R

PP L LA

s 5

eeews™ -

“od S ,F g .

e

ot

o~
[=]
"
@
-
w

4
™
-t
L
o

%]

} .

- 2
A
-]

v L
3
t 2o
3 X
2 =5
! o
b o
E

~
_—
3
it

-”-n----------------
e Ne NFZ N r s £ W b 'y

-

:

|

|

C
ﬁ
o/
-
Tz A
=7
o8
~—~
e a1
4L
=7
—
o
Z 4~
%

-

Computers

$14.95

Boost the power and performance of your micro with

6502

ASSEMBLY LANGUAGE

PROGRAMMING

A SELF-TEACHING GUIDE

Assembly language programming is
the key to writing faster, more sophis-
ticated programs that tap the full
power of your microcomputer. This
dynamic guide shows you how to
put the power and efficiency of this
programming tool—previously avail-
able only to professionals—to work
for you. The format is self-paced and
self-instructional, and the crystal-
clear coverage is equally applicable
to Apple®, Atari® and Commodore
microcomputers—in fact to any
machine based on the 6502 micro-
processor chip.

From a discussion of the character-
istics and features of 6502 Assembly
Language, the authors take you step
by step through the entire set of as-
sembly language instructions. You'll
get hundreds of opportunities to
practice coding typical routines and
to check and correct your errors.
You'll master techniques for handling
routine operations, conditional com-
mands, assembly language logic,
subroutines, numeric manipulation,
and more.

Scores of sample programs demon-
strate how the instructions are used
in practice. Abundant summaries and
self-tests reinforce the material every
step of the way. And, because the
book requires only minimal knowl-
edge of programming, even compu-
ter novices can easily add the funda-
mentals of assembly language to
their repertoire.

Judi N. Fernandez and Ruth Ashley
are Co-Presidents of DuoTech, Inc.
They are co-authors of three other
bestselling Self-Teaching Guides.
Donna N. Tabler is a programmer/
analyst with the Naval Air Rework
Facility.

More than a million people
have learned to program and
® use microcomputers with Wiley
C \ Self-Teaching Guides. Look for
= them at your favorite
'——I- bookshop or computer
store!
JOHN WILEY & SONS, INC.
605 Third Avenue, New York, N.Y. 10158
New York e Chichester e Brisbane
Toronto e Singapore

Apple® is a registered trademark of Apple Computer; Inc.
Atari® is a registered trademark of Atari, Inc.

ISBN 0 471 86120-0

Cover Photography: Shiah Grumet

6502 ASSEMBLY
LANGUAGE
PROGRAMMING

J udi N. Fernandez
Donna N. Tabler
Ruth Ashley

JOHN WILEY & SONS, INC.

New York « Chichester « Brishane + Toronto « Singapore

How To Use This Book

This Self-Teaching Guide consists of 12 chapters that have been carefully designed
to introduce you to 6502 Assembly Language and to help you develop useful pro-
gramming skills. We have made every effort to organize the material in the best
possible sequence to learn as quickly as possible. You will first learn to code easy
programs, with increasingly more complex programs following, until you have
mastered the language.

Each chapter begins with a short introduction followed by objectives that
outline what you can expect to learn. A Self-Test at the end allows you to measure
your learning and practice what you have studied. Each chapter also contains a
review that summarizes the material in the chapter.

The body of each chapter is divided into frames—short numbered sections in
which information is presented or reviewed, followed by questions that ask you to
apply the material. The correct answers are given immediately after the questions.
As you work through the book, use a folded paper or a card to cover the correct
answer until you have written yours. And be sure you actually write each response,
especially when the activity involves coding Assembly Language instructions. Only
by actually writing out the instructions and checking them carefully can you get the
most from this Self-Teaching Guide.

Contents

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

Chapter

8

9

Chapte‘r 10

Chapter 11

Chapter 12

~

How To Use This Book
Introduction

Number Systems and Data Representation
Instruction Format
Operand Formats
Elementary Instruction Set
Assembler Directives
Conditional Instructions
Logical Operations

The Stack

Subroutines

Numeric Manipulation
Additional Instructions
Appendix A

Appendix B

Appendix C

Appendix D

Index

vii

19
47
61

83

107

141
173
193
203
231
263
269
270
272
274

275

ix

CHAPTER ONE

INTRODUCTION

Before you can understand and code instructions, you should know some basic con-
cepts of the language. You should also know how the microcomputer works and
what it is.

In this chapter, we'll discuss 6502 Assembly Language and what types of pro-
grams it can be used for. We'll also compare it to other computer languages. We'll
talk about the 6502 microprocessor itself—what makes up the microprocessor and
how data is stored,in the computer in bits and bytes. You'll also learn what the
registers are and what they are used for in a 6502 microcomputer.

When you complete this chapter, you'll be able to:

e classify 6502 Assembly Language’s level and use;
¢ identify the size and characteristics of bits and bytes;
e name the 6502 registers and their functions.

1. 6502 Assembly Language is used to program computers that contain 6502
microprocessors made by MOS Technology, Inc. and others, or any computer that
has a 6502 assembler. An assembler is a program that translates Assembly
Language into the correct machine language for the processor. 1f the processor is a
6502, then the assembler would translate 6502 Assembly Language into 6502
machine language.

Computer languages are usually categorized as low-level or high-level. A low-
level language is very machine-oriented; the lowest level language is the machine’s
own language, which is comprised entirely of digits. A high-level language is
oriented more to humans; the instructions use English words or abbreviations and
English-like syntax.

Assembly Languages are always low-level languages. The language of an
assembler is very close to the actual machine language, but uses alphanumeric codes
instead of digits. (Alphanumeric code is made up of letters, numbers, and symbols
such as *))

2 6502 ASSEMBLY LANGUAGE PROGRAMMING

{a) Which of the following describe 6502 Assembly Language? (Mdre than one
answer is correct.)

low-level

high-level

—_ uses only digits
uses alphanumeric codes

uses English-like words and phrases

{b) Which of the following types of computers can be programmed using 6502
Assembly Language?

any computer

any computer that has a 6502 microprocessor and an assembler pro-
gram

any microcomputer

{c) See if you can identify the following instructions as machine language,
Assembly Language, or high-level language.

ADD 1 TO COUNTER
000000100011 000110
ADC #1

{a) low-level, uses alphanumeric codes; (b) any computer that has a 6502
microprocessor and an assembler program; (c) high-level, machine, Assembly

2. You've probably heard of such high-level languages as COBOL, FORTRAN,
and BASIC. These languages have the advantages of being easy to learn and use;
but there are disadvantages. A high-level program must be translated into machine
language before it can be used. The translation is done by a program called an inter-
preter or a compiler. This compilation step is time-consuming. Also, the machine-
language program produced by the compiler is never the most efficient program
possible. One high-level instruction, such as ADD, may be translated into ten or
more machine-language instructions,

INTRODUCTION 3

When you use Assembly Language, you have to think less like a human and
more like a computer. For example, to add two numbers you must:

move the first number to a'special place (the accumulator);

add the second number to it;

do something about overflow if it oceurs;

1
2
3. make sure the result isn’t too large for the accumulator (check for overflow);
4
5 check and set the sign (positive or negative) of the result;

6

store the result in memory.

Assembly Language programs are also translated, but it’s a much simpler pro-
cess called assembling. Assembling is a one-to-one translation of the alphanumeric
instructions into their machine language counterparts. So when you code in
Assembly Language, you're virtually coding in machine language. The alphanumeric
codes save you the bother of using the digital form of the instructions.

By coding at the machine level, you can code a much more efficient program
than a compiler can produce. This is one advantage of using Assembly Language.
Another advantage is that you have more control over the computer. Instructions
exist at the Assembly-Language level that have no high-level equivalents. They
allow you to access and control computer functions at a very minute level. For ex-
ample, only in Assembly Language can you directly address a 6502 register, such as
the accumulator that is used for arithmetic.

Match the languages with their characteristics.

fa) Assembly 1. more efficient
less efficient
(b} high-level {COBOL, compiled
FORTRAN, BASIC,
assembled

etc.)
more control

easier to learn and use

N o e N

interpreted

(a) 1,4,5; (b) 2,3,6,7

3. When do you use Assembly Language? Some people use it all the time. but
most people use it when they're writing system programs as opposed to application
programs. '

An application program is a program that solves some sort of problem for a
user. If your computer is in a business setting, then typical applications might be
payroll and inventory. If your computer is in a scientific setting, then typical ap-
plications might be statistical analysis and graph plotting.

4 6502 ASSEMBLY LANGUAGE PROGRAMMING

In contrast, a system program is one that solves a problem for the computer
system itself. System programs are frequently used by programmers, computer
operators, and other computer programs. (An application program will call a system
program to read data from a terminal, for example.) Typical system programs are:

¢ input/output (I/O) routines that transfer data between peripheral devices
and main storage. (A peripheral device is a device that is attached by
cable to the main part of the computer; terminals, pnnters, disk, and tape
units may be peripheral devices.)

® interpreters and compilers that translate high-level code into machine
language.
o librarians that organize disk files and keep up-to-date directories.

An application program may be used once a week or even once a day. A
system program may be used several times an hour. Some of the more important
system programs, such as the I/O routines, are used several times a second. It’s
critical that a system program be as efficient as possible. And that's one reason we
use Assembly Language to code system programs, even when we have high-level
languages available to us. Another reason is to take advantage of that extra
measure of control that’s available with Assembly Language and not with high-level
languages. System programs frequently require us to make full use of the
computer’s capabilities.

Match the two types of programs with their characteristics.

(a) sys?tem programs 1. typically used by non:computer
staff such as accounting depart-
ment, research staff

— (b) application programs 2. typically used by computer pro-
grammers and gperators

3. frequently used by other pro-
grams

4. solves computer problems
5. solves user problems

6. typically coded in Assembly
Language

7. typically coded in high-level
language

8. commonly used on daily,
weekly, or monthly basis

9. may be used several times per
minute

{c) List two reasons that we usually use Assembly Language for system programs.

INTRODUCTION 5

(a) 2,3,4,6,9; (b) 1,5,7,8; (c) efficiency and control

Any low-level language is involved with the physical structure (architecture) of
the system it programs. Before you can begin learning to code Assembly Language
instructions, you need to know more about the microprocessor itself. In the next
section of this chapter, we’ll explore the critical details of the 6502 chip.

BITS AND BYTES

4. A microprocessor is an integrated circuit inside the microcomputer that con-
tains the logic that makes the rest of the computer work. The microprocessor con-
tains some control circuits and special storage areas called registers. Main storage
(also called internal memory, main memory, internal storage, or core memory) is
located on separate chips external to the microprocessor itself. The registers and
main storage are both used to store data while it's being worked on.

Data is stored in bytes (pronounced.bites’’). A byte is the amount of space it
takes to store one glphanumeric character such as the letter ‘A,’ the number ‘5,” or
the symbol ‘&, or the space to store a value up to 255. The size of a storage area is
usually given in terms of the number of bytes it can hold. 1K stands for 1024 bytes,
or 21° bytes.

{a) Which of the following are considered part of the microprocessor?
___ main storage
_____ registers
___ peripheral devices

logic circuits

(b) If your computer has 20K bytes of main storage, how many characters can it

hold? (K stands for 1024.)

{c) If a register holds one byte, how hmny characters can it hold?

(a) registers and logic circuits; (b) 20,480 characters: (c) one

Decimal Binary
0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001

10 1010

FIGURE 1. Binary Equivalents

' 6 6502 ASSEMBLY LANGUAGE PROGRAMMING

5. To store a character in a byte, it must be encoded as a binary number. In this
frame, we'll explain what binary numbers are and why we have to use them.

The binary number system has a base of two, instead of ten as the decimal
number system has. It has only two digits—zero and one. Figure 1 shows the binary
equivalents for the first ten decimal numbers. You'll be learning a great deal more
about the binary number system in the next chapter. For now, the important things
to remember are that only two digits are involved and that binary numbers are
generally longer than decimal numbers.

- Because binary numbers have only two digits, we can represent them elec-
tronically. For example, a high voltage in a circuit can represent a one and a low
voltage can represent a zero. This is why we use binary numbers rather than
decimal numbers inside the computer. The input/output devices, such as the ter-
minal, translate data between decimal and binary.

_{a) The binary number system has a base of
(b) The digits of the decimal number system are 0,1.2,3,4,5,6,7,8,9. Write the

digits of the binary number system

(c) Using Figure 1, what is the binary equivalent of the decimal number 5?
(d) Which is easier to represent electronically—a binary number or a decimal

~ number?

e} In order to use a computer, you have to translate all your data into binary
numbers before you can type them on the terminal or punch them on cards.

True or false?

(a} two; (b) 0,1; {c) 101; (d) a binary number; (e} false—the I/O devices do the
translating

6. One binary digit is called a bit. (“Bit” is an acronym for ‘“Blnary digiT”’ or
maybe “Binary digIT.”) A bit is either a one or a zero. There are two basic types of
data: numeric and alphanumeric. Numeric data can be converted directly to bmary
and stored in memory.

We use a code system to translate alphanumeric data into binary numbers. It
takes several bits to represent one character. The number of bits depends on the
code system we use. For example, one popular system is called ASCII (American
Standard Code for Information Interchange). It requires seven bits per character.
The letter A is encoded as 1000001. The number 5 is encoded as 0110101. The sym-
bol ‘&’ is encoded as 0100110.

Another popular code system is EBCDIC (Extended Binary-Coded Decimal In-
terchange Code), It uses eight bits per character. The letter A is encoded as
11000001. The number 5 is éncoded as 11110101. The symbol ‘&’ is encoded as
01010000.

Remember that a byte holds one character. So a byte holds several bits. In the
6502 microprocessor, one byte contains eight bits. (This is becoming the standard

INTRODUCTION 7

byte size throughout the computer industry.) So a byte in the 6502 chip is large
enough to use either ASCII or EBCDIC code. For numeric data, it can hold a value
up to 255.

ASCII is usually pronounced ask’-ey and EBCDIC is usually pronounced
ebb’-see-dick.

(@) A binary digit is also called a

{b) A bit can have one of two values. What are they?

() Suppose your microcomputer has 20K bytes of main storage. How many bits

does it have?

{a) bit; (b) 0,1; (c) 160K or 163,840

7. Let’s review what you have learned about bits and bytes. Match each term
with its characteristics.

(a) bit
— (b} byte

holds one character

holds a zero or a one
holds eight zeros and/or ones
the smaller storage area

the larger storage area

IS i

memory size is given in terms of

this

(a) 2,4; (b) 1,3,5,6

MEMORY

8. Your computer will have some chips that are used for storage of information.
They are connected to the microprocessor. These chips comprise your computer’s
memory. The size of memory depends on the number and types of memory chips
your computer has.

Where is your computer’s memory?

___ (a) on the microprocessor chip
_____ (b) on separate chips connected to the microprocessor

—_ (c)~ on tape or disk

(b)

8 6502 ASSEMBLY LANGUAGE PROGRAMMING

9. Every byte in memory has an address. The address is simply a number that
refers to that byte. For example, the first byte has the address 0.

The address for the byte does not tell us what is in it, any more than your
street address indicates who lives in your house.

(a) What is the address of the second byte in memory?

(b) Suppose your computer has 65,536 bytes (64K) of memory. If the first address
is 0, what’s the address of the last byte?

(a) 1; (b) 65535

We usually show memory addresses as four-digit hexadecimal numbers, so we
would normally write the above two addresses as $0001 and $FFFF. You’ll learn
how to use hexadecimal numbers in Chapter 2.

10. Memory is used for the storage of programs and data while they’'re being
worked on. The diagram below depicts the relationship of the microprocessor,
storage, and memory.

MICROPROCESSOR -— MEMORY
CURRENT
PROGRAM
ITS DATA
STORAGE
OTHER
PROGRAMS
OTHER
DATA)

INTRODUCTION 9

(a} Where does the program currently being executed get stored?

— i

‘tb) Where do programs not currently being executed get stored?

(0 What is the main purpose of memory?

(a) memory; (b) storage (tapes, disks, and so forth); (c) to hold the current program
and its data

REGISTERS

The 6502 microprocessor has several registers. Some have special purposes, and
some are available for the programmer to use (general purpose). In this section, we'll
discuss a few of the special-purpose registers and all of the general-purpose
registers.

11. A register is a very small storage area. Most of the registers store only one
byte. A couple of them are two bytes long. The 6502 registers we will study are: A,
X, Y, stack pointer, program counter, and status.

The A register is also called the accumulator because you use it for addltlon
and subtraction. To add two values, move one value into the A register, then add
the second value to it.

The A register contains one byte. It is called a general-purpose register. This
means that you, the programmer, can control the contents of the register. The
system never changes the contents of the A register unless you tell it to.

(a) How large are most of the registers?

{b) The A register is also called the
{c) Which of the following is the intended purpose of the A register?

to hold the sum of an addition

to hold a byte to be output to a terminal

to receive input characters from a terminal
{d The A register is one byte. What is the maximum value it can hold? (Refer to

frame 6 if you don’t remember.)

{a) one byte; (b) accumulator; (c) to hold the sum of an addition; (d) 255

10 6502 ASSEMBLY LANGUAGE PROGRAMMING

12. X and Y are also one-byte, general-purpose registers; they are called the index

registers. Their intended purpose needs a bit of explaining.

Suppose you want to access 100 bytes in memory; for example, you want to
send a 100-byte message to the terminal. The most direct, but longest and most
tedious, method is diagrammed below.

SEND SEND
THE THE
FIRST SECOND
BYTE BYTE

SEND
THE

100TH
BYTE

It would take an awful lot of instructions to do it this way; more than 100 in-
structions. A more economical way is diagrammed below.

SET
INDEX

—(O—

SEND THE

BYTE AT |—

N + INDEX

ADD
1
TO
INDEX

YES

NO

We start by initializing an index register to zero. N is a label that addresses
the first byte of the message in memory. So, the first time we do the loop, we send
the N + 0 byte, or the first byte. Then we add one to the index register. It doesn’t
equal 100, so we repeat the loop, causing the second byte to be sent. And on it goes
until we send the byte at N + 99, which is the 100th byte. After that, the index is
incremented to 100 and we leave the loop.

This second technique looks more complicated, but it takes only a few instruc-
tions to accomplish. So the use of the index register saves a lot of time and bother.

The 6502 microprocessor, with its X and Y registers, is perfectly designed to
use indexing techniques for accessing data in memory. You'll be using these two
registers a lot, because you’ll rarely want to access just one byte in memory.

(a) Name the 6502 index registers.

(b) Which of the following best explains the purpose of the 6502 index registers?

_______ to provide additional arithmetic storage space for problems with more
than two factors.

____ to allow you to read or write two bytes at a time.

(c0 How many bytes does the X register contain?

having to code separate instructions.

to provide a means of addressing successive memory bytes without

INTRODUCTION 11

“(a) X and Y; (b) to provide a means of addressing successive memory bytes without
having to code separate instructions; (c) one

A, X, and Y are the three general-purpose registers of the 6502. Now let’s turn
our attention to the special-purpose registers.

13. One special-purpose register is called the stack pointer (SP). Some Assembly
Language instructions allow you to store data in a memory stack and retrieve it
again. It’s called a stack because of the way it behaves. Imagine a stack of plates.
When you add one more. it goes on top. When you remove one, you get the top
plate—that is, the one that was stacked last. This is frequently referred to as “last
in, first out’’ or LIFO. This is how a 6502 memory stack works. It is a handy tool in
Assembly Language programming, as you will see in Chapter 9.

address 0100 —

SP— address 01FB—| next | ————— top of stack

data

data

_ data

-

address 01FF—= | data

bottom of stack

FIGURE 2. A Data Stack in Memory

The stack pointer is a register that always keeps track of, or points to, the cur-
rent top of the stack in memory. (See Figure 2. Notice that the “top” of the stack is
the lowest address and the ‘‘bottom” of the stack is the highest address.) Whenever
you add something to the stack, the stack pointer is decreased, or decremented,
after the data is stored. Whenever you remove something from the stack. the stack
pointer is increased, or incremented. Then, the item is copied from the stack. So the
SP is always pointing to the top of the stack.

In the 6502, memory addresses are all two bytes long. Since the stack pointer
holds the address of the top of the stack, you'd think it would be a two-byte
register. But it isn’t. The stack must be in the part of memory where the addresses

begin with 01. .

12 6502 ASSEMBLY LANGUAGE PROGRAMMING

The stack pointer holds only one byte—the second byte of the address. The
first byte is presumed to be 01. So if the stack pointer says 25, the top of the stack
is at 0125. :

(a) Where is the stack in memory?

(b) Where does the stack pointer point; the top or bottom of the stack?
{c/ When you remove something from the stack, what do you get?

The first thing that was put in.

The last thing that was put in.

(d) How long is a 6502 address?

(¢} How large is the stack pointer register?

(a) at addresses starting with 01; (b) top; (c) the last thing that was put in; (d) two
bytes; (e) one byte

14. The program counter register is a double (two-byte) register that tells the com-
puter what to do next.

A computer program is made up of a series of instructions. They are stored in
main memory when the program is executed. The instructions are executed one at a
time. As each instruction is picked up from memory for execution, the memory ad-
dress of the first byte of the next instruction is stored in the program counter
register. When an instruction has finished executing, the computer uses the pro-
gram counter to find out where to pick up the next instruction.

The programmer has Assembly Language instructions to change the address
in the program counter register. These are called jump instructions because they
cause the computer to jump to another memory location instead of executing the
program in sequence. You will learn to use the jump instructions in this book.

(a) (review) How long is a memory address in the 6502 microcomputer?

(b) Which register holds the address of the next instruction?

How long is it?

(c) The programmer can change the value in the program counter register with a

instruction.

{a) two bytes; {(b) program counter, two bytes; (c) jump;

15. Now we'll talk about the status.register. The status register is treated as eight
separate bits. Seven of the bits are used as flags or indicators. If a flag bit contains
a 1, the flag is on or “set.” If it contains a 0, the flag is off or ‘“‘cleared.” The flags
are set or cleared as a result of operations such as addition, subtraction, or any
changes to a register. They tell you about the result of the operation. They tell you

INTRODUCTION 13

such things as whether the result is positive or negative, whether it overflowed the
register, and so forth. There are many Assembly Language instructions that access
the values of the flags.

Two of the flags tell something about the result of a data movement or opera-
tion.

The zero flag shows whether the result is zero.

The sign flag or negative result flag reflects the eighth (high-order) bit of
the result. This is useful when you are using signed numbers, You’ll learn
how to deal with signed numbers in Chapter 11.

Two other flags also indicate something about the result of an operation.

The carry flag shows whether an arithmetic operation needed to carry or
borrow outside of the result byte.

The overflow flag reflects the seventh bit of the result. Like the sign flag.
it is useful when dealing with signed numbers.

The next two flags are used in processing interrupts. You'll learn about these
in Chapter 12. ‘

The interrupt disable flag tells the microprocessor whether it’s all right to
process an interrupt immediately.

The break flag shows whether an interrupt is caused by an external event
or by a program command.

The final flag you will also learn more about in Chapter 11.

The decimal flag tells the microprocessor whether it is doing binary or
decimal arithmetic.

(a) How large is the status register?

(b) How many flags are in the status register?

(c) Which flag tells you if an arithmetic operation resulted in a carry (or a

borrow)?

(d) Which flag tells the processor whether you are using binary or decimal

numbers?
(e} Which flag tells you about the seventh bit of a result?
(i~ Which flag tells you about the source of an interrupt?
(g} Which flag tells you about the high-order bit of a result?

(h) Which flag tells you if an operation resulted in zero?

(i) Which flag tells the processor whether to allow an interrupt?

(a) one byte; (b) seven; (c) carry; (d) decimal; (e) overflow:; (f) break: (g) sign; (h) zero;
(i) interrupt disable

14 6502 ASSEMBLY LANGUAGE PROGRAMMING

16. Figure 3 depicts the directions in which data may be transferred between
registers. You will learn the instructions to cause these data transfers later in this
book.

A stack status
Y |[e—— memory PC
—| X SP

FIGURE 3. 6502 Data Flow

Which of the following transfers are possible in 6502 Assembly Language?
—— (a) A tomemory

() XtoY
— () SPtoX
—— |d memorytoY
&) XtoA

(a), (c), (d), (e)

REVIEW

Here’s what you have learned in this chapter:

¢ Computer languages can be classified as high-level and low-level. A high-
level language is more “humanized” —it uses English words and syntax. It
is easier to learn and use, but it is less efficient and gives the programmer
less control. A low-level language is more like the machine’s internal
language. It uses alphanumeric codes, and it gives the programmer more
control and more efficient programs.’

INTRODUCTION 15

¢ 6502 Assembly Language is a low-level language used to program
microcomputers containing the 6502 microprocessor. It is generally used
for writing system programs as opposed to application programs. An ap-
plication program solves a user problem such as payroll. A system pro-
gram solves a computer problem such as input/output. System programs
are quite heavily used and must be efficient; they must also make full use
of the system’s capabilities.

¢ A microprocessor is an integrated circuit containing control circuits,
registers, and main storage. A byte is the amount of storage space
necessary to hold one character or a number up to 255. In the 6502, a byte
contains eight bits, A bit is a binary digit. The binary number system has
only two digits, zero and one. Computers use the binary number system
because the two digits can be represented electrically. All data is
translated into binary codes as it enters the system. Two popular coding
systems are ASCII and EBCDIC.

¢ The 6502 microprocessor has three general purpose registers.
- The A register, or accumulator, is used for arithmetic operations.
- The X and Y registers are used for indexed addressing.

* Some of the special-purpose registers are:

The stack pointer, which holds the address of the top of the stack, a LIFO
storage area in the part of memory with addresses starting with 01.

The program counter, which keeps track of the next instruction in
memory. Assembly Language jump instructions are used to change this
address.

The status register, which contains seven on/off flags that reflect the
status of certain operations such as addition and subtraction.

- The carry flag shows a carry or borrow.

- The zero flag indicates a zero result.

- The sign flag shows the eighth bit.

- The overflow flag shows the seventh bit of the result.

- The interrupt disable flag tells the processor whether to allow inter-
* rupts.

- The break flag indicates the source of a break.)
- The decimal flag tells the processor what kind of arithmetic to use.
Now complete the Self-Test to practice what you have learned.

16

6502 ASSEMBLY LANGUAGE PROGRAMMING

CHAPTER 1 SELF-TEST
Is 6502 Assembly Language a low-level or high-level language?

Which of the following are characteristics of system programs?
used by non-computer staff

a.
—— b. used by programmers
——_ ¢. used by programs
__ d. solve business or scientific problems
e. solve computer system problems
_ f.” high usage rate

___ g low usage rate

The microprocessor contains and

Memory size is stated in terms of

In the 6502, how many bits are in a byte?

One byte can hold:

____ a. one alphanumeric character
—__ b. avalue up to 255

—__ c. eight characters

____d. azeroor a one only

One bit can hold:

___ a. one alphanumeric character
— b. a value up to 255

—__ c. eight characters

___d. azero or a one only

What is memory used for?

What is the address of the first byte of memory?

INTRODUCTION 17

10.

11.

12.

Name the registers described below.

a.
b.

C.

d.

e.

f.

general-purpose registers

holds seven status flags

the accumulator

index registers

holds the next instruction address

points to the stack

Name the two-byte register.

Match the flag names with their descriptions.

___ carry flag a. shows carry or borrow status
overflow flag b. shows whether interrupts are allowed
break flag c. shows source of an interrupt

— signflag d. shows the eighth bit of a result
zero flag e. shows whether a value is zeto
interrupt f. shows type of arithmetic
disable flag ~ g. shows the seventh bit of a result
decimal flag

Self-Test Answer Key

low-level

b,c, e, f

registers and logic circuits

bytes

eight

aand b

d

to hold the current program and its data

0 (or $0000)

18 6502 ASSEMBLY LANGUAGE PROGRAMMING

10. aa AXY
b. status
c. A
d XandY

e. program counter

f. stack pointer
11. program counter .

12. carry flag - a
overflow flag - g
break flag - ¢
sign flag - d
zero flag - e
interrupt disable flag - b
decimal flag - f

If you missed any of these, you may want to review the appropriate frames
before going on to Chapter 2.

CHAPTER TWO

NUMBER SYSTEMS AND
DATA REPRESENTATION

The binary number system was briefly introduced in Chapter 1. In the study of
Assembly Language programming, number systems are so important that they war-
rant a chapter to themselves. You must become comfortable not only with binary,
but also hexadecimal (base 16). numbers.

Of the two code systems we introduced in Chapter 1, ASCII and EBCDIC,
your microcomputer probably uses ASCII. EBCDIC is used mainly by larger IBM
computers. Therefore, we'll also introduce you to ASCII code in this chapter.

. By the time you have finished this chapter, you will be able to:

¢ add and subtract binary numbers;
¢ add and subtract hexadecimal numbers; -
e convert numbers among binary, decimal, and hexadecimal;

o interpret ASCII codes using a chart.

The Decimal Number System

Let’s start by reviewing some basic facts about the system you've used every day
since the first grade—the decimal number system. This review will give you the con-
cepts and terminology you need to learn about other number systems.

19

20 6502 ASSEMBLY LANGUAGE PROGRAMMING

1. The decimal number system has a base of ten. What does that mean? Essen-
tially, it means that we count in groups of ten.

secee This many objects we
(XYY} call 9.

If we add one more, we make sosce

one group, which we call 10, secee

The number 10 means:

10

one group of ten no singles

When we get ten groups of ten, we make a larger group.

A S
L L o0 (1) L L] .0
.0 oo (X] L 1] L L]

(X) o0 o o0 L L]

(IR RIN Y MY RN Y Y seoe
Y} _.:J___.Lj_.:_ PP [X LX)
(X 1]
oo is written 125,
L 1] Tﬂ ro—JW (X] (X X X J
[X] [X] (1] [X] [X] *000
(X] s0 0 [1] L X]
[1] (X] (1] (X] (X]
so Lo flee]lee floe ,
one group two ‘groups\ﬁve singles

of ten tens of ten

The same principle holds true for all number systems.,

(a) What is the base of the decimal system?

(b) The binary number system has a base of two. Draw the number of objects
represented by the binary number 11.

NUMBER SYSTEMS AND DATA REPRESENTATION 21

(¢ The hexadecimal number system has a base of 16. Draw the number of objects
represented by the hexadecimal number 11.

N

(a ten
(b) . {one group of two; one single —
U) three objects altogether)
(c) | ovoe {one group of sixteen: one single —
sooe . seventeen objects altogether)
0000
(XXX]

2. Because the decimal system has a base of ten, each column represents a power
of ten. The singles, or units, column represents 10°.

125

1 x 102 101 5 x 10°

Any number {except 0) to the zero power equals 1. 10° = 1. 5° = 1. 450 = 1.
154387269416333.61527° = 1. X0 = 1, unless X = 0.

The second column from the right, the group-of-ten column, represents 10'.
Any number to the first power equals itself. 10! = 10. 5! = 5. 45' = 45.
154387269416333.61527! = 154387269416333.61527. X! = X.

The third column from the right represents 102 The fourth column 103, etc.
Here is how we break down a decimal number:

10523 = 1 x 10* = 1 x 10000 = 10000

0x103=0x 1000 = 0

5x102=5x 100= 500 .

2x10'=2x 10= 20

3x10°=3x 1= 3 .

10523

22 6502 ASSEMBLY LANGUAGE PROGRAMMING

Use the framework below to break down the decimal value 1984.

1984 = = x10%= X =
x 102 = x =
x 101 = X =
x 100 = x =

1984

1x10° =1 x 1000 = 1000
9x102=9x 100= 900
8x100=8x 10= 80
4x10°=4x 1= 4

1984

3. The above shows how you would convert a decimal number to the decimal
number system. The result is the same as the original because we didn’t change
number systems. In other number systems, you use the same method.

The binary value 101 is converted to decimal like this:

101=1x22=1x4=4

0x2'=0x2=0
1x2°=1x1=1
5

The hexadecimal value 11 is converted to decimal like this:

11=1x16'=1x16 =16
1x18°=1x 1= 1
17

(a) Convert the hexadecimal number 106 to decimal.

s

{b) Convert the binary number 1101 to decimal.

NUMBER SYSTEMS AND DATA REPRESENTATION 23

(a) hexadecimal 106 = 1 x 162 = 1 x 256 = 256
O0x16!=0x 16= 0
6x169=6x 1= 6

262
(b) binary 1101 = 1x29=1x8= 8
1x22=1x4= 4
0x2'=0x1= 0
1x2°=1x1=_1
13

4. Now let’s talk about the individual digits in the decimal number system.
Decimal is based on ten and so there are ten digits: 0,1,2,3,4,5,6,7,8,9. When you add
1 to 9, you get a group of ten, so you move to the left one column.

9+1=10
0 is the lowest value digit and 9 is the highest value digit.
(a} The binary number system has a base of two. How many digits does it need?
What are they? Whe;t’s the lowest value digit?
What's the highest value digit?
(b). The hexadecimal number system. has a base of sixteen. How many digits does

itneed? _____ Hexadecimal uses letters when it runs out of decimal digits.

What do you think the hexadecimal digits are?
What'’s the lowest value digit? __ From the digits you used, what’s the
highest value digit?

(a) two; 0,1; 0; 1; (b) sixteen; the standard hexadecimal dlgits are
0,1,2,3,4,5,6,7,8,9,A,B,C_D.E,F; 0; F

5. Now you’ve reviewed the decimal number system and learned quite a bit about
binary and hexadecimal systems. These questions will help you to practice what
you've learned. -

(a) What is the decimal base?
{b) What is the binary base?
{c¢ Whatis the hexadecimal base?

24 6502 ASSEMBLY LANGUAGE PROGRAMMING

Convert the following numbers to decimal.
(d) binary 110 =

(e} hexadecimal 21 =

Give the digits for these number systems.

{(f) Decimal

{g) Binary

(h) Hexadecimal

(i) What is the highest digit in decimal?
(j),. What is the highest digit in binary?

(k) What is the highest digit in hexadecimal?

(a) ten; (b) two; (c) sixteen;

(d)binary 110 = 1x22=1x4=4
1x2'=1x2=2
0x2°=0x1=0

6

(e) hexadecimal 21 = 2x 16! = 2x 16 = 32
1x16°=1x 1= 1

, 33
(f) 0'192'31415'6'71819; (g) 011; (h) OV]'V2'314151617V8V9VAVBYCYDIEIF; (i) 9; (j) 1; (k) F

NUMBER SYSTEMS AND DATA REPRESENTATION 25

THE HEXADECIMAL NUMBER SYSTEM

You may be saying to yourself, “‘I see why I might need to understand binary since
the computer uses it. But why do I have to learn the hexadecimal number system?”’

6. Sometimes we want to communicate with the computer in binary numbers in-
stead of decimal. For example, memory addresses are usually not translated into
decimal. But binary numbers are long and awkward and it’s easy to make mistakes
when reading, writing, and typing them. So instead of using binary directly, we use
hexadecimal as a go-between.

Hexadecimal and binayy numbers are dlrectly related. Four binary digits equal
one hexadecimal digit. So each byte can be expressed in two digits rather than
eight. This saves a lot of bother when you are coding instructions to the computer.
The computer can easily convert hex to binary; all work is actually done in binary.

1 ORG $8000

2 LDX #0 ’

3 MAPLOP LDA TEXT,X ; TRANSFER TEXT TO
4 sTAa $0400,X ; THE FIRST LINE

5 INX ; OF THE SCREEN

6 Cpx #22 ; MEMORY

7 BNE MAPLOP :

8 MAPOUT LDY $C054 ; SET SCREEN TO

9 STY $CO51 ; PRIMARY TEXT PAGE

8013: 4C 13 80 10 LoOP JMP LOOP \

11 TEXT ASC 'PLEASE TYPE YOUR NAME:'

% SUCCESSFUL ASSEMBLY: NO ERRORS

FIGURE 4. Assembler Listing

The computer also prints some data in hexadecimal. For an example, look at
Figure 4. This is a portion of an assembler listing—the report we get when a pro-
gram has been assembled. We have circled the data that has been printed in hex-
adecimal. It includes memory address information and the machine language in-
structions. The computer prints them out as hex (hex is short for hexadecimal), but
internally only binary is used.

In 6502 Assembly Language, we usually indicate a binary number by the
prefix % and a hexadecimal number by the prefix $; a decimal number has no prefix.

(a) What number system is used inside the computer?

{b) What number system is used as a shorthand for binary numbers?

26 6502 ASSEMBLY LANGUAGE PROGRAMMING

Indicate the number system of each of the following values:

{0 %1010
(d 10
(e) $01

—_— — e e e e e e e m—

(a) binary; (b) hexadecimal; (c) binary; (d) decimal; (e) hexadecimal

7. The binary system is based on two and the hexadecimal system is based on
sixteen. Since 24 = 16, there is a direct relationship between a group of four binary
digits and a hexadecimal digit.

Figure 5 is a table showing the binary values for all the hexadecimal digits.
Use the table to answer the questions below.

decimal $hexadecimal / %binary
]] 0000
1 1 0001
2 2 0010
3 3 0011
" 4 0100
5 5 0101
6 6 6110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 o 1100
13) 1101
14 E 1110
15 F 1111

FIGURE 5. Decimal-Hexadecimal-Binary Equivalents

Give the binary equivalents of these numbers.

(a) 83=
) 9= ___ .
© $A=
d sC=
Give the hexadecimal equivalents of these numbers.
(e} %1010 =
) %1000 =
® %0101=___ -
(h) %1111 =

i %0110 =

NUMBER SYSTEMS AND DATA REPRESENTATION 27

(a) %0011; (b) %1001; (c) %1010; (d) %1100; (e) $A; (f) $8; (g) $5; (h) $F; (i) $6

8. Converting between larger binary and hexadecimal values is also easy. If a
binary number has more than four digits, divide it into groups of four starting from
the right.

lOOlggli],

Fill in leading zeros as necessary to make groups of four digits.

000100100101,

Then translate each group into hex.

%000100100101 = $125
Give the hexadecimal equivalents for each of the following numbers.
(@ %101110 =
(b) %1111000 =
© %10000 =

(@) $2E; (b) $78; (c) $10

9. You can convert hex into binary one digit at a time. For example, $52B is
equivalent to %0101 0010 1011. Many programmers like to write binary numbers
with a space every four digits to simplify conversion,

Give the binary equivalents for each of the following numbers.

(@) 823 =
(b) $FB=

{a) %0010 0011 or %100011; {b) %1111 1011

10. Recall that a 6502 memory address is two bytes, or sixteen bits. So it takes
four hex digits to write a memory address. The first memory address is $0000.

(a) What is the second memory address?
({b) What is the eleventh memory address?
{c) What is the highest possible memory address (the largest hex value that will

fit in two bytes)?
d In decﬁnal, what’s the highest pc;ssible address?

28 6502 ASSEMBLY LANGUAGE PROGRAMMING

(a) $0001; (b) $000A; (c) $FFFF; (d) 65,535

15 x 162 = 15 x 4096 = 61440
15x 16> =15x 256 = 3840

15x161=15x 16= 240
15x16°=15x 1= 15
65,535

(The value 65,535 is the same as 16* — 1 and 21¢ — 1.)

11. Here are some more binagry-hexadecimal conversion problems for you.

(a) Suppose the A register contains the value $F0. In binary, what is the value?

In decimal?

{b) Suppose the program counter {(PC) contains $0010. In binary, what is the
value?

In decimal?

() In the flag register, the least significant (right most) bit is the carry flag. For
each of the following values, convert to binary to find out whether the carry
flag is on or off.

$23:
$0A:

$F1:

$FF:

(a) %1111 0000; 240; (b) %0000 0000 0001 0000; 16; (c) on; off; on; on (Remember t’he
spaces we show aren’t really there. We've separated the binary digits into groups of
four to make it easier for you to read them.)

Since one byte is eight bits, we usually represent a binary value showing all
eight bits and a hex value showing two digits, including leading zeros as necessary.

DECIMAL CONVERSIONS

Now you’ve been introduced to the binary and hexadecimal number systems and
can make these conversions: binary to decimal, binary to hexadecimal, hexadecimal
to binary. and hexadecimal to decimal. In the following frames, we’ll show you how
to convert decimal to binary and decimal to hexadecimal.

NUMBER SYSTEMS AND DATA REPRESENTATION 29

n 2n n 16"

1 2 1 16

2 4 2 256

3 8 3 4096

4 16 4 65,536

5 32 5 1,048,576

[64 (-] 16,777,216
7 128 / 7 268,435,456
8 256 8 4,294 ,967,296
9 512
10 1024 FIGURE 7. Powers of 16
1 2048
12 4096
13 8192
14 16,384
15 32,768
16 65,536

FIGURE 6. Powers of Two

12. Figures 6 and 7 show the values of some powers of two and sixteen, respective-
ly. You'll need them to convert from decimal. To show you how it’s done, we’ll con-
vert 437 to hexadecimal.

A. First, we find the largest 162 16T 160
power of 16 that will divide
into 437. It's 162 or 256. (163 L
(4096) is too big.) From this, 256)437
we know that our answer is
going to have three digits,
since we’ll have some number

times 162,
1 B. We divide 256 into 437. The quo-
162 167 . 160 tient is our first digit because it
tells us how many 162s there are in
1 437. We save the remainder for the
256)437 - next step.
256
181

to next step

30 6502 ASSEMBLY LANGUAGE PROGRAMMING

C. We divide the remainder by 1 B
161. The quotient becomes 167 -1_61»\\ 167
the second digit of the 1
answer. Note that we convert 16)181
the decimal 11 to a single 16
hexadecimal digit, B. ?(15
5
1 B 5 D. Since we'’re down to the units col-
167 16T 167 umn (16° = 1), the remainder
becomes the last digit.

11

16)181

16

21

16

5

If any quotient or the final remainder comes out greater than 15, a mistake
has been made somewhere and you need to recalculate it.
Now convert the following decimal numbers to hexadecimal.

@ 25 =
(b) 100 =
fc) 241 =
d 716 =.
(e) 4291 =
(a) 25 =819
1
16) 25
16
9
(b) 100 = $64
6
16)100
96

4

NUMBER SYSTEMS AND DATA REPRESENTATION 31

() 241 = §F1

15

16)241
16

81

80

1

_d 716 = 82CC

2
256)716
512
204

(e} 4291 = $10C3

1
4096)4291
4096

195

12
16)204

16
44
82
12

0 12

256)195 16)195
16

35

32

3

13. Decimal to binary conversions are done just the same as decimal to hex except
that you use powers of two instead of powers of sixteen. For our example, we’ll con-

vert 21 to binary.

A, The largest power of two
that will divide into 21 is
24 = 16. This tells us that
the answer has five digits.

1 0
7 “21772 T P
0
8)5
0
5

C. The next lower power of two,
22 = 4, will divide into 5.

1
21 \22 22 2T
1
16)21
16
5

B. The next lower power of
two, 2% = 8, produces a
zero quotient.

i
roj ©
-
0
%

:—-|¢~ cnlv—d

32 6502 ASSEMBLY LANGUAGE PROGRAMMING

1 0 1 4,0 1 D. The next lower power of two,
2¢ 27 27(2t 20 2! = 2, produces a zero-quotient.
o And the final remainder is 1.
2)1
Y
1

When converting to binary, each quotient will either be 1 or 0. If you get a
-quotient (or final remainder) larger than 1, you've made a mistake somewhere.
Convert the following decimal numbers to binary.

(@ 10=
by 16=
¢ 25=
(d 383=__ -

(a) %1010; (b) %10000; (c) %11001; (d) %100001

14. Now you can convert a number from any one system to any other.

Practice by filling in the chart below.

decimal hexadecimal binary
210 (a) 1b)
© $96 (d
(e () %1011 0111
4] $22A \ (h)
49 (i G)

(k) What is the largest number (in decimal) that the accumulator can hold? __

(a) $D2; (b) %1101 0010; (c) 150; (d) %1001 0110; (e) 183; (f) $BT; (2} 554; (h) %0010
0010 1010; (i) $31; (j) %0011 0001; (k) 255 ($FF or %1111 1111—This is equivalent
to 162 — 1 or 28 — 1))

N

NUMBER SYSTEMS AND DATA REPRESENTATION 33

" ADDITION

In order to read assembler listings, you need to be able to do simple addition and
subtraction in binary and hexadecimal. We’ll cover addition first.

15. Do you remember learning how to add? If you had the usual education, you
memorized the addition facts from 1 + 0 through 9 + 9. Then you learned to handle
larger numbers in columns.

No, you don’t have to memorize math facts in hexadecimal and binary. We’ll
give you some tables to use. But you should be able to figure out simple addition
problems without using the tables.

Here’s the hex count from $1 to $20:

0123456789 ABCDEF1011121314151617 1819 1A 1B 1C 1D 1E IF
20

Here are some sample problems that you can work out using the hex count line
above.

$2 + $3 = §5

81 + $6 = §7

$A + 80 = 3A

89 + 81 = $A (A critical fact! 10 = 3A)
$2 + 8B = 8D

$7 + $5 = $C (Count on your fingers if you
have to: 7,8,9,A,B,C.)
$F + $1 = $10 (Another critical fact!
16 = $10) -

Now you can solve the problems below.

(a) $10 + $B =
(b) $5+ $F =
© $9+3%2=
d $5+ 85 =
(@ $19 + 81 =
f $IF + $1 =
(22 $15+ 3B =

{a) $1B; (b) 814; (c) $B; (d) 3A; (e) $1A; (f) $20; (g) $20

34 6502 ASSEMBLY LANGUAGE PROGRAMMING

16. The hexadecimal addition and subtraction table is located in Appendix A. To
use it for addition, find the row for one addend and the column for the other addend.
The intersection gives the sum.

Use the table to solve these problems.

(a) $5 + 39 =
(b) $A + $B =
fc) 83 +89 =
d $D+8$D=

{a) $E; (b) 815; (c) 8C; (d) $1A

N

17. Binary addition is very simple. There are only three math facts.

%0 %0 %1
+ %20 + %1 + X1
X0 %1 %10

See if you can solve the problems below.

(a) %101 (b) %1000 (e %10
210 %1 21

(a) %111: (b) %1001; (c) %101

18. Now let’s do some problems with carrying.

Decimal examples:

/ /1
257 3265
+ 28 + 2149

285 5414

NUMBER SYSTEMS AND DATA REPRESENTATION 35

Hexadecimal examples:

/ 117
$2A $39FF

+ %18 + %825
$45 $4524

When you carry a 1 to the second column from the right, you are actually car-
rying $10 or 16.

Binary examples:
11 it
%X10110 4111101
+ X10 + %1111
411000 %1001100

Solve the problems below.

(a) $28B (b) %11011
+ $28B + %1100
(c) SFFF (d) %111
+ $1 + %1
(e %1110 ®

SDEF
+ 2111 + $927

 (a) $56; (b) %100111; {c) $1000; (d) %1000; (e) %10101; (f) $1716

36 6502 ASSEMBLY LANGUAGE PROGRAMMING

SUBTRACTION

19. To use the hex tables for subtraction, find the minuend (the smaller number)
across the top. Then go down that column until you find the subtrahend (the larger
number). Go across to the left column to find the answer.

Examples:
$1D $10 $15
- _SE - %8 i 14
S$F $8 SE
Problems:
(a) $B (b) $10 (c) $13
- 35 - $A - 87
(d) $17
- 3B

(a) $6; (b) $6; (c) $C; (d) 3C

20. Now let’s try some subtraction with borrowing.
Decimal examples:

? o

495 ? 16

- 9 - 28

486 288

Hexadecimal examples:

9/ !

s4fto s#1

- $B - $1F

$4969 $2

NUMBER SYSTEMS AND DATA REPRESENTATION 37 |

Now try to work these problems.

(a) $325 (b) $116 (© $10A
- $8 - $2F - $8B
(d) $3211
- __$BCD
! o F
(a) $3%s (b) $176) s1dA
- $8 - $2F - $8BB
T$31A SET TTS4F
@ $3211
- $8BCD
TTS2644

21. Binary subtraction is simpler than hex subtraction. Here are the binary sub-
traction facts:

X0 1 1 %10 %10
- X0 =_X0 = %1 - x - %0
Z0 %1 X0 %1 %10

The important thing to remember in binary subtraction is that %10 — %1 =
%1. Now solve these problems.

. (@) %1100 (b) %10111 (©

21111111
- %100 . - 2101

- _%10101010

(a} %1000; (b) %10010; (c) %01010101

38 6502 ASSEMBLY LANGUAGE PROGRAMMING

22. Binary subtraction often requires borrowing. Here are some examples.

o0 0O -0
x117010 %10401
- 21101 - %10
%101101 %10011

Find the answers to these problems.

(a) %11110 (b) %101010
- %1101 - %0101

o o
(a) %11110 (b) %101010
- %1101 - %0101
X10001 %100101

23. Sometimes you have to borrow th}ough zero. This is the trickiest part of sub-
traction. Let’s look at how it works in decimal. We’ll use the problem 50001 — 186.

A. We borrow from the first
non-zero digit. ALL THE IN-
TERVENING ZEROS
CHANGE TO HIGHEST ?Z;‘L
VALUED DIGITS. (Don't - 16
think of them as 9’s. think of
them as highest digits.) The
borrowing column receives
10, so it becomes 11.

499
gdgen B. The units column is then com-
'—-—1% , pleted.
C. The remainder of the pro- ;'3: g 1
blem is subtracted in normal - 16

fashion.

NUMBER SYSTEMS AND DATA REPRESENTATION 39

Here are some hex examples:

qcF | ofFFF £
sKo0Z1 sswgpfa su;m
- $49 = $ - 81
$S9FFD8 $30FFFFC S$14FA
Here are some binary examples:

91 o110 oll
x16010 x 1889101 zﬂgg
- %100 - 2111 o Y

- 2111110 2111

%1110

Now work these problems. Remember to use highest value digits for the ap-
propriate number system.

(a) $C0001 (b) s2A008 (¢ %1000
- $5 - FF X = 211
BFFF gFF o1/

(a) s¢Egp (b) s2Kdgs (© x1gpo
- - SFF : -
SBFFFC $29F0C %101

24. For practice, find the sums and differences below.

(b) %1110 0000 1111

(a) %1001 1111
+ 21010

+ %10 0011

(¢} %1001 1111 (d) %1110 0000 1111
=%10 0011 = %1010
() $426A (H $6000
+ $89 + $51E2
(g) s426A (h) s60D0

= $89 - $51E2

40 6502 ASSEMBLY LANGUAGE PROGRAMMING

(a) %1100 0010; (b} %1110 0001 1001; (c) %0111 1100; (d) %1110 0000 0101; (e)
$4323; (f) $B2B2; (g) $41B1; (h) SOEEE

ASCII CODE

So far, you have learned how to handle hexadecimal and binary numbers. You'll use
this information frequently as you develop programs. But when a number is entered
into the system from the outside, it’s not translated directly into binary; it’s always
treated as alphanumeric data and encoded by a code system such as ASCII or
EBCDIC. In this book, we'll use ASCII and assume that the first bit (the left-most
or high-order bit) is zero, since ASCII uses only seven of the eight available bits.
Many systems use the high-order bit for special purposes. The Apple, for example,
uses it as an I/O indicator. The Pet can use it to indicate an alternative character
set. The Atari uses it to reverse the colors displayed on the terminal. You’ll need to
become familiar with your system’s use of the high-order bit.

25. Appendix B shows ASCII code. Each character shown in the grid is
represented by two hex digits. These are shown on the top and left of the grid. For
example, $50 is the ASCII code for the letter P. Use Appendix B to answer the
questions below. .

Write the ASCII code (in hex) for the following characters.

(a) * .

by 3___ '
¢ A

d d

Give the character.indicated by each of the following ASCII codes.
(e) $35

f $4D
(g $77
(h) $25

(a) $2A; (b) $33; (c) $;11; (d) $64; (e) 5; (f) M; (g) w; (h) %

NUMBER SYSTEMS AND DATA REPRESENTATION 41

26. Noatice particularly how the ten decimal digits are coded in ASCII. The code
always starts with $3. The second half of the byte is equal to the decimal digit.
Thus, 0 is coded as $30, 1 is coded as $31, etc.

{a} If you type and enter the character ‘5,” what will be received by the }:omputer?
{Choose one.)

%0000 0101 {binary for decimal 5)
— %05 (hex for decimal 5)
%0011 0101 ($35)
{b) Suppose you write: a program to add together registers A and X.
Register A contains the ASCII code for 2. What is it?
Register X contains the ASCII code for 3. What is it?
What will the sum be? {Give the answer in ASCII code.)
What is the character form of that code?

{a) %00110101 ($35); (b) $32, $33, $65, e (That’s right, the computer comes up with
the wrong answer. Later in this book you’ll learn how to handle numeric values so
your programs don’t produce erroneous arithmetic results.) °

27. The codes from $00 through $1F and code $7F are special codes that control
the action of the output device. These are recommended codes used by most
systems. A terminal or other device may interpret them differently. (The Ataris are
different.) You use them by sending (or writing) the appropriate byte to the device.
For example, if you write the code $07, the bell on the output device will ring.
{(Nothing will be printed.) If the terminal does not have a bell, it won’t recognize $07
as a special code. All unrecognized codes are ignored or printed as blanks. Refer to
the explanations in Appendix B to answer these questions.

{a) What code will cause one character to be deleted (DEL)?

(b} What code will cause the output device {printer or video screen) to start a new

page (FF)?

(¢} If you want to start a new line on a printer or a video terminal, you need to
write a carriage return (CR) followed by a line feed (LF). What are the ASCII
codes for these two characters? ’

{d) Suppose your program sends $0B, for vertical tab, to a terminal that does not
have a vertical tabbing capability. What will happen?

42 6502 ASSEMBLY LANGUAGE PROGRAMMING

(a) $7F; (b) $0C; (c) $0D and $0A; (d) it will be ignored or a space will be printed.

Don’t be frightened by all those special characters. Most of them are only for
special equipment and special applications. Remember, too, that your equipment
may use different codes. Check your manuals if you want to use these codes.

28. When you are using ASCII values in your Assembly Language programs, you
don’t need to use the hexadecimal codes. You can use the letters or digits directly
by enclosing them in single quotes.

For example, we can store a T in the accumulator by this instruction:

LDA #$54
Or we can code:
LDA #T

This has a special advantage because we don’t have to worry about whether
our system uses standard ASCII code. So one program can be used on more than
one machine.

Write an instruction to load the ASCII code for + in the accumulator,

LDA #+’

29. The ASCII control codes from $00 through $1F and $7F cannot be called on
directly in quotes. You have to use the hexadecimal code.

You should memorize the codes for carriage return and line feed. You'll use
these a lot. The others can be looked up if you ever need them.

(a) What is the ASCII code for a carriage return (CR)?

{b) What is the ASCII code for a line feed (LF)?

(a) 30D or $8D; (b) SOA or $8A

NUMBER SYSTEMS AND DATA REPRESENTATION 43

REVIEW
In this chapter, you have studied data representation in the computer.

e The binary number system is based on two. Each column represents a
power of two. The least significant digit represents 2°, the next left col-
umn represents 2!, and so forth. Zero is the lowest digit and one is the
highest digit.

e Binary numbers are converted to decimal by multiplying each column by
the appropriate power of two and summing the results,

e Decimal numbers are converted to binary by dividing by successive
powers of two, starting with the largest power that will fit into the
decimal number.

* The binary math facts are:
0+0=00+1lorl1+0=11+1=10.

e The hexadecimal (or hex) number system is based on 16. Hex numbers are
used merely as shorthand for binary numbers. The computer will report
numbers to you in hex and you can give it hex numbers.

Each column represents a power of 16. The least significant column is
169, the next column is 161, etc. The digits are 0.1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.
F is the highest digit.

e Hex numbers are converted to decimal numbers by multiplying each col-
umn by the appropriate power of 16 and summing the results.

¢ Decimal numbers are converted to hexadecimal by dividing by successive
powers of 16, starting with the largest power that will fit into the decimal
number.

¢ The hex math facts are shown in Appendix A.

* Binary and hex numbers are directly related. Four binary digits equal one
hex digit. Numbers can be converted between the two systems on sight if
you memorize the table of equivalents, from %0 = $0 through %1111 =
$F. {See Figure 5.)

e Data entering the system through a terminal is always treated as
alphanumeric data and is encoded in a code system such as ASCII. Ap-
pendix B shows ASCII code. Assume that the left-most (high-order or
most significant) bit is always zero.

Now take the Self-Test for this chapter.

6502 ASSEMBLY LANGUAGE PROGRAMMING

CHAPTER 2 SELF-TEST -

You may use Figures 5 through 7 and Appendices A and B for this Self-Test.

Convert to decimal.

a $21=___ d. 8$10=
b. $16 =____ e. $100 =

c. $7=___ f. 8255 =

Convert to decimal.

a. %l0l=_____ d. %1001 =
b. %10100=___ . e. %1111 =
¢c. %1100=____ f. %11011 =

Convert to hex.

a. %101=_____ d. %1001 =
b. %l11011011 = _____ e. %100000 =
c. %0001 =_____ f. %11011 =

Convert to binary.

a $16=___ d $2=
b. $7T=____ e. $10 =
c. $21=_ ' f. 8A =

Convert to hex.

a, 2l=__ d 16=
b. 4=___ e. 100 =
c. 10=_____ f. 255 =

Convert to binary.

a. 8= ___ d 8 =
b. 25 = I e 562 =
c. 38=____ = f 18=
Add.
a. X101101 b. %11111 c. %1000110

2101 + X110 hd X11010

NUMBER SYSTEMS AND DATA REPRESENTATION

45

10.

11.

12.

Add.

a. $64 b. $FF1 c. $2183
+_SAB +_SA9 +__3C15

Subtract.

a. %100101 b. 2110000 c. %100000
- 21110 - %11 -~ X11111

Subtract.

a. $100A b. $A0007 c. $3p09
=828 -____$BF _S1AA

Write the alphanumeric character for each of these ASCII codes.

a. $28=__ d $62=___
b. 837T=___ e. $D=__
c. $4A=__ f 83F=___

Write the ASCII code for each of these characters or control functions.

a b=____ d. line feed = ___
b. [e. space =
¢c. carriagereturn = __ f. H=

Self-Test Answer Key

33 d 16
b. 22 e. 2566
c. 17 f. 597
5 d 9
b. 20 e. 16

46 6502 ASSEMBLY LANGUAGE PROGRAMMING

3. a 85 d. SE

b. $DB e. $20

c. %11 f. 8$1B
4, a. %10110 d %10

b. %111 e. %10000

¢ %100001 f. %1010
5. a 8§15 d. $10

b. 84 e. $64

c. SA f. SFF
6. a %1000 d. %1010101

b. %11001 e. %110100

c. %100110 f %10010
7. a. %110010 %100101 c. %1100000
8. a. $10F $109A c. $2DC8
9. a. %10111 %101101 c %1
10. a. $FDF $9FF48 c. $3B5F
11. a. # d b

b. 7 e. }

c. J f. ?
12. a. ‘5’ or $35 d. $0A

b. I or $5B e. ‘7 or $20

c. $0D f. ‘H or $48

If you missed any of these, study the appropriate frames before going on to
Chapter 3.

This has been a brief look at number systems and data representation. If you
would like to learn more, try the Wiley Self-Teaching Guide, Background Math for a
Computer World, by Ruth Ashley.

CHAPTER THREE

INSTRUCTION FORMAT

In the two previous chapters you studied some necessary background information.
Now you're ready to begin attacking the subject of Assembly Language itself. In
this chapter, we’ll look at the format of an Assembly Language instruction. You'll
learn how to code all the parts of an instruction, and you'll be exposed to many in-
structions that will be used later in this book.

When you have finished this chapter, you will be able to:

* name the parts of an Assembly Language instruction, and identify the re-
quired part;

e recode it in correct format, given Assembly Language code in incorrect
format;

® create a label for an instruction or a data area;
e identify the types of instructions that need labels;
* write comments in a program;

* identify the operands in an instruction.

1. Figure 8 shows some sample code that we’ll use throughout this chapter to
demonstrate the format of Assembly Language instructions. It is not a complete
program, just a few lines of code.

; THIS ROUTINE READS A NUMBER FROM

; THE TERMINAL, ADDS TO IT, AND PUTS

; THE RESULT BACK OUT TO THE TERMINAL

; THEN THE ROUTINE GOES INTO AN ENDLESS
; LOOP UNTIL STOPPED BY OPERATOR.

4

R

EADIN JSR INPUT ; READ BYTE
LDA NUMBER
ADDIT ADC #302 ; ADD 2
STA NUMBER
JSR QUTPUT ; DISPLAY BYTE
DONE JMP DONE

FIGURE 8. Sample Code

47

48 6502 ASSEMBLY LANGUAGE PROGRAMMING

The first six lines are descriptive comments. They are printed whenever the
program is printed but are otherwise ignored by the computer. They are intended
for human beings who are reading the program.

The first instruction, JSR (/ump to SubRoutine), calls a subroutine named IN-
PUT that reads a byte from the terminal and stores it in a memory location called
NUMBER. The next instruction, LDA (LoaD Accumulator), copies the byte from
NUMBER to the accumulator.

The third instruction, ADC (ADd with Carry) adds 2 to the contents of the ac-
cumulator, assuming that the carry flag is clear. The fourth instruction, STA (S7ore
Accumulator) cbpies the changed byte from the accumulator back to memory loca-
tion NUMBER.

The fifth instruction, JSR, arranges to write the byte in NUMBER to the
original terminal. Notice that the original byte was not written back—only the
changed one. The final instruction (/uMP) sets up an endless loop, which will repeat
itself until the program is interrupted.

" {a} What happens if the user presses the ‘3" on the keyboard?
____ "38” is displayed on the screen, and then ‘5"
____ "5" is displayed
(b) What happens after the answer is displaxed?
___ the program waits for the user to type another number

——_ the program ends; the user can start to run another program or re-run
this one

the program continues running, with no action occurring

{a) 5" is displayed on the screen (the number typed never shows up on the screen);
{b) the program continues running, with no action occurring, until the user inter-
rupts it in some way (such as turning off the system)

GENERAL INSTRUCTION FORMAT

The format of an Assembly Language instruction is dictated by the program that
will translate it—the assembler. Different brands of assemblers have different re-
quirements for instruction formats, but we can find some common points. We'll
discuss the common points and show you what our assembler requires. Don’t forget
that your assembler may be somewhat different.

INSTRUCTION FORMAT 49

2. Refer to Figure 8 again and you’ll see that an Assembly Language instruction
can have up to four parts:

¢ The label gives the instruction a name that we can refer to from other in-
structions.

o The operation tells the computer what to do (such as jump or load ac-
cumulator).

¢ The operand identifies the data or other program address to be used in the
operation,

e Any instruction may have a narrative comment at the end.
In the instruction below, identify the four parts.
READIN JSR ; INPUT ;READ BYTE
(a) (b) © @

(a) label; (b) operation; {c) operand; (d) comment

3. Refer to Figure 8 again. Two types of statements are shown—comments and
instructions. Comment statements are free-form after the semicolon (;) in column
one. Any information may be contained in column 2 and later. Instructions, on the
other hand, may consist of up to four parts. Name the four parts.

{a) (b)
(c) (d)

{a) label; (b) operation; (c) operand; (d) comment

THE LABEL FIELD

4. A label gives a name to an instruction. You then use that name as an operand
in other instructions. There are two major ways we use labels.

e Jump or branch instructions; When we want to jump or branch to an in-
struction, we give it a label. Then we jump or branch to that label. In
Figure 8, DONE is a label. The JMP instruction jumps to itself, creating
the endless loop at the end of the program.)

¢ ~ Data names: We assign names to data storage areas in ouxl programs.
Then our instructions refer to the data areas by name rather than numeric
address. The names serve as labels for the storage areas.

50 6502 ASSEMBLY LANGUAGE PROGRAMMING

Which of the following would you label?

— {(a) Every instruction in the program,

_ {b) Every fifth instruction in the program.
__ (¢) Instructions that have to be jumped to.
— {d} Jump instructions.

__ {e) Data storage areas.

—__ (f) The last instruction in the program.
___ (g) The first instruction in the program.

(c) and (e} are the best answers. Many programmers also label (g) to give the pro-
gram a name.

5. Your assembler will have a set of rules for proper labels. In this book, we’ll use
the rules shown below. They’re fairly common.,

. A label must be one to six characters long.

. It can contain letters {A-Z) or digits (0-9). No special characters such as
$1 “ /'

. It must start with a letter.
. It must start in column 1.
. The following cannot be used as labels:
—register names (A, X, Y)
—6502 operation codes (such as JMP and STA)
According to our rules, which of the following are legal labels?

. {a) START ____ () TRY#5
(b)) STA —__ (g} EXCEPTION
___ {c) 3RDONE —— (M A

—_ {d} THIRD i1

— (e B100 — 0 K

{a), (d), (e}, and {j) are correct

(b) is an operation code; {¢) starts with a digit; (f) contains an illegal character; (g) is
too long; (h) is a register name; and (i) starts with a digit

INSTRUCTION FORMAT 51

6. Most programmers prefer to use meaningful names as labels. For example,
suppose you want to give a name to the first instruction of a routine that adds two
numbers. ADDER js a better name than Bl or Q.

Meaningful labels will help other people read your programs with understand-
ing and will also help you when you return to a program you haven’t worked on for

a couple of months.
Which of the following labels are better?

a) For a data storage area that will hold a social security number—SSN,
, SOCSEC, or N9?

(b} For the first instruction of a routine that reads and stores the social security
number—GETSOC, RANDS, or X2T1?

Now try writing some labels of your own.

€} For the first instruction of a routine that prints a page number on a new page.

(d) For the first instruction of a routine that counts the time in tenths of seconds un-

til the user pushes any key.

{a) SOCSEC is best, SSN is second best; (b} GETSOC is best; (c) we would use
NUMPAG or PAGE: (d) we would use TIMER (You could use any meaningful name
that meets the name-forming rules. It’s easier if your names are pronounceable.)

7. According to our rules, which of the following labels are legal?

___(a) STOPPER ___ (h) RUN-IT
___(b) GATER — 0 X
__(c0 ENDER — G *
__{d END#1 — (k) 3010
__{e) ENDTWO —_ (RUN10
— (ff JMP ___ (m) FORCE
__{g) JONES ___{n) T/N

Write good labels for each of the following:

(o) The first instruction of a routine that handles input errors.

(p) A data storage area that holds the old balance.

i

52 6502 ASSEMBLY LANGUAGE PROGRAMMING

(b), (c), (e), (g), (1), and (m) are correct

(a} is too long; (d) contains an illegal character; (f) is an operation code; (h) con-
tains an illegal character; (i) is a register namie; (j) contains an illegal character;
(k) doesn’t start with a letter; and (n) contains an illegal character;

(o) we would use INERR or ERRIN; (p) we would use OLDBAL

THE OPERATION FIELD
8. The operation is like the verb of a sentence; it tells the computer what to do.
Some typical operation codes are:

LDA for LoaD data into the Accumulator

ADC for ADd with Carry

CMP for CoMPare to accumulator

BEQ for Branch if EQual

JMP for JuMP

STA for STore data from Accumulator

You don’t make up your own operation codes for the standard 6502 operations.
There is a standard set of 6502 codes. (Your assembler may have added some special
ones to the set.)

Every operation code contains three letters. The operation is not optional;
every instruction must have an operation.

(a) In the sentence SET THE TABLE, which word is most like the operation?
—— SET |
— THE
—— TABLE

(b) Can you make up your own operaiion codes?
(c) Two of the following are not operation codes. Can you tell which two?
— X
— SBC
— ADC
____ ERASE
(d) Which instructions in Figure 8 require an operation code?

INSTRUCTION FORMAT 53

—— —— —_— —_— —_— — - —_ —

(a) SET; (b) no; (c) X is too short and ERASE is too long; (d) all instructions; the
comments aren’t instructions

9. Your assembler may have some rules for coding the operation. A fairly com-
mon rule is that the operation must be preceded by at least one space. If the in-
struction contains a label, the space or spaces separate the label from the operation.
If there is no label, the space or spaces tell the assembler that there is no label.

Most programmers code their programs so that the operation codes and the
operands are lined up in columns. (See Figure 8 again.) This makes programs much
easier to read. It also allows us to add labels later on if we need to. We always start
the operation code in column 8 (to leave room for a six-character label plus one
space). We always start the operands in column 12 (to leave room for a three-
character operation code followed by a space).

A section of Assembly Language code is shown below. Some of the instruc-
tions are coded correctly and some incorrectly. Recode the entire section legibly, ac-
cording to our rules. Use the coding form provided.

1jalslatsfefr]o]a llllllluu ishelirfre]esfzofar ez oy f2alasnfa
+

'START LDA #10

ADC MORE

STA ANSWER

N

STOP JMP STOP

sj2islalsjs|2fs]e |10 "i"l:'l"“ 16)17fraf1s|20f 20| 22)2sf2e
1

TIART] | I /

|S ()P 1S PI

THE COMMENTS FIELD

10. You've learned how to code labels and operations, We're going to skip over
operands for now and discuss comments first. Then we’ll finish up the chapter with
operands—a very large topic.

Corhments are used to document the program. They're ignored by the
assembler. They’re used by human beings who are reading the program. You can
usually code comments after the instruction. If they’re too long to fit on the screen
line, they’ll show up on the next line, as long as the total line doesn’t exceed 80
characters. ’

54 6502 ASSEMBLY LANGUAGE PROGRAMMING

Why do we add comments to a program? To help others understand what the
program is doing. The effect or intent of a program or segment is not always clear
from reading the labels, operations, 9nd operands.

We also write comments for ourselves. Sometimes we can forget the intention
of a routine by the next day. Reading an Assembly Language program written a
month ago can be like reading hieroglyphics.

(a) Are comments required or optional?

(b) Which is better—to limit comments or to use them freely?

(c) Suppose you're writing a program for your own purpose and it will never be
seen by anyone else. Should you add comments or not?

(a) optional; (b) use comments freely; (c) yes .

11. Most, assemblers allow you to code separate comment lines. These are lines
that do not contain any label, operation, or operand—just narrative comments. For
our assembler, we indicate a separate comment line by coding a semicolon in column
1. Then we can use the rest of the line (through column 71) to code our comments.
{Leaving the line blank after the semicolon provides some spacing, which makes the
program easier to read.)

Figure 8 is an example of a well-commented program. Use it to answer the
questions below.

{a) How many separate comment lines are there?

-(b) How many instructions contain comments?

{c¢ Why did we include a line that contains only a semicolon in column 1?

{a) 6; (b) 3; (c) for spacing

12. Below is the sample code you formatted before. Add the following comments
to the coding form:

(8) On separate lines at the beginning, add: THIS ROUTINE ADDS 10 TO A
MEMORY BYTE AND STORES THE RESULT. Break the line anywhere
that’s convenient.

INSTRUCTION FORMAT 55

-

{b) On the second instruction, add the comment: MORE CONTAINS 01

1 113 4fajslzjols IGIIIIlI!II 1sjrajrr{iafisfaojas iz e j2af2sfasj27)2 |2ofr0]31i22]33]34|a5|20]|37]|38f20{e0]er llil[_l_‘_u
1 | 4
]
STIART | LDIAl wi/id
DIC| MOIRIE.
SITIAL WIE
TP JMP | SITIOP
IEEEERERENL] AR E] Ibllill 1sphrajrsfrajr7)rnjrajze IIIX! 23|za)28f28727 lll.ll. 31 tllt’llll!ll’ll Ieja0ferjay
o Thiris| iRolinriMe lapipls] gl |rio Holelyl 1BlY|rE
i | IAIMD| [SITIolRlEyS| [THiE] [RigSulL|T
SITARIT| | [LIDA]| @y 8
1 Alpe] MORIE 5 mo%'e COMTATINS! It
SIrAl AINSWER
TPl | | TPl s:Tpif] |
THE OPERAND FIELD

13. You have learned how to code the label, operation, and comments; now we’ll
talk about the operand. ,

An operand answers the question “WHERE?"’ In the instruction JMP DONE,
the operation code JMP means ‘‘jump to ...”; the operand, DONE, specifies
WHERE to jump. In the instruction LDA NUMBER, the operation code LDA
means ‘‘copy the byte from ... into the accumulator”; the operand, NUMBER,
specifies WHERE to copy from.

Sometimes an operand may have two parts, separated by a comma; for exam-
ple, the operand in LDA $30,X has two parts.

(a) What is the operand in the instruction ADC C?
If the operation code means ‘“‘add to the accumulator ..., what does the .

operand specify?

(b} What is the operand in the instruction STA $90,X?
If the operation code means “copy the value from the accumulator ..., what

does the operand specify?

() What is the operand in the instruction CMP SUMOFD?
If the operation code means “compare the value in the accumulator to . . .,

v,

what does the operand specify?

(a) C, where to find the value to be added; (b) $90,X where to copy the accumulator
value to; (¢) SUMOFD, where to find the value to compare it to

56 6502 ASSEMBLY LANGUAGE PROGRAMMING

14. Some instructions do not require an operand. The instruction itself includes all
the necessary information. For example, the instruction TAX means *‘transfer the
byte in register A to register X'’; no operand is necessary to describe WHERE the
byte comes from or WHERE it goes.

In each of the following instructions, indicate whether there’s an operand and
if so, what it is.

(a CMP %05 Is there an operand? ____ If so, what is it?
(b) DEX Is there an operand? ___ If so, what is it?
(¢) DEC $20,X Is there an operand? ____ If so, what is it?
(d) JMP STOP Is there an operand? ____ If so, what is it?
(e} BRK Is there an operand? ___ If so, what is it?

(a) yes, $05; (b) no; (c) yes, $20,X; (d) yes, STOP; (e) no

15. Your assembler will have coding rules for operands. Here are some fairly com-
mon rules:

* Operands must be separated from the operation code by at least one
space.

¢ No spaces are permitted within the operands, except inside quotation
marks.

(a) If your assembler uses the format rules as presented in this chapter and you
want all your instructions to line up in columns (as in Figure 8), in what col-

umn will you start the label? ____, the operation? ___, the operand?
(b) Code ANY as an operand in this instruction: STA

(c) Code #120 as an operand in this instruction: ADC

(a) 1, 8, 12; (b) STA ANY; (c) ADC #120

REVIEW

Let’s review what you've learned in this chapter.

* The general format of an Assembly Language instruction for the majority
of assemblers is:

[label] operation [operand] [;comment]

Brackets indicate optional items.

INSTRUCTION FORMAT 57

¢ A label gives a name to the location of the instruction. The label is then
used as an operand in other instructions. Every assembler will have rules
for the formation of labels. Here are some common rules:

— one to six characters
— numbers or letters, no special symbols
— start with a letter
— start in column 1
— don’t use register names or operation codes
Most programmers prefer to use meaningful names as labels.

* The operation code is a three-character code that is standard for 6502
Assembly Language. It tells the computer what to do. Most assemblers
require that it be preceded and followed by at least one space.

¢ Comments are used to document the intention of routines and individual
instructions that might not otherwise be clear. We document for ourselves
as well as others. Comments are ignored by the assembler and do not ap-
pear in the machine language version of the program. In many assemblers,
they are separated from the operands by at least one 'space and are preced-
ed with a semicolon or other special character.

e Most assemblers allow separate comment lines by coding a semicolon or
other special symbol in column 1.

¢ An operand specifies WHERE to find data or WHERE to transfer con-
trol. Some instructions have one operand; some have none. No spaces may
appear in the operand section except within quotation marks. Some
operands are written in two parts, with a comma separating the parts.

CHAPTER 3 SELF-TEST

What are the four possible parts of an instruction?

Which of the four parts of the instruction are required in every instruction?

58

6502 ASSEMBLY LANGUAGE PROGRAMMING

Here is a series of instructions and comments. Recode them on the codmg
form so the parts are in the proper columns.

;BEGIN HERE

LDA START,X

REPEAT CMP MAX

BEQ NEXT

TAX

ADC #02

JMP REPEAT ; REPEAT UNTIL MAX REACHED

2(v3fralasfisir]rn}isfao :!lu 23 |zafzsfz6]27l20}z0ir0tyr)sa]as{sa)sssulsrisaisslacfarjaziasiaafas

__F_L_‘;— +— 4— -—-L -.E_

5.

Make up valid labels for the following items.

a. The first instruction of a routine that reads and stores an addend.

b. The memory area where the addend is stored.

c. The first instruction of a routine that multiplies a value by 5.

d. The memory area where the above result is stored.

Which of the following items should have labels?
a. Instructions that are jumped to.
b. Jump instructions (JMP and JSR).
c. Instructions without comments.

d. Data areas used as operands.

INSTRUCTION FORMAT 59

6. The following routine reads a byte from the terminal (JSR INPUT), displays
the same byte on the terminal (JSR OUTPUT), compares the byte to 9 (CMP
#9) and goes into an endless loop if the byte equals 9 (LOOP BEQ LOOP).
Add appropriate comments to the program, including at least one comment
line before the routine.

vl 2l Jalsla]|r]sls vnu]v:uu vsnnvau:oav[nn zalas|2elazl2aafzafsofsrfszfas(sales]snfszisnisela

= ™

J NPy
7 urlp
C \ 2

LICOIP BiE

S P
5 T
M ?

I i Fala
rEREONTCT T

oo1P

7. In each of the following instructions, identify the operand. If the instruction
has no operand, write NONE.

STA $02

a.
b. CMP SFF

c. CMP $25,X

d. INX

e. ADC ADDEND

8. If ADC means “add ... to the accumulator,” what does ADC ADDEND
mean?

Answer Key

-

1. label, operation, operand, comments

2. only the operation is required

8.
1 2}y Al sisfr(al> lOIJl] 13lrafaistisjirftalinjac JILI 23 |za)2s]2ef27]2a{zo|30 31 |32]|99}34[%s]38]37]|5a|33]a0]ar 243
3| IBIEIQITM |HE1RiE '
LiplAl (ST [RITL, (X
ElPlelalr] ol |
EQL NMEXT]
ZIAX] |
=
J] QIEPE r yIRIEIPIEIAIT] [UMTIZIL] MAlY| RIEWICIHIED

60 6502 ASSEMBLY LANGUAGE PROGRAMMING

Some sample answers are shown below. Yours may be different but should
follow the general rules for labels.

a. GETADD , STORAD
b. ADDEND , ADDER1 (presuming there are more than one)
c. MULTER , MULTIS , TIMESS

d. PRODUC, RESULT, ANSWER, FIVEX
aandd

Our sample comments are shown below. Yours may be different but should
follow the general rules for comments.

1 H 3 4 L] [} 7 » * L] :IR 13|14 IQ|!C I*II 19fro|zrvj2z|29f2alzy)anf2r|zo|aois0|31]a2}a3|34a|as|3e|d7|as|rs|a0|at}jaz]ay
1 rimlEl Flotlciowrivel RlolulrriMel RiEAIDIS! (A [BIYI7IE] A
sLISITIAILILS rTl nr’ 2l
clHECKE] 3SRl TINPlo L IREWD! TrlHe Tevirld
Jis R 'avirleluin s ploslelclaly| (7t
cilel & '9l/ ;10s] el 197
LlololP BER gz_ooP Vs laldlel [mA Loz ls| [
1. a. $02
b. $FF
c. $25X
d. none
e. ADDEND

8. Add the data stored at ADDEND to the accumulator.

If you missed any, restudy the appropriate frames before going on to the next
chapter.

CHAPTER FOUR

OPERAND FORMATS

In 6502 Assembly Language, there are several different formats for operands that
you’ll learn how to code in this chapter. You’'ll see a variety of terms for the for-
mats. There is no agreement on the number of them. We have chosen a set of terms
that we feel are descriptive and clear.

Don’t be disturbed if your reference manuals use different terms for these
operand formats, or even if they group them differently. They're the same formats.
You will learn all the formats here.

When you have-completed studying this chapter, you will be able to:

¢ code the following addressing modes:
— immediate
— direct
— zero-page direct

- — indexed direct

— zero-page indexed direct
— indirect
— pre-indexed indirect
— post-indexed indirect
— relative;

¢ Use labels and expressions as operands.

IMMEDIATE ADDRESSING

1. Some instructions manipulate one byte of data—copying it, adding or subtrac-
ting it from the accumulator, etc. If you know when you code the instruction exactly
what value this byte will have at execution time, you can write the value as the
operand. This is called immediate addressing.

When you use immediate addressing, the question “WHERE?” is answered
“RIGHT HERE!” On many 6502 assemblers. and in this book. a byte of immediate
data is preceded by “‘#"’; the value of the byte may be coded in any of the notations
described in Chapter 2. For instance, #10 would be the immediate address for value
10 written in decimal notation; the same value in hexadecimal notation would be
#80A,

61

62 6502 ASSEMBLY LANGUAGE PROGRAMMING

(a) How many bytes are in an immediate address?

Code the following operands using immediate addresses:

(b} the value 25, using decimal notation

(¢} the value 14, using hexadecimal notation

(d) the letter A, using ASCII character notation

(e} the value 4, using binary notation

(a) one; (b} #25: (c) $OE; (d) #°A’; (e) #%00000100 (We'll continue to use two digits for
hex and eight for binary. Hex addresses will have four digits.)

2. Figure 9 shows a set of operation codes that we’ll use throughout this chapter.

CODE STANDS FOR EFFECT OF OPERATION

ADC ADd with Carry Adds value from operand to value in
accumulator

BEQ Branch if EQual Changes ‘‘next instruction” address in
program counter if zero-flag is ‘““on”

CMP CoMPare Compares value in accumulator to
value in operand

JMP JuMP Change ‘‘next instruction” address in
program counter

LDA LoaD) Accumulator Copies value from operand to ac-
cumulator

STA STore Accumulator Copies value in accumulator to operand

FIGURE 9. Some Sample Operation Codes That Require Operands

Use the operation codes from the figure and immediate addressing to code a
series of instructions that will set the accumulator to zero, add 25 to the accum-
ulator, and compare the result to 20. Use decimal values.

OPERAND FORMATS 63

LDA #0
ADC #25
CMP %20

3. You will find yourself using immediate addressing quite often in a program.
When you want to load a specific value in a register, immediate addressing is the
most natural way.
For example, suppose we want to use index register X in a loop. We need to in-
itialize it to zero. The easiest way is:
LDX #0

Suppose we want to write out an asterisk on the terminal. It has to be loaded
into register A first. The easiest way is:

LDA #'x!

Another frequent use of immediate addressing is in making comparisons. For
example, suppose we have just read a byte from the terminal keyboard and we want
to see if it is a carriage return. We could code:

CMP #30D
Suppose we want to compare the value in A to decimal 25. We could code:
CMP #25

Which of the following are frequent uses of immediate addressing?

___ (a} comparisons

- (b) branching

__ ¢} loading registers
- (d) storing registers

(a) and (c)

64 6502 ASSEMBLY LANGUAGE PROGRAMMING

DIRECT ADDRESSING

4. Operands that are not immediate answer the question “WHERE?” by specify-
ing a memory address. With some operations, this would be the address of a byte of
data; for others, it would be the beginning address for the next instruction.

In the direct addressing mode, you just write the numeric value of the address
as the operand. Addresses are usually coded in hexadecimal notation, showing all
four digits. ’

Use operation codes from Figure 9 and direct addressing to code instructions
that will:

(a) copy data from location $02FF to the accumulator
(b) execute next the instruction beginning at address $72FF

(a) LDA $02FF; (b} JMP $72FF

ZERO-PAGE DIRECT ADDRESSING

5. In 6502 Assembly Language, it is convenient to look at the 64K bytes of
memory as though they were divided into 256 pages of 256 bytes each. The first 256
bytes, with addresses from $0000 to $00FF, are called the zero page. The next page,
with addresses from $0100 to $01FF, is page one.

(a) What would you call the page with addresses from $FA00 to SFAFF?

(b) What addresses are on page 10?

(a) page FA; (b) $1000 to $10FF

6. When you code a direct address that is on the zero page, you do not need to
code the two leading zeros. For instance. $30 represents the same address as $0030.
(The Pet assembler requires an asterisk to indicate a zero-page address.) The com-
puter will assume that an address with only one byte {two hexadecimal digits) is on
the zero page. A zero-page address saves one byte of space in the length of the in-
struction; it can also increase the speed of executing the instruction. Data that will
be referenced often should be put on the zero page.

OPERAND FORMATS 65

(a)
(b}
{c)

What is the unabbreviated form of this address — $F5?
What is a shorter way to code the address $0029?

What is the advantage of using zero-page addressing?

(a) $00F'5; (b) $29 (for Pet, this would be *$29); (c) it saves space and time

7.

You will probably code more direct addresses than any other type in a pro-

gram. We use direct addressing whenever we want to access a known memory loca-
tion. Don’t forget that a label can be a direct address.

Suppose we want to transfer control to the instruction labeled OTLOOP. The -

most natural instruction is:

JMP OTLOOP

Suppose we want to load register A from the byte labeled CARRET. We would

code:

LDA CARRET

Suppose we want to store A at address $05 in memory. We would code:
STA $05

When do you use direct addressing? (Choose one.)

(a) When you're not sure what memory address to use.

(b) Whenever you can't use immediate addressing.

(c) When you want to refer to a specific memory address.

66 6502 ASSEMBLY LANGUAGE PROGRAMMING

8. Let’s review the three types of operands you have studied so far.
Using operation codes from Figure 9, code instructions to:

(a) -~ set the accumulator to 10

(b) add the value from the seventh byte on page 3 to the accumulator

{c) compare the value in the accumulator to the value in the third byte of memory

(d) How do you distinguish between an immediate address and a direct address?

(a) LDA #10; (b} ADC $03086; (¢} CMP $02; (d) an immediate address is marked by a
in most assemblers; a direct address is not.

INDEXED DIRECT ADDRESSING

9. When an operand is written as an indexed direct address, the value in one of
the index (X or Y) registers is added to a direct address; the result is the actual ad-
dress. This is one of those two-part operands we mentioned earlier, where the two
parts are separated by a comma. The first part is a direct address, and the second
part is the register name (X or Y).

For instance, the instruction LDA $0218,X will load the accumulator with the
byte from $021A if the value in X is $02, because $0218 + $02 = $021A. If the
value in X is $03, the same instruction will load the accumulator with the byte from
$021B.

{a) If the value in register X is $01, and the value in register Y is $0A, where will
the comparison bytes be found in these instructions?

CMP $0527,X

CMP SO8FF,Y

(b) The following instructions use direct addressing. Recode them using indexed
direct addresses, assuming that register X = $02 and register Y = $15.

LDA $0713

ADC $08F8

(a) $0528; $0909; (b) LDA $0711,X or LDA $06FE,Y; ADC $08F6,X or ADC
$08E3,Y

OPERAND FORMATS 67

ZERO-PAGE INDEXED DIRECT ADDRESSING

10. When the direct address portion of an indexed direct address is on the zero
page—that is, between $0000 and $00FF—the two leading zeroes can be omitted.
For example, the indexed direct address $0036,X is equivalent to $36,X. What is
another way to code each of the following?

(a) $00AA,X

b) s28,x

(a) 8AAX; (b) $0028,X

11. Using zero-page indexed direct instead of indexed direct addressing will cut
one byte from the length of an instruction and increase execution speed. You need
to be careful, though. If the result of the addition is larger than $FF, the page-
number portion (first two hexadecimal digits) will be dropped; the result will still be
a location on the zero page. For example, if X register = $02, the address resulting
from $FF,X will be $01, which is the second byte on the zero page.

Are the following operands valid? If so, what is the actual address
represented?

(a) $32,X (X register = $02)
(b) $0050,Y (Y register = $04)
(c) $O01FF,Y (Y register = $05)
. (d) $FF,Y (Y register = $10)

(a) $34; (b) $54; (c) $0204; (d) $OF (They are all valid.)

12. We usually use indexed addressing in loops where we are accessing successive
bytes of memory. For example, suppose we want to write the message “THANK
YOU” on the terminal. The message is stored in memory starting at address
THANKS. Here’s the routine we would use:

Lbx #0 s INITIALIZE X
OTLOOP LDA THANKS,X ; MOVE NEXT LETTER INTO A
JSR OUTPUT ; WRITE THE LETTER
INX ; ADD 1 TO X
cMp #'V! s IS IT THE LAST LETTER?
BNE OTLOOP ¢ IF NOT, GO BACK AND GET THE NEXT LETTER

68 6502 ASSEMBLY LANGUAGE PROGRAMMING

" The instruction labeled OTLOOP contains an indexed address, using the X
register as the index. Before the loop starts, we initialize X to zero. The first loop
loads A from THANKS+0. This puts a “I" in register A, which is sent to the ter-
minal by the JSR instruction. Then we increment X. On the second loop, H will be
loaded from THANKS+1, and so forth until the entire message has been written.

Match the types of addresses you have studied so far with their major uses.

- (a) immediate 1. accessing successive addresses in a
/ loop
__(b) direct and zero page 2. accessing a specific memory ad-
direct dress
- (c) indexed direct and 3. avoiding memory access and put-
indexed direct page ting the data right in the instruc-
tion
(@) 3; (b) 2; (c) 1

13. In the previous frames, we have discussed five ways of coding operands. In im-
mediate addressing, the data to be used by the operation is included in the instruc-
tion. In the four forms of direct addressing, the operand represents the address
where a byte of data is to be found or the address of the next instruction to be ex-
ecuted. In the simplest form, a direct address is written as part of the instruction. A
zero-page direct address is a direct address on the zero page; the two leading zeroes
on the address are not written. An indexed direct address specifies a direct address
and the name of an index register that contains a value to be added to the direct ad-
dress. A zero-page indexed direct address does the same thing, using the shorter
zero-page address.

" OPERAND FORMATS 69

To practice these addressing modes, fill in the blanks in the chart-below.
Assume that the X register = $12, the Y register = $20, and the accumulator = 15
{decimal) before the instruction is executed. Use operation codes from Figure 9. The
first two examples have been done for you.

Address Mode Instruction Result
Direct LDA $1732 A = byte at $1732
Zero-Page Indexed CMP $25,X A compared to byte at
Direct $0037 :
Direct ADC $1111 @A+ ___
Immediate (bl ADC _____ 10 is added to A
Direct (c) JMP Next instruction ex-
ecuted is at $3212
Zero-Page Direct dy A = byte at $0015
Indexed Direct LDA $0222,Y (e) A = byte at

(a) byte at $1111; (b) #10; (c) $3212; (d) LDA $15; (e) $0242

These are the address types you will use most often. In the following section,
we'll show some more operand styles. You won't use the following types of operands
nearly as often until you begin to write advanced programs. But you’ll see them in
your system manuals, so you need to know what they look like and what they do.

INDIRECT ADDRESSING

14. An indirect address points to a memory location where the actual address to
be used in the instruction has been stored. In other words, this second address is
the one which would have been the operand if the instruction had been coded using
a.direct address. This form of addressing is useful when we need to change an
operand at execution time. Instructions previously executed will store the address,
which can vary depending on input data or other factors. An indirect operand is
always enclosed in parentheses. ($1010) and ($0010) are indirect addresses; $1010 is
a direct address. This simplest form of indirect addressing is used only with the
JMP operation code.

70 6502 ASSEMBLY LANGUAGE PROGRAMMING

Code JMP instructions to do the following:

(a) Jump to an address which can be found at location $2020.

(b) Jump to address $1510.

(¢ Jump to an address which can be found at byte $15 of page one.

(a) JMP ($2020); (b) JMP $1510; (c) IMP ($0115)

15. An address is two bytes long, but each memory location can only hold one
byte; so two consecutive memory locations are needed to hold an address. In 6502
Assembly Language, addresses are stored with the low-order byte (last two hexa-
decimal digits) in the first location, and the high-order byte (first two hexadecimal
digits, or page number) in the following location. The indirect address points to the
first location. The microprocessor will automatically go to the next byte to get the
rest of the address.

If a partial map of memory shows:

Location Value
$1530 $03
$1531 $13
$1532 $FA
$1533 $02

(a} What is the address of the instruction which is executed after JMP ($1530)?

(b) What about JMP ($1532)?

(c) Code an instruction to jump to address $FA13 using a direct address.

(d) Recode the instruction using an indirect address.

i

(a) $1303; (b) $02FA; (c) JMP $FA13; (d) JMP ($1531)

OPERAND FORMATS 71

PRE-INDEXED INDIRECT ADDRESSING

16. A pre-indexed indirect address is a zero-page indexed direct address, enclosed
in parentheses, indicating the memory location where the address of the actual
operand can be found. The actual address can refer to any memory location, but the
location it is stored in must be on the zero page. Only the X register can be used in
this operand.

Some valid pre-indexed indirect addresses are: ($26,X), (830,X), and ($FF,X).
($16,Y) is invalid because it uses the Y register. Pre-indexed indirect addressing
‘must use the X register. (80116,X) is invalid because it references an indirect ad-
dress that is not on page zero. Whenever indexing is used with indirect addresses,
the indirect address must be on page zero.

This addressing mode will “‘wrap around” if necessary, so the resulting address
is always on the zero page. If the X register contains $15, the address pointed to by
($FF,X) would be $0014.

What address is pointed to by each of these operands? (Assume the X register
contains $10.)

(a) {$03,X)
(b) ($75,Y)
(c) ($0103,X)
@ ($17.X)
&) ($F1.X)

Assume the X register = $10; code pre-indexed indirect addresses that will
point to addresses stored at the following locations:)

(f) byte $25 of the zero page

(g) Dbyte $07 of the zero page

{h) byte $15 of page one

i) byte $F2 of memory

(i) byte $0101 of memory

[FERE RIS ORI U USRS OO U U

(a) $0013; (b) none, the Y register cannot be used in this addressing mode; (c) none,
only zero-page addresses can be used in this addressing mode; (d) $0027; (e) $0001;
(f) (815,X); (g) ($F7,X); (h) can’t do this—pre-indexed indirect addresses always point
to locations on page zero; (i) ($E2,X); (j) can’t do this —byte $0101 of memory is
byte $01 on page one

72 6502 ASSEMBLY LANGUAGE PROGRAMMING

POST-INDEXED INDIRECT ADDRESS

17. A post-indexed indirect address uses an indirect address to point to a zero-page
location, then adds the contents of the Y register to the address stored at that loca-
tion. The result is the actual address used in the instruction. Only the Y register can
be used in this addressing mode. The indirect address portion of the operand is
enclosed in parentheses; the Y is not. Some valid post-indexed indirect addresses are
($13),Y and ($02),Y.

Here is a partial map of memory:

Location Value
$0011 $01
$0012 $BC
$0013 $88
$0014 $E3
$0015 $00
$00FF $E0
$0100 $FE
$0101 $02
$0102 $0A
$0103 $O0F
$FF00 $08

Use this map and operation codes from Figure 9 to fill in the blanks in the ex-
amples below. Assume that the X register = $12, the Y register = $20, and the ac-
cumulator = 15 before each instruction is executed. The first two examples have
been filled in for you.

OPERAND FORMATS 73

Addressing Mode Instruction Result

Pre-indexed STA ($02,X) $02+$12=8%14; ad-

Indirect dress at $14-15 is

’ $00E3; Byte $00E3
receives ac-
cumulator (15)

Indirect JMP (30102) Next instruction
at $0FO0A

Pre-indexed Direct (a) STA (300,___) (b) Byte __ =15

Indirect (c)dMP Next instruction
at $00E 3

Post-indexed ADC (814),Y @____ -

Indirect

Indirect e) JMP Next instruction
at $02FE

(a) X; (b) $88BC; (c) (30014); (d) A = 30; (e) (80100)

The following addressing mode is used only with branching instructions. Since
it is the only form of operand allowed for branching instructions, you’ll need to
know it very well.

RELATIVE ADDRESSING

18. A relative address is a special form of address that is used only with the
branch instructions. Before we can show you how it's coded in Assembly Language.
we must discuss its machine language form; that is, after it has been translated by
the assembler. In machine language, it is a one-byte signed number indicating the
number of bytes to branch forward or backward. A relative operand of $20 would
mean to branch forward 32 bytes, since $20 = +32. Because the machine language
operand is limited to one byte, and the value is treated as a signed number, the
maximum branches are +127 bytes (that’s the largest positi%ze signed number) and
—128 bytes (that’s the largest negative signed number).

74 6502 ASSEMBLY LANGUAGE PROGRAMMING

(a} What kind of addressing must be used with branch instructions?

{(b) What does a relative address of —16 tell the computer to do?

(c) What is the largest possible forward branch?

{d) What is the largest possible backward branch?

(a) relative addressing; (b) branch backward 16 bytes; (c) 127 bytes; (d) 128 bytes

"19. In Assembly Language, you don’t code relative addresses themselves. You in-

dicate what you want using the other forms of 6502 addresses. For example, relative
addresses may be coded as direct addresses. The assembler calculates the relative
address by subtracting the ‘‘current’”” address from the operand address. The “cur-
rent” address is the address that would be in the PC when the branch instruction is
processed at execution time.

The direct address form of relative addressing is not the only way to code a
relative address in Assembly Language, but it is by far the easiest way. Other
forms of coding relative addresses involve counting the bytes in the machine
language instructions to be branched past; this can land you in a lot of hot water.
Experienced programmers always use direct addresses, preferably labels, as
operands of branch instructions.

{a) What is the best way to express a relative address in Assembly Language?

(b) If a direct address is a two-byte operand, how can it be used to express a one-

byte signed operand?

{c) In the following routine, the branch instruction, BNE, wants to transfer con-
trol to the LDA instruction, which is at address $0725. Code the operand for
the BNE instruction.

LDX #5
LDA #5
JSR OUTPUT
DEX
BNE
(d) (Review) What is the maximum branch forward? ____ | backward?

If all instructions contain 1, 2, or 3 bytes, will the BNE instruction

above exceed the maximum backward branch?

OPERAND FORMATS 175

(a) as a direct address, preferably a label; (b) the assembler calculates the one-byte
operand from the information you give it; (c) BNE $0725; (d) 127, 128, no—at most,
you've jumped back 12 bytes (actually, it’s eight)

As we described the various ways of coding addresses as operands, we
assumed that you would know the address of each instruction and each data byte
used in your programs. Some programmers do calculate the addresses they want to
use by counting bytes; but fortunately, there is a simpler way. In the next few
frames, you will learn to use labels and expressions as address operands.

LABELS AS OPERANDS

20. Look at the program in Figure 8 again. Notice that the instruction JSR IN-
PUT has a label, READIN. Anytime the 6502 assembler sees the name READIN in
the program, it will replace it with the address of the JSR INPUT instruction. If the
address of JSR INPUT is $2513, the instruction JMP READIN is the same as the
instruction JMP $2513. ,

If the instruction ADC $02 has the address $FA12, and the label ADIT, show
two ways that you could code an instruction to jump to it.

JMP $FA12; JMP ADIT

21. Labels as operands have the obvious advantages that you don’t need to know
the exact addresses and that, if you change your program, you don’t need to change
all the operands. This holds true whether the operand addresses an instruction or a
byte of data.

If the value in address $0110 is 15, and you have assigned the label FTEEN to
address $0110, the command LDA FTEEN will place the value 15 in the accumu-
lator.

If the location $OFFO contains the value $10, and the label FIRST has been at-
tached to this location, what will the command ADC FIRST do?

Add $10 to the accumulator

76 6502 ASSEMBLY LANGUAGE PROGRAMMING

22. So far, all our examples using labels have used direct addressing. However,
since the assembler replaces every label with an address, labels can be used to
replace addresses in any addressing mode. i

If the label TEMP has been assigned to location $00AA, and REPLAC to loca-
tion $0515, recode the following instructions using labels:

(@) JMP ($0515)

(b) LDA SAA,X

(c) ADC (SAA,X)

(A cMP (SAM),Y

(e) STA $0515,Y

() LDA SAA

(@) JMP (REPLAC); (b) LDA TEMP,X; (¢) ADC (TEMP,X); (d) CMP (TEMP),Y; (e)
STA REPLAC,Y; (f) LDA TEMP

EXPRESSIONS AS OPERANDS

23. Many assemblers allow you to use expressions as operands. An expression is
like the right side of an equation, as in X = Y+5. In instructions that use addresses
for aperands, the expression must work out to be a legitimate address. For instance,
3+5 would be okay, because it works out to 8, or $0008. But 5 — 9 would not be
valid because it yields a negative number. $FFFF+$05 would not be valid because
it yields a value outside of the memory range. A more common form of expression is
START+5, where START is a label in the program. The result would be an address
tive bytes beyond the first byte of the instruction or data labeled START.

If your assembler allows expressions, it will have its own rules for how they
are coded. Usually + is used for addition and — for subtraction. Other arithmetic
operations may or may not be allowed. You need to be very careful when you use an
expression as an operand. Remember that if lines are added or removed from the
program the value at the computed location may change. However. expressions are
useful when you want to refer to a data area without developing a name for every
byte of data.

If the label START represents address $033F:

(a) What address does START+1 represent?
(b) What address does START—1 represent?

(c) Assuming that the X register = 3, recode the instruction STA BEGIN.X us-

ing an expression equivalent to the indexed direct address.

(a) $0340; (b) $033E; (c) STA BEGIN+3

OPERAND FORMATS 77

REVIEW

Let's review what you've learned in this chapter.

There are several operand formats, called addressing modes, which can be
used when coding operations. We call them: immediate, direct, zero-page
direct, indexed direct, zero-page indexed direct, indirect, pre-indexed in-
direct, post-indexed indirect, and relative.

In the immediate addressing mode, a byte of data is coded by writing its
value, preceded by #, in the operand field. Examples: #36, #815, #'A’

In the direct addressing mode. the numeric value of an address is written
as an operand. Examples: $0136, $0278, $FF15.

The first two hexadecimal digits of an address identify the page it is on.
In zero-page direct addressing, an address on the zero page is coded omit-
ting the page digits. Examples: $FF, $00. This is faster and saves space.

In the indexed direct addressing mode, a two-part operand specifies a
direct address and an index register (X or Y) that contains a value to be
added to the direct address. The result is the actual address to use for the
instruction. Examples: $1515,X; $FF34,Y.

The zero-page indexed direct addressing mode is similar to the indexed
direct mode. but both the direct address and the actual address are always
on the zero page. Examples: $15,X; $FA X,

In the indirect addressing mode, the operand field contains an address
enclosed in parentheses. This address points to a memory location where
the low-order byte of the actual address is stored. (The computer will find
the high-order, or page-number, byte in the next location.) This mode is
used only with JMP (jump) instructions. Examples: ($1001); ($FAFA).

In the pre-indexed indirect addressing mode, the operand field contains a
zero-page indexed direct operand using the X register, enclosed in paren-
theses. Adding the value in the X register to the specified address results
in another zero-page address that points to the memory location where the
low-order byte of the actual address is stored. (The high-order, or page-
number, byte is in the next location.) Examples: ($15,X); (8FA,X).

In the post-indexed indirect addressing mode, a zero-page address enclosed
in parentheses is followed by *.Y”. The zero-page address points to the
memory location where the low-order byte of another address is stored.
{The high-order byte is in the next location.) The value in the Y register is
added to this second address, resulting in the actual address. Examples:
(815),Y; (SFA)Y.

In the relative addressing mode, the address is a one-byte signed value
used to branch forward or backward. It is used only with branch instruc-
tions. The maximum branches are —128 to +127. We usually use direct

_addresses as branch operands and let the assembler calculate the relative

address.

78 6502 ASSEMBLY LANGUAGE PROGRAMMING

Labels should replace addresses in operands. If the operand requires a
zero-page address, the label must be attached to a zero-page address. A
label in a conditional branch instruction replaces the entire operand; the
assembler will calculate the difference between the address attached to the
label and the one in the PC register. Therefore, this difference must be

- within the range —128 to +127. Examples: START; START,X; (START);

(START,X); START,Y; (START),Y.

Simple expressions such as a label plus or minus a number may be used as
addresses on most operands. The assembler will interpret such an expres-
sion as an address that is that number of bytes after or before the address
the label is attached to. The computed address must be a valid one for the
addressing mode. Examples: START +1; (BEGIN—3.X).

CHAPTER 4 SELF-TEST

1. Identify the addressing mode of each of the following operands. If it is invalid,
indicate why. (Assume that none are relative addresses.)

e®

»

Mo @

.

$0719,x

($17,X)

$0315

$EO0, X

#10

($1930)

($SFA),Y

#SFF13

($86,%)

$FA,X

SFFFF

$15

OPERAND FORMATS 179

Examine the operands in each instruction below. Identify from the list on the
right what each operand represents.

2. CMP S$5F R a. immediate value

3. BE@ START - b. address of data byte or instruction

4, STA ($F8,X) - c. address that contains another ad-
dress

5. ADC $16FD - d. value for determining a relative ad-
dress

6. ADC #$14
7. Jmp ($02)
8. CMP SFE,X
9. LbA #'B'
10. JMP $16F4

Write operands for the instructions below.
11. Add the value at address $0072 to the accumulator.
ADC ‘
12. Load the letter Z into the accumulator. LDA

13. Compare register A to decimal 16. CMP
14. If the zero flag is set, branch to location $06F0, which is labeled NEXT.
BEQ
15. Jump to location $1740, which is labeled FOURTH.
JMP

16. Store the value from the accumulator at memory locations $1400, which is

labeled KEEP. STA

17. Store the value in the accumulator at the memory location that is at location

$1400 ({labeled KEEP) plus the value in register X, STA

18. Jump to the address currently stored in byte $1020 and 1021.
JMP

19. Suppose byte $1020=$20 and byte $1021=$40. What is the actual address of
the next instruction?
Check your answers below.

80 6502 ASSEMBLY LANGUAGE PROGRAMMING

Self-Test Answer Key
1. a. indexed direct
b. pre-indexed indirect
c. direct
d. zero-page indexed direct
e. immediate
f. indirect
g. post-indexed indirect
h. this is invalid — an immediate address is one byte; $00 through $FF,
or 0 through 256. ’
1. pre-indexed indirect
j- zero-page indexed direct
k. direct
1. zero-page direct
2. b
3. d
4, c
5 b
6. - a
7. ¢
8 b
9. a
10. b

11. ApC 872

12. Lba #'z?

13. CMP #16

14. BEQ NEXT

OPERAND FORMATS 81

15.

16.

17.

18.

19,

JMP FOURTH (or JMP $17400
STA KEEP (or STA $1400)

STA KEEP,X (or STA $1400,X)
LDA ($1020)

$4020

If you missed any, restudy the appropriate frames.

CHAPTER FIVE

ELEMENTARY
INSTRUCTION SET

Now you're ready to actually begin learning to use some Assembly Language in-
structions. In this chapter, we're going to introduce a very basic set of instructions;
ones you'll need most of the time no matter what program you're writing. You'll
learn enough instructions to be able to read data from the terminal, move data
around from place to place inside the computer, add and subtract, write data out to
the terminal, specify which instruction to process next, and stop processing.

When you have finished this chapter, you will be able to:

e code instructions to:

load registers from memory (LDA, LDX, LDY)

store data from registers in memory (STA, STX, STY)

transfer data between registers (TAX, TAY, TXA, TYA)
increment and decrement registers and memory (INC, INX, INY,
DEC, DEX, DEY)

add and subtract using the carry flag (ADC, SBC)

set and clear the carry flag (SEC, CLC)

jump to another instruction (JMP)

jump to a subroutine (JSR)

¢ solve the following types of programming problems:

read data from a terminal
store data in memory
write data to a terminal
add and subtract

stop a program

"LOADING REGISTERS FROM MEMORY

We'll start with some instructions that move data from a memory location to a
register. This is called loading a register. Actually, the data is copied, not moved—
the value at the original location is not changed.

83

84 6502 ASSEMBLY LANGUAGE PROGRAMMING

1. The operation LDA (LoaD Accumulator) loads the accumulator with a byte of
data from a memory location specified by an operand. The operand can be in any of
these addressing modes:

~ immediate

— direct

~ zero-page direct

— indexed direct (using either the X or Y index register)
— zero-page indexed direct (using the X index register)
— pre-indexed indirect

— post-indexed indirect

{a) Which of the following instructions are valid?

EY

—— = LDA #25

——— LDA (START)
——_ LDA BEGIN#1
— LDA HERE,X

LDA ($15),Y

(b) Code an instruction that will copy the value in location FIRST into the

- accumulator.

(¢} Code an instruction that will set the accumulator to zero.

(a) LDA #25, LDA BEGIN+1, LDA HERE,X, LDA ($15),Y. (LDA (START) is in-
valid because the operand is indirect); (b) LDA FIRST; (c) LDA #0

2. Look at the table in Appendix C. This table has a line for each operation code
used in 6502 Assembly Language; it has a column for each of the nine addressing
modes. As you learn about the operations, you will fill in the table so that it shows
which addressing modes can be used with each operation. The table will become a
handy reference doéument, so be sure to fill it in accurately.

LDA has been filled in for you. Noticé that the columns for indexed direct and
zero-page indexed direct specify which index registers can be used with the instruc-
tions. Why isn’t it necessary to specify the registers which can be used in the pre-

_indexed and post-indexed indirect modes?

ELEMENTARY INSTRUCTION SET 85

Because the pre-indexed indirect mode always uses the X register, and the
post-indexed mode always uses the Y register.

3. Data can be loaded into the X register and into the Y register using operation

codes LDX (LoaD X) and LDY (LoaD Y). Each of these operations requires an

operand that specifies where to find the byte to be loaded into the register. Im-

mediate, direct, and zero-page direct operands can be used with both LDX and LDY.
Code instructions to;)

(@) Set the Y register to zero.
(b) Copy the data from location HITIME to the X register.

(¢ Load data from location $15 into the Y register.

(d) Copy data from location $1212 to the accumulator.

(a) LDY # 0; (b) LDX HITIME; (c) LDY $15; (d) LDA $1212

4. LDX and LDY can also be coded using indexed direct and zero-page indexed
direct operands. But with LDX, only the Y register can be used for indexing, and
with LDY, only the X register can be used for indexing. Neither LDX nor LDY can
use operands with indirect, pre-indexed or post-indexed indirect, or relative address-
ing.

{a) Fill in the lines for LDX and LDY in the table in Appendix C.

Which of these instructions are valid?

____(b) LDX ONE,X — (@ LDX (ONE)
—(¢) LDA (START),Y —— (h) LpY (NEW,X)
— (d) LDX HIGH —— (i) Lox w123
— () LDY NEW,X —— () LpA (ANEW,X)
——) voy s$15

[1 2] 13 {4 15} 6] [7) 8, 9

LDX ok ok ok Yok Yok - - - -
LDY ok ok ok Xok Xok - - - -

(c), (d), (e), (), (i), and (j) are valid; (b) is invalid because LDX cannot use the X
register for indexing; (g) is invalid because LDX cannot use indirect addresses; (h) is
invalid because LDY cannot use a pre-indexed indirect address

86 6502 ASSEMBLY LANGUAGE PROGRAMMING

5. LDA, LDX, and LDY instructions affect the zero and sign status flags. This
means that if the byte moved has a value of zero, the zero flag will be set. (=1);
otherwise, it will be cleared (=0). The sign flag reflects the high-order bit of the byte
moved. If you are using signed data. a one in this bit indicates a negative value, and
a zero indicates a positive (or zero) value. (Signed numbers are discussed in Chapter
11.) Will. the sign and zero flags be on or off after each of these instructions?

(a) LDY WHICH, where the location labeled WHICH contains $00.

(b) LDX LESS, where the location labeled LESS contains —25.

(0 LDA OK, where the location labeled OK contains 75.

(d LDY #130.

(a) Zero = on, Sign = off; (b) Zero = off, Sign = on; (c) Zero = off, Sign = off; (d)
Zero = off, Sign = on [the value is greater than +127, or +$7F]

Now you have learned how to move data from memory locations into the ac-
cumulator (LDA), X register (LDX) and Y register (LDY). You have learned that:

— all three of these operations can use direct, zero-page direct, indexed
direct, and zero-page indexed direct addresses, with the restriction that
the register being loaded cannot be used for indexing;

— the LDA’operation can also use pre- or post-indexed indirect addresses;
— none of the three can use indirect or relative addressing;
— all three operations set the zero and sign flags.

In the next part of the chapter, you'll learn how to move data from these
registers to memory and how to move data between these registers.

ELEMENTARY INSTRUCTION SET 87

STORING DATA IN MEMORY

6. A byte of data can be copied from the accumulator, the X register. or the Y
register to a memory location. This is called storing data in memory. The operation
codes used are: STA (STore Accumulator), STX (STore X), and STY (STore Y).
These operations do not affect any status flags, but each of them requires an
operand to specify the location where the byte of data is to be stored. Direct and
zero-page direct operands can be used with any of these operations. Code
instructions to:

(a) Copy the value from the accumulator to the location labeled HERE.,

(b) Store the Y register in byte $15 on the zero page.

(0 Move the value in register X to byte $20 on page $17.

(a) STA HERE; (b) STY $15; (c) STX $1720

7. In addition to direct and zero-page direct, one other addressing mode can be
used with STX and STY instructions—zero-page indexed direct, using the Y index
register with STX, and the X index register with STY. The STA instruction can use
both indexed direct and zero-page indexed direct addresses, but only with the X
register. STA can also use pre-indexed and post-indexed indirect addresses. Fill in
the lines in Appendix C for the STore operations.

[1] 2] 3] [4] 5] 6} (7 81 191

STA - ok ok Xok Xok - ok ok -
STX - ok ok - Yok - - - -
STY - ok ok - Xok - - - -

88 6502 ASSEMBLY LANGUAGE PROGRAMMING

-

8. The 6502 assembler instructions do not include any instructions that move
data from one memory location to another. To copy a value from a location named
FIRST to a location labeled SECOND, you need a series of two instructions, for ex-
ample:

LDA FIRST
STA SECOND

Code a routine using the X register to move a byte of data from SECOND to
THIRD; then use the Y register to go from THIRD to HOME. (A ‘routine’ is a
series of instructions.)

LDX SECOND
STX THIRD
LDY THIRD
STY HOME

TRANSFERING DATA BETWEEN REGISTERS

9. Data can be moved from the accumulator to the X or Y register, and from the
X or Y register to the accumulator. This process is called transferring data between
registers. The operation codes used are:

TAX (Transfer Accumulator to X)
TAY (Transfer Accumulator to Y)
TXA ({Transfer X to Accumulator)
TYA (Transfer Y to Accumulator)

These operations don’t need operands; the operation codes specify where the
data comes from, and where it’s going to. (There are no instructions that transfer
data directly between the X and Y registers.)

{a) Write instructions to do the following:

Transfer the value in the accumulator to the X register.

Copy the value from the Y register to the accumulator.

Move the value from the X register to the Y register.

(Note: You will need to use a routine with two instructions.)

ELEMENTARY INSTRUCTION SET 89

{b) Fill in the lines for TAX, TAY, TXA, and TYA in Appendix C.

(a) TAX; TYA; TXA followed by TAY (Note: You could also do this by moving the
data to and from a memory location. For example, STX NAMEI, LDY NAME])

(b)

[1] {2} (3] [4] [56] 6] [7] 8] [9]

TAX - - - - - - - - -
TAY - - - - - - ~ - -
TXA - - - - - - - - -

10.. The transfer instructions affect the zero and sign status flags, just as the load
register:instructions do. In the table below, the first line shows the values of some
flags, registers, and memory locations at the beginning of a routine. Fill in the table
with the values after each step of the routine has been executed.

FLAGS

INSTRUCTION

ZERO

SIGN

ACCUM

HERE

THERE

WHAT

start

OFF

OFF

12

137

(@

LDX HERE

{b)

TYA

()

STA

THERE

(d

STX

THERE

(e

LDA

#e

TAY

(g

LDA

WHAT

(h)

STX

WHAT

00 6502 ASSEMBLY LANGUAGE PROGRAMMING

FLAGS .

INSTRUCTION | ZERO SIGN | ACCUM | X | Y | HERE T’HERE WHAT

| start OFF OFF 12 -3 | 137 0 2 -5
(a) LbX HERE ON OFF 12 0 }137 0 2 -5
(b) TYA OFF ON 137 0 137 0 2 -5
(c) STA THERE | OFF ON 137 0 1137 0 137 -5
{d STX THERE | QOFF ON 137 0 |137 0 0 -5
fe) LbA #2 OFF OFF 2 0 {137 0 0 -5
f) TAY OFF OFF 2 0 2 0)0 -5
(8) LDA WHAT OFF ON -5 0 2 0 0 -5
(h) STX WHAT OFF ON -5 0 2 0 0 0

INPUT AND OUTPUT SUBROUTINES

11. Almost every program needs to read some data from an input device and write
some data to an output device. Unfortunately, it’s very difficult to code routines to
do this. There are many different types of devices available and each has its own
peculiarities.

For now, we’re going to avoid any details of how to code 1/O routines. We're
going to use two instructions, JSR INPUT and JSR OUTPUT, to handle our I/O
needs.

The JSR (Jump to SubRoutine) instruction transfers control to a subroutine—
a series of instructions that accomplish a function. When the subroutine ends, con-
trol is automatically returned to the instruction after the JSR instruction. JSR must
use a direct operand.

Suppose INPUT is the label of a subroutine that reads a byte from a CRT ter-
minal and leaves the byte in register A. Examine the following code:

JSR INPUT
TAX

ELEMENTARY INSTRUCTION SET 91

(a) What instruction is executed after JSR INPUT?

(b) What instruction is executed after control returns from the INPUT
subroutine?

(0 What is the effect of this routine?
(d Fill out Appendix C for JSR.

(a) the first instruction of the INPUT subroutine; (b} TAX; (c) read a byte and store
it in register X

(1] (2] 3] [4] 151 61 7 18] [9]

(d) JSR - ok - - - - - - -

12. The advantage of a subroutine is that a program can call it over and over
again, but it needs to be coded only once. Every time it is called, control returns to
the calling location.

Examine this routine:

JSR INPUT
TAX
JSR INPUT
TAY

(a) What instruction is executed after control returns from INPUT the first time?

(b) What instruction is executed after control returns from INPUT the second

time?

(c) What is the total effect of the routine?

{a) TAX: (b) TAY; (c) two bytes are read—the first is stored in X and the second is
stored in Y

92 6502 ASSEMBLY LANGUAGE PROGRAMMING -

13. Suppose OUTPUT is a subroutine that writes the byte in the accumulator to
the terminal (the same terminal that INPUT reads from).

Assume that both our INPUT and OUTPUT routines returnthe registers in
exactly the same condition that they received them. That is, if X contained 5 before
the routines are called, it contains 5 afterwards. The same is true for the Y register,
status registers, etc. -

(a) Code a routine to write the data in register X to the terminal.

(b) Code a routine to write the data in memory location OUTBYT to the terminal.

(a) TXA]
JSR OUTPUT

(b) LpA oOUTBYT
JSR OUTPUT

14. Terminal input and output are separate functions as far as a duplex system is
concerned. When a user types a character for input, the character does not display
unless the program writes it back to the terminal.

Code a routine that reads a byte from the terminal and immediately writes
that byte back to the terminal. (We call this echoing.)

JSR INPUT
JSR OUTPUT ; ECHO INPUT BYTE

ELEMENTARY INSTRUCTION SET 93

15. From now on, whenever you read a byte from the terminal always echo that
byte immediately so the users can see what they're typing.
Adapt the routine shown below to include appropriate echoing.

JSR INPUT

TAX

JSR INPUT

TAY

JSR INPUT b
JSR OUTPUT

TAX

JSR INPUT

JSR QUTPUT

TAY

16. INPUT and OUTPUT are not the only subroutines a program might use. You

might create and use many subroutines to accomplish your program logic. For ex- '
ample. suppose you have a subroutine named ASCBIN that converts the byte in A

from ASCII to binary code.

(a) Codea routiné to convert the byte at MEMBYT from ASCII to binary and
store the result at NEWBYT.

4 (b) Code a routine to read a byte from the terminal, convert it to binary, and store
the result at BINNUM., .

94 6502 ASSEMBLY LANGUAGE PROGRAMMING

(a) LDA

JSR.

STA

(b) Jsr
JSR
JSR
STA

MEMBYT
ASCBIN
NEWBYT

INPUT
ouTPUT ; ECHO
ASCBIN
BINNUM

You'll learn a lot more about coding and using subroutines later in this book.
But from here on in, we'll use INPUT and OUTPUT to communicate with a ter-
minal hooked up to the microprocessor.
The instructions you have learned so far in this chapter all copy data from one
location to another. In the next section, you are going to learn some of the basic in-
structions for changing data—addition, subtraction, incrementing and decrementing
registers and memory.

STATUS FLAGS IN ARITHMETIC

17. Addition and subtraction instructions always store the result in the ac-
cumulator. The result affects the sign, overflow, zero, and carry flags.

The zero flag will be turned on if the result of an addition or subtraction is
zero. Otherwise, it will be turned off. Notice this means if the result =
zero, the zero flag = 1, and vice versa.

- The sign flag will reflect the high-order bit of the result; if you add or sub-

tract signed numbers and the sign flag gets turned on, it means the result
is negative,

The carry flag will be turned on if an addition results in a carry from the
high-order bit. It will also be turned on by a subtraction that does not
need to borrow in order to subtract the high-order bit.

The overflow flag reflects the seventh bit of a result; it is also used when
you are doing signed arithmetic; it can indicate an invalid result. We won’t
use it at this time.

Let’s look at some examples, using unsigned numbers.

DECIMAL HEX BINARY ACCUM ZERO SIGN CARRY
150 $96 %10010110

r..110, ~-S6E_ --%01101110_
260 $104 %100000100 $04 OFF OFF ON
170 SAA %10101010

:---%Q_ -T-814_ - X00010100_
150

$96 %10010110 $96 OFF ON ON

ELEMENTARY INSTRUCTION SET 95

Notice that the carry flag is on; this is because we didn’t need to borrow to
subtract the high-order bit.

20 $14 %000010100
z.-.20_ . -z-$16__-_X000010100_
0 $00 %000000000 $00 ON OFF ON

Now you can try some. Just fill in the flags and the accumulator.

(a 15+ 85

(b) 150 — 20

0 16—3

d 12+ 244

ACCUM ZERO SIGN CARRY

(a) 364 OFF OFF OFF
{b) $82 OFF ON ON
(c) . 30D OFF OFF ON
(d) $00 ON OFF ON
ADDITION

18. Addition in 6502 Assembly Language always consists of adding the value of a
byte from a memory location and the carry flag bit to the byte in the accumulator.
The operation code used is ADC (ADd with Carry). The memory location is specified
by an operand. Valid addressing modes for ADC are the same as the ones for LDA.

(a) Fill in the line in Appendix C for ADC.

{(b) Code an instruction to add the value 15 to the accumulator.

(¢ Code an instruction to add the value in UPDATE to the accumulator.

(d) How many bytes can the accumulator hold?

(1] (2] 131 [4] (5] (6} (7 18] (91

{a} ADC ok ok ok XYok Xok - ok ok -
(b) ADC #15; (c) ADC UPDATE; (d) one

96 6502 ASSEMBLY LANGUAGE PROGRAMMING

19. The value in the carry flag is always included in the addition when an ADC in-
struction is executed. If the value in the accumulator is 15 and we execute the in-
struction ADC #02, the result (in the accumulator) will be 17 if the carry flag is off.
What will it be if the carry flag is on?

18

20. When you add large numbers—those that need more than one byte of storage
~you will need to include the carry from one byte to another. You will learn more
about this in a later chapter. When you add one-byte numbers, you will want to be
sure that-the carry flag is off before you add. The instruction CLC (CLear Carry)
turns off the carry flag, without affecting anything else. No operand is required.

(a) Fill in the line for CLC in Appendix C.
(b) Write a routine to add 15 and 17.

(] (2] 3] [4] [51 " I8l (7 18] [9]

(a) CLC - - - - - - - - -
(b) Lpa #15 or cLe
cLC LDA #17
ADC #17 ADC #15
21. Look at this routine:
LDA #SFA
STEP1 cLC
ADC #8306 .
STA FIRST
LDA #8$03
STEPZ cLC
ADC #802

STA SECOND

ELEMENTARY INSTRUCTION SET 97

(a) At the end of this routine, what are the values in:
the accumulator?
FIRST?
SECOND?

the carry flag?

(b) If the instruction labeled STEP2 had been left out of the routine, what would
the final values have been in:

the accumulator?
FIRST?
SECOND?

the carry flag?

(@) accumulator = $05, FIRST = $00, SECOND = $05, carry = 0; {b) accumulator
= $06, FIRST = $00, SECOND = $06, carry = O (the carry flag = 1 after the f1rst
ADC, but is reset by the second)

SUBTRACTION

22. The operation code for subtraction is SBC (SuBtract with Carry). It requires an
operand, which can be in any of the addressing modes used with ADC and LDA.
(a) Fill in the line for SBC in Appendix C.

{(b) Code an instruction to subtract 25 from the accumulator.

{c) Code an instruction to subtract the value at location WHAT from the

accumulator.

(1] (2] 31 [4] (5] (6} [71 8] [0l

faj SBC ok ok ok XYok Xok - ok ok -
(b) SBC #25; {c) SBC WHAT

23. The SBC operation causes the byte specified by the operand to be subtracted
from the accumulator. The opposite, or complement, of the carry flag bit is also sub-
tracted from the accumulator. So, if the accumulator = 15, the instruction SBC #03
would cause the accumulator to be changed to 12 if the carry flag is on or to 11 if
the carry flag is off. In either case, the carry flag will be turned on by the execution

A Y

98 6502 ASSEMBLY LANGUAGE PROGRAMMING

of the instruction and the zero flag turned off. The sign and overflow flags will also -
be affected; but these are only significant when doing signed arithmetic. Fill in the
blanks in the table below; the first line has already been done for you.

BEFORE AFTER
ACCUM ZERO CARRY INSTRUCTION ACCUM ZERO CARRY
%5 ON ON s8C #12 13 OFF ON
{a) 115 OFF ON SBC #23
{b) 10 OFF ON ADC #8
{c) 87 ON OFF SBC #86

@ 32 OFF OFF SBC #23

(a) 92 OFF ON

® 19 OFF OFF .
@ 0. ON ON
@ 8 OFF ON

24. The carry flag will be useful later when you learn to subtract large numbers.
When you are working with one-byte numbers, you will want to be sure that the
carry flag is on before you subtract. The instruction that turns on the carry flag
without affecting anything else is SEC (SEt Carry). No operand is required.

(a} Fill in the line for SEC in Appendix C.
(b) Write a routine to subtract 12 from 125, and store the result in NEWNUM.

(a) SEC - - - - - - - - -

(b) LDA #125
SEC
SBC #12
STA NEWNUM

ELEMENTARY INSTRUCTION SET 99

INCREMENTING AND DECREMENTING

25. The X or Y registers are often used for counting.-Incrementing {adding 1 to) or
decrementing (subtracting 1 from) one of these registers would take at least four

steps using instructions you have learned so far—for example, incrementing the X
register would take these instructions:

TXA
cLc
ADC #1
TAX

There is a simpler way. The instruction INX (INcrement X) does the same job;
no operands are required; the zero and sign flags are affected, Similarly, INY (INcre-
ment Y), DEX (DEcrement X), and DEY (DEcrement Y) instructions are available.

(a) Code one instruction to add 1 to the Y register.

(b) Code one instruction to subtract 1 from the X register.

{c) Fill in the lines on Appendix C for INX, INY, DEX, and DEY.

(a) INY; (b) DEX;
(] 2 i3 [4] (5] 6} 7 i8] 191

¢ INX - - - - - - -
INY - - - - - - - -
DEX - - - - - - - -
DEY - - - - - - - -

26. It is also possible to increment or decrement a memory location, using the
operations INC (INCrement) or DEC {(DECrement). Each of these operations re-
quires an operand in one of four addressing modes—direct, zero-page direct, indexed
direct, or zero-page indexed direct. Both of the indexed modes can use only the X
register. The zero flag and sign flag are set by these instructions.

(a) Fill in the lines for DEC and INC in Appendix C.

(b) Code an instruction to decrement the byte in the location called LESS.

() Code a routine that will add 2 to the byte in location $15 without using the ac-
cumulator.

100 6502 ASSEMBLY LANGUAGE PROGRAMMING

(1] (2] 3] (4] 151 [6]

(a} DEC - ok ok Xok Xok -
INC - ok ok Xok Xok -
{(b) DEC LESS
{c) INC $15
INC $15
BRANCHING

(71 (8] 9]

27. Usually a program is executed in the order it is written—the first instruction
to be executed is on line 1, the second on line 2, etc. But often it’s necessary to
jump around, or branch, in the program. The operation code JMP (JuMP) will
change the address in the program counter (PC) register, which always contains the
address of the next instruction to be executed. JMP requires an operand to specify
the new address to be put in the program counter. The operand can use direct or in-
direct addressing but it cannot use immediate, zero-page direct, any type of index-

ing, or relative address mode.

(a) Fill in the line in Appendix C for JMP.

{(b) Code an instruction that will cause the next instruction to be the one at

memory location $1531.

{c) Code an instruction that will cause control to jump to REPEAT.

(d Code an instruction to jump to the address contained in the two bytes located

at NEXT and NEXT+1.

—_ e e e e e e e e —

[1] [2] [3] [4] [5] [6]
@ JMP - ok - , - ok
(b) JMP $1531; (c) JMP REPEAT; (d) JMP (NEXT)

71 8] [9]

ELEMENTARY INSTRUCTION SET 101

28. Often a program repeats the same series of instructions over and over. The
JMP instruction can be used to create a loop, so the routine needs to be coded only
one time. The routine

LDA #0

Lbx #0
ADDONE cL¢

ADC #1

STA NUMBER,X

INX

JMP ADDONE

would store the number 1 at location NUMBER, 2 at location NUMBER+1, 3 at
NUMBER+2, etc. This is an example of a closed loop; there is no way out of it ex-
cept to interrupt the program. In a later chapter, you will learn instructions that
will allow you to leave a loop when you are through with it.

{a) Write a closed loop that will read values from a terminal (don’t forget to
‘““echo’ the input).

(b) Write a closed loop that will count the number of times the loop is executed
and display the count on a terminal each time this loop is restarted. Set the
counter to $30 before entering the loop. This is the equivalent of ASCII zero.

_(a) NEXT JSR INPUT
JSR OUTPUT
JMP NEXT
LDA #8830
(b) LoOOP cLc
< ADC #1

JSR OUTPUT
JMP LOOP

102 -6502 ASSEMBLY LANGUAGE PROGRA?VIMING

ENDING A PROGRAM

29. One way to end a program is to write a one-instruction closed loop that will
repeat itself until you interrupt the program. Some 6502 microprocessor systems
provide direct methods to return control to the operating system when a program is
done, such as coding a JMP or JSR instruction with a specific address, or a BRK in-
struction, which we will discuss in a later chapter. You should check the documenta-
tion for your computer to find the recommended way to end a program; in this book
we will use closed loops for this purpose.

Code a one-line closed loop to end a program.

ENDIT JMP ENDIT

REVIEW

In this chapter, you have learned a very basic set of instructions that you will
need for almost every program.

» The sign flag will be adjusted to match the high order bit of a byte
whenever an instruction changes the value in a register and whenever an
arithmetic instruction changes a value in memory.

> The carry flag is set if an addition results in a carry or if a subtraction
does not borrow. Otherwise, an arithmetic operation clears the carry flag.
‘The ADC instruction adds the carry flag as well as the two addends. The
SBC instruction subtracts the complement of the carry flag as well as the
minuend.

e The LDA, LDX, and LDY instructions move data from memory into the
accumulator, X register, and Y register. These instructions affect the zero
and sign flags.

s The STA, STX, and STY instructions move data from the accumulator, X
register, and Y register to memory. They do not affect the flags.

e The TAX, TAY, TXA, and TYA instructions move data between the ac-
cumulator and the X or Y register, and they affect the zero and sign flags.

* You have learned to add one-byte numbers, using CLC to clear the carry
flag and then ADC for the addition. The sign, overflow, zero, and carry
flags are affected.

* You have learned to subtract one-byte numbers, using SEC to set the
carry flag and then SBC for the subtraction. The sign, overflow, zero, and
carry flags are affected. Other memory operations, such as STA, do not af-
fect the flags.

ELEMENTARY INSTRUCTION SET 103

e The INC, INX, and INY instructions increment {add 1 to) a memory loca-
tion, the X register, and the Y register. These instructions affect the zero
and sign flags.

e The DEC, DEX, and DEY instructions to decrement {subtract 1 from) a
memory location, the X register, and the Y register. These instructions af-
fect the zero and sign flags.

¢ The JMP instruction causes a branch to another instruction and can be
used to create a loop.

e The JSR instruction calls a subroutine. We will use the INPUT and OUT-
PUT subroutines throughout this book.

* You have learned how to end a program using a closed loop.

¢ You have filled in the addressing modes permitted with each of the in-
structions in the table in Appendix C.

In the Self-Test for this chapter, you'll get a chance to write routines that use
these instructions.

CHAPTER 5 SELF-TEST

Code the instructions described below.

1. Load the byte from address LOMEM into the accumulator.

2. Copy the value from Y into X.

3. Store the byte from the accumulator at address $2105.
4. Add 40 (decimal) to the accumulator.

5. Jump to address $2000.

6. Load the hexadecimal value $21 into the accumulator.
7. Subtract one from the memory byte at address COUNTR.
8. Read a byte from the terminal into the A register.

9. Subtract $5 from the accumulator.

10. Copy the value from X into A.

11. Subtract one from the Y register.

12. Clear the X register (that is, load it with a zero.)

13. Add one to the memory byte at address $0027.

14. Jump to address NEWADD.

15. Write a byte from the A register to the terminal.

16. End the program by creating a closed loop.

104 6502 ASSEMBLY LANGUAGE PROGRAMMING

17. Store the byte from the Y register at YREGIS.

18. Clear the carry flag.

19. Add one to the X register.

20. Add the value at address $16 to the accumulator.

Code the short routines described below.

21. Read and echo a byte at the terminal. Store the byte in MEMBYE,

22. Write the message ‘““HI” to the terminal.

23. Create a loop to read and echo bytes and store them in memory. Store the first
byte at INMESG. The second byte should be stored at INMESG+1, and so
forth. Use indexed addressing to store the bytes.

24. Create a loop to read and echo bytes. Add 5 to each byte and write the new
sum.

25. Copy a byte from OLDADD to NEWADD.

26. Subtract 6 from the value at memory address TOTSUM. The result should be
at TOTSUM.

ELEMENTARY INSTRUCTION SET 105

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

LDA

TYA,

STA

ADC

JMP

LDA

DEC

JSR

SEC
SBC

TXA

DEY

LboX

INC

JMpP

JSR -

LOOP

STY

cLc

INX

ADC

JSR
JSR
STA

Self-Test Answer Key
LOMEM
TAX
$2105
#40
$2000
#s$21
COUNTR

INPUT

#$5

#0

$0027
NEWADD
QUTPUT

JMP LOOP

YREGIS

$16 (You might have included CLC first.)

INPUT
OUTPUT
MEMBYE

~

106 6502 ASSEMBLY LANGUAGE PROGRAMMING

22. LDA #'H’
JSR OUTPUT
LDA #'1'
JSR OUTPUT

23. LDX #0
LOOP JSR INPUT
JSR OUTPUT
STA INMESG,X
INX
JMP LOOP

24. LOOP JSR INPUT
JSR OUTPUT

cLc

ADC #5

JSR OUTPUT
JMP LOOP

25. LDA OLDADD
STA NEWADD

26. LDA TOTSUM

SEC
SBC #6
STA TOTSUM

If you missed any items, reread the appropriate frames.

Now that you can code some complete routines, it would be nice if you could
try them out on your computer. If you want to try, read Appendix D, which
discusses some of the processes you’ll need to go through.

CHAPTER SIX

ASSEMBLER DIRECTIVES

Your system will have a set of instructions that control the assembler program
rather than the computer itself. We call these the assembler directives, because they
direct the assembler rather than your programs. (Another common term for them is
“pseudo-operations.”’)

The assembler directives are not standardized; different assemblers will have
different ones. The set that we present in this chapter is used on our system. Even
though your assembler may be different, you will probably have directives that
serve the same purposes.

When you have completed your study of this chapter, you will be able to:

* answer questions about the assembly process;

o identify the difference between an assembler directive and a machine in-
struction;

¢ code the following assembler directives: DS, ASC, DFB, ORG, and EQU;
¢ organize all the parts of a complete program.

In order to understand the assembler directives, you have to understand what .
the assembler does. And in order to understand what the assembler does, you have
to understand a little bit about 6502 machine language.

107

108 6502 ASSEMBLY LANGUAGE PROGRAMMING

8000: 1 ORG $8000

8000: A2 00 2 LDX #0

8002: BD 16 80 3 MAPLOP LDA TEXT,X

8005: 9p 00 04 4 STA $0400,X

8008: E8 5 INX

8009: EO 16 6 CPX #22

800B: DO FS5S 7 BNE MAPLOP

800p: AC 54 cO 8 MAPOUT LDY $CO054

8010: 8C 51 coO 9 STY $CO051

8013: 4C 13 80 10 LooOP JMP LOOP ,
8016: 50 4C 45 11 TEXT ASC 'PLEASE TYPE YOUR NAME:'

8019: 41 53 45
801¢C: 20 54 59
801F: 50 45 20
8022: 59 4F S5
8025: 52 20 4E
8028: 41 42 45
8028: 3A N

- **x* SUCCESSFUL ASSEMBLY: NO ERRORS
FIGURE 10. Assembler Listing

1. Figure 10 is copy of a printout from a 6502 assembler. Each line shows the
beginning address of the machine language code, the code itself, the line number of
the Agsembly Language instruction, and then the Assembly Language instruction.
The address and the machine language code are given in hex. The prefix ‘$’ is not
used—you're supposed to know that it’s hex.

In this instruction:

8013: 4C 13 80. 10 LOoOP JMP LOOP

{a) What's the memory address?
(b) What’s the machine code?

(c0 What’s the Assembly Languaée code?

(d) What’s the line number?

(a) 8013; (b) 4C 13 80; (c) LOOP JMP LOOP: (d) 10

2. A machine language instruction can be composed of one, two, or three bytes.
The first byte is always the operation code. This one-byte code tells the 6502 pro-
cessor exactly what to do and what addressing mode to expect in the operand. For
example, to a 6502 microprocessor, $9D means ‘store the byte from the accumulator
at a memory location indicated by an indexed direct address’; $9C means store the
byte from the Y register at the location given by a direct address’; $E8 means ‘add
1 to the X register.’

ASSEMBLER DIRECTIVES 109

(a)
(b)

{c)

In the listing, you can see all the operation codes in this column.

8000: ‘ 1 ORG $8000
8000: A2 00 2 LbA #O
F002: BD 16 80 3 MAPLOP LDA TEXT,X
etc.

How long is a machine language instruction?

Which part of the machine language instruction is the operation code?

In this instruction: ' SN
800D: AC 54 (O 10 LDY $CO054

What’s the machine operation code for LDY?

—_— e mm e e— e w— e— e

{a) 1-3 bytes; (b) the first byte; (c) $AC

3.

Many machine instructions are only one byte long. They have only an operation

code and no operands. Assembly Language instructions that have no operands, such
as TAX, get translated into one-byte machine instructions.

(a)

(b)

Which of the following types of instructions translate as one-byte machine
language instructions? ’

____ instructions with no operands
___ instructions with direct address operands

__ instructions with zero-page direct operands

J— instructions with immediate operands

Which of the following instructions would translate into one byte?

— LbXx $15)
. sBC #2

— TAY

— STA $1575
—— INX

(a) instructions with no operands; (b) TAY, INX

"110 6502 ASSEMBLY LANGUAGE PROGRAMMING

4. Instructions with direct, indexed direct, or indirect operands get translated in-
to three-byte machine instructions. The first byte contains the operation code. The
second and third bytes contain the address specified in the operand. Remember that
6502 addresses are two bytes long.

most significant byte least significant byte

In the machine language instruction, the least significant part of the address goes
into the second instruction byte and the most significant part of the address goes
into the third instruction byte. In other words, the two address bytes are reversed.
The processor straightens them out when it uses that address.

For example, LDY $0555 is translated as AC 55 05. $AC is the machine opera-
tion code for LDY with a direct address, and 55 05 is the address of the operand
with the bytes reversed.

The instructions LDY $0555,X and JMP ($0555) would also both have 55 05 as
the second and third bytes of their machine code. The processor would know how to
use these addresses by looking at the machine operation code: $B4 for LDY with an
indexed direct operand; $6C for JMP with an indirect operand.

(a) Which of the following types of Assembly Language instructions have a three-
byte machine language counterpart?

— instructions with no operands

—__ instructions with direct operands

— instructions with immediate operands
— instructions with indexed direct operands
— instructions with indirect operands

(b) Which ones of the following instructions would translate into three-byte
machine language instructions?

—_ INX
— JMP (82135)
" ____ SBC $15,X
—— ADC $1212
—— LbY #5
—— ADC SFEAB,Y

{c) In the machine language instruction AC 54 CO0, what address is referenced?

ASSEMBLER DIRECTIVES 111

{a) instructions with direct operands, instructions with indexed direct operands, in-
structions with indirect operands; (b) JMP ($2515), ADC $1212, ADCSFEAB,Y; (c)
$C054

5. Instructions with immediate, zero-page, and relative addresses get translated
into two-byte instructions. The first byte contains the machine code and the second
byte contains the operand. Remember that all the pre- and post-indexed indirect
operands are zero-page addresses.

Which of the following Assembly Language instructions have a two-byte
machine language counterpart?

— f(a) \instructions with no operands

— (b) instructions with immediate operands

— {c) instructions with pre-indexed indirect operands
____ (d) instructions with indirect operands

_ (e) instructions with zero-page direct operands

—— (f) instructions with post-indexed indirect operands
—— (g instructions with indexed direct operands ’
_ (h) instructions with rela;tive operancis

— (i) instructions with direct operands

__ (j) instructions with indexed zero-page operands

Which of the following instructions would translate into two-byte machine
language instructions?

— (k) sBcC 815
(" sEc

— (m) aApc (s10),Y
___(n) BNE TOTAL
—_{o) Jmp 831212
—_(p) LDA SFF,X
__ (@ abc w241
__ (r) sTA $0300,x
—(8) LDA ($93,x)

{b), (c), (e), (f), (h); (k), (m), (), (n), (p), (q), (8)

112 6502 ASSEMBLY LANGUAGE PROGRAMMING

6. Let’s review the subject of machine language instruction size. 6502 assembler
instructions with no operands translate into one-byte machine language instructions.
Those with operands in direct, indexed direct, or indirect addressing modes translate
into three-byte machine language instructions. All others translate into two-byte
machine language instructions—that includes those with operands in immediate,
zero-page direct, zero-page indexed direct, pre-indexed indirect, post-indexed in-
direct, and relative addressing modes.

Fill in the table below to indicate whether each type of instruction has one,
two, or three bytes. For each line, check the appropriate box.

TYPE EXAMPLE ONE BYTE TWO BYTES THREE BYTES

(a) no operands TAX [1] [1 - [1]

(b) immediate LDA #s$12 [] [] []

(¢) direct LDA $24B1 [1] [] []

(d) zero-page LDA $16 [] £ 1 {1
direct

(e) indexed LDA. $24B1,X [1] [] []
direct -

() zero-page LDA $16,X [] [] []
indexed
direct

(g) indirect JMP ($2416) [] [] []

(h) pre-indexed LDA ($16,X) [] [rr _
indirect

(1) post-indexed LDA ($16),Y [1] [] []
indirect

() relative BE@ START [] [] . []

ASSEMBLER DIRECTIVES 113

TYPE EXAMPLE . ONE BYTE TWO BYTES THREE BYTES
(a) no operands TAX .4 [] £ 1]
(b) immediate LDA #$12 [] [X] []
(¢) direct LDA $248B1 (1 {1 [X]
(d) zero-page LDA $16 £ [X] []
direct
(e) indexed LDA $24B1,X [] (1 [Xi
direct .
(f) zero-page LDA $16,X [1] X1 [1
indexed
direct
(g) indirect JMP ($2416) [] {1 (Xi
(h) pre-indexed LOA ($16,X) [1] X (]
direct ’
(1) post-indexed LDA ($16),Y (] X] {1
indirect
() relative BEQ START . [] X1 []

Now you know how Assembly Language instructions get translated into
machine language instructions. But where do the memory addresses come from?
And how are labels interpreted as operands? We’ll explore these things next.

7. Your program must be stored in main storage, or memory, in order to be ex-
ecuted. Only the machine code is stored. It’s stored as a sequential series of bytes.

Imagine that the following diagram depicts the beginning of page 80 in main
storage.

N A N A A A

these are
the
addresses

Each box représents the memory space to hold one byte. The numbers beneath
represent the memory addresses, in hex.

OO0 O
-0 0 0
NO O
WO O
H 000
wo oo
o000
~NO O o
0O O o
»0 0

114 6502 ASSEMBLY LANGUAGE PROGRAMMING

If we loaded the machine code from Figure 10, it would look like this:

[x2 Joo [eo [16 [80 [9» Joo Jos [€8 [€0 [16] etc.
8 8 8 8 8 8 8 8 8 8 B8 V
©o 0o 0 O 0O 0O 0O O 0O O 0O
©o 0 0 0 0O 0 0 O O 0 0O
0o 1 2 3 4 S 6 7 8 9 A

The first line in Figure 10 is an assembler directive. It does not get stored, but
it tells the processor to start loading the next instructions at address $8000. The
program will be loaded into main storage in straight succession until another ‘ORG’
directive is found, or the last byte of code is loaded.

The first instruction, A2 00, goes into bytes 8000-8001. The second instruction.
BD 16 80, goes into bytes 8002-8004.

(a} In Figure 10, the third machine instruction is:

Where will it be stored in memory?

(b) Suppose the program shown below was loaded into memory:

0000 20 50 AB 1 JSR INPUT®
0003 AA 2 TAX

0004 E8 3 INX

0005 85 12 4 STA 812

Show the memory contents in the diagram below.

(@) 9D 00 04, in bytes 8005-8007
(b)

[20 [so [ae [an Je8 Ja8s [12 |...]

OO0 0O
000
NOO O
WOoOOoOOoO
$00O0
nooo
o000

ASSEMBLER DIRECTIVES 115

8. Here is the memory diagram for Figure 10 again.

(a2 [00 [BD [16 |'so|9o|oo[o4 [es [eo [16 |00 |

(=N =N,]
~“~ 00 ™
NOO o
Woo ™
S$00
Voo o
[l =Nl]
~NOOo
WO O ™
VWO O o
>»00 ®
OO o

Compare it to the figure. The left-hand column of the listing gives the memory
address for each instruction. It is the address of the first byte—the byte that con-
tains the operation code. We call this the instruction address.

{a)} Use the left-hand column in Figure 10 to locate the addresses of these instruc-
tions:

CPX #22

MAPOUT LDY $CO054

STA #0400,X

(b) What does the instruction address tell you?

(a) $8009, $800D, $8005; (b) the memory address of the first byte—the operation
code—when the program is stored in memory

9. When a program is loaded for execution, the microprocessor will be told the
starting address—for example, $8000. When the program is executed, the
microprocessor begins by examining location $8000. From the operation code there,
the microprocessor knows whether the first instruction is one, two, or three bytes. It
picks up the instruction and advances the program counter (PC) to point to the next
instruction address. If the first instruction is two bytes long, for example, the PC is
set to 8002. Then the first instruction, whatever it is, is executed.

Assuming that the first instruction was not a jump or a branch, the PC is
pointing at the first byte of the second instruction so that’s the next instruction to
receive control. The operation code is examined, the PC is incremented, and the in-
struction is executed. And so instructions are executed one after another straight
through memory until a jump or branch is encountered.

Suppose your program looks like this:

0000 A9 OS5 1 LOA #5
0002 18 2 cLe

0003 69 DA 3 ADC #10
0005 85 30 4 STA 830

116 6502 ASSEMBLY LANGUAGE PROGRAMMING

(a) What's the first instruction to be executed? (Write your answer in Assembly

Language).

(b) Before it is executed, what will the PC be set to?

(¢) What instruction will be executed second?

(d) Which diagram below best depicts the way in which instructions are executed
as long as there are no jumps or branches?

(1) -
Lt bbb T]
O~ A A~

) I O
N

- 1)

(a) LDA #5; (b) $0002; (c) CLC;

(@ (1)

Y

10. A jump or a branch causes the address in the PC to be replaced, thus changing
the straightforward sequence of instructions.
Examine the program listing below.

0000 A9 00 1 LDA #0
0002 4cC 07 00 2 JMP $0007
0005 A2 17 3 LDX #23
0007 85 30 4 STA 830
0009 4C 09 00 5 JMP $0009

ASSEMBLER DIRECTIVES 117

(a) When the program is loaded into memory, what is the first instruction to be

executed? (Give your answer in Assembly Language.)

(b) What is the second instruction to be executed?

(c) What is the third instruction to be executed?

(d) What is the fourth instruction to be executed?

(e} When does the LDX instruction get executed?

{f) (Extra thought question) What do you think would happen if the second in-
struction said JMP $0006 instead of JMP $0007?

{a) LDA #0; (b) JMP $0007; {c) STA $30; (d) JMP $0009; (e) never; (f) the
microprocessor would try to treat 17 as an operation code. If it is a legitimate opera-
tion code, that instruction would be picked up and executed, probably yielding a
result that was not intended. If it isn’t an operation code, the microprocessor will do
strange things.

11. The last question in the preceding frame points out a programming problem—
how do you know what address tojump to? Suppose you're writing the program
shown below. .

LdX #0O

LDA MESAGE,X
JSR QUTPUT
INX

JMP 272727

You want to jump back to the LDA instruction. But how can you know its address?
Do you have to count bytes from the beginning of the program? You might as well
code in machine language. No. You can use a symbolic address. You give the LDA
instruction a label.

LDX #0
LOOP LDA MESAGE,X
- JSR QUTPUT
INX

JMP LOOP

118 6502 ASSEMBLY LANGUAGE PROGRAMMING

And you use the label as your JMP operand. The assembler translates the label into
an address.
Use Figure 10 to answer the questions below.

(a) What value did the assembler assign to the label LOOP?

(b) What is the machine code for the instruction JMP LOOP?

(¢ How was the operand LOOP translated in the machine code?

(a) $8013; (b) 4C 13 80; (c) the address of the label LOOP was used as the operand,
with bytes reversed. (Remember that when an address is stored in memory, the
system looks for the least significant byte first, and the most significant byte
following.)

12. Let’s look at how the assembler handles labels. It actually processes your
Assembly Language instructions in two passes. The first time through, it deter-
mines the address of each instruction and builds a table of labels. At that point,
your program would look something like this:

8000: 1 ORG $8000
8000: 2 LDX #0
8002: 3 MAPLOP LDA TEXT,X
8005: 4 STA $0400,X
8008: 5 INX

8009: [CPX #22
8008: 7 BNE MAPLOP
800D: 8 MAPOUT LDY $CO054
8010: 9 STY $CO051
8013: 10 LOOP JMP LOOP

SYMBOL TABLE:

MAPLOP = 8002
MAPOUT = 800D
LOOP = 8013

The second time through, it translates the instructions. Whenever it en-
counters a label as an operand, it substitutes the appropriate address from its table.
The final product looks like Figure 10.

Many assemblers are ‘“two-pass’”’ assemblers; they go through the program
twice. ‘

(a) What do they do on the first pass?

{b) What do they do on the second pass?

ASSEMBLER DIRECTIVES 119

'

{a) Build a table of addresses for all the symbolic labels; (b) translate the instruc-
tions, using addresses in place of labels.

You've seen how instructions are addressed. Data bytes also need addresses
and a way to assign names to these addresses. Let’s talk about how to set up data
storage areas in memory.

DEFINING DATA AREAS

We use assembler directives to assign names to data storage areas. There are two
major types of data storage—uninitialized and initialized. In this book, we'll use a
DS (define storage) directive to create uninitialized data storage and ASC (ASCII)
and DFB (define byte) directives to create initialized data storage areas. Your
assembler may use different directives for these functions.

13. The DS directive defines uninitialized data storage. DS stands for “‘define
storage.”

This directive is used to reserve a group of bytes without having to define
what is to be put in the bytes. The bytes will contain whatever values were there
before; memory is not automatically cleared when a new program is started. We
refer to these accidental values as ‘‘garbage.”

Uninitialized space is usually used to store input values or the results of
calculations. It doesn’t need to be initialized because the new values will overlay the
garbage values anyway. T .

The format for a directive is the same as that for an instruction, with the direc-
tive in place of the operation code. With the DS directive, the label and comments
are optional. The operand specifies the number of bytes to be reserved. We usually
code it in decimal, but you can use binary or hex in this book if you want. (Don’t
forget that your assembler may have a different instruction and/or different rules.)

Here’s an example:

NAME ©0S 10 ; THIS RESERVES 10 BYTES FOR A NAME

(a) What does uninitialized storage contain?

(b) Code a directive to save two bytes of thi&ed space called SPACE.

(c) Code a directive to save 20 bytes of uninitialized space called STORAG.

(a) garbage; (b) SPACE DS 2; (c) STORAG DS 20 or STORAG DS $14

120 6502 ASSEMBLY LANGUAGE PROGRAMMING

Initialized storage has values in it when the program is loaded and begun. The
program defines the values to be placed there. The values might be used as con-
stants (that is, values that don't change throughout the life of the program) of in-
itial values of variables (that is, values that will change). An example of a constant
might be a message that is written to the user; such as PLEASE ENTER YOUR
USER NUMBER. An example of an initialized variable might be a page number in-
itialized to 1.

14. The ASC directive defines storage initialized with a string of ASCII values.
The operand is a string of ASCII characters, enclosed in single quotes. The label

and comments are optional. Here's an example:
/

MESAGE ASC 'HI' ; A BEG{NNING MESSAGE
The size of the data area reserved will depend on the number of characters in the
string. The example shown above will reserve two bytes.
(a) Write an ASC directive to initialize a five byte area with the value ‘WHY .
Call the area QUEST. N

(b) Look at line 11 in Figure 10. How many bytes are reserved by the ASC directive?

(a) QUEST ASC 'WHY ' (Note: don't forget the two spaces at
the end; if you leave them out, you will
only initialize a three-byte area):

{b) 22 bytes

15. The DFB directive defines storage initialized by any kind of value. DFB
stands for “‘define byte.”

The operand is a list of values, one for each byte to be defined. The values are
separated by commas. Label and comments are optional. Here’s an example:

TOMUCH ©D»FB 3,%15,12,7

The example defines four bytes. The first byte is called TOMUCH. If TOMUCH
was at addrgss 0000, the beginning of the memory map would look like this:

[os [1s[oc oz]| :..

(o=l el o Y e]
000
NO OO
WOoOOoOOo

' ASSEMBLER DIRECTIVES 121

ASCII values can be defined using DFB. The example we used before could
also be coded: ’

MESAGE DFB 'H','I"
Notice that each character is enclosed in single quotes. The ASC directive is a little
easier for most of us.
‘{a) Define a three-byte area initialized with the values 40, 10, 30. Call the area
HOWMCH.
(b) Define a four-byte area initialized with all binary zeros. Call the area COUN-
TR.
(c) Revise the above definition so COUNTR is initialized with ASCII zeros.

(a) HOWMCH DFB 40, 10, 30
(b) COUNTR DFB 0,0,0,0
(c) COUNTR DFB '0','0','0','0' or COUNTR ASC '0000°

16. A label defined by DS, ASC, or DFB has a memory address value. It can be
used as an operand in Assembly Language instructions.

It can be used in place of an address in an operand, as in JMP addr. However,
you should not jump to a data area because the computer can’t interpret ordinary
data as an instruction except accidentally.

Look at this section of a program:

OKMESS - ASC '0K*
COUNT DS 5
PAGNUM DS 1

HILOW DFB $90,%10

If OKMESS is at address $2000. the beginning of page 20 looks like this:
ASCII code uninitialized -

A

- T— .

[4r [48] 60] 72 | 3¢ [rrJoo |1 |90 10]...

A

ooonN
00N
nNoonN
woonwn
S$00N
nwoomn
coomnNn
~N~Noonmwn
ocoonN
voonNn
:

122 6502 ASSEMBLY LANGUAGE PROGRAMMING

When our program refers to OKMESS, address $2000 will be referenced; when it
refers to COUNT, address $2002 will be referenced.

Suppose we need to refer to address $2001 symbolically. At the end of Chapter
3, we talked about using expressions as operands. This is where they come in handy.
Normally, we would reference $2001 as OKMESS+1; we could also call it
COUNT-1, PAGNUM-6, or HILOW-17.

(a) What does the assembler do with the label of an ASC, DFB, or DS instruc:

tion?

(b) In which instructions could you use the above labels?
___ JMP label
—— STA label
____ ADC label, X
(c) Write a command that would put the third byte of a storage area called
LINENO into the X register.

' (d) Look at Figure 10. Write a routine that will change the last character of
TEXT from ‘’ to ‘>".

(a) Converts it to an address value; (b) STA label, ACD label, X;
(c) LbX LINENO+2;

(d) Loa #1>¢
STA TEXT+21

(Note: If you coded TEXT+22, you forgot that the first byte is TEXT+0.)

THE ORG DIRECTIVE

17. The ORG (ORiGin) directive specifies the current memory address to the
assembler. The directive ORG $0500 says, ‘“No matter what memory address you're
currently at, I want the next instruction to start at $0500.” Subsequent instructions
would follow $0500, of course.

In order to understand why ORG is important, you need to understand how
your programs are ordinarily assembled and loaded into memory.

ASSEMBLER DIRECTIVES 123

The assembler will put your first instruction at memory address $0000. In the
code below: -

START LDX #0
STX COUNTR

the instruction for LDX #0 will be assigned to addresses $0000 and $0001. The code
for STX COUNTR will be assigned to addresses $0002, $0003, and $0004.

After the program has assembled, it can be run. When you give the command
to run it, it is loaded into memory at the addresses assigned by the assembler.

(a) Where does the assembler begin assigning addresses?
(b) If the assembler assigns an address of $0014 to an instruction, where will that

instruction be loaded when the program is executed?

(a) $0000: (b) at address $0014

18. Sometimes we don't want to load our programs into address $0000 and subse-
quent addresses. Most of our computers have a system monitor—an executive pro-
gram with its own instructions and data. We want to avoid overlaying the system
monitor with our program.

Suppose your system monitor uses addresses $0000 through $0050 for its zero-
page data. Its instructions are on pages $A0 through $D5 and its subroutines are on
pages 8F0 through $FD.

(a) Where could you put your zeropage data without interfering with the system

monitor’s zero page data?

(b) Where could you start your instructions and subroutines? They shouldn’t be

on page 0 or 1 (page 1 is reserved for the stack).

(a) at address $0051 through $00FF; (b) at address $0200 (page 2)

124 6502 ASSEMBLY LANGUAGE PROGRAMMING

19. . How do you tell the assembler to put your zero-page data starting at address
$0051 and your instructions starting at page $02? You use the ORG directive.
Here’s an example:

ORG $0051
STOREX DS 1
STOREY DS 1
YESMSG ASC 'THAT IS CORRECT'
NOMSG ASC 'NO -- TRY AGAIN'
HUHMSG ASC 'HUH?'
COUNTR DFB 00
FRAMNO ©DFB 0,1

ORG s0200
START Lpx #1
JSR INPUT

(a) What address will be assigned to STOREX?

(b) What address will be assigned to STOREY?

{¢) What address will be assigned to the first byte of YESMSG?

{d} What address will be assigned to the LDX #1 instruction?
(e} When we run this program, what will be loaded into address $0000?

{a) $51; (b) $52; (c) $53; (d) $0200; (e) nothing; this program doesn’t affect address
$0000

20. Add assembler directives to the following code so the data is stored on the
zero page beginning at address $A0, and the instructions begin on page $05.

SAVEA DS 1.

SAVEX DS 1

SAVEY DS 1

COUNTR DS 2~

PAGENO DFB 1

BLOKNO DFB 1

LDA #30A

JSR OUTPUT

ASSEMBLER DIRECTIVES 126

ORG $00AO
SAVEA DS 1
SAVEX DS 1
SAVEY DS 1
COUNTR DS 2
PAGENO DFB 1

BLOKNO DFB 1 .
ORG $0500

LA #30A
JSR OUTPUT

21. If your first inistruction is not loaded at address $0000, how does the system
know where to find it? The answer depends on the system.

Some systems require the first instruction to be stored at location $0000.
Here’s how we handle that:

JMP START ;3 COULD 'SAY JMP 80200 °
ORG $0051

SAVEX DS 1

SAVEY DS 1

ORG $0200
START LDX #1

The JMP START instruction will be assembled at addresses $0000 and $0001.
It will cause a jump to our real first instruction, LDX at address $0200.

Some systems assume the lowest address used by the program when it is load-
ed contains the first instruction. Here’s how we can handle that.

ORG $0051

JMP START
SAVEX DS 1
SAVEY DS 1

ORG $0200
START LoX #1

When the program is loaded, control is given to address $51, where it is im-
mediately jumped to address $0200, our real first instruction.

126 6502 ASSEMBLY LANGUAGE PROGRAMMING

Suppose your system expects the first instruction to be loaded at address
$0000. Adapt your code from the previous frame so the system can find your real
first instruction.

ORG $00A0
SAVEA DS 1
SAVEX DS 1
SAVEY DS 1
COUNTR DS 2
PAGENO DFB 1
BLOKNO DFB 1

ORG 30500
LDA #30A
JSR OUTPUT

se e N

All you need to do is add a JMP $0500 instruction at the beginning:

JMP 30500
ORG $00AC

This completés our discussion of the ORG directive. You will see it used occa-
sionally throughout the remainder of this book. You'll probably need to use it with
your system if you don’t want to overlay the system monitor.

THE EQU DIRECTIVE

22. Let’s move on now to another assembler directive. The EQU (equate) directive
directly assigns a value to a label. Any value that is acceptable to your assembler
(usually 0 ... 65535) can be assigned. For example:

HIVAL EQU SFF
LOVAL EQU $00

Now anywhere in the program that the label HIVAL is used as an operand, the

assembler will substitute $FF, and $00 will be substituted for LOVAL.
' Note the important difference between equates and symbolic addresses. In the
above example, HIVAL and LOVAL are not symbolic addresses. They do not have
address values; they have the value of their operands.

The EQU directive does not define a storage area. It is not translated into a

machine instruction. It simply tells the assembler, “When I say this, I really mean
that.”

ASSEMBLER DIRECTIVES 127

(a) Code a directive to assign the value $10 to the label TTYPRT.

(b) Code directives to assign the value $0D to the label CR and the value $0A to
the label LF.

(a) TTYPRT EQU $10; (b) CR EQU $0D; LF EQU $0A

23. An EQU label can be used for any operand where its value makes sense. For
example, suppose you have this set of equates:

ADDIT EQU 15
HIVAL EQU SFF
LOVAL EQU 300
MESAG EQU 'HI'
STORIT EQU $1517

MESAG and STORIT are two-byte values; the others are one-byte values.

The instruction LDA #HIVAL would be the same as LDA #3FF; LDA
LOVAL would be equivalent to LDA $00, or load A from the byte at address $0000.

The instruction LDA #STORIT would not make sense since you can’t have a
two-byte immediate operand, but LDA STORIT would be valid.

For each of the following operand types, indicate which of the above labels
could be used:

(a) immediate
(b) direct

(c) zero-page indexed direct

(a) #ADDIT, #HIVAL, and #LOVAL could all be used as immediate operands
because they all represent one byte values; (b) MESAG (which is $4849) and

STORIT could both be used as direct addresses because they both represent two-
byte values; (¢c) ADDIT, HIVAL, and LOVAL could all represent zero-page ad-
dresses “

128 6502 ASSEMBLY LANGUAGE PROGRAMMING

24. Why do we use equates? Why not use the values themselves directly as
operands? Because equates make it easier to revise a program. Suppose you need to
change the address of an output port on your system from $0210 to $0215. If you
have defined that address this way:

OUTPRT EQU $0210

and’then used OUTPRT in the instructions, you have to make only one change. If
you didn’t use the equate, you’ll have to search the entire program for references to
the $0210 address.

A programmer spends about 25% of the time writing new programs and 75%
of the time revising old programs—correcting, updating, expanding, adapting, and
so forth. All new programs should be written with the thought in mind that they
will be revised at least ten times before they have outlived their usefulness. Equates
are one way to make the revision task easier later on.

{a) A really good program never needs to be changed.
True or false?

{b) How do equates make revisions easier?

(a) false—the better a program is, the more likely it is to be borrowed, adapted,
expanded, etc.; (b) by cutting down the number of instructions that have to be

changed

25. Equates look similar to DFBs and ASCs, but they have different effects and
different uses. -, ' ‘
Match;

— (a) EQU 1. stores values in memory
{b) DFB and ASC 2. does not store values in memory

3. label can have any value, of any
length

4. label has a two-byte address value

5. label can be used in place of an ad-
dress in an operand

6. label can be used as an address, or
as an immediate byte

(@) 2, 3, 6; (b) 1, 4, 5.

ASSEMBLER DIRECTIVES 129

26. When do you use EQU to define a value and when would you use DS, DFB, or
ASC? The answer lies in whether you need the value to be stored in memory. If the
value is used as data, which is operated on by an instruction, it needs to be stored
in memory. If the value is used as an operand, then you can use EQU to define it.
We usually use EQU to define values for immediate operands.

Here are some examples:

Lbx #0

The zero is an immediate operand. It does not need to be stored in memory
since it is included in the instruction. You could code it this way instead:

ZERO EQU 0

LDX #ZERO
Here's another example:
LDA #3$0D
Again, the immediate byte can be equated, as in:

CR EQUu 30D

LDA #CR

There are two advantages to doing this. First, it’s clearer to someone reading
the program that we’re loading a carriage return code into A. Second, if we want to
move our program to a system that has a different code for a carriage return, we
have to make the change in only one place—the EQU directive.

Here’s another example: :

LOY INDEXY

Here, INDEXY is a direct address. The value stored at that address is the
data used in this instruction. The value must be stored in memory, so we would
define INDEXY this way:

INDEXY DS 1
LB? INDEXY
Suppose, instead, we defined it this way:

INDEXY EQU 1

LDY INDEXY

The LDY instruction would translate as LDY 1. The operand would be interpreted
as a zero-page address, equivalent to $0001, and the value from that address would
be loaded into Y. ~

130 6502 ASSEMBLY LANGUAGE PROGRAMMING

You'can define addresses in EQU instructions. Here’s an example:

INPUT EQU S$FDOC
! OUTPUT EQU SFDED

JSR INPUT

JSR OUTPUT
When the system executes the JSR INPUT example, it will jump to the subroutine
beginning at address $FDOC. JSR OUTPUT will jump to the subroutine beginning
at SFDED. We use this technique to reference addresses outside the domain of our
program. For addresses within the program, put the labels on the routines
themselves.

The code below shows some values that we would define with EQU directives
and suggests the directives we would use.

CR EQU $#D

ouTPUT EQU $FPED
LF EQU $8A

JSR

Lox (#C. 2ER0 EQL Z
MES SAG LDA OUTEXT,X
JSR ISFDED)

o LENG2Y EQU 2
BNE MESSAG

OUTEXT ASC 'I DON'T UNDERSTAND THAT!®

NEWLIN LDA
JSR
LbaA

Now you try it. Indicate which operands below could be replaced by labels
from EQU directives and.show the directives you would use. Also show any DS,
DFB, or ASC directives that are needed by the routine.

SAVREG STX SAVEX

STY SAVEY
Lpx #1

LDY #25
JSR MWRITIT
LDX SAVEX
LDY SAVEY
ADC #5

BCC DOLOOP

ASSEMBLER DIRECTIVES 131

Here’s what we would do:

SAVREG STX SAVEX 4
STY SAVEY _ oNE EQV

Lox W,FNE Eeu 45
JSR WRITIT

LbX SAVEX E& c
LDY SAVEY \WE v

e @Go—

BCC DOLOOP

SAVEX DS 1
SAVEY DS 1

27. Many systems have a special equate instruction that looks like this:
label EQU *

The * operand says ‘“this address.” The EQU instruction assigns the current ad-
dress as the value of the label. Since the EQU instruction doesn’t have its own ad-
dress (it’s not translated into machine language), the label becomes the address of
the next Assembly Language instruction. Thus:

MIXER EQU »*
JSR INPUT

is the same as:
MIXER JSR INPUT

Why use the equate? To make future revisions easier. Suppose you find you
need to add an instruction to the beginning of the MIXER routine. It’s easier to
make the revision if the symbolic address has its own line.

We will use the EQU * instruction throughout the remainder of this book.
Your assembler may not recognize the instruction and may have a different way of
assigning labels to routines. You’ll have to check your assembler manual to see
what you can use. '

132 6502 ASSEMBLY LANGUAGE PROGRAMMING

The familiar echo routine is shown below. Revise it so the label is on a separate

line. ‘
;

ECHO JSR INPUT

JSR OUTPUT

JMP ECHO

ECHO EQU *

JSR INPUT
JSR QUTPUT
JMP ECHO

28. Suppose you're writing a rather long program. Your system recommends star-
ting all programs at $1000. Good programming practice recommends putting all
data definitions after the last instruction. You want to follow these recommenda-
tions but you do have two frequently used data items that should be on the zero
page, starting at address $10. (Assume your operating system uses addresses
$00-80F for its own purposes.)

CR EQu $0D
LF EQU $0A
HIVAL EQU S$FF
ZLERO EQU O
ORG $10
COUNTR DS 2
PAGNUM DFB 1
PROMPT ASC '>! .
QUESTN ASC '?°
ORG $1000
NEWPAG EQU *»
LDA PAGNUM
JSR OQUTPUT

END JMP END
HEADNG ASC 'DISK UTILIZATION PAGE: '

TEMPV DS 1
NEWSIZ DS 1

FIGURE 11. Sample Program Layout

ASSEMBLER DIRECTIVES, 13—3

Figure 11 shows a good way to lay out the program. First code the data
equates. These aren’t stored, but when they appear first, the assembler can use
them as it processes later instructions. Next use ORG to get to address $0010. Then
define the data you want to put on the zero page, and use ORG to get to address
$1000. Here you can actually begin the instructions that will get translated into

. machine code.

The END JMP END instruction halts the program. We’ve included that in-
struction to show that some more data definitions follow it. It’s safe to put the
definitions there because control won’t accidentally fall through from the JMP in-
struction to the next byte of memory. Always make sure that control doesn’t get in-
to your data areas when writing your programs.

(a) Where do you usually put the EQU instructions that assign speci_fic values to
labels? (Not the EQU * instructions.)

(b) Rearrange the following program so that all the equates come first, all the non-
ASCII data is on the zero page {starting at address $0050), and all the instruc-
tions are on page $04. The ASCII data should follow the instructions. Put an
instruction at location $0000 that jumps to your first instruction at $0400.

ZERO EQU
YRFLAG DFB
YEAR ASC
MESAG ASC
OUTPUT EQU
DOYEAR EQU
LDX
MSGLOP EQU
LDA
JSR
INX
CPX
BM1
LDX
LDA
BEQ
LDX
YROUT EQU
LDA
JSR
INX
LDA
JSR
DONE JMP

0

2ERO

18586"

'THE YEAR IS °
$€0S55

*

#1ERO

*

MESAG, X

QUTPUT .

#12
MSGLOP
#ZERO
YRFLAG
YROUT
#2

*
YEAR, X
OUTPUT

YEAR,X
QUTPUT
DONE

134 6502 ASSEMBLY LANGUAGE PROGRAMMING

(a) at the beginning of the program;

(b) ZERO EQU O

OUTPUT EQU $COSS

ORG $0

JMP DOYEAR

ORG $50
YRFLAG DFB ZERO

ORG $0400:
DOYEAR EQU *

LDX HZERO
MSGLOP EQU *

LDA MESAG,X

JSR OUTPUT

INX

CPX #12

BMI MSGLOP

LDX #ZERO

LDA YRFLAG

BEQ YROUT

LDX #2
YROUT EQU =

LDA YEAR,X

JSR OUTPUT
\ INX

LDA YEAR,X

JSR OUTPUT.
DONE JMP DONE
YEAR ASC 'BS586'
MESAG ASC 'THE YEAR IS '

REVIEW

In this chapter, you have studied several assembler directives. Your assembler direc-
tives may have different names, but they should include at least the functions
shown here,

¢ The assembler program translates Assembly Language instructions into
machine language instructions. The operation code is translated into a
numeric machine code. Operand types are included in the machine code.
Addresses are converted into binary and their bytes are reversed. Im-
mediate data is converted into binary. Symbolic addresses are given
numeric address values. Labels defined by equates are given their equated
values. '

* Assembler directives speak to the assembler program. They are not
translated into machine language although their effect may be seen in the
machine code that is produced.

ASSEMBLER DIRECTIVES 135

The DS directive defines uninitialized memory space.
Format: [label] DS size [;comments]

Size gives the number of bytes to set aside. The bytes will contain gar-
bage. The label becomes the symbolic address for the first byte of that
memory area; it can be used as an operand.

The ASC directive defines memory space initialized by ASCII data.
Format: [label] ASC ‘text. ..’ [;comments]

The number of bytes set aside will depend on the number of characters in
the text. The label becomes the symbolic address for the first byte of the
memory area; it can be used as an operand.

The DFB directive defines and initializes memory bytes.
Format: [label] DFB valuelvalue. ..] [;comments]

Each value defines one byte. The label becomes the symbolic address for
the beginning of that memory area; it can be used as an operand.

The ORG directive specifies the current memory location to a'ssembler.
Format: [label]l ORG addr [;comments]

ORG is used to skip over memory space, either because it’s in use by
other programs or to reserve data space without using the DS instruction.
It’s most often used to specify where the program starts in memory.

The EQU instruction assigns a value to a label.
Format: label EQU value [;comments]

The assembler substitutes the value for the label wherever the label is
used as an operand.

label EQU * is a special instruction that assigns a symbolic address to
the current memory address.

CHAPTER 6 SELF-TEST

Describe the function of the assembler.

Which of the following become part of the machine language program?

labels
operation codes
operands

comments

136 6502 ASSEMBf.Y LANGUAGE PROGRAMMING

3. Which of the following are replaced by the assembler with address values?
— a. labels ‘

—_ b. operation codes

——__ ¢. operands

—— d. comments

4. Which of the following are ignored by the assembler?
__ a. labels

—_ b. operation codes’

—___ ¢. operands

- d. comments

5. Refer to Figure 12 and answer the questions below.

What is the address of the INX instruction?

What is the value of the label INLOOP?

Look at the JSR instruction at address $8002. What value did the
assembler substitute for the operand INPUT?

Why?
8000: 1 ORG $8000
8000: 2 CR EQU $8D
8000: A9 00 3 LDX #0
8002; & INLOOP EQU »
8002: 20 00 90 5 JSR INPUT
8005: 20 80 90 6 JSR OUTPUT
8008: 9p 14 80 7 STA INTEXT,A
800B: E8 8 INX
800C: 38 9 SEC
800D: E9 8D 10 SBC #CR
800F: DO F1 11 BNE INLOOP
8011: 4C 11 80 12 DONE JMP DONE
8014 13 INTEXTY DS 80
9000: 20 ORG $9000
9000: 21 INPUT EQU *
9080: 30 ORG $9080
9080: 31 OUTPUT EQU =

FIGURE 12. Parts of an Assembler Listing

ASSEMBLER DIRECTIVES 137

d. Look at the SBC instruction at address $800D. What value did the

assembler substitute for CR?

Why?
6. Match.
a. assembler directive 1. translated into machine language;
controls the microprocessor.
__ b. instruction 2. not translated; controls the

assembler program.

7. Code directives for each of the following functions.
a. Define an uninitialized 10-byte data area named QUES7A.

N

b. Define a data area named QUESTB initialized to $5B.

c. Define a string of initialized bytes containing the digits 0 through 9 in
pure binary code, not ASCII. Name the area DIGITS.

d. Define a string of initialized bytes containing “SELF-TEST.” Name the
area QUIZ.

e. Set the label ZEROS equal to zeros.

f. Set the label LIMIT equal to ‘**’. Don't store it in memory.

g. Assign the label ANSWER to the first instruction of the routine below.
Use an EQU statement.

LDA NOTEXT,X
INX
JSR OUTPUT

h. Cause the routine below to be stored beginning at $0200.

LDA NOTEXT,X
INX
JSR OUTPUT

138 6502 ASSEMBLY LANGUAGE PROGRAMMING

8. The following simple program reads, echos, and stores 10 bytes. Set up the
program so the zero-page data, COUNTR, is at address $05. Initialize it to a value
of ten. The instructions should start at the beginning of page $06. The first byte in
memory, $0000, should be a jump to the first instruction.

Code the following equates: INPUT=8C054, OUTPUT=$C0A 4, ZERO=0.
Also, define a storage area (STORAG) to hold ten bytes. Put it at the end of the in-
structions instead of on the zero page.

LDX HZERO
INSTOR EQU =

JSR INPUT

JSR OUTPUT

STA STORAG,X

INX

DEC COUNTR

BNE INSTOR
STOP JMP STOP

Self-Test Answer Key
1. translates Assembly Language instructions into machine instructions

2. b, c

ASSEMBLER DIRECTIVES 139

3. a

4 d

5. a. $800B
b. $8002

1

c. $0090; this is the address of the instruction labeled INPUT ($9000) with
the bytes reversed

d. $8D; CR is assigned this value in an EQU directive

[asd

10
$5B
0,1,2,3,4,5,6,7,8,9

'"SELF-TEST!®

6. a. 2
b. 1
7. a QUES7A DS
b. QUES7B DFB
c. DIGITS DFB
d. aulz ASC
e. LEROS EQU O

LIMIT EQU "#x%!

ANSWER EQU *

g
h. 0rRG $0200

INPUT EQU
OUTPUT EQU

Your completed program sheuld look like this:

$C054
$SCOAL

ZERO EQU O

J MP
ORG
COUNTR DFB
ORG
LDX
INSTOR EQU
JSR
J SR
STA
INX
DEC
BNE
STOP JMP
STORAG DS

$0600

$05

10 .
$0600

HZERO

*

INPUT
oUTPUT
STORAG, X

COUNTR
INSTOR
STOP

10 .

If you missed any of these, review the appropriate frames before going on to

the Manual Exercise.

~

140 6502 ASSEMBLY LANGUAGE PROGRAMMING

MANUAL EXERCISE

Before continuing, you should find out what the assembler directives are for your
assembler. Look them up in your manual under “directives’ or “pseudo-operations.’
If that fails, try looking up EQU and ORG. Many assemblers use those two direc-
tives. Use your manual to find the answers to the questions below.

’

1. Show the format of the directive (or directives) to define initialized space.

|

2. Show the format of the directive to define uninitialized space.

3. Show the format of an equate.

4. Show the format of the directive to specify an origin.

5. What other directives are available to you?

N

6. How does your system know where your program starts?

7. What areas of memory are reserved for your operating system and not to be

overlaid by your program?

N

CHAPTER SEVEN

CONDITIONAL
INSTRUCTIONS

In this chapter we’re going to expand on your basic set of instructions. You will
learn how to use the conditional instructions, which test the values of the status
flags and take appropriate action. (That is, they take action only if a certain condi-
tion—as indicated by the status flags—is true.) For example, you've learned how to
use the JMP instruction to create a closed loop, but you can also tell the system to

jump or branch only if the zero flag is on (BEQ) or branch if the carry flag is not on
(BCO).

The conditional instructions are used to create open loops and alternate pro-
gram paths. You'll learn how to code both of these types of program structures.
When you have finished this chapter, you will be able to:

* Code the following instructions:

— BEQ (Branch if EQual to zero)
BNE (Branch if Not Equal to zero)
BCC (Branch if Carry Clear)
— BCS (Branch if Carry Set)
BMI (Branch if MInus)
— BPL (Branch if PLus)
BVC (Branch if oVerflow Clear)
BVS (Branch if oVerflow Set)
CMP (CoMPare to accumulator)
CPX (ComPare to register X)
CPY (ComPare to register Y)

Create the following types of program structures:
— open loops
— alternate paths

141

142 6502 ASSEMBLY LANGUAGE PROGRAMMING

REVIEW OF THE FLAGS

The conditional instructions all use the status flags, so let’s review those flags
before we start on the instructions.

1. Seven of the eight bits of the flag register are used as status flags. The seven
status flags are: sign, overflow, break, decimal mode, interrupt disable, zero, and
carry. Of these, you'll only use the sign, zero, and carry flags for conditional instruc-
tions, so those are the ones we’ll concentrate on in this chapter.

(a) How many status flags are there?

(b) Which ones will you use for condition testing?

(c) If a flag is one bit, what are its two possible values?

(a) seven; (b) sign, zero, carry; (c) zero and one

2. The zero flag is turned on or “set” (equal to 1) when a value becomes zero.
Otherwise, it is turned off or “cleared” (equal to 0). It is set or cleared as the result
of any command that changes the value in a register or that increments or
decrements a memory location. (You'’ll learn later that it is also set as a result of cer-
tain other commands, such as “compare.’’)

The zero flag and the other flags are not affected by branch or jump instruc-
tions or by moving data to memory.

Below is a list of instructions you learned in Chapter 5. Select the mstructlons
that affect the zero flag.

— (a) LDA i —— (d) SBC
__ (b) INC — (e} STX
__ (0 ADC — () IMP

(a), (b}, (c), (d) (Your reference summary in Appendix C shows the effect of each in-
struction on the status flags.)

3. Some people get confused by the setting of the zero flag when a result reaches
zero. A non-zero result turns the zero flag off (0) and a zero result turns it or (1).

In the following example, suppose that the instruction SBC #5 has just been
executed.

(a) If the accumulator = 0, the zero flag =

(b) If the accumulator does not = 0, the zero flag =

CONDITIONAL INSTRUCTIONS 143

(@) 1;(b) 0

4. In each of the following examples, show whether the zero flag will be set on (1)
or off (0) after the operation,

zero flag accumaulator instruction value in zero flag
(a) 1 00 ADC #10 -
(b) 1 10 STA OUT -
{c} 0 10 LDX #0 —_
(d 0 02 SBC #2 -
(e) 0 00 SBC #3 —

(a) 0; (b) 1; (c) 1; {d) 1; (e) O (Notice that the status of the zero flag is not affected by
the STA instruction. It remains unchanged.) ‘)

5. The carry flag indicates whether an operation caused an overflow; that is,
whether the result is too large for the receiving byte. It is set after an addition
operation if a one is carried from the most significant bit (the first bit) and may be
lost. It is also set if a subtraction operation did not need to borrow in order to sub-
tract the most significant bit. Otherwise, it is cleared by any arithmetic operation,
except increments and decrements. It’s also turned off or on by the CLC and SEC
commands. {You will learn later about other operations, such as “compare,” that af-
fect the carry flag.)

Indicate the setting of the carry flag after each operation below.

carry receiving byte instruction effect
{a) 0 A=%11000011 ADC %01100011 —_
{b) 0 A=%11000111 LDA %10110011 -
(c) 1 A=%11000111 SBC %00001111 —_
(d) 0 A=%10001111 ADC %11000000 N
(e) 1 ‘ CLC -
{f) 0 X=%11111111 INX -

(a) 1; (b) 0; (c) 1; (d) 1; (e) 0; () O

The carry flag tells you whether the result of an arithmetic operation has
overflowed the accumulator. It’s up to you to code your program to correctly handle

144 6502 ASSEMBLY LANGUAGE PROGRAMMING

overflow situations and keep the end result accurate. You'll learn how to handle the
four basic arithmetic functions—addition, subtraction, multiplication, anq division
_ —~in Chapter 11.

6. The sign flag reflects the value of the most significant bit (MSB) in the result
field. If the MSB is on, the sign flag is set, and if the MSB is off, the sign flag is
cleared. Why? Most programmers like to reserve the MSB as a sign bit, limiting the
value in a byte to seven bits, If the sign bit is on, the value is negative. If the sign
bit is off, the value is positive. The sign flag duplicates the information and can be
tested by the conditional instructions.

You'll learn how to handle negative numbers in Chapter 11.

The sign flag is affected by any command that changes the value in a register,
or that increments or decrements a memory location, .

Indicate the value of the sign flag after each operation below.

sign flag accumulator instruction result on sign flag
(a) 21 10001000 LDX #0 _
(b) 1 10000000 TAX —_—
(c) 0 v 00001000 ADC %11000000 —_—
(a) 0; (b) 1; () 1

You have reviewed the three major flags—zero, carry, and sign—and have seen
that they are affected by arithmetic operations. Now let’s go on to the instructions
that use them. (We'll also briefly introduce the instructions that use the overflow
flag.)

CONDITIONAL JUMPS

7. You have already learned how to transfer control to another point in the pro-
\gram using the JMP instruction. JMP is called an unconditional jump because the
jump always takes place when the instruction is executed.

A conditional jump only happens if the specified condition is true when the in-
struction is executed. Otherwise, control goes on to the instruction after the condi-
tional jump. (We say that control ““falls through” to the next instruction.)

Suppose your program contains this sequence of instructions:

MIXER EQU «

JSR INPUT
SEC

SBC #%$20
BEQ MIXER
CLC

ADC #1 -

CONDITIONAL INSTRUCTIONS 145

Figure 13 diagrams the logic of the routine. The diamond- -shaped box is used to in-
dicate the point at which a question is asked and a yes-no or true-false decision
made. In this example, we get a value from the terminal and subtract $20 from it.
We then ask the question: Does the result equal zero? (We don’t really. We really
ask if the zero flag is on. But the effect is the same.)

If the answer is yes, control is returned to the statement labeled MIXER and
the loop is repeated. If the answer is no (the result is not zero; the zero flag is off),
control falls through to the CLC instruction. /

GET
VALUE

SUBTRACT
$20

RESULT

ZERO
?

yes

no

ADD
ONE

FIGURE 13. Sample Routine

The overall function of the routine is to read characters from the terminal until
a non-blank character is obtained. We add one to that character, and what happens
after that is not shown.

146 6502 ASSEMBLY LANGUAGE PROGRAMMING

{a) Is JMP a conditional or unconditional instruction?

() Is BEQ a conditional or unconditional instruction?

(¢) In the routine diagrammed in Figure 13, what happens if the user types a
space?

{d) What happens if the user types a B?

(e) Isthe MIXER loop closed or open?

(a) unconditional; (b) conditional; (c) control returns to the beginning of the loop
(branch to MIXER); (d) control falls through (one is added to the character); (e) open

8. These are the conditional jump instructions:

BEQ — Branch if EQual: jump if the zero flagis on

BNE — Branch if Not Equal: jump if the zero flag is off

BCS — Branch if Carry Set: jump if the carry flag is on

BCC — Branch if Carry Clear: jump if the carry flag is off

BMI — Branch if MInus: jump if the sign flag is on

BPL — Branch if PLus: jump if the sign flag is off

BVS — Branch if oVerflow Set: jump if the overflow flag is on
BVC — Branch if oVerflow Clear: jump if the overflow flag is off

Write the appropriate jump instructions for the following situations:

{a} Jump to ENDER if the decrement below results in a zero,

DEX

{b) Jump to LOOP if the subtraction below results in a nonzero value.

SBC #10

(c) Jump to NEGVAL if the input value is negative,

JSR INPUT

CONDITIONAL INSTRUCTIONS 147

{d) Jump to OK if the subtraction below results in a positive value.

SBC MIND

(e) Jump to TOOBIG if the addition below results in a carry.

ADC $10

{ff Jump to CYCLE if the addition below does not overflow.

ADC HALF

{a) BEQ ENDER; (b) BNE LOOP; (c) BMI NEGVAL; (d) BPL OK; (e)
BCS TOOBIG; (fy BVC CYCLE

9. Suppose we want to branch to NOT50 if the value in the accumulat;or is under
$50. We start with a subtraction:

SEC
SBC #$50

Now which flag do we test—carry or sign?

Let’s examine the effect on the flags if A is greater than $50. The subtraction
results in no borrow, so the carry flag will be set. We don’t know the effect on the
sign flag because we don’t know the original value in A. If it’s greater than $DO, the
MSB will be on and the sign flag will be set. Otherwise, it will be cleared.

‘If A equals $50, there will be no borrow. and the carry flag will be set. The
sign flag will be cleared. (The zero flag will also be set.)

If A is less than $50, there will be a borrow, so the carry flag will be cleared.
The sign flag will be set l{gc?ause the high order bit of the remainder will always be a
one,

(a) What branch instructions should be used?

{(b) Code a routine to branch to ERROR if the value in the accumulator is less
than $10.

148 6502 ASSEMBLY LANGUAGE PROGRAMMING
(c) Code a routine to branch to TIMOUT if the value in the accumulator is
greater than ‘A’.
(a) BCC NOTSO
(b) SEC
SBC #3$10
BCC ERROR
(c) SEC
SBC #'B'
BCS TIMOUT

(In this problem, it’s necessary to subtract ‘B’ because the branch will take

place if the value was greater than or equal to ‘B.’)

10.

!

All of the branch instructions require relative address operands. When a label

is used as an operand in a branch {for example, BEQ LOOPER), the assembler will
compare the number of bytes from the current address to the label and use the ap-
propriate one-byte relative address for the operand. This means that the range of a
branch must be from —128 to +127 (—~$80 to +$7F) bytes, which is usually up to
40 instructions in either direction.

{a)
{b)

Fill in the table in Appendix C for the branch instructions.
What is wrong with this routine?

ORG $0150
START EQU =

ORG $2150
NEXT EQU * -

SBC #10
BEQ START

CONDITIONAL INSTRUCTIONS 149

(1] (2] 131 [4] 151 61 (71 8] 91

() BCC - - - - - - - - ok
BCS - - - - - - - - ok
BEQ - - - - - - - - ok
BMI - - - - - - - - ok
BNE - - - - - - - - ok
BPL - - - - - - - - ok
BVC - - - - - - - - ok
BVS - - - - - - - - ok

{b) The branch goes backward more than 2000 bytes; this is too far.

11. Suppose we want to code a fairly long routine (about 60 lines) that is to keep
repeating until a counter in register Y reaches 0. Would this work?

START EQU =

« & @
. - s

-- about 60 instructions -~

DEY
BNE START

No, we can’t branch that far back. We can, however, use an unconditional
jump to move as far as we please. One way to accomplish our purpose is:

START EQU =

-- about 60 instructions --

DEY
. BEQ@ CONTIN ‘
JMP START

CONTIN EQU =

150 6502 ASSEMBLY LANGUAGE PROGRAMMING

Here’s another example:

START EQU »

JSR INPUT ' ; READ AND ECHO

JSR OUTPUT

TAX ; PUT IT IN X

SEC

SBC #s0B ; CHECK FOR VERTICAL TAB
BE@ ENDIT ; IF 80, QUIT

TXA

-- about 50 instructions --

JMP START ; REPEAT LOOP
ENDIT EQU *

The BEQ instruction won’t work because the range is too long. See if you can
fix it.

\
CONDITIONAL INSTRUCTIONS .151

START EQU =

JSR INPUT ; READ AND ECHO
JSR OUTPUT
TAX s PUT IT IN X
SEC
SBC #s08 ; CHECK FOR VERTICAL TAB
BNE CONTIN ; IF 80, GO ON
JMP ENDIT ; OTHERWISE, QUIT
CONTIN EQU =
TXA

== about 50 instructions --

JMP START ; REPEAT LOOP
ENDIT EQU =*

12. Figure 14 diagrams the general logic of an open loop. One or more instructions
are executed in sequence. Then a question is asked. In a program, that means a con-
dition is tested. If the condition is true, control is returned to the beginning of the
loop. If the condition is false, control falls through to the next statement.

first last false
condition
instruction instruction
I true

FIGURE 14. Open Loop

Here is an example of an open loop in Assembly Language:

MIXER EQU =

JSR INPUT
cLC .
ADC #1

JSR OUTPUT
SEC

,$8C #'1?

BNE MIXER

152 6502 ASSEMBLY LANGUAGE PROGRAMMING

v

After reading a value from the terminal, we add one to it. Then we write the
new value to the terminal and subtract ASCII ‘1’ from it. If the result does not
equal binary zero, we loop back to MIXER. If the result does equal binary zero, con-
trol falls through to the next instruction. The total effect is to read characters from
the terminal until an ASCII zero is found. The character we echo is one higher than
the character that was typed.

(a) What's the difference between a closed loop and an open loop?

(b) What type of jump is used to escape a loop—conditional or unconditional?

() Code a routine to read and echo characters until the user types a carriage
return. Then let control fall through to the next instruction.

(a) a closed loop has no natural exit while an open loop does; (b) conditional;

(c) ECHO EQU =

JSR INPUT

JSR OUTPUT - '
SEC

SBC #s0D

BNE ECHO

13. We frequently want to execute a loop a specific number of times. Figure 15
shows the logic for executing a loop five times. First we set the X register equal to
5. Then we enter the loop. Each time the loop is executed, we subtract one from the
X register. When the X register reaches zero, we know we have executed the loop
five times so we allow control to fall through to the next instruction.

CONDITIONAL INSTRUCTIONS 153

SET
X
TO

—

first
instruction

last
instruction
£

l

DECREMENT
X i

no

yes

exit
loop

FIGURE 15. Counting Five Loops

We can use the X register to count loops when the loop itself doesn’t need to
use the X register. Otherwise, we would need to keep a loop counter in another
register or a memory location.

The Assembly Language routine would look like this:

LDX #5
LOOP EQU =
first instruction

last instruction
DEX
BNE LOOP

154 6502 ASSEMBLY LANGUAGE PROGRAMMING

Code a routine that will write the letter ‘B’ on the terminal three times. Then stop
processing.

LDX #3

LDA #'B'
BOUT EQU

JSR OUTPUT

DEX

BNE BOUT
DONE JMP DONE

Your routine may not look exactly like ours but it should be close. Did you
notice that you need to put ‘B’ in the accumulator only once? When you are coding
loops, don’t repeat instructions unnecessarily; they waste time, But be sure your
subroutines leave your registers intact.

14. The following routine was supposed to be executed ten times. But the pro-
grammer made a very common error and has created a closed loop instead.

CLEAR EQU
LbY #10
first instruction

last instruction
DEY
BNE CLEAR

What is the error?

CONDITIONAL INSTRUCTIONS 1586

The label, CLEAR, is in the wrong place. It should precede “first instruction,” not
LDY. The way this loop is written, the Y register is reset to 10 every time the loop
is executed and so will never reach zero.

15. The following routine was supposed to be executed three times. But the pro-
grammer has made another very common error.

LbX #3

MIXER EQU =
JSR INPUT
CcLC
ADC #1
JSR OUTPUT
TAX
STA MEMORY,X
DEX

BNE MIXER

What is the error?

(Extra thought question) How can it be corrected?
1

When the TAX instruction is executed, the loop counting value is destroyed. Since
this loop uses the X register, we must keep the loop counter somewhere else (in Y
for example). A correct routine would be:

LDY #3 ; USE Y TO COUNT
MIXER EQU =«

JSR INPUT

cLc

ADC #1

JSR OUTPUT

TAX

STA MEMORY,X

PEY +; DECREASE COUNT

BNE MIXER

156 6502 ASSEMBLY LANGUAGE PROGRAMMING

16. See if you can write a loop that will display the numbers from 0 through 9 on
the terminal, then halt,

Here’s our loop. Yours may be somewhat different. We've numbered the lines so we
/ can dlscuss them below.

10 LbXx #'Q?
20 WRINUM EGU *

30 TXA

40 INX .

50 JSR OUTPUT
60 SEG

70 SBC #'9'
80 ' BNE WRINUM
90 DONE JMP DONE

Line 10 sets up the initial value in X. Line 30 copies the value into the accumulator;
line 50 writes it out. Line 40 increments X so that the next loop will write out the

- next number. The value in A is tested for ‘9’ in lines 60 and 70. If it’s not ‘9,” we
loop back to WRINUM. If it is ‘9’, control falls through to the closed loop.

" 'CONDITIONAL INSTRUCTIONS 157

17. Write a loop that will accept a single digit from the terminal (no echo) and
. print that number of X'’s on the terminal, then stop. Assume that the input digit is
between ‘1’ and ‘9.” Don’t forget it will be in ASCII.

10 " JSR INPUT

20 SEC

30 SBC #$30 ; REMOVES ASCII BITS
40 TAX

50 LbA #'X’

60 LOOP EQU

70 JSR OUTPUT

80 DEX

90 BNE LOOP

100 DONE JMP DONE

Line 10 gets the digit from the terminal and moves it into the accumulator.
Lines 20 and 30 convert the value from ASCII code to plain binary. (We say it
strips out the most significant bits.) Line 40 moves the value to the X register. Line
50 sets up ‘X’ in the accumulator. Then we enter the lpop, which is contrelled by the
value in the X register. Line 70 writes an ‘X’. Line 80 decrements the X register,
turning the zero flag on or off. Line 90 returns control to the top of the loop if the
zero flag is off. If the flag is on, control falls through to line 100 and the program
repeats line 100 until halted by the operator.

158 6502 ASSEMBLY LANGUAGE PROGRAMMING

SENDING MESSAGES

18. In this frame, we're going to show you how to write out a message from
storage. Suppose we want to write the message “‘PLEASE TYPE YOUR NAME:”
The program is shown in Figure 186.

10 LbY #22

20 LDX #0

30 OUTLP EQU =

40 LDA MESSAG,X

50 JSR OUTPUT

60 INX

70 DEY

80 BNE OUTLP

90 DONE JMP DONE

100 MESSAG ASC 'PLEASE TYPE YOUR NAME:'

FIGURE 16. Writing a Message

Line 10 moves decimal 22 into the Y register. There are 22 characters in the
message, so we'll write 22 characters. Another way to control the loop would be to
check for the last byte in the message, *:’.

Line 20 sets the X register to zero. We will use the X register as an index to
address the characters in our message.

Line 40 begins the loop by moving a byte from memory into the accumulator.
Line 50 writes the byte. Line 60 increments the X register, so it can now be used to
address the next memory byte.

Lines 70 and 80 check for the end of the loop. Line 70 subtracts 1 from the
loop counter in Y. Line 80 jumps back to the head of the loop if the counter in Y has
not reached zero.

When the loop counter reaches zero, control falls through to the next instruc-
tion, a closed loop.

Line 100 defines a data storage area named MESSAG that contains the
message we want to print.

CONDITIONAL INSTRUCTIONS 159

Code a routine to write the message ‘THANK YOU’ on the terminal, then halt.

LDY #9
LbX #0
WRITER EQU =
LDPA OUTMSG,X
JSR OUTPUT
INX
DEY
BNE WRITER
DONE JMP DONE
OUTMSG ASC 'THANK YOU'

Be careful that control does not fall through to the ASC instruction. The com-
puter might try to execute ‘THANK YOU’ as an instruction, causing all kinds of
strange errors. Be sure you assigned a label to the message in an ASC instruction.
You should have used the label in the LDA instruction.

19. Code a routine that reads a message from the terminal. Store the message, but
do not echo it. When the user types a carriage return, write the following:

¢ carriage return and line feed (to start a new line)
e the message
e a question mark

160 6502 ASSEMBLY LANGUAGE PROGRAMMING

Programming Notes: Be careful the output message does not contain the car-
riage return typed by the user. Either don’t store the CR or overlay it with a ques-
tion mark.

Don’t control the length of the message. But in defining your data area,
assume that it will be 80 characters or less.

Write your routine on a separate piece of paper.

i0 LERO EQU O

20 INPUT EQU $FDOC ;FOR APPLE
30 OUTPUT EQU SFDED ;FOR APPLE
40 CR EQU $0D
S0 LF EQU $0A
60 Q@MARK EQU *'?'
70 ORG $5000
80 LDX #ZERO
90 READIT EQU *
100 JSR INPUT
110 STA TEXTIN,X
120 INX
130 SEC
140 $BC #CR

' 150 BNE READIT
160 DEX
170 LDA #QMARK
180 STA TEXTIN,X
190 TXA
200 cLC !
210 ADC #3
220 TAY
230 LDX #ZERO
240 WRITIT EQU =
250 LDA ANSWER,X
260 "JSR OUTPUT
270 INX
280 DEY
290 BNE WRITIT

300 DONE JMP DONE
310 ANSWER DFB CR,LF
320 TEXTIN DS 80

Notice how we set up the data storage area (lines 310 and 320) so that the ad-
dress ANSWER refers to ASCII CR, which is followed by ASCII LF, which is
followed by the area named TEXTIN where we store the input data.

Register X is used both as an index and to count the number of input
characters (lines 80 and 130). We add 3 to it and put the result in register Y to
count the number of output loops.

Lines 100-150 are the input loop, reading characters and storing them in
memory starting at TEXTIN.

Lines 160-180 replace the final character (ASCII CR) with ‘?’. Lines 240-290
are the output loop. \

CONDITIONAL INSTRUCTIONS 161

COMPARISONS

You'’ve learned to use the conditional instructions and you’ve seen how open loops
can be created. You’ve also seen that the status flags are affected by arithmetic
operations and any change to a register. Now we’re going to look at some instruc-
tions that set the flags without any arithmetic or changes being performed.

20. Let’s look again at the routine that reads and stores bytes from a terminal un-
til a carriage return ($0D) is encountered:

LDX #0
READIT EQU *

JSR INPUT

STA SAVE,X

INX

SEC

SBC #3000

BNE READIT

Can we change this routine so the carriage return does rot get stored? If we
continue to test by subtraction,

LbX #0

READIT EQU =
JSR INPUT
SEC
seC #s0D

We changed the byte in A, which means we won’t store the correct byte. We
will need to save the original byte somewhere else, then make the test and branch
out of the loop if the flag is on. If it is off, we can continue on to store the character
and return to read again. For example:)

Lbx #0
READIT EQU »*
JSR INPUT
TAY ; PRESERVE BYTE IN Y
SEC
SBC #s0D
BEQ NOMORE .
TYA . ; STORE PRESERVED BYTE
STA TEXTIN,X
INX

. JMP READIT
NOMORE EQu *

162 6502 ASSEMBLY LANGUAGE PROGRAMMING

Here is another way to accomplish the same thing:

LbX #0
READIT EQU *

JSR INPUT

CMP #8300

BEQ NOMORE
STA TEXTIN,X

INX
JMP READIT
NOMORE EQU *

Notice the CMP instruction. It stands for CoMPare.

It compares the value in the accumulator with the byte addressed by the
operand and treats the flags accordingly. How does it ‘“‘compare” them? By pretend-
ing to subtract the byte from the accumulator. The flags are set as if the subtrac-
tion had taken place. But the value in the accumulator is not altered. (Don’t forget
that the carry flag is set if there is no borrow.)

(a) Write an instruction to compare the accumulator to an ASCII space.

(b) Suppose the accumulator contains an ASCII zero. What will be the effect of
the above instruction on the zero flag? ___ The sign flag?
The carry flag? _________ The accumulator?

(¢} Suppose the accumulator contains an ASCII space. What will be the effect of
the above instruction on thezeroflag? ____~_ The sign flag?
The carry flag? _________ The accumulator?

(d) Suppose you want to jump to PUTNEX if the value in the accumulator is an
ASCII space. Otherwise, control should fall through. Write the branch in-

struction that follows the compare.

A

(a) CMP # *; (b) cleared, cleared, set (no borrow), no change; (d) set, cleared, set, no
change; (d) BEQ PUTNEX
21. Here are some more problen;s using CMP.

(a) Write a set of instructions to compare the accumulator to $50. If it does not
equal $50, jump to NEXONE. If it does equal $50, let control fall through.

CONDITIONAL INSTRUCTIONS 163

(b) Write a set of instructions to compare the accumulator to ASCII A. If it is
equal to or greater than A, jump to LETTER. If it's less than A, let control
fall through.

(a) cMp #s50
BNE NEXONE

(b) cMp #'ar
BCS LETTER

(Any value smaller than ‘A’ will cause a borrow, thus clearing the carry flag. If
the value is *A’ or larger, the carry flag will be set.)

22. You have learned to code the CMP instruction. There are also CPX (ComPare
to X register) and CPY (ComPare to Y register) instructions. They compare the
value in a register with the value of the byte addressed by the operand.

(a) Write an instruction to compare the X register to ASCII A.

() Write an instruction to compare the Y register to 7.

{©) Write a set of instructions to compare the X register with the Y register.

(d Write a set of instructions to compare the accumulator to the X register.

(e) Write a set of instructions to read a value from the terminal. If it is equal to
the value in the X register, jump to\SAMVAL. Otherwise, let control fall
through.

164 6502 ASSEMBLY LANGUAGE PROGRAMMING

(a) cPx #'A?
(b) cpY #7

{c) Here are two ways to solve the problem:

STX SAVE STY SAVE
CPY SAVE CPX SAVE

They have different effects. In the first, the value in X is “‘subtracted” from
the value in Y. In the second, the value in Y is “subtracted’” from the value in X,

(d) STA SAVE
CPX SAVE

(€ JSR INPUT
STA SAVE
CPX SAVE
BEQR SAMVAL

ALTERNATE PATHS
23. You've learned how to code loops. Another extremely important program
structure is illustrated by Figure 17. We call this alternate paths although there are

many other names for the structure.

r

yes sequence A

question . O—-

no sequence B

FIGURE 17. Alternate Paths

-~ In this structure, a yes-no question is asked (or a true-false condition tested). If
the answer is yes, one path is taken. If the answer is no, the other path is taken.

CONDITIONAL INSTRUCTIONS 165

For example, suppose we want to read and edit the user’s input. If the user
types a digit between 0 and 9, we store the digit. If the user types any other

character, we write an error message.

{a) In our example, what is the yes-no question?

(b) Whatis the ‘““yes” path?
(¢} What is the “no” path?

—_— o — -

There are two ways to answer these questions:

(a) Is the input value between 0 and 97; (b) store the digit; (c) write error message

or

(a) Is the input value outside of the range of 0-97 (b) write error message; (c) store

the digit

24. In Assembly Language, alternate paths are coded using comparisons and con-
ditional jumps. Here's an example: ’

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190

FIVE

NOTF1V
OUTMSG

ouUTLOP

DONE
FIVMSG
NOTMSG

JSR
CMP
BNE
EQU
LDX
J MP
EQU
LbX
EQU
LbY
EQU
LDA
JSR
INX
DEY
BNE
JMP
ASC
AsC

INPUT
#5
NOTFIV
*

#0
OUTMSG
*

#5
*

#5

*
FIVMSG, X
OUTPUT

QUTLOP
DONE
'RIGHT!
'WRONG'

166 ' 6502 ASSEMBLY LANGUAGE PROGRAMMING

Which of the following diagrams correetly depicts what this routine does?

v

— f{a)

READ |
BYTE

—

READ
BYTE

—_ (o)

yes

READ
BYTE

no

yes STORE

_ BYTE
(O—{ HALT
no WRITE
‘WRONG’
yes WRITE
‘RIGHT’
O——= HALT
no WRITE
‘WRONG’
SELECT
‘RIGHT' [
MESSAGE
WRITE
(O— SELECTED HALT
MESSAGE
SELECT
‘WRONG’ [
MESSAGE

(c) is the most correct answer; (b) is close but not completely right. .

CONDITIONAL INSTRUCTIONS 167

25. Now it’s your turn. Write a routine to read and echo two characters from the
terminal. If they’re the same, write ‘SAME’. If they're not the same, write ‘DIFF’.
Use a separate sheet of paper.

SAM

NOTSAM

MESS AG

PONE
SAME
DIFF
SAVE

LDY
JSR
J SR
STA
JSR
JSR
cmp
BNE
EQU
LbX
JMP
EQU
LDX
EQU
LDA
JSR
INX
DEY
BNE
J NP

‘ASC

DS

#e
INPUT
QUTPUT
SAVE
INPUT
OUTPUT
SAVE
NOTSAM
*

#0
MESSAG
*
A
*
SAME, X
OUTPUT

MESSAG
DONE

' SAME’
'"DIFF"
1

;

~

~

LOAD Y WITH LENGTH OF OUTPUT MESSAGE
READ, ECHO, STORE FIRST BYTE
READ, ECHO SECOND BYTE

COMPARE TWO BYTES
'IF EQUAL, NEXT LINE, OTHERWISE NOTSAM

SET INDEX FOR 'SAME' MESSAGE

SET INDEX FOR 'DIFFERENT' MESSAGE
WRITE OUT A LETTER OF MESSAGE
INCREASE INDEX

DECREASE COUNTER
IF NOT ALL WRITTEN, REPEAT LOOP

26. Often an alternate path structure has an empty ‘‘yes’” or “‘no” path. Figure 18
depicts the logic diagrams of such structures. Some of the routines you worked
earlier in this chapter had this structure.

yes
question C).____. B
no sequence
yes sequence
question O—-
no

FIGURE 18. Empty Path Structures

168 6502 ASSEMBLY LANGUAGE PROGRAMMING

Suppose we want to read a byte and, if it's not a épace, store it in memory and
increment the X register. If it is a space, do nothing. Here's the code:

JSR INPUT
cMp #'
BEQ@ NEXTEP

NOTSPA EQU » A
STA SAVE,X
INX

NEXTEP EQU =*

Whether it's the “‘yes’ path or the ‘“no” path that’s empty is immaterial. The
empty path jumps around the not-empty path, to the point where they rejoin.

Code a routine that will read and echo a byte. If it’s a carriage return, also
write a line feed. Then store the byte in memory.

JSR INPUT

JSR OUTPUT

TAY ; COPY CHARACTER TO Y
CMP #$0D ; COMPARE TO CR

BNE STORIT

LDA #S0A ; WRITE LINE FEED

JSR OUTPUT
STORIT EQU =
' STY SAVE ; STORE CHARACTER

CONDITIONAL INSTRUCTIONS 169

REVIEW

In this chapter, you have learned how to use the conditional instructions to handle
loops and alternate path structures.

¢ The conditional instructions are based on the ﬂégs.

e The conditional branch instructions are:
— BEQ (Branch if EQual to zero)
— BNE (Branch if Not Equal to zero)
— BCC (Branch if Carry Clear)
— BCS (Branch if Carry Set)
— BMI (Branch if MInus)
— BPL (Branch if PLus)
— BV (Branch if oVerflow Clear)
— BVS (Branch if oVerflow Set)

¢ The comparison instructions cause the status flags to be set without alter-
ing the value in the register. They are:
— CMP (CoMPare to accumulator)
— CPX (ComPare to register X)
— CPY (ComPare to register Y)

* An open loop is usually coded with a conditional jump. If the condition
proves false, control falls through to the next instruction.

¢ In a counted loop, the count value is placed in an index register or
memory byte. At the end of each loop, the loop counter is decremented.
When it reaches zero, control falls out of the loop.

¢ An alternate path structure asks a yes-no question. One path is taken if
the answer is yes and another is taken if the answer is no. Either path
may be empty. The structure is coded using conditional jumps. In
Assembly Language, the structure looks like this:

' BNE NOPATH
YESPTH EQU =

\
JMP REJOIN

NOPATH EQU =*

If there is an empty path, the structure looks like this:

BNE REJOIN
PATH EQU *

REJOIN EQU =*

170 6502 ASSEMBLY LANGUAGE PROGRAMMING

CHAPTER 7 SELF-TEST

Part 1. Cdde instructions to solve the following problems.

1. Jump to START if the zero flag is off.

2. Jump to CARRY if the carry flag is on.

3. Jump to NEGIVE if the sign flag is on.

4. If the accumulator equals an ASCII space, jump to SPACE. Otherwise, jump
to NOTSPA.

5. If the X register is greater than 10, jump to MORE.

Part II. In this exercise you will code a data compression program. Data compres-
sion is used when you have a lot of data to store and you want to conserve some
space. It works by removing repeated characters from the data. For example (b in-
dicates a space):

JoHNBJ ONESHBBER1201HpbE)180000000]

The boxed characters would be removed. We have to tell the system that some
characters have been removed. We do this by storing a warning flag followed by the

CONDITIONAL INSTRUCTIONS 171

count of the number of characters that were removed. So the above data would be
stored this way ($FF is the warning flag):
* * NOTE * =

e ——

lololw]N] Jolo[N][E]s]| '[FFloa] 2|1 ete

The three bytes—* 'FF04—tell the computer that four spaces were removed.

Your job is to write a program that will read a string of characters from the
terminal and store them in compressed format. End the program when the user
types a carriage return.

Figure 19 shows our program logic. ‘

Programming Notes: Even though it’s not completely efficient, compress any
repeated character even if it’s repeated only once.

Assume that the input string is less than 80 characters.

Strategy: In order to identify repeated characters, each character
we read must be compared with the preceding character. We'll use
the X register as an index for storage. We won’t increment X until
ready to store a character; so until then, it will be pointing to the
last character stored. When we find repeated characters, we must
count them, We'll keep the count in register Y.

1. Initialization.

a. Store a byte at the beginning of the text string that can’t be mat-
ched, such as $FF. This will force the first comparison to faxl and
the first input character to be stored.

b. Set registers X and Y to zero.

2. Read and echo one character. Compare it to the previous byte

stored. ,

3. If the new byte matches the previous byte, go to step 4. If it
doesn’t, check the count in the Y register.

a. If the count is greater than zero, do the following:

(1) temporarily save the new character (because you'll need the A
register)

(2) load $FF into the accumulator

(3) increment X, and write $FF to TEXT+X

(4) increment X, and write the count from the Y register to
TEXT+X

(5) clear the Y register

(6) restore the new character to the accumulator

(7} goontob

b. Whether or not the count was greater than zero, do the following:

(1) increment X and store the new character
" (2} compare the new character to carriage return
(8) quit if it is a carriage return; otherwise return to step 2
4. When the new byte matches the previous byte, all you have to do
is increment the count in the Y register and return to step 2.

FIGURE 19. Compression Program Logic

172 6502 ASSEMBLY LANGUAGE PROGRAMMING

Part 1.

1. BNE

2. BCs

3. BMI

4. CMP
BE@Q
JMP

5. CPX
BPL

Part I1.

; NOTE

RLOOP

NEWONE

STORIT

REPEAT

ENDIT
CR
TEXT
SAVEIT

Self-Test Answer Key

NOTSPA

.
’

.
L4

INITIALIZE FIRST BYTE SO
COMPARISON WON'T MATCH

THAT STRING -WILL BE STORED STARTING AT TEXT+1

START
CARRY
NEGIVE
#I)
SPACE
NOTSPA or BNE
#11
MORE
LDA #SFF
STA TEXT
LDX #0
LDY #0
EQU *
JSR INPUT
JSR OUTPUT
CMP TEXT,X
BEQ REPEAT
EQU *
CPY #0
BEQ STORIT
STA SAVEIT
LDA #SFF
INX
STA TEXT,X
INX
TYA
STA TEXT,X
LDA SAVEIT
LDY 40
EQU *
INX
STA TEXT,X
CMP (R
BEQ ENDIT
JMP RLOOP
EQU *
INY
JMP RLOOP
JMP ENDIT
DFB $0D
DS 81
bS 1

’
;

SET UP INDEX
INITIALIZE COUNT

COMPARE TO PREViOUS BYTE

CHARACTERS WON'T MATCH
DO WE NEED TO STORE FLAG AND COUNT?

TEMPORARILY SAVE CHARACTER
STORE FLAG

STORE COUNT

CAN'T USE INDEX WITH STY

RESTORE CHARACTER TO A
REINITIALIZE Y

CHECK FOR CR

IF THE INPUT CHARACTER
MATCHES THE LAST
CHARACTER

CHAPTER EIGHT

LOGICAL OPERATIONS

[-

So far, you have learned to code instructions% for data movement, arithmetic opera-
tions, comparisons, antd jumps. In this chapter, you'll learn a set of instructions that
are used for logical operations. These include the logical operations of AND, OR,
and EXCLUSIVE OR, which will be defined, as well as bit rotation.

- When you have finished this chapter, you’ll be able to:

e code the following instructions:

— AND (AND with accumulator)

— ORA (OR with accumulator)

— EOR (EXCLUSIVE OR with accumulator)
— BIT (bit test)

— ASL (arithmetic shift left)

— LSR (logical shift right)

— ROL (rotate left)

— ROR (rotate right); ~

e solve the following types of problems:

— turn specified bits on or off in a value

— test specified bits against a mask

— clear the accumulator using a logical operation

— test the least significant or most significant bit of a value
— shift a value left or right.

THE AND AND OR OPERATIONS

1. The logical operations, AND and OR, compare two bits and set a result bit to
show the result of the comparison.
The AND operation says that if both bit A and bit B are on, turn the result bit
on, Otherwise, turn it off.
. If we use the A symbol to represent the AND operation, we can write the four
AND facts this way: '

1>
olo o
>
ol= o
1>
oI -
>
adad od

173

174 6502 ASSEMBLY LANGUAGE PROGRAMMING

L]

Notice that the result bit is on (1) only if both of the ANDed bits are on.
(a) If bit A is on and bit B is off, what is the result of A A B?

(b) Ifboth bit A and B are off, what is the result of A A B?
(c) Ifbit A and B are both on, what is the result of A A B?

{a) 0; (b) 0; (c) 1

2. To AND multiple-bit values, do it one column at a time. Each column is in-
dependent. There are no carries or borrows to worry about.

1011001
AQ110101

0010001

Show the results of the following AND operations.

{a) 11010001 (b) 00001111
A10101000 AD1010101

(a) 10000000; (b) 00000101

3. The OR operation turns on the result bit if either A or B or both are on. If we
use V to represent the OR operation, the OR facts are:

<
olo o
<
-l o
<
PN T P Y
<
—bjed

Notice here that the result bit is off (0) only if both the ORed bits are off.

Show the results of the following operations.

(@ 10101111 (b) 01100110
vV 01000110 vV 11010100

(a) 11101111; (b) 11110110

LOGICAL OPERATIONS 175

4. The EXCLUSIVE OR operation is similar to OR, but if both bits are on, the
result bit is turned off. We use the symbol & for EXCLUSIVE OR. Here are the
EXCLUSIVE OR facts:

0 1 1
¥ *1 +0 *1
1 1 0

oo o

The last fact, 1 ¥ 1, ié what makes EXCLUSIVE OR exclusive. If either of the
ORed bits is on, the result bit is on. If both are on, the result is off.

Show the results of the following operétions.

(a) 10110101 (b} 10001101
200001111 011001210

—— et ——-—- ————- -

(a) 10111010; (b) 11101011

5. To'summarize the logical facts, complete the three tables below.

Alo| 1 v]oln #l0 |1

0 0 0

1 1 1 -
AND OR EXCLUSIVE

OR

Alo | v ol »+ o |1
o[o]o0 0[O0 1 001

1 o] 1 1] 1 1]1]o0
AND OR EXCLUSIVE

OR

176 6502 ASSEMBLY LANGUAGE PROGRAMMING

THE AND INSTRUCTION

6. In Assembly Language, we use the AND instruction to accomplish the AND
function. Valid addressing modes for AND are the same as the ones for LDA and
ADC.

AND causes the addressed byte to be logically ANDed with the accumulator.
The accumulator is changed to reflect the result of the operauon The sign and zero
flags are also affected.

For example, the instruction AND INMASK will cause the contents of register
A to be logically ANDed with the value at address INMASK. The result will be
placed in the accumulator.

(@) Fill out Appendix C for AND.
(b) Code an instruction to AND the immediate value 1 to the accumulator.

(0 Which flags will be affected when the above instruction is executed?

(1] (2] Bl - [51 . [6] (7 (8] 9
@@ AND ok "ok ok XYok Xok -~ ok ok -

(b) AND #1
(c) sign and zero

¢

7. Suppose the accumulator contains %10100001 and the byte at address $0516
contains %11110000. What effect will AND $0516 have:

(a) on the accumulator?
(b) on the byte at $0516?

(c) on the sign flag?

(d on the carry flag?
{e} on the zero flag?

(a) set to %10100000; (b) no effect; (c) set; (d) no effect; (e) cleared

LOGICAL OPERATIONS 177

8. Can you write an AND instruction to clear the accumulator regardless of its
current value? (That is, set the accumulator to zero.)

AND #0 will do it

9. Now that you can code an AND operation, let’s talk about how we might use
it. AND operations are usually used when we want to turn off specific bits in a
value.

Examine the instruction AND #%00001111. This instruction would force the
highest four bits in the A register to be turned off, regardless of what’s currently in
there. The lowest four bits retain their present value. Let’s see why.

00001111 s
AXXXXXXXX -

voooxXxxx

Without knowing the value of X, we know that 0 AX =0.If X =0,0A0 = 0. If
X=10A1=0. ’

On the other hand, we know that 1 AX =X If X =0,1A0=0.IfX =1,1
Al=1.

(a) AND operations are used to turn bits (on/off)
b) OAX=
© 1AX=

(d) What operand would you use in an AND instruction to turn off the least
significant bit in the A register and leave the rest alone?

(a) off; (b) 0; (c) X; (d) #%11111110

10. In the instruction AND #%00001111, the operand is called a mask because it
is a pattern that blocks out (or affects) some bits but allows others through (or
leaves them alone).

{a) In an AND mask, what value will turn off the corresponding bit in the ac-
cumulator?
(b) What value will leave the corresponding bit in the accumulator alone? _______

(a) 0; (b) 1

178 6502 ASSEMBLY LANGUAGE PROGRAMMING

11. Code AND instructions to solve these problems. Masks are usually expressed
in binary so you can see which bits are on and which are off. You can use equivalent
hex or decimal values if you wish.

(a) Turn off the most significaht bit in the accumulator. Leave the other bits

alone.

(b) Turn off ‘the third and fourth bits from the left. Leave the other bits alone.

(a) AND #%01111111; (b) AND #%11001111

12. Here are some practical problems that involve turning bits off.

(a) Code a routine that reads an ASCII character from the terminal, strips out (or
turns off) the ASCII zone bits (the high order four bits), and stores the result
at INBYTE. (This means that ‘1,” ‘A,’ and ‘a’ would all be stored as $01,
whereas if stored normally, they'd be $31, $41, and $61.) This is part of the
process of converting ASCII to binary code.

(b) Code a routine that reads an input digit from the terminal. If the digit is even,
jump to INEVEN. If the digit is odd, jump to INODD.

(a) JSR INPUT
AND #%00001111 ; GLEAR HIGH ORDER FOUR BITS
STA INBYTE

(b) JSR INPUT /
AND ~ #%X00000001 ; CLEAR ALL BUT LOW-ORDER
BEQ INEVEN ; IF ZERO, ORIGINAL BYTE WAS EVEN
JMP INODD ; OTHERWISE, IT WAS 0DD

LOGICAL OPERATIONS 179

THE OR INSTRUCTION

13. Now let’s consider the ORA (OR with A) instruction. It is just like AND with
respect to addressing modes and flags.

The ORA instruction causes the addressed byte to be logically ORed with the
accumulator, changing the accumulator to reflect the result.

(a) Fill out Appendix C for ORA.
(b} Code an instruction to OR the value 1 to the accumulator.

(c0 Code an instruction to OR the value at byte 5 on page zero to the ac-
cumulator.

(d) Which flags will be affected when the above instruction is executed?

1] [2] [3] [4] [5] [6] 7 (8] 9]
(a) ORA ok ok ok XYok Xok - ok ok -

(b) ORA #%00000001; (c} ORA $05; (d) sign and zero

14. OR operations are used to turn bits on. A one in the mask will force the cor-
responding bit on, since 1 VX = 1. A zero in the mask will leave the corresponding
bit alone since 0 VX = X,

@ IX=1,1VX=
() IX=10,1VX=
(¢) Therefore,1 VX =___
d IfX=10VX=
e IfX=00VX=
(f) Therefore, 0 VX =
() OR operations are used to turn bits (on/off) SO

(@) 1; (b) 1; (c) 1; (d) 1; (e) O; (F) X; (g} on

1

180 6502 ASSEMBLY LANGUAGE PROGRAMMING

15. Code OR operations for the following problems.

(@ Turn all the bits in the accumulator on.
(b) Don’t change the value in the accumulator but set the sign and zero flags.

{c) Turn on the high order bit in the accumulator. Leave the other bits alone.

{a) ORA #%11111111; (b) ORA #0; (c) ORA #%10000000

THE EOR INSTRUCTION
16. The EXCLUSIVE OR instruction is EOR. Its operands are the same as AND
and ORA, and it sets the same flags.

(a) Code an instruction to EXCLUSIVE OR the byte at address $25 (zero page)
with A.

(b) Code an instruction to EXCLUSIVE OR %10001000 with A.

{¢) Which flags will be affected by the above instruction?

(a) EOR $25; (b) EOR #%10001000; (c) sign and zero (Be sure to fill out appendix C
for EOR.)

17. EXCLUSIVE ORs are usually used to complement bits. A bit is complemented
when its value is reversed; a one becomes a zero and a zero becomes a one.

To complement a bit, the EXCLUSIVE OR mask should contain a one in the
corresponding bit. To leave a bit alone, the mask bit should contain a zero.

@@ 1¥0=____ ,
(b) 1¥1=___

(¢} Therefore, 1¥ X = ____

d o0vw0=___

¢ O0¥1l=____

{f) Therefore, 0¥ X = __

LOGICAL OPERATIONS 181

s
(g) Code an instruction to complement (reverse) the least significant bit of the ac-
cumulator.

th) Code an instruction to complement the entire accumulator.

(a) 1; (b) O; (c) the opposite of X; (d) 0; (e) 1; (f) X; (g) EOR #%00000001;
(h) EOR #%11111111

18. Summary:

AND — Mask value of 0 in a bit turns off the corresponding bit in the ac-
cumulator. Mask value of 1 leaves the corresponding bit unchanged.

OR — Mask value of 1 forces the corrsponding bit on. A 0 leaves the cor-
responding bit alone.

EOR — Used to complement bits. A 1 complements the corresponding bit. A 0
leaves it alone.

You have now seen how to use the various AND and OR operations. To practice
them, code instructions for the following.

(a) Turn off the high order bit. :
(b) Turn on the high order bit.

(c) Complement the high order bit.

(d) Zero the accumulator.

(e) Set the accumulator to all ones.

"(f) Convert a single digit in the accumulator between 0 and 9 to its ASCII code.
Currently, the digit is in this form: %0000XXXX. You want to change it to
this form: %0011XXXX.

{g) Convert a lower case ASCII letter in the accumulator to its upper case form.
Currently, the value is in this form: %011XXXXX. You want to change it to
this form: %010XXXXX.

(a) AND #%01111111; (b) ORA #%10000000; (c) EOR #%10000000; (d) AND #0;
(e) ORA #9%11111111; (f) ORA #9%00110000; (g) AND #%11011111-

\

182 6502 ASSEMBLY LANGUAGE PROGRAMMING

THE BIT INSTRUCTION

19. The BIT instruction is similar to the AND instruction except that it does not
change the value in the accumulator. You use it to test the value in the addressed
memory byte; the settings of the flags show the result of the test.

The flags that are affected are the sign, zero, and overflow flags. They are not
set in the normal manner however. The zero flag is set or cleared according to the
result of the AND operation. But the sign flag is set or cleared according to the
high order bit of the memory byte. The overflow flag is set or cleared according to
the value of the next lower bit in the memory byte.

The only two addressing modes allowed are direct and zero page direct.

(a) BIT tests the value in (the accumulator/memory)

(b) BIT is exactly like AND exce\pt that the accumulator isn’t changed. True or
. .

false?

(c) After a BIT test, what does the overflow flag show?

(d) Fill out Appendix C for BIT.

(a) memory; (b) false [the flags are also different, as are the addressing modes] (c)
the value of the next-to-highest order bit of the memory byte;

1] (2] 13 [4] 5] [6] [71 (8] 9]

(d) BIT - ok ok - - - - - -

20. Suppose the accumulator contains %10000011 and byte $1520 contains
%11110000. The result of BIT $1520 would be %10000000 (which would not be
stored anywhere). The zero flag would be cleared because the result is not zero. The
sign flag and the overflow flag would both be set because the first two bits at $1520
are on (regardless of the AND operation).

Suppose the accumulator contains %00000001 and the byte at $0023 contains
%10000000. Show the effect of BIT $23:

(a) on the zero flag:
(b) on the sign flag:

(c) on the overflow flag:

(a) turned on (set to 1); (b) turned on; (¢) turned off

LOGICAL OPERATIONS 183

21. Suppose you read a byte into INBYTE and you want to check whether it’s
even or odd without moving or destroying the byte. If it’s even you want to jump to
EVEN. Complete the routine below.

JSR INPUT

JSR OUTPUT
STA INBYTE

LDA #X00000001
BIT INBYTE
-0 EVEN

'

BEQ (If the input byte was even, the result of the AND operation will be zero;
otherwise it will be one.)

L4

22. You want to test the value of a status byte at STATUS. If both high order
bits are on, let control fall through, Otherwise, jump to NEWTRY. (This is a very
common pattern in an 1/0 routine.)

Here’s our routine using BIT. The value in the accumulator doesn’t matter since
we're not going to test the zero flag.

BIT STATUS
BPL NEWTRY ; BRANCH IF MSB # 1 (SIGN FLAG OFF)
BVC NEWTRY ; BRANCH IF 2ND BIT # 1

184 6502 ASSEMBLY LANGUAGE PROGRAMMING

REGISTER ROTATION
Assembly Language includes a set of instructions to rotate the value of a byte. The

following frames discuss register rotation.

23. A value is rotated when all the bits, including the carry flag, are moved over
one. A simple rotation to the left looks like this:

before: (0] 1]0 ﬁ1T1] o] o] ca:ry/
LS
after: [1]o[1]1]1Jo]o]1] 0

Notice that the most significant bit wraps all the way around to the carry flag. The
carry flag goes into the least significant bit.

(a) Show the results of a simple rotate to the right.

before: (1101] 1] 1[0]7]7] i

ofer: [[[[I 1] 1]]
(b) Show the results of a simple rotate to the left.

before: [1]1]0]0]0]1]1]0] B

afer: [1 T T T 1 [[|]

(a) 01011101, carry 1; (b) 10001101, carry 1

LOGICAL OPERATIONS 185

24.. Another form of rotation is called a shift. Here is a shift left.

before: |0I1l1[1

after [111]1]1

The most significant bit is shifted imto the carry flag; the former value of the carry
flag is lost. A zero is shifted into the least significant bit. In a right shift, the carry is
replaced by the least significant bit and a zero is shifted into the most significant bit.

(a) Show the result of a shift right.

carry
before: {1 [oJoJo]ofo[o] o] 1
after: [[1 [[[[[] [

(b) Show the result of a ghift left.
before: [1T0 000 0]0]0] O

afterr L L L 1T [1 [} []

(2) 01000000, carry 0; (b) 00000000, carry 1

25. The four rotate/shift instructions are: ROL (ROtate Left), ROR (ROtate Right),
ASL (Arithmetic Shift Left), and LSR (Logical Shift Right). They each permit the
same addressing modes:

direct

zero-page direct

indexed direct (X only)

zero-page indexed direct (X only)

i

You can also reference register A as an operand, so that you can rotat;e and
shift the accumulator.

186 6502 ASSEMBLY LANGUAGE PROGRAMMING

(a) Fill out Appendix C for ROL, ROR, ASL, and LSR.
(b) Code an instruction to shift the value in the byte named NUMBER to the left.

() Code an instruction to rotate the byte at address $05 (zero page) to the right.

{d) When the above instruction is executed, suppose a one is rotated out of the
low-order bit. Where does it go to? (Choose one.)

__ the byte at $06

__ the carry flag

. the overflow flgg

the high-order bit of $05

it gets lost

{e) Code an instruction to rotate the accumulator to the right.

ol @2 @B M4) ® M 8 (9

(a) ASL _ ok ok Xok Xok
LSR — ok ok Xok Xok
ROL — ok ok Xok Xok
ROR — ok ok Xok Xok

-

(b) ASL NUMBER,; (c) ROR $05; (d) the carry flag; (e) ROR A

26. All four rotate/shift instructions affect the sign and zero flags. in addition to
the carry flag.

Suppose the byte at $05 contains %01000001. What will be the affect of ROL
$05:

(a) on the sign flag?

(b) on the zero flag?

(c) onthecarry flag?

(a) set; (b) cleared; (c) cleared (a zero is carried around)

LOGICAL OPERATIONS 187

27. One of the four rotate/shift instructions will always cause the sign flag to be
cleared. Which one, and why?

LSR, because a zero is always shifted into the high-order bit by this instruction.

28. Use rotate/shift instructions to solve each of the following problems.
(a) . Read a byte. If it’s even, jump to INEVEN. If it’s odd, jump to INODD.

-~

(b) We normalize a value by shifting it left until the first bit is one. Write a
routine that will normalize the value in the accumulator. Keep track of the
number of shifts in SHIFTS. (Assume that register A contains a non-zero
value. Don't forget to clear SHIFTS before you start.)

188 6502 ASSEMBLY LANGUAGE PROGRAMMING

(a) JSR INPUT
JSR OUTPUT
ROR A ; ROTATE LOW BIT INTO CARRY
BCC INEVEN ; CARRY = 0 IF BYTE WAS EVEN
JMP INODD ; OTHERWISE IT'S ODD

(LSR would do as well as ROR; in both cases the carry flag is turned on if the least
significant bit was one and turned off if it was zero.) .

(b) LDX #0 " ; CLEAR X
. STX SHIFTS ; CLEAR SHIFTS
ROUND EQU *

INC SHIFTS
ASL A
BPL ROUND

REVIEW

In this chapter, you have learned several instructions that can be used to
manipulate individual bits. They are called the logical instructions.

o The AND operation has these results:

0 0 1 1
AOD A1 AD A1
0 0 0 1

The AND instruction may use the same addressing modes as LDA. It -
operates on the accumulator, which is changed to show the result. The
sign and zero flag are affected.

o We usually use AND to turn off individual bits. A zero in an AND mask
forces the corresponding bit to be turned off. A one leaves the correspond-
ing bit alone.

¢ The OR operation has these results:

The OR instruction may use the same addressing modes as AND. It
operates on the accumulator, which is changed to show the result. The
sign and zero flags are affected.

¢ We usually use OR to turn on bits. A one in the OR mask will turn the
corresponding bit on. A zero will leave the corresponding bit alone.

LOGICAL OPERATIONS 189

e The EXCLUSIVE OR operation has these results:

0 0 1 1
»o w1 ¥0 ¥)
0 1 1 0

The EOR instruction may use the same addressing modes as the AND in-
struction. It affects the flags in the same way.

¢+ We usually use EXCLUSIVE OR instructions to complement bits. A one
in the mask causes the corresponding bit to be complemented. A zero
leaves the corresponding bit alone.

e Bits can be tested without changing them using the BIT instruction. It
can use either direct or zero-page direct addressing. It ANDs the memory
byte and the accumulator without changing either. The zero flag is set or
cleared according to the result. The sign flag is set or cleared according to
the value of the most significant bit of the memory byte and the overflow
flag is set or cleared according to the next bit.

e Bit rotation can be used for a variety of functions. Bits can be tested by
rotating them into the carry flag position.

* Bits can be rotated left or right one position at a time, If rotating through
the carry flag, the flag becomes the ninth bit in the rotation cycle stand-
ing in between the MSB and the LSB. If shifting, bits are shifted into
the carry flag, but zeros are shifted into the byte from outside.

e The rotation instructions are:

ROL
ROR
ASL
LSR

They may use direct, zero-page direct, indexed direct (X only), and zero-
page indexed direct (X only) addressing. They affect the sign, zero, and

carry flags.

-

CHAPTER 8 SELF-TEST
Code instructions to solve the following problems:

Turn on the LSB in the accumulator.

Turn off the MSB in the accumulator.

\

Complement the third and fourth bits in the accumulator.

Use AND to zero the accumulator.

190 6502 ASSEMBLY LANGUAGE PROGRAMMING

5. Rotate the accumulator right through the carry flag.

6. Shift the accumulator right.

7. Rotate the accumulator left.through the carry flag.

8. Shift the accumulator left.

9. Test the value of the byte at STATUS.

10. Test the value of the byte at LOCAL to see if it’s negative.

11. Read a digit from ¢he terminal. Remove the ASCII character bits, leaving the
binary value with at least four leading zeros. Then: shift the number to the left
three times, effectively multiplying it by eight. Store the result in PRODCT.

12. Test the byte in the memory area named DECIDE. If the LSB is zero, jump
to ROUTEL. Otherwise, jump to ROUTEZ2.

LOGICAL OPERATIONS 191

10.

11

12.

ORA

AND

EOR

AND

ROR

LSR

ROL

ASL

BIT

BIT
BMI

J SR
AND
ASL
ASL
ASL
STA

LDA
BIT

. BEQ

JMP

or

LDA
ROR
BCC
JMP

Self-Test Answer Key
#1
#X01111111
)
#X00110000

#0

STATUS

LOCAL
NEGLOC

INPUT
#X00001111
A

A
A
PRODCT .

#1

DECIDE

ROUTE1

ROUTE2 (or BNE)

DECIDE

A

ROUTE1

ROUTE2 (or BCS)

CHAPTER NINE

THE STACK

The stack is used primarily for the temporary storage of data. This chapter reviews
the concepts associated with the stack then mtroduces the instructions you can use
to manipulate it.

When you have finished this chapter, you will be able to:

¢ code the following instructions:

— PHA (PusH Accumulator into the stack)

— PHP (PusH status register (P) into the stack)
— PLA (Pull. Accumulator from the stack)

— PLP (PulL status register (P) from the stack)
— TXS (Transfer X to Stack pointer)

— TSX (Transfer Stack pointer to X);

* code routines to accomplish the following functions:

— Preserve the register values in the stack
— Restore a register from the stack
— Set the address in the stack pointer.

REVIEW OF CONCEPTS

" 1. The stack is a LIFO (last in, first out) storage area in memory. We use it for

temporary storage. The stack pointer register points to the position where the next

item will be stored.

) Suppose there are five items in the stack, which we’ll call A; B, C, D, and E. A
was the first item stored and E the last.

(a) If you remove an item from the stack, which item will you get?

(b) If you remove another item from the stack, which item will you get?

(a) E; (b) D

193

194

6502 ASSEMBLY LANGUAGE PROGRAMMING

2.

The stack is considered to have a top and a bottom. The bottom is the highest

memory address and the top is the lowest memory address. The stack must be on

page one. It usually starts at address $01FF and builds toward address 0100 as
items are added to it.

Suppose that a stack in memory looks like this:

[xx o [o [| oxx o [o o [oxx | oxx | oxx | xx [xx]

0 0 0 0 0 0

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1
F F F F F F F F F F F F F F
2 3 4 S . 6 7 8 9 A B c D E F
{a) What address is the top of the stack?
(b) What address is the bottom of the stack?

(c) At what address would you expect the SP to be pointing?

(a) $01F2; (b) $01FF; (c) $01F1

3. If your program wants to use the stack, you write the storage and retrieval
instructions. Because it’s limited to page one, it can be no longer than 256 bytes.

The JSR instruction also uses the stack, so any time your program contains a
JSR, you're using the stack.

Which is the most accurate statement?

—_ (a) Every program must use a stack. ‘

— (b) 256 bytes of memory are set aside for the stack, whether your program
uses them or not. -

— {c) If you want to use a stack, you must reserve memory space for it.

(b)

4. Match.

(a)’ add to stack - SP is incremented

(b) retrieve from stack SP is decremented

move towards lower address

move towards higher address

L A

THE STACK 195

@) 2,8 (b} 1, 4

5. Whenever you write a program that uses the stack either directly or indirectly
{through JSR), you’ll have to consider the initial value of the stack pointer. Many
systems automatically initialize the stack pointer to $01FF. If yours doesn’t, you
can initialize the stack pointer to $01FF using the TXS instruction (Transfer X to
Stack pointer). Here’s an example:

LDX #SFF
TXS

The system assumes the $01 page, so all you have to load is the $FF address.

(a) Suppose you want to use a stack starting at address $0199. (You're using
$01A0 - $01FF for something else.) Write instructions to load the stack pointer
correctly.

(b) Fill out Appendix C for TXS.

(a) LbX #$99
TXS

(This is not considered a good idea. It’s best to devote page one to the stack;
use the rest of memory for other data.)

(b) (] (2] 31 [4] 5] (6] (71 8 6

TXS - - - - - - - - -

THE PUSH AND PULL INSTRUCTIONS

There are four push and pull instructions you can use to put items in the stack or
get them out=PHA, PHP, PLA, and PLP.

6. A byte is added to the stack by a push instruction. PHA copies the accumu-
lator into the stack. PHP copies the status register into the stack. Neither instruc-
tion has an operand, and no flags are affected. After the copy is made, the stack
pointer is decremented to point to the new top of the stack.

196 6502 ASSEMBLY LANGUAGE PROGRAMMING

(a)l Which of the following is a legal push instruction?

— PHA

____ PHP %2319
— PHA 805
—— PHP INBYTE

{b) Fill out Appendix C for PHA and PHP.

(a) PHA

(b)] 2] 13} [4] (51 (61 (71 81 &)

PHA - - - - - - - - -
PHP - - - - - - - - -

7. Suppose you want to call a subroutine, MIXUP, that uses the accumulator.
.Before you call it, you want to preserve the current contents of the accumulator as
well as the status flags. Write the instructions to store the status register and then-
the accumulator in the stack.

8. An item is retrieved from the stack by a pull instruction. PLA pulls a byte in-
to the accumulator. PLP pulls a byte into the status register. They have no
operands. The zero and sign flags are affected.

Fill out Appendix C for PLA and PLP.

(1] (2] 3] [4] [51 [61 (71 81 (9]

PLA - - - - - - - - -
PLP - - - - - - - - -

THE STACK 197

9. A pull instruction virtually deletes an item from the stack, even though it
doesn’t erase the item. When the item is pulled, the stack pointer is positioned so
that the next push will overlay the pulled item.
Which of the following statements is true?

(a) The same item can be pulled from the stack several times.

(b) When an item is pulled from the stack, it is the same as if the item was
erased from the stack.

10. Let’s continue the problem you worked on before. You stacked the accumulator
and the status register. then called the MIXUP subroutine. When control returns
from MIXUP, you want to restore the accumulator and the status register to their
former values. Be sure to restore the status flag byte to the status register and the
accumulator byte to the accumulator. In other words, pull the bytes in the reverse
order of the way they were pushed.

. PHP
PHA
JSR RMIXUP

PLA
PLP

11. See if you can write a routine that will stack the values of the X and Y
registers, then call a subroutine named LOGON, then restore X and Y to their
former values. .

198 6502 ASSEMBLY LANGUAGE PROGRAMMING

Here’s how we solve this problem:

TXA

PHA

TYA

PHA

JSR LOGON
PLA

TAY 5 S0 PULL Y FIRST
PLA

TAX

Y REGISTER IS ON TOP

e

Be sure your solution did not interchange the values in the X and Y registers.

12. Because we can't stack X and Y easily, we usually preserve them by storing
them somewhere in memory.
The routine you coded in the previous frame could be more easily coded as:

STX SAVEX
STY SAVEY
JSR LOGON
LDX SAVEX
LDY SAVEY
SAVEX DS 1
SAVEY oS 1

Code a routine that preserves the value of register Y, calls a subroutine named
NEWLOG, then restores Y.

Here’s how we would code it:

STY SAVEY
JSR NEWLOG
LDY SAVEY .

SAVEY D0s 1

(This is a dangerous technique unless you know for a fact that NEWLOG will
not use the data area containing SAVEY. Your registers are safer in the stack.)

THE STACK 199

THE TSX INSTRUCTION

13. You've seen how to initialize the stack pointer and how to move data into and
out of the stack. One more instruction, TSX, allows you to copy the value of the
stack pointer into the X register. It has no operands. The sign and zero flags are af-
fected by the value that is copied.

fa) Fill out Appendix C for the TSX instruction.
(b} What instruction copies a value from SP to X?

\
(¢) What instruction copies a value from X to SP?

(@) (1] (2] 3} (4] 151 61 [71 (8] 1

TSX - - - - - - - - -

(b) TSX;; (c) TXS

’

14. Suppose you need to increment the stack pointer by one (thus removing an
item from the stack without pulling it). Write a routine that will retrieve the stack
pointer into X, increment it. and replace it in the stack pointer.

TSX
INX
TXS

REVIEW

In this chapter, you have learned how to set up and use one or more stacks.

e A stack is a LIFO storage area addressed by the SP (stack pointer)
register. The top of the stack is the lowest address and the bottom is the
highest. SP points the top, where items are added.

e The stack must be on page one. You should reserve all of page one for the
stack.

1

200 6502 ASSEMBLY LANGUAGE PROGRAMMING

¢ The PHA instruction copies the value from A to the top of the stack. PHP 5
copies the value from the status register to.the stack. The stack pointer is
decremented by either operation.

¢ The PLA instruction copies the value from the top of the stack into the
accumulator. PLP copies it from the top of the stack into the flag register.
The stack pointer is incremented by either operation.

* The stack pointer should be initialized before you use it, unless your
system does so automatically. TXS can be used to load the stack pointer.

¢ The TSX instruction copies SP into X. It has no operands.
* The TXS instruction copies X into SP. It hds no operands.

CHAPTER 9 SELF-TEST

Code instructions to solve the following problems.

1. Point the stack pointer at $01FF.

2. For the above SP value, what address will be used for:

the first stack entry?

for the second entry?

3. Save all the registers except SP and PC in the stack.

THE STACK 201

4. Restore the registers again.

5. Store a byte of zeros in the stack.

Self-Test Answer Key

LDX #SFF
TXS

$O01FF
$O1FE

PHP
PHA
TXA
PHA
TYA
PHA

PLA
TAY
PLA
TAX
PLA
PLP

(Be sure you pulled the registers in exact reverse order that you pushed them.)

LDA #P
PHA

One extreme
learned how

subroutines.
taking a clot
When:;

e co

e gi

su

e gi

su

WHAT Al
1. Figure
throughout
validates et

how it worl

CHAPTER TEN

'SUBROUTINES

One extremely important program structure is the subroutine., You have already

learned how to call a subroutine and you have been calling INPUT and OUTPUT

subroutines. In this chapter, you will learn how to code subroutines. We’ll also be

taking a closer look at input/output (I/0) subroutines. '
When you have finished this chapter, you will be able to:

* code an instruction to return from a subroutine (RTS):

¢ given specifications, code a complete subroutine (including I/0
subroutines);

* given specifications for a complete program including one or more
subroutines, code the complete program.

WHAT ARE SUBROUTINES?

1. Figure 20 shows a complete program that we will use as an example

throughout this chapter. The program reads and adds two digits between 0 and 4. It .
validates each input byte and writes an error message if a byte is invalid. Here’s

how it works:)

¢ The GETNI1 routine (lines 6-16) reads and validates the first input digit. It
loops until a valid digit is obtained. SAVEN1 is part of GETNI1.

e The GETN2 routine (lines 17-25) reads and validates the second input
digit. It also loops until a valid digit is obtained.

e The ADDIT routine (lines 26-33) adds the two digits and writes the
answer. Control is returned to GETN1 to start the next problem (creating
a closed loop).

e The NEWLIN routine (lines 34-41) starts a new line on the terminal.

e The CHECK routine (lines 42-51) validates the byte in A. If the input byte
is between ‘0’ and ‘4,” the X register is set to 0. If not, it is set to $FF.
NOGOOD is part of the CHECK routine.

203

204

6502 ASSEMBLY LANGUAGE PROGRAMMING

¢ The ERROR routine (lines 52-61) puts out a message if the input doesn’t

validate. ERLOOP is part of this routine.

¢ The INPUT routine (lines 62-69) reads one byte from the keyboard and

places it in the accumulator. TESTIN is part of this routine.

¢ The OUTPUT routine (lines 70-72) prints one byte from the accumulator

to the terminal.

1 ORG $8000
2 ZERO EQU 'O’
3 FIVE EQU 'S¢
4 CR EQU $OD
5 LF EQU $OA
6 GETN1 EQU =
7 JSR INPUT
8 JSR OQUTPUT
9 JSR NEWLIN
10 JSR CHECK
11 CPX #SFF
12 BNE SAVEN1
13 JSR ERROR
14 JMP GETN1
15 SAVEN1 EQU =
16 STA NUM1
17 GETN2 EQU =
18 JSR INPUT
19 JSR OUTPUT
20 JSR NEWLIN
21 JSR CHECK
22 CPX H#SFF
23 BNE ADDIT
24 JSR ERROR
25 JMP GETN2
26 ADDIT EQU *
27 cLe
28 ADC NUMI
29 SEC
30 SBC #$30
31 JSR OUTPUT
32 JSR NEWLIN

, 33 SMP GETN1
34 NEWLIN EQU =
35 PHA
36 LDA #CR

. 37 JSR OUTPUT

38 LDA #LF
39 - JSR OUTPUT
40 PLA
41 RTS
42 CHECK EQU *
43 , CMP #ZERO
44 BMI NOGOOD
45 CMP #FIVE
46 BPL NOGOOD
47 LDX #0
48 RTS
49 NOGOOD EQU *
50 LDX #SFF

- 51 RTS

FIGURE 20. Sample Program

)

SUBROUTINES 205

52 ERROR
53

54 ERLOOP
55

56

57

58

59

60

61

62 INPUT
63

64 TESTIN
65

66

67

68

69

70 QUTPUT
71

72

73 NOMSG
74

75 NUM1

What happens if the user types a 3?

EQU
LDX
EQU
LDA
JSR
INX
CPX
BNE
JSR
RTS
EQU
LDA
EQU
BIT
BEQ
LDA
STA

RTS »

EQU
JSR
RTS
ASC
ASC
DS

*

#0
*

NOMSG, X
QUTPUT

#38
ERLQOP
NEWLIN

*

#X10000000
*
$C000

TESTIN

$C000
$C010

*

$FDED

’

$C000 .IS SET BY KEYBOARD INPUT

'YOU MUST ENTER A '
'DIGIT BETWEEN O AND 4'
1

FIGURE 20. Sample Program (continued)

- (a) TItis accepted and the program continues normally. .

- {b) The error message is written and the program loops back to get
another digit.

— (c) The program 'terminat;es itself.

What happens if the user types a 7?

—— (d) Itis accepted and the prdgram continues normally.

_ (e) The error message is written and the program loops back to get
another digit.

_ (f) The program terminates itsélf.

{a) and (e) are correct

206 6502 ASSEMBLY LANGUAGE PROGRAMMING

2. Most Assembly Language programs contain three major parts:

e The main line is the code that’s logically between the start (the first ex-
ecuted instruction) and the stop (however that happens). If the main line
contains more than one routine (as indicated by labeled statements), the
routines receive control by fall-through or branches.

o The subroutines are sections of code that are not in the main line. They
receive control only by ‘jump to subroutine’ commands. They are posi-
tioned and coded so that they never receive control by fall-through, jumps,
or branches.

¢ The data area definitions reserve memory bytes to hold data. They are
positioned so that they will never receive control.

Refer to the example in Figure 20.

(a) Which lines comprise the main line?

{b) Which lines comprise the subroutines?

(0 Which lines comprise the data area definitions?

_— e, e e me e me e g

!
(a) 6-33; (b) 34-72; (c) 78-75 [Note: Lines 1-5 are assembler directives, which don’t fit
into the other categories.]

3. A subroutine is a routine that receives control only by the JSR instruction. It
usually performs one function (such as reading a byte from the terminal into the ac-
cumulator). It releases control by a return. Control returns to the instruction follow-
ing the JSR.
(a) How does a subroutine receive control?

— by JMPs

—__ by JSRs .

— by fall-through
(b) How does a subroutine release control?

___ by executing a return

— by reaching the last line .

— by jumping

{c} How many functions do most subroutines accomplish?

{a) by JSRs; (b) by executing a return; (c) one

SUBROUTINES 207

4.

Using JSR to transfer control to a subroutine is usually referred to as ‘calling’

the subroutine. In many other assembly languages, the command to transfer control
is actually ‘CALL.’ Throughout this book, we will use ‘call’ to mean ‘transfer control
by using JSR.’

(a)
{b)
(c)

(d)

(e)

Here’s how a call works:

e The address in the PC register is pushed into the stack. At the time it is
pushed, it is pointing at the third byte of the JSR instruction.

* The address in the JSR instruction operand is loaded into the PC. Thus,
that address becomes the next instruction address.

Here’s how a return works:

e The top of the stack is pulled into the PC. This should be the address that
was pushed by the JSR instruction.

Suppose you have this situation:

address instruction
0110 JSR GETIT
0113 STA HERE
0200 GETIT EQU =

0200 LDA THERE
020A RTS

What address is pushed by the JSR instruction?

What address is loaded into the PC by the JSR instruction?

What is the next instruction to be executed after the JSR instruction?

What address is popped from the stack into the PC by the ReTurn from
Subroutine (RTS) instruction? i

What is the next instruction to be 9xecuted after the RTS instruction?

T

{a) $0112; (b) $0200; (c) LDA THERE; (d) $0112; () STA HERE

208 6502 ASSEMBLY LANGUAGE PROGRAMMING

5. Examine the program in Figure 20 again. Which of the following are
subroutines?)

— (a) GETN1 —~{f OUTPUT . (k) NOGOOD
(b)) GETN2 (g} SAVEN1 —— () ERROR
(e ADDIT —— (h) NOMSG — (m}y ERLOOP
~ (d) INPUT —— (i} NEWLIN

— (e} ZERO —— () CHECK

(d, @), G, G), M

[ta) - (c) are part of the main line; () is a symbolic value; (g) is part of the main line
since contro] falls through; (h) is a data area; (k) is part of CHECK since it is
reached by a branch; (m) is part of ERROR since control falls.through]

CODING A SUBROUTINE

6. You must be careful when you code a subroutine. You want it to perform its
function completely and accurately and have no unexpected side effects. And it
must include at least one return instruction. It may have more than one return if
alternate paths are established.

What are three characteristics of a good subroutine?

{a)

(b)

{c)

(a) complete and accurate; (b) no side effects; (c) at least one return

SUBROUTINES 209

PRESERVING ORIGINAL VALUES

7. A subroutine avoids side effects by returning the registers and the stack in ex-
actly the same condition that it receives them. Of course, it may use these areas.
But it also restores them to their original values.

The exception is any area that is supposed to be affected by the subroutine’s
function. For example, the INPUT subroutine reads a byte into the accumulator.
The accumulator and status byte register come out of the subroutine with their
values changed. {(Remember, any move to the accumulator, or X or Y register, af-
fects the status flags.) The X and Y registers and the stack should be unchanged.

The OUTPUT subroutine writes one character from register A to a terminal.
What areas would you expect to have different values after the routine has returned
control? ’

(&) X register
__ {b) accumulator
) Y register
— {d) status register
.. (e) the stack

__ {B none of the above

{f) is the correct answer. The accumulator still contains the byte that was written.

Caution: Don’t assume that your system subroutines, such as the input and output
ones, will leave your registers in good shape. Many of them don’t. You'll want to
either fix the subroutines or preserve yeur registers before calling.

8. The CHECK subroutine (see Figure 20) analyzes a value in register A. It
places its results in the X register. If the value in A is between ‘0’ and ‘4," 0 is
placed in X. Otherwise, $FF is placed in X.

What areas would you expect to have different values after CHEKIT returns
control?) N

__ {a) accumulator _ {d) Y register {g) none of them
__ (b) status —— le) the stack
_ {c) X register _ (f) memory

{b) and {c)

210 6502 ASSEMBLY LANGUAGE PROGRAMMING

9. If your subroutine needs to use a register. you preserve the incoming contents
of that register by pushing it into the stack or saving it in a special memory loca-
tion. Then you restore it before returning control. You may need to save the status
register in the stack also.

Suppose your subroutine uses the accumulator and the X register. Both of
them, and the status register, should be returned in their original condition. Write
the necessary instructions to save and restore these from the stack.

PHP
PHA
TXA
PHA

PLA
TAX

PLA
PLP

10. The accumulator, X, and Y registers can be saved at data locations; but the on-
ly way to save the status register is to put it in the stack. Write the instructions
necessary to save and restore the status, X, and Y registers. Use data locations for
storage wherever possible.

SUBROUTINES 211

PHP
STX SAVEX
STY SAVEY
LDX SAVEX
LDY SAVEY
PLP

(Notice that it doesn't really matter what order you use to restore data from
memory; but the status register needs to be saved first and restored last, or it may
be changed by the other operations.)

11. It’s critically important that your subroutine pulls anything that it pushes.
Remember that the return address is in the stack. If you leave the stack unbal- |
anced, the remainder of the program won’t work. .

If your subroutine pushes registers X and Y, then what must it do before
returning control?

pull registers Y and X

RETURNING F;ROM A SUBROUTINE |

12. A subroutine returns control when it reaches a return instruction. The opera-
tion code is RTS. There is no operand and no flags are affected.

Code instructions to return the value of X from the stack. then return control
to the calling routine.

214 6502 ASSEMBLY LANGUAGE PROGRAMMING

STALL EQU
PHP
PHA
STX
LbX
OUTLOP EQU
LDA
JSR
INX
CPX
BNE
LDX
PLA
PLP
RTS
WAITHS ASC
SAVEX DS

SAVEX
#0
*

WAITMS,X
OUTPUT

#er

OuUTLOP
SAVEX

‘PLEASE WAIT -- I''N THINKING'

16. Code a subroutine that adds 5 to the contents of register A. If a carry results,
reset the register to zero. Otherwise, just return control. It is not necessary to
preserve the contents of any registers for this subroutine.

INCS EQU
cLC
ADC
BCC
LDA
ENDING RTS

*

5
ENDING
#0

SUBROUTINES 215

PASSING DATA

17. Many subroutines require data to be passed to them. For example, look at the
CHECK routine in Figure 20. It operates on a value in register A. That value was
placed in there by the calling routine. We call such values passed data.

Which of the following types of subroutines would require data to be passed to
them?

— (a) a routine to read one byte from a terminal

— (b) a routine to write one byte to the terminal

— (¢} a routine to start a new line on the terminal

—_— e = e e e e e

(b)

18. Suppose you are calling a subroutine that expects to print out one of several
possible messages. All the possible messages are stored one after the other in a data
area called ‘TEXT.’ The subroutine expects to find the length of the current
message in the Y register. It expects to use the X register to find the first byte of
the actual message. Code a set of instructions that will call this subroutine (named
MESOUT) for a 15-character message starting at TEXT+9.

LDY #15
LDX #9
JSR MESOUT
I/O SUBROUTINES)

In the preceding frames, you have learned how to code and call subroutines. Now we
want to take a look specifically at input and output (I/O) subroutines. We can’t
show you exactly what subroutines you should use, but we can show you some com-
mon ones.

212 6502 ASSEMBLY LANGUAGE PROGRAMMING

13. You should now be able to write subroutines. These next few frames will give
you some practice.

Code a subroutine called ECHO that reads a byte into the accumulator, echoes
it, and stores it in memory at INCHAR. Leave all the registers intact when you
return control to the calling routine.

ECHO EQU =
PHP
PHA
JSR INPUT
JSR OUTPUT
STA INCHAR
PLA
PLP
RTS

If your output routine does not preserve the accumulator, you need to store IN-
CHAR before calling the routine.

14. Code a subroutine that reads a byte from the terminal. If the input byte is less
than $20, return control. If the byte is $20 or more, move it to the X register and
then return control. Note that the contents of the X register are intended to be
changed by this subroutine and should not be preserved.

SUBROUTINES 213

GEDATA EQU
PHP

PHA

JSR

CHP

BMI

TAX

ENDING EQU

' PLA
PLP

RTS

INPUT
#320
ENDING

*

15. Code a subroutine called STALL that writes out this message: PLEASE
WAIT — — I'M THINKING. (Use two single quotes to store one single quote.)

216 6502 ASSEMBLY LANGUAGE PROGRAMMING

19. One major problem with I/O is that the microprocessor, which has no moving
parts, can work so much faster than most I/O devices. In fact, the average 6502
microprocessor can read and store many thousand bytes per second. But a very fast
keyboard can only send about 960 bytes per second. The average typist can type
about four bytes per second. The bytes can’t be read any faster than they become
available.

On the output side, again the microprocessor can write many thousand bytes
per second (more if it’s not retrieving them from memory), but a very fast line
printer can only type about 120 bytes per second and 30 is a more common speed. A
byte can’t be written until the previous byte is completed.

(@) Suppose you're writing an input subroutine to read one byte. What condition
would you wait for before using the input data?

(b) Suppose you're writing an output subroutine to write one byte. What condi-
tion would you wait for before sending the output data?

(¢ What do you think an I/O subroutine spends most of its time doing?

(a) when the input device has a byte available; (b) when the output device is ready
for one; (c) stalling, pausing, waiting, spinning its wheels. slowing down the com-
puter

20. The primary input device of a 6502 microprocessor is usually some kind of
keyboard operated by a human being (we hope). The output goes to a television
screen, terminal, or printer.

There are several ways to coordinate the transfer of data to and from such
devices. We'll describe one of the most common methods.

There are connections between the device and the microprocessor at two
memory addresses. One location contains I/0 data. The other one is for status infor-
mation. The status information tells whether the device has an-input byte ready to
be read or is ready to receive an output byte. Some systems use separate sets of
bytes for input and output.

() When you want to read a byte of data from the keyboard, which byte do you
look at first—the data byte or the status byte?

(b) What does the status byte tell you?

'SUBROUTINES 217

(a) the status byte; (b) whether the keyboard has sent data

21. Here’s another method of handling input and output readiness. This is how our
system handles it.

$C000 is the memory location for data from the keyboard. The keyboard sends
standard seven-bit ASCII characters to this location. When a character arrives, a
signal turns on the high-order bit. This means that $C000 has a value of $80 (128) or
more whenever a byte of input data has arrived there.

Look at the input subroutine on lines 62-69 in Figure 20. You'll see we test the
high-order bit of $C000. When we find it set, we move the input byte to the ac-
cumulator.

Any reference to location $C010 in our system will turn off the high-order bit
in $C000. It doesn’t matter what command we use; in Figure 20, we used an STA
$C010 command on line 65. Turning off the high-order bit in $C000 keeps us from
using the same input byte twice if we check the INPUT location again before the
next byte arrives. ’

One problem with this input method is that our input characters don’t match
the standard ASCII characters—ours are all $80 higher.

(a) Using this method, how do we know when a new byte has arrived?

(b) How do we know when we have already read the byte at $C000?

(a) the high-order bit is on; (b) the high-order bit is off

22. Assume your processor receives input at location $2000 and has an input
status byte at location $2001. This byte will be ‘on’—set to $80—when an input byte
has arrived at $2000; otherwise, it will be off. Code a subroutine to test the status
byte until data is received; then fall through to instructions to put the byte in the
accumulator, turn off the status byte, and return.

218 6502 ASSEMBLY LANGUAGE PROGRAMMING

INPUT EQU
STX
LDA
TEST EeU
BIT
BEQ
LDA
PRP
LoX
STX
LdX
PLP
RTS

*

SAVEX

#%210000000 ;FOR BIT TEST

*

$2001

TEST ‘

$2000 ;GET NEW BYTE
;SAVE ITS STATUS

#0

$2001

SAVEX)
;RESTORE ITS STATUS

{Notice that we saved the status register after we moved the input byte to the ac-
cumulator; we might want to use it to test the new data, but the X register
manipulations will reset some of the flags.)

23. A basic output subroutine shouldn’t be any. more difficult than an input
subroutine. For example, suppose your processor has an output location at $5000
and an output status byte at $5050, which is set to $80 when the output device is
ready; $00 otherwise. Code an appropriate output subroutine.

SUBROUTINES 219

OUTPUT EQU =

STX SAVEX

TAX

LDA #X10000000 ;FOR BIT TEST
TEST EQU

BIT $5050

BE@ TEST

TXA RESTORE A REGISTER

STX $5000

LbX #$D

STX $5050

LDX SAVEX

RTS

24, A simple output subroutine like the one in the preceding frame won’t work if
your output device is a television screen. The screen doesn’t know where to put its
_ output; the program needs to keep track of which position on the screen is “next.”
Subroutines to put out data on a video terminal can get pretty complicated.

On our system, there are standard input and output subroutines loaded into
memory every time the system is started up. They are part of the system monitor.
If you look at the output subroutine we used in Figure 20, you can see we call a
subroutine at $FDED. This is our system’s single-character output subroutine. We
found the address for this subroutine in the reference manual that came with the
computer.

One caution about using system subroutines—you’ll need to find out what
areas of memory these routines use, so you don’t overlay them with your program’s
instructions and data area. Also, you’ll need to see if they preserve your registers
properly. If not, you'll have to preserve them yourself before calling the subroutine.

(a) If you want to do output to the video, what should you look for?

(b) If you use your system’s standard input/output routines, what two precau-
tions should you observe?

/s

(a) look for a standard output subroutine in your system monitor; (b) don’t overlay
the subroutine with your own program, and make sure it preserves the registers pro-

perly

220 6502 ASSEMBLY LANGUAGE PROGRAMMING

26. One type of output on some 6502 microprocessors uses a memory-mapped
screen. This lets you build a complete screenful of data in memory and then
transmit it all at once to the video screen.

Refer back to Figure 10. You see that the routine puts an output message in
location $0400 - $0421. This is the first part of our screen map area. The map ex-
tends from $0400 - $07FF. Since we didn’t clear the rest of the area. the text
already on the screen will remain the same except for the first 22 bytes.

Once our screen map was built, we executed commands using addresses $C054
and $C051. It wouldn’t matter what commands we used; any series of commands us
ing these two addresses in order would display our revised output page on the
screen.

Which of the following describe a memory-mapped screen? (Choose more than
one.)

— (a) Sends one character e;t a time to the screen.

—— (b) Sends a whole screenful at a time to the screen.

— (&) A special part of memory is reserved for screen data.-

— {d) You send the data to the screen with the MAP instruction.

— {e) You send the data to the screen by referencing a special address in
memory.

(b), (c), and (e) are correct

You have now seen how we write a complete input or output subroutine. Of
course, they can be much fancier, especially if you want to do some error or parity
checking. Routines that access printers look much the same as these. Routines for
devices that use disk, tape, and cards usually require a lot more control code and
timing routines. We cannot cover them in this book.

As to how you access your own devices, you'll need to find out how they com-
municate with the microprocessor. What are their memory addresses and how do
they transmit status information? What system routines are available? Your
manuals or your technical representative may be able to help you. p

PROGRAM DESIGN

How do you decide what to code as a subroutine and what to put in the main line?
There’s no hard and fast rule. But the following frames present some guidelines.

26. Subroutines make programs easier for people to read and write. At one ex-
treme, your main line could consist entirely of subroutine calls. All the detail work
would be done by the subroutines. The logic of a program written this way is usual-

SUBROUTINES 221

ly very clear. But the overhead (extra computer time) is tremendous! A call and
return can take four times as long to execute as a jump instruction. And all those
pushes and pulls add to the time—and use up more memory space.

Of course, we're talking about time differences measured in microseconds (one-
millionths of a second). For the average application program, the extra time and
storage involved by using a lot of subroutines will never be noticed. But most
system programs must make the best possible use of time and space.

(a) Subroutines use (more/less) ________ time and space than main line routines.
(by Most application programs should use (many/few) _________ subroutines.
() Most system programs should use (many/few) ___ subroutines.

(a) more; (b) many; (c) few

97. We do use subroutines in system programs, but we use them only where
they’re really needed. One situation where we usually create a subroutine is when
the same routine is executed at several different places in the program. A
subroutine saves us from having to write the code several times. Jumping doesn’t
work as well because there's no mechanism for returning to the previous place when
the routine finishes. -

Refer to Figure 20 to answer the following questions.

(a) How many different places call NEWLIN?
(b} Why did we make NEWLIN a subroutine?

(a) 4; (b) because it’s used in four different places in the prograrh.

28. Another reason we use a subroutine in a system program is that it’s the same
routine that appears in many programs. For example, we almost always use the IN-
PUT and OUTPUT subroutines even though a particular program may only call
them once each. Why? They save us coding time and they’ve been thoroughly
tested.

Suppose your system includes a memory-mapped screen. You want to code a
routine that clears the map of the screen.

(@@ Would you make it a subroutine?

(b} Why or why not?

222 6502 ASSEMBLY LANGUAGE PROGRAMMING

(a) we would; (b) because you’ll use it over and over again in many different pro-
grams

29. Let’s review what you've learned about program design with respect to
subroutines.

(a) Which type of program can maximize the use of subroutines — system or ap-

plication?

(b) List two primary types of routines that you should consider making into

subroutines.

(a) application; (b) ones that are used more than once in the same program and ones
that are used in many different programs

REVIEW

In this chapter, you've learned how to code and call subroutines, especially 1/0
subroutines.

* A subroutine is a routine that is not in the main line of control. It receives
control by being called and it returns control to the calling routine when it
finishes.

* A good subroutine accomplishes one function completely and accurately,
has no unexpected side effects, and contains at least one return instruc-
tion.

» Side effects are avoided by returning the stack and the registers in their
original condition, except for those that are supposed to be affected. Push
and pull instructions can be used to preserve the registers and restore
them. Be sure to pull all items, in reverse order, that have been pushed.
You can also save them at memory locations, if you prefer.

® The return instruction is RTS (ReTurn from Subroutine). It has no
operand.

* For many I/0 subroutines for terminals and printers, it’s necessary to test
a status byte before reading or writing data. The status byte is set to a
value indicating whether the terminal is ready to send or receive data.

SUBROUTINES 223

¢ Application programs should make free use of subroutines because they
make the program logic easier to understand. However, subroutines take
more time and space and in general should be minimized in system pro-
. grams. Routines that are good candidates for subroutines are those that
are used several times in the same program and those that are used in
many programs within a system.

CHAPTER 10 SELF-TEST
Part I. Code the calling routines or subroutines specified below.

1. This subroutine writes out a message from the data area TEXT to an output
device. The displacement for the first byte of the message is passed in the X
register. The length of the message is passed in the Y register. Call the OUT-
PUT routine to actually write each byte.

224 6502 ASSEMBLY LANGUAGE PROGRAMMING

2. This subroutine reads, echos, and validates an incoming byte. A byte is valid
if it is an upper case letter. If invalid, write the message WRONG — — TRY
AGAIN. Continue reading until a valid byte is obtained. Leave the byte in the
accumulator and return control.

Use the INPUT and QUTPUT subroutines to read and write single bytes.
Call the subroutine you wrote for question 1 to write the message.

SUBROUTINES 225

This routine—not a subroutine—reads and stores an incoming message in
memory. It should loop until the letter Z is read. That terminates the message.
(Store the Z.)

Each character of the incoming message should be read, echoed, and
validated using the subroutine you wrote for question 2 above.

’

226 6502 ASSEMBLY LANGUAGE PROGRAMMING

4. This subroutine writes one character from the accumulator on a printer. Use
these features:

e Status byte at address $C50F.
¢ MSB indicates output status; on for ready.

¢ Data byte at address $C50A.

SUBROUTINES 227

This subroutine reads one character from a keyboard. The terminal status byte
is at $DD1C. The first and second bits (LSB and LSB+1) are on when a byte
is ready to be read. The data byte is at address $DD1D. Put the character in
the accumulator.

228 6502 ASSEMBLY LANGUAGE PROGRAMMING

7.

This subroutine prints text on the printer by calling the print subroutine you
wrote for question 4 above. After each character is printed, check for an input
byte from the terminal described in question 5 above. If any byte is input,
discontinue printing.

The following data is passed to this subroutine: (a) the beginning displace-
ment of the text is in register X; (b) the length of the text is in register Y.

This routine causes the following message to be printed, preceded by form feed
and carriage return:

NOW IS THE TIME FOR ALL GOOD PECPLE TO COME TO THE
AID OF THEIR PARTY.

Use the subroutine you wrote for question 6 above to print the text.

L e o

SUBROUTINES 229

Part 1.

1.

WRITE

ouTLOP

UPPERA
IPLUSY
GETLET

TRYONE

ERROR

0K

SAVEY
MESLNG
TEXT

READIN

DONE
INMES

EQU
PHP
PHA
EQU
LDA
JSR
INX
DEY
BNE
PLA
PLP
RTS

EQU
EQu
EQU
STY
EQU
JSR
JSR
cMP
BMI
4,14
BMI
EQU
Loy
LbX
JSR
JMP
EQU
Loy
RTS
bs

bFB
ASC

LDX
EQU
STX
JSR
LDX
STA
INX
cMpP
BMI
JMP
DS

Self-Test Answer Key

*
TEXT,X
oUTPUT

OUTLOP

$41

$5B - H
*

SAVEY

*

INPUT
OUTPUT
#UPPERA
ERROR
#1PLUSY
oK

*
MESLNG
#0

‘WRITE

GETLET
*

SAVEY

1
18
'WRONG -~ TRY AGAIN'

#0

*

SAVEX
GETLET
SAVEX
INMES, X

#'7'
READIN
DONE
80

THIS 1S

|zl

PLUS 1

230 6502 ASSEMBLY LANGUAGE PROGRAMMING

4.

5.

PRINT

TEST

INPUT

TEST

PTEX

ENDSUB

NOWPRN

DONE
TEXT

EQU
STX
PHA
LDA
EQU
BIT
BEQ
PLA
STA
LDX
STX
LpX
RTS

EQU
STX
LDA
EQU
BIT
BEQ
LDA
PHP
LbX
STX
LbX

PLP
RTS

EQU
LDA
JSR
LDA
BIT
BNE
INX
DEY
BNE
EQU
RTS

EQU
Loy
LDX
JSR
JMP
DBF
ASC
ASC
ASC

*
SAVEX

#X10000000
*

$C50F

TEST

$CS0A
#0

$C50F
SAVEX

*
SAVEX
#X00000011
*

$Db1C
TEST

$DD1D

#0
$OD1C
SAVEX

*
TEXT,X
PRINT
#X00000011
$bD1C
ENDSUB

PTEX
*

*

#72

#0

PTEX

DONE

$0D,SOA

"NOW IS THE TIME FOR ALL '
1600D PEOPLE TO COME TO THE
"AID OF THEIR PARTY.'

CHAPTER ELEVEN

NUMERIC MANIPULATION

You have already learned how to add and subtract numbers up to 255 using one
byte. But many computer applications require much larger numbers than this.
Multiplication and division are also necessary, as well as the ability to handle
negative numbers.

In this chapter, we’ll introduce you to some techniques for handling numbers
with Assembly Language. There isn’t room in this book to cover them all, but we
will show you how to code a routine that will add numbers several bytes long. We'll
show you how to handle basic multiplication and division. And finally, we’ll show
you how to use twos complement notation to handle negative numbers.

When you have finished this chapter, you will be able to:

¢ code the following instructions:

— SED (SEt Decimal mode)
— CLD (CLear Decimal mode)
— CLV (CLear oVerflow flag);

* code routines to solve the following types of pr(;blems:

— convert ASCII to binary coded decimal (BCD)
"— convert BCD to ASCII

— add multibyte BCD values

— subtract multibyte BCD values

— multiply multibyte values

— divide single-byte values

— convert ASCII to twos complement notation
— convert twos complement notation to ASCII.

MULTIBYTE ADDITION

1. Multibyte arithmetic is done on values stored in memory. Each byte is moved
into the accumulator as it is needed.

In multibyte arithmetic, we usually don’t work with values that have been con-
verted to pure binary form. We work instead with a data representation system
called binary coded decimal (BCD). You’ll also hear it referred to as packed decimal.

231

232 6502 ASSEMBLY LANGUAGE PROGRAMMING

Here are some decimal values as they are represented in binary, hexadecimal,
BCD, and the hexadecimal representation of BCD.

decimal value pure binary (hex) BCD (BCD-hex)
21 %00010101 ($15) Z200100001 (s21)
18 Z00010010 ($12) X00011000 (s18)
30 %00011110 ($1E) %00110000 ($30)

Notice the correlation between the decimal value and the BCD hex value.
Give the BCD values for these decimal numbers. Show your answers in hex.

@ 05 =___ _ (BCD)
b)) 19 =___ _ (BCD)
¢ 54 =___ (BCD)

{a) $05; (b) $19; (c) $54

2. The BCD systém simply splits the two halves of a byte apart and treats them
as separate storage areas. Half a byte is called a nibble (that’s someone’s idea of a
joke), and we’ll speak of the least significant or lower nibble and the most signifi-
cant or upper nibble.

In BCD, each nibble will hold a value from 0 to 9. Values A through F are for-
bidden. The normal binary equivalents of 0 to 9 are used (see Figure 1).

For example, the BCD equivalent of 83 holds 8 in the upper nibble, 3 in the
lower nibble. In hex BCD notation, it is coded $83; in binary BCD, it is coded
%10000011.

Give the BCD equivalents of these decimal values. Write your answers in both
binary and hex.

(a) 32 % (BCD)
b) 10 = % (BCD)

i
@

(BCD)
(BCD)

i
@

(a) %00110010, $32; (b) %00010000, $10 (Be sure you translated each digit separately.)

3. Which of the following values are illegal in BCD?
— (a) $39
— (b) 84B
— e} %20
— (d) $FF

NUMERIC MANIPULATION 233

(b) and (d) are illegal because they contain digits above 9

4. Assume we have two one-byte BCD values in memory.

ADD1 $05
ADD2 $04

We want to add these together, with the result in ADD1. Write instructions to
accomplish the following:

(a) Put the ADD2 value in the accumulator.

{(b) Add the ADD1 value to it and put the result in ADD]I.

(¢) What is the hex form of the value in ADD1 now?

{d) Is this a valid BCD value? i
{e)} Suppose the original values were both 5. Would the result be a valid BCD value?

(a) LDA ADD2

(b) cLC
ADC ADD1 ~
STA ADD1

(c) $09; (d) yes; {e) no—A is not valid in BCD

5. The result in the accumulator may no longer be a BCD number
because the computer uses binary/hexadecimal arithmetic. Here are some
examples:

$03 $06 $27 $39
+_804 +_805 +_336 +_$08
so7 (ok!) $08 $5D $41

To prevent this problem, we need to use an instruction called SED (SEt
Decimal mode). This instruction, which has no operands, instructs the processor to
use BCD arithmetic until further notice.

234 6502 ASSEMBLY LANGUAGE PROGRAMMING

When you're doing BCD arithmetic, before you start you should use the

instruction.

SED

6. Now let’s assume that we have two BCD values in memory, each two bytes
long.

ADEND1

ox XX
ADEND?2

oY Yy

We want to add these two values together, storing the sum in ADEND2.
Notice that each of them has at least one leading zero. This will make sure the

result will fit in ADEND2. First we'll add the rightmost bytes, using indexed
addressing.

Write a set of instructions that will move the least significant byte of
ADENDI into the accumulator, then add the least significant byte of ADEND2 to
it using BCD arithmetic. Put the result in the least significant byte of ADEND2.

Write your code on a separate piece of paper using pencil. You're going to add
to and change this routine until you've built a complete addition program.

Programming Note: Right now we’re working with only two bytes. But even-
tually you want to be able to add fields of any size. Don’t use an expression such as
ADEND1+1 to access these bytes. Use indexed addressing.

SED

LoX #1

LDA ADEND1,X
cLC

ADC ADENDZ,X
STA ADENDZ,X

NUMERIC MANIPULATION 235

7. Now we're ready to handle the most significant byte. The only difference be-
tween this byte and the least significant byte is the possibility of a carry coming
from the previous addition.

Remember that when we added the least significant bytes of ADEND1 and
ADEND?2, we stored the sum in ADEND2. The carry flag was left intact. If there
was a carry out of that least significant byte, the carry flag will be on. Otherwise, it
will be off.

Now add a set of instructions to treat the most significant bytes. Write a
routine that will:

(1) move the ADENDI1 byte into the accumulator
(2) add the ADEND2 byte to it, plus the value in the carry flag
(3) store it in the correct byte of ADEND2

Here is our whole routine so far:

ADDER EQU #
SED
LDX #1
cLe
LDA ADEND1,X
ADC ADEND2,X
STA ADEND2,X
DEX
LDA ADEND1,X
NEW | apc apEND2.X
STA ADENDZ,X

The new part is marked.

8. Notice that the routine so far adds two bytes. It contains two similar sets of
instructions. Each set:

— stores one byte in accumulator
— adds in other byte

— stores result in memory

While the operations are accomplished a bit differently, we can create a loop that
will add two numbers of any size.

Adapt your addition routine so that it is one loop that adds two five-byte
numbers and stores the sum.

Hints: The first loop adds the least significant bytes. Make sure the carry flag
is set to 0 before entering the loop so you can use the ADC instruction. End the
loop when register X equals 0.

236 6502 ASSEMBLY LANGUAGE PROGRAMMING

ADDER EQU «
SED
LbXx #&
cLc

ADDBYT EQU
LDA ADEND1,X
ADC ADENDZ2,X
STA ADENDZ2,X
DEX)
BPL ADDBYT

This routine will work with any size numbers up to 255 bytes long if you ad-
just the value in X,

BCD CONVERSION

Now that you've seen how to add two BCD numbers, let’s talk about where they
came from in the first place. In the following set of frames, we’ll show you how to
expand the program you’ve already coded so that it reads a set of ASCII digits
from a terminal and converts them to BCD.

9. Let’s start by reading one digit from the terminal and converting it from
ASCII to binary. All you have to do is turn off all the bits in the most significant
nibble. Leave the result in the accumulator.

Write your code on a separate piece of paper so you can build an entire routine
as before. Use JSRs for any I/O you need.

JSR INPUT
JSR OUTPUT
AND #%00001111

NUMERIC MANTPULATION 237

10. In BCD, it’s very important that only valid decimal digits are used. Convert
the routine you coded in the previous frame into a complete subroutine that gets
one valid digit:

(1) Read and echo one character.

(2) Validate range ‘0’ to ‘9’ (make sure the character is in the range).

(3) If the character is out of range, write an error message and try again.

(4) When a valid digit is obtained, convert it to binary and return control.
Leave the new value in A.

Don’t forget to make it a subroutine.

GETDIG EQU «

STX HOLDX
AGAIN EQU =
JSR INPUT ; GET ONE DIGIT
JSR OUTPUT
CMP #'0° ; RANGE CHECK
BMI ERROR
CMp #':! ; COMPARE TO CHARACTER AFTER '9'
BPL ERROR ; ERROR IS EQUAL OR GREATER THAN ':'
AND #200001111 ; CONVERT ASCII TO BCD
LDX HOLDX
RTS
ERROR EQU *
LDX #0

MSGOUT EQU =
LDA ERRMSG,X

JSR OUTPUT
INX

CPX #26
BNE MSGOUT
JMP AGAIN

HOLDX DS 1
ERRMSG ASC 'INVALID DIGIT =-- TRY AGAIN'

238 6502 ASSEMBLY LANGUAGE PROGRAMMING

11. Now we have a subroutine that will put one valid binary digit in register A.
How do we get from there to BCD? For correct BCD format, we have to work with
two digits at a time. We combine them into one byte this way:

(1) rotate the first digit into the upper nibble

(2) add in the second digit

Code a routine that will get two valid decimal digits (by calling GETDIG) and
create one BCD byte. Store the byte at ADENDI.

GETNUM EQU *
JSR GETDIG ; GET MSBYTE

ASL A
ASL A

ASL A

ASL A

STA MSB

JSR GETDIG ; GET LSBYTE
cLe

ADC MSB

STA ADEND1 '

Ms8 DS 1

NUMERIC MANIPULATION 239

12. Now complete your routine so that it gets and stores all of ADENDI1 (ten
digits = five bytes) and ADEND2 (also five bytes). For the user’s benefit, start a
new line on the display screen after each 10-digit number. You'll want to use a
“nested loop.” Have an inner loop that is executed five times for one 10-digit
number. Have an outer loop that executes the inner loop twice for the two numbers.

Our complete routine looks like this:

fcn EQU $O0D
LF EQU $OA
GETADS EQU *
= LDX #O ; INITIALIZE INDEX
mJ LDA #2 ; CONTROL OUTER LOOP FOR 2 NUMBERS
= STA COUNT2
GETAD EQU =
LDA #S ; CONTROL INNER LOOP FOR 5 BYTES PER NUMBER
STA COUNTS
\ GETNUM EQU #
JSR GETDIG ; GET MSBYTE
ASL A
ASL A
ASL A
ASL A
STA MSB
JSR GETDIG ; GET LSBYTE
cLC
ADC MSB
STA ADEND1,X ; IF X > 4, WE'RE IN ADEND2
INX
(DEC COUNTS ; COUNT INNER LOOP
BNE GETNUM
LDA #CR ; CR DEFINED AT BEGINNING
JSR OUTPUT
2 LDA #LF ; LF DEFINED AT BEGINNING
34 JSR OUTPUT
-4 DEC COUNT2
BNE GETAD ; GET 2ND ADDEND
COUNT2 DS 1
COUNTS DS 1
ADEND1 DS S
\ ADEND2 DS S
MSB psS 1

240 6502 ASSEMBLY LANGUAGE PROGRAMMING

13. You've seen how to get the BCD addends and how to add them. Now we need
to convert the result (in ADEND2) back into ASCII. Code a routine that will:

(1)

get one byte from ADEND2

repeat steps (1) through (4) until the entire sum is written out.

(2) split the two nibbles
(3) convert to ASCII
(4) write both digits
(5)
MASCII EQU X00110000
WRITIT EQU =*
LDX #0
CONVRT EQU »
LDA ADEND2,X
LSR A
LSR A
LSR A
LSR A
ORA #MASCII
JSR OUTPUT
LDA ADEND2,X
AND #X00001111
ORA #MASCII
JSR OUTPUT
INX
CPX #5
BNE CONVRT

.

GET BYTE

CONVERT TO ASCII

GET IT AGAIN
USE LOWER NIBBLE
CONVERT TO ASCII

Figure 21 shows our entire program to read and add two ten-digit numbers.
This program has certain awkward points. The user must type all ten digits, in-
cluding leading zeros. Also, we haven’t taken any steps to prevent overflow of the
sum. The error message routine dumps the message in the middle of the user’s
number. To clean up these difficulties would require a lot of code that is not the sub-
ject of this chapter. But you would want to do so before actually using this pro-'

gram,

NUMERIC MANIPULATION

241

MASCII
CR
LF
GETADS

GETAD

GETNUM

ADDER

ADDBYT

WRITIT

CONVRT

DONE

EQU
EQU
EQU
EQU
LDX
LDA
STA
EQU
LDA
STA
EQU
JSR
ASL
ASL
AsL
ASL

J SR
cLC
ADC
STA
INX
DEC
BNE
LDA
JSR
LDA
JSR
DEC
BNE
EQU
SED
LDX
cLC
EQU
LDA
ADC
STA
DEX
BPL
EQU
LOX
EQU
LDA
AND
LSR
LSR
LSR
LSR
ORA
JSR
1LDA
AND
ORA
JSR
INX
CPX
BNE
JMP

~

X00110000
$0p
$OA

*

#0

#2
COUNT2
*

#5
COUNTS
*
GETDIG
A

A

A

A

MsB
GETDIG

MsB
ADEND1,X

COUNTS
GETNUM
HCR
QUTPUT
HLF
OUTPUT
COUNT2
GETAD
*

#é

*

ADEND1,X
ADEND2,X
ADEND2, X

ADDBYT -

*

#0

*
ADEND2,X
#%11110000
A

A

A

A

BMASCII
OUTPUT
ADEND2,X
#%00001111
HMASCII
OUTPUT

#5
CONVRT
DONE

A T

N

~

e %o N

INITIALIZE INDEX
CONTROL OUTER LOOP

CONTROL INNER LOOP

GET LSB

IF X > 4, WE'RE IN ADEND2
COUNT INNER LOOP
CR DEFINED AT BEGINNING

LF DEFINED AT BEGINNING

GET 2ND ADDEND

GET BYTE
USE UPPER NIBBLE

CONVERT TO ASCII

GET IT AGAIN
USE LOWER NIBBLE
CONVERT TO ASCII

FIGURE 21. Multibyte Addition Program

NUMERIC MANIPULATION

241

MASCII

GETAD

GETNUM

ADDER

ADDBYT

WRITIT

CONVRT

DONE

EQU
EQU
EQU
EQU
LbX
LDA
STA
EQU
LDA
STA
EQU
J SR
ASL
ASL
ASL
ASL
STA
J SR
cLc
ADC
STA
INX
DEC
BNE
LDA
JSR
LDA
JSR
DEC
BNE
EQU
SED
LDX
cLC
EQU
LDA
ADC
STA
DEX
BPL
EQU
LDX
EQU
LDA
AND
LSR
LSR
LSR
LSR
ORA
JSR
LDA
AND
ORA
JSR
INX
CPX
BNE
JMP

X00110000
sop
$OA

*

#0

#2
COUNT2
*

#5
COUNTS
*
GETDIG
A

A

A

A

MSB
GETDIG

MsB
ADEND1,X

COUNTS
GETNUM
#CR
QUTPUT
#LF
QUTPUT
COUNT2
GETAD
*

R4

*

ADEND1,X
ADEND2,X
ADENDZ2,X

ADDBYT -

*

#0

*
ADENDZ2,X
#X11110000
A

A

A

A

#MASCII
OUTPUT
ADENDZ2,X
#%00001111
#MASCII
QUTPUT

#5
CONVRT
DONE

“

.~

e

~

we W

LTI YR YY

INITIALIZE INDEX
CONTROL OUTER LOOP

CONTROL INNER LOOP

GET LSB

IF X > 4, WE'RE IN ADENDZ2
COUNT INNER LOOP
CR DEFINED AT BEGINNING

LF DEFINED AT BEGINNING

GET 2ND ADDEND

GET BYTE
USE UPPER NIBBLE

CONVERT TO ASCII

GET IT AGAIN
USE LOWER NIBBLE
CONVERT TO ASCII

FIGURE 21. Multibyte Addition Program

242 6502 ASSEMBLY LANGUAGE PROGRAMMING

GETDIG

AGAIN

ERROR

MSGOUT

COUNTZ2
COUNTS
ADEND1
ADEND2
MSB
HOLDX
ERRMSG

MULTIPLICATION

EQU

EQU

*

HOLDX

*

INPUT
OUTPUT
#'0' ; RANGE CHECK
ERROR

#':!

ERROR
#%00001111
HOLDX

*

#0

*
ERRMSG, X
QUTPUT

#26
MSGOUT
AGAIN
1

- b ad 1N -2

INVALID DIGIT -- TRY AGAIN'

FIGURE 21. Multibyte Addition Program (continued)

Multiplication is really a process of repeated addition. In the frames that follow,
we’ll show you how to multiply numbers in Assembly Language. First you'll see
how to do it in pure binary. Then we’ll show you how to do it in BCD.

14. There are no multiply instructions. You multiply by shifting left. Each shift
multiplies the accumulator by two.
Suppose you want to multiply the accumulator by two. Write an instruction

that will do it.

NUMERIC MANIPULATION 243

15. The first shift left multiplies by two. The second doubles the first, or
. multiplies by four. The third doubles the second or multiplies by 8.
Using ASL, write a set of instructions to multiply by 16.

ASL A ; TIMES 2
ASL A ; TIMES &4
ASL A ; TIMES 8
ASL A ; TIMES 16

16. Write a set of instructions to read an ASCII byte, convert it to binary, multi-
ply it by 8, and store it at BYTEXS.

JSR INPUT
JSR OUTPUT
AND #%00001111

ASL A ; TIMES 2
ASL A ; TIMES 4
ASL A ; TIMES 8

STA BYTEXS

244 6502 ASSEMBLY LANGUAGE PROGRAMMING

17. Multiplying by a power of two is easy. But what about multiplying by a
number that’s not a power of two? We can accomplish any multiplicand by adding
together the various powers of two. For example, to multiply by 5:

* put the original value in HOLDA;

* shift left once (2A);

¢ shift left again (4A);

® add the original byte from HOLDA (4A + A = 5A),

(a) Write a routine to multiply the value in the accumulator by 7.

(b) Write a routine to multiply the value in the accumulator by 10.

NUMERIC MANIPULATION 245

(a) STA
ASL
(N
ADC
ASL
ADC

(b) ASL
STA
ASL
ASL
cLe
ADC

HOLDA

HOLDA

HOLDA

A
HOLD2A
A

A

HOLD2A

Ne e N

ws %o %o W

TIMES

TIMES
TIMES
TIMES

~NOo W ~nN

TIMES 2
SAVE

TIMES 4
TIMES 8

TIMES 10

18. So far, you've been writing multiplication routines that operate on pure binary
values. The same techniques will not work in BCD arithmetic. BCD multiplication
must be accomplished by successive additions.

In the preceding frame, you wrote a routine to multiply by 10. Convert that
routine to work on a one-byte BCD value. Assume for now that the result will not

overflow the register.

246 6502 ASSEMBLY LANGUAGE PROGRAMMING

SED
LbX
STA
MULTY EQU
DEX
BEQ
cLcC
ADC
JMP
DONE EQU

#10
HOLDA
DONE

HOL DA
MULTY

19. Now let’s look at how we multiply a multibyte BCD value. Suppose we have a
three-byte BCD value called MULTER.

MULTER =iy~

99 99 99

We want to multiply it by six and store the product in MULTED, which has 4
bytes and an initial value of 0.

MULTED i

00 00 00 00

All we have to do is write a loop that adds MULTER to MULTED. Then ex-
ecute the loop six times. Try it. (Watch out for that high order byte of MULTED.
Don’t forget to add any carries into it.)

NUMERIC MANIPULATION 247

SED
LDA
STA
ONEADD EQU
LbX
LpY
cLC
NEXBYT EQU
LDA
ADC
STA
DEY
DEX
BPL
LDA
ADC
STA
DEC
BNE

#6

COUNTé
*

#2
#3

*
MULTED, Y
MULTER, X

MULTED,Y

NEXBYT
MULTED,Y
#0
MULTED, Y
COUNT6
ONEADD

; LOOP
; COUNTER

INDEX FOR MULTER
INDEX FOR MULTED

; ADD CARRY TO MSB OF MULTED

DIVISION
20. Division is a process of repeated subtraction. Before we start, review these
terms. '
QUOTIENT
DIVISOR)DIVIDEND
XXXXXXXX
REMAINDER

Use this division problem to answer the questions below.

2
715
14

1

(a) What is the dividend? ____
(b) What is the remainder? ______
(¢) What is the divisor?

(d) What is the quotient?

(@) 15; (b) 1; (c) 7; (d) 2

248 6502 ASSEMBLY LANGUAGE PROGRAMMING

21. Here’s how we divide by two. Assume that the dividend is already in the ac-
cumulator. The quotient will be stored in X.

Lox #0O ; CLEAR THE QUOTIENT'
SUBIT EQU {
CMP #2 ; CAN WE MAKE ANOTHER SUBTRACTION?
BMI DONE
SEC
sBC #2 ; SUBTRACT DIVISOR FROM A
INX \ ; COUNT SUBTRACTION
JMP SUBIT

DONE EQUu »

The quotient will end up in X and the remainder in A. What we do is count the
number of times we can subtract the divisor (2) from the dividend.

{a) Change the above routine to divide by any number between 1 and 255.
Assume the divisor is in DIVISR.

Lbx #0 ; CLEAR THE QOUTIENT
SUBIT -EQU =
CMP DIVISR ; CAN WE SUBTRACT?

BMI DONE

SEC

SBC DIVISR ; SUBTRACT DIVISOR FROM A
INX

JMP SUBIT

DONE EQU =

{Note that a 0 in DIVISR would cause a closed loop.)

NUMERIC MANIPULATION 249

HANDLING NEGATIVE NUMBERS

So far in this book, we've been assuming that all values are positive. But the
arithmetic routines should also be able to handle negative numbers. Negative
numbers are stored using twos complement notation. In this section, we’ll teach you
how to use twos complement notation.

22. When we want to work with negative numbers, we usually use.twos comple-
ment notation to represent negative numbers. When we're working with eight-bit
numbers, twos complements are two numbers that add up to %100000000. When we
add complementary numbers in the accumulator, the result is zero with the carry
flag on. For example, %10000001 and %01111111 are twos complements.

In binary, there’s a very simple way to find the twos complement of any
number. Complement (reverse the value of) each bit and add 1 to the result. For ex-
ample:

%01100011 (value)
%10011100 (complemented bits)

%10011101 (twos complement)

Find the twos complements of the following numbers.

(a) %00001111 :
(b) %01101110:

(a) %11110001; (b) %10010010

23. The twos complement of a number has a very interesting property: As long as
you ignore the carry flag, it acts just like the negative of the original value. Thus,
%11111111 acts just like —%00000001. And %00000001 acts just like
—%11111111. For example, suppose we want to subtract 1 from 1011. There are
two ways to do it:

X00001011 X00001011

- %00000001 or + %11111111

X00001010 X100001010
ignore

carry

250 6502 ASSEMBLY LANGUAGE PROGRAMMING

AN

Which of the following looks like the easier way to handle negative numbers?

—— (a) Convert all negative numbers to twos complement notation as soon as
they’re entered. Then let all additions and subtractions proceed as if only
positive numbers were in use, except ignore the carry flag.

——— (b) Store all numbers with either plus or minus signs. For each arithmetic
operation, examine the signs of both operands and decide whether addition
or subtraction is more appropriate. When subtracting two numbers. be
sure to subtract the smaller from the larger absolute value.

(a) is much easier (and more efficient in terms of computer time and space)

24. In 6502 Assembly Language, it’s fairly easy to get the twos complement of a
number. All you have to do is complement all the bits and add one. Here’s how:

LDA NEGNUM

EOR #Z11111111
CLC

ADC #1

The accumulator now holds the twos complement of NEGNUM.
Write a set of instructions to find the twos complement of SUBBER. Leave

the result in SUBBER.

Here are two ways:

LPA SUBBER LDA SUBBER

EOR #X11111111 or EOR #X11111111
STA SuBBER cLC

INC SUBBER ADC M

STA . SUBBER

NUMERIC MANIPULATION 251

25. When we’re using a twos complement system, we let the most significant bit
act as the sign indicator. If it’s on, the value is negative. If it’s off, the value is
positive. This means that we have to limit positive values to %01111111 per byte.
To convert to decimal, you examine the sign bit. If it’s clear, the number is
positive. Just convert it directly. If it’s set, find the twos complement of the number
and put a minus sign in front of it.
In decimal, what are the equivalents of the following signed binary values?

(a) %00000000 =
(b) %01111111 =
() %10000000 =
d %11111111 =

(a) 0; (b) 127; (c) —128; (d) —1

26. In a twos complement system, what is the maximum positive value per byte?

What is the most negative value that will fit in a byte?

127; —128

27. Which flag will tell you whether the number you’re working with is positive or
negative when you're using twos complement notation?.

the sign flag (remember the sign flag is set to match the MSB in a result byte)

28. Now we’ll start building a program that reads two single digits, adds them,
and reports the sum. Either digit may be negative.

Let’s start by ¢oding a subroutine that gets one digit.

Read one byte. If it’s ‘—’, read another byte (a digit) and find the twos comple-
ment of that value. In either case, convert the value to binary and leave it in A.
(Use separate paper, as you’'ll add to this routine in later frames.)

252 6502 ASSEMBLY LANGUAGE PROGRAMMING

GETBYT EQU *

JSR INPUT ; GET BYTE
JSR OQUTPUT
cup #'-? ; IS IT A MINUS SIGN?

BEQ NEGIVE

AND #X00001111

JMP ENDING
NEGIVE EQU

JSR INPUT

JSR OUTPUT

AND #Z00001111

CONVERT TO BINARY

.

IT'S A MINUS SIGN
GET THE DIGIT

-

.

CONVERT TO BINARY

’
EOR #XZ11111111 ; GET
CcLC ; TWOS
ADC #1 ; COMPLEMENT
ENDING EQU *
RTS

29. Now code a routine that gets two bytes. Store the first byte in memory. Leave
the second byte in A. Add the two bytes and leave the sum in A. Call the
subroutine you coded in the previous frame to get each byte.

ADDER EQU *
JSR GETBYT
STA ADDEND
JSR GETBYT

ADC ADDEND

30. Now it’s time to report the result. Add the instruction BPL SUMPOS to the
routine you just wrote. If the result is positive and under ten, we want to convert it
to ASCII and write it out.

Code a routine (SUMPOS) to check the size of the result. If it’s under ten, con-
vert the value in A into ASCII and write it out. If the value is ten or more, branch
to a routine named TWODIG (don’t code TWODIG yet.)

SUMPOS EQU *

cMp #10
BCS TWODIG
ORA #X00110000 ; CONVERT TO ASCII

JSR OUTPUT

NUMERIC MANITPULATION 253

~ 31. Now code the TWODIG routine. If the sum is positive and larger than nine,
you must convert it to two decimal digits. Since you haven'’t been using BCD
arithmetic, here’s what you have to do.

(1) divide the value in A by ten

(2) the quotient is the most significant digit, convert it to ASCII and write it
out

(3) the remainder is the least significant digit, convert it to ASCII and write
it out.

TWODIG EQU =

LbX #0 ; X WILL HOLD QUOTIENT (HIGH ORDER DIGIT)
DIVIDE EQU =* .
SEC
SBC #10
INX :
CMP #10 ; ARE THERE ANY 10'S LEFT?
BCS DIVIDE ; BRANCH IF 10 OR GREATER
TAY ; TEMP HOLD REMAINDER (LOW ORDER DIGIT)
TXA ; PUT QUOTIENT INTO A
ORA #X00110000 ; CONVERT TO ASCII
JSR OUTPUT
TYA ; PUT REMAINDER INTO A
ORA #X00110000 ; CONVERT TO ASCII
JSR OUTPUT
32. Now let’s deal with a negative result. All you have to do is write a ‘—’, find

the twos complement of the value in the accumulator, then follow the same routine
as SUMPOS. Write the code and fit it between BPL SUMPOS and the SUMPOS
routine in the program.

BPL SUMPOS

TAX . ; TEMP STORE

LDA #'-"

JSR OUTPUT

TXA ; GET IT BACK

EOR #X211111111 ; GET

cLC g TWOS

ADC #1 ; COMPLEMENT

SUMPOS EQU

Our entire program is shown in Figure 22.

254 6502 ASSEMBLY LANGUAGE PROGRAMMING

=

ADDER EQU
JSR GETBYT
STA ADDEND
JSR GETBYT
CLC
ADC ADDEND
BPL SUMPOS

TAX ; TEMP STORE NEG SUM
LDA #'-'
JSR OUTPUT .
TXA ; GET NEG SUM \
EOR #%11111111 ; GET
cLe ; TWOS
ADC #1 ; COMPLEMENT
SUMPOS EQU =
CMP #10
BCS TWODIG
ORA #%00110000 ; CONVERT TO ASCII
. JSR OUTPUT
QuIT JNP QUIT
TWODIG EQU *
LDX #0 : X WILL HOLD QUOTIENT (HIGH ORDER DIGIT)
DIVIDE EQU
SEC
sBC #10
INX
CMP #10 ; ARE THERE ANY 10'S LEFT?
BCS DIVIDE ; BRANCH IF 10 OR GREATER
TAY ; TEMP HOLD REMAINDER (LOW ORDER DIGIT)
TXA ; PUT QUOTIENT INTO A
ORA #%00110000 ; CONVERT TO ASCII

JSR OQUTPUT

TYA ; PUT REMAINDER INTO A
ORA #%00110000 ; CONVERT TO ASCII
JSR OUTPUT
JMP QUIT
GETBYT . EQU *
JSR INPUT : GET BYTE
JSR OUTPUT
CMP #'-! ; IS IT A MINUS SIGN?

BEQ NEGIVE
AND #2X00001111
JMP ENDING

CONVERT TO BINARY

~

NEGIVE EQU * ; IT'S A MINUS SIGN
JSR INPUT ; GET THE DIGIT
JSR OUTPUT
AND #%00001111 ; CONVERT TO BINARY
EOR #%11111111 ; GET
cLe ; TWOS
ADC #1 ; COMPLEMENT
END ING EQU *
RTS
INPUT EQU *
JSR $FDOC
RTS
OUTPUT EQU =
JSR SFDED
RTS
ADDEND bs 1

FIGURE 22. Adding Positive and Negative Digits

NUMERIC MANIPULATION 255

33. So far, we've worked on twos complement problems that do not involve any
carries. When we work with larger values, we have to worry about the result ex-
ceeding the range of —128 through +127 and affecting the sign bit.

The overflow flag warns us of any overflow into the most significant bit as a
result of addition or subtraction. It is wise to check the status of the overflow flag
after every signed arithmetic operation. If it’s set, branch to a routine that handles

the carry and corrects the sign.
The overflow flag can be cleared with the CLV (CLear oVerflow) instruction,

which has no operand.

(a) When using signed arithmetic, which flag indicates that a catry has occurred?
{b) Suppose the name of your overflow routine is OVERFL. Code an instruction
to branch to that routine if the result of the addition shown below overflows

the accumulator.

ADC ADDEND

(¢) Fill out Appendix C for the CLV instruction.

(a) overflow; (b) BVS OVERFL;

() (1] (2] 3 [4] 5]] (71 8l 19

CLV - - - - - - - - -

REVIEW
In this chapter, we have expanded the subject of numeric manipulation.

¢ Multibyte gddition and subtraction are usually done in binary coded
decimal (BCD) notation because it’s easier to work with. In BCD, each nib-
ble (half-byte) represents a decimal digit from 0 to 9. To convert ASCII in-
put to BCD, the first digit is converted to binary then rotated to the up-
per nibble. The second digit is converted to binary then placed in the
lower nibble.

¢ To use BCD notation, set the decimal flag with SED. All arithmetic will -
be done in BCD format until the flag is cleared with CLD.

® To convert from BCD to ASCII, you’ll need two copies of the same byte.
For the upper nibble (the first digit), eliminate the lower nibble, rotate the
upper nibble into the lower nibble, and convert to ASCII. For the lower
nibble, eliminate the upper nibble and convert to ASCIL.

256 6502 ASSEMBLY LANGUAGE PROGRAMMING

¢ We use BCD because the conversion procedures between ASCII and pure
binary are so complex. Also because there’s no limit on the size of a value
that, can be handled that way.

¢ Multiplication is a process of repeated addition—a value is added to itself.
Each addition multiplies the value by a power of two. To multiply by a
factor that is not a power of two, save the needed partial products, such
as 1X and 2X, and add them in.

¢ Division is done by repeated subtraction. The divisor is subtracted from
the dividend until the remainder of the dividend is smaller than the
divisor. Each subtraction is tallied in another register. The tally becomes
the quotient and the amount left over in the accumulator is the remainder.

¢ Negative values are usually handled by twos complement notation. To
convert a binary value in the accumulator to twos complement notation,
use EOR #%11111111, which complements all the digits; then add 1 to
the result. When working with twos complement notation, limit all
'positive values to seven bits (127). Negative values range from %11111111
- (—1) to %10000000 (—128). There is no —0.

You have only begun to solve the problems of numeric manipulation. We'll
have to leave the rest up to you. Here are some areas you may want to explore:
multibyte division, multiplication and division of negative numbers, fractional quan-
tities, and finding roots. There are no additional 6502 instructions that you’ll need.
It’s simply a matter of how you combine the ones you already know.

CHAPTER 11 SELF-TEST

Part I. Code the instructions deseribed below.

1. Add ADDEND to the accumulator, with carry.

2. Subtract 5 from the accumulator, with borrow.

3. Subtract SUBBER from the accumulator, with borrow.

4. Add 1 to the accumulator, with carry.

5. Complement all the bits in the accumulator.

NUMERIC MANIPULATION 257

Part I1. Code routines to accomplish the following functions.

1. Registers A and X contain two ASCII digits. Convert them to one BCD byte
and leave it in A. The most significant digit is in X and the least significant
digit is in A. They have both been validated to be between ‘0’ and ‘9",

2. Register A contains a positive BCD value. Convert it to ASCII and write it
out.

258 6502 ASSEMBLY LANGUAGE PROGRAMMING

3. These two fields are currently holding BCD values. Add them, leaving the sum

in ADENDI1.
ADEND1 0x XX XX
ADEND2 oy YY YY

4. Convert your answer to the previous problem to subtract ADEND2 from
ADEND], leaving the answer in ADENDL.

NUMERIC MANIPULATION 259

5.

6.

7.

Multiply ADEND1 (from question 3 above) by 9. Store the result in PRODCT.

Register A is holding a positive, pure binary value between 0 and 255. Divide
it by 20. Leave the quotient in QUOTNT and the remainder in A.

Register A is holding an ASCII value between 0 and 127. Convert it to twos
complement notation.

260 6502 ASSEMBLY LANGUAGE PROGRAMMING

8. Register A is holding a negative value between —1 and —9 in twos comple-

ment notation. Convert it to ASCII.

Part I.

1. AdC
2. SBC
3. sBC
4. ADC

5. EOR

Part II.

1. AND
il STA
TXA
AND
ASL
ASL
ASL
ASL
cLC
ADC

2. STA
AND
LSR
LSR
LSR
LSR
ORA
J SR
LDA
AND
ORA
J SR

ADDEND
#5
SUBBER
#1

#%1111111

#%00001111
TEMSLD -

#200001111

TEMLSD

TEMVAL
#%11110000

#%00110000
OUTPUT
TEMVAL
#%00001111
#200110000
OUTPUT

Self-Test Answer Key

We We Nt e %o Nu N N

..

Wr e NE N N N Nl N NG Ne N N

CONVERT LSD TO BINARY
TEMP SAVE LSD

GET MSD
CONVERT TO BINARY
SHIFT
T0
UPPER
NIBBLE

ADD LSD TO MSD

SAVE COPY OF VALUE
MASK OUT LOWER NIBBLE
ROTATE
T0
LOWER
NIBBLE

CONVERT TO ASCII
WRITE FIRST DIGIT
GET COPY
MASK OUT UPPER NIBBLE
CONVERT TO ASCII
WRITE IT OUT

.

NUMERIC MANIPULATION - 261

Lbx #2

> INDEX FOR LSB
SED s FOR BCD ARITHMETIC
cLC 5 CLEAR CARRY FOR FIRST ADDITION

LOOP EQU *

LDA ADEND1,X ; GET BYTE
ADC ADEND2,X ; ADD IT

STA ADEND1,X ; STORE SUM

DEX ; DECREMENT INDEX

BPL LOOP .

LDX #2 ; INDEX FOR LSB

SED ; FOR BCD ARITHMETIC
SEC ; FOR FIRST SUBTRACTION

LOOP EQU #
LDA ADEND1,X
SBC ADEND2,X
STA ADEND1,X

GET BYTE
suB IT
STORE DIFFERENCE

e Ne N

DEX

BPL LOOP
MULT1 EQU

LOX #2

SED

CcLC

ADD1CE EQU
LDA PRODCT,X
ADC ADEND1,X
STA PRODCT,X

DEX

BPL ADDICE
DEC COUNT9
BNE MULT1

DONE EQU *

COUNT9 DFB 9
PRODCT DFB 0,0,0

LDX #0 ; CLEAR

STX QUOTNT ; QUOTNT
DIVIDE EQU »

CMP #20

BMI DONE

SEC

SBC #20

INC QUOTNI

JMP DIVIDE
DONE JMP DONE

QUOTNT DS 1

AND #X00001111 CONVERT TO BINARY
EOR #XZ11111111 ; COMPLEMENT IT

CLC

ADC M1 ; ADD ONE

.

262

6502 ASSEMBLY LANGUAGE PROGRAMMING

EOR
CLC
ADC
ORA

#%11111111

#1
#%00110000

.
,

COMPLEMENT IT

ADD ONE
CONVERT TO ASCII

CHAPTER TWELVE

ADDITIONAL
INSTRUCTIONS

You have learned to code the most heavily used Assembly Language instructions.
In this final chapter, we’ll briefly introduce some instructions that are less frequent-
ly used. Some day you might be trying to solve a problem that requires one of these
instructions and you’ll remember that it's available. These instructions are
presented out of the context of programs because the programs that use most of
them would be quite complex. You'll just learn what the instructions are and how
they function.

When you have finished this chapter, you will be able to code the following in-
structions:

— NOP (No OPeration)

— SEI (SEt Interrupt mask)

— CLI (CLear Interrupt mask)
— RTI (ReTurn from Interrupt)
— BRK (BReaK)

THE NOP INSTRUCTION

1. NOP (no operation) does absolutely nothing active. It takes up one byte of
memory space and uses up a little bit of time.

With very primitive systems, NOPs were important. The programmer inserted
several NOPs between all the instructions to leave room for insertions later. This
isn’t necessary for systems with an editor and a terminal because it’s fairly easy to
insert instructions.

What instruction causes nothing active to happen?

NOP

263

264 6502 ASSEMBLY LANGUAGE PROGRAMMING

2. Many microcomputers can receive a signal from the outside to get their atten-
tion. Such a signal is called an interrupt request because it asks the microcomputer
to interrupt whatever it is doing and service some more urgent need. The computer
finishes the instruction it is processing, then acknowledges the request and services
it by running a special program. It then continues the interrupted program where it
left off. The interrupt system is dependent on the hardware. On some systems, I/0

. operations are handled this way. The instructions you’ll read about below are all
concerned with programming that uses interrupt I/0.

An interrupt occurs when one program is interrupted, an interrupt service pro-
gram is executed, then the first program is picked up where it left off.

You can only interrupt if you have an external device capable of sending an
“interrupt request.” If your system has a monitoring device attached, for example,
its input might be processed on an interrupt basis rather than a normal read basis.
The external monitor would send an interrupt request when it sensed a situation
that needed immediate processing.

(a) Which of the following best describes an interrupt?

—— Pausing in program A to execute program B, then resuming program A
at the same point.

___ Discontinuing program A torun program B,
—— Stopping program A to run program B, then restarting program A from
the beginning.
{b) How do you cause an interrupt?
____ By typing any key when the program isn't expecting input.
___ By hitting the ‘‘break” key on any device.
— By causing an 1/0O device to send an interrubt request.
—— By pulling the plug.

(a) pausing in program A to execute program B, then resuming program A at the
“same point; (b) by causing an I/O device to send an interrupt request (the means is
device specific)

SEI AND CLI INSTRUCTIONS

3. The 6502 microprocessor has two forms of interrupts: masked and unmasked.
Unmasked interrupts are always recognized and processed. The 6502 will only res-
pond to a masked interrupt request if interrupts are enabled. You must enable
masked interrupts for each program that you want to be interruptable by using the
CLI instruction. CLI uses only the operation code; it has no operand. It clears the
interrupt disable flag in the status register. When the flag is clear, the system will
respond to interrupts.

ADDITIONAL INSTRUCTIONS 265

{a) When will the 6502 respond to interrupts?
— When the interrupt disable flag is set.
—— When the interrupt disable flag is clear.
(b) What Assembly Language instruction enables interrupts?

B e e T Tt —

(a) when the interrupt flag is clear; (b) CLI

4. You may have certain routines that you don’t want interrupted. For example,
if you’ve written a timing loop to count off exactly 2.3 microseconds, an interrupt
would destroy the timing. If so, you might want to disable interrupts when you
enter the loop and enable them again when the loop is over. You disable interrupts
with the SEI instruction. Like CLI, SEI has no operand.

(@@ What instruction enables interrupts?

(b} What instruction disables interrupts?

{c) Can you disable unmasked interrupts?

(a) CLI; (b) SEI; (c) no

5. Interrupt processing itself automatically disables interrupts. That is, when the
microprocessor interrupts program A and gives control to program B, it auto-
matically issues an SEI instruction. This is to prevent the interrupt service program
(program B) from being interrupted.

If you want the interrupt program to be interruptable, you include a CLI in-
struction at the beginning of it.

(a) How does the microprocessor prevent interrupt routines from being inter-

rupted?

(b) What do you do if you want an interrupt routine to be interruptable?

{a) by disabling interrupts when it transfers control to the interrupt program; (b)
code CLI at the beginning

266 6502 ASSEMBLY LANGUAGE PROGRAMMING

THE RTI INSTRUCTION

6. An interrupt routine works similarly to a subroutine. When it is called, the PC
and the status registers are pushed into the stack.

The RTI (ReTurn from Interrupt) instruction causes a return to the inter-
rupted program. The PC and status registers are pulled from the stack. Since the in-
terrupt flag is in the status register, its former value is restored when the status
register is pulled from the stack.

(a) Suppose you are coding an interrupt routine. Code the instruction to terminate

the routine. -

(b) What will be the status of the interrupt flag after a return from an interrupt?

(a) RTI; (b) whatever it was before the interrupt

THE BRK INSTRUCTION

7. The BRK (BReaK) instruction causes an interrupt from your Assembly
Language program. It sets the break flag.

When coding your interrupt routine, you can check the value of the break flag
to find out if the interrupt came from outside or from a BRK instruction.

{a) What are the major causes of interrupts?

{(b) How can you tell the difference between an external interrupt and an interrupt

from a BRK instruction?

(a) unmasked external interrupts, masked external interrupts, and interrupts from
BRK instructions; (b) the break flag will be set in the status byte in the stack if the
interrupt was caused by BRK

The previous frames have just brushed on the area of interrupt processing so
you’ll know it exists. How, where, and when you use the interrupt instructions to
build a coordinated interrupt system are topics beyond the scope of this book.

ADDITIONAL INSTRUCTIONS 267

REVIEW .
In this chapter, we have briefly introduced some instructions that are useful in cei'-
tain situations.
¢ NOP causes nothing to happen.
¢ Several instructions are designed for use in interrupt processing:
— CLI enables maskable interrupts
— SEI disables maskable interrupts
— BRK causes an interrupt from within a program
— RTI causes a return from an interrupt program

You have now learned, or at least been introduced to, all the 6502 Assembly
Language instructions. After you complete the following Self-Test, you'll be done
with this book. You’ll be able to use the documentation for your system as you
modify or create Assembly Language programs.

CHAPTER 12 SELF-TEST -

1. Code an instruction to do nothing.

2. Code an instruction to disable maskable interrupt processing. L

3. Code an instruction to enable maskable interrupt processing.

4. Code an instruction to return from an interrupt program.

5. Code an instruction to force an interrupt.

6. Fill out Appendix C for all these instructions.

Self-Test Answer Key

1. NOP
2. SEI
3. cLI
4. RTI ‘

5. BRK

268 6502 ASSEMBLY LANGUAGE PROGRAMMING

6. 1] [2 (3] [4] (51 (61 (71 (8] 9]

NOP - - - - - - -
SEI - - - - - - -
CLI - - - - - - -
RTI - - - - - - -
BRK - - - - - -

You have finished your Self-Teaching Guide on 6502 assembly language. You are
familiar with all the instructions and operand formats, and you have had a lot of practice
using the ones that are most common. You're also equipped to begin reading some of the
many excellent advanced texts (not Self-Teaching) dealing with this subject.

Have fun!

Appendix A

HEXADECIMAL ADDITION
- SUBTRACTION TABLE

06 1 2 3 4 5 6 7 8 9 A B C€C D E F
o 1 2 3 4 5 6 7 8 9 A B € D E F
1 2 3 4 5 6 7 8 9 A B C D E F 10
2 3 4 5 6 71 8 9 A B €C D E F 10 11
3 4 5 6 7 8 9 A B C D E F 10 11 12
4 5 6 7 8 9 A B C D E F 10 11 12 13
5 66 7 8 9 A B C€C D E F 10 11 12 13 14
6 7 8 9 A B C D E F 10 11 12 13 14 15
7 8 9 A B C D E F 10 11 12 13 14 15 16
8 9 A B C D E F 10 11 12 13 14 15 16 17
9 A B C D E F 10 11 12 13 14 15 16 17 18
A B C D E F 10 11 12 13 14 15 16 17 18 19
B C¢C'DpD E F 10 11 12 13 14 15 16 17 18 19 1A
¢ D E F 10 11 12 13 14 15 16 17 18 19 1la 1B
D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C
E PF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
F 10 11 12 13 14 15 16 17 18 19 1a 1B 1C 1D 1E

269

Appendix B

ASCII CODE

first hex digit (8-F not used)

o | DEL

0

s e

space

DLE
DC1
DC2
DC3
DC4
NAK
SYN

ETB

CAN

EM

SUB
ESC
FS
GS

RS -

us

NUL
SOH
STX

ETX

EOT

ENQ
ACK

BEL
BS

HT
2F

FF
CR

SO
S1

0
1
2

4

N |0

<

181p xay puosas

270

APPENDIX B 271

EXPLANATION OF CONTROL CHARACTERS
NUL - null character; eight zero bits -
The following are used in data communications (transmitting data via phone lines);

SOH - start of heading

STX - start of text

ETX - end of text

EOT - end of transmission

ENQ - enquire (“Are you there?”’)

ACK - acknowledge (“Yes”’)

DLE - data link escape

NAK - negative acknowledgement (“No”’)
SYN - synchronous idle

ETB - end of transmission

BEL - bell; rings the terminal alarm

BS - backspace

HT - horizontal tab; tab across to next tab stop

LF - line feed; move down one line

VT - vertical tab; tab down to next vertical tab stop
FF - form feed; go to top of next page

CR - carriage return; go to beginning of line

SO - shift out; shift out of ASCII code

SI - shift in; shift back into ASCII code

DC1

DC2 | device controls 1-4; the meaning of these

DC3 | four codes depends on the terminal equipment
DC4

CAN - cancel

EM - end of medium

SUB - substitute

ESC - escape; used like a shift key to extend ASCII code
FS - file separator

GS - group separator

RS - record separator

US - unit separator

DEL - delete

Appendix C
INSTRUCTION SUMMARY

42Y30 =][=]
moypfiaao >
3
< ufrs >[4 ol Eat BT b Bt Bt e o IR e B B e
g .
0432 >[4 b it bt b I b L R e e
ALivo e [e
anyvad o
20041pU1
T |
paxapur-gsod = |°
wonpul |, .
paxapur-add = |[°©
Po41pur ©
30041p poxapur . |
afpd-osaz = X
~
100.41p paxapur T ;;E
oaa1p
a8vd-osaz 2 |8
j24gp T |§
appoww = |
ol L L A L P I N IR B S Ed el 121 B E == 1RSI P [S
ala <| <> |~ wika|x| BlR 2 Z5|a
(3|35 |% 5 | |55 |2 |2 (5] 8|E €< % %i3|8|3S
suov.ado 1235184 suoyviado
onawyILID

272 ‘ :

" APPENDIXC 273

m._ ai—t L)
= b > >
|| S Lt Tt Ead R (e >
3 tal el] Lt t bl i e | > >
Ll B T e b b Ead e > >
o>zl le o sl = Sl ol ml ol | A < ad) e | 3 ea| 3] 2] |] €] af =] 2 |
P i1 I TIE L1220 | 01O = 2| 2] 4| 8 O Sl @ vl Sl S| = T S| = =2 ©
Elulil;ﬁﬁii:;:'?.'.-:lmmmmm;:<owm<£n=n=n.n.n‘n.oz%[n=
suoyvsado 1043100 wpsosd suoviado suoyviado| 48Yy10
8oy : 10313:)_1 yovis

Appendix D
FINISHING YOUR PROGRAM

@

In order to get a program running, you must complete these steps:

Code the complete program, including all subroutines.

a. Allocate memory space for all data areas. Chapter 6 tells you how in
general, but you’ll need to find out specifically how your system works.

b. If you are not coding your own I/O subroutines, be sure your program
calls the appropriate subroutines from the system monitor. Chapter 9 tells
you how in general, but you’ll need to find out specifically how your
system works. ’

Use your system editor to enter the code into your computer. You'll have to

find out how your system editor works. Your assembler manual should explain

it to you.

Use your system assembler to assemble your code. Again, you'll need your

assembler manual.

Use the assembler error messages to correct your code. (Keep using that

assembler manual.)

Once the program has successfully assembled, you can run your program.

With most computers, you would call up the program just the same way you

call up any other program. (Probably by entering the file name, perhaps

preceded by a RUN command.)

If the program doesn’t work properly, try to figure out what it is doing so you

can decide how to correct the code.

If your program ends in a closed loop, you’ll have to interrupt it to get back to

the system monitor in order to do anything else. Try pushing a key labeled

BREAK or RESET. If you can’t figure out what to do, you can always reboot

(restart) the system.

Fix your code and assemble and run it again until it works.

If you need help beyond your manual, see if you can find someone who knows

how to use your system to help you.

GOOD LUCK!

274

INDEX

A register, 9, 15, 63

accumulator (also see A-register), 3, 9,
15, 48, 84, 86, 87, 88, 94, 95, 97,
176, 179, 185, 188, 189, 193, 195,
200, 210

actual adddress, 66, 69, 71

ADC, 48, 52, 62, 95, 102

addition (see also multibyte arithmetic),
33-35, 95-97, 102

address, 8, 11, 27, 64, 70, 110, 113-126,
134

addressing modes, 61, 69, 77, 84

also see:

immediate addressing
direct addressing
zero-page direct addressing
indexed direct addressing
zero-page indexed direct addressing
indirect addressing
pre-indexed indirect addressing
post-indexed indirect addressing
relative addressing

alphanumeric, 1, 6

alternate program paths, 141, 164-168,
169, 208

AND, 178, 174, 176-178, 181, 188

APPLE, 40

application programs, 3, 15

ASC, 120, 135

ASCII, 6-7, 15, 19, 40-42, 43, 152, 157,
178, 222, 237, 240, 255-
256, 270-271

ASL, 173, 185, 189

assembly language, 1-3, 15, 25, 47

ATARI, 40

BASIC, 2

BCC, 141, 146, 169

BCD, 231-241, 245-247, 255-256
BCS, 141, 146, 169

BEQ, 52, 62, 141, 146, 150, 169

binary (numbers), 6, 15, 19, 21, 22, 23,
25, 26-28, 31-32, 34-35
37-38, 43

binary coded decimal, see BCD

bit, 1, 6-7,15

BIT, 173, 182-183, 189

BMI, 141, 146, 169

BNE, 141, 146, 169

BPL, 141, 146, 169

branch instruction (see also jump
instruction), 73, 100-101

break flag, 13, 15, 142, 266

BRK, 263, 266, 267

BVC, 141, 146, 169

BVS, 141, 146, 169

byte, 1, 5-7, 15

call, 207

carry flag, 13, 15, 94, 95, 96, 97-98, 102,
142, 143, 146, 147
184, 189, 235, 249

chip, see microprocessor . \

CLC, 96, 102

CLD, 231, 255

CLI, 263, 264, 267

CLV, 231, 255

CMP, 52, 62, 141, 162, 169

COBOL, 2

comments, 47, 48, 49, 53-55, 56, 57

comparisons, 161-164

compiler, 2

complement, 97, 102, 180, 181, 189

conditional instructions, 142-169

CPX, 141, 163, 169

CPY, 141, 163, 169 .

current memory address, 122, 131, 135

data names, 49

data storage area, 49, 119
data transfers, 14

DEC, 99, 103

275

276 6502 ASSEMBLY LANGUAGE PROGRAMMING

decimal (numbers), 6, 19-24, 25, 26,

r 28-32,43

decimal flag, 13, 15, 142

decrement, 99, 103

DEX, 99, 103

DEY, 99, 103

DFB, 120, 135

direct address, 64, 68, 77, 84, 85, 87, 90,
99, 100, 110, 112, 185, 189

directive, 107-135

disk unit, 4

division, 247-249, 256

DS, 119, 134

EBCDIC, 6-7, 15, 19

echo, 92, 152

empty path, 167-168, 169

ending a program, see loop, closed

EOR, 173, 180-181, 189

EQU, 126-134, 135

EXCLUSIVE OR (also see EOR), 175,
180-181, 189

expresion, 76, 78

flags, 12-13, 15
also see:
- zero flag
sign flag
carry flag
overflow flag .
interrupt disable flag
break flag g
decimal flag
FORTRAN, 2 -

general purpose registers, 9, 10, 15

hexadecimal, 8, 19, 20, 22, 23, 25-28,
29-30, 33-34, 36, 43

high-level language, 1, 2, 14

immediate addressing, 61-63, 68, 77, 84,
85,111,112, 134

indirect addressing, 69-70, 77, 85,
100, 110, 112

indexed direct addressing, 66, 68, 77,
84, 85, 87, 99, 110, 112, 185

indexed addressing (also see index
registers), 15, 67, 234

index registers, 10, 15, 66, 77

increment, 99, 103

INC, 99, 103

input/output routines, 4, 90-94, 103,
215-220, 222

instructions, 82-103

instruction format, 47-57

interrupt, 264, 266, 267

interpreter, see compiler

interrupt disable flag, 13, 15, 142,
264, 265

INX, 99, 103

INY, 99,103

I/O, see input/output routines

JMP, 48, 52, 55, 62, 69, 100, 103, 144
JSR, 48, 90, 103, 194, 195, 206, 207
Jjump instructions, 12, 15, 49, 115, 116

label, 47, 48, 49-52, 56, 57, 65,
75-76, 78, 117-119, 121, 126, 134,
135, 148

LDA, 48, 52, 55, 62, 66, 84, 86, 102

LDX, 85, 86, 102

LDY, 85, 86, 102

LIFO, 193, 199

listing (assembler listing), 25, 33, 108

logical operations, 173-188

loop, closed, 101, 103, 154

loop, open, 141, 151, 169

low-level language, 1, 5, 14, 15

LSR, 173, 185, 189

machine language, 1-3, 57, 73, 108-113
main line, 206, 222

main storage (also see memory), 5, 15
mask, 173, 177, 179, 180, 181, 188, 189
memory, 5, 7-9, 48, 83, 84, 87, 135
memory mapped screen, 220

memory stack, see stack
microprocessor, 1, 5, 7, 8, 9, 10, 15, 216
multibyte arithmetic, 231-248, 255
multiplication, 242-247, 256

nibble, 232
NOP, 263, 267
normalize, 187

operands, 47, 48, 53, 55-56, 57, 61-78,
84, 85, 88, 96, 97, 98, 99, 134-135

operation codes, 48, 50, 51-42, 56, 57,
62, 108-113, 134

or, 173,174, 179-180, 181, 188

ORA, 173,179-180

ORG, 114, 122-126, 135

overflow flag, 13, 15, 94, 102, 142, 146,
182, 189, 255

packed decimal, see BCD

page, 64

page one, 64, 194, 195, 199

PC register, 9, 12, 15, 100, 115, 116,
209, 266

peripheral device, 4

PET, 40, 64, 65

INDEX 277

PHA, 193, 195, 200

PHP, 193, 195, 200

PLA, 193, 195, 196, 200

PLP, 193, 195, 196, 200

post-indexed indirect addressing, 72-73,
717, 84, 85, 87,111, 112

pre-indexed indirect addresing, 71, 77,
84, 85, 87, 111, 112

pointer, 4, 216

program counter, see PC register

program design, 220-222

program layout, 132-134

pseudo-operation, see directive

register, 1, 3, 5, 9-14, 15, 50, 63, 83, 209

register rotation, 184-188

relative addresing, 73-74, 77, 85, 111,
112, 148

result bit, 173

ROL, 173, 185, 189

ROR, 173,185, 189

RTI, 263, 266, 267

RTS, 203, 211, 222

SBC, 97-98, 102

SEC, 98, 102

SED, 231, 233, 255

SEI, 263, 265, 267

shift left, 185

shift right, 185

s1gned arithmetic, 249-255, 256

sign flag, 13, 15, 86, 89, 94, 99, 102, 103,
142, 144, 146, 147,182, 186, 188,
189, 196, 199

sign bit, 251, 255

SP register, 9, 11-12, 14, 193, 195,
199, 200

special purpose register, 9, 11, 15

STA, 52, 62, 87, 102

stack, 11, 15, 193-200, 207, 209, 210,
266

stack pointer register, see SP register

status byte, 216, 217, 222

status register, 9, 12-13, 15, 87, 193,
195, 200, 210, 266

STX, 87,102

STY, 87,102

subroutine, 48, 90, 91, 103, 203-223

subtraction, 36-40, 97-98, 102

system program, 3, 4, 15

symbolic adgdress (also see label), 126,
134-135

system monitor, 123

tape unit, 4

TAX, 56, 88-90, 102

TAY, 88-90, 102

terminal, 4,6

TSX, 193, 199-200

TXA, 88-90, 102

TXS, 193, 195, 200

TYA 88- 90 102

two’s complement 231, 249-251, 256

unconditional jump (also see JMP), 149

X register, 9, 10, 15, 63, 66, 71, 77, 85,
86. 87, 88, 99, 102, 103, 153, 210

Y register, 9, 10, 15, 66, 71, 77, 85, 86,
87, 88, 99, 102, 103, 210

zero flag, 13, 15, 86, 89, 94, 98, 99,
102, 103, 142, 143, 146, 182, 186,
188, 189, 196, 199

zero page, 64

zero page direct addressing, 64-66, 68,
77, 85, 87,99, 111, 112, 185, 189

