Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

Rpple /// Computer Information

APPLE ///
CMULATOR IDERS

(

ADDED BY DAVID T CRAIG - 2006
| Chapter 28 of 28 « Apple Computer Inc « 1982 Page 0001 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

g

Apple 11T Computer Information

L T A N Y S

Apple III Emulator Ideas

Version4 * 12 Dec1997

| Chapter 28 of 28 « Apple Computer Inc « 1982 Page 0002 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

=

SOME IDEAS ABOUT AN & APPLE /// COMPUTER EMULATOR

David T. Craig -- 12 December 1997 -- Version 4

941 Calle Mejia #1006, Santa Fe, NM 87501 USA
e-mail: 71533.606@compuserve.com

S N

TABLE OF CONTENTS Tl qgﬁl)f//ééT :
1.0 PURPOSE ead ¢ (L Z)
2.0 EMULATOR GOALS /f‘& Lot orrecdms 7 /L°2¢ il
2.8 EMULATOR USER INTERFACE i 1 e

. DISK IMAGES “ /) S L.
5.0 6502 CPU EMULATION M{/f”‘z/’“é’ /- freed /’/"/”’7 AL 2 sy ey
6.0 ROM EMULATION 274 . 24
7.0 MEMORY -MAPPED I/0 EMULATION “ g-"c* char set bante = K
8.0 MEMORY BANK SWITCHING EMULATION 4
9.0 SOS SYSTEM CALL EMULATION /0— __ 1 4l extra 7y c e 4‘/‘«&-“_\
10.0 DEVICE DRIVER EMULATION G170 dodt v <
11.0 KEYBOARD SUPPORT v i (AN s
12.0 MONITOR SUPPORT D worris.
13.0 APPLE] [EMULATION DISK SUPPORT
14.0 WHAT LANGUAGE SHOULD THE /// EMULATOR BE WRITTEN IN? _ Ciy/
15.0 WHAT TARGET MACHINES SHOULD BE SUPPORTED? /- //4;‘95’ Hoice
16.0 EMULATOR DEBUGGING FACILITIES) L Z, o
17.0 EMULATOR MEMORY STRUCTURE 20~ SCriote JU - chéua 5 D cmn C rhoe
18.0 WHAT'S NEXT? QS7 7, . 4 7/ _ [
19.0 REFERENCES Y = DIs K BurFer- 17 8 C b naner Cupger coe

D .2SQ> ;- =/ /prr’='<7)
MODIFICATI(Z)@-IISTORY ic- $$ ’ ,
= ‘ (- LPabe- show othet byle line

” vt G 24 ,
l(/ - ,%‘7(’ s 7{“4:'" S(Z;L:W .C(;,.. ;‘;Lr4 cadrz

28 Nov 1997 -- Version 1

Created by David T. Craig. Yz~ 173 el sevag U ol
ﬁPAh: 13- 5 ¢ viwdL
04 Dec 1997 -- Version 2 21 — ¥ou1 FoN1KI -

New sections: MONITOR SUPPORT, EMULATOR DEBUGGING FACILITIES.

Updated sections: DISK IMAGES, MEMORY BANK SWITCHING EMULATOR, SOS SYSTEM CALL
EMULATION, REFERENCES.

Added several good comments by Chris Smolinski (he's writing a /// emulator called
SARA) .

09 Dec 1997 -- Version 3

DISK IMAGES: Updated info about DTCMake3///DiskImage Mac application, made disk image
file an all-text file.

SOS SYSTEM CALL EMULATION: typo Silentypr --> Silentype.

WHAT TARGET MACHINES SHOULD BE SUPPORTED: More pre-68040 Mac comments.

EMULATOR DEBUGGING FACILITIES: typo affects --> affect, added info about
enabling/disabling SOS BRK disassembly, same for ProDOS, added list of emulator
debugging commands.

EMULATOR MEMORY STRUCTURE: New section.

12 Dec 1997 -- Version 4
EMULATOR DEBUGGING FACILITIES: Added examples to every debugging command. Added
commands SNAPSHOTW, SNAPSHOTR, ZPAGE, SPAGE, EPAGE, DRIVERS, macro commands.

Some Ideas about an & Apple /// Computer Emulator - Version 4
David T Craig - 12 Dec 1997 -1 /23

| Chapter 28 of 28 « Apple Computer Inc « 1982 Page 0003 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

1.0 PURPOSE

This document describes some ideas about implementing a software emulator for the
Apple /// computer. These ideas are based on my experiences with the Apple ///
computer and its software programming. No specific target machine is mentioned in
this document since these ideas should be non-target machine specific. These ideas
are submitted to stimulate thought about such an emulator and hopefully inspire
someone to produce a working Apple /// emulator.

The technical details behind the Apple /// computer, its operating system (SOS), and
/// programs (e.g. AppleWriter ///) are based on my extensive collection of ///
technical manuals, specification sheets, and many /// technical articles (Dr. John
Jeppson's articles are very exhaustive and full of lots of neat /// techoid stuff).
I have around 15 Apple manuals, the majority of which were published by Apple, which
include user manuals and the technical programming manuals.

For those people seriously interested in implementing an Apple /// emulator program I
highly recommend that they have at least the Apple /// Service Reference Manual.

This manual, which is almost 500 pages long, is the definitive reference for how the
Apple /// computer works. Most of its contents describe theory of operation even
though its title suggests service-type information only. The important features of
this manual for a /// emulator writer are the /// memory map and the /// memory
mapped I/0 locations.

I also own an Apple /// computer which still today works very well. I programmed the
/// many moons ago and have worked professionally as an Apple Macintosh computer
programmer since 1984.

Note: All comments are welcome. If you have anything to add or correct please let me
know and I will update the master copy of this document.

2.0 EMULATOR GOALS

The /// emulator should provide a complete emulation environment for the faithful
execution of Apple /// and /// Plus programs. As far as the emulator user is
concerned when they run the emulator program their computer should work just like an
Apple /// computer and all /// visual fidelity should be maintained. Emulation of
the Apple /// Plus computer may also be supported (this means the /// Plus’
interlaced screen). If the /// Plus is supported by the emulator you may want to let
the user specify if they want to run a /// or a /// Plus.

I think it would be beyond neat if the emulator could run Apple's running horses demo
and the other /// demos.

The /// emulator should support an Apple /// computer with at least 256K of memory
and four floppy 140K disks (.D1, .D2, .D3, .D4). Support for 512K of memory may also
exist since the ///'s operating system (SOS) supports up to 512K of memory. Memory
size, if variable, should always be a multiple of 32K. I believe the lowest memory
size supported by the /// (ROM?) is 96K. Support for a ProFile disk may also exist
(for this disk there would need to be a disk image with a size of 5M). The first
floppy disk (.D1) would correspond to the floppy disk drive that is built into the
Apple ///. The other disks correspond to external disks and should exist as image
files with specific file names (e.g. "Apple 3 D1", "Apple 3 D2", etc). The ProFile
disk image file should also have a specific file name (e.g. "Apple 3 ProFile").

Image file names should have an extension (e.g. ".D3I") since this is needed by PCs.
3.0 EMULATOR USER INTERFACE

when the user runs the Apple /// emulator program the user should see on their
computer screen a screen (or a window representing the screen on GUI systems)

corresponding to the ///'s screen which the user would see if they were in front of a
real Apple /// computer. All /// text and graphic modes should be supported by the

Some Ideas about an & Apple /// Computer Emulator -- Version 4
David T Craig - 12 Dec 1997 -- 2 /23

| Chapter 28 of 28 « Apple Computer Inc « 1982 Page 0004 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

/// emulator (this includes the special modes supported by the /// Plus and its
interlaced screen architecture).

I recommend that the emulator also support a screen dump facility that writes the
current /// screen to either a text file (for text modes) or to a graphic file (for
graphic modes) or always just creates a graphic file. The screen dump graphic file
should be a standard graphic file for whatever target machine your support (e.g. on
the IBM PC running Windows produce .BMP files, on the Apple Macintosh produce PICT
files). Since the /// supports custom character sets dumping the screen to a PICT
file (or to the target computer's clipboard) may be the best solution.

The emulator screen if implemented in a GUI window may also display a status area at
the bottom of the window. This status area would display at least two lines of text
and would keep the user informed of what the emulator was doing internally.

4.0 DISK IMAGES

The /// emulator should read disk image files which correspond directly to real ///
140K disks. When the /// emulator starts it should look in its folder and if there
exists a /// disk image file the emulator should boot this image. If there are
multiple disk image files then the emulator may want to display a list of these
images and have the user select an image to boot.

The disk images should be exact copies of real /// disks. To make copies of these
disks there should exist an utility program that runs on the /// computer and which
outputs disk block data to the /// serial port (I plan to make this utility and call
it DTCDumpIt). This utility's output should be a hex/ascii dump that specifies block
numbers and has a checksum for each line of data. This utility should ask the user
if it should dump a file or a disk.

On the target machine there should exist a similar utility that inputs the disk block
data and creates a disk image file. I recommend that the transmitted disk block data
consist of a hex dump with block number and checksum information in a human readable
fashion. The receiving program (on the target computer) would read this human
readable information, verify that the data was sent correctly, and produce binary
disk image file images (I plan to create this utility for the Apple Macintosh and
call it DTCMake///DiskImage).

There should also exist a disk image file for the ///'s Boot ROM (recommended file
name: "Apple 3 Boot ROM"). This image should contain the 4K ROM image. This ROM
should be the Revision 1 ROM (not Revision 0) since this was the last ROM produced
and SOS 1.3 (the last SOS) requires this ROM.

Users should also be able to format a disk image by specifying the disk drive device

name (e.g. .D2). Users should then be able to name the disk image so that they can
use it later. Users should be able to assign specific disk images to specific disk
drives.

I recommend that all disk image files have a very specific internal format. This
format should support the verification of disk image files so that if a disk image
file becomes corrupted in some fashion the /// emulator can detect this corruption,
not use the image, and alert the user.

Note: Support for existing Apple][disk image files may be feasible but I recommend
against this since the format of these images could change.

The proposed image format:

The disk image file contains two parts, a header part and a data part. The header
part appears first followed by the data part. The header part contains
identification and verification information. The data part contains the actual disk
blocks for the /// disk. This file contains only text, no binary data appears here
in any fashion. The only non-text information that can appear in these files is the
Carriage Return (CR) and the Line Feed (LF) characters. The emulator should ignore

Some Ideas about an & Apple /// Computer Emulator -- Version 4
David T Craig -- 12 Dec 1997 - 3 /23

| Chapter 28 of 28 « Apple Computer Inc « 1982 Page 0005 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

LFs if appropriate.
Character case is immaterial.
this format is so these image files can be transferred over the internet without the
need for any binary-to-text conversion.
by people using a word processor.

characters.

The header part contains:

Signature
Version
Image Name

Creation Date
Created by Name
Comment

Data Size

Data Checksum
Reserved 1
Reserved 2
Reserved 3
Reserved 4

Tech Comment

rd

All information appears in lines with a maximum length of 255
Blank lines are ignored. The reason for

Also, text-only files can easily be viewed

Comments

"APPLE /// DISK IMAGE"

"VERSION" version number (e.g. "1")

"IMAGE NAME" name of image, anything the user wants,
most likely the name of the interpreter on the disk,
e.g. "Apple Writer ///"

"CREATED" date image file created, "YYYY-MM-DD"
"CREATED BY" name of person or company who created this image
"COMMENT" comment for anything user wants

"DATA SIZE" size of data part (decimal, e.g. "143360")
"DATA CHECKSUM" hexadecimal checksum (e.g. "FA7C3188")
"RESERVED"

"RESERVED"

"RESERVED"

"RESERVED"

"TECH COMMENT" name of program that this is for

Header Checksum "HEADER CHECKSUM" hexadecimal checksum (e.g. "B97C31D5")

Notes:

The checksum should be calculated as the exclusive-OR of each byte followed by a left
rotation of 1 bit. Checksum starts with zero. Checksums should always be 4 bytes in
size and be stored in the header as an 8 character string.

The Tech Comment's purpose is to allow people who obtain an image file to be able to
contact someone about the file's purpose.

The data part contains lines representing 16 bytes from the original disk. Each line
has a specific format which begins with the starting disk address for the line, 16
bytes, the ASCII equivalent of the 16 bytes, and a checksum for the bytes of the line
with the format:

[00000000] 0123 4567 89%ab cdef 0123 4567 89ab cdef [1234567890123456] 12345678
The last line of the file must be the word "FINIS".
Sample disk image file:

APPLE /// DISK IMAGE
VERSION 1

IMAGE NAME Apple Writer ///
CREATED 1997-10-11

CREATED BY David T. Craig
COMMENT Thanks to Paul Lutus
DATA SIZE 16

DATA CHECKSUM FA7C3188
RESERVED

RESERVED

RESERVED

RESERVED

TECH COMMENT For David Craig's /// Emulator - 71533.606@compuserve.com
HEADER CHECKSUM BS7C31D5

[00000000] 0123 4567 89ab cdef 0123 4567 89ab cdef [Apple.///.Emul..] FA7C3188

Some Ideas about an & Apple /// Computer Emulator - Version 4
David T Craig - 12 Dec 1997 -- 4 /23

| Chapter 28 of 28 « Apple Computer Inc « 1982 Page 0006 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

FINIS
5.0 6502 CPU EMULATION

The heart of the /// emulator should be the emulation of the 6502 CPU. The heart may
be referred to as the "6502 engine." The emulator should support all of the 6502
instructions, the 6502 registers, and the special Apple /// registers (e.g. the bank
switch register, the environment register, and the zero-page register). Special
register descriptions and usage can be found in the Apple /// SOS Reference Manual.

The 6502 engine must be smart about accessing memory and use the bank switch and
environment registers correctly.

If this level of the /// emulation is complete and robust the rest of the ///
emulator should work much more easily.

Support for special /// features may also exist at this level of the /// emulator.
For example, the /// emulator may not want to emulate all of the ///'s memory-mapped
I/0 features, but instead intercept access to special areas or routines and call the
target machine's operating system to handle these features. See sections ROM
EMULATION and MEMORY-MAPPED I/O EMULATION for more details.

6.0 ROM EMULATION

The /// emulator should also support as much as possible the ///'s Boot ROM. This
means the Boot ROM's routines should work for the most part as-is.

Note: I have a listing of the Boot ROM which could be useful for this emulation
discussion.

For the Boot ROM's floppy disk I/O support I recommend that all the gory details here
not be supported directly at the memory-mapped I/O level but instead the /// emulator
should emulate this I/O. Specifically, the /// emulator should intercept any access
to the Boot ROM routines which read or write disk blocks and use the appropriate
target machine operating system routines to accomplish this feature.

The /// emulator should also initialize the ROM's character set which the ROM
normally loads into a special RAM chip that is not accessible to the ///'s 6502
processor. See section MEMORY BANK SWITCHING EMULATION for more details.

7.0 MEMORY -MAPPED I/0 EMULATION

All memory-mapped I/0 locations that in some way deal with the physical world need to
be handled by the /// emulator. These areas include such addresses as the speaker
addresses. The Apple /// Service Reference Manual provides detailed information
about these addresses.

All accesses to memory by the /// emulator must respect the bank switch and
environment register settings so that the emulator does not try to access a memory-
mapped address when that address is not mapped into the 6502 address space.

Programs which access low-level I/O locations such as the disk I/O addresses should
not be supported. I assume most /// programs will access hardware components using
SO0S or device drivers.

Note: Chris Smolinski says that emulating the low-level stuff on a Power PC-based
Macintosh is not very difficult and works rather fast (he's implemented in his SARA
emulator the ///'s floppy disk I/O).

8.0 MEMORY BANK SWITCHING EMULATION
The /// emulator must also fully support the ///'s bank switched and enhanced

indirect addressing memory architecture. Detailed descriptions and usage of ///
memory handling can be found in the Apple /// SOS Reference Manual.

Some Ideas about an & Apple /// Computer Emulator -- Version 4
David T Craig - 12 Dec 1997 -- 5 /23

| Chapter 28 of 28 « Apple Computer Inc « 1982 Page 0007 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

The /// emulator should also support the ///'s character set RAM chip. This holds
the bitmap descriptions of each of the 128 characters in the /// character. This RAM
area, which is not accessible to the ///'s 6502 CPU, holds 1024 bytes. See the Apple
/// Standard Device Drivers Manual (Console Character Sets section) for more
information.

Note: I believe the storage of the Boot ROM character set is different than the
storage of the character set in the SOS.DRIVER file. I believe the ROM character set
has bits that are reversed compared to the SOS.DRIVER character set.

The storage of text and graphics in memory should be supported also. This should
happen automatically when a /// program writes to the text/graphic memory buffers.
The emulator needs to detect such writes and update its screen as appropriate.

9.0 SOS SYSTEM CALL EMULATION

The majority of system calls to SOS and its drivers should most likely not be
intercepted by the /// emulator. But certain calls may need to be intercepted unless
a lower level of the /// emulator intercepts these feature already. System calls to
SO0S or drivers that may need intercepting by the /// emulator could be:

o Disk I/O (.D[1-4] and .PROFILE drivers)

o Keyboard I/0 (.CONSOLE driver)

0 Screen 1/0 (.CONSOLE and .GRAPHIC drivers)

o Sound generation (.AUDIO driver)

o Serial port I/O (.RS232 driver)

o Silentype Printer (.SILENTYPE) [I'm not sure about support for this]

o Clock I/O (Y2K dates may be a problem)

I recommend that the /// emulator intercept all activity dealing with the above and

have the target machine perform the equivalent features. For example, to read or
write a disk block the /// emulator should have a routine that accesses the
appropriate location in the disk image file.

The /// emulator may also provide the user with some type of setup options so that
the user can specify specific properties of some of the above drivers. For example,
if the target machine supports several output ports the emulator may let the user
specify which port to use (e.g. for the .PRINTER driver the user could assign it to a
specific serial or parallel port on the target machine).

Note: The ///'s clock does not support the year 2000 or greater. I think the
emulator should support Y2K dates but I'm not sure if SOS's file system date stamps
will support this easily.

10.0 DEVICE DRIVER EMULATION

This section is for the most part handled by my comments in section SOS SYSTEM CALL
EMULATION. I suspect the programming within the /// emulator for this area could be
the most work since there are lots of device drivers that make up a simple Apple ///
configuration.

One area of device drivers that the /// emulator may not want to emulate is interrupt
handling. Since the emulator does not have physical devices connected to it in any
direct fashion I don't think interrupts exist as far as the emulator is concerned.
Interrupts dealing with disks or the keyboard can be handled at a lower level by
having the /// emulator call the appropriate system call in the target machine.

These low-level I/0 handlers should set up the appropriate driver data areas so that
the rest of the ///'s software (SOS and the interpreter) will work correctly. For
example, keyboard I/0 should be setup in the /// emulator so that when the keyboard
input memory-mapped I/O location is accessed the target machine OS really reads the
keyboard and sets up the memory-mapped location as appropriate.

11.0 KEYBOARD SUPPORT

Some Ideas about an & Apple /// Computer Emulator -- Version 4
David T Craig -- 12 Dec 1997 - 6 /23

| Chapter 28 of 28 « Apple Computer Inc « 1982 Page 0008 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

11.1 User interface support

The /// computer's keyboard layout is basically compatible with modern keyboards.

The /// keyboard does have two extra keys, Open Apple and Closed Apple which are
positioned to the left of the Apple /// keyboard. Also present on the keyboard are
four arrow keys. The emulator should support these keys either directly (i.e., the
target machine has similar keys) or associate other keys with the ///'s special keys
(e.g., the Macintosh computer's two Option keys could be used to simulate the special
Open and Closed Apple keys). The emulator's associated keys need not physically be
in the same location as the ///'s special keys but having them in the general area
will be beneficial.

Note: The /// Plus keyboard contains an extra key, Delete, compared to the ///
keyboard.

11.2 Low-level access

The /// emulator should handle low-level access to the keyboard memory-mapped I/O
locations as detailed in section DEVICE DRIVER EMULATION.

12.0 MONITOR SUPPORT

The emulator should support the Apple's built-in ROM Monitor. Entry to the Monitor
should be similar to how this is done on a real /// (at startup if Open Apple and

Control keys are pressed). The code in the ROM which tests for Monitor entry should
work.
13.0 APPLE] [EMULATION DISK SUPPORT

It would be nice if the /// emulator supported the Apple][Emulation Disk. I'm not
sure of what would be involved here but suspect that if the ///'s 6502 CPU and the
memory-mapped I/0 locations are robustly supported that the][emulation should work
also without any special additional /// emulation features.

Special consideration may need to be given to Apple /// keyboard keys which do not
exist in the Apple][world.][emulation details can be found in the Apple ///
Owner's Guide and the Apple /// Service Reference Manual.

Note: I have a disassembled listing of the Apple][Emulation Disk ROM source listing
which could prove useful in this area.

Further analysis of the][emulation disk's boot sequence needs to be done since I'm
unknowledgable about this area. 2Also, I've heard that the][emulation accesses an
I/0 location which disables some /// features.

14.0 WHAT LANGUAGE SHOULD THE /// EMULATOR BE WRITTEN IN?

I highly recommend that the /// emulator be written in a high level language such as
Pascal or C. This should make the emulator more compatible with different target
computers and make development and maintenance of the emulator much easier. I
recommend avoiding low-level languages such as assembly.

15.0 WHAT TARGET MACHINES SHOULD BE SUPPORTED?

I recommend that the target machine (or machines) for the emulator be machines that
are commonly used today by most computer users. This means either the IBM PC or the
Apple Macintosh machine family. For the PC world I recommend the /// emulator run
under Windows 95 and Windows NT. For the Macintosh world I recommend the emulator
run on most Macintosh models which means support the Macintosh 512 and above. Color
display should also be supported by the /// emulator (for the Macintosh this means
use Color QuickDraw if the machine supports CQD and if CQD is not supported by a
Macintosh model use the Classic B/W QD and maybe use patterns as "colors").

Some Ideas about an & Apple /// Computer Emulator -- Version 4
David T Craig - 12 Dec 1997 -- 7 /23

| Chapter 28 of 28 « Apple Computer Inc « 1982

Page 0009 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

Any of these machines should be fast enough to emulate the /// and most likely will
be too fast in many areas. I recommend some type of speed control be built into the
emulator so that users can control how fast the emulator works. For many ///
programs (e.g. AppleWriter /// and VisiCalc ///) emulation speed will be immaterial
since these programs typically wait for the user to enter data and then do their
thing. But for programs such as games the user will want to control the emulator
speed otherwise the game's actions will be super fast and unplayable.

Some people say that the older machines such as pre-68040 Macintoshs will be too slow
for a reasonable /// emulator. I would like to see this /// emulator run on a Mac
512 machine an onwards. Running on a Mac 128 machine seems a problem due to this
machine's small memory size and should not be supported (if a virtual memory scheme
was used by the emulator the Mac 128 could be supported but I think having this extra
level of support in the emulator would not be worth it). I disagree and am willing
to wager a small sum that I'm right.

16.0 EMULATOR DEBUGGING FACILITIES

The emulator should support a comprehensive built-in debugger. This debugger's
purpose should be to let the sophisticated emulator user access any part of the
emulator's /// address space. This should include all of the memory that is
allocated to the /// as its memory. This memory would encompass the 256K (or 512K)
of /// RAM, the /// ROM (4K), the character set RAM (1K), the 6502 registers, and the
special /// registers (e.g. bank register).

This debugger will prove invaluable in diagnosing emulator bugs. Not only will the
user be able to type commands for the debugger but the emulator will be able to send
messages to the debugger.

Logging of all debugger sessions should be stored to a text file for possible
analysis. This text file would be created when the emulator starts. The log file
should be appended to by the emulator. Only the user can delete the file.

The debugger should exist as a separate window that does not in any way affect the
emulator's main window. This window should display only commands that the user
enters or replies returned by the debugger. There should not exist a separate window
area showing things such as the 6502 registers since all such information should
appear in the debugger log file. The window should support at least 80 columns of
text and 24 rows.

The emulator user interface should be based on a simple command line control scheme.
All commands and command outputs should be text-based. This scheme could be based on
the ///'s Monitor's commands or on a little more readable command scheme such as in
Apple's MacsBug debugger. There should be full on-line help that discusses the
debugger commands in general and each command should also have on-line help
available. The debugger should show at the beginning of each line a prompt character
to indicate when it is waiting for a command. I recommend the prompt be the ">"
character. The debugger should also show a cursor which I recommend to be a black
square.

The debugger should support the standard debugging commands such as
displaying/setting memory, displaying/setting registers, and disassembling 6502
instructions. This disassembly should support the special SOS BRK call by listing
the word "BRK/SOS" instead of just "BRK" and following this with the SOS command
number/name and the parameter list address:

SOS CO/CREATE 345A
The user should be able to enable or disable this feature.

Note: It may be good to also support the Apple][ProDOS command calling scheme in
case this emulator ever becomes an Apple][emulator.

The debugger should support break points, single stepping, and timing buckets. The

Some Ideas about an € Apple /// Computer Emulator - Version 4
David T Craig - 12 Dec 1997 - 8 /23

| Chapter 28 of 28 « Apple Computer Inc « 1982 Page 0010 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

timing buckets would be used in conjunction with break points to record how long a
sequence of 6502 instructions took to execute. This can be very useful in locating
emulator bottlenecks. The debugger supports many break point commands since I have a
feeling that this facility will be very powerful and useful during the emulator's
development.

The debugger should support the collection of statistics about the emulator. I
recommend tracking how many times specific 6502 opcodes are executed (obviously, the
debugger would need commands to display and clear this information). I would also
track memory accesses on at least a page (256 bytes) basis.

The debugger should be accessible at any time that the emulator is running. I
recommend some type of key press combination that the emulator would detect and
display the debugger window. Once the debugger window is active it should remain on
the screen until the user closes the window.

The emulator should also support a special key press combination at emulator startup
time that activates the debugger just before the /// ROM is run. This can give the
emulator developer a good way of tracing ROM execution.

The emulator should activate the debugger if any fatal emulation errors are detected
and the debugger should show a message detailing the reason for the activation. All
of these errors display a dump of the 6502 and SOS control registers. Reasons for
debugger activation from the emulator are:

1. A program writes to write-protected memory (e.g. SOS's address space). The
displayed message is "EMULATOR EXCEPTION: WRITING TO WRITE-PROTECTED MEMORY".

2. A program executes an undefined 6502 instruction (e.g. 6502 opcode $02). The
displayed message is "EMULATOR EXCEPTION: UNDEFINED 6502 OPCODE".

When the debugger is initialized (which should be when the emulator starts) the
debugger should check if a text file named "DDT.TXT" exists. If so, the debugger
should read each line from this file and execute it. Obviously, this file should
contain debugger instructions. This can be very useful for setting up commonly used
break points which if you use many would be tedious to type everytime you wanted to
use the emulator.

A memory snapshot facility should also exist. When activated by a debugger command
this facility would write to the host computer's disk a binary file containing a copy
of all the /// memory areas. This snapshot should also be readable by the debugger
so that the user could restart a specific emulation session from the snapshot.

I recommend the following emulator debugger commands which are based on the ///
Monitor commands so that these debugger commands will be familiar to Monitor users.
These commands for the most part have the general syntax of address-command. See my
document "Inside the Apple /// Computer ROM" for a list of the /// Monitor commands.

For information about the Apple][Monitor commands, which the /// Monitor commands
are based upon, see "Apple][Reference Manual" (Chapter 3: The System Monitor, dated
1981).

Addresses appearing in debugger commands may be prefaced by "N/" where N is a bank
number. For example, to reference address 2000 of bank 4 use 4/2000. If no bank
number precedes an address the current bank is used. To reference a ROM address use a
bank "number" of "R", for example "R/F000". To reference a character set address use
a bank '"number" of "C", for example "C/0000". To reference the SOS system bank use

"S", e.g. "S/1400".)
\k K
Commands should be case-insensitive (none of the UNIX case-sensitivity gobbly-gook).

Commands that display more than a screen full of information should either
automatically pause when the screen is full, or the user can use the SPACE key.

Note: Commands using ":" may also use ";" which is easier to type since this

Some Ideas about an & Apple /// Computer Emulator - Version 4
David T Craig -- 12 Dec 1997 - 9 /23

| Chapter 28 of 28 « Apple Computer Inc « 1982 Page 0011 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

character does not need the user of the shift key. Same for "<" and "/".

Most debugger command numeric arguments must be specified in hexadecimal. The
exception is the X command which supports hexadecimal, decimal, and binary.

The debugger command parser should be very liberal. This means that users should be
able to include extra spaces (or no spaces) and the command should be parsable. For
example, if a command needs a list of bytes the user should be able to enter any of
the following: "AABBCC", "AA BB CC", " A ABBC C " and the debugger will see these
as "AABBCC".

The debugger should also support a command macro facility. This facility allows you
to define a macro consisting of other debugger commands. Typing the name of the
macro will then type the commands as if you entered them manually.

/' HELP (or ?) Cned Pt

/ L2 see
Display debugger on-line help for all commands. Help info should be stored in an
external text file for easier modification. I recommend that this section of this
document be the help file. el name = (ST pet o

Example: HELP — shows an L\g(/ig S e all cvedd ‘45/}"“"
... Wacy § ~= sbou gl (oels ot i 4

BYE Hﬁ’lf g5 <~ <lput SO cmel
Return to the emulator.

Example: BYE

CARRIAGE RETURN keypress
\’ZSP', —
Repeat last command.

Example: If the last command was HELP and you press the CARRIAGE RETURN key then HELP
will be displayed and executed again.

SPACE keypress
“ Py
Pause current command's output. Press again to continue.

Example: If a command is executing and you press the SPACE key the comand's output
will be paused, pressing SPACE again resumes the command's output. Pausing/Resuming
are done on an output line basis only.

DELETE keypress
L LIP
Stop current command's output.

Example: If a command is executing and you press this key then the command will stop
executing and you will be returned to the debugger's prompt.

éb -- Show fkbh» ewd“‘k‘gz
. : , by iy, P oaud €
Display 6502 registers and /// system control registers. ¢ b ngq¢%w0
Example: RD .) 7 . over $low
bi himes b hasts }5 br:ﬁk wvwv‘m«.gl.
A=04 X=01 Y=D8 P=30/00000011 S=F8 PC=034A : E= 77/01110111 Z=1A B=03 L | weod
ny. NY-bDIZE STYRUS R ;D iy L
j (Lwuaed — ot O el N’tem(* 6(\6‘-’7
Some Ideas about an & Apple /// Computer Emulator - Version 4 q:
S Gyskem (e #Ae David T Craig - 12 Dec 1997 - 10 /23 L!.VW&]
= :u“pwj , —]24 {mt.\l R~ Rom .
C ~ Sorenn 0R#3 N*‘P : R- ft
“ Saly 1y we

| Chapter 28 of 28 « Apple Computer Inc « 1982 Page 0012 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

byte:SA
Set 6502 A register to byte.

Example: 45:SA -

byte:sX
Set 6502 X register to byte.

Example: 7B:SX -

Set 6502 Y register to byte.

Example: FF:SY

Set 6502 P register to byte.

Example: 56:SP -

byte:SS
Set 6502 S register to byte.

Example: AA:SS St

word:SPC
Set 6502 PC register to word.

Example: 2000:SPC —

byte:SE
Set /// E system control register to byte.

Example: 34:SE —

byte:S2
Set /// Z system control register to byte.

Example: 19:SZ -

Set /// B system control register to byte.

Example: 06:SB P

Some Ideas about an & Apple /// Computer Emulator -- Version 4
David T Craig - 12 Dec 1997 -- 11 /23

| Chapter 28 of 28 « Apple Computer Inc « 1982 Page 0013 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

addrl.addr2

Dump memory data to screen from address 1 to address 2 and display ASCII character at
the right of the screen.

Example @s current bank is ban 4): 300.30F D e (asiaan, J 4hs4 ¥ ..
| 2 R Ry Lavee st
4/0300- B900 080A OAOA 9900 08C8 DOF4 A62B A909 [F..d.uy%"&90e@..G])

Dump the contents of the current interpreter's Zero Page (256 bytes). Also supported
are commands for the Stack Page and the Extend Page:

SPAGE - stack page
EPAGE - extend page

To dump the pages for SOS (and drivers) use the following commands:

SZPAGE - zero page
SSPAGE - stack page
SEPAGE - extend page

Example: ZPAGE

Zero Page (interpreter)

6p ' 2 L ¢y W} T
1400- 0123456789ABCDEF 0123456789ABCDEF 01234567 89ABCDEF 01234567 89ABCDEF
1420- 0123456789ABCDEF 0123456789ABCDEF 0123456789ABCDEF 0123456789ABCDEF

14E0- 0123456789ABCDEF 0123456789ABCDEF 0123456789ABCDEF 01234567 89ABCDEF

addr:bytes
Store starting at the address the bytes.

Example: 2000:AA BB CC DD EE FF -
2000 : AABBCCDDEEFF e~

addr:'text'

Store text starting at address (high bit clear).

Example: 2000:'Hello World' -~ -
2000:'David''s Dog' - - @s@DaVid‘s Dog

addr:"text"

Store text starting at address (high bit set) /
Example: 2000:"Hello World“ /""\
2000: "David's Dog aﬂw e rvre
!)u
_-2001]\ l 6"”[/& (”U ””H j ,hd IIA(

addr3<addrl.addr2M
Move data in address range to address 3.

Example: 2000<3000.3100M ——

Some Ideas about an € Apple /// Computer Emulator - Version 4
David T Craig - 12 Dec 1997 - 12 /23

| Chapter 28 of 28 « Apple Computer Inc « 1982 Page 0014 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

addr3<addrl.addr2v

Verify data in address range equals data starting at address 3.

Example: 2000<3000.3100V M e

Displays either "OK" if the verification suceeds, or "MISMATCH" if the verification
fails.

bytes<addrl.addr2s

Search memory in address range for the bytes.

Example: AA<3000.3100S -- searches for byte AA
AABBCC<3000.3100s8 -- searches for bytes AA BB CC

If a search finds a match then the starting address of the match is displayed,

otherwise "PATTERN NOT FOUND" is displayed. . e)
______ VAT ok Foursd AT addr

'text'<addrl.addr2s
Search memory in address range for text (high bit clear).

Example: 'D'<3000.3100S -~

p——

'David'<3000.31008 ==

"text"<addrl.addr2s
Search memory in address range for text (high bit set).

Example: "D"<3000.3100S -
"David"<3000.31008 ~—

disk.block<addrl.addr2w

Write address range to disk # disk starting at disk block. If disk # is not present
then uses disk .D1. Disk should equal 1, 2, 3, or 4. The address range always ends
on a block boundary no matter what you type.

Example: 1.117<2000.21FFW -- write 512 bytes to disk 1 block $117

Note: Disk /// disks contain 280 blocks ($118) sot he block range is 0-117
(hexadecimal) .

disk.block<addrl.addr2R

Read from disk # disk starting at block to the address range. If disk # is not
present then uses disk .Dl1. See the W command for more info.

Example: 1.117<2000.21FFR 13- read 512 bytes from disk 1 block $117
S

disk.block-block:DISK

Read block range from disk # disk to a special debugger 4K buffer which is not used
by the emulator. If the typed block range is greater than 4K then only the first 4K
will be read. You can then examine this buffer's contents either with a hex/ascii

Some Ideas about an & Apple /// Computer Emulator - Version 4
David T Craig - 12 Dec 1997 -- 13 /23

| Chapter 28 of 28 « Apple Computer Inc « 1982 Page 0015 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

dump or with a disassembly (command L). This command is useful when you want to
examine a disk's contents. For disassembly purposes, you can specify the logical
starting address for the buffer. See the DISKBUFFER command.

To disassemble the special disk buffer (see the L command) use bank X (stands for
"extra") as part of the disassembly address parameter (e.g. "X/100"). Same for
dumping memory or whatever commands you want to use with this special buffer.

Example: 1.0-7:DISK -- read 8 blocks (0 to 7) from disk 1

addr : DISKBUFFER

Set disk buffer starting logical address. Default address is 2000. See the DISK
command . {

Example: A000:DISKBUFFER - -~ \?ﬁh?l i U000 ~FFFF

addrl.addr2L

Disassemble instructions in address range. If only addrl appears then disassemble 20
instructions. Disassembly includes the opcode cycle count.

Example: 300L -- assumes bank 4 is current
4/0300- A9 C1 X.! (2) LDA #s$C1
4/0302- 20 ED FD . (5) JSR $FDED
4/0305- 18 ! (2) CLC

470308- C9 DB . (3) CMP #$DB

1
1

4/0306- 69 0A 'T. (4) ADC #s$01
Ll

4/030A- DO Fé6 ! (3) BNE $0302

Ne e Ne we N we N

4/030C- 60 U’ (4) RTS
1 2 3 4 5 6 (see Note)
Note: Column 1 = bank register/address

Column 2 = memory bytes

Column 3 = ASCII for the memory bytes

Column 4 = opcode cycle count

Column 5 = disassembled instructions

Column 6 = remark character ";" (optional, see DISASMREM)
L by itself disassembles the next 20 instructions.
DISASMREM
Display ";" after each disassembly line that is produced by the L command. Default

is to not display the remark. Useful if you plan to add comments to a disassembly.
See also DISASMREMOFF.

Example: DISASMREM

DISASMREMOFF
Turn off DISASMREM. See also DISASMREM.

Example: DISASMREMOFF

Some Ideas about an & Apple /// Computer Emulator -- Version 4
David T Craig -- 12 Dec 1997 - 14 /23

| Chapter 28 of 28 « Apple Computer Inc « 1982 Page 0016 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

Call subroutine at the address.

Example: AQ00G

Jump to the address.

Example: A000J - —
wordX
Convert word (or up to 4 hex digits) to hexadecimal, decimal, and binary (X stands
for "translate"). Prefix character for byte determines its base: ,no prefix = hex,
= dec, t = binary. R
o Yot 1% 4{'4416-('”—\
Example: AX -> A(16) 10(10) 0000 0000 0000 1010(2) GQ):}mp y)iuaih
.10X -> A(16) 10(10) 0000 0000 0000 1010(2) 7
t1010 -> A(16) 10(10) 0000 0000 0000 1010(2)

FFFFX -> FFFF(16) 65535(10) 1111 1111 1111 1111(2)

addrl.addr2:CS

Calculate and display a checksum for address range. Checksum is a 4 byte quantity
which is calculated the same as the disk image file checksums.

Example: 300.500:CS T T~
CHECKSUM=AF897CEE

Trace instructions starting at the address. Each traced instruction displays
register contents. Press the SPACE to pause the trace, press DELETE to stop the
trace. The displayed registers contain values _after_ the previously listed command

executes.

Example: A000T -- assuming bank 4 is current

4 /A000- A9 C1 'X.! (2) LDA #$C1

A=Cl X=01 Y=D8 ©P=30,/00000011 S=F8 PC=A002 : E=77,/01110111 Z=1A B=04

4 /A002 - 20 ED FD LI (5) JSR S$FDED

A=Cl X=01 Y=D8 P=30/00000011 S=F6 PC=FDED : E=77/01110111 Z=1A B=04
Lisp bt omes bt nasmes

Note: Press the DELETE key to stop the trace, SPACE to pause/resume.

addrss

Single step trace starting at the address. After each step pause and wait for user
to press SPACE to continue or DELETE to stop the single step.

Example: AOOOéj)gé- assuming bank 4 is current

4 /A000- A9 C1 X! (2) LDA #SC1

A=Cl X=01 Y=D8 P=30,/00000011 S=F8 PC=A002 : E=77,/01110111 Z=1A B=04
Ly nameg N G |

Note: Press SS by itself to single step the next instruction, or press CARRIAGE

RETURN to repeat the SS.

Some Ideas about an € Apple /// Computer Emulator - Version 4
David T Craig - 12 Dec 1997 - 15 /23

| Chapter 28 of 28 « Apple Computer Inc « 1982 Page 0017 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

addr:BP

Set a break point at address. When address is accessed the debugger is entered and
displays the registers. Up to 100 break points should be supported.

Example: AQO0O0:BP

addr:BPC
Clear break point at address.

Example: AQ00:BPC

Set a break point when a SOS call is made. This means when the BRK opcode is
executed. Same as MOO:BP.

Example: SOS:BP

Mopcode:BP
Set a break point when opcode is executed.

Example: M60:BP -- set break point when the RTS instruction (60) is executed.

Set a break point when a call is made to the ROM.

Example: ROM:BP

addrl.addr2:BPW

Set a break point when any address within address range is written to. BPW = Break
Point Write.

Example: 300.123AR:BPW

addrl.addr2:BPR

Set a break point when any address within address range is read from. BPR = Break
Point Read.

- Ve
41 B et
E le: 300.123A:BPR 1 Bl
xample P MMZ‘L Jm’(

addr.byte:BPE oldd%—L voddi Z . »1’{4L llﬂt 7 v 3PE (a’l a/‘/;du ()

Set a break point when the address contents equal the byte value. BPE = Break Point

als. .
- adorl . gdir? - L:,’&lv-lz,,((’l “Are (.;{1, ,7»/—{/ s)

Example: 300.AA:BPE

addr.bytel-byte2:BPE

Set a break point when the address contents equal a byte value in the byte range. BPE

Some Ideas about an & Apple /// Computer Emulator -- Version 4
David T Craig - 12 Dec 1997 - 16 / 23

| Chapter 28 of 28 « Apple Computer Inc « 1982

Page 0018 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

Mty Cindd
b?)\]({ /5/#!4‘(C%Wi/f

Same roetsy 43 BPE

= Break Point Equals.

Example: 300.AA-BB:BPE

addr.bytel byte2 ... :BPEA & —

Set a break point when the address contents equal byte 1 value, or equals byte 2
value, etc. Supports up to 16 byte values. BPEA = Break Point Equals Any.

Example: 300.AABBCCDD:BPEA
300.AA BB CC DD:BPEA

Set a break point when the address range contains any bytes equalling the byte
values. BPEA = Break Point Equals Any.

Example: 300.400.AABBCCDD:BPEA

Set a break point when the address range contents equal the byte range. BPEA = Break
Point Equals Any.

Example: 300.400.AA-BB:BPEA

Display break point table.
Example: BPD

Address Range BP Setting

Clear break point table.

Example: BPC

addrl.addr2:TB

Set timing bucket for address range. When address 1 is accessed timing starts. When
address 2 is accessed timing stops. Up to 100 timing buckets should be supported.

Example: AQO0Q0.AlFF:TB

Display timing bucket table. Shows all set timing buckets and the time in 1/60th of
a second and in seconds spent in each bucket.

Example: TBD

Address Range Time (1/60s) Time (secs)

Some Ideas about an % Apple /// Computer Emulator -- Version 4
David T Craig - 12 Dec 1997 - 17 /23

| Chapter 28 of 28 « Apple Computer Inc « 1982

Page 0019 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

1 4/A000-4/A1FF 34 0.567
2 4/A300-4/A310 5 0.083
39 0.650

addr:TBC

Clear timing bucket starting at address.

Example: AQ0O00:TBC

Clear timing bucket table.

Example: TBC

error:SOSE
List SOS general error message for the error number. If no error number is present

then list all general errors. Error info should be stored in an external text file
for easier modification. See the S0OS Reference Manual for a list of these errors.

Example: 01:SOSE

BADSCNUM - Invalid SOS call number

error :SOSFE

Display SOS fatal error message for the error number. If no error number is present
then list all fatal errors. See the SOS Reference Manual for a list of these errors.

Example: 01:SOSFE

BADBRK - Invalid BRK

command: SOS
Display SOS command name and SOS command area (e.g. file system) for the command
number. If no command number present then list all SOS command numbers and their

names. Command info should be stored in an external text file for easier
modification. See the SOS Reference Manual for a list of these commands.

Example: CO0:S0S

CREATE (File System)

Turn on disassembly of SOS calls which displays SOS followed by the command number
and parameter address. The emulator defaults to this.

Example: SOSON

SOSOFF

Some Ideas about an & Apple /// Computer Emulator - Version 4
David T Craig - 12 Dec 1997 -- 18 /23

| Chapter 28 of 28 « Apple Computer Inc « 1982

Page 0020 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

Turns off SOSON.

Example: SOSOFF

disk:CAT

Display catalog of SOS disk stored in disk # disk. Includes recursive list of all
subdirectories. Should show same file info as Apple's System Utilities program.

Note: Other commands that may be supported include CATPASCAL for Apple][Pascal
disks and CATDOS for Apple][DOS disks. This may come in handy if you want to see
what these disks contain if you have them as disk image files.

Example: 1:CAT

disk.file_name:INFO

Displays information about the specified file in the disk. Information includes
standard SOS file information but also block list of all index blocks (if any)
associated with the file and block list of all data blocks for the file.

Example: 1.APPLE3.TEXT:INFO

disk.block:DUMP
Display contents of specified disk block in the standard hex/ascii dump format.

Example: 1.0:DUMP

disk:DRIVERS

Display list of contents of the SOS.DRIVER file stored on the disk. List includes
driver names, driver information, and other items that are in the driver file (e.g.
character sets).

Example: 1:DRIVERS

disk:CHECKIMAGE

Check validity of disk image in disk # disk. Computes header and data part checksums
and compares against the image file's listed checksums.

Example: 1:CHECKIMAGE

Display Driver Information Table (DIT), a data structure maintained by this debugger.
Contains list of all loaded drivers, their names, sizes, and entry point addresses.

Example: DIT

Display Memory Information Table (MIT), a data structure maintained by this debugger.
See section EMULATOR MEMORY STRUCTURE for what this structure contains.

Example: MIT

Some Ideas about an & Apple /// Computer Emulator - Version 4
David T Craig - 12 Dec 1997 - 19 /23

| Chapter 28 of 28 « Apple Computer Inc « 1982 Page 0021 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

OPCODES

Display a histogram of opcode execution counts. Includes the actual number of the
counts. Sorted by frequency. Opcodes not executed are listed below the histogram.

Example: OPCODES

LDA 2,188,973 kkkkkkkkhkhkhkhkkkkkhhhhhhhhhhhhhkhkkkkkhkhhhhhrk
STA 12,123 hkkkkkkkkkkkkhhhhhkhkkkkkkdkdk Kk
CMP 46T kkkkkkkkkkkkhk

2,201,563

Unexecuted opcodes: TXS NOP

OPCODESCLR
Reset opcode histogram table.

Example: OPCODESCLR

pagel.page2 :MEMORYR

Display memory write access table. This table lists on a 256 byte page basis counts
for each time the page was read. If pagel.page2 specified then lists only those
pages. If a single page is specified then display only that page's access count.

Example: 0.5:MEMORYR

pagel.page2 : MEMORYW

Display memory read access table. This table lists on a 256 byte page basis counts
for each time the page was written. See MEMORYW for page options.

Example: 0.5:MEMORYW

MEMORYCLR
Reset both memory access tables.

Example: MEMORYCLR

£

\-riai-l.;l;a:-SCR-O-LI; ------ | sty o (w, g Lrtr £ e /L green <

l‘()— < + CMZ 5 £ P e a{mr LJLVF fleee~
Set debugger display scrolling rate interline delay. Value is in 1/10th of a second. u
Default is no delay (value = 0). Useful if you want to for example dump lots of

memory and don't want to mess with the SPACE key to read what is displayed. Set the
scrolling delay to a comfortable value, sit back, and enjoy the show.

Example: 10:SCROLL -- sets scrolling delay to 1 second

filename:LOG

Close log file, create a new one with filename, and output all debugger displays to
this new file. Useful if you're running the emulator from a write-protected disk and
you want to re-direct the output to a writable disk file.

Some Ideas about an & Apple /// Computer Emulator -- Version 4
David T Craig - 12 Dec 1997 -- 20 /23

| Chapter 28 of 28 « Apple Computer Inc « 1982

Page 0022 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

Example: MyDiary:LOG

SNAPSHOTW

Write the contents of all of the emulator's memory to binary file on the host
computer's hard disk. This snapshot could prove useful in diagnosing an emulator
problem. The binary file should be named "Snapshot_YYYYMMDD_ HHMMSS.BIN".

Example: SNAPSHOTW

SNAPSHOTRfile-name
Read a snapshot file into the emulator's memory.

Example: SNAPSHOTR Snapshot_19971225_123456.BIN

MACRO name commands

Define a macro name and commands for this macro. You can use any name containing
alphnumeric characters or periods with a maximum length of 31 characters. Up to 25
macros may be defined. All commands are verified and if any syntax errors occur you
will be told and the macro will not be defined. Macro commands cannot include other
macro commands.

Example: MACRO my.dump 300.400 AQ00CO.A1FF AQOOL

List all defined macros.
Example: MACROL

Name / Contents

1 my.dump
300.400 AQ000.A1FF AQOOL

Imacro-name

Execute a macro with the name "macro-name". Each command within the macro is
displayed followed by the commands' display.

Example: !my.dump

300.400

A000.ALFF

A00OL cher ,
vERSTON T

Display debugger version information. Includes version number and creation
date/time.

Some Ideas about an & Apple /// Computer Emulator -- Version 4
David T Craig -- 12 Dec 1997 -- 21 /23

| Chapter 28 of 28 « Apple Computer Inc « 1982 Page 0023 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

17.0 EMULATOR MEMORY STRUCTURE

I recommend that the emulator's internal memory structure for the Apple /// memory
resources be structured as follows:

o Memory block containing the size of memory and references to each /// memory bank
(the references can be whatever 1s appropriate -- on the Mac these could be Mac
memory pointers or handles):

- number of switchable banks (1..15)

- reference to bank S (32K: 0000-1FFF, AQOQO-FFFF) *
- reference to bank 0/$0 - switchable (32k: 2000-9FFF)

- reference to bank 1/$1 - switchable (32k: 2000-9FFF)

- iéference to bank 14/$E - switchable (32k: 2000-9FFF)

- reference to Boot ROM ROM address space (4k: F00O-FFFF)

- reference to Boot ROM RAM address space (4k: FO0O-FFFF)

- reference to I/0 RAM address space (4dk: CO000-CFFF)

* The system (S) bank is always on-line and is never bank switched. SOS and part of
the interpreter reside here.

o0 Memory block containing the 6502 registers:

- Accumulator () 8 bits
- X index (X) 8 bits
- Y index (Y) 8 bits
- Status Register (P) 8 bits
- Stack Pointer (S) 8 bits
- Program Counter (PC) 16 bits

o Memory block containing the special /// System Control Registers:

- E: Environment Register (FFDF) 8 bits

- Z: Zero Page Register (FFDO) 8 bits

- B: Bank Register (FFEF) 8 bits
18.0 WHAT'S NEXT?

Persons seriously interested in creating an Apple /// emulator program should try to
obtain as much /// technical information as possible. The author has lots of info
which he can copy at minimal charge (10 cents per page plus postage). These persons
should also have access to a working Apple /// computer with a fair number of ///
programs.

Other areas of compatibility should also be investigated that this document does not
address. This includes support for other input devices such as the mouse which does
have a 3rd party driver available.

19.0 REFERENCES

Apple /// Owner's Guide, Apple Computer, 1981

Apple /// Plus Owner's Guide, Apple Computer, 1982

Apple /// System Data Sheet, Apple Computer, July 1983

Apple /// Plus System Data Sheet, Apple Computer, October 1983

Apple /// Standard Device Drivers Manual, Apple Computer, 1981

Some Ideas about an & Apple /// Computer Emulator -- Version 4
David T Craig - 12 Dec 1997 - 22 /23

| Chapter 28 of 28 « Apple Computer Inc « 1982

Page 0024 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

Apple /// SOS Reference Manual, Apple Computer, 1982

Apple /// SOS Device Driver Writer’s Guide, Apple Computer, 1982

Apple /// Service Reference Manual (Level 2), Apple Computer, 1983

/// Bits: John Jeppson’s Guided Tour of Highway ///, Softalk magazine, May 1983
Bank Switch Razzle-Dazzle, Softalk magazine, August 1982

The Apple Nobody Knows, Apple Orchard magazine, Fall 1981

Apple /// Entry Points, Andy Wells, Call-APPLE, October 1981

Inside the Apple /// Computer ROM, David Craig, November 1997

HH#

Some Ideas about an & Apple /// Computer Emulator -- Version 4
David T Craig - 12 Dec 1997 - 23 /23

| Chapter 28 of 28 « Apple Computer Inc « 1982 Page 0025 of 0026 |

Apple /[l Computer Information ¢ Apple /// Level 2 Service Reference Manual

Apple 11T Computer Information

| Chapter 28 of 28 « Apple Computer Inc « 1982

Page 0026 of 0026 |

