
ASxxxx Assemblers

and

ASLINK Relocating Linker

Modified for the IP_65C02
And the IP_65CX8 cores by:

Scott L. Baker
Sierra Circuit Design, Inc.
Feb 22, 1999

P R E F A C E 1

By Scott L. Baker

A65C02.exe and A65CX8.exe version 1.00

The original code for this assembler was written by an anonymous author and donated to the
public domain DECUS (the Digital Equipment Corporation Users Society) archive. The code
was modified by two other authors an was placed in the public domain SIMTEL archive. I made
relatively minor changes to the C code as I found it on SIMTEL.

♦ I ported the source code to compile with the Borland C++ compiler version 4.5
♦ I combined some C source files to work around a compiler limitation

♦ I added the EQU assembler pseudo-op
♦ I made the dot prefix for a number of pseudo-ops optional

e.g. org is legal as well as .org

♦ I added support for the new IP_65CX8 instructions
♦ I compiled 2 version of the new assembler, one for the IP_65C02 and one for the IP_65Cx8

Since the code that my assemblers are based on is public domain code, they are free.

Disclaimer: use this assembler at your own risk. While I believe this code to be relatively bug-
free, I make no guarantees about it's operation. I would appreciate any feedback and I will
respond to bug reports.

P R E F A C E 2

By Alan R. Baldwin
(ported the original DECUS assembler)

ASxxxx version 1.50 (edited)

The ASxxxx assemblers were written following the style of several cross assemblers found in
the Digital Equipment Corporation Users Society (DECUS) distribution of the C programming
language. The DECUS code was provided with no documentation as to the input syntax or
the output format. Study of the code revealed that the unknown author of the code had
attempted to formulate an assembler with attributes similar to those of the PDP-11 MACRO
assembler (without macro’s). The incomplete code from the DECUS C distribution has been
largely rewritten, only the program structure, and C source file organization remains relatively
unchanged. However, I wish to thank the author for his contribution to this set of assemblers.

The ASLINK program was written as a companion to the Asxxxx assemblers, its design and
implementation was not derived from any other work. The ASxxxx assemblers and the
ASLINK relocating linker are placed in the Public Domain.

P R E F A C E 3

By Marko Mäkelä
(modified the assembler for the 65C02)

A 6502 assembler, as6502-1.60 (edited)

Using the 6800 assembler source code of ASxxxx version 1.50 by Alan R. Baldwin, I have written
a couple of files to make the assembler support 65C02. For those who are familiar with NMOS
6502s, i.e. the processors in the Commodore microcomputers, for instance, there are a couple of
new instructions that work only in the CMOS 6502 family. I have used the Rockwell document
29651N52, a data booklet of R65C02, R65C102 and R65C112 as a source of opcode
information. The original work of Alan Baldwin is on the SIMTEL20 archive,

Some changes to the original files

I changed the definitions of DOT_S and DOT, so that the assembler uses the asterisk character
(*) instead of a dot (.) for the current location.

I did not correct the handling of MS-DOS style file names. If you specify a directory path
preceding the file name, correct behaviour of the program would be that the resulting files would
be created in the default directory instead of the directory that contain the respective source
file. A real bug occurs when the path specification contains dots.

I found the radix specification system difficult. You couldn't write hexadecimal numbers
comfortably, even if you had ordered .radix x. The figures were not allowed start with a letter, in
which case you had to add an extra 0 before them. But the combination 0d specifies decimal
numbers and 0b binary numbers, so if the hexadecimal number starts with those, you have to
write 0xb... or 0xd...

That's why I patched asexpr.c so that it allows the $, $%, $& and $# prefixes. The $ prefix is for
the hexadecimal numbers, and the three others are for binary, octal and decimal, espectively.
Examples of valid numbers are $FCE2, $%1001011, $&377 and $#65535, and of course
1001011, 377 and 65535, if the respective .radix directive is used. But hexadecimal figures may
still not start with a letter, they must start with a number or $.

Usage

The assembler and the linker support several source files. So, after you have written the
assembly sources, you have to compile each file using "as6502 -o file.asm". Then, make a
control file for the linker, with the file suffix .lnk. The file should contain the string "-r" on its first
line, specifying Commodore program file output, and the modules listed on the following lines.
Run the command "aslink -f file.lnk" to compile the program.

I N D E X

CHAPTER 1 THE ASSEMBLER 1-1

 1.1 THE ASXXXX ASSEMBLERS 1-1
 1.1.1 Assembly Pass 1 1-2
 1.1.2 Assembly Pass 2 1-2
 1.1.3 Assembly Pass 3 1-2
 1.2 SOURCE PROGRAM FORMAT 1-3
 1.2.1 Statement Format 1-3
 1.2.1.1 Label Field 1-3
 1.2.1.2 Operator Field 1-5
 1.2.1.3 Operand Field 1-5
 1.2.1.4 Comment Field 1-6
 1.3 SYMBOLS AND EXPRESSIONS 1-6
 1.3.1 Character Set 1-6
 1.3.2 User-Defined Symbols 1-10
 1.3.3 Local Symbols 1-11
 1.3.4 Current Location Counter 1-12
 1.3.5 Numbers 1-14
 1.3.6 Terms 1-14
 1.3.7 Expressions 1-15
 1.4 GENERAL ASSEMBLER DIRECTIVES 1-16
 1.4.1 .module Directive 1-16
 1.4.2 .title Directive 1-17
 1.4.3 .sbttl Directive 1-17
 1.4.4 .page Directive 1-17
 1.4.5 .byte and .db Directives 1-17
 1.4.6 .word and .dw Directives 1-18
 1.4.7 .blkb, .blkw, and .ds Directives 1-18
 1.4.8 .ascii Directive 1-18
 1.4.9 .asciz Directive 1-19
 1.4.10 .radix Directive 1-19
 1.4.11 .even Directive 1-20
 1.4.12 .odd Directive 1-20
 1.4.13 .area Directive 1-20
 1.4.14 .org Directive 1-22
 1.4.15 .globl Directive 1-22
 1.4.16 .if, .else, and .endif Directives 1-23
 1.4.17 .include Directive 1-24
 1.4.18 .setdp Directive 1-24
 1.5 INVOKING ASXXXX 1-26
 1.6 ERRORS 1-27
 1.7 LISTING FILE 1-28
 1.8 SYMBOL TABLE FILE 1-30
 1.9 OBJECT FILE 1-30

CHAPTER 2 THE LINKER 2-1
 2.1 ASLINK RELOCATING LINKER 2-1
 2.2 INVOKING ASLINK 2-2
 2.3 ASLINK PROCESSING 2-3
 2.4 LINKER INPUT FORMAT 2-4
 2.4.1 Object Module Format 2-5
 2.4.2 Header Line 2-5
 2.4.3 Module Line 2-5
 2.4.4 Symbol Line 2-5
 2.4.5 Area Line 2-6
 2.4.6 T Line 2-6
 2.4.7 R Line 2-6
 2.4.8 P Line 2-7
 2.5 LINKER ERROR MESSAGES 2-7

 PAGE 1-1

CHAPTER 1

THE ASSEMBLER

 1.1 THE ASXXXX ASSEMBLERS

 The ASxxxx assemblers are a series of microprocessor assem-
 blers written in the C programming language. Each assembler has
 a device specific section which includes:

 1. device description, byte order, and file extension in-
 formation

 2. a table of the assembler general directives, special
 device directives, assembler mnemonics and associated
 operation codes

 3. machine specific code for processing the device mnemon-
 ics, addressing modes, and special directives

 The device specific information is detailed in the appendices.

 The assemblers have a common device independent section which
 handles the details of file input/output, symbol table genera-
 tion, program/data areas, expression analysis, and assembler
 directive processing.

 The assemblers provide the following features:

 1. Command string control of assembly functions

 2. Alphabetized, formatted symbol table listing

 3. Relocatable object modules

 4. Global symbols for linking object modules

 5. Conditional assembly directives

 THE ASSEMBLER PAGE 1-2
 THE ASXXXX ASSEMBLERS

 6. Program sectioning directives

 ASxxxx assembles one or more source files into a single relo-
 catable ascii object file. The output of the ASxxxx assemblers
 consists of an ascii relocatable object file(*.rel), an assembly
 listing file(*.lst), and a symbol file(*.sym).

 1.1.1 Assembly Pass 1

 During pass 1, ASxxxx opens all source files and performs a
 rudimenatry assembly of each source statement. During this pro-
 cess all symbol tables are built, program sections defined, and
 number of bytes for each assembled source line is estimated.

 At the end of pass 1 all undefined symbols may be made global
 (external) using the ASxxxx switch -g, otherwise undefined sym-
 bols will be flagged as errors during succeeding passes.

 1.1.2 Assembly Pass 2

 During pass 2 the ASxxxx assembler resolves forward refer-
 ences and determines the number of bytes for each assembled
 line. The number of bytes used by a particular assembler in-
 struction may depend upon the addressing mode, whether the in-
 struction allows multiple forms based upon the relative distance
 to the addressed location, or other factors. Pass 2 resolves
 these cases and determines the address of all symbols.

 1.1.3 Assembly Pass 3

 Pass 3 by the assembler generates the listing file, the relo-
 catable output file, and the symbol tables. Also during pass 3
 the errors will be reported.

 The relocatable object file is an ascii file containing sym-
 bol references and definitions, program area definitions, and
 the relocatable assembled code, the linker ASLINK will use this
 information to generate an absolute load file (Motorola or Intel
 formats).

 THE ASSEMBLER PAGE 1-3
 SOURCE PROGRAM FORMAT

 1.2 SOURCE PROGRAM FORMAT

 1.2.1 Statement Format

 A source program is composed of assembly-language statements.
 Each statement must be completed on one line. A line may con-
 tain a maximum of 128 characters, longer lines are truncated and
 lost.

 An ASxxxx assembler statement may have as many as four
 fields. These fields are identified by their order within the
 statement and/or by separating characters between fields. The
 general format of the ASxxxx statement is:

 [label:] Operator Operand [;Comment(s)]

 The label and comment fields are optional. The operator and
 operand fields are interdependent. The operator field may be an
 assembler directive or an assembly mnemonic. The operand field
 may be optional or required as defined in the context of the
 operator.

 ASxxxx interprets and processes source statements one at a
 time. Each statement causes a particular operation to be per-
 formed.

 1.2.1.1 Label Field -

 A label is a user-defined symbol which is assigned the value
 of the current location counter and entered into the user de-
 fined symbol table. The current location counter is used by
 ASxxxx to assign memory addresses to the source program state-
 ments as they are encountered during the assembly process. Thus
 a label is a means of symbolically referring to a specific
 statement.

 When a program section is absolute, the value of the current
 location counter is absolute; its value references an absolute
 memory address. Similarly, when a program section is relocat-
 able, the value of the current location counter is relocatable.
 A relocation bias calculated at link time is added to the ap-
 parent value of the current location counter to establish its
 effective absolute address at execution time. (The user can
 also force the linker to relocate sections defined as absolute.
 This may be required under special circumstances.)

 If present, a label must be the first field in a source
 statement and must be terminated by a colon (:). For example,

 THE ASSEMBLER PAGE 1-4
 SOURCE PROGRAM FORMAT

 if the value of the current location counter is absolute
 01F0(H), the statement:

 abcd: nop

 assigns the value 01F0(H) to the label abcd. If the location
 counter value were relocatable, the final value of abcd would be
 01F0(H)+K, where K represents the relocation bias of the program
 section, as calculated by the linker at link time.

 More than one label may appear within a single label field.
 Each label so specified is assigned the same address value. For
 example, if the value of the current location counter is
 1FF0(H), the multiple labels in the following statement are each
 assigned the value 1FF0(H):

 abcd: aq: $abc: nop

 Multiple labels may also appear on successive lines. For ex-
 ample, the statements

 abcd:
 aq:
 $abc: nop

 likewise cause the same value to be assigned to all three la-
 bels.

 A double colon (::) defines the label as a global symbol.
 For example, the statement

 abcd:: nop

 establishes the label abcd as a global symbol. The distinguish-
 ing attribute of a global symbol is that it can be referenced
 from within an object module other than the module in which the
 symbol is defined. References to this label in other modules
 are resolved when the modules are linked as a composite execut-
 able image.

 The legal characters for defining labels are:

 A through Z
 a through z
 0 through 9
 . (Period)
 $ (Dollar sign)
 _ (underscore)

 A label may be any length, however, only the first eight (8)
 characters are significant and, therefore must be unique among
 all labels in the source program (not necessarily among

 THE ASSEMBLER PAGE 1-5
 SOURCE PROGRAM FORMAT

 separately compiled modules). An error code(s) (m or p) will be
 generated in the assembly listing if the first eight characters
 in two or more labels are the same. The m code is caused by the
 redeclaration of the symbol or its reference by another state-
 ment. The p code is generated because the symbols location is
 changing on each pass through the source file.

 The label must not start with the characters 0-9, as this
 designates a local symbol with special attributes described in a
 later section.

 1.2.1.2 Operator Field -

 The operator field specifies the action to be performed. It
 may consist of an instruction mnemonic (op code) or an assembler
 directive.

 When the operator is an instruction mnemonic, a machine in-
 struction is generated and the assembler evaluates the addresses
 of the operands which follow. When the operator is a directive
 ASxxxx performs certain control actions or processing operations
 during assembly of the source program.

 Leading and trailing spaces or tabs in the operator field
 have no significance; such characters serve only to separate
 the operator field from the preceeding and following fields.

 An operator is terminated by a space, tab or end of line.

 1.2.1.3 Operand Field -

 When the operator is an instruction mnemonic (op code), the
 operand field contains program variables that are to be
 evaluated/manipulated by the operator.

 Operands may be expressions or symbols, depending on the
 operator. Multiple expressions used in the operand fields may
 be separated by a comma. An operand should be preceeded by an
 operator field; if it is not, the statement will give an error
 (q or o). All operands following instruction mnemonics are
 treated as expressions.

 The operand field is terminated by a semicolon when the field
 is followed by a comment. For example, in the following
 statement:

 label: lda abcd,x ;Comment field

 the tab between lda and abcd terminates the operator field and
 defines the beginning of the operand field; a comma separates

 THE ASSEMBLER PAGE 1-6
 SOURCE PROGRAM FORMAT

 the operands abcd and x; and a semicolon terminates the operand
 field and defines the beginning of the comment field. When no
 comment field follows, the operand field is terminated by the
 end of the source line.

 1.2.1.4 Comment Field -

 The comment field begins with a semicolon and extends through
 the end of the line. This field is optional and may contain any
 7-bit ascii character except null.

 Comments do not affect assembly processing or program execu-
 tion.

 1.3 SYMBOLS AND EXPRESSIONS

 This section describes the generic components of the ASxxxx
 assemblers: the character set, the conventions observed in con-
 structing symbols, and the use of numbers, operators, and ex-
 pressions.

 1.3.1 Character Set

 The following characters are legal in ASxxxx source programs:

 1. The letters A through Z. Both upper- and lower-case
 letters are acceptable. The assemblers are case sensi-
 tive, i.e. ABCD and abcd are different symbols. (The
 assemblers can be made case insensitive by recompiling
 with the appropriate switches.)

 2. The digits 0 through 9

 3. The characters . (period), $ (dollar sign), and _ (un-
 derscore).

 4. The special characters listed in Tables 1 through 6.

 Tables 1 through 6 describe the various ASxxxx label and
 field terminators, assignment operators, operand separators, as-
 sembly, unary, binary, and radix operators.

 THE ASSEMBLER PAGE 1-7
 SYMBOLS AND EXPRESSIONS

 Table 1 Label Terminators and Assignment Operators
 --

 : Colon Label terminator.

 :: Double colon Label Terminator; defines the
 label as a global label.

 = Equal sign Direct assignment operator.

 == Double equal Direct assignment operator;
 sign defines the symbol as a global
 symbol.

 --

 Table 2 Field Terminators and Operand Separators
 --

 Tab Item or field terminator.

 Space Item or field terminator.

 , Comma Operand field separator.

 ; Semicolon Comment field indicator.

 --

 Table 3 Assembler Operators
 --

 # Number sign Immediate expression indicator.

 . Period Current location counter.

 (Left parenthesis Expression delimiter.

) Right parenthesis Expression delimeter.

 --

 THE ASSEMBLER PAGE 1-8
 SYMBOLS AND EXPRESSIONS

 Table 4 Unary Operators
 --

 < Left bracket <FEDC Produces the lower byte
 value of the expression.
 (DC)

 > Right bracket >FEDC Produces the upper byte
 value of the expression.
 (FE)

 + Plus sign +A Positive value of A

 - Minus sign -A Produces the negative
 (2's complement) of A.

 ~ Tilde ~A Produces the 1's comple-
 ment of A.

 ' Single quote 'D Produces the value of
 the character D.

 " Double quote "AB Produces the double byte
 value for AB.

 \ Backslash '\n Unix style characters
 \b, \f, \n, \r, \t
 or '\001 or octal byte values.

 --

 THE ASSEMBLER PAGE 1-9
 SYMBOLS AND EXPRESSIONS

 Table 5 Binary Operators
 --

 << Double 0800 << 4 Produces the 4 bit
 Left bracket left-shifted value of
 0800. (8000)

 >> Double 0800 >> 4 Produces the 4 bit
 Right bracket right-shifted value of
 0800. (0080)

 + Plus sign A + B Arithmetic Addition
 operator.

 - Minus sign A - B Arithmetic Subtraction
 operator.

 * Asterisk A * B Arithmetic Multiplica-
 tion operator. (signed
 16-bit)

 / Slash A / B Arithmetic Division
 operator. (signed
 16-bit quotient)

 & Ampersand A & B Logical AND operator.

 | Bar A | B Logical OR operator.

 % Percent sign A % B Modulus operator.
 (16-bit value)

 ^ Up arrow or A ^ B EXCLUSIVE OR operator.
 circumflex

 --

 THE ASSEMBLER PAGE 1-10
 SYMBOLS AND EXPRESSIONS

 Table 6 Temporary Radix Operators
 --

 0b, 0B Binary radix operator.

 0@, 0o, 0O, 0q, 0Q Octal radix operator.

 0d, 0D Decimal radix operator.

 0h, 0H, 0x, 0X Hexidecimal radix operator.

 Potential ambiguities arising from the use of 0b and 0d
 as temporary radix operators may be circumvented by pre-
 ceding all non-prefixed hexidecimal numbers with 00.
 Leading 0's are required in any case where the first
 hexidecimal digit is abcdef as the assembler will treat
 the letter sequence as a label.

 --

 1.3.2 User-Defined Symbols

 User-defined symbols are those symbols that are equated to a
 specific value through a direct assignment statement or appear
 as labels. These symbols are added to the User Symbol Table as
 they are encountered during assembly.

 The following rules govern the creation of user-defined symbols:

 1. Symbols can be composed of alphanumeric characters,
 dollar signs ($), periods (.), and underscores (_)
 only.

 2. The first character of a symbol must not be a number
 (except in the case of local symbols).

 3. The first eight characters of a symbol must be unique.
 A symbol can be written with more than eight legal
 characters, but the ninth and subsequent characters are
 ignored.

 4. Spaces and Tabs must not be embedded within a symbol.

 THE ASSEMBLER PAGE 1-11
 SYMBOLS AND EXPRESSIONS

 1.3.3 Local Symbols

 Local symbols are specially formatted symbols used as labels
 within a block of coding that has been delimited as a local sym-
 bol block. Local symbols are of the form n$, where n is a
 decimal integer from 0 to 255, inclusive. Examples of local
 symbols are:

 1$
 27$
 138$
 244$

 The range of a local symbol block consists of those state-
 ments between two normally constructed symbolic labels. Note
 that a statement of the form:

 ALPHA = EXPRESSION

 is a direct assignment statement but does not create a label and
 thus does not delimit the range of a local symbol block.

 Note that the range of a local symbol block may extend across
 program areas.

 Local symbols provide a convenient means of generating labels
 for branch instructions and other such references within local
 symbol blocks. Using local symbols reduces the possibility of
 symbols with multiple definitions appearing within a user pro-
 gram. In addition, the use of local symbols differentiates
 entry-point labels from local labels, since local labels cannot
 be referenced from outside their respective local symbol blocks.
 Thus, local symbols of the same name can appear in other local
 symbol blocks without conflict. Local symbols require less sym-
 bol table space than normal symbols. Their use is recommended.

 The use of the same local symbol within a local symbol block
 will generate one or both of the m or p errors.

 THE ASSEMBLER PAGE 1-12
 SYMBOLS AND EXPRESSIONS

 Example of local symbols:

 a: ldx #atable ;get table address
 lda #0d48 ;table length
 1$: clr ,x+ ;clear
 deca
 bne 1$

 b: ldx #btable ;get table address
 lda #0d48 ;table length
 1$: clr ,x+ ;clear
 deca
 bne 1$

 1.3.4 Current Location Counter

 The period (.) is the symbol for the current location coun-
 ter. When used in the operand field of an instruction, the
 period represents the address of the first byte of the
 instruction:

 AS: ldx #. ;The period (.) refers to
 ;the address of the ldx
 ;instruction.

 When used in the operand field of an ASxxxx directive, it
 represents the address of the current byte or word:

 QK = 0

 .word 0xFFFE,.+4,QK ;The operand .+4 in the .word
 ;directive represents a value
 ;stored in the second of the
 ;three words during assembly.

 If we assume the current value of the program counter is
 0H0200, then during assembly, ASxxxx reserves three words of
 storage starting at location 0H0200. The first value, a hex-
 idecimal constant FFFE, will be stored at location 0H0200. The
 second value represented by .+4 will be stored at location
 0H0202, its value will be 0H0206 (= 0H0202 + 4). The third
 value defined by the symbol QK will be placed at location
 0H0204.

 At the beginning of each assembly pass, ASxxxx resets the lo-
 cation counter. Normally, consecutive memory locations are as-
 signed to each byte of object code generated. However, the
 value of the location counter can be changed through a direct
 assignment statement of the following form:

 THE ASSEMBLER PAGE 1-13
 SYMBOLS AND EXPRESSIONS

 . = . + expression

 The new location counter can only be specified relative to
 the current location counter. Neglecting to specify the current
 program counter along with the expression on the right side of
 the assignment operator will generate the (.) error. (Absolute
 program areas may use the .org directive to specify the absolute
 location of the current program counter.)

 The following coding illustrates the use of the current location
 counter:

 .area CODE1 (ABS) ;program area CODE1
 ;is ABSOLUTE

 .org 0H100 ;set location to
 ;0H100 absolute

 num1: ldx #.+0H10 ;The label num1 has
 ;the value 0H100.
 ;X is loaded with
 ;0H100 + 0H10

 .org 0H130 ;location counter
 ;set to 0H130

 num2: ldy #. ;The label num2 has
 ;the value 0H130.
 ;Y is loaded with
 ;value 0H130.

 .area CODE2 (REL) ;program area CODE2
 ;is RELOCATABLE

 . = . + 0H20 ;Set location counter
 ;to relocatable 0H20 of
 ;the program section.

 num3: .word 0 ;The label num3 has
 ;the value
 ;of relocatable 0H20.

 . = . + 0H40 ;will reserve 0H40
 ;bytes of storage as will
 .blkb 0H40 ;or
 .blkw 0H20

 The .blkb and .blkw directives are the preferred methods of
 allocating space.

 THE ASSEMBLER PAGE 1-14
 SYMBOLS AND EXPRESSIONS

 1.3.5 Numbers

 ASxxxx assumes that all numbers in the source program are to
 be interpreted in decimal radix unless otherwise specified. The
 .radix directive may be used to specify the default as octal,
 decimal, or hexidecimal. Individual numbers can be designated
 as binary, octal, decimal, or hexidecimal through the temporary
 radix prefixes shown in table 6.

 Negative numbers must be preceeded by a minus sign; ASxxxx
 translates such numbers into two's complement form. Positive
 numbers may (but need not) be preceeded by a plus sign.

 Numbers are always considered to be absolute values, therefor
 they are never relocatable.

 1.3.6 Terms

 A term is a component of an expression and may be one of the
 following:

 1. A number.

 2. A symbol:
 1. A period (.) specified in an expression causes the
 current location counter to be used.
 2. A User-defined symbol.
 3. An undefined symbol is assigned a value of zero and
 inserted in the User-Defined symbol table as an un-
 defined symbol.

 3. A single quote followed by a single ascii character, or
 a double quote followed by two ascii characters.

 4. An expression enclosed in parenthesis. Any expression
 so enclosed is evaluated and reduced to a single term
 before the remainder of the expression in which it ap-
 pears is evaluated. Parenthesis, for example, may be
 used to alter the left-to-right evaluation of expres-
 sions, (as in A*B+C versus A*(B+C)), or to apply a un-
 ary operator to an entire expression (as in -(A+B)).

 5. A unary operator followed by a symbol or number.

 THE ASSEMBLER PAGE 1-15
 SYMBOLS AND EXPRESSIONS

 1.3.7 Expressions

 Expressions are combinations of terms joined together by
 binary operators. Expressions reduce to a 16-bit value. The
 evaluation of an expression includes the determination of its
 attributes. A resultant expression value may be one of three
 types (as described later in this section): relocatable, ab-
 solute, and external.

 Expressions are evaluate with an operand hierarchy as follows:

 * / % multiplication,
 division, and
 modulus first.

 + - addition and
 subtraction second.

 << >> left shift and
 right shift third.

 ^ exclusive or fourth.

 & logical and fifth.

 | logical or last

 except that unary operators take precedence over binary
 operators.

 A missing or illegal operator terminates the expression
 analysis, causing error codes (o) and/or (q) to be generated
 depending upon the context of the expression itself.

 At assembly time the value of an external (global) expression
 is equal to the value of the absolute part of that expression.
 For example, the expression external+4, where 'external' is an
 external symbol, has the value of 4. This expression, however,
 when evaluated at link time takes on the resolved value of the
 symbol 'external', plus 4.

 Expressions, when evaluated by ASxxxx, are one of three
 types: relocatable, absolute, or external. The following dis-
 tinctions are important:

 1. An expression is relocatable if its value is fixed re-
 lative to the base address of the program area in which
 it appears; it will have an offset value added at link
 time. Terms that contain labels defined in relocatable
 program areas will have a relocatable value;

 THE ASSEMBLER PAGE 1-16
 SYMBOLS AND EXPRESSIONS

 similarly, a period (.) in a relocatable program area,
 representing the value of the current program location
 counter, will also have a relocatable value.

 2. An expression is absolute if its value is fixed. An
 expression whose terms are numbers and ascii characters
 will reduce to an absolute value. A relocatable ex-
 pression or term minus a relocatable term, where both
 elements being evaluated belong to the same program
 area, is an absolute expression. This is because every
 term in a program area has the same relocation bias.
 When one term is subtracted from the other the reloca-
 tion bias is zero.

 3. An expression is external (or global) if it contains a
 single global reference (plus or minus an absolute ex-
 pression value) that is not defined within the current
 program. Thus, an external expression is only par-
 tially defined following assembly and must be resolved
 at link time.

 1.4 GENERAL ASSEMBLER DIRECTIVES

 An ASxxxx directive is placed in the operator field of the
 source line. Only one directive is allowed per source line.
 Each directive may have a blank operand field or one or more
 operands. Legal operands differ with each directive.

 1.4.1 .module Directive

 Format:

 .module string

 The .module directive causes the string to be included in the
 assemblers output file as an identifier for this particular ob-
 ject module. The string may be from 1 to 8 characters in
 length. Only one identifier is allowed per assembled module.
 The main use of this directive is to allow the linker to report
 a modules' use of undefined symbols. At link time all undefined
 symbols are reported and the modules referencing them are
 listed.

 THE ASSEMBLER PAGE 1-17
 GENERAL ASSEMBLER DIRECTIVES

 1.4.2 .title Directive

 Format:

 .title string

 The .title directive provides a character string to be placed
 on the second line of each page during listing.

 1.4.3 .sbttl Directive

 Format:

 .sbttl string

 The .sbttl directive provides a character string to be placed
 on the third line of each page during listing.

 1.4.4 .page Directive

 Format:

 .page

 The .page directive causes a page ejection with a new heading
 to be printed. The new page occurs after the next line of the
 source program is processed, this allows an immediately follow-
 ing .sbttl directive to appear on the new page. The .page
 source line will not appear in the file listing.

 1.4.5 .byte and .db Directives

 Format:

 .byte exp ;Stores the binary value
 .db exp ;of the expression in the
 ;next byte.

 .byte exp1,exp2,expn ;Stores the binary values
 .db exp1,exp2,expn ;of the list of expressions
 ;in successive bytes.

 where: exp, represent expressions that will be
 exp1, truncated to 8-bits of data.
 . Each expression will be calculated
 . as a 16-bit word expression,
 . the high-order byte will be truncated.
 . Multiple expressions must be
 expn separated by commas.

 THE ASSEMBLER PAGE 1-18
 GENERAL ASSEMBLER DIRECTIVES

 The .byte or .db directives are used to generate successive
 bytes of binary data in the object module.

 1.4.6 .word and .dw Directives

 Format:

 .word exp ;Stores the binary value
 .dw exp ;of the expression in
 ;the next word.

 .word exp1,exp2,expn ;Stores the binary values
 .dw exp1,exp2,expn ;of the list of expressions
 ;in successive words.

 where: exp, represent expressions that will occupy two
 exp1, bytes of data. Each expression will be
 . calculated as a 16-bit word expression.
 . Multiple expressions must be
 expn separated by commas.

 The .word or .dw directives are used to generate successive
 words of binary data in the object module.

 1.4.7 .blkb, .blkw, and .ds Directives

 Format:

 .blkb N ;reserve N bytes of space
 .blkw N ;reserve N words of space
 .ds N ;reserve N bytes of space

 The .blkb and .ds directives reserve byte blocks in the ob-
 ject module; the .blkw directive reserves word blocks.

 1.4.8 .ascii Directive

 Format:

 .ascii /string/

 where: string is a string of printable ascii characters.

 / / represent the delimiting characters. These
 delimiters may be any paired printing
 characters, as long as the characters are not
 contained within the string itself. If the
 delimiting characters do not match, the .ascii
 directive will give the (q) error.

 THE ASSEMBLER PAGE 1-19
 GENERAL ASSEMBLER DIRECTIVES

 The .ascii directive places one binary byte of data for each
 character in the string into the object module.

 1.4.9 .asciz Directive

 Format:

 .asciz /string/

 where: string is a string of printable asciz characters.

 / / represent the delimiting characters. These
 delimiters may be any paired printing
 characters, as long as the characters are not
 contained within the string itself. If the
 delimiting characters do not match, the .asciz
 directive will give the (q) error.

 The .ascii directive places one binary byte of data for each
 character in the string into the object module. Following all
 the character data a zero byte is inserted to terminate the
 character string.

 1.4.10 .radix Directive

 Format:

 .radix character

 where: character represents a single character specifying the
 default radix to be used for succeeding numbers.
 The character may be any one of the following:

 B,b Binary

 O,o Octal
 Q,q
 @

 D,d Decimal
 'blank'

 H,h Hexidecimal
 X,x

 THE ASSEMBLER PAGE 1-20
 GENERAL ASSEMBLER DIRECTIVES

 1.4.11 .even Directive

 Format:

 .even

 The .even directive ensures that the current location counter
 contains an even boundary value by adding 1 if the current loca-
 tion is odd.

 1.4.12 .odd Directive

 Format:

 .odd

 The .odd directive ensures that the current location counter
 contains an odd boundary value by adding one if the current lo-
 cation is even.

 1.4.13 .area Directive

 Format:

 .area name [(options)]

 where: name represents the symbolic name of the program sec-
 tion. This name may be the same as any
 user-defined symbol as the area names are in-
 dependent of all symbols and labels.

 options specify the type of program or data area:
 ABS absolute (automatically invokes OVR)
 REL relocatable
 OVR overlay
 CON concatenate
 PAG paged area

 The .area directive provides a means of defining and separat-
 ing multiple programming and data sections. The name is the
 area label used by the assembler and the linker to collect code
 from various separately assembled modules into one section. The
 name may be from 1 to 8 characters in length.

 The options are specified within parenthesis and separated by
 commas as shown in the following example:

 .area TEST (REL,CON) ;This section is relocatable
 ;and concatenated with other

 THE ASSEMBLER PAGE 1-21
 GENERAL ASSEMBLER DIRECTIVES

 ;sections of this program area.

 .area DATA (REL,OVR) ;This section is relocatable
 ;and overlays other sections
 ;of this program area.

 .area SYS (ABS,OVR) ;(CON not allowed with ABS)
 ;This section is defined as
 ;absolute. Absolute sections
 ;are always overlayed with
 ;other sections of this program
 ;area.

 .area PAGE (PAG) ;This is a paged section. The
 ;section must be on a 256 byte
 ;boundary and its length is
 ;checked by the linker to be
 ;no larger than 256 bytes.
 ;This is useful for direct page
 ;areas.

 The default area type is REL|CON; i.e. a relocatable sec-
 tion which is concatenated with other sections of code with the
 same area name. The ABS option indicates an absolute area. The
 OVR and CON options indicate if program sections of the same
 name will overlay each other (start at the same location) or be
 concatenated with each other (appended to each other).

 Multiple invocations of the .area directive with the same
 name must specify the same options or leave the options field
 blank, this defaults to the previously specified options for
 this program area.

 The ASxxxx assemblers automatically provide two program
 sections:

 '. .ABS.' This dumby section contains all absolute
 symbols and their values.

 '_CODE' This is the default program/data area.
 This program area is of type (REL,CON).

 THE ASSEMBLER PAGE 1-22
 GENERAL ASSEMBLER DIRECTIVES

 1.4.14 .org Directive

 Format:

 .org exp

 where: exp is an absolute expression that becomes the cur-
 rent location counter.

 The .org directive is valid only in an absolute program section
 and will give a (q) error if used in a relocatable program area.
 The .org directive specifies that the current location counter
 is to become the specified absolute value.

 1.4.15 .globl Directive

 Format:

 .globl sym1,sym2,...,symn

 where: sym1, represent legal symbolic names. When
 sym2,... When multiple symbols are specified,
 symn they are separated by commas.

 A .globl directive may also have a label field and/or a com-
 ment field.

 The .globl directive is provided to define (and thus provide
 linkage to) symbols not otherwise defined as global symbols
 within a module. In defining global symbols the directive
 .globl J is similar to:

 J == expression or J::

 Because object modules are linked by global symbols, these
 symbols are vital to a program. All internal symbols appearing
 within a given program must be defined at the end of pass 1 or
 they will be considered undefined. The assembly directive (-g)
 can be be invoked to make all undefined symbols global at the
 end of pass 1.

 THE ASSEMBLER PAGE 1-23
 GENERAL ASSEMBLER DIRECTIVES

 1.4.16 .if, .else, and .endif Directives

 Format:

 .if expr
 . ;}
 . ;} range of true condition
 . ;}
 .else
 . ;}
 . ;} range of false condition
 . ;}
 .endif

 The conditional assembly directives allow you to include or
 exclude blocks of source code during the assembly process, based
 on the evaluation of the condition test.

 The range of true condition will be processed if the expres-
 sion 'expr' is not zero (i.e. true) and the range of false con-
 dition will be processed if the expression 'expr' is zero (i.e
 false). The range of true condition is optional as is the .else
 directive and the range of false condition. The following are
 all valid .if/.else/.endif constructions:

 .if A-4 ;evaluate A-4
 .byte 1,2 ;insert bytes if A-4 is
 .endif ;not zero

 .if K+3 ;evaluate K+3
 .else
 .byte 3,4 ;insert bytes if K+3
 .endif ;is zero

 .if J&3 ;evaluate J masked by 3
 .byte 12 ;insert this byte if J&3
 .else ;is not zero
 .byte 13 ;insert this byte if J&3
 .endif ;is zero

 The .if/.else/.endif directives may be nested upto 10 levels.

 The .page directive is processed within a false condition
 range to allow extended textual information to be incorporated
 in the source program with out the need to use the comment
 delimiter (;):

 .if 0

 .page
 This text will be bypassed during assembly

 THE ASSEMBLER PAGE 1-24
 GENERAL ASSEMBLER DIRECTIVES

 but appear in the listing file.
 .
 .
 .

 .endif

 1.4.17 .include Directive

 Format:

 .include string

 where: string represents a delimited string that is the file
 specification of an ASxxxx source file.

 The .include directive is used to insert a source file within
 the source file currently being assembled. When this directive
 is encountered, an implicit .page directive is issued. When the
 end of the specified source file is reached, an implicit .page
 directive is issued and input continues from the previous source
 file. The maximum nesting level of source files specified by a
 .include directive is five. The line containing the .include
 directive will not appear in the listing file.

 The total number of separately specified .include files is
 unlimited as each .include file is opened and then closed during
 each pass made by the assembler.

 1.4.18 .setdp Directive

 Format:

 .setdp [base [,area]]

 The set direct page directive has a common format in all the
 AS68xx assemblers. The .setdp directive is used to inform the
 assembler of the current direct page region and the offset ad-
 dress within the selected area. The normal invocation methods
 are:

 .area DIRECT (PAG)
 .setdp

 or

 .setdp 0,DIRECT

 for all the 68xx microprocessors (the 6804 has only the paged
 ram area). The commands specify that the direct page is in area

 THE ASSEMBLER PAGE 1-25
 GENERAL ASSEMBLER DIRECTIVES

 DIRECT and its offset address is 0 (the only valid value for all
 but the 6809 microprocessor). Be sure to place the DIRECT area
 at address 0 during linking. When the base address and area are
 not specified, then zero and the current area are the defaults.
 If a .setdp directive is not issued the assembler defaults the
 direct page to the area "_CODE" at offset 0.

 The assembler verifies that any local variable used in a
 direct variable reference is located in this area. Local vari-
 able and constant value direct access addresses are checked to
 be within the address range from 0 to 255.

 External direct references are assumed by the assembler to be
 in the correct area and have valid offsets. The linker will
 check all direct page relocations to verify that they are within
 the correct area.

 The 6809 microprocessor allows the selection of the direct
 page to be on any 256 byte boundary by loading the appropriate
 value into the dp register. Typically one would like to select
 the page boundary at link time, one method follows:

 .area DIRECT (PAG) ; define the direct page
 .setdp
 .
 .
 .
 .area PROGRAM
 .
 ldd #DIRECT ; load the direct page register
 tfr a,dp ; for access to the direct page

 At link time specify the base and global equates to locate the
 direct page:

 -b DIRECT = 0x1000
 -g DIRECT = 0x1000

 Both the area address and offset value must be specified (area
 and variable names are independent). The linker will verify
 that the relocated direct page accesses are within the direct
 page.

 THE ASSEMBLER PAGE 1-26
 GENERAL ASSEMBLER DIRECTIVES

 The preceeding sequence could be repeated for multiple paged
 areas, however an alternate method is to define a non-paged area
 and use the .setdp directive to specify the offset value:

 .area DIRECT ; define non-paged area
 .
 .
 .
 .area PROGRAM
 .
 .setdp 0,DIRECT ; direct page area
 ldd #DIRECT ; load the direct page register
 tfr a,dp ; for access to the direct page
 .
 .
 .setdp 0x100,DIRECT ; direct page area
 ldd #DIRECT+0x100 ; load the direct page register
 tfr a,dp ; for access to the direct page

 The linker will verify that subsequent direct page references
 are in the specified area and offset address range. It is the
 programmers responsibility to load the dp register with the cor-
 rect page segment corresponding to the .setdp base address
 specified.

 For those cases where a single piece of code must access a
 defined data structure within a direct page and there are many
 pages, define a dumby direct page linked at address 0. This
 dumby page is used only to define the variable labels. Then
 load the dp register with the real base address but donot use a
 .setdp directive. This method is equivalent to indexed address-
 ing, where the dp register is the index register and the direct
 addressing is the offset.

 1.5 INVOKING ASXXXX

 The ASxxxx assemblers are command line oriented. After the
 assembler is started, enter the option(s) and file(s) to assem-
 ble following the 'argv:' prompt:

 argv: [-dqxgalosf] file1 [file2 file3 ... file6]

 The options are:

 d decimal listing
 q octal listing
 x hex listing (default)

 The listing radix affects the
 .lst, .rel, and .sym files.

 THE ASSEMBLER PAGE 1-27
 INVOKING ASXXXX

 g undefined symbols made global
 a all user symbols made global

 l create list output file1.lst
 o create object output file1.rel
 s create symbol output file1.sym

 f flag relocatable references by ` in the list-
 ing file
 ff flag relocatable references by mode in the list-
 ing file

 The file name for the .lst, .rel, and .sym files is the first
 file name specified in the command line. All output files are
 ascii text files which may be edited, copied, etc. The output
 files are the concatenation of all the input files, if files are
 to be assembled independently invoke the assembler for each
 file.

 The .rel file contains a radix directive so that the linker
 will use the proper conversion for this file. Linked files may
 have different radices.

 If the list (l) option is specified without the symbol table
 (s) option, the symbol table is placed at the end of the listing
 file.

 1.6 ERRORS

 The ASxxxx assemblers provide limited diagnostic error codes
 during the assembly process, these errors will be noted in the
 listing file and printed on the stderr device. The errors are:

 (.) This error is caused by an absolute direct assign-
 ment of the current location counter
 . = expression (incorrect)
 rather than the correct
 . = . + expression

 (a) Indicates a machine specific addressing or address-
 ing mode error.

 (b) Indicates a direct page boundary error.

 (d) Indicates a direct page addressing error.

 (i) Caused by an .include file error or an .if/.endif
 mismatch.

 THE ASSEMBLER PAGE 1-28
 ERRORS

 (m) Multiple definitions of the same label, multiple
 .module directives, or multiple conflicting attri-
 butes in an .area directive.

 (o) Directive or mnemonic error or the use of the .org
 directive in a relocatable area.

 (p) Phase error: label location changing between passes
 2 and 3. Normally caused by having more than one
 level of forward referencing.

 (q) Questionable syntax: missing or improper operators,
 terminators, or delimiters.

 (r) Relocation error: logic operation attempted on a
 relocatable term, addition of two relocatable terms,
 subtraction of two relocatable terms not within the
 same programming area or external symbols.

 (u) Undefined symbol encountered during assembly.

 1.7 LISTING FILE

 The (-l) option produces an ascii output listing file. Each
 page of output contains a four line header:

 1. The ASxxxx program name and page number

 2. Title from a .title directive (if any)

 3. Subtitle from a .sbttl directive (if any)

 4. Blank line

 Each succeeding line contains five fields:

 1. Error field (first three characters of line)

 2. Current location counter

 3. Generated code in byte format

 4. Source text line number

 5. Source text

 THE ASSEMBLER PAGE 1-29
 LISTING FILE

 The error field may contain upto 2 error flags indicating any
 errors encountered while assembling this line of source code.

 The current location counter field displays the 16-bit pro-
 gram position. This field will be in the selected radix.

 The generated code follows the program location. The listing
 radix determines the number of bytes that will be displayed in
 this field. Hexidecimal listing allows six bytes of data within
 the field, decimal and octal allow four bytes within the field.
 If more than one field of data is generated from the assembly of
 a single line of source code, then the data field is repeated on
 successive lines.

 The source text line number is printed in decimal and is fol-
 lowed by the source text.

 Two special cases will disable the listing of a line of
 source text:

 1. Source line with a .page directive is never listed.

 2. Source line with a .include file directive is not
 listed unless the .include file cannot be opened.

 Two data field options are available to flag those bytes
 which will be relocated by the linker. If the -f option is
 specified then each byte to be relocated will be preceeded by
 the '`' character. If the -ff option is specified then each
 byte to be relocated will be preceeded by one of the following
 characters:

 1. * paged relocation

 2. u unsigned byte relocation

 3. p PCR byte or low byte of word relocation

 4. q PCR high byte of word relocation

 5. r low byte relocation

 6. s high byte relocation

 THE ASSEMBLER PAGE 1-30
 SYMBOL TABLE FILE

 1.8 SYMBOL TABLE FILE

 The symbol table has two parts:

 1. The alphabetically sorted list of symbols and/or labels
 defined or referenced in the source program.

 2. A list of the program areas defined during assembly of
 the source program.

 The sorted list of symbols and/or labels contains the follow-
 ing information:

 1. Program area number (none if absolute value or exter-
 nal)

 2. The symbol or label

 3. Directly assigned symbol is denoted with an (=) sign

 4. The value of a symbol, location of a label relative to
 the program area base address (=0), or a **** indicat-
 ing the symbol or label is undefined.

 5. The characters: G - global, R - relocatable, and X -
 external.

 The list of program areas provides the correspondence between
 the program area numbers and the defined program areas, the size
 of the program areas, and the area flags (attributes).

 1.9 OBJECT FILE

 The object file is an ascii file containing the information
 needed by the linker to bind multiple object modules into a com-
 plete loadable memory image. The object module contains the
 following designators:

 [XDQ][HL]
 X Hexidecimal radix
 D Decimal radix
 Q Octal radix

 H Most significant byte first
 L Least significant byte first

 H Header

 THE ASSEMBLER PAGE 1-31
 OBJECT FILE

 M Module
 A Area
 S Symbol
 T Object code
 R Relocation information
 P Paging information

 Refer to the linker for a detailed description of each of the
 designators and the format of the information contained in the
 object file.

CHAPTER 2

THE LINKER

 2.1 ASLINK RELOCATING LINKER

 ASLINK is the companion linker for the ASxxxx assemblers.

 The program ASLINK is a general relocating linker performing
 the following functions:

 1. Bind multiple object modules into a single memory image

 2. Resolve inter-module symbol references

 3. Combine code belonging to the same area from multiple
 object files into a single contiguous memory region

 4. Perform byte and word program counter relative
 (pc or pcr) addressing calculations

 5. Define absolute symbol values at link time

 6. Define absolute area base address values at link time

 7. Produce Intel Hex or Motorola S19 output file

 8. Produce a map of the linked memory image

 THE LINKER PAGE 2-2
 INVOKING ASLINK

 2.2 INVOKING ASLINK

 The linker may run in the command line mode or command file
 modes. The allowed startup linker commands are:

 -c/-f command line / command file modes

 -p/-n enable/disable echo file.lnk input to stdout

 If command line mode is selected, all linker commands come
 from stdin, if the command file mode is selected the commands
 are input from the specified file (extension must be .lnk).

 The linker is started via

 ASLINK -(cfpn)

 After invoking the linker the valid options are:

 1. -i/-s Intel Hex (file.ihx) or Motorola S19 (file.s19)
 image output file.

 2. -m Generate a map file (file.map). This file con-
 tains a list of the symbols (by area) with absolute ad-
 dresses, sizes of linked areas, and other linking
 information.

 3. -xdq Specifies the number radix for the map file
 (Hexidecimal, Decimal, or Octal).

 4. fileN Files to be linked. Files may be on the same
 line as the above options or on a separate line(s) one
 file per line or multiple files separated by spaces or
 tabs.

 5. -b area = expression (one definition per line)
 This specifies an area base address where the expres-
 sion may contain constants and/or defined symbols from
 the linked files.

 6. -g symbol = expression (one definition per line)
 This specifies the value for the symbol where the ex-
 pression may contain constants and/or defined symbols
 from the linked files.

 7. -e or null line, terminates input to the linker.

 THE LINKER PAGE 2-3
 ASLINK PROCESSING

 2.3 ASLINK PROCESSING

 The linker processes the files in the order they are
 presented. The first pass through the input files is used to
 define all program areas, the section area sizes, and symbols
 defined or referenced. After the first pass the -b (area base
 address) definitions, if any, are processed and the areas
 linked.

 The area linking proceeds by first examining the area types
 ABS, CON, REL, OVR and PAG. Absolute areas (ABS) from separate
 object modules are always overlayed and have been assembled at a
 specific address, these are not normally relocated (if a -b com-
 mand is used on an absolute area the area will be relocated).
 Relative areas (normally defined as REL|CON) have a base address
 of 0x0000 as read from the object files, the -b command speci-
 fies the beginning address of the area. All subsequent relative
 areas will be concatenated with proceeding relative areas.
 Where specific ordering is desired, the first linker input file
 should have the area definitions in the desired order. At the
 completion of the area linking all area addresses and lengths
 have been determined. The areas of type PAG are verified to be
 on a 256 byte boundary and that the length does not exceed 256
 bytes. Any errors are noted on stderr and in the map file.

 Next the global symbol definitions (-g option), if any, are
 processed. The symbol definitions have been delayed until this
 point because the absolute addresses of all internal symbols are
 known and can be used in the expression calculations.

 Before continuing with the linking process the symbol table
 is scanned to determine if any symbols have been referenced but
 not defined. Undefined symbols are listed on the stderr device.
 if a .module directive was included in the assembled file the
 module making the reference to this undefined variable will be
 printed.

 Constants defined as global in more than one module will be
 flagged as multiple definitions if their values are not identi-
 cal.

 After the preceeding processes are complete the linker may
 output a map file (-m option). This file provides the following
 information:

 1. Global symbol values and label absolute addresses

 2. Defined areas and there lengths

 3. Remaining undefined symbols

 THE LINKER PAGE 2-4
 ASLINK PROCESSING

 4. List of modules linked

 5. List of -b and -g definitions

 The final step of the linking process is performed during the
 second pass of the input files. As the xxx.rel files are read
 the code is relocated by substituting the physical addresses for
 the referenced symbols and areas and may be output in Intel or
 Motorola formats. The number of files linked and symbols de-
 fined/referenced is limited by the processor space available to
 build the area/symbol lists.

 2.4 LINKER INPUT FORMAT

 The linkers' input object file is an ascii file containing
 the information needed by the linker to bind multiple object
 modules into a complete loadable memory image.

 The object module contains the following designators:

 [XDQ][HL]
 X Hexidecimal radix
 D Decimal radix
 Q Octal radix

 H Most significant byte first
 L Least significant byte first

 H Header
 M Module
 A Area
 S Symbol
 T Object code
 R Relocation information
 P Paging information

 THE LINKER PAGE 2-5
 LINKER INPUT FORMAT

 2.4.1 Object Module Format

 The first line of an object module contains the [XDQ][HL]
 format specifier (i.e. XH indicates a hexidecimal file with
 most significant byte first) for the following designators.

 2.4.2 Header Line

 H aa areas gg global symbols

 The header line specifies the number of areas(aa) and the
 number of global symbols(gg) defined or referenced in this ob-
 ject module segment.

 2.4.3 Module Line

 M name

 The module line specifies the module name from which this
 header segment was assembled. The module line will not appear
 if the .module directive was not used in the source program.

 2.4.4 Symbol Line

 S string Defnnnn

 or

 S string Refnnnn

 The symbol line defines (Def) or references (Ref) the symbol
 'string' with the value nnnn. The defined value is relative to
 the current area base address. References to constants and ex-
 ternal global symbols will always appear before the first area
 definition. References to external symbols will have a value of
 zero.

 THE LINKER PAGE 2-6
 LINKER INPUT FORMAT

 2.4.5 Area Line

 A label size ss flags ff

 The area line defines the area label, the size (ss) of the
 area in bytes, and the area flags (ff). The area flags specify
 the ABS, REL, CON, OVR, and PAG parameters:

 OVR/CON (0x04/0x00 i.e. bit position 2)

 ABS/REL (0x08/0x00 i.e. bit position 3)

 PAG (0x10 i.e. bit position 4)

 2.4.6 T Line

 T xx xx nn nn nn nn nn ...

 The T line contains the assembled code output by the assem-
 bler with xx xx being the offset address from the current area
 base address and nn being the assembled instructions and data in
 byte format.

 2.4.7 R Line

 R 0 0 nn nn n1 n2 xx xx ...

 The R line provides the relocation information to the linker.
 The nn nn value is the current area index, i.e. which area the
 current values were assembled. Relocation information is en-
 coded in groups of 4 bytes:

 1. n1 is the relocation mode and object format
 1. bit 0 word(0x00)/byte(0x01)
 2. bit 1 relocatable area(0x00)/symbol(0x02)
 3. bit 2 normal(0x00)/PC relative(0x04) relocation
 4. bit 3 1-byte(0x00)/2-byte(0x08) object format for
 byte data
 5. bit 4 signed(0x00)/unsigned(0x10) byte data
 6. bit 5 normal(0x00)/page '0'(0x20) reference
 7. bit 6 normal(0x00)/page 'nnn'(0x40) reference

 2. n2 is a byte index into the corresponding (i.e. pre-
 ceeding) T line data (i.e. a pointer to the data to be
 updated by the relocation). The T line data may be
 1-byte or 2-byte byte data format or 2-byte word
 format.

 THE LINKER PAGE 2-7
 LINKER INPUT FORMAT

 3. xx xx is the area/symbol index for the area/symbol be-
 ing referenced. the corresponding area/symbol is found
 in the header area/symbol lists.

 The groups of 4 bytes are repeated for each item requiring relo-
 cation in the preceeding T line.

 2.4.8 P Line

 P 0 0 nn nn n1 n2 xx xx

 The P line provides the paging information to the linker as
 specified by a .setdp directive. The format of the relocation
 information is identical to that of the R line. The correspond-
 ing T line has the following information:
 T xx xx aa aa bb bb

 Where aa aa is the area reference number which specifies the
 selected page area and bb bb is the base address of the page.
 bb bb will require relocation processing if the 'n1 n2 xx xx' is
 specified in the P line. The linker will verify that the base
 address is on a 256 byte boundary and that the page length of an
 area defined with the PAG type is not larger than 256 bytes.

 The linker defaults any direct page references to the first
 area defined in the input REL file. All ASxxxx assemblers will
 specify the _CODE area first, making this the default page area.

 2.5 LINKER ERROR MESSAGES

 The linker provides detailed error messages allowing the pro-
 grammer to quickly find the errant code. As the linker com-
 pletes pass 1 over the input file(s) it reports any page
 boundary or page length errors as follows:

 ?ASlink-W-Paged Area PAGE0 Boundary Error

 and/or

 ?ASlink-W-Paged Area PAGE0 Length Error

 where PAGE0 is the paged area.

 During Pass two the linker reads the T, R, and P lines per-
 forming the necessary relocations and outputting the absolute
 code. Various errors may be reported during this process

 THE LINKER PAGE 2-8
 LINKER ERROR MESSAGES

 The P line processing can produce only one possible error:

 ?ASlink-W-Page Definition Boundary Error
 file module pgarea pgoffset
 PgDef t6809l t6809l PAGE0 0001

 The error message specifies the file and module where the .setdp
 direct was issued and indicates the page area and the page
 offset value determined after relocation.

 The R line processing produces various errors:

 ?ASlink-W-Byte PCR relocation error for symbol bra2
 file module area offset
 Refby t6809l t6809l TEST 00FE
 Defin tconst tconst . .ABS. 0080

 ?ASlink-W-Unsigned Byte error for symbol two56
 file module area offset
 Refby t6800l t6800l DIRECT 0015
 Defin tconst tconst . .ABS. 0100

 ?ASlink-W-Page0 relocation error for symbol ltwo56
 file module area offset
 Refby t6800l t6800l DIRECT 000D
 Defin tconst tconst DIRECT 0100

 ?ASlink-W-Page Mode relocation error for symbol two56
 file module area offset
 Refby t6809l t6809l DIRECT 0005
 Defin tconst tconst . .ABS. 0100

 ?ASlink-W-Page Mode relocation error
 file module area offset
 Refby t Pagetest PROGRAM 0006
 Defin t Pagetest DIRECT 0100

 These error messages specify the file, module, area, and offset
 within the area of the code referencing (Refby) and defining
 (Defin) the symbol. If the symbol is defined in the same module
 as the reference the linker is unable to report the symbol name.
 The assembler listing file(s) should be examined at the offset
 from the specified area to located the offending code.

 The errors are:

 1. The byte PCR error is caused by exceeding the pc rela-
 tive byte branch range.

 2. The Unsigned byte error indicates an indexing value was
 negative or larger than 255.

 THE LINKER PAGE 2-9
 LINKER ERROR MESSAGES

 3. The Page0 error is generated if the direct page vari-
 able is not in the page0 range of 0 to 255.

 4. The page mode error is generated if the direct variable
 is not within the current direct page (6809).

