ASxxxx Assemblers
and

ASLINK Relocating Linker

Modified for the IP_65C02
And the IP_65CX8 cores by:

Scott L. Baker
Sierra Circuit Design, Inc.
Feb 22, 1999

PREFACE 1

By Scott L. Baker
AB65C02.exe and A65CX8.exe version 1.00

The original code for this assembler was written by an anonymous author and donated to the
public domain DECUS (the Digital Equipment Corporation Users Society) archive. The code
was modified by two other authors an was placed in the public domain SIMTEL archive. | made
relatively minor changes to the C code as | found it on SIMTEL.

| ported the source code to compile with the Borland C++ compiler version 4.5
I combined some C source files to work around a compiler limitation

| added the EQU assembler pseudo-op

| made the dot prefix for a number of pseudo-ops optional

e.g. orgis legal as well as .org

| added support for the new IP_65CX8 instructions

I compiled 2 version of the new assembler, one for the IP_65C02 and one for the IP_65Cx8
Since the code that my assemblers are based on is public domain code, they are free.
Disclaimer: use this assembler at your own risk. While | believe this code to be relatively bug-

free, | make no guarantees about it's operation. | would appreciate any feedback and | will
respond to bug reports.

PREFACE 2

By Alan R. Baldwin
(ported the original DECUS assembler)

ASxxxx version 1.50 (edited)

The ASxxxx assemblers were written following the style of several cross assemblers found in
the Digital Equipment Corporation Users Society (DECUS) distribution of the C programming
language. The DECUS code was provided with no documentation as to the input syntax or
the output format. Study of the code revealed that the unknown author of the code had
attempted to formulate an assembler with attributes similar to those of the PDP-11 MACRO
assembler (without macro’s). The incomplete code from the DECUS C distribution has been
largely rewritten, only the program structure, and C source file organization remains relatively
unchanged. However, | wish to thank the author for his contribution to this set of assemblers.

The ASLINK program was written as a companion to the Asxxxx assemblers, its design and
implementation was not derived from any other work. The ASxxxx assemblers and the
ASLINK relocating linker are placed in the Public Domain.

PREFACE 3

By Marko Makela
(modified the assembler for the 65C02)

A 6502 assembler, as6502-1.60 (edited)

Using the 6800 assembler source code of ASxxxx version 1.50 by Alan R. Baldwin, | have written
a couple of files to make the assembler support 65C02. For those who are familiar with NMOS
6502s, i.e. the processors in the Commodore microcomputers, for instance, there are a couple of
new instructions that work only in the CMOS 6502 family. | have used the Rockwell document
29651N52, a data booklet of R65C02, R65C102 and R65C112 as a source of opcode
information. The original work of Alan Baldwin is on the SIMTEL20 archive,

Some changes to the original files

I changed the definitions of DOT_S and DOT, so that the assembler uses the asterisk character
(*) instead of a dot (.) for the current location.

| did not correct the handling of MS-DOS style file names. If you specify a directory path
preceding the file name, correct behaviour of the program would be that the resulting files would
be created in the default directory instead of the directory that contain the respective source

file. A real bug occurs when the path specification contains dots.

| found the radix specification system difficult. You couldn't write hexadecimal numbers
comfortably, even if you had ordered .radix x. The figures were not allowed start with a letter, in
which case you had to add an extra 0 before them. But the combination 0d specifies decimal
numbers and Ob binary numbers, so if the hexadecimal number starts with those, you have to
write Oxb... or Oxd...

That's why | patched asexpr.c so that it allows the $, $%, $& and $# prefixes. The $ prefix is for
the hexadecimal numbers, and the three others are for binary, octal and decimal, espectively.
Examples of valid numbers are $FCE2, $9%61001011, $&377 and $#65535, and of course
1001011, 377 and 65535, if the respective .radix directive is used. But hexadecimal figures may
still not start with a letter, they must start with a number or $.

Usage

The assembler and the linker support several source files. So, after you have written the
assembly sources, you have to compile each file using "as6502 -o file.asm". Then, make a
control file for the linker, with the file suffix .Ink. The file should contain the string "-r" on its first
line, specifying Commodore program file output, and the modules listed on the following lines.
Run the command "aslink -f file.Ink" to compile the program.

RPRRPRRPRRPRRPRRPRPPRPRPRPRPRPRRPRPRRPRPRRRPRPREPRPRPRPRPRPRRPRRRRREPRRERERERERE

CONDNPARAPPARAAPRRPRARPRRAPRPVWNOWRRWNNNNNNE R

INDE X

CHAPTER 1 THE ASSEMBLER

PRPPER WNPR

A WNBE

~NOoO O WNE

CoO~NOUILAWNE

9
m
A
N

SISESESYSESISYSISESISYSIS
ORRBBABRBRRPONR

O~NO O WNPE

THE ASXXXX ASSEMBLERS
Assenbly Pass 1
Assenbly Pass 2
Assenbly Pass 3
SOURCE PROGRAM FORVAT
St at emrent For nat
Label Field
Qperator Field
Operand Field
Comment Field
SYMBOLS AND EXPRESSI ONS
Character Set
User - Defi ned Synbol s
Local Synbols
Current Location Counter
Nunber s
Ter s
Expr essi ons
GENERAL ASSEMBLER DI RECTI VES
.nodul e Directive
.title Directive
.sbttl Directive
.page Directive
.byte and .db Directives
.word and .dw Directives
.bl kb, .blkw, and .ds Directives
.ascii Directive
.asciz Directive
.radix Directive
.even Directive
.odd Directive
.area Directive
.org Directive
.globl Directive
.if, .else, and .endif Directives
.include Directive
.setdp Directive
I NVOKI NG ASXXXX
ERRCRS
LI STI NG FI LE
SYMBOL TABLE FI LE
OBJECT FI LE

THE LI NKER
ASLI NK RELOCATI NG LI NKER
I NVOKI NG ASLI NK
ASLI NK PROCESSI NG
LI NKER | NPUT FORVAT
bj ect Modul e For mat
Header Line
Modul e Li ne
Synbol Line
Area Line
T Line
R Li ne
P Li ne
LI NKER ERROR MESSAGES

PRRRRRRR R R

'
POOOOUIUWWWNNN PP

I\JI\)I\)I\)I\JI\JI}JI\JI\JI\JI\JI\JI\JI\)
N~NOoOoOoOOUu OO WNE P

PAGE 1-1

CHAPTER 1

THE ASSEMBLER

1.1 THE ASXXXX ASSEMBLERS

The ASxxxx assenblers are a series of m croprocessor assem
blers witten in the C programm ng | anguage. Each assenbl er has
a device specific section which includes:

1. device description, byte order, and file extension in-
formation

2. a table of the assenbler general directives, special
device directives, assenbler menonics and associated
operation codes

3. machine specific code for processing the device menon-
i cs, addressing nodes, and special directives

The device specific information is detailed in the appendices.
The assenbl ers have a conmmon devi ce i ndependent section which

handl es the details of file input/output, synbol table genera-
tion, programdata areas, expression analysis, and assenbler
directive processing.
The assenbl ers provide the foll owi ng features:

1. Command string control of assenbly functions

2. Al phabetized, formatted synbol table listing

3. Rel ocat abl e object nodul es

4. dobal synmbols for |inking object nodul es

5. Conditional assenbly directives

THE ASSEMBLER PAGE 1-2
THE ASXXXX ASSEMBLERS

6. Program sectioning directives

ASxxxx assenbl es one or nore source files into a single relo-
catabl e ascii object file. The output of the ASxxxx assenblers
consists of an ascii relocatable object file(*.rel), an assenbly
listing file(*.lst), and a synbol file(*.sym.

1.1.1 Assenbly Pass 1

During pass 1, ASxxxx opens all source files and perforns a
rudi menatry assenbly of each source statenent. During this pro-
cess all synbol tables are built, program sections defined, and
nunber of bytes for each assenbled source line is estinated.

At the end of pass 1 all undefined synbols nmay be made gl oba
(external) using the ASxxxx switch -g, otherw se undefined sym
bols will be flagged as errors during succeedi ng passes.

1.1.2 Assenbly Pass 2

During pass 2 the ASxxxx assenbl er resolves forward refer-
ences and determ nes the nunber of bytes for each assenbled
l'ine. The nunber of bytes used by a particul ar assenbler in-
struction may depend upon the addressing node, whether the in-
struction allows multiple forns based upon the relative di stance
to the addressed |ocation, or other factors. Pass 2 resolves
t hese cases and determ nes the address of all synbols.

1.1.3 Assenbly Pass 3

Pass 3 by the assenbl er generates the listing file, the relo-
catable output file, and the synbol tables. Also during pass 3
the errors will be reported.

The relocatable object file is an ascii file containing sym
bol references and definitions, program area definitions, and
the relocatable assenbled code, the linker ASLINK will use this
informati on to generate an absolute load file (Mdtorola or Intel
formats).

THE ASSEMBLER PAGE 1-3
SOURCE PROGRAM FORNMAT

1.2 SOURCE PROGRAM FORNAT

1.2.1 Statenent Format

A source programis conmposed of assenbly-|anguage statenents.
Each statenent nust be conpleted on one line. Aline my con-
tain a maxi num of 128 characters, |longer lines are truncated and
| ost.

An ASxxxx assenbler statenment nmay have as many as four
fields. These fields are identified by their order wthin the
statement and/or by separating characters between fields. The
general format of the ASxxxx statenment is:

[label:] Operator Oper and [; Comrent (s)]

The |abel and comment fields are optional. The operator and
operand fields are interdependent. The operator field nmay be an
assenbler directive or an assenbly mmenonic. The operand field
may be optional or required as defined in the context of the
operator.

ASxxxx interprets and processes source statements one at a
time. Each statenment causes a particular operation to be per-
formed.

1.2.1.1 Label Field -

A label is a user-defined synbol which is assigned the val ue
of the current location counter and entered into the user de-
fined synbol table. The current location counter is used by
ASxxxx to assign nmenory addresses to the source program state-
ments as they are encountered during the assenbly process. Thus
a label is a means of synbolically referring to a specific
st at enent .

VWhen a program section is absolute, the value of the current
| ocation counter is absolute; its value references an absolute
menory address. Simlarly, when a program section is rel ocat-
able, the value of the current location counter is relocatable.
A relocation bias calculated at link tine is added to the ap-
parent value of the current |ocation counter to establish its
effective absolute address at execution tine. (The user can
also force the Iinker to relocate sections defined as absolute.
This may be required under special circunstances.)

If present, a label nust be the first field in a source
statenment and nust be terminated by a colon (:). For exanple

THE ASSEMBLER PAGE 1-4
SOURCE PROGRAM FORNMAT

if the value of the current location counter 1is absolute
01FO(H), the statement:

abcd: nop

assigns the wvalue O01FO(H) to the | abel abcd. |If the |ocation
counter value were relocatable, the final value of abcd would be
01FO(H) +K, where K represents the relocation bias of the program
section, as calculated by the Iinker at link tine.

More than one | abel may appear within a single | abel field.
Each | abel so specified is assigned the sanme address val ue. For
exanple, if the value of the <current location counter is
1FFO(H), the nmultiple labels in the followi ng statenment are each
assigned the value 1FFO(H):

abcd: aq: $abc: nop

Multiple |abels may al so appear on successive lines. For ex-
anple, the statenents

abcd:

aq:
$abc: nop

i kewi se cause the same value to be assigned to all three |a-
bel s.

A double colon (::) defines the |label as a gl obal synbol.
For exanpl e, the statenent

abcd: : nop

establ i shes the | abel abcd as a global synbol. The distinguish-
ing attribute of a global synbol is that it can be referenced
from w thin an object nodul e other than the nodule in which the
synmbol is defined. References to this label in other nodules
are resolved when the nodul es are |inked as a conposite execut -
abl e i mage.

The | egal characters for defining |abels are:

A through Z

a through z

0 through 9

. (Period)

$ (Dol l ar sign)
_ (underscore)

A label may be any length, however, only the first eight (8)
characters are significant and, therefore nust be unique anong
al | labels in the source program (not necessarily anong

THE ASSEMBLER PAGE 1-5
SOURCE PROGRAM FORNMAT

separately conpiled nodules). An error code(s) (mor p) will be
generated in the assenbly listing if the first eight characters
intwo or nore |abels are the same. The mcode is caused by the
redeclaration of the synbol or its reference by another state-
ment. The p code is generated because the synbols location is
changi ng on each pass through the source file.

The label nust not start with the characters 0-9, as this
designates a |l ocal synbol with special attributes described in a
| ater section.

1.2.1.2 CQOperator Field -

The operator field specifies the action to be perforned. It
may consi st of an instruction menonic (op code) or an assenbler
directive.

VWhen the operator is an instruction menonic, a nmachine in-
struction is generated and the assenbl er eval uates the addresses
of the operands which follow \When the operator is a directive
ASxxxx perforns certain control actions or processing operations
during assenbly of the source program

Leading and trailing spaces or tabs in the operator field
have no significance; such characters serve only to separate
the operator field fromthe preceeding and follow ng fields.

An operator is termnated by a space, tab or end of |ine.

1.2.1.3 Operand Field -

VWhen the operator is an instruction menonic (op code), the
operand field contains program variables that are to be
eval uat ed/ mani pul ated by the operator

Operands may be expressions or synbols, depending on the
operator. Miltiple expressions used in the operand fields may
be separated by a comma. An operand should be preceeded by an
operator field; if it is not, the statenent will give an error
(g or o). Al operands follow ng instruction nmenonics are
treated as expressions.

The operand field is term nated by a semi colon when the field

is followed by a coment. For example, in the follow ng
st atenent:
| abel : | da abcd, x ; Cooment field

the tab between |Ida and abcd term nates the operator field and
defines the beginning of the operand field; a comm separates

THE ASSEMBLER PAGE 1-6
SOURCE PROGRAM FORNMAT

t he operands abcd and x; and a sem colon term nates the operand
field and defines the beginning of the comrent field. VWhen no
comment field follows, the operand field is termnated by the
end of the source line.

1.2.1.4 Coment Field -

The conment field begins with a sem colon and extends through
the end of the line. This field is optional and nmay contain any
7-bit ascii character except null

Comments do not affect assenbly processing or program execu-
tion.

1.3 SYMBOLS AND EXPRESSI ONS

This section describes the generic conponents of the ASxxxx
assenbl ers: the character set, the conventions observed in con-
structing synmbols, and the use of nunbers, operators, and ex-
pr essi ons.

1.3.1 Character Set

The followi ng characters are |legal in ASxxxX source prograns:

1. The letters A through Z Both upper- and | ower-case
letters are acceptable. The assenblers are case sensi-
tive, i.e. ABCD and abcd are different synbols. (The
assenbl ers can be made case insensitive by reconpiling
with the appropriate swtches.)

2. The digits 0 through 9

3. The characters . (period), $ (dollar sign), and _ (un-
derscore).

4. The special characters listed in Tables 1 through 6.
Tables 1 through 6 describe the various ASxxxx |abel and

field term nators, assignment operators, operand separators, as-
senbly, unary, binary, and radi x operators.

THE ASSEMBLER PAGE 1-7
SYMBOLS AND EXPRESSI ONS

Table 1 Label Term nators and Assignnent Operators
Col on Label term nator.
Doubl e col on Label Term nator; defines the

| abel as a gl obal | abel.

= Equal sign Di rect assignnment operator.
== Doubl e equal Di rect assignnment operator;
sign defines the synbol as a gl obal
symbol .
Table 2 Field Term nators and Operand Separators
Tab I[temor field term nator.
Space Itemor field termnator.
, Comma Operand field separator.
; Semi col on Comment field indicator.
Table 3 Assenbl er Operators
Nunber sign | mredi at e expression indicator.
Peri od Current | ocation counter.
(Left parenthesis Expression delimter.

) Ri ght parenthesis Expr essi on delineter.

THE ASSEMBLER
SYMBOLS AND EXPRESSI ONS

Table 4

Unary Qperators

< Left bracket

> Ri ght bracket

+ Pl us sign

- M nus sign

~ Tilde

' Singl e quote

" Doubl e quote

\ Backsl ash

>FEDC

+A

-A

PAGE 1-8
Produces the |ower byte
val ue of the expression.
(DO
Produces the upper byte
val ue of the expression.
(FB)

Positive value of A

Pr oduces the negative
(2's conplement) of A

Produces the 1's conpl e-
nment of A

Produces the value of
t he character D

Produces the double byte
val ue for AB

Uni x style characters
\b, \f, \n, \r, \t
or octal byte val ues.

THE ASSEMBLER
SYMBOLS AND EXPRESSI ONS

Bi nary Operators

PAGE 1-9

Table 5
<< Doubl e
Left bracket
>> Doubl e
Ri ght bracket

+ Pl us sign

- M nus sign

* Ast eri sk

/ Sl ash

& Anpersand
| Bar

% Percent sign

A Up arrow or
ci rcunfl ex

0800 << 4

0800 >> 4

A&B
Al B

A %B

Produces the 4 bit
| eft-shifted val ue of
0800. (8000)

Produces the 4 bit

right-shifted value of
0800. (0080)

Arithnetic Addi tion
operator.

Arithnetic Subt racti on
operator.

Arithnetic Mul tiplica-
tion operator. (signed
16-bit)

Arithnetic Di vi si on
oper at or . (signed

16-bit quotient)
Logi cal AND operator.
Logi cal OR operator.

Modul us oper at or.
(16-bit val ue)

EXCLUSI VE OR operator.

THE ASSEMBLER PAGE 1-10
SYMBOLS AND EXPRESSI ONS

Table 6 Tenporary Radi x Operators
Ob, OB Bi nary radi x operator
0@ 0o, 0OQ 0g, 0Q Cctal radix operator.
0d, 0D Deci mal radi x operat or
Oh, OH, O0x, 0X Hexi deci mal radi x operator.

Potential anbiguities arising fromthe use of Ob and 0Od
as tenporary radi x operators nmay be circunvented by pre-
ceding all non-prefixed hexideciml nunbers with 00.
Leading O's are required in any case where the first
hexi decimal digit is abcdef as the assenbler will treat
the letter sequence as a | abel

1.3.2 User-Defined Synbol s

User-defined synbols are those synbols that are equated to a
specific value through a direct assignment statenment or appear
as l|abels. These synbols are added to the User Synbol Table as
they are encountered during assenbly.

The follow ng rules govern the creation of user-defined synbols:

1. Synbols can be conmposed of al phanumeric characters,
dollar signs ($), periods (.), and underscores (_)
only.

2. The first character of a synbol must not be a nunber
(except in the case of |ocal synbols).

3. The first eight characters of a synmbol nust be unique.
A synbol can be witten wth nore than eight |I|ega
characters, but the ninth and subsequent characters are
i gnor ed.

4. Spaces and Tabs must not be enbedded within a synbol .

THE ASSEMBLER PAGE 1-11
SYMBOLS AND EXPRESSI ONS

1.3.3 Local Synbols

Local synbols are specially formatted synbols used as | abels
within a block of coding that has been delimted as a |local sym
bol bl ock. Local synbols are of the formn$, where nis a
decimal integer fromO to 255, inclusive. Examples of |oca
synbol s are:

1$
27%
138%
244%

The range of a local synbol block consists of those state-
ments between two normally constructed synbolic | abels. Not e
that a statenment of the form

ALPHA = EXPRESSI| ON

is a direct assignnent statenent but does not create a | abel and
thus does not delimt the range of a |ocal synbol block

Note that the range of a local synbol block nay extend across
program ar eas.

Local synbols provide a conveni ent neans of generating |abels
for branch instructions and other such references wthin |oca
synmbol bl ocks. Using | ocal synbols reduces the possibility of
synmbols with multiple definitions appearing within a user pro-
gram In addition, the wuse of local synbols differentiates
entry-point |abels fromlocal |abels, since |ocal |abels cannot
be referenced fromoutside their respective |ocal synbol bl ocks.
Thus, |ocal synbols of the sane name can appear in other |I|oca
synmbol bl ocks wi thout conflict. Local synbols require |ess sym
bol table space than normal synbols. Their use is recommended.

The wuse of the sane |local synmbol within a | ocal synbol bl ock
wi |l generate one or both of the mor p errors.

THE ASSEMBLER PAGE 1-12
SYMBOLS AND EXPRESSI ONS

Exampl e of | ocal synbols:

a: [dx #atabl e ;get table address
| da #0d48 ;table length

1$: clr , X+ ; cl ear
deca
bne 1%

b: [dx #bt abl e ; get table address
| da #0d48 ;table length

1$: clr , X+ ; ¢l ear
deca
bne 1%

1.3.4 Current Location Counter

The period (.) is the synbol for the current |ocation coun-
ter. Wen used in the operand field of an instruction, the
peri od represents the address of the first byte of the
i nstruction:

AS: [dx #. ; The period (.) refers to
:the address of the |dx
;instruction.

VWhen wused in the operand field of an ASxxxx directive, it
represents the address of the current byte or word:

X =0

.wor d OXFFFE, . +4, K ; The operand .+4 in the .word
;directive represents a val ue
;stored in the second of the
;three words during assenbly.

If we assume the current value of the programcounter is
OH0200, then during assenbly, ASxxxx reserves three words of
storage starting at |ocation OHO200. The first value, a hex-

i deci mal constant FFFE, will be stored at |ocation OHO0200. The
second value represented by .+4 wll be stored at |ocation
0H0202, its value will be OHO206 (= OH0202 + 4). The third
value defined by the synmbol K wll be placed at |ocation
0H0204.

At the begi nning of each assenbly pass, ASxxxx resets the |o-
cation counter. Normally, consecutive nmenory |ocations are as-
signed to each byte of object code generated. However, the
val ue of the location counter can be changed through a direct
assignnment statenment of the following form

THE ASSEMBLER PAGE 1-13
SYMBOLS AND EXPRESSI ONS

= . + expression

The new location counter can only be specified relative to
the current | ocation counter. Neglecting to specify the current
program counter along with the expression on the right side of
t he assi gnment operator will generate the (.) error. (Absol ute
program areas nmay use the .org directive to specify the absolute
| ocation of the current program counter.)

The following coding illustrates the use of the current |ocation
counter:
.area CODE1 (ABS) ; program area CODE1l
;i's ABSCLUTE
.org OH100 ;set location to

: OH100 absol ute

numni: | dx #. +OH10 : The | abel nunil has
:the val ue OH100.
;X is |oaded with
: OH100 + OH10

.org OH130 ;1 ocation counter
;set to OH130

nun: [dy #. ; The | abel nunf has
:the val ue OH130.
;Y is |oaded with
:val ue 0OH130.

.area CODE2 (REL) ; program area CODE2
;i s RELOCATABLE

= . + 0H20 :Set | ocation counter
:to rel ocat abl e OH20 of
; the program section.

nunB: .word 0 : The | abel nunB has
:the val ue
:of rel ocatabl e OH20.

= . + 0H40 ;will reserve OH40
; bytes of storage as will
. bl kb OH40 ; or
. bl kw 0H20

The .blkb and .blkw directives are the preferred nethods of
al ocati ng space.

THE ASSEMBLER PAGE 1-14
SYMBOLS AND EXPRESSI ONS

1.3.5 Nunbers

ASxxxx assunes that all numbers in the source programare to
be interpreted in decimal radix unless otherwi se specified. The
.radix directive may be used to specify the default as octal
deci mal, or hexideciml. |Individual nunbers can be designated
as binary, octal, decimal, or hexideciml through the tenporary
radi x prefixes shown in table 6.

Negative nunbers nmnust be preceeded by a m nus sign; ASXXxX
transl ates such nunbers into two's conplenment form Positive
nunbers may (but need not) be preceeded by a plus sign

Nunbers are al ways considered to be absol ute val ues, therefor
they are never rel ocatable.

1.3.6 Terns

A termis a conmponent of an expression and may be one of the
fol | owi ng:

1. A nunber.

2. A synbol :
1. A period (.) specified in an expression causes the
current | ocation counter to be used.
2. A User-defined synbol.
3. An undefined synbol is assigned a value of zero and
inserted in the User-Defined synbol table as an un-
defined synbol .

3. A single quote followed by a single ascii character, or
a double quote followed by two ascii characters.

4. An expression enclosed in parenthesis. Any expression
so enclosed is evaluated and reduced to a single term
before the remai nder of the expression in which it ap-
pears is evaluated. Parenthesis, for exanple, my be
used to alter the left-to-right evaluation of expres-
sions, (as in A*B+C versus A*(B+C)), or to apply a un-
ary operator to an entire expression (as in -(A+B)).

5. A unary operator followed by a synbol or nunber.

THE ASSEMBLER PAGE 1-15
SYMBOLS AND EXPRESSI ONS

1.3.7 Expressions

Expressions are conbinations of terns joined together by
bi nary operators. Expressions reduce to a 16-bit val ue. The
evaluation of an expression includes the determ nation of its
attributes. A resultant expression value may be one of three
types (as described later in this section): relocatable, ab-
solute, and external

Expressions are evaluate with an operand hi erarchy as foll ows:

* / % mul tiplication
di vi si on, and
nodul us first.

+ - addi tion and
subtraction second.

<< >> left shift and
right shift third

n excl usive or fourth.
& | ogi cal and fifth.
| | ogi cal or |ast

except that unary operators take precedence over binary
oper at ors.

A mnmssing or illegal operator termnates the expression
anal ysis, causing error codes (0) and/or (q) to be generated
dependi ng upon the context of the expression itself.

At assenbly time the value of an external (global) expression
is equal to the value of the absolute part of that expression
For exanple, the expression external +4, where 'external' is an
external synmbol, has the value of 4. This expression, however,
when evaluated at link tinme takes on the resol ved value of the
synmbol 'external', plus 4.

Expressions, when evaluated by ASxxxx, are one of three
types: relocatable, absolute, or external. The following dis-
tinctions are inportant:

1. An expression is relocatable if its value is fixed re-
lative to the base address of the program area in which
it appears; it will have an offset value added at |ink
time. Terns that contain |abels defined in relocatable
program areas will have a rel ocatabl e val ue

THE ASSEMBLER PAGE 1-16
SYMBOLS AND EXPRESSI ONS

simlarly, a period (.) in a relocatable program area,
representing the value of the current programlocation
counter, will also have a rel ocatabl e val ue.

2. An expression is absolute if its value is fixed. An
expression whose terns are nunbers and ascii characters
will reduce to an absolute value. A relocatable ex-
pression or termmnus a relocatable term where both
el ements being evaluated belong to the same program
area, is an absolute expression. This is because every
term in a programarea has the sane rel ocation bias.
VWen one termis subtracted fromthe other the reloca-
tion bias is zero.

3. An expression is external (or global) if it contains a
single global reference (plus or mnus an absolute ex-
pression value) that is not defined within the current
program Thus, an external expression is only par-
tially defined followi ng assenbly and nust be resol ved
at link tine.

1.4 GENERAL ASSEMBLER DI RECTI VES

An ASxxxx directive is placed in the operator field of the
source line. Only one directive is allowed per source |line.
Each directive may have a blank operand field or one or nore
operands. Legal operands differ with each directive.

1.4.1 .npdule Directive
For mat :
.nmodul e string

The .nodul e directive causes the string to be included in the
assenblers output file as an identifier for this particular ob-
ject nodule. The string may be from 1 to 8 characters in
length. Only one identifier is allowed per assenbled nodule.
The main use of this directive is to allowthe |inker to report
a nmodul es' use of undefined synbols. At link tine all undefined
synbols are reported and the nodules referencing themare
listed.

THE ASSEMBLER PACE 1-17
GENERAL ASSEMBLER DI RECTI VES
1.4.2 .title Directive
For mat :
.title string
The .title directive provides a character string to be placed
on the second |line of each page during listing.
1.4.3 .sbttl Directive
For mat :
.sbttl string
The .sbttl directive provides a character string to be placed
on the third Iline of each page during listing.
1.4.4 .page Directive
For mat :
. page
The .page directive causes a page ejection with a new headi ng
to be printed. The new page occurs after the next line of the
source programis processed, this allows an imedi ately foll ow

ing .sbttl directive to appear on the new page. The . page
source line will not appear in the file listing.

1.4.5 .byte and .db Directives

For mat :
. byte exp ; Stores the binary val ue
.db exp ;of the expression in the
; next byte.
. byte expl, exp2, expn ; Stores the binary val ues
.db expl, exp2,expn ;of the list of expressions
;1 n successive bytes.
where: exp, represent expressions that will be

expl, truncated to 8-bits of data

Each expression will be cal cul at ed

as a 16-bit word expression,

t he high-order byte will be truncated.
. Mul ti pl e expressi ons nmust be
expn separ ated by commas.

THE ASSEMBLER PAGE 1-18
GENERAL ASSEMBLER DI RECTI VES

The .byte or .db directives are used to generate successive
bytes of binary data in the object nodul e.

1.4.6 .word and .dw Directives

For mat :
.wor d exp ; Stores the binary val ue
. dw exp ;of the expression in
; the next word.
.wor d expl, exp2, expn ; Stores the binary val ues
. dw expl, exp2,expn ;of the list of expressions
;in successive words.
where: exp, represent expressions that will occupy two

expl, bytes of data. Each expression will be
. calcul ated as a 16-bit word expression
. Mul ti pl e expressi ons nmust be
expn separ ated by commas.
The .word or .dwdirectives are used to generate successive
words of binary data in the object nodule.
1.4.7 .blkb, .blkw, and .ds Directives
For mat :
. bl kb N ;reserve N bytes of space
.blkw N ;reserve N words of space
. ds N ;reserve N bytes of space
The .blkb and .ds directives reserve byte blocks in the ob-
ject nodule; the .blkw directive reserves word bl ocks.
1.4.8 .ascii Directive
For mat :

.ascii [/string/

where: string is a string of printable ascii characters.

T repr esent the delimting characters. These
delimters may be any paired printing
characters, as long as the characters are not
contained within the string itself. If the

delimting characters do not match, the .asci
directive will give the (q) error

THE ASSEMBLER PAGE 1-19
GENERAL ASSEMBLER DI RECTI VES

The .ascii directive places one binary byte of data for each
character in the string into the object nodule.
1.4.9 .asciz Directive
For mat :
.asciz [string/

where: string is a string of printable asciz characters.

T repr esent the delimting characters. These
delimters may be any paired printing
characters, as long as the characters are not
contained within the string itself. If the

delimting characters do not match, the .asciz
directive will give the (q) error

The .ascii directive places one binary byte of data for each
character in the string into the object nodule. Foll owi ng al
the character data a zero byte is inserted to termnate the
character string.
1.4.10 .radix Drective
For mat :

.radi x character
where: character represents a single character specifying the

default radix to be used for succeedi ng nunbers.
The character may be any one of the follow ng:

B, b Bi nary
Qo Cct al
Qq

@

D, d Deci nal
' bl ank’

, h Hexi deci nmal
X

THE ASSEMBLER PAGE 1-20
GENERAL ASSEMBLER DI RECTI VES
1.4.11 .even Directive
For mat :
. even
The .even directive ensures that the current | ocation counter
contai ns an even boundary value by adding 1 if the current | oca-
tion is odd.
1.4.12 .odd Drective
For mat :
. odd
The .odd directive ensures that the current |ocation counter

contai ns an odd boundary val ue by adding one if the current |o-
cation is even.

1.4.13 .area Directive

For mat :
.area nane [(options)]
where: nane represents the synmbolic nane of the program sec-
tion. This nanme may be the sane as any

user-defined synmbol as the area names are in-
dependent of all synbols and | abels.

options specify the type of programor data area:

ABS absol ute (automatically invokes OVR)
REL rel ocat abl e

OVR overl ay

CON concat enat e

PAG paged area

The .area directive provides a neans of defining and separat -
ing multiple programm ng and data sections. The name is the
area |abel used by the assenbler and the linker to collect code
fromvarious separately assenbl ed nodul es into one section. The
nane may be from1l to 8 characters in | ength.

The options are specified within parenthesis and separated by
conmmas as shown in the foll owi ng exanpl e:

.area TEST (REL,CON) ;This section is relocatable
;and concatenated with other

THE ASSEMBLER PAGE 1-21
GENERAL ASSEMBLER DI RECTI VES

;sections of this program area.
.area DATA (REL,OV/R) ;This section is relocatable

and overlays other sections
of this program area

.area SYS (ABS,O/R) ;(CON not allowed with ABS)

; This section is defined as
absol ute. Absol ute sections
are always overlayed with
ot her sections of this program
; ar ea.

.area PAGE (PAG ; This is a paged section. The
;section must be on a 256 byte

boundary and its length is

checked by the Iinker to be

;no larger than 256 bytes.

; This is useful for direct page

; ar eas.

The default area type is REL|CON, i.e. a relocatable sec-
tion which is concatenated with other sections of code with the
same area name. The ABS option indicates an absolute area. The
OVR and CON options indicate if program sections of the sane
nane wll overlay each other (start at the sane |ocation) or be
concatenated with each other (appended to each other).

Multiple invocations of the .area directive with the sane
nane nust specify the same options or leave the options field
blank, this defaults to the previously specified options for
this program area

The ASxxxx assenblers automatically provide two program
sections:

. .ABS.' Thi s dunmby section contains all absolute
synmbol s and their val ues.

' _CODE This is the default progran data area
This programarea is of type (REL, CON).

THE ASSEMBLER PACE 1-22
GENERAL ASSEMBLER DI RECTI VES
1.4.14 .org Directive
For mat :
.org exp

where: exp is an absolute expression that becones the cur-
rent | ocation counter

The .org directive is valid only in an absol ute program section
and will give a (q) error if used in a relocatable program area.
The .org directive specifies that the current |ocation counter
is to becone the specified absol ute val ue.

1.4.15 .globl D rective

For mat :
.globl synil, syn?,...,symm

where: syni, represent |egal synbolic nanmes. Wen
syng, . .. VWhen nultiple synbols are specified,
sym they are separated by conmas.

A .globl directive may al so have a label field and/or a com
ment field.

The .globl directive is provided to define (and thus provide
i nkage to) synbols not otherwise defined as global synbols
within a nodule. In defining global synbols the directive
.globl Jis simlar to:

J == expression or J::

Because object nodules are |linked by global synbols, these
synbols are vital to a program Al internal synbols appearing
within a given program nust be defined at the end of pass 1 or
they will be considered undefined. The assenbly directive (-0)
can be be invoked to make all undefined symbols gl obal at the
end of pass 1.

THE ASSEMBLER PAGE 1-23
GENERAL ASSEMBLER DI RECTI VES

1.4.16 .if, .else, and .endif Directives
For mat :
S f expr
) o
;} range of true condition
. ;}
. el se
;)

;} range of false condition
.endif

The conditional assenbly directives allow you to include or
excl ude bl ocks of source code during the assenbly process, based
on the evaluation of the condition test.

The range of true condition will be processed if the expres-
sion "expr' is not zero (i.e. true) and the range of false con-
dition wll be processed if the expression "expr' is zero (i.e
false). The range of true condition is optional as is the .else
directive and the range of false condition. The followi ng are
all valid .if/.else/.endif constructions:

i f A4 ;evaluate A-4

. byte 1,2 ;insert bytes if A4 s
.endif :not zero

i f K+3 ;eval uate K+3

. el se

.byte 3,4 ;insert bytes if K+3
.endif 1S zero

S f J&3 ;evaluate J masked by 3
. byte 12 ;insert this byte if J&3
. el se :is not zero

. byte 13 ;insert this byte if J&3
.endif 1S zero

The .if/.elsel/.endif directives may be nested upto 10 | evels.

The .page directive is processed within a false condition
range to all ow extended textual information to be incorporated
in the source program with out the need to use the conment
delimter (;):

S f 0

. page
This text will be bypassed during assenbly

THE ASSEMBLER PAGE 1-24
GENERAL ASSEMBLER DI RECTI VES

but appear in the listing file.

.endif

1.4.17 .include Drective
For mat :
.include string

where: string represents a delimted string that is the file
specification of an ASxxxx source file.

The .include directive is used to insert a source file within
the source file currently being assenbled. When this directive
is encountered, an inplicit .page directive is issued. When the
end of the specified source file is reached, an inplicit .page
directive is issued and input continues fromthe previ ous source
file. The maxi mum nesting |evel of source files specified by a
.include directive is five. The line containing the .include
directive will not appear in the listing file.

The total nunber of separately specified .include files is

unlimted as each .include file is opened and then closed during
each pass made by the assenbler.

1.4.18 .setdp Directive
For mat :

.setdp [base [, area]]
The set direct page directive has a comon format in all the
AS68xx assenblers. The .setdp directive is used to inform the
assenbler of the current direct page region and the offset ad-
dress within the selected area. The normal invocation nethods

are:

.area DI RECT (PAG
.setdp

or
.setdp O, Dl RECT

for all the 68xx mcroprocessors (the 6804 has only the paged
ramarea). The conmands specify that the direct page is in area

THE ASSEMBLER PAGE 1-25
GENERAL ASSEMBLER DI RECTI VES

DI RECT and its offset address is O (the only valid value for al
but the 6809 microprocessor). Be sure to place the DIRECT area
at address 0 during linking. Wen the base address and area are
not specified, then zero and the current area are the defaults.
If a .setdp directive is not issued the assenbler defaults the
direct page to the area "_CODE" at offset O.

The assenbler verifies that any |local variable used in a
direct variable reference is located in this area. Local vari-
able and constant value direct access addresses are checked to
be within the address range fromO to 255.

External direct references are assumed by the assenbler to be
in the correct area and have valid offsets. The linker wll
check all direct page relocations to verify that they are within
the correct area.

The 6809 mcroprocessor allows the selection of the direct
page to be on any 256 byte boundary by loading the appropriate
value into the dp register. Typically one would Iike to sel ect
t he page boundary at link time, one nethod foll ows:

.area DI RECT (PAG ; define the direct page
.setdp

.area PROGRAM

| dd #DI RECT ; load the direct page register
tfr a, dp ; for access to the direct page
At link time specify the base and gl obal equates to |locate the

di rect page:

-b DI RECT
-g DI RECT

0x1000
0x1000

Both the area address and offset val ue nust be specified (area
and vari abl e nanes are independent). The linker wll verify
that the relocated direct page accesses are within the direct

page.

THE ASSEMBLER PAGE 1-26
GENERAL ASSEMBLER DI RECTI VES

The preceeding sequence could be repeated for nultiple paged
areas, however an alternate nethod is to define a non-paged area
and use the .setdp directive to specify the offset val ue:

.area DI RECT ; define non-paged area

.area PROGRAM
.setdp 0, D RECT ; direct page area

| dd #DI RECT ; load the direct page register
tfr a, dp ; for access to the direct page

.setdp 0x100, DI RECT ; direct page area

| dd #DI RECT+0x100 ; load the direct page register

tfr a, dp ; for access to the direct page
The linker wll verify that subsequent direct page references
are in the specified area and offset address range. It is the

programers responsibility to load the dp register with the cor-
rect page segnent corresponding to the .setdp base address
speci fi ed.

For those <cases where a single piece of code nmust access a
defined data structure within a direct page and there are many
pages, define a dunmby direct page |linked at address 0. This
dunby page is used only to define the wvariable |abels. Then
load the dp register with the real base address but donot use a
.setdp directive. This nethod is equivalent to i ndexed address-
ing, where the dp register is the index register and the direct
addressing is the offset.

1.5 1 NVOKI NG ASXXXX

The ASxxxx assenblers are conmand line oriented. After the
assenbler is started, enter the option(s) and file(s) to assem
ble following the "argv:' pronpt:
argv: [-dgxgalosf] filel [file2 file3 ... file6]

The options are:

d decimal listing
a oct al [isting
X hex listing (default)

The listing radi x affects the
.Ist, .rel, and .symfiles.

THE ASSEMBLER PAGE 1-27
I NVOKI NG ASXXXX

g undefi ned symbol s nade gl oba
a all user synbols nade gl oba

I create |ist output filel.lst

0 create object output filel.re

S create synbol output filel.sym

f flag rel ocatabl e references by ° inthe list-
ing file

ff flag rel ocatable references by node in the list-
ing file

The file nane for the .Ist, .rel, and .symfiles is the first
file name specified in the command Iine. Al output files are
ascii text files which may be edited, copied, etc. The output
files are the concatenation of all the input files, if files are
to be assenbled independently invoke the assenbler for each
file.

The .rel file contains a radix directive so that the |inker
will use the proper conversion for this file. Linked files may
have different radices.

If the list (I) option is specified without the synbol table
(s) option, the synbol table is placed at the end of the listing
file.

1.6 ERRORS

The ASxxxx assenblers provide limted diagnostic error codes
during the assenbly process, these errors will be noted in the
listing file and printed on the stderr device. The errors are:

(.) This error is caused by an absolute direct assign-
ment of the current |ocation counter
= expression (incorrect)
rather than the correct
= . + expression

(a) I ndicates a nmachine specific addressing or address-
i ng node error.

(b) I ndi cates a direct page boundary error
(d) I ndi cates a direct page addressing error
(1) Caused by an .include file error or an .if/.endif

m smat ch.

THE ASSEMBLER PAGE 1-28
ERRORS

1.7

(m Multiple definitions of the sane |label, nmultiple
.nmodul e directives, or multiple conflicting attri-
butes in an .area directive.

(o) Directive or menonic error or the use of the .org
directive in a rel ocatable area.

(p) Phase error: |abel |ocation changi ng between passes
2 and 3. Normally caused by having nore than one
| evel of forward referencing.

(q) Questionabl e syntax: m ssing or inproper operators,
term nators, or delimters.

(r) Rel ocation error: logic operation attenpted on a
rel ocatable term addition of two relocatable terns,
subtraction of two relocatable ternms not within the
same progranm ng area or external synbols.

(u) Undefi ned synbol encountered during assenbly.

LI STI NG FI LE

The (-1) option produces an ascii output listing file. Each

page

Each

of output contains a four |ine header

1. The ASxxxx program nanme and page nunber
2. Title froma .title directive (if any)
3. Subtitle froma .sbttl directive (if any)

4. Blank |ine

succeeding line contains five fields:

1. FError field (first three characters of line)
2. Current location counter

3. Cenerated code in byte fornat

4. Source text |ine numnber

5. Sour ce text

THE ASSEMBLER PAGE 1-29
LI STI NG FI LE

The error field may contain upto 2 error flags indicating any
errors encountered while assenbling this Iine of source code.

The current location counter field displays the 16-bit pro-
gramposition. This field will be in the sel ected radix.

The generated code follows the programlocation. The listing
radi x determ nes the nunber of bytes that will be displayed in
this field. Hexidecimal listing allows six bytes of data within
the field, decimal and octal allow four bytes within the field.
If nore than one field of data is generated fromthe assenbly of
a single line of source code, then the data field is repeated on
successi ve |ines.

The source text line nunber is printed in decimal and is fol -
| owed by the source text.

Two special cases wll disable the Ilisting of a |ine of
source text:

1. Source line with a .page directive is never listed.
2. Source line with a .include file directive is not

listed unless the .include file cannot be opened.

Two data field options are available to flag those bytes

which will be relocated by the |inker. If the -f option is
specified then each byte to be relocated will be preceeded by
the '*' character. |If the -ff option is specified then each

byte to be relocated will be preceeded by one of the foll ow ng
characters:

1. = paged rel ocation

2. U unsi gned byte rel ocation

3. p PCR byte or low byte of word relocation
4. q PCR high byte of word relocation

5. r low byte relocation

6. s hi gh byte rel ocation

THE ASSEMBLER PAGE 1-30
SYMBOL TABLE FI LE

1.8 SYMBOL TABLE FI LE

The synbol table has two parts:

1. The al phabetically sorted list of synbols and/or |abels
defined or referenced in the source program

2. A Ilist of the program areas defined during assenbly of
t he source program
The sorted list of synmbols and/or |abels contains the foll ow
ing information:

1. Program area nunber (none if absolute value or exter-
nal)

2. The synbol or |abe

3. Directly assigned synbol is denoted with an (=) sign

4. The value of a synbol, location of a |label relative to
t he program area base address (=0), or a **** jndicat-
ing the synbol or |abel is undefined.

5. The characters: G- global, R- relocatable, and X -

external .

The Iist of program areas provides the correspondence between
t he program area nunbers and the defined program areas, the size
of the program areas, and the area flags (attributes).

1.9 OBJECT FILE

The object file is an ascii file containing the information
needed by the linker to bind nmultiple object nodules into a com

plete |oadable nenory inage. The obj ect nodul e contains the
foll owi ng designators:
[XDQ [HL]

X Hexi deci mal radi x

D Deci mal radix

Q Cctal radix

H Most significant byte first

L Least significant byte first

H Header

THE ASSEMBLER
OBJECT FI LE

T HnrZ

Modul e

Ar ea

Synbol

hj ect code

Rel ocation i nformation
Pagi ng i nformati on

PAGE 1-31

Refer to the Iinker for a detailed description of each of the

designators and the format of the information contained

object file.

in the

CHAPTER 2

THE LINKER

2.1 ASLI NK RELOCATI NG LI NKER

ASLINK is the conpanion Iinker for the ASxxxx assenbl ers.

The

program ASLINK is a general relocating |inker perform ng

the foll owi ng functions:

1

2.

Bind nultiple object nmodules into a single nmenory inmage
Resol ve inter-nodul e synbol references

Conbi ne code belonging to the same area frommultiple
object files into a single contiguous nenory region

Perform byte and word program counter relative
(pc or pcr) addressing cal cul ations

Def i ne absol ute synbol values at link tine
Def i ne absol ute area base address values at link tine
Produce Intel Hex or Mdtorola S19 output file

Produce a map of the Iinked nenory inmage

THE LI NKER PAGE 2-2
I NVOKI NG ASLI NK

2.2 |1 NVCKI NG ASLI NK

The linker may run in the conmand |ine node or conmand file
nodes. The allowed startup |linker commands are:

-c/-f command line / command fil e nodes
-p/-n enabl e/ di sabl e echo file.lnk input to stdout
If command |ine node is selected, all |inker commands come

fromstdin, if the coomand file node is selected the commands
are input fromthe specified file (extension nust be .l nk).

The linker is started via
ASLINK - (cfpn)

After invoking the Iinker the valid options are:

1. ~-il-s Intel Hex (file.ihx) or Motorola S19 (file.s19)
i mage out put file.

2. -m Cenerate a map file (file.map). This file con-
tains a list of the synbols (by area) with absol ute ad-
dresses, sizes of linked areas, and other |inking

i nf ormati on.

3. -xdqg Specifies the nunber radix for the map file
(Hexi deci mal , Decimal, or Cctal).

4. fileN Files to be linked. Files may be on the sane
line as the above options or on a separate line(s) one
file per line or multiple files separated by spaces or
t abs.

5. -b area = expression (one definition per |ine)
This specifies an area base address where the expres-
sion may contain constants and/or defined synmbols from
the linked files.

6. -g synbol = expression (one definition per |ine)
This specifies the value for the synbol where the ex-
pression may contain constants and/or defined synbols
fromthe linked files.

7. -e or null line, termnates input to the |inker

THE LI NKER PAGE 2-3
ASLI NK PROCESSI NG

2.3 ASLI NK PROCESSI NG

The linker processes the files in the order they are
presented. The first pass through the input files is wused to
define all program areas, the section area sizes, and synbols
defined or referenced. After the first pass the -b (area base
address) definitions, if any, are processed and the areas
I i nked.

The area |inking proceeds by first exam ning the area types

ABS, CON, REL, OVR and PAG Absolute areas (ABS) from separate
obj ect nodul es are al ways overl ayed and have been assenbled at a
specific address, these are not normally relocated (if a -b com
mand is wused on an absolute area the area will be relocated).
Rel ati ve areas (normally defined as REL| CON) have a base address
of 0x0000 as read fromthe object files, the -b command speci -
fies the beginning address of the area. Al subsequent relative
areas wll be concatenated wth proceeding relative areas.
VWere specific ordering is desired, the first linker input file
should have the area definitions in the desired order. At the
conpletion of the area linking all area addresses and |engths
have been determ ned. The areas of type PAG are verified to be
on a 256 byte boundary and that the I ength does not exceed 256
bytes. Any errors are noted on stderr and in the map file.

Next the global synbol definitions (-g option), if any, are
processed. The synbol definitions have been del ayed until this
poi nt because the absol ute addresses of all internal synmbols are
known and can be used in the expression cal cul ations.

Before continuing wth the |inking process the synbol table
is scanned to determne if any synbols have been referenced but
not defined. Undefined synbols are listed on the stderr device.
if a .nmodule directive was included in the assenbled file the
module making the reference to this undefined variable will be
printed.

Constants defined as global in nore than one nodule will be
flagged as nultiple definitions if their values are not identi-
cal .

After the preceeding processes are conplete the |inker may
output a map file (-moption). This file provides the follow ng
i nformation:

1. dobal synbol values and | abel absol ute addresses
2. Defined areas and there | engths

3. Remai ni ng undefi ned synbol s

THE LI NKER PAGE 2-4
ASLI NK PROCESSI NG

4. List of nodul es |inked

5. List of -b and -g definitions

The final step of the Iinking process is performed during the
second pass of the input files. As the xxx.rel files are read
the code is relocated by substituting the physical addresses for
the referenced synbols and areas and nmay be output in Intel or
Mot orol a fornmats. The nunber of files |linked and synbol s de-
fined/referenced is limted by the processor space available to
build the areal/synbol lists.

2.4 LINKER | NPUT FORVAT

The linkers' input object file is an ascii file containing
the informati on needed by the Iinker to bind nultiple object
nodul es into a conplete | oadabl e nenory i nmage

The obj ect nodul e contains the foll ow ng designators:

[XDQ [HL]
X Hexi deci mal radi x
D Deci mal radi x
Q Cctal radix
H Most significant byte first
L Least significant byte first
H Header
M Modul e
A Ar ea
S Synbol
T hj ect code
R Rel ocation i nformation
P Pagi ng i nformati on

THE LI NKER PAGE 2-5
LI NKER | NPUT FORNMAT

2.4.1 (bject Mdul e Format

The first Iline of an object nodule contains the [XDQ [HL]
format specifier (i.e. XHindicates a hexidecimal file wth
nmost significant byte first) for the foll ow ng designators.
2.4.2 Header Line

H aa areas gg gl obal synbols
The header line specifies the nunber of areas(aa) and the

nunber of gl obal synbol s(gg) defined or referenced in this ob-
j ect nodul e segnent.

2.4.3 Mbdul e Line

M name
The nodule line specifies the nodule name fromwhich this
header segnent was assenbled. The nodule Iine will not appear

if the .nmodule directive was not used in the source program

2.4.4 Synbol Line
S string Defnnnn

or
S string Refnnnn

The synbol line defines (Def) or references (Ref) the synbol
"string" with the value nnnn. The defined value is relative to
the current area base address. References to constants and ex-
ternal global synbols will always appear before the first area
definition. References to external synbols will have a val ue of
zero.

THE LI NKER PAGE 2-6
LI NKER | NPUT FORNMAT

2.4.5 Area Line
A |l abel size ss flags ff

The area line defines the area |abel, the size (ss) of the
area in bytes, and the area flags (ff). The area flags specify
the ABS, REL, CON, OVR, and PAG paraneters:

OVR/ CON (0x04/0x00 i.e. bit position 2)
ABS/ REL (0x08/0x00 i.e. bit position 3)

PAG (0x10 i.e. Dbit position 4)

2.4.6 T Line
T XX XX nn nn nn nn nn ..

The T line contains the assenbl ed code output by the assem
bler with xx xx being the offset address fromthe current area
base address and nn being the assenbled instructions and data in
byte format.

2.4.7 R Line
RO O nn nn n1 n2 xx XX ..

The R line provides the relocation information to the |inker
The nn nn value is the current area index, i.e. which area the
current values were assenbled. Relocation information is en-
coded in groups of 4 bytes:

1. nlis the relocation node and object fornat
1. bit O word(0x00)/byte(0x01)
2. bit 1 relocatable area(0x00)/synbol (0x02)
3. bit 2 normal (0x00)/PC rel ative(0x04) rel ocation
4 bit 3 1-byte(0x00)/2-byte(0x08) object format for
byte data
bit 4 signed(0x00)/unsigned(0x10) byte data
bit 5 normal (0x00)/page '0' (0x20) reference
bit 6 normal (0x00)/page 'nnn' (0x40) reference

No o

2. n2 is a byte index into the corresponding (i.e. pre-
ceeding) T line data (i.e. a pointer to the data to be
updated by the relocation). The T line data may be
1-byte or 2-byte byte data format or 2-byte word
format.

THE LI NKER PAGE 2-7
LI NKER | NPUT FORNMAT

3. xx xx 1is the area/synbol index for the area/synbol be-
ing referenced. the corresponding areal/synbol is found
in the header areal/synbol I|ists.

The groups of 4 bytes are repeated for each itemrequiring relo-
cation in the preceeding T line.

2.4.8 P Line
P O O nn nn nl n2 xx xXx

The P line provides the paging information to the linker as
specified by a .setdp directive. The format of the relocation
information is identical to that of the RIine. The correspond-
ing T line has the follow ng i nformation

T xx xx aa aa bb bb

VWere aa aa is the area reference nunber which specifies the
sel ected page area and bb bb is the base address of the page.
bb bb will require relocation processing if the 'nl n2 xx xx' is
specified in the Pline. The linker will verify that the base
address is on a 256 byte boundary and that the page | ength of an
area defined with the PAGtype is not l|arger than 256 bytes.

The linker defaults any direct page references to the first

area defined in the input REL file. Al ASxxxx assenblers wll
specify the CODE area first, making this the default page area.

2.5 LINKER ERROR MESSAGES

The Iinker provides detailed error nessages allow ng the pro-
grammer to quickly find the errant code. As the linker com
pletes pass 1 over the input file(s) it reports any page
boundary or page length errors as foll ows:

?ASl i nk- W Paged Area PAGEO Boundary Error
and/ or

?ASl i nk- WPaged Area PAGEO Length Error
where PAGEO is the paged area.

During Pass two the linker reads the T, R and P lines per-
form ng the necessary relocations and outputting the absolute
code. Various errors may be reported during this process

THE LI NKER PAGE 2-8
LI NKER ERROR MESSAGES

The P |ine processing can produce only one possible error
?ASl i nk- W Page Definition Boundary Error
file nodul e pgar ea pgof f set
PgDef t 6809l t 6809l PAGEO 0001
The error nmessage specifies the file and nodul e where the .setdp
direct was issued and indicates the page area and the page
of fset value determ ned after relocation

The R |ine processing produces various errors:

?ASl i nk-WByte PCR rel ocation error for synbol bra2

file nodul e area of f set
Ref by t 6809l t 6809l TEST O00FE
Defin tconst t const . . ABS 0080
?ASl i nk- WUnsi gned Byte error for synbol two56
file nodul e area of f set
Ref by t 6800l t 6800l DI RECT 0015
Defin tconst t const . . ABS 0100
?ASl i nk- W PageO rel ocation error for synbol |two56
file nodul e area of f set
Ref by t 6800l t 6800l DI RECT 000D
Defin tconst t const DI RECT 0100
?ASl i nk- WPage Modde rel ocation error for synbol two56
file nodul e area of f set
Ref by t 6809l t 6809l DI RECT 0005
Defin tconst t const . . ABS 0100
?ASl i nk- W Page Mode rel ocation error
file nodul e area of f set
Ref by t Paget est PROGRAM 0006
Defin t Paget est DI RECT 0100

These error nmessages specify the file, nodule, area, and offset
within the area of the code referencing (Refby) and defining

(Defin) the synbol. |If the synbol is defined in the same nodul e
as the reference the linker is unable to report the synbol nane.
The assenbler listing file(s) should be exam ned at the offset

fromthe specified area to | ocated the of fendi ng code.
The errors are:

1. The byte PCR error is caused by exceeding the pc rel a-
tive byte branch range.

2. The Unsigned byte error indicates an indexing val ue was
negative or |arger than 255.

THE LI NKER PAGE 2-9
LI NKER ERROR MESSAGES

3. The PageO error is generated if the direct page vari-
able is not in the page0 range of 0 to 255.

4. The page node error is generated if the direct variable
is not within the current direct page (6809).

