pascal or C. This should make the emulator more compatible with
different target computers and make development and maintenance of the emulator
much easier. 1 recommend avoiding low-level languages such as assembly.

14.0 WHAT TARGET MACHINES SHOULD BE SUPPORTED?

1 recommend that the target machine (or machines) for the emulator be machines
that are commonly used today by most computer users. This means either the IBM
PC or the Apple Macintosh machine family. For the PC world I recommend the ///
emulator run under Windows 95 and Windows NT. For the Macintosh world 1
recommend the emulator run on most Macintosh models which means support the
Macintosh 512 and above. Color display should also be supported by the ///
emulator (for the Macintosh this means use Color QuickDraw if the machine
supports CGD and if COD is not supported by a Macintosh model use the Classic
B/W @D and maybe use patterns as "colors").

Any of these machines should be fast enough to emulate the /// and most likely
will be too fast in many areas. 1 recommend some type of speed control be built
into the emulator so that users can control how fast the emulator works. For
many /// programs {e.g. AppleWriter /// and VisiCalc ///) emulation speed will
be immaterial since these programs typically wait for the user to enter data and
then do their thing. But for programs such as games the user will want to
control the emulator speed otherwise the game’s actions will be super fast and
unplayable.

15.0 WHAT’S NEXT?

Persons seriously interested in creating an Apple /// emulator program should
try to obtain as much /// technical information as possible. The author has
lots of info which he can copy at minimal charge. These persons should also
have access to a working Apple /// computer with a fair number of /// programs.

Other areas of compatibility should also be investigated that this document does
not address. This includes support for other input devices such as the mouse
which does have a 3rd party driver available,

16.0 ¢ MWATOR DEPUGHING TAULITIES
1£.0 REFERENCES

.0
Apple /// Owner’s Guide, Apple Computer, 1981
Apple /// Plus Owner‘s Guide, Apple Computer, 1982
Apple /// System Data Sheet, Apple Computer, July 1983

Apple /// Plus System Data Sheet, Apple Computer, October 1983

Some Ideas about an Apple /// Computer Emulator <(version 1) - DTC - 28 Nov 1997 - 7 / 8

“ 172.PICT” 269 KB 2001-08-13 dpi: 300h x 300v pix: 2231h x 2977v
| Source: David T. Craig Page 0063 of 0064 |

Apple Il Computer Information ¢ Doc# 191 <« Apple lll Emulator Ideas

Apple /// Standard Device Drivers Manual, Apple Computer, 1981
Apple /// SO0S Reference Manual, Apple Computer, 1982
Apple /// S08S Device DrivefWriter’s Guide, Apple Computer, 1982

Apple /// Service Reference Manual (Level 2), Apple Computer, 1983

/// Bits: John Jeppson’s Guided Tour of the Highway ///, SoftalKk magazine, May
1983

Bank Switch Razzle-Dazzle, Softalk magazine, August 1982

The Apple Nobody Knows, Apple Orchard magazine, Fall 1981
HiH

Some Ideas about an Apple /// Computer Emulator <(version 1) - DTC - 28 Nov 1997 - 8/ 8

“ 173.PICT” 74 KB 2001-08-13 dpi: 300h x 300v pix: 2101h x 2935v
| Source: David T. Craig Page 0064 of 0064 |

