
 Apple Macintosh Historical Commentary

Some Comments about Developing Applications
for the Apple Macintosh 128 Computer from a 20 Year Perspective

David T Craig : 09 January 2004 : 1 of 6

Some Comments about Developing Applications
for the Apple Macintosh 128 Computer from a 20 Year Perspective

David T Craig
941 Calle Mejia # 1006, Santa Fe, NM 87501 USA

shirlgato@cybermesa.com • (505) 820-0358

09 January 2004

o OVERVIEW

This commentary contains my recollections about developing 3rd party software for
the Apple Macintosh computer during the years 1984 to 1986. This paper was written
as my contribution to the Macintosh's 20th anniversary celebrations in February
2004.

During this time I worked for a small company in Wichita Kansas called PPP Inc.
(PPP or P3 = Programs for Professional People) which developed a new Macintosh
application for the stock market named The Investor. This application was written
in Lisa Pascal and contained around 50,000 lines. I and another individual
designed the program, I implemented it.

The original Macintosh (called the "Macintosh 128" since it had 128K bytes of
memory) provided a fascinating development and application environment which I
enjoyed immensely. The Macintosh's rich ROM-based software toolbox in a 64K byte
ROM along with the machine's small footprint and superbly clear screen display
made the Macintosh a wonderful application platform.

o SOFTWARE DEVELOPMENT USING THE LISA WORKSHOP ENVIRONMENT

Macintosh development in the early days (circa 1983-1985) was done using the Apple
Lisa computer and its Lisa Workshop development environment. I originally used a
Lisa 2/5 model which contained 1M byte of RAM, an internal 400K 3.5" Sony floppy
drive, and an external 5M byte ProFile hard drive (yes, 5M as in mega bytes was
considered a rather large drive in those days). I later used a Lisa 2/10 model
which had an additional 10M byte internal Widget hard drive which gave me a total
of 15M bytes of hard drive storage.

The Lisa Workshop hosted a command line interface which accessed a wonderful mouse
based editor, a Pascal compiler, a 68000 macro assembler, an object file Linker,
the RMaker resource compiler utility program, and the MacCom Lisa-to-Macintosh
utility communications program.

The Lisa Pascal language was very powerful and compiled Pascal source files to
Motorola 68000 object code files. I never found a need to use the Workshop's 68000
assembler since everything I needed for my application could be written in the
higher level Lisa Pascal language. Macintosh application resource information was
created as text files which were then compiled to a binary format using the RMaker
resource compiler. Transferring a Macintosh object program from the Lisa to the



 Apple Macintosh Historical Commentary

Some Comments about Developing Applications
for the Apple Macintosh 128 Computer from a 20 Year Perspective

David T Craig : 09 January 2004 : 2 of 6

Macintosh required the Lisa utility program MacCom which copied Lisa files to a
Macintosh formatted disk in the Lisa's 400K internal disk drive. MacCom combined
seperate Lisa data and resource fork files which were stored on the Lisa's hard
drive and stored them as single documents on the Macintosh floppy.

Macintosh programming was based on a collection of programming libraries called
"units" in Pascal parlance. These resided on the Lisa and implemented the
Macintosh application programming interface (API) called the Toolbox and Operating
System by Apple. These libraries came on Lisa formatted disks called the Lisa
Macintosh Supplement. I recall receiving around 3 or 4 supplements each with
around a half dozen disks with these libraries. These disks also contained
Macintosh utility and sample applications such as the Uriah Heap desk accessory by
Andy Hertzfeld (called desk ornaments in the early days), the Edit text editor,
and the File application by Cary Clark which showed detailed examples of Macintosh
programming.

Macintosh development using a Lisa 1 model was also possible though I never worked
with the Lisa 1. For this computer, which did not contain an internal Macintosh
compatible 400K byte floppy drive, you transmitted you Macintosh program from the
Lisa to the Macintosh via the Lisa's serial using a special Lisa utility. A
special Macintosh utility received the transmitted file.

Macintosh development was also done using the Lisa Monitor development
environment, but I never used this (I actually did play with the Monitor one time
but thought the Workshop was a better environment). The Monitor was the Workshop's
predecessor and was also command line based though its command structure was more
UCSD p-system based then the later Workshop command structure. I was told that
some people at Apple preferred the Monitor to the Workshop since the Monitor
compilation and assembly was faster (specifically, Bill Atkinson and MacPaint and
the Macintosh Finder team, Bruce Horn and Steve Capps). I've also seen Workshop
references in Apple Macintosh source code to the "porkshop" but think this was
somewhat unfair.

Around later 1984 or 1985 Apple provided the Macintosh Development System (MDS)
which ran on the Macintosh 512K model I recall (I believe the Macintosh 128
couldn't run MDS but may be wrong). This allowed you to develop 68000 assembly
language programs on the Macintosh. I never used it since I didn't write in
assembly language (too tedious) and I had a Lisa with the Workshop and its
wonderful Lisa Pascal language.

Concerning the Macintosh Plus computer which debuted in 1986, this computer was
the last Macintosh whose system software was developed by Apple using the Lisa
computer and its Workshop environment and the Lisa TLA 68000 assembler. Future
Macintoshs were developed using Apple's MPW environment.

Note that the Lisa Workshop also supported a C compiler around 1985, but very
little Macintosh development used Lisa C.

o SOFTWARE DEVELOPMENT USING THE MACINTOSH MPW ENVIRONMENT

I used a beta version of the MPW (Macintosh Programmer's Workshop) programming
environment around late 1985 early 1986 for Macintosh development. This was
Apple's successor to the Lisa Workshop which was being discontinued since the Lisa
hardware had been discontinued in 1985.



 Apple Macintosh Historical Commentary

Some Comments about Developing Applications
for the Apple Macintosh 128 Computer from a 20 Year Perspective

David T Craig : 09 January 2004 : 3 of 6

MPW ran on the then new Macintosh Plus computer which contained 1M byte of RAM and
an internal 800K byte 3.5" floppy drive. I recall using an external floppy drive
for my MPW development of The Investor application which worked fine, but compiles
were much slower than the Lisa Workshop compiles.

MPW was a very good development environment which I still use today (it now is up
to version 3.4 or 3.5 I believe).

o MACINTOSH TOOLBOX AND OPERATING SYSTEM API

Macintosh programming was based on the Macintosh application programming interface
(API) called at that time the Macintosh Toolbox and Operating System routines.
There were around 500 of these routines in the original Macintosh. As a
comparison, I just counted the number of routines in the Macintosh API MPW 3.2
Pascal interfaces from 1990 and there were around 2,300 routines (almost 5 times
as many).

The Macintosh API introduced (at least to me) new programming topics such as event
based programming, resources, and internationalization of text, numbers, and
dates.

One idea that the Macintosh API attempted to teach developers was that the
Macintosh was really a software system and not a hardware system. Prior Apple
systems (the Lisa excluded) such as the Apple II and III families were more
hardware oriented and minimal API information existed. Instead of writing data to
a memory location for screen displaying, you instead used the QuickDraw graphics
library. Apple wanted Macintosh developers to use the Macintosh API extensively
since it already provided most of the core features of applications, ran fast, and
was well documented. API usage also tended to promote a standardized user
interface which really did not exist for Apple's earlier Apple II and III
computers.

The Macintosh Print Manager was a joy to use. It provided a device independent
architecture for printing really nice looking text and graphics. The old days of
sending printer specific control codes to a printer and hoping for the best were
at an end.

The Macintosh Memory Manager and its use of double indirect memory references
called handles was an eye opener. This handle architecture provided a simple way
to maximize the use of the Macintosh's limited memory size when memory blocks
needed resizing (the Macintosh team has to thank Tom Malloy of the LisaWrite word
processor team for this).

o INSIDE MACINTOSH

The Macintosh API was documented in a wonderful collection of notes called
collectively "Inside Macintosh". Originally distributed on a chapter basis these
eventually were collected in several volumes. Each chapter documented a specific
Macintosh API "manager" such as the Menu Manager. Volumes 1 to 3 from 1984-1985
documented the original Macintosh API information. Volume 4 from 1986 documented
the Macintosh Plus and the API changes made for this machine (such as the new SCSI
disk manager). Volume 5 from 1988 documented the Macintosh II and its extensive
API additions (such as Color QuickDraw).



 Apple Macintosh Historical Commentary

Some Comments about Developing Applications
for the Apple Macintosh 128 Computer from a 20 Year Perspective

David T Craig : 09 January 2004 : 4 of 6

The early Inside Macintosh chapters also contained API features which were later
removed by Apple. For example, the Core Edit manager supported styled text and was
a superset of the simpler TextEdit manager. Core Edit was documented in a 1982 or
1983 Inside Macintosh chapter, but was removed from the 1984 Inside Macintosh.
Core Edit was used in the original MacWrite word processor.

Inside Macintosh was from my perspective very well written and provided in a very
readable fashion a structure which made understanding the Macintosh API much
easier. Inside Macintosh's structure was designed from the beginning and all the
chapters had the same appearance and readability even though they were written by
many different people. Caroline Rose was the key person behind the original Inside
Macintosh chapters. She was ably assisted by around a half dozen writers.

Technical notes were also provided as part of the early Inside Macintosh releases.
I recall a note from Bill Atkinson describing the internal format of MacPaint
documents (he was responsible for the wonderful drawing application MacPaint, the
QuickDraw graphics library, and the HyperCard user-oriented "software erector
set").

Actual Macintosh system programming sources were also provided as examples. These
includes all the Macintosh "definition procedures" which implemented features such
as window and menu appearances (Andy Hertzfeld wrote these). The sources for the
more interesting ROM managers such as the Window or Menu Managers was alas not
provided (maybe today, how about it Steve Jobs?).

The User Interface Guidelines chapter was in my opinion the most innovative area
in Inside Macintosh. This provided a description of the Macintosh's ideal user
interface and a rationale behind the decisions.

Compared to the later book-based Inside Macintosh information that Apple produced
around 1990, the original chapter-based Inside Macintosh information was for me
more readable and concise. The later material tended to be wordy and overly
simplistic.

o LISA MACWORKS

In 1984 and 1985 Apple supported the Macintosh operating system on the Lisa. This
system was called MacWorks and allowed most Macintosh applications to run on a
Lisa 2 computer. MacWorks booted the Macintosh OS from a single 400K floppy disk
and even displayed the standard "happy Macintosh" boot icon. I recall MacWorks
running well as long as the applications you used were well behaved (my Macintosh
application The Investor was).

o EARLY MACINTOSH DEVELOPMENT DISAPPOINTMENTS

Though the original Macintosh provided a revolutionary user interface and
application programming interface (API), there were some disappointments from my
perspective.

Programming the Macintosh took a long time. Instead of having an application
interface consisting of a simple command line interface whose output was a bunch
of text lines in a fixed size font, you instead had to manage menus, multiple
windows, resources, and events.



 Apple Macintosh Historical Commentary

Some Comments about Developing Applications
for the Apple Macintosh 128 Computer from a 20 Year Perspective

David T Craig : 09 January 2004 : 5 of 6

Apple could have developed higher level API routines which would have lessened
some of the 3rd party development work. For example, in addition to the TextEdit
manager, the Macintosh ROM would have contained a TextEdit tool which would have
displayed and handled multiple text windows. Unfortunately, this would have
required additional programming resources on Apple's part and possibly a larger
ROM (say 128K instead of 64K bytes). This type of problem was later solved to some
degree by Apple's MacApp object oriented environment but that was many years down
the road from 1984.

Sophisticated Macintosh applications required more resources than the Macintosh
128 provided. The original Macintosh's 128K bytes of memory and 400K byte disk
drive were on the small size when it came to sophisticated applications (I recall
reading that even in Apple there was lots of discussion about this). The original
Macintosh was really around a 90K byte memory machine since the screen took 22K
bytes of memory and a bit of memory was devoted to system code such a ROM patches
and file system buffers. I recall my Investor application was around 200K bytes in
size and though it ran on the original Macintosh it was slow due to constant
application code segment swapping. The Macintosh 512 ran our program well. It is a
shame that the original Macintosh didn't have a bigger memory (I recall reading
about a 256K Macintosh) and more disk space (the Macintosh originally used a Lisa
860K byte 5.25" Twiggy floppy drive which would have been wonderful, but in late
1983 Apple changed to the 400K byte 3.5" Sony micro-drive).

From a programming perspective, the Lisa Pascal language was good, but it could
have been better. For example, routine and variable names were significant to only
8 characters. This meant that the names such as FlushBuffersNow and
FlushBuffersSoon were seen as the same name, FlushBuf, by the Pascal compiler.
Apple should have changed the compiler to support at least 16 character name
significance, or even better 32 characters. 8 character significance was a real
pain for me and reminded me of Apple's Apple II and III Pascal compilers. This
naming limitation also caused the Macintosh API routine names to sometimes be very
abbreviated.

Macintosh API routine names should have been named to indicate their origins. For
example, I thought all Event Manager routine names should have started with EM or
EM_ such as EMGetNextEvent or EM_GetNextEvent . This would have at least provided
a visual clue in source listing that differentiated your application routines from
Macintosh API routines. The Lisa API did this to a far better degree than the
Macintosh and both used the same Lisa Pascal compiler.

Macintosh debugging using the MacsBug 68000 debugger was too low-level. I wanted a
source level debugger since MacsBug was assembly language based.

Internal Macintosh API data structures should not have been published in Inside
Macintosh. Apple knew these were going to change so should not have tempted
developers into using this information which can cause incompatible applications
when new OS versions are released. This would have been difficult to do given the
Lisa Pascal compiler's scoping limitations, but Apple could have changed the
compiler to support public and private information better (a Modula-2 reference
mechanism could have been useful here from what I know).

The Macintosh API use of global variables was not good (these were also known as
"low memory globals"). These promoted the Macintosh as a single process system
which later was difficult for Apple to upgrade when it wanted to run real



 Apple Macintosh Historical Commentary

Some Comments about Developing Applications
for the Apple Macintosh 128 Computer from a 20 Year Perspective

David T Craig : 09 January 2004 : 6 of 6

processes on the Macintosh. These global variables also made the Macintosh API
non-reentrant which caused problems for interrupt-based tasks.

After using the Lisa and its wonderful Office System during my Macintosh
development days I was disappointed that more of the Lisa's software architecture
was not implemented on the Macintosh. The Macintosh was based mostly on the Lisa's
visual aspects but missed other architectural elements which would have made the
Macintosh a better system in my opinion. Too bad Apple could not have better
leveraged off of the Lisa's best features to create a Macintosh that was really
Lisa version 2 (I know the Macintosh team would cringe at this, but suspect the
Lisa team would say that would have been the correct approach which was best for
Apple's long term prosperity).

For example, the Macintosh should have supported virtual file names instead of
file names tied directly to the file system. The Lisa finder (called the Desktop
Manager) supported virtual names containing up to 63 characters even though the
low-level file system supported only 31 character names. There could also be
multiple Lisa documents with the same name in the same folder. The Macintosh
should have also been document-centric and not application centric. Lisa users
never dealt with Lisa applications directly (these were called tools in Lisa
parlance) but instead always manipulated stationery pads which produced documents.

o MACCOLLEGE

Around the end of 1984 I attended a wonderful Macintosh programming seminar called
MacCollege. Held at Apple's Cupertino headquarters it provided a facility with
direct access to Lisa computers for development and Apple's original Macintosh
technical support team.

Support people such as Scott Knaster, Cary Clark, and Russ Daniels presented
Macintosh information, answered programming questions, and helped resolve bugs in
your application.

I recall at the end of MacCollege signing a large piece of cardboard paper which
had around a hundred names of all the MacCollege graduates (I wonder where this is
today?).

o REFERENCES

Here are a list of the key materials that I used during the early Macintosh
development days. I still have all these materials including The Investor source
code listing and internal architecture manual.

Lisa Workshop manuals (3 volumes, dated 1983 and 1984)

Inside Macintosh manuals (3 volumes for the early days)

MacCollege class notes (around 200 pages)

BYTE magazine and its Macintosh articles (February 1984)

MacWorld magazine premier issue (February 1984)

END OF COMMENTARY


