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Introduction

The Visible Computer: 6502 Machine Language Teaching System combines
this manual with a 6502 simulator program to provide a systematic way
to learn machine language programming on Apple II computers.

The Visible Computer is a program that teaches programming. The title
is a takeoff on those transparent plastic models of men that once (and
maybe still do) populated sixth grade classrooms. Like The Visible
Man, The Visible Computer lets you see into a place not normally
accessible to the eye. Places like chest cavities and accumulators,
address latches and pancrei. Unlike The Visible Man, TVC requires no
assembly, no careful painting, and no smelly airplane glue.

PREREQUISITES FOR THE USER OF TVC

This manual assumes some familiarity (not to be confused with exper-
tise) with Basie. Programming is programming, and the more experience
you have with any form of it the better. It presupposes no prior
exposure to machine language, and includes preliminary chapters on
binary and hexadecimal numbering systems and computer operations.

HARDWARE REQUIREMENTS

To run The Visible Computer, you will need a 48K Apple II with
either Applesoft in ROM (Apple II Plus), or a 16K RAM card. A
printer is optional.

SCOPE

Many of the dozen or so books that profess to teach 6502 machine lan-
guage work so hard at touching all the bases, from floating point
arithmetic to control programs for hypothetical daisy wheel printers,
that they skimp on the fundamental job of delivering the concepts.
The Visible Computer is designed to get you over the initial hurdles
of machine language programming, not to present algorithms for contro-
1ling elevator systems.

Learning everything there is to learn in this manual will not qualify
you to immediately go to work at Microsoft writing 6502 Cobol compi-
lers. But if you apply yourself, it will get you to the point where
you will be able to develop independently in your area of interest, be



it arcade games, chess programs, or new and wonderful operating sys-
tems. And who knows, someday the Microsoft recruiter might just give
you a call.

HOW THE MANUAL IS ORGANIZED

Chapters 1, 2, and 3 are the standard introductory fare of Hex,
Binary, and Computer Block Diagrams. They may be skipped by those who
have already been through eleven discussions of hex and binary (and if
they see one more block diagram of a computer, they'll secream).

The TVC program disk is not booted until Chapter 4. It wouldn't be a
bad idea to skip there quickly right now and make sure that your TVC
disk can boot-but go no farther.

The heart of the course is Chapters 6 through 14, where you'll work
through a series of progressively more difficult 6502 machine language
programs contained on the TVC disk. By the end of Chapter 14 you will
have read about, and seen demonstrated, nearly all of the 56 6502
instructions, and will have earned the honorary title of TVC Master.

Chapter 15 puts it all together in three programs that do the kinds of
things people learn machine language to do-sorting, high resolution
graphies, and tone generation. The concept of assembly language is
presented.

Lastly, Chapter 16 tries to wean you from the handholding of previous
chapters. There's a suggested reading list, a quick rundown on the
options available in assemblers, and pointers on interfacing machine
language routines with Basie.
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1.
What is Machine Language?

And If It's So hard, Why Do People Use It? This is a fair question,
and if you haven't asked it yet you probably should have. Before we

get into the hows of machine language we're going to touch on the
whys .

Of all the programming languages used on the Apple II, from Fortran to
Pascal to Applesoft, the language closest by far to an Apple's silicon
heart is 6502 machine language. Although later chapters will present
a more formal definition, for now it suffices to say that 6502 machine
language is the fundamental language of Apple computers. Not a moment
passes during an Apple's powered-on lifetime when it is not executing
6502 machine language programs. In fact, languages like Basic and
Pascal are nothing but clever ruses to save poor humans from the
wicked binary ways of 6502 processors.

As to the widespread rumor that machine language programming is more
difficult than programming in Basic, consider these two sets of in-
structions for building a cedar fence in your backyard.

Basic

Using 6' by 6" cedar slats, with supporting
posts every 8 feet, build a fence enclosing your
back yard.

Machine Language

Drive to lumber yard. Purchase 722 6' by 6"
cedar slats. Load into truck. Drive home. Un-
load truck. Start at northeast corner of back
yard. Dig a hole three feet deep. Get post from
pile. Insert post into hole. Cement post. Move 8
feet west. If not yet at corner, dig a hole
three feet deep. Get post from pile. Insert post
into hole.



Is the second set of instructions more difficult than the first? Not
really. It looks more involved, and certainly took longer to write
down, but the individual jobs that make up the second paragraph are
simplieity itself. "Move 8 feet west", "Get post from pile". So it is
with machine language. Working from a limited palette of about 50
simple instructions, we achieve complex results by combining them
cleverly.

Machine language programmers have to take smaller steps to get where
they're going. That means it takes longer. As a rule of thumb, 10
times as long as working in Basic. Economically speaking, it costs 10
times as much to hire a programmer to get Job X accomplished in
machine language as it does getting Job X done in Basic. Furthermore,
almost anything you can do in machine language can be done in Basic.

So why do people knock themselves out learning and writing machine
language programs? Two main reasons: 1. For speed. 2. For more speed.
Machine language programs execute 10-100 times faster than similar
programs written in Basic. (Purists and other curmudgeons will object
to this statement, and there is something to be said for the fact that
unless someone had written the machine language program named Apple-
soft, Basiec would not exist, even as an alternative.) Is speed that
important? It depends.

In an aceounting program, where the computer spends most of its time
waiting for the operator to hit a key, or the printer to finish, or a
disk drive to get something, blinding speed is not important. We hear
phrases like "printer bound" and "floppy bound". A program that is
printer bound can only be speeded up by buying a faster printer.
Writing accounting programs in assembly language, then, results in
programs that wait for user input at very high speed, and cost 10
times as much to develop as acceptably speedy programs written in
Basie. Clearly, an idea whose time has not come.

But sometimes speed is desireable, even critical. In animation, for
example. Most of the latest generation of Apple game programs could
not function written in Basiec. They would do something—but things
would be so slow as to make a Choplifter sortie last 24 hours, and a
single revolution of the blades a minute. So game programs, espec-
ially the arcade type, are one place where we need the speed of
machine language.

Many times the best tact is a combination of Basic and machine lan-
guage. Take the accounting application from a minute ago. Most of it
can be written in slow-to-execute, but fast-to-program Basie. Certain
time consuming jobs will be allocated to machine language. Jobs like
sorting.



Sorting programs written in Basie, for those of you who have avoided
learning about such things thus far in your programming careers (and
your time is coming), are slow. Really slow. Sorting a list of 1,000
employee numbers into a stack with the biggest at the bottom and the
smallest at the top takes at least two minutes, and maybe as many as
10, depending on what method we tackle the problem with. (The methods
available range from the crude-read easy-to the complex. Graduate
students as yet unborn will earn their degrees with programs that
sort .01% more efficiently than some other program.)

Two minutes is an important length of time to an operator of an
accounting package, and ten minutes is an eternity. The strategy
followed by the smart programmer, then, is to use Basic for everything
except the sort itself—and pass that job to a hard-to-write, but
breathtakingly fast machine language program. After 10 seconds (or
one or two, depending on how fancy a method we use), the Basic program
is handed on a silver platter a sorted list of employee numbers.

Sharing the work between machine language and Basic is a good tech-
nique, employed by countless Apple programs, including TVC itself.
Mostly Basic, machine language where you need the speed.

To sum up: The best reason for programming an Apple II in machine lan-
guage is to speed up a process that would be too slow otherwise.
Conversely, except as a learning exercise, it is a waste of time to
use machine language for something that would be acceptably fast
written in Basic.



2.

Alternate Numbering Systems

If you bought The Visible Computer with the hope that it would somehow
save you the effort of climbing Mount Hexadecimal, picking you up
magically and dropping you safely into the valley of machine language
programming on the other side, sorry, no can do.

People don't use binary and hexadecimal numbers to make machine lan-
guage programming easy; they use them to make it feasible. Although
it is arguable, barely, that one could learn some machine language
without ever learning hex, a person who went that route would find
himself working three times as hard for one third as much as the guy
who learned the tools of the trade first and the programming second.

If you are fuzzy on the hex and binary numbering systems, do not skip
this chapter. Learning machine language is a cumulative process and
skipping a ecritical part of the foundation is a good way to build an
unstable building.

A TWELVE IS A 12 IS A 1100

Most 20th century Americans (i.e., you and me) agree that the symbols
"1" and "2", printed together, like this:

12

have a certain numeric meaning. Specifically, "12" represents the
quantity of dots printed here:

Or this many commas:

y 2 92 % 92 2 9 9 ’» 9

But there is nothing intrinsically "12-like" about these symbols
sitting next to each other. If we wanted to form a club that said
from now on, "*" would stand for 12 and "#" for 17, we could. Without
fear of arrest. Let's do that. You and I will be the charter members
of the "* = 12 and # = 17" Club.



Until further notice, "*" represents this many things:

7% 23 2397 99%9 ¥

and "#", this many:

? 9% 9 % 7 %9 99%9%% % 2 9

How many eggs in a dozen? Very good, * is correct. What fab group
had a 1964 hit called "She was Just #"? Right again, the Beatles.
Although we'd have to work fairly hard at it the first couple of
months, eventually it would become almost as natural as the old way.

Except when we're doing math. What's * times #? Even for people as
smart and good looking as members of the club, getting that answer is
pretty tough. Whereas everyone elses' notation, "12 times 17", lends
itself to computational tricks like carrying and partial products, our
representation gives not a clue to the answer. We'd have to either
memorize all the combinations of multiplications and divisions for *
and #, or give up comparison shopping forever.

This situation isn't as farfetched as you might imagine. Consider the
Roman Empire. For all its accomplishments, Rome's state-of-the-art
method for representing numbers was what we now call Roman numerals.
(Although I suppose they simply referred to them as 'numbers’). As
with our club's method, Roman numerals are okay for some things, (like
the names of popes and book report outlines), and lousy for others,
like calculations.

It's & wonder they built Bridge I considering how hard their engineers
had to work to do this simple division:

XXIX / IV

Stop and think about it. If you had to solve this problem you'd
probably proceed like this: Convert both parts into "normal" notation.
Divide using conventional techniques. Finally, convert the answer
back to Roman numerals. Unfortunately, "normal" notation hadn't been
invented yet, and wouldn't for another 500 years.

When an Arabian astronomer devised a better system around 500 AD,
Roman numerals had had it. Not only was the new Arabic notation
better for representing long numbers than the Roman method, it greatly
facilitated performing arithmetic. Let's see why the Arabic method is
so powerful. Numbers written with this system can be methodically
broken into their component parts.



Fourth Digit Third Digit Second Digit First Digit

0
103 102 10! 10
1000 100 10 1
The number 3,479 breaks into:
3 X 1000 4 X 100 7X 10 9X1
3000 + 400 + 70 + 9
209 is:
2 X 100 0 X 10 9X1
200 + ] + 9

The value of a digit depends on its position in the number. The value
is always ten times the value of the same digit one position to the
right, and one-tenth the value of the same digit one position to the
left. The biggest problem keeping previous designers of numerical
representation schemes from implementing a system like this was that
they never saw a need for a character to represent 0, the quantity
nothing. Without zero to serve as a placeholder, you can't have
positional representation.

The usefulness of the Arabic positional system has nothing to do with
the symbols that form the counting alphabet. 1's, 2's, and 3's aren't
any better or worse than I's, V's, and X's. It's the positional
concept that makes it better. We will refer to this ingenious, and for
most of us, familiar scheme henceforth not as "Arabic Positional", but
as decimal. Base 10. Because 10 is the magic number that each posi-
tion is based on.

But this quantity of things:

* ok * * Xk K * k ¥ *

is by no means magic in the grand scheme of the universe. No more
"round" or "even" than this many things:

dkkkkk kkk KKRkR



So why do we use 10 as the magic number of our positional notation?
Class? Anyone have a guess? Right. In all probability, because
people have 10 fingers, and for millions of years, fingers were all we
had for representing numbers. On ET's home planet we can be reason-
ably sure their positional numbering system is based on the number:

* %k Kk k K %k k %

The decimal numbering system has remained just about unchanged for
1,500 years because it is an extremely useful way of representing
numbers. There exist computational methods that allow 12-year-olds to
calculate 5 digit products and sums and even square roots, with no-
thing but paper and pencil.

And in all probability it will be popular 1,500 years from now, even
though the advent of the $4 calculator makes some of its best features
(ease of manual calculation) moot. If Roman numerals could have hung
in there until the Age of Cheap Calculators, they would have been in
good shape. But there is one area where decimal falls flat on its
well-known face. Computers. Especially machine language programming
of computers.

Because of the way they work, computers have a working vocabulary of
only two digits. It's easy to make an electronic device store a one
or a zero, much harder to make one that can store 0 though nine. We
can easily build a sensor that can detect whether a light bulb is on
or off. Far more complex is a sensor that can consistently detect 10
discrete levels of brightness.

Computers need a two digit, or binary, positional numbering system.
The two digits are 1 and 0. If computers used lightbulbs as their
active storage element, we might use the terms "On" and "Off".

We don't need unique digits to represent 2-9 because they can be
formed by combinations of 1's and 0's, just as decimal doesn't need
unique digits to represent values greater than 9. 1001 is a perfectly

acceptable way to express the same quantity represented in decimal as
9.



BINARY POSITIONAL CHART

1010 breaks into:

1*8 + 0*4 + 1*2 + 0*1=10decimal
1110 is
1*8 + 1*4 + 1%2 + 0*1=14decimal

Binary numbers can be added and subtracted with the same techniques we

know for decimal.
1 11 Q Carrys
1010 1010 1001
+ 0100 + 0010 + o011
1110 0100 1100

Carrys happen a lot in binary addition. And borrows are common in
subtraction. Otherwise, nothing too taxing about binary arithmetiec.

Here's a formula (the only one in this book) to calculate the largest
number X you can store in n positions of base B numbers:

X=8B"-1.



Representing even modest quantities in binary tends to be waste-
ful of paper. Counting to 10:

0

01
10
1
100
101
110
111
1000
1001
1010

Four digits of binary don't hold values as large as four positions of
decimal. In fact, it's not even close; 15 vs. 9,999. To handle the
range of numbers we encounter in day to day life takes a lot of binary
digits.

531 = 1000010011. 1,119 = 10001011111.

Numbers like this have a tendaney to confuse people. It helps a
little if we group clumps of four digits into "nibbles". Four binary
digits, or bits, make a nibble. Eight bits make a byte (isn't that
precious!)

In nibble form, 531 is 0010 0001 0011.

Not good, but better. Is there a better way? An intermediate step
between binary-loving computers and decimal-trained, 10 fingered,
tree-loving human beings?

SUPPOSE PHONES HAD TWO BUTTONS

Suppose the phone company decided to release a new, improved tele-
phone. "DigiPhone, The Phone of Tomorrow", with only two buttons, 1
and 0. They'd have a big advertising campaign to convince people that
it would be faster, more modern, better in every way than the old
phones.



Everybody's telephone number is converted to binary: 844-7171 becomes
1000-0000 1110 0100 1100 0011. Area codes get expanded from three
digits to 10, enough to cover all 1,000 possible area codes. The phone
book doubles in size, but that's no problem—they make the type twice
as small.

But they've misread the American people, who don't like the new sys-
tem. Not at all. They say it's almost impossible to correctly dial,
much less memorize, a phone number like:

(0010 1100 1001) 0101-0000 1000 1001 0011 1000

A one digit mistake and you're calling a MecDonald's in Kansas
City instead of your grandmother in Rockford, Illinois.

The phone company has already built 286 million DigiPhones and they're
not about to junk them. But they do offer a compromise. They take
out full page ads in newspapers across the country:

n Here's what we'll do, America. We'll go back to
our old phone books and publish everyone's num-
ber in the old 10 button form. Numbers will be
easy to remember, just like before. When you
get ready to call someone, convert it to 2
button format and make the call.”

Converting your old fashioned decimal telephone
number into modern, digital form is a breeze.
First, try to divide 8,388,608 into your phone
number. If it fits, the first digit is one, if it
doesn't, the first digit is zero. Next, divide
4,194,304 into the remainder. If it fits, the se-
cond digit is a one. Otherwise, it's a zero.
Next, . . ."

People let the phone company know that a ten minute calculator session
everytime they needed to make a call was a less than perfect solution.
A company think tank huddled for a week, and a second compromise
announced.

A new phone book, with numbers listed in a new, fairly easy to
remember format. A format that also possesses the property of conver-
ting easily, almost automatically, into binary. The great break-
through? Something called hexadecimal. Easier to remember for people
than binary. Not quite as easy as the decimal they've been using since
the first grade, but much easier than binary. And easy to convert
into and out of binary for dialing.

10



Whereas decimal has 10 digits in its counting alphabet, and binary
This is a problem because we don't have

two, hexadecimal has 16.

symbols laying around to represent these six new digits.
could have invented new symbols, it was expedient to use something
that most people (and typewriters) already knew how to write. They
decided that the first six letters of the alphabet would stand for the
missing digits. (Music set a precedent when it stole letters to stand

for Do-Re-Mi-Fa, etc.)

Although we

Not only does it convert easily, it saves paper; Four digits of hex
can represent numbers as large as 65,535 (164 - 1).

with six digit phone numbers.

We can get by

Phone book type can be larger. Huzzah.

Armed with the idea that sometimes letters can be numbers, examine

this chart that counts in all three bases.

Decimal Binary
0 0000 0000
1 0000 0001
2 0000 0010
3 0000 0011
4 0000 0100
5 0000 0101
6 0000 0110
7 0000 0111
8 0000 1000
9 0000 1001
10 0000 1010
11 0000 1011
12 0000 1100
13 0000 1101
14 0000 1110
15 0000 1111

See the relationship between hex and binary?
in for each binary nibble.

Hex Decimal Binary
00 16 0001 0000
01 17 0001 0001
02 18 0001 0010
03 19 0001 0100
04 20 0001 0101
05 21 0001 0110
06 22 0001 0111
07 23 0001 1000
08 24 0001 1001
09 25 0001 1010
0A 26 0001 1011
0B 27 0001 1100
oC 28 0001 1101
0D 29 0001 1110
0E 30 0001 1111
OF 31 0001 1111

32 0010 0000

Hex

10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20

One hex digit can stand
Once you've memorized the hex equivalent
of each nibble, conversion between hex and binary is a snap.

11



A hex telephone number like $4-56CA0 becomes:

0100
0101
0110
1100
1010
0000

4
5
6
C
A
0

Put it all together and you've got the binary equivalent,
0100-0101 0110 1100 1010 0000

Converting from binary to hex is equally simple. Substitute the hex
equivalent of each nibble, and you've got it.

0011 0111 0001 1000 1100 0010
3 7 1 8 C 2 or 3718C2.

In computers, common lengths of binary numbers are 8 and 16 digits.
The bits in a byte are numbered from right to left as shown below:

Bit 0 is called the least significant bit (LSB), and bit 7, the most
significant bit (MSB).

There are two problems left in acelimating ourselves to this new
numbering system: First, how do we tell whether a number like 345 is
hex or decimal just by looking at it, and second, how on earth do we
pronounce something like F3C0?

To elear up the former situation it was agreed by 6502 programmers to
always precede hex numbers with a dollar sign ("$"). This convention
will be followed throughout this book. It has nothing to do with
Applesoft's use of "$" to indicate string variables. 345 is a decimal
number. $345 is a hex number equal to 837 in decimal.

For most of you the long term problem will be how to internally
verbalize hex numbers containing letters. No one conguers this en-
tirely, but as a rule, call the thing by each character if it contains
a "funny" number. "$C13" is "cee-one-three". Also, try calling $F000
wEf-thousand" and $C00, "Cee-hundred".

12



THE LOGICAL OPERATORS

Binary numbers have some properties that go beyond just representing
decimal values and wasting paper. Numbers as simple as 1 and 0 lend
themselves to some special tricks involving what are called the logi-
cal (or boolean, after George Boole, 19th century English mathema-
tician) operators. These operators are and, or, and exclusive or.

The logical operators are not unlike the four common arithmetic opera-
tors, plus, minus, multiply, and divide. The biggest difference is
that they operate on binary numbers only one digit long. An example
of a logical operation is:

1AND1
or,

0 OR 1.

Frequently, logical operations are shown schematically, as a "black
box" with two inputs, a mysterious internal process, and one output.

—1D ?

THE RULES

An AND operation yields a 1 if and only if both
inputs are 1.

An OR operations yields a 1 if one or both inputs
are 1.

AN EOR operation yields a 1 if the inputs are
different.

13



That's it for the rules. Not much to them.

You've probably used logical operators in Basic programs without
knowing it. The Basic IF statement is based on logical operations.

IF (expression is logical 1) THEN do this.

IF A > B THEN GOTO 1000
To handle this line, Basic first resolves the assertion portion of the
command (A>B) to a simple logical value; either 1 or 0. if A is less
than or equal to B, 0 is inserted. If A is greater than B, a 1 is
inserted. By definition, 0's cause THEN statements to be bypassed,
and 1's cause them to be executed.

IF A OR B THEN GOTO 1000
will cause a branch to 1000 if either variable A or variable B is non-
zero. (Basic considers anything non-zero to be a 1.) It is also
possible to say things like:

T=(B >C) * 14

If Basic executes this line when B is greater than C, Variable T will
be assigned the value 14, because (B > C) will be replaced with the
logical value 1. If B is not greater than C, T will be zero.
You can string logieal operators together to form complex statements.

IF A > B or (FLAG and G < 14) THEN GOTO 1000

This comes natural to most people, because we phrase such expressions
everyday:

"If 1 ean find it and you give me the money, I'll buy
it.n

"If it doesn't rain tomorrow or if you leave the car, I'll
go downtown™

"If the copy machine is working, or Bill has the flyers
printed and I can get them in time, you'll get your
brochure. "

14



FINAL EXAM/ALTERNATE NUMBERING SYSTEMS 3201

Fill in the blanks of this Hex to Binary/Binary to Hex conversion
chart without referring to this manual.

BINARY HEX BINARY HEX
1001 1010 . $FO
1111 1011 . $02
0000 0001 . $cA
1111 0000 . $0C
1100 1101 . $ID
0101 1010 _ $11
1011 1011 $E6

Perform these logical operations.

0AND 1= 1ER 1=
1AD 0= 0OER 0= _
OR 1= 1AD 1=
1R 1= _ OR 0= _
1BER 1= 1ER 0= __
0ER 1= 0 AND 0 =

15



3.

Hardware

A Control Data Corporation Cyber 6600 computer is big enough to fill a
medium size house. An Apple II Plus doesn't weigh 10 pounds soaking
wet (perish the thought). But these machines have a lot in common; in
fact, at the block diagram level they are identical.

CENTRAL
PROCESSING MEM
UNIT ORY
MASS INPUT
STORAGE OUTPUT

CENTRAL PROCESSING UNIT (CPU)

The absolute monarch of every computer is the CPU. The CPU makes all
the decisions and puts the other components through their paces.
Although there are almost as many different central processing units
as there are computers, they each share the same duties of control,
decision, and calculation.

16



MEMORY

Memory is second fiddle to the CPU, but still an indispensable member
of the team. The CPU goes to memory for the stream of numbers that
govern its operation, a machine language program. The fundamental
operation of a computer is the CPU reading numbers out of memory and
writing numbers into memory. Were it not for the need to occasionally
communicate with human beings, CPU and memory could happily function
without the other two components.

MASS STORAGE

Things like disk drives, cassette tape, and punch cards—-—places where
the CPU can store and retrieve numbers, but not in the fast, intimate
way it works with memory. Mass storage is for numbers that are not
needed immediately and there isn't room for at the moment in memory.
Mass storage usually has desirable financial qualities compared to
memory; it costs less per byte.

INPUT/OUTPUT (1/0)

These are the links that connect the binary, numerical world of a
computer with the world of people. Things like printers, keyboards,
and game paddle controllers.

MORE SPECIFICALLY, THE APPLE II

An Apple II uses the 6502 microprocessor as its CPU. A microprocessor
is an integrated circuit (IC) that has an entire CPU squeezed onto it.
The CPU of a large mainframe computer may consist of more boards than
an Apple has IC's. The 6502 was introduced in 1975 by a small Cal-
ifornia company, MOS Technology. MOS Technology was subsequently
bought out by Commodore, and the 6502 is now manufactured by them and
two second sources, Rockwell and Synertek. If you pry the lid off an
Apple and look for the big 40 pin IC mounted horizontally just in
front of the expansion slots, that's the 6502. Somewhere in the maze
of fuzzy characters written on it you should see the numbers 6502.
Probably made by Synertek.

Apple is not the only company around using the 6502 in their machines.
Atari video games and home computers, Commodore machines like PET and
VIC, the AIM and KIM single board computers and Ohio Scientific sys-
tems all use it. A lot of devices that are not full blown computers,
like smart video terminals, have a 6502 ealling the shots.
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Currently, the 6502's greatest challenger for supremacy in the 8 bit
microprocessor field is Zilog's Z-80. Although the 6502 and the Z-80
have more similarities than differences, the Z-80 is considered a
register-oriented processor and the 6502 a memory-oriented processor.
The Z-80 has more on-board storage, and the 6502 more flair in dealing
with memory.

The 6502 is said to be an eight bit microprocessor because it deals
with memory in eight bit chunks. This number comes ultimately from
the fact that eight of the 40 pins on the 6502 handle the transfer of
binary numbers into and out of the 6502. Each leg transmits and
receives the electronic equivalent of one and zero.

Eight bits, one byte, is enough to represent numbers from 0 through

255. Although this sounds like a serious limitation, a little pro-

gramming, teamed with the 6502's tremendous speed, allows the use of
numbers as big as we want.

16 of the pins on the 6502 chip are used to specify addresses to
memory. This is equivalent to a 16 digit binary number, and means
there are 65,536 (216) memory cells potentially addressable by a
6502. Memory can be thought of as a series of numbered cubbyholes,
65,536 of them, maybe in a giant roll-top desk; each cubbyhole has a
slip of paper that can hold a number from 0 - 255 (actually, eight
tiny slips of paper just big enough for a one or a zero). Reading
memory is the act of first specifying the cubbyhole and then reading
back the number stored there. Writing to memory involves locating a
specific cubbyhole, and scribbling a new number on the slip of paper,
erasing whatever was there before.

The 6502 in a powered-up Apple II is continuously engaged in a fast
dialog with its memory. If you were to put your ear against the main
cireuit board, and were very quiet, you might hear something like this
(then again, you might not):

6502 Memory—Give me the contents of cell 45601.

Memory Okay. That number is... uh, 123.

6502 Now I need the contents of 45602.

Memory That's going to be. . . 234.

6502 Uh huh. Very interesting. (He thinks for a microsecond
or two). Okay, I need you to put 116 in location 1121.
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Memory You got it.

There are three basic types of memory cells that make up the memory
mechanism a 6502 will find attached to its address and data pins, and
not all are "full service".

MEMORY CELL TYPES

RAM is the most useful type of memory cell. RAM stands for Random
Access Memory, meaning you can ask one microsecond for location 3 and
the next microsecond for location 6,319, As opposed to cassette
tape, a sequential storage medium. If you want the last byte on a
tape you must go through the first 22,000 to get it. A memory cell
implemented with RAM will obediently read and write data at the com-
mand of the CPU. Although there are ways to build RAM cells that
don't, when you turn off the power to an Apple II's RAM circuits,
within a few milliseconds, the numbers stored there disappear. (Who
among us hasn't gnashed his teeth because of this at least once.)

Enter the second type of memory, ROM. Like RAM, a memory cell imple-
mented with ROM contains numbers that the 6502 can read (in any order;
it's just as random access as RAM). The difference is that the numbers
in a ROM cell are permanently engraved at the factory, and cannot be
changed, no matter how many times the CPU tries to write to it. Thus
the acroynm: Read Only Memory. This is both a liability and a
blessing. It's not very flexible (what if you want to do something
with the computer that doesn't need these numbers?) but it has the
endearing quality of withstanding being turned off without losing the
numbers stored there.

I/0 locations are the third type of Apple memory cell. These are
memory locations that are tied to elements of the computer other than
the CPU-ROM/RAM clique. I/0O locations let the 6502 communicate with
the rest of the machine. Some I/O addresses allow external devices to
communicate with the 6502: In the rolltop desk analogy, these cubby-
holes have a trap door in the back, and some third party is respon-
sible for the numbers that appear there. The 6502 looks at the slip of
paper in a cell marked "Keyboard" when it needs to know what key is
being pressed. If the 6502 tries to write to this cell, it doesn't
work; only the keyboard can change the number stored here.

Other 1/0 locations are address dependent switches. These cubbyholes
have trip wires that trigger a hidden mechanism whenever we try to
read or write that cell. Any read or write of cell 49,200 (an 1/0
address labeled "Speaker") causes a speaker somewhere (in a drawer, I
suppose) to make a sound. The simple act of addressing this cell,
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regardless of whether with a read or write operation, trips the wire
and makes the desired event happen.

DIVIDE AND CONQUER

A useful way to organize 65,536 (64K, where 1 K = 210 = 1,024) memory
locations is to group them into 256 "pages" of 256 locations each.
Think of memory as a book with 256 pages, and 256 words (bytes) on
each page. Page 3 is locations 768-1024, or $300 - $3FF. The page
concept is a natural for hex representation, as every address breaks
neatly into a page and a location within the page. Memory cell $3411
is the $11th byte of page $34.

Just because the 6502 has the potential to access 65,536 memory loca-
tions doesn't mean that every 6502 in the world can count on having
that many locations available to it. The engineer who wants to use a
6502 as the brains of the microwave oven he's designing may decide
that he doesn't need more than 1,000 bytes of ROM and 100 bytes of RAM
to build the world's smartest microwave oven. The 6502 that finds
itself installed in such a microwave still has the capacity to access
65,536 locations, but only a thousand are really there. If it tries
to access one of the unimplemented addresses, it's like a robot in a
Datsun factory blindly trying to arc-weld a 280-Z stalled 10 feet up
the assembly line. It thinks it's reading an instruction at location
$C000, but it's seeing random, arbitrary garbage.

So what locations have what on the Apple II? The 6502 programmer has
to know, lest he try to store his data in ROM. The memory map is a
useful tool for seeing at a glance the basic layout of the 64K addres-
sing range.
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Apple I Memory Map

PAGE NUMEER

DEC HEX FUNCTION

255  FF

ROM (12K; $D000 - $FFFF)

208 DO

207 CF 1/0 (4K; $C000 - $CFFF)

192 Co

191 BF

. RAM (48K; $0000 - $BFFF)
0 00
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Three fourths of the addressing space is devoted to RAM. In the early
days (1977-79), most Apples rolled off the assembly line with only the
lower 16K of memory installed. (Or even only 4K-fancy that.) The
machines weren't any different; RAM chips just used to cost more than
$1 apiece and down (like $30 each). If you tried to write a number to
location $4010 in a 16K Apple II, there was nothing to stop you from
trying—but it wouldn't save your number. Nowadays 48K is just about
universal. This relatively large amount of RAM (in 1977, people
killed for 48K) gives the Apple a lot of flexibility, as you are free
to do anything you want in RAM, from Pascal to Basic to graphies to
programs that impersonate microprocessors.

$C000-$CFFF are 4,096 locations devoted to I/O. Without these loca-
tions, the 6502 could not share any of the marvelous things it can do
with humankind. These addresses are connected to Apple hardware, like
the speaker, keyboard, game paddle connector, and disk drive.

From DO0O-FFFF is ROM. Stored in ROM is a 6502 machine language
program that runs programs called Applesoft, and a series of utility
routines that take care of reading keyboards, displaying text, inspec-
ting game paddle controllers, and so on, collectively referred to as
the Apple monitor.

MASS STORAGE

$BFFF bytes is a lot of RAM-but sometimes not enough. Enter the Disk
II mass storage unit. Here's a device that can store 140,000 eight
bit numbers on one disk—and we can have as many individual disks as we
can cope with. (For me, 10 is that number —after the tenth disk all
catalogs start looking the same.) On ocecasion, the 6502 instructs
the disk drive to load some of its contents into RAM. Once in RAM the
6502 can deal with the bytes in the normal, intimate, fast way. Disks
also have the very useful property of not losing their numbers when
power is removed.

BUT HOW DOES IT WORK?

The movie TRON ("I'm going to put you on the game grid, Flynn")
notwithstanding, the world of the 6502 is as far removed from human
experience as anything could possibly be, more like the whirling cams
and levers of a bottle capping machine than men in funny hats playing
catch with luminous Frisbees. Even so, an analogy relating the 6502
to the actions of human beings is the best way to explain how machine
language works.
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Consider, if you will, the loading dock of Giant Metropolitan Software
Publishing House, Inc. Delivery trucks move ponderously in and out of
loading bays. Workers with dollies and fork lifts move refrigerator-
sized cartons of blank disks coming in and completed programs and
manuals going out.

The undisputed boss of the dock is the foreman. An imposing figure in
sky blue jump suit and orange Astros cap, directing workmen to and
fro, signing paperwork, glancing occasionally at a clipboard in his
left hand.

He runs things tight, by the Book. The Book is a much worn spiral
notebook of maybe 150 pages chained to his desk. The label on the
torn cover, although now illegible from years of use, once said:
"SHIPPING DOCK PROCEDURES MANUAL". Each pege is numbered. Some pages
have only two or three lines on them, others, 10 or 15. Page 12, for
example, says, in careful lettering:

JOB 12 UPB - UPS BLUE SHIPMENT

STEPS:

1. PACKING LIST FOLLOWS WORK ORDER.
2. FILL OUT UPS LABEL

3. LEAVE AT UPS AREA

4. DONE

Every morning the foreman finds waiting in his IN basket a stack of
GMSPC, Ine. workorders. A workorder has some inter-office mumbo jumbo
on it, and, in the upper left hand corner, the all important shipping
dock procedure number. Not all of the sheets in the stack are work-
orders; most of the workorders need the sheet or two of paperwork with
them to be complete.

The basket stays full all day long, with clerks periodically replen-
ishing it. The dock foreman's most important tool is his green work-
order clipboard. After his morning coffee he takes the first work-
order from the stack and clips it to the clipboard. As long as that
workorder is on the clipboard, he will devote his energies totally to
performing the operations required to fulfill it.

There's a bunch of writing on each workorder, but he's only interested

in the number in the upper left hand corner. The procedure number.
Today's first workorder has a procedure number of 22. "TPC", he
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mumbles to himself as he flips to page 22 of the procedure manual. (He
knows 22 by heart, but turns to the page anyway. He's that kind of
man. )

PROCEDURE 22 TPC -~ TEXPAK C.0.D
STEPS:

1. PACKING LIST FOLLOWS WORK ORDER.

2. CALL TEXPACK FOR PICKUP

3. FILL OUT C.O0.D. LABEL. COMPANY CHECK OKAY
4. MOVE PACKAGE TO SHIPPING AREA

5. DONE

When he finishes the last step of TPP, if it takes 5 minutes, or 15,
he comes back to his desk, unclips the old workorder and puts it and
the packing list that went with it face down in the OUT basket.
Without a pause, he takes the next workorder from the In box, tacks it
to the clipboard, and goes to work on it. All day long: Get a
workorder. Look up procedure. Perform the workorder. Get a work-
order. Look up procedure. . .

A 6502 runs the same way: Access a memory location. Decode the
contents of that location. The instruction may require the next byte
or two in memory for execution. Execute the command, and proceed to
the next memory location for the next instruction.

THE FANTASTIC VOYAGE

Remember the movie Fantastic Voyage? Where some intrepid scien-
tist/military types are shrunk to the size of a microbe to assist in
the removal of a tumor from a valuable (I guess!) scientist's brain?

Through the magic of the printed word, we're going to do the same
thing. Only without Raquel Welch in the erew. Take that back-she can
come too. We climb into our manta ray shaped submarine and buckle up.
Brace yourself. Soldiers are blasting us with strange violet light.
We're shrinking. We're getting smaller. . .smaller. . .smaller. . .

We're so tiny now that the dot that ends this sentence looks like the
Astrodome. We lift off (this submarine can fly, too) and head
straight for a nearby Apple II. It looks as big as Mount St. Helens.
We slip easily through a crack in the keyboard, into a bizarre, alien
landscape of ribbon cables and clock crystals. After thirty minutes of
steady cruising, suddenly, dead ahead is a huge black monolith. The
objective of our mission: the 6502 microprocessor. . .
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4l
Getting Started

It's time to get acquainted with The Visible Computer. Take the TVC
disk from its envelope, slip it into drive one, and power up. Apple
I1 Standard (instead of Plus) owners will need to do an intermediate
step: Boot the computer on the DOS 3.3 System Master to load Applesoft
into a RAM or language card. Insert the TVC disk, and boot it with a
PR# 6.

In a few seconds, you'll see a Software Masters (tm) copyright message
that will remain onscreen for several seconds, or until a key is
pressed, whichever comes first. If you don't see this message, we've
got problems.

IF THE DISK WON'T BOOT

Is your Apple 48K? Does it have a 16 sector (DQS 3.3) controller card?
Is it an Apple II Plus? Or, if not a Plus, does it have either an
Applesoft Rom card or one of the many 16K RAM cards (Apple Language
Card, Microsoft RAMecard, ete.)? If your answer to any of these ques-

tions is no, you'll have to correet the situation before TVC can run
on your machine.

If your system meets these requirements and still won't boot, you may
have a bad disk. See your dealer, or contact Software Masters at the
address on the back cover of this manual.
The copyright display is replaced by the message:

LOADING. ..
TVC is a big chunk of machine language and binary data, and an even
bigger chunk of Applesoft Basic. Loading it all takes about 15 sec-
onds. When it finishes you'll get the message:

INITIALIZING...

And in a second or two the TVC display appears.
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MONITOR COMMANDS

TVC has a 21 command vocabulary. You control TVC by typing instrue-
tions at the monitor prompt, something like conversing with an
adventure game. You tell it something, and, if what you told it is
something it understands how to do, it'll do it.

"GET ROCK"

"SORRY, I DON'T KNOW THAT WORD"

GENERAL RULES FOR ENTERING TVC COMMANDS

To issue a command, type your request and press return. If a command
consists of more than one part, use spaces between the parts to sepa-
rate them. One is sufficient.

If you make a mistake in typing a command, correct it by either using
the back-arrow key and retyping, or by typing a Ctrl-X, and starting
from seratch. If TVC cannot understand your instruection, it will tell
you so with error messages.

Commands have the general form:
COMMAND [argumentl] [argument2]

Argument is a 25 dollar computer word that means "modifier". Some TVC
commands need no arguments; others need additional information to be
complete. Just as some Applesoft commands ("HOME", "NEW") stand
alone, while others ("IF", "GOSUB") don't make sense unless you in-
clude more information.

Examples of one word monitor commands are ERASE and RESTORE.

The monitor command BASE (change a register's base to hex, binary, or

decimal) needs two arguments; one to indicate the thing we're changing
the base of, and another to specify the new base. BASE PC BIN changes
the display mode of the program counter to binary.

You must separate a command and its arguments by one or more spaces.
You must not use spaces within a command or argument. For example, if
you entered the ERASE command as ER ASE, the command interpreter of
TVC would understand it to mean: "Perform ER using argument ASE".
Which, upon trying to find command ER, produces an error. If you
can't get a command to work, check your syntax—and don't forget the
spaces.
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You're now looking at something that few outside of the halls of
Intel, Motorola, and the ilk have ever seen; the innards of a working
microprocessor.

Each of the boxes holding a hex number is a register. A register is
just a place inside the processor where we can store binary numbers, a
lot like 2 memory location. The 6502 can perform marvelous feats with
a few simple operations on the contents of these 10 registers. In the
next chapter we'll begin to see how this is done.

Speaking of memory, the 6502's contact with the 65,536 address loca-
tions is via the two registers of the separate area labeled mem
(memory). The 16 bit register is for the address; the eight bit
register is for the data stored at that address. During program
execution, this is where numbers appear that are being stored in and
retrieved from memory.

The message window in the upper left hand corner is where TVC outlines
the steps it follows in executing each of the 151 opcodes of the 6502
instruction set. When TVC is not actively running a program (now, for
instance), this window is blank.

We'll put off talking about the disassembly window until we learn what
disassembly is. The TVC status window displays various tidbits germane
to TVC's execution. At the very bottom is the all important command
line, where you'll enter commands to control TVC. The "#" (pound
sign) is the TVC monitor prompt. Like the Applesoft prompt, it serves
as a reminder that entries should be statements recognizable by TVC.

The blinking line next to the prompt is the TVC cursor, and, like the
flashing block cursor of Applesoft, shows you where you are on the
screen when typing. A cursor is one of those overlooked things in
life that you don't really appreciate until you haven't got one any-
more.

The Visible Computer consists of two major parts: the monitor and the
6502 simulator. The monitor controls ("monitors") the simulator. The
simulator is the part that actually executes 6502 programs. Through-
out this manual we will use phrases like "in the monitor"” and "re-
turning to the monitor." You are "in the monitor" when the prompt is
at the bottom of the display. You are "in the simulator" whenever the
prompt is not at the bottom of the screen.
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Now to get our feet wet with a couple of commands. First, we'll call
up the calculator and see if two plus two equals four. I know that's a
question of great concern to many of you.

Type "CALC" and press return. If you make a mistake, fix it with back
arrows, Ctrl-X's, and retyping. If "Command" appears in the TVC
status window, accompanied by a low beep, TVC is telling you it cannot
understand what you entered.

Eventually you should see the following on the command line:
<HEX><CALC> 00
The cursor will be positioned under the first zero.

The "HEX" tells you that the current calculator base is hex. This
means that all numbers produced by the calculator will be displayed in
hex (without dollar signs), and that the numbers you enter must con-
tain only characters valid in hex. In other words, no hex numbers like
G3#B, or decimal numbers like FC3. Do not include dollar signs; if
the calculator's base is hex, the dollar sign is understood. The
calculator base can be changed by typing a Ctrl-B for binary, and a
Ctrl-D for decimal. For now leave it in hex (Ctrl-H).

Enter: 2 + 2 <return>.

About one second after you hit return, the 2 + 2 is replaced by
04. If you didn't get four for an answer, make sure you include
the spaces between the two's and the plus sign.

Try:

C. (Try that on your Casio!)

To use the calculator to convert between bases, follow these
steps. Converting 65,000 decimal to hex:

Ctrl-D
65000 <return>
Ctrl-H.

Convert it to binary with Ctrl-B, and back to deecimal with Ctrl-D.
With the base decimal, try adding FF to 3. The BASE error that
results is TVC telling you that you have entered characters not valid
in the current base. FF is not a valid decimal number.
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Answers are displayed with leading zeros, and for binary numbers, with
spaces separating each nibble. How many total characters are dis-
played is a result of the size of the number. Numbers less than 256
will always display as two, three, or eight digits (for hex, decimal,
and binary modes, respectively). Numbers greater than or equal to 256
display as four, five, or 16 digits. This is a by-produet of the
calculator's use of the same display and conversion routines used
elsewhere by TVC.

This calculator has certain properties that make it undesireable for
everyday checkbook balancing and miles per gallon calculations. First,
it is an integer calculator. Numbers with decimal points are not
allowed as input. Divisions produce truncated (chopped off, as opposed
to rounded off) results. (e.g., 6 / 2 = 3. 5/ 2=2. 9/ 10
=0).

You may not enter negative numbers. Dashes entered anyplace except as
the operator are treated as invalid characters. If you do a subtrac-
tion that produces a negative number, by subtracting a larger number
from a smaller number, the answer will be displayed in two's comple-
ment form (later we'll learn what that is). Lastly, you may not enter,
or produce via calculations, numbers greater than 65535. These quirks
are a result of the calculator's purpose in life: To help you write
machine language programs.

When you've had all the fun you can stand changing numbers back and
forth between bases, return to the monitor by typing escape. Got the
monitor prompt back? Good. Next, try this short and sweet command:

ERASE

Wow. Spectacular. This command clears a space where you can experi-
ment with high resolution graphies. But sinee it's sad to see a
lonesome little monitor prompt all by itself, bring the display baeck
with the RESTORE command. If you like, you can issue these two
commands over and over. For the more adventurous, let's move on.

Type WINDOW OPEN. Now we're erasing only a part of the display. When
you know more about 6502 programming, you'll appreciate the choice of
registers that remain onsereen when the window is open. Again, we
don't want to leave our display looking so empty, so replace the part
that got erased with WINDOW CLOSE.

What's so great about lower case? Anyone out there with a grudge

against lower case? 1If so, get rid of those pests with the command
CASE UPPER. Although it may take a little getting used to, "Experts"
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have proven that people comprehend lower case letters more quickly
than upper case. Now that you're convinced of the superiority of
lower case, change back with CASE LOWER.

What's so great about hex? TVC defaults to a display mode of hex for
all registers except P, but you don't have to leave it that way.
Change the base of all the registers to binary with:

BASE ALL BIN

Change only the A register to decimal with BASE A DEC. You can mix
and match any combination of hex, binary and decimal. Get it looking
like you want a 6502 to look.

This concludes our first session with TVC. We've learned what the
monitor is, and experimented with the commands CALC, ERASE, RESTORE,
WINDOW, and BASE. In the next chapter we'll go in up to our knees and
splash around a little.
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S.

Working with Memory

TVC Memory Allocation
Page Nurber

5

Reserved for TVC ($0C00 - $BFFF)

8

Primary User Area ($0800 - $0BFF)

Apple Text Display

"™

Page 3 User Area ($300 - $3CF)
Page 2

Page 1 (Stack Page)

Page Zero

O oes e e @D oer D oes 10 se S e e e
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In this chapter we'll learn how TVC subdivides the Apple's 48K of RAM.
Then we'll practice the monitor techniques of examining and changing
the contents of memory.

Although you can read bytes from almost anywhere in memory, The

range $E00 - $BFFF is offlimits to writes. If you were allowed to
populate this region with the numbers of your choice, you might hurt
TVC; maybe crash it, maybe just subtly alter a single function. TVC
will appear to accept an order to place a value at $4003 (no error
messages), but not obey it. It handles ROM and I/O locations the same
way. Later, when you've proved to be a responsible person, you'll
learn a command that lets you to write to these areas.
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The 2K that is available for writes ($0000 - $3CF and $800 - $BFF) is
plenty of room for most machine language programs. The area from $400
to $7FF labeled "Apple Text Display" should not be used, although you
won't hurt TVC by doing so. You may not find the numbers you stored
there when you come back for them later.

The monitor provides three methods of getting numbers into and out of
these locations. A fourth way is to write a program that does the work
for you—but that comes later.

A WINDOW INTO MEMORY

To display the contents of 16 memory locations at once, use the WINDOW
MEM command. Unless you tell it otherwise with the LC or RC commands,
TVC displays locations $800-$807 and $0000 - $0007 in the memory

window. You can change the base of the memory window to decimal with:
BASE MEM DEC. BASE MEM HEX changes it back. If you want to change
the value of one of these locations, there are three options.

DIRECT LOAD METHOD

The quickest way to write to a memory location is a direct load.
Enter the address and the value you want stored at that address sep-
arated by a space. Both address and value must be numbers valid in
the current monitor base (the second entry on the TVC status line—hex,
if you haven't changed it since booting). To put $CA in location
$806, enter:

806 CA.

See the contents of location $806 change? How nice. 804 3 writes a
three into location $804. To use decimal numbers, set the monitor
base to decimal with BASE MON DEC. Now addresses and data must be
given in decimal. All the examples in this book will use hex, so
change it back.

Direct loads are okay for a couple of quick writes, but if we want to
write data to 50 consecutive locations, it's a lot of work to specify
the address each time. A more efficient way to change several conse-
cutive locations is the EDIT function. Invoke editing with the
command:

EDITO0
This causes editing to commence with memory location $0000. To change

the contents of location 0, enter a number (naturally, an 8 bit number
valid in the current monitor base). The number you enter replaces the
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previous value, in memory and onscreen. The address is ineremented by
one and the process repeats. There are a couple of tricks you can
accomplish with your first keystroke. A back arrow displays the
contents of the previous location. A front arrow jumps to the next
location, without changing the number stored at the first address.
Escape returns you to the monitor.

If you write to a valid location not displayed in the window, the
change is made in memory, but not onscreen. There are two commands to
change what memory locations are displayed, LC (change left column)
and RC (change right column).

To display locations $100-$107, enter:
LC 100

If you want, you can display the same locations in the right column.
It's a free country.

LOADING FROM DISK

The BLOAD command loads memory from data stored in DOS 3.3 B-files.
The demonstration 6502 machine language programs we will be using
shortly are loaded this way. You can also use BLOAD as a handy way to
write zeros into your working area, to clean it up. This is done by
BLOADing a file on the TVC disk consisting of nothing but zeros,
named, appropriately enough, ZEROS. Try it now.

BLOAD ZEROS

This zeros all the bytes from $800-$BFF, the main working area of TVC,
as well as pages zero and one.

As you might imagine, there is a counterpart to BLOAD named BSAVE.
BSAVE writes a selected area of memory to the file of your choice. We
will not be using BSAVE for awhile; in faect, until you have passed a
couple of milestones in your machine language studies, you will not be
allowed to use it. Don't believe me? Try the command:

BSAVE TRYANDSTOPME

Until you're a TVC master, no BSAVEs.
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CHANGING REGISTERS

Earlier we learned how to change the display mode of a register.
There's also a way to change a register's contents. Next to the
monitor prompt, enter the name of the register and the value you want
to put there. As with all monitor commands, express the value in the
current monitor base. To place $89F in PC, enter:

PC 89F

You may not write numbers larger than 255 into an eight bit register,
or larger than 65-you-know-what to a 16 bit register. Practice with
it. Change the base of registers you've written numbers to. Do you
get the same conversions you get on paper or with the calculator?

Appendix C is a reference on all 21 TVC commands. Even though there

are some that we won't be using for some time, turn there now and
quickly look through it.
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6.

First Programs

The 6502 you are (or should be) looking at is one that trades speed
for user friendliness. In exchange for being about a million times
slower than a real 6502, it allows you to peek inside as it runs.

A G |

A TOUR OF THE 6502

The 6502 has eight 8 bit registers. A register, remember, is just a
box where we can put binary numbers. Their abbreviated names: A, S,
P, X, Y, DL, DB, and IR. There are two 16 bit registers, PC and AD.
We'll discuss each register individually, as they have more person-
ality than the typical memory location.

The A register, or accumulator, although not especially
A large, is probably the most important register in a
6502. It gets a workout in almost every program.

Directly above it is S, the "stack pointer" register. S
S is used for stack operations.

The P register (Processor Status) holds the distinction

P of having probably the most unnatural abbreviation of
all 6502 registers. Don't blame me. It also is the only
one that defaults to a binary display, because we are
more interested in P's individual bits than their col-
lective value.
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Next are the ever-popular X and Y registers. These two
get a lot of use, but not as much as A. They are often
called index registers because of their use in something
called indexed addressing.

< X

PC The big register beneath X is the program counter. It
serves as & placemark to remind the 6502 where it is in
memory and what instruction it should execute next.
Fans of the program counter could make a good case for
it being the most important register in the 6502. At
the very least it's twice as big as the accumulator.

DL DL, the data latch, is the 6502's bus station, the
crossroads of data coming into and out of the processor
to and from memory. No data comes into or leaves the
6502 without passing through this register.

DB DB, for data buffer, is a place where we can temporarily
shuffle a number off in the middle of an instruction
until we're ready for it.

lR IR is the instruction register. This is where a 6502
deposits the instruetion that it is currently being
executed, It's the 6502's equivalent of the doeck fore-
man's workorder clipboard, a place where an instruction
can be studied ("decoded") to figure out what it is and
how to execute it.

AD AD is the address latch (sometimes called address bus),
the place that holds the memory location to be accessed
during reads and writes.

Ti.e 6502's 16 bit registers, AD and PC, have something of a dual
personality; sometimes they behave like one big 16 bit register,
other times like a pair of 8 bit registers. When used in this way,
the high order halves are called PCH and ADH, and the low order
halves, PCL and ADL.

A, S, P, X, Y, and PC are sacred abbreviations agreed on by all 6502
programmers. The other registers, DL, DB, IR, and AD have more flex-
ible names, as they were invented by the author of this manual.
That's right. You could buy 11 books on 6502 machine language, and
not one would mention the DL, DB, IR, or AD registers. The reason is
that a programmer does not have to worry about the contents of these
registers to write 6502 programs. They're in every 6502, essential to
the running of things, but since they perform temporary, scratch pad
functions, the programmer need not concern himself with them. Since
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TVC simulates the inner workings of a 6502, we couldn’t leave them
out.

Now to put some of this knowledge into action. Let's load and execute
the first of the demonstration programs on the TVC disk, named, appro-
priately enough, PROG1. Load PROG1 (no spaces between the "G" and the
"1") into memory, all two bytes of it, with the command:

BLOAD PROG1

Unless you specify otherwise, BLOAD loads data starting at address
$800, so PROG1 now resides in RAM beginning at $800. PROG1 is a simple
affair that will accomplish one small feat. It will cause a $33 (51
decimal, 0011 0011 binary) to appear in the accumulator. I know you
could easily do that with the monitor command: A 33, but bear with me.

Let's look at the data that makes up PROG1l. Put the window in memory
mode with the WINDOW MEM command. PROG1 consists of the $A9 at $800
and the $33 at $801. Hmmmm. . . He said the program was going to put
a $33 in the accumulator and one of the two bytes in the program is a
$33. Could be a connection.

The zeros that follow mark PROG1's end. Not a very complicated (or
useful!) program. CLOSE the WINDOW. We want to see the whole proces-
sor-memory setup for our first program. Next, put TVC in its slowest,
most helpful state with the command:

STEP 3

The current step value is the leftmost item on the status line. If it
doesn't say three yet, get with it.

I know you're anxious to get started, but before we turn the simulator
loose on PROG1, consider the current contents of the registers. Since
we just booted TVC, the registers are in their default condition.
Most, but not all, hold zeros. For now, don't worry about poorly
abbreviated P and its binary contents, or the $FF in the stack
pointer. 1 call your attention rather to the $800 stored in the
program counter.

This $800 is where in memory the 6502 that's about to come to life
will find the instruction it will execute. It is no coincidence that
BLOAD placed PROG1 at $800. If we were to make the program counter
something other than $800, say $1AFF, the simulator would not execute
PROG1, but rather whatever unknown data it found laying around at
$1AFF,
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To enter simulator mode, press return without entering anything at the
monitor prompt. Things happen fast now, so pay attention.

SIMULATOR MODE

This is our first excursion into the 6502 simulator. It does not have
nearly as many commands to worry about. It executes programs while
you watch. The message window illuminates and displays "FETCH" (writ-
ten in computer-style print; all the better to signify that this is a
6502's thoughts we're seeing here). This means an instruction fetch,
the first phase of executing an instruction, is in progress. When the
6502 has fetched a byte and placed it in the instruction register, the
feteh cycle ends, and the execution phase begins.

The other line of the message window contains a more eryptic message.
T: PC -> AD

This translates into English as "Transfer: The contents of the Program
Counter to the Address Latch®™. This is a micro-step, one of eight
known by the TVC simulator. A microstep is to a 6502 instruction as a
proton is to an atom; instructions are built by combining eight basic
microsteps in a specific order. The Visible Computer microsteps are
listed in Appendix D. The transfer microstep, which blinks the source
and then the destination register, is the most common, used by every
instruction at least twice.

The transfer will occur as soon as you exit the pause you are cur-
rently stuck in. A pause can be ended by any key except *C". "C"
invokes the calculator, the only monitor function available from
within the simulator. Exiting the calculator with escape returns you
to the pause.

Tap the spacebar and proceed. AD now contains $0800; note that PC is
still $800. A transfer doesn't affect the contents of the source
register.

READ is the next microstep of the FETCH process. A read happens fast,
so be ready. It consists of the following steps:

The contents of the address latch are transferred
to memory's address bus.
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Memory fetches the contents of that address and
transfers it to memory's data latch.

That value is transmitted to the 6502's data latch.

Before we let this READ happen, a pop quiz: What value will be read
from location $800? Answer: $A9. It won't have changed from a minute
ago when we looked at it from the monitor. Okay, press the spacebar.

The 6502 is still in the fetch cycle. It's taken a workorder from the
In-box, but hasn't got it to the clipboard yet. Until it gets this
byte to the instruetion register (IR), the 6502 doesn't have any idea
of what the instruction is, much less how to complete it. The next
step, then, is to put the instruction in IR so we can get on with
decoding and executing it. As soon as the $A9 is in IR, the fetch
phase ends, and the execute phase begins. "FETCH" is replaced in the
message window by "LDA IMMED", the 6502 saying to itself "I need to
load my accumulator with the next byte in memory." A Load Accumula-
tor, Immediate, also known as instruction number $A9.

And it knows what to do next. First step: Increment the program
counter. Now it contains $801. Transfer it to the address bus. Do
you feel a READ coming on? Yes. Read the contents of location $801
into the data latch. Copy the number you found there, a $33 (big
surprise), into the accumulator.

Almost done. All that remains are a couple of details. Something
called "CONDition FLAGS" happens that blinks the P register. More on
this phenomenom later. And a closing inerement of the program counter.
We do this not to assist in the execution of this instruction, but to
prepare for the next one. When you're in the monitor, the program
counter always points to the next instruction, not the end of the one
just completed.

A real 6502 doesn't have the luxury of sitting around doing nothing
while a monitor takes over for half an hour. It has to execute one
instruction after another, bing-bing-bing, hundreds of thousands of
times a second, without so much as a break to pat itself on the back.
So every instruction sets the program counter to point to the desired
starting point of the next instruection.

That last increment of the program counter completed the instruection,
and deposited us in the monitor, and if you haven't got too quick a
finger on the return key you're still there. The last act of the
simulator is to list the instruction just performed in the disassembly
window. Understanding the exact format is not important right now.
Consider the disassembly window a trail of the last five instructions
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the simulator has executed.

What would happen if we were to enter the simulator now? Try it.

It'll feteh the fetch the $00 that's in $802, put it in IR and digest
it. $00 is a 6502 instruction called BRK (software break). BRK puts
you right back in the monitor without doing anything. It's a signal
to the simulator that the program is over and we want to get back to
the monitor. Later we will learn more about this unique instruetion.

Congratulations! You have just watched your first program. If you
were able to follow along, you have learned about 30% of the fundamen-
tal basis of machine language. Before you go on to the next session
and progressively more complex programs, make sure you understand how
this one works. You can have an instant replay of PROG1 by setting
the program counter back to $800 with PC 800. While you're at it, why
don't you change the contents of memory location $801 from $33, to
say, your age—then PROG1 can serve the useful purpose of telling the
accumulator how old you are.

MOVING RIGHT ALONG

So far we know exactly two of the fifty-six 6502 instructions. LDA,
also known as $A9: "load the accumulator with the byte following this
one", and BRK, $00, "Break out of the program and return to the
monitor". "LDA" and "BRK" are not haphazardly chosen abbreviations;
they are official 6502 mnemonics (neh- mon-ies). A mnemonic is a
memory aid, based on the theory that it's easier for human beings to
associate "LDA" with the act of loading the accumulator than $A9. The
6502 has no idea, of course, what LDA means; if you want a 6502 to
load its accumulator you have to give it the opcode $A9. Each 6502
instruction has a three letter mnemonic. Some of the abbreviations
are better than others, but all are easier to remember than a number.

Remember me saying that the accumulator is the most important
register on the 6502? That makes LDA-$A9 a good instruction to
know. Loading is all well and good, but what about storing a value
in the aceumulator somewhere in memory? Is there a way to do that?
You bet. BLOAD PROG2.

PROG2 introduces the flip side of LDA, STA (Store Accumulator; opcode
$85). This instruction causes the contents of the accumulator to be
placed in the memory location of our choice. PROG2 will first LDA with
$66, and then STA it at memory location $43 (a page zero address).
PROG2 is longer than PROG1, a whopping 4 bytes. Take a look at it
with either WINDOW MEM or EDIT. It begins, as did PROG1, at $800.
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Notice the $43 at $803. A coincidence? You know better.

With PC set to $800 to start PROG2 at the beginning, and with WINDOW
CLOSEd and STEP 3 in effect, step your way through this two instruc-
tion program. Pay close attention to STA-$85. STA is a tad more
complex than LDA-$A9.

When the 6502 sees an $85 in the clipboard register, it knows it must
get one more byte out of memory, just as it did with LDA. But what it
does with the second byte (a $43) is different.

First it transfers it to the address bus. Since AD is 16 bits
wide, and we're loading it with an eight bit number, the most
significant byte becomes zero. We have now formed the zero page
address $0043. Putting a number on the processor's address bus is
always a precursor to reads and writes of memory. Next, we
transfer the accumulator to the crossroads register, DL. The stage
is now set for the WRITE microstep.

A write consists of the following steps:

The contents of the address bus are transferred to
memory's address bus.

The contents of the data latch are sent to memory's
data latch.

Memory inserts the value into the selected location.

After the write, STA is complete except for a final increment of the
program counter to make it point to the next instruction. No flag
conditioning this time.

When you get back to the monitor, check the contents of memory loca-
tion $0043 with either WINDOW RAM (and an LC) or EDIT and verify that
it really got the value PROG2 put there. Run this program several
times. Use different values for $801 and $803. DO NOT change the
opcode values, the $A9 in $800 or the $85 in $802. Change them and you
change the instruction from LDA to who knows what.

That's three instructions down, 53 to go. But we're about to learn 10
more with astounding ease.
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LOADING AND STORING SOMETHING BESIDES THE ACCUMULATOR

The accumulator is top dog on the 6502, but once in a while we need to
load and store some of the other registers, too. There are instruc-
tions for just that. LDY and STY for the Y register. LDX and STX for
X.

MNEMONIC OPCODE OPERATION
LDX SA2 Load X register
LDY $A0 Load Y register
STX $86 Store X register
STY $84 Store Y register

PROG3 demonstrates all the instructions we've learned. BLOAD it, set
PC to $800 and step through it. Each of the new instructions functions
exactly like its accumulator counterpart. We're really starting to
accomplish things with PROG3; three consecutive memory locations
loaded with $FF. Great.

All of the instructions so far have been two-byters: An opcode byte
to give the 6502 its orders, and a second byte to use in completing
the order. The 6502 has one byte instructions, too. Instructions that
are so self explanatory they don't need a second byte to finish the
job. Sueh instructions are said to be "implicit", or implied.

The six Transfer instructions are representative of the Implied group
of 6502 instructions. They are used to transfer the contents of the X
and Y registers with the A register, and between X and the stack
pointer (S). In table form:

MNEMONIC OPCODE OPERATION
TAX SAA Transfer A to X
TAY SA8 Transfer A to Y
TXA $8A Transfer X to A
TYA $98 Transfer Y to A
TXS S9A Transfer X to stack pointer
TSX S$BA Transfer stack pointer to X

Don't confuse the 6502 transfer instructions with the "T:" microstep.
A "T:" is one phase of execution of a 6502 transfer instruction—in
fact, of every 6502 instruction.
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Two of the transfer series are demonstrated in PROG4. For now, take
the others on faith. BLOAD and STEP 3 your way through it. Notice
that the 6502 knows it need not fetch any additional bytes out of
memory after the instruction fetch to complete a transfer instruction.
It knows what to transfer where by looking at the opcode byte.

Notice that the 6502 knows it need not fetch any additional bytes out
of memory after the instruction fetch to complete a Transfer in-
struction. It knows what to transfer where just by looking at the
instruction.

Ultimately, PROG4 accomplishes the same function as PROG3 (the not-so-
earth-shaking feat of writing $FF into locations $40, $41 and $42),
but does it faster. It takes less time to execute a one byte transfer
instruction than a two byte load instruetion. It's also two bytes
shorter.

Now we're making some progress; 13 instructions down, 43 to go.
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7.

Processor Status Register

The P (processor status) register is something of an oddity in the
6502 family. Not only does it have a confusing abbreviation, it is
also the only register where we are more interested in contents on a
bit rather than byte level. In other words, if both P and A happen to
contain 0011 0011, we will usually interpret A as containing the
number $33, and P as containing ones in positions 0, 1, 4, and 5, and
zeros in positions 2, 3, 6, and 7. P defaults to binary display so
that each bit falls under its abbreviation.

Speaking of defaults, why are two bits set? Because that's what you
usually find in this register inside a real 6502 running in an Apple
I1. The full names of these rugged individualists:

Negative flag.
oVerflow flag

Break flag

Decimal Mode flag
Interrupt Disable flag
Zero flag

Carry flag

ON"DwW<Z

Two things: "Flag" is a faney term for bits of unusual importance.
Bit 5 of the processor status register is not used. It's there, ob-
viously, but we have no control over it, nor will we ever be
interested in its value.

INSTRUCTIONS THAT AFFECT THE P REGISTER

There are implied (one byte) instructions to set and clear many,
though not all, of the P register flags. (Set and Clear are handy
verbs describing the act of forcing a bit to become either a one or a
zero, respectively. "Reset" is used interchangeably with "eclear" in
this manual).
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COMMANDS THAT CLEAR P REGISTER BITS

MNEMONIC OPCODE OPERATION
CLC $18 Clear carry flag
CLD $D8 Clear decimal mode indicator
CLI $58 Clear interrupt disable indicator
CLV $B8 Clear overflow flag

COMMANDS THAT SET P REGISTER BITS

MNEMONIC OPCODE OPERATION
SEC $38 Set carry flag
SED $F8 Set decimal mode indicator
SEI $78 Set interrupt disable indicator

This list of commands is incomplete; there are no instruections
for setting or clearing the negative and zero bits, and none for
setting overflow. There don't need to be, as we shall see.

THE ZERO FLAG: 6502 HISTORIAN

The Z flag contains a single binary fact about previously executed
instructions. It is "conditioned" (set or cleared) by the 6502 every
time it executes a load or transfer instruction. If you load a zero
into the acecumulator, Z will be set. This is backwards from common
sense, so I repeat: If you load X, Y, or A with a zero ($00;

0000 0000), the Z bit will be set. It will stay set until such time as
another load or transfer comes along that loads a non-zero value into
a register. Once cleared, it will stay that way until the next zero
load comes along to set it.

THE NEGATIVE FLAG

The N flag is also conditioned with every load and transfer instruc-
tion. If you load or transfer a number that has bit 7, the most
significant bit, set, N will be set. Any 8 bit number greater than
$7F has this bit set (check it out!). Conversely, loading or trans-
ferring values with this bit clear will clear the N flag. N gets its
name from the fact that frequently bit 7 is used by the programmer to
indicate negative numbers. We will describe the signed number situa-
tion in more detail later on, but quickly, the convention is: If bit
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7 is set, the number is negative. If it is reset, the number is
positive. If you are not using signed numbers, the behavior of the N
flag can be disregarded.

This conditioning effect, in conjunetion with instructions to be
presented in the next chapter, allow the programmer to test conditions
that existed on previous load and transfer instructions. The tech-
nique is to examine the state of the Z or N bits, and decide what to
do next on the basis of that finding. This is related to Basic's

IF () THEN GOTO statement.

BASIC

IF A=0 THEN GOTO 1000
A=A+1
ete.

Machine Language

TXA
[If accum = 0, Jump to XXXX]

In the next chapter we'll learn an instruction to fill in the
brackets.

PROGS5 demonstrates both the implied clear / set instructions and the
conditioning effect of loads and transfers. BLOAD PROGS5, but before
you run it, we're going to explore a feature of TVC for anticipating
what a program will do without actually running it.

DISASSEMBLY: THE L(ist) COMMAND

With PROG5 BLOADed, type: 800 L. As with all monitor commands, sep-
arate the L from the 800 with a space. What appears in the disas-
sembly window is a sneak preview of the first five instructions in
PROGS5. Unlike the instructions put there by the simulator after execu-
ting an instruetion, the address is not shown in inverse video.

Disassembly is an awkward word for the extremely useful process of
presenting a machine language program in a form more palatable than
plain hex. The hex is there, address and contents—but the humanized
version of the instruction is what we're really after. Disassembling
a machine language program is not the same as executing a program, any
more than listing a Basic program is the same as running it.
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A disassembled instruction contains two parts; Mnemonic and Operand.

In "LDA #$33", LDA is the mnemonic, and #$33 the operand. Both assist,
sometimes subtly, the programmer in determining what the instruction
does.

The "next instruction line" of the TVC status area, if you haven't
already guessed, holds the disassembled form of the instruction that
is either about to be executed (if you are in the monitor) or is
currently being executed (if you are in the simulator). Minus the
address (which is defined to be the program counter, anyway, and the
hex values themselves. The next instruction display changes whenever
the program counter or memory pointed at by the program counter is
changed.

Although now PROGS5 will be anticlimactie, having already seen what
instructions are in it, work your way through it with the simulator.
People with printers can have a little extra fun by activating the
output-disassembly-to-printer feature of TVC with the command:

PRINTER ON

The Set/Clear instructions are straightforward enough, but pay special
attention to the COND FLAGS microstep of the loads and stores that
follow. Each load conditions the N and Z flags. If we load a regis-
ter with a zero, then the 6502 will set Z. If it was already set,
it'll stay set. N is altered at the same moment. It will be set
whenever a load occurs that sets bit 7 of the register that is loaded,
and reset when bit 7 is not. For now, just observe the conditioning
process and don't worry about why it goes to this trouble.

Tinker around with the data portion of the load instructions. What do

the Z and N flags do with a load of $FF? Or $31? Find out, and meet
me at the start of the next chapter.
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8.

Branches: Decision Making

If you're like me, the first Basic program you ever saw didn't do much
for you. It probably went something like this:

100 INPUT "WHAT IS YOUR NAME ";A$
110 PRINT "THAT'S A NICE NAME, ";A$
120 END

Unless you were exceptionally creative with your input, (THAT'S A
NICE NAME, GRAND CAYMAN ISLAND) it wore thin quickly. But my first
encounter with testing and looping was almost a religous experience.

100 N = 0

110 PRINT N , N * N
120N =N+1

130 IF N <= 10 THEN 110
140 END

Somehow the concept of testing and, if necessary, repeating a series
of instructions was facinating: "Wow, I could change the 10 in line
130 to 1000. . . or 1000000 . . . Or change line 110 to print the cube
root too!"

Put simply: Decision making and looping are what computers are all
about. This is as true for machine language as it is for Basic. To
execute our first decision-and-loop 6502 program we'll need some new
instructions: The Decrement / Increment series, and a Branch or two.

There are 4 implied (one byte) instructions to increment (increase by
one) and decrement (decrease by one) the contents of the X and Y
registers. They are: DEX, DEY, INX, and INY. In table form:

MNEMONIC OPCODE OPERATION

DEX SCA Decrement X register
DEY $88 Decrement Y register
INX SE8 Increment X register
INY $C8 Increment Y register
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These instructions have a "wraparound" effect. If you decrement a
register that contains $00, it goes to $FF. If you increment a regis-
ter that contains $FF, it goes to $00. There is also a way to inc/dec
memory locations. Strangely enough, there isn't an inc/dec pair for
the accumulator, although there is a way to accomplish the same thing.

Like loads and transfers, these instructions condition the N and Z
flags. If we execute DEX at a moment when the X register contains
$01, we get $00 in X and a set Z flag. This makes the inc/dec
instructions useful in counting loops. Load the X (or Y) register
with the number of times you want the loop to ocecur. Next, do the
operation(s) you intend to repeat. Now decrement X to reflect that
you've been through the loop one time. Last comes something that can
both test the Z bit, to see if X has been reduced to zero yet, and
depending on the result of the test, cause us to jump back and repeat
the process again.

These conditions are met by the BNE instruction. Pronounced "Branch
if Not Equal", with an opcode of $DO0, this instruction is the equi-
valent of the Basic statement:

IF A <> 0 THEN GOTO 1000

BNE is one member of the branch family of instructions on the 6502.
There are seven others, two for each of the four testable flags of the
P register (C, N, Z, and V). One that tests for the desired bit set,
another for the same bit clear. In table form:

MNEMONIC OPCODE OPERATION
BCC $90 Branch on carry clear
BCS SBO Branch on carry set
BEQ $FO Branch on result = 0 (Z Set)
BNE $DO Branch on result # 0 (Z Clear)
BMI $30 Branch on result minus (N Set)
BPL $10 Branch on result plus (N Clear)
BVC $50 Branch on overflow clear
BVS s$70 Branch on overflow set

Branches are said to use relative addressing because of the way they
are executed. A branch instruction is two bytes long; an opcode byte
(which tells the 6502 what bit to test, and for what value), and a
second, offset byte to tell it where to go if the test passes. This
"telling it where to go to" is tricky, and has to do with why their
addressing form is called relative.
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If the condition specified by the test is true, then the second byte
is used to calculate a new value for the program counter. The program
counter, remember, is the placemark in memory that keeps the 6502
executing instructions in sequence. If the test fails (as it would
for a BNE when the Z bit is set), the program counter advances normal-
ly by one and things proceed as if there had been no branch instruec-
tion at all.

If the test succeeds, the program counter is modified by having the
second byte added to it. For example, if PC contained $805 (having
just read from memory the second byte, say a $10, of a BNE instrue-
tion), and the 6502 determines that the test has passed, it forms the
new PC by adding $10 to the $805 already there. The next instruction
to be executed would be the one at $815 ($805 + $810).

Does this mean that branches can only happen in the forward direction?
No, negative branches are possible, although understanding how a
negative branch is calculated is a little more difficult. If the data
byte of the branch instruction is $80 or greater (Hint: bit 7, the
sign bit, set), the 6502 knows to do a subtraction on the program
counter rather than an addition. We will leave the details of this
subtraction until a later section. (Sneak preview: $FF = -1, $FE = -
2, $FD = -3...) Branches, then, can go either way, depending on the
data byte, by making the program counter either larger or smaller. We
may branch about 128 bytes in either direction.

Branching is demonstrated in PROG6. BLOAD and disassemble (L) it. It
begins by loading X with $04; we are evidently intending to do some-
thing four times. Next are two set/clear instructions, there only to
give the program some busy work to do in the loop. Next comes the new
instruction DEX. DEX conditions the Z flag— if it didn't, this pro-
gram wouldn't work. The branch instruetion BNE consists of an opcode
byte ($D0) at $804 and an offset ($FB) at $805. $FB, being greater
than $80 has a bit 7 set, and therefore is a negative branch; the
program counter will be reduced some amount if the BNE test passes.

agen: a2 a4 1dx #%64
BoKZ: 38 zec
Qe 18 clc
HEEA4:Ca dex
HE8B5:dA fb bne $H36Z
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The TVC disassembler goes out of its way to help you understand where
the branch will end up if the test passes. BNE $802 means "Branch if
not equal to location $802". This is friendlier than saying just BNE
$FC, and leaving you to figure out where the branch will go.

The first time we encounter the DEX instruction, X will be reduced to
$03. This is non-zero, so Z will be cleared and the branch test will
succeed, causing the loop to repeat. Finally, after 4 repetitions,
the test fails and BRK ends the program.

Since this program is significantly longer in execution time (though
not in length) than previous programs, now is a good time to learn
some ways to control the speed of simulator execution. We've been
using Step 3 exclusively. What do the other step values do?

Step 2 executes an entire instruction without pausing at each micro-
step. You can force the simulator to pause by pressing any key. When
the instruection is over, you are returned to the monitor.

Step 1 is like Step 2, except that you don't enter the monitor between
instruetions, but instead plunge ahead with the next instruction. Ese
forces the simulator to enter the monitor at the completion of the
current instruction.

Step 0 is TVC's high gear, flat out speed mode. It saves time by
skipping the process of writing to the screen during execution. The
only things updated are the disassembly window and the next instrue-
tion area. The registers will not reflect their true values

until you return to the monitor. "Flat out" and "high gear" are rela-
tive terms. In "high gear", TVC operates at something on the order of
one millionth as fast as a real 6502.

If you are in step modes 1, 2, or 3, you can slow down or speed up the
action by typing one of the number keys (1-9), while the simulator is
running. 1 is fastest, 9 slowest. Now press return, and happy
looping.
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9.

Addressing Modes

We've moved so quickly that we've glossed over some very good ques-
tions you might have had. One being: "If there are only 56 instrue-
tions, why are there 151 opcodes?" The answer is tied up in something
called addressing modes.

The 6502 is good at addressing modes; in fact, it makes some of its
contemporaries (like the Z-80) look positively anemic in this regard.
In a nutshell, addressing modes determine not what instruction to
perform, but where to get the data the instruction will use. So far
the demonstration programs have worked with a small subset of the many
addressing modes available on the 6502. All loads have used immediate
addressing, the form that tells the 6502 to load a register with the
next byte following in memory. All stores have used zero page form,
which specifies a memory location on page zero.

What if we wanted to load the accumulator, not with a number that we
knew ahead of time when the program was written, but with the contents
of a memory location outside the program. The Basic statement:

100 A =14

is the equivalent of the way we've loaded the accumulator so far.
More common in Basic is the statement:

100 A = B.

Accomplishing this in 6502 machine language requires a LDA of a diff-
erent color. There is another opcode that decodes as LDA, but not the
LDA-$A9 that makes the load occur from the next byte. It's LDA-$A5,
and it makes the load occur from the memory location specified in the
next byte. This is a slippery idea, I'll admit, but crucial to your
future happiness as a world famous machine language programmer.

PROG7, another two-byte special, will clear up the mystery. Bload and

list it. Notice that the disassembly is not quite identical to that
for PROG]1.
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PROG1

0800:A9 33 LDA #$33

PROGT

0800:A5 33 LDA $33

Opcodes $A5 and $A9 cause the disassembler to produce the same mnem-
onic, LDA, but different operands. The "#" is your clue to under-
standing what kind of LDA you've got. By 6502 convention, a pound
sign in the operand means that the value to load is "immediate",
contained in the byte occurring next in memory. The absence of the
pound sign in the second instruction tells us that the load will oceur
from the memory location specified in the operand, in this case from
location $0033.

We just learned a new opcode, $A5, but not a new instruction. $A5 is
LDA using the zero page addressing mode. $A9 is LDA using immediate
addressing. Now execute PROG7. Pay close attention to how it gets
$0033 into AD. Similar to the STA $33 instruction of PROG2.

What, there's more? Now a third way to LDA. Some of you have been
asking: "What if I want to load the accumulator with a value stored
somewhere in memory, but not a location down in page zero? Say an
address like $A09 or $BFFF?"

Very good question. And yes, there is a way to do it. You may specify
any of the 65,536 locations using absolute addressing. An instruction
using absolute addressing requires three bytes: An opcode byte, and
two bytes that specify the memory location the operation is to use.

Bload PROG8 and list it. PROGS8 will load the accumulator from $B1C,
when we let it, which we will in just a second. First, a close
examination of the disassembly.

0800:AD 1C 0B LDA $0BiC

Notice that the least significant byte of the address comes first.
6502 convention is to store two byte values in sequential memory
locations with the least significant byte stored first (lowest ad-
dress). There's no special reason for this; they just adopted a con-
vention and stuck with it. Again we find the disassembler working
hard to make life easier for us. It rearranges the operand into normal
left-to-right form. It's a lot easier to grasp "LDA $0B1C" than "AD
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1C 0B".

Now execute PROGS8. As you might expect, it takes longer to run than
the other forms of LDA we've used. The data buffer is used to temp-
orarily store the first byte of the address until we're ready for it.
However, except for the extra memory fetch and transfer to the address
bus, it runs exactly like the other two, finishing up with a flag
conditioning and a final increment of the program counter.

So there you have it. One instruction, LDA, and three different
opcodes ($A9 for immediate; $A5 for zero page; $AD for absolute). Can
we use absolute addressing to access zero page locations? Yes, you
may. There is no rule against the instruction:

0800:AD 12 00 LDA $0012.

If we can do that, why is there a zero page addressing mode at all?
Because only two bytes are needed instead of three. Absolute addres-
sing takes more storage and more time to execute. For efficiency,
6502 programmers place their most frequently accessed variables in
page zero. As a result, the zero page is prime real estate in the 6502
memory map. Although in theory you can use page zero for program
storage, this is rarely done. It would be like using a square block
in downtown Chicago to grow tomatoes.

There are only 256 locations, and everybody wants to use them. If
you're writing a machine language program that will be called from
Basic, you'll have to be careful to use zero page locations that
Applesoft, DOS, and the Apple monitor routines don't use. To deter-
mine what locations are safe, consult the chart on pages 74 and 75 of
the Apple II Reference Manual. (If you don't have a copy of the ARM
already, get one. It is a jewel, chock full of facts you'll be
needing to write 6502 programs. A tribute to Apple's philosophy of
letting people know as much as possible about Apple machines, so that
they can write programs and build hardware to make more people want to
buy them. This sounds perfectly logical, but it was a breakthrough in
the traditionally secretive computer industry.)

The load and store instructions of the index registers have these

addressing modes also. This table summarizes the opcodes for all three
addressing modes for LDA, STA, LDX, STX, LDY, and STY.
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INSTRUCTION ADDRESSING MODE OPERATION
ABS IMM ZPp

LDA $AD $A9 $AS Load accumulator
STA $8D $85 Store accumulator
LDX SAE $A2 $A6 Load X register
STX $8E $86 Store X register
LDY $AC SAQ $A4 Load Y register
STY $8C $84 Store Y register

There are no opcodes for stores in immediate addressing mode. But
then, what on earth would you do with an instruction that stores a
register in an address location inside your program?

A final ominous word before we move on to more jumping around fun in
the next chapter. 1 said earlier that the 6502 is a champion at
addressing modes. You don't get to be a champion having just three
modes for a popular instruction like LDA. You get to be a champion by
having eight.
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10.

Subroutines: The Stack

Next on the agenda are three instructions that, like a successful
branch, alter program flow. Changing program flow means changing
the program counter. Unlike the branches, the 6502 has no choice
in the matter.

The new instructions are: JuMP (JMP, $4c), Jump to SubRoutine (JSR,
$20) and ReTurn from Subroutine (RTS, $60). All three have direct
counterparts in Basic.

MNEMONIC OPCODE OPERATION
JMP $4C Jump to new address (Basic GOTO)
JSR $20 Jump to subroutine (Basic GOSUB)
RTS $60 Return from subroutine (Basic RETURN)

JMP is a three byte, absolute instruction that puts the address of our
choice in the program counter, thus shuffling us off to wherever in
memory we've got instructions that need executing. As with all abso-
lute instructions, the address we're jumping to is stored in memory
with the least significant byte first. One use for JMP is to extend
the range of a branch. A branch on its own is limited to about 128
bytes in either direction. If you use a branch in combination with a
JMP, you can go as far as you want.

Instead of: 0810: BEQ $F000 (no can do)
ETC...
use:
0810: BNE $0815
0812: JMP $F000
0815: ETC...

Bload PROGSY and list it. PROGY is full of jumps—six of them, to be
exact. But the disassembly just lists the first one. If you want the
disassembler to show you what's out there waiting at $900 after the
first jump, you have to ask for it specifically.
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Now execute it. What you have at the end of PROGSY is an infinite
loop. Like a cat chasing its tail, this program will never go any-
where. Although not a problem when we're executing programs with a
simulator that lets us quit with a press of escape, it can be a
serious problem under real 6502 execution. Infinite loops ean only be
broken by pressing reset. (The reset key is connected to the 6502 in a
more intimate way than the rest of the keys, and has an impact on it
more like the power switch than a keypress.)

A different sort of jump is controlled by the JSR/RTS pair. They're
used like the GOSUB/RETURN combination of Basic. In faet, most every
programming language has some way to implement this concept.

Executing a 3 byte (absolute) JSR instruction will, just like a JMP
instruction, divert program flow to the address contained in the
operand portion of the instruction. But with an important difference:
Just before it goes to the new address, the 6502 saves where it is
now, by storing the current contents of the program counter in memory.
This enables the 6502 to find its way back when it finishes the
subroutine.

How JSR and RTS work. Even though it is not strictly necessary to
understand the underlying mechanics of the JSR/RTS pair to use them,
I'm not going to let you off that easy. That's okay for Basiec pro-
grammers, to accept a gift without worrying about where it came from.
Machine language programmers look every gift horse square in the mouth
to see the pitfalls lurking there.

JSR and RTS use something called the stack to accomplish the feat of
returning after a subroutine has been completed. The 6502 stack is
two things, working together: the stack pointer register (8), and $100
bytes of memory ranging from $100 - $1FF, the stack page. Although
there is nothing to stop the machine language programmer from using
the stack page of memory for general purpose program and data storage,
it is strongly recommend that you reserve this area for the stack.
With freedom comes responsibility.

The Classic Cafeteria Tray Analogy. The stack can be visualized as a
stack of trays in a spring loaded container at the beginning of a
cafeteria line. The tray at the top, ready to be pulled off next is
the one most recently entered. The one at the bottom may have been
there since Mother's Day. This is called a LIFO data structure, for
Last In, First Out. As opposed to a grocery store line, which is
FIFO, First In, First Qut.
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If we put two green trays on a stack of red ones, we know that the
next two trays pulled off will be green. To implement the stack for
useful purposes of storage, we need only two operations: Push (put a
tray on the stack) and Pull (take a tray off the stack). We don't
care if there are 50 trays or 15 when when we issue a Pull command.
We only care that we get the one most recently put there. If I push a
$45 (a $45 written with a Marks-a-Lot on a tray) onto the stack, and
then an $FF, when I turn around and execute a pull, I'll get the $FF
back first.

How is a one byte register and $100 memory locations like a cafeteria?
The trays are one byte numbers that the 6502 will push and pull. The
holder is the stack page-but instead of moving all 256 bytes down one
everytime we push a value on the stack, the only thing that moves is
the contents of the stack pointer. The stack pointer always points to
the most recent entry in the stack minus one. If S contains $FC, and
we execute a push, the value we push winds up stored at $1FC, and S is
decremented to $FB. The first position in the stack is $1FF, and

subsequent entries (i.e., more recent ones) use successively lower
memory loecations.

MICROSTEPS OF A PUSH
Transfer stack pointer to ADL. ADH = $01 (for stack
operations, ADH is "hardwired" to 1 to force address
references to be in the stack page)
Transfer register to be stored to data latch

Write

Decrement stack pointer

MICROSTEPS OF A PULL
Increment stack pointer
Transfer stack pointer to ADL. ADH = $01
Read

Transfer data latch to selected register



By convention, the stack pointer always points to the first vacant
space in the stack. A Pull therefore increments the stack pointer
before the read; a Push decrements the stack pointer after the write.
Now that you're thoroughly confused, watech PROG10's JSR-RTS pairs put
the stack through its paces.

Bload and list the first few instructions. As with programs that
contain JMPs, the disassembly shows the first five instructions in
sequence, not the code at the destination of a JSR. If you want to see
that code, you'll have to ask for it.

This program "ecalls" (to use a popular synonym for gosub) a routine at
$A00 to load the X and Y registers with $FF's, and a second routine at
$900 that stores X and Y in a pair of consecutive zero page addresses.

The things to wateh: JSRs put data on the stack (what data? The two
halves of the program counter, PCH and PCL). RTSs pull data off the
stack and into the program counter. For this program, put the window
in memory mode, and use RC 1F8 to display locations $1F8-$1FF. That's
where the action will be. Since the window is in memory mode, the
read microstep will be executed but not displayed.

Note that PCH is pushed first during JSR, and so must be pulled last
during RTS. The address that goes into memory is the address of the
last byte of the JSR instruction. RTS takes care of a final increment
of PC to fully restore it to where we want to be, pointing to the
instruction after the JSR. Also notice that pulling a byte from the
stack does not erase it; it is not changed until something else is
pushed there.

The stack for its own sake. There are four other instructions that
use the stack. They are implied, one byte commands to push and pull
the accumulator and P registers. In table form:

MNEMONIC OPCODE OPERATION
PHA $48 Push accumulator on stack
PLA $68 Pull accumulator from stack
PHP $08 Push processor status register
PLP $28 Pull processor status register
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You will probably not have occasion to use PHP or PLP for awhile, even
though this is the only way to load or store the P register. Usually
P just sits there.

PHA and PLA are used to temporarily store a number without tying up
a register or memory location. Suppose the accumulator contained
the result of an important operation, but before we can use that
result, we need the accumulator for another calculation. We have
two options: Save the intermediate value in an unused register or
memory location, or, push it on the stack. In many cases the
latter course is best. When we are ready for the intermediate
value, we pull it back into the accumulator.

There are two things to watch out for when you use the stack for data
storage: First, there are a limited number of bytes in the stack and
you will overwrite data with the 257th push (wraparound effect). If
you are sharing the stack with Applesoft and DOS (such as when a
machine language program is called from Basic), you have even fewer
stack bytes available.

Second, if you are currently "within" a subroutine (i.e., a JSR has
been executed without a corresponding RTS), you must be careful not to
tamper with the stack so that the RTS will not work. This can happen
two ways: Pushing a number and not pulling it before the RTS, or
pulling a number without a preceding push. Both cause RTS to use two
bytes that point somewhere, but not to the end of the JSR that called
this routine.

PROG11 demonstrates care and feeding of the stack. The first subrou-
tine (at $900) is a painfully slow delay loop. How can we get out?
(We're willing to accept on faith that eventually X will be reduced to
zero, and RTS executed.) By getting out, I mean getting back to the
main loop that called this subroutine. Pretend you don't remember
that we started at $800.

There are a couple of ways to do this. We could haul off and use the
monitor to load X with 1 (doesn't take long to decrease a 1 to zero),
and let the RTS occur normally. Or, we could peek into the stack

page, figure out what bytes are the return address of the subroutine,
and load the program counter {plus one, of course) with those numbers.

The easiest way is the monitor POP command. Executing a POP places
the top two bytes of the stack (plus one) in the program counter, and
inecrements the stack pointer by two. POP is the monitor's equivalent
of RTS, and is useful in situations where you weren't watching closely
and got into a subroutine without knowing how you came to be there.
POP the address of the calling program to find out.
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The subroutine at $A00 demonstrates how not to use PHA and PLA. By
the time we get to the RTS that should return us the main program, the
data at the top of the stack is part return address, part left-over
pushed accumulator contents. Ouech.

Jump Back. Both JMP and JSR are three byte instructions using abso-
lute addressing mode. JMP has a second addressing mode called in-
direct, opcode $6C. In mnemonic form:

JMP ($0900)

Like JMP, absolute, JMP (IND) is a three byte instruction that diverts
program flow, without saving a return address; the mechanism for
determining the address jumped to is different, however.

JMP ($2000) tells the 6502 to jump to the address stored in memory
locations $2000 and $2001. Not to jump to $2000 and start executing
code—but to look there for the values that will be placed in the
program counter. If $2000 contains $F0 and $2001, $FD, then the pro-
gram counter will end this instruction containing $FDF0. This is
conceptually one level deeper than a normal JMP and you are entitled
to feel a bit queasy at this moment. If you think of JMP as a load
instruction for the program counter (which it is; we just don't call
it that), then JMP absolute is a load immediate. JMP indirect is a
load absolute. Since the program counter is 16 bits wide, two loads
must be made from sequential locations. With a little imagination,
the operand's use of parenthesis implies how the indirect jump works.

A bug ("feature") of the 6502 is its failure to properly handle indi-
rect jumps that cross page boundaries. JMP ($20FF) will fetch the
bytes from $20FF and $2000 to form the new program counter, instead of
from $20FF and $2100. This quirk has been faithfully copied in TVC.

PROG12 contains an indirect JMP. The first time through, after the
instruction: JMP ($0A00) we end up at $810. Later, this same
instruction puts us somewhere else.

Now, a message from our sponsor. Why should machine language program-
mers organize their programs in subroutines? For the same two reasons
that a smart Basic programmer does: For memory efficiency, so that
separate parts of a program may share a section of code without each
having to duplicate it. And, for clarity of structure.
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If you are to become a successful machine language programmer, you
will need to make things as easy on yourself as possible, by writing
programs that are clear and easy to follow. The "rat's nest" tech-
nique of jumps to jumps to jumps will have you spending more time
figuring out what you did yesterday than on today's work. A
good structure for machine language and Basic programs is to use
subroutines liberally, sometimes even if they are called only once.

The Ideal Basic Program

100 GOSUB 1000
110 GOSUB 2000
120 GOSUB 3000
130 GOSUB 4000
140 GOTO 100

The Ideal Machine Language Program

LOOP: JSR $1000
JSR $2000
JSR $3000
JSR $4000
JMP LOOP

To climb down from my soapbox, let me say in closing that even in well
structured programs, you will make enough mistakes to satisfy your
inborn programmer's desire for debugging sessions.
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11.
Instructions That Work: ADC/SBC

So far we've haven't learned any instructions that really sink their
teeth into a programming problem. We've loaded and stored and jumped
over, under, around, and through, but haven't accomplished much in the
process. A 6502 with only the instructions we've learned so far would
be like a car with a great stereo, and plush seats, but no engine.
This section introduces a pair of high octane computational instrue-
tions, ADC {(add with carry) and SBC (subtract with borrow). These
instructions may use any of the three all-purpose addressing modes
we've used so far.

INSTRUCTION ADDRESSING MODE OPERATION
ABS IMM ZP
ADC $6D $69 $65 Add with carry
SBC SED SE9 SES Subtract with borrow

We've made reference to the accumulator's importance without saying
why it's such a popular place; now we'll see. The accumulator is
where numbers have to be to have SBC and ADC operations performed on
them. You can't use any other register.

To add $23 to $14, load the accumulator with $23 and ADC $14 to it.
The answer, $37, replaces the $23 that was in the accumulator. Re-
sults accumulate there. The accumulator is always involved in half of
a computation and holds the result.

The operation of the ADC instruction is as simple as adding two eight
bit numbers, something that humans learn to tackle in the second
grade. The only thing remotely tricky has to do with why it's called
"ADC", add with carry, and not just "ADD". The word
"earry" means exactly the same process that humans use when they add
numbers on paper.

1 11

34 66
+ 19 + 44

53 110
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The 6502 needs the carry flag to keep track of when an addition produces
a result greater than can be held in the accumulator. The accumulator
can't grow, so C is drafted to be its ninth bit. Is nine bits enough

to represent the largest possible result of eight bit addition? Cheek
it out.

$FF
+ $FF
$1FE (1 1111 1110)

Apparently so. Anytime an ADC produces a value greater than 255, the
carry flag is set.

$7F $31
+ $82 + 816
$01 + a carry $47 no carry

ADC also conditions the Z and N flags, according to the same rules we
have already learned for these flags. If an ADC causes a zero to be
in the accumulator, the Z bit will be set. If it causes bit 7 of the
accumulator to be set, then the N flag will be set. Otherwise, N and
Z will be reset.

Not only does ADC condition carry going out, it includes carry in the
addition; if carry is set going into an ADC, as the result of a SEC
instruction or a previous ADC, the result will be one greater than
otherwise. This is a slight annoyance when we need to quickly add a
couple of eight bit numbers, as we must execute a CLC before ADC to
insure that we get the right answer, but is a blessing for more
complex calculations, as we shall see.

PROG13 demonstrates ADC in action, using immediate addressing. Bring
in PROG13 and execute it. Play around with different values for the
data bytes until you are comfortable with your understanding of how
ADC computes a new value for A, based on the operands and the carry
bit going in, and second, its conditioning of the Z, N, and C flags
going out.

Despite the potential for confusion in having to consider the state of
the carry bit on every addition, the C flag is more boon than bane,

since most uses human beings have for the 6502 involve numbers greater
than 255-and the carry bit is crucial to working with larger numbers.

Even though the accumulator is limited to 8 bits, it is possible to
add and subtract numbers much larger than 255 using multi-preecision
arithmetie. This means using 2 or more bytes in memory to represent
values. How big a number can you store in two bytes?
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216 _1 = 65,535
In three?
224 _1 = 16,777,215

We quickly come up to a range of useful magnitudes. PROG14 is a two

byte addition, using the zero page forms of ADC, LDA, and STA. Before
we run it, we'll need to EDIT some numbers into page zero for it to

use. Do this addition: & (f ('
$13FC  (A) | 7010
+ $4597 (B) —_—

$2727 (C) 2297

You might want to first run this problem through the caleculator to see
if the program produces the same result (it better!). We're going to
use zero page memory locations $00 - $05 to store operands A and B,
and the answer, C. Use $00 and $01 for A, $02 and $03 for B. Init-
ialize $04 and $05 with zeros. Use EDIT mode to write the data into
memory. As always, LSB first (in lowest location). $00 should get $FC
and so on.

As is our wont, run the program a few times with different data. What
happens if your addition produces a value greater than we can store in
16 bits? Is the carry flag still enough to handle the result?

SUBTRACT ION

The 6502 also has an instruction for subtracting one byte numbers,
SBC, Subtract with Borrow. It funetions more or less like ADC with a
confusing twist. Like ADC, it uses the accumulator for the first
operand and a selected memory location for the second, with the accum-
ulator getting the result. Subtracting 2 from $14:

LDA #$14
SBC #$02

The confusing part concerns the borrow flag; namely, there is no
borrow flag. (B is the break flag, and has nothing whatever to do
with subtraction.) Borrow is defined to be the opposite of carry. If
C is set, borrow is reset; if C is clear, borrow is set. Confusing?
You bet it is.
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Take the subtraction:
7 - 2.

To do it on the 6502, place 7 in the accumulator, and execute

SBC #$02. As with ADC, the answer includes the carry flag in some way.
If C is set when this instruction is executed, you'll get 5 in the
accumulator for an answer, because a set carry bit means no borrow.

If C was clear, then the answer will be 4, because a clear C bit means
a borrow occured previously.

Like ADC, SBC conditions the carry flag going out, too. Whenever a
bigger number is subtracted from a smaller one a borrow is generated
(earry is cleared).

$14 $14 $14

- $0E $02 $00
Borrow No Borrow No Borrow
(Carry clear) (Carry set) (carry set)

PROG15 contains some exercises that demonstrate SBC and its backwards
use of the carry bit. Bload and list it now.

PROG15

SEC (Clear borrow, by setting carry)
LDA #$07

SBC #$02

CLC (Set borrow, by eclearing carry)
LDA #$07

SBC #$02

LDA #$14

SBC #$22

Experiment with different values until you understand how carry
affects SBC operations going in and how SBC conditions carry going
out.
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MULTIPRECISION SUBTRACTION

As with ADC, situations arise that require multiprecision subtraction.
PROG16 demonstrates a 2 byte subtraction. BLOAD and list it. PROG16

will subtract the two byte number stored at $02, $03 from the two byte
number stored at $00,$01, and put the answer in $04,$05. Use EDIT to

set up this problem:
2960

$73A1 / g02)
- $46B1 —_—
ac L] So4

Now execute it. The carry bit winds up set at the end of this pro-
gram, meaning no borrow resulted from the overall subtraction of these
two numbers. And this is what you'd expect, since $46B1 is smaller
than $73A1. Tinker with the values until you are able to predict
everytime the behavior of the imaginary borrow flag going into and
coming out of SBC instructions.

MULTIPLICATION AND DIVISION

Regrettably, the 6502 has no built-in multiply or divide instruction.
Some of the newer miecroprocessors (8086, 68000, Z-8000) do. But with
a little programming we can use multiple applications of adds and
subtracts to produce the same thing.

To multiply n times m, add m to itself n times. To divide n by m,
count how many times m can be subtracted from n. This sounds in-
volved, and for a human it's not recommended, but a speedy little
rascal like the 6502 can do this a hundred times in the blink of a
hummingbird's eye.

PROG17 is an eight bit multiply. The values stored in $00 and $01 are
multiplied together, with the result going to $02 and $03. Verify for
yourself that two bytes are sufficient storage to cover the greatest
possible 8 bit multiply. Before you execute it, you must give it some
numbers to use. For reasons of time, keep $01 fairly small, say less
than $10.

PROG18 is an eight bit division. The number in $00 is divided by the
number in $01. $02 gets the quotient and $03 the remainder. These
two programs only scratch the surface of the subject of machine lan-
guage multiplication and division algorithms, i.e., there are better
ways to do it.
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COMPARE-TEST MASTER

A powerful too!l in test-and-loop situations is CMP, Compare Memory
with Accumulator. There's also a CPX and a CPY for the index regis-
ters. A compare subtracts the selected memory location from the
accumulator (or X or Y) and sets the N, Z, and C flags accordingly but
does not affect the value in the accumulator. So what good is a
subtraction that doesn't affect the accumulator? Plenty.

INSTRUCTION ADDRESSING MODE OPERATION
ABS IMM P
cMp $CD $C9 $C5 Compare memory with accumulator
CPX SEC $EO $E4 Compare memory with X register
CPY s$cc $CO s$C4 Compare memory with Y register

Before we plow ahead with a program to demonstrate CMP, a digression.
Most of you have seen or written Basic programs with the line X = PEEK
(-16384), or something similar. Memory location -16384, aka $C000, is
where the keyboard is hooked into the 6502's memory. If a Basic or
machine language program looks at this location, it can discover what
keys the human is pressing.

The basic idea is: Every Key has a number associated with it. $0D is
the return key. $1B is escape. $30 is "0". $32 is "2", Some keys
(shift, control) have no value of their own—but change the code pro-
duced by other keys.

When a 6502 program fetches a number from $C000 it gets the number of
the key most recently pressed. Apple uses the ASCII ("ass-key",
American Standard Code for Information Interchange) character set used
by most computers and peripherals, so it is fairly straightforward to
hook an Apple up to someone else's machine (like an Epson printer) and
have them agree on the number that represents a comma and so on. The
ASCII character set is in appendix B, and you probably have 4 other
copies around somewhere. (You can never have too many copies of the
ASCII chart.)

There is a complication to the keyboard story. The 6502 is so fast,
that if a normal human being depresses a key in a normal human way,
holding it down for something on the order of a tenth of a second, the
6502 could read the keystroke, go and do something with it (like
display it on the screen), and come back and get the same keystroke
again. You might get 36 apostrophes instead of one.
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In practice, this doesn't happen. If you press one key you get one
character. The reason has to do with the seventh bit of location
$C000. Bit 7 is called the keyboard strobe. The electronics in the
keyboard set this bit whenever you press a key. It stays set until
the 6502 specifically clears it. This is not done by writing a zero
to $C000 (this isn't RAM, remember), but by addressing I/O location
$C010, the keyboard strobe. The keyboard strobe is an address depen-
dent switeh; the act of accessing $C010, regardless if with a read or
write clears bit 7 of $C000.

These two facilities give 6502 programs a way to tell a fresh key-
stroke from one that's laying around from before. A subroutine to
grab keystrokes might look like this (in quasi-flowchart form):

Loop: Load accumulator from $C000
Is bit 7 set? If No, Go to Loop
Clear keyboard strobe.
Return.

Clearing the strobe makes sure that next time we call this routine we
will not get the same character unless it was typed again.

There's a program on the disk that demonstrates use of the CMP in-
struction to handle data plucked from the keyboard by a routine like
the one shown above.

Bload PROG19. Progl9 first calls the GETKEY routine we outlined
above. It returns when a key has been pressed, with the value of the
keypress in the accumulator. Next comes an immediate addressing compare
to see if we got the escape key. If we do, the program ends. If we
don't, we repeat the whole process.

TVC uses the same keyboard address, $C000, as PROG19 {only one per
Apple), so if you want it to read your keypress, you'll have to press
a key just as the read microstep occurs—otherwise, TVC will interpret
it as a pause order, and clear the keyboard strobe before PROG19 ever
sees it.
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12.

Beyond Adding and Subtracting

Thus far we've encountered two groups of 6502 instructions that actu-
ally get their hands dirty and perform calculations: The ADC/SBC
pair, and the increment/decrement series. This chapter introduces two
more groups of instructions to tackle problems with: The logieal and
shift instructions.

These commands differ from the ones seen previously in that they use
the contents of registers (usually the accumulator) on a bit basis
rather than on a cumulative basis. When we added $14 to $78 in the
last chapter, we were happy to consider the $8C that turned up in the
accumulator as just that: the quantity $8C. For the logical and shift
instructions, however, we are usually more interested in the trees
than the forest.

THE SHIFT INSTRUCTIONS

The 6502 has instructions for sliding all the bits in the accumulator
one position to the left or right. As did ADC and SBC, these instruc-
tions use the carry bit as the ninth bit of the acecumulator.

An ASL ("Arithmetic Shift Left") shifts all the bits in a memory
location or the accumulator one position to the left. All the bits
slide over one position to the left, bit 7 goes into C (whatever was
in C is lost), and a zero replaces whatever moved out of bit 0. This
chart demonstrates an ASL of the accumlator.

Xl —g!tiojifrfojprpijl

/Memory or Accumulator -

= ottt ioltjtr|tiop 1|0O
Arithmetic Shift Left
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But what earthly good is it? A couple of things. First, it gives us
a way to test any bit in the accumulator and branch accordingly.
Suppose we've done an operation and we need to sample the contents of
bit 5 and branch depending on what we find there. There is no BAS,
"Branch on Accumulator Bit 5 Set", so we proceed as follows: Three

consecutive ASL instructions to slide bit 5 into carry, then BCS to
test and branch.

A shift left has the surprising effect of multiplying by two. Try it.

$20 (0010 0000) X 2 = $40 (0100 0000)
$37 (0011 0111) X 2 = $6E (0110 1110)
$64 (0110 0100) X 2 = $C8 (1100 1000)

You can multiply by four by doing two ASL's, by eight if you do three,
and so on. Here are the shift instructions in table form:

INSTRUCT ION ADDRESS ING MODE OPERATION
ABS ACC zp

ASL $0E $0A $06 Arithmetic shift left
LSR $4E  $4A  $46 Logiecal shift right
ROL $2E  $2A  $26 Rotate left

ROR $6E $6A  $66 Rotate right

Shifts and Rolls of the acecumulator are one byte, implied instruc-
tions, which for some reason are not classed with the other implied

instruetions, but rather are the only members of so called "accumula-
tor" addressing.

LSR is like ASL only we move right instead of left. Bit zero goes to
the carry bit and a zero is shifted into bit 7. This divides the
accumulator by two. Again, don't take my word for this. Experiment
with the TVC calculator. The value left in the accumulator is the
quotient; the values shifted out of bit 0 are the remainder.
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The rotate instructions are slightly different. A rotate doesn't
shift in a zero, it rolls in the contents of the carry flag.

ROTATE RIGHT

LC ‘765432IO‘]

Rotations do not produce multiplication and division by multiples of
two, unless you clear the carry bit ahead of time.

(Historical aside: ROR, the Hawaii of 6502 instructions, was the last
instruction to be added to the 6502 instruction set. In fact, the
earliest 6502's did not have ROR at all.)

None of the other registers may be shifted or rolled; however, you may
shift and roll the contents of a memory location. Both absolute and
zero page modes are available for shifts of memory.

PROG20 is a multiprecision shift. The two byte value at $900 and $901
(low order byte first, of course) is multiplied by four by the
application of two ASL/ROL pairs. Shifting the low order byte puts
its old bit 7 in carry; we get that value into bit zero of the high
order byte by doing a roll of the high order byte.

THE LOGICAL INSTRUCTIONS

The standard assortment of logical operators are available to the 6502
programmer .

AND Logical And.

ORA Logical Or (Inclusive Or)
EOR Logical Exclusive Or
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Like SBC and ADC, these instructions operate on the contents of the
the accumulator. In addition, they condition the Z and N flags
according to the same rules.

Like the shifts, the logical instructions are cases where the trees
are more important than the forest. What occurs in the instruction
AND #$33 is eight simultaneous logical ANDs of each bit of the accum-
ulator and the corresponding bit of the selected memory location. For

example:

0011 0011 ($33) 1100 0000 ($C0)
AND 0100 0100 ($44) AND 0100 1111 ($4F)
= 0000 0000 ($00) = 0100 0000 ($40)

One use for AND is to force selected bits of the accumulator to zero.
To force bits 6 and 7 of the accumulator to zero, without affecting
the other bits, AND the accumulator with $3F. To foree every bit but
0 to zero, AND the accumulator with $01. Verify on paper that this
works.

ORA is useful for setting selected bits. To set bits 4 through 7 of
the accumulator, use ORA #$F0. To fill the accumulator with ones, use
ORA $FF.

EOR can be used to complement a number (reverse the polarity of each
bit). EOR #$FF will flip every bit in the accumulator; ones become
zeros and zeros ones. This instruction is used in graphics programs in
drawing a moving shape on a stationary background. By EORing twice, we
can erase the shape without destroying the background. We'll actually
do this later; for now, prove to yourself that two applications of EOR
#$FF leave a number unchanged.

SPECIAL CASE: THE BIT INSTRUCTION

The last 6502 logical instruction is BIT, a peculiar hybrid of AND and
CMP. BIT performs an AND operation between the accumulator and memory
location-but, like CMP, conditions flags without altering the accum-
ulator. As a bonus, BIT also transfers bit 6 and 7 of the memory
location under test to the V and N flags, respectively. It is useful
in checking I/O addresses that contain status information, partic-
ularly if bit 6 or 7 is the one that we're watching (as is the case
with the keyboard strobe).
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The logical instruction are supported by the three addressing modes we
have encountered so far.

INSTRUCTION

AND
EOR
ORA
BIT

ADDRESSING MODE

ABS

$2D
$4D
$0D
$2Cc

IMM

$29
$49
$09

Zp

$25
$45
$06
$24

OPERATION

And memory with accumulator
Eor memory with accumulator
Or memory with accumulator

Test memory with accumulator

Sorry, no way to BIT immediate—but what would you do with that anyway?

PROG21 demonstrates AND and ORA setting and clearing bits in the
accumulator. The subroutine at $A00 uses AND as a logical operator: If
memory locations $900 and $901 both contain $FF, return with the
accumulator equal to $FF. Otherwise, return with $00 in the accumula-

tor.
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13.

Indexing: Special Uses for X and Y

We mentioned in passing a while back that X and Y could be used as
index registers. The time has come to find out what an index register
is, and learn some new addressing modes in the process. So far we've
encountered five addressing modes. Two of the five, Relative and
Implied, are special cases; relative addressing is for branches only.
Implied instructions (TAX, CLC) have no other form.

The other three addressing modes, Immediate, Zero Page, and Absolute,
are more general, allowing the same instruction to be used in dif-
ferent situations. We have a choice in how we may load the accumula-
tor; with a number contained in the instruection itself (immediate
addressing), or with the contents of an address specified in the
instruction (absolute and zero page addressing).

To this list of general purpose addressing modes we now add four
indexed addressing modes: Absolute, X; Absolute, Y; Zero Page, X; and
Zero Page, Y. Operands to indicate this addressing mode are as
follows:

LDA $4000,X
LDA $4000,Y
DA $00,X
X $00,Y

Indexing is best explained by presenting a problem that can't be
easily handled by the addressing techniques we already know. Suppose
we need to move a a cluster of $10 bytes residing in addresses $900
through $90F, to make room for something else. With the addressing
modes we have learned so far, we can accomplish this "block move" with
the following program:

LDA $900
STA $A00
LDA $901
STA $A01
LDA $902
STA $A02
LDA $903
STA $A03
ete...
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And so on. To move all 16 bytes we'd need 32 instructions at three
bytes apiece. Not very efficient to use 96 bytes of program storage
to make room for 16 bytes of data storage. And what if we had to move
100 bytes? or 200? Wouldn't it be nice if there was a way to handle
this situation with some incrementing and looping? Enter indexed
addressing, in which the X and Y registers are used as offsets from a
base address.

Bases? Offsets? Let me show you what I mean.

So far we only know one way to load the accumulator from $0903; LDA
absolute. But what if we use a new addressing mode for LDA that
provides a two byte base address of $0900, and tells the 6502 to
modify that base address with the current contents of the X register.
If we execute the instruction LDA $0900,X (hex form $BD $00 $09) at a
moment when the X register contains three, the accumulator is loaded
from $0903. If we then increment X and execute the same instruction,
the accumulator will load from $0904.

Indexed addressing makes block moves a breeze. PROG22 demonstrates a
more elegant solution to the move problem.

$0800 LDX #$00
$0802 LDA $900,X
STA $A00,X
INX
CPX #$10
BNE $802
BRK

From 32 instructions, 96 bytes, to 6 instructions, 13 bytes. Quite a
savings. And we can move as many as 256 bytes without the program
growing one whit. As you step through this program, the thing to
watch is the new microstep "CALC ADDRS" (calculate address), in which
the address bus is modified by the X register. Otherwise, in condi-
tioning of flags, and ultimate result, LDA absolute, X, is exactly
like LDA absolute.

The same thing can be done with the Y register. This table summarizes

opcode values for the load and store instructions for these new
addressing modes.
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LDA $BD $B9
STA $9D $99
LDX $BE
STX

LDY $BC

STY

Notice that for the first time an opcode table has gaping holes.
There isn't an opcode for LDX ABS,X. Nor is there one for LDY ABS,Y.
NOT ALL ADDRESSING MODES ARE AVAILABLE FOR ALL INSTRUCTIONS. This is
partially due to a logical conflict: Does it make sense to load the
very register you've used to locate the memory location you're loading
it with? But it stems mainly from the physical limitations of inte-
grated circuit technology, circa 1975. Much as we'd like to have
them, there wasn't room on the chip to provide every addressing mode
for every instruction.

The most important instructions were given the most addressing modes:
ADC, SBC, EOR, AND, ORA, CMP, LDA, and STA. Consult appendix F for
the addressing modes available for each instruction.

INDEXING ON PAGE ZERO

That's two new addressing modes, Absolute, Y and Absolute, X.
Indispensible, but like all three byte instruetions, something of a
memory hog at three bytes each. There are also two byte, space
saving, Zero Page, X and Zero Page, Y addressing modes.

ZP,X zZP,Y
LDA $B5 $B9
STA $95 $99
LDX $B6
STX $96
LDY $B4
STY $94
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PROG23 demonstrates zero page indexed addressing. Watch for wrap-
around. If adding X to AD in the CALC ADDRSS phase produces a value
greater than $00FF, ADL wraps around so that it always contains a zero
page address. LDA $80,X, if executed at a moment when X contains $90,
will load the accumulator from $10.

INDEXING, PART II

Indexing is a powerful technique that allows a looping program to
repeatedly form different addresses with the same instruction. This
section introduces two more indexed addressing modes: Indirect, In-
dexed and Indexed, Indirect.

Let's review the concept of indireet addressing. Way back in Chapter
10 we used indirect jumps. (Remember feeling queasy? That was JMP
indireet). An indirect addressing mode doesn't specify the address to
perform an instruction with—it specifies the address that stores the
address with which to perform the instruction.

To review: An ordinary, garden variety JMP $B136 (absolute addressing)
puts $B136 in the program counter and that's that. JMP ($B136) in-
structs the 6502 to fetch the contents of locations $B136 and $B137
and use those contents to form the new program counter. This enables
us to change where the jump points under program control.

The 6502 contains two addressing modes that use the indirect concept
in tandem with the index registers. Two forms are available; one that
uses the X register only, called indexed, indirect, and one that uses
the Y register exclusively, called indirect, indexed. (Yes, the names
are confusing.)

INDIRECT, INDEXED
Suppose you faced a situation that required a block move of greater

than 256 bytes. You could tackle this problem with two consecutive
applications of normal absolute, indexed addressing as shown below.
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Moves $200 bytes from $3000 to $4000.

LDX #0
LOOP1: LDA $3000,X

STA $4000,X

INX

BNE LOOP1
LOOP2: LDA $3100,X

STA $4100,X

INX

BNE LOOP2

BRK

While this program would work, it is sorely lacking in elegance. Two
loops instead of one. Tacky. If we needed to move four pages of
memory we'd need four loops. Enter Indirect, Indexed adressing. In
mnemonic form:

LDA ($45),Y

The operand's arrangement of the parentheses is a clue to how ind-
irect, indexed addressing works. Since the Y is outside the paren-
theses, it's trying to tell us that the indirect portion of the in-
struction will be carried out first, and the indexing applied second.

For example, executing LDA ($45),Y: Memory location $0045 is read and
the value stored in the data buffer. Next, location $0046 is read.
Suppose we read a $00 from $0045, and a $20 from $46. We have now
"indirectly" formed the address $2000, (as always, LSB first).
Finally, apply indexing. If Y was equal to 6 when we executed this
instruetion, we will load the accumulator from location $2006. If we
were to increment location $46 (making it $21), executing LDA ($45),Y
again would fetch the byte stored at $2106.

Even though it takes several fetches of memory to execute an (IND),Y
instruction, and consequently more time than other addressing modes,
it is extremely efficient for code length. (IND),Y instructions re-
quire only two bytes; one to specify the instruction-addressing mode;
the second, the first of the consecutive zero page addresses that will
form the base address. Despite their two byte length, they can specify
a location anywhere in memory. Indirect, indexed addressing is a big
reason for the space crunch in page zero—every program needs a couple
of zero page pointers. (Pairs of zero page locations used in this way
are frequently called pointers because their contents "point" in mem-
ory to where an operation should oeccur.)
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Only the Y register can be used this way. There is no LDA ($45),X
instruction. There's a program on the disk named CLEARPROG that
demonstrates (IND),Y addressing. Bload and list it. This program
writes zeros to all $2000 addresses that make up the hires sereen,
effectively clearing it to black.

First it sets up a pointer pair ($FA and $FB) with the address of the
first byte in hires page 1 ($2000, which happens to hold 7 dots in the
upper left hand corner). Then it executes a loop, the active ingre-
dient of which is the STA ($FA),Y instruction. After writing $00's to
the first 256 locations, we increment the high order byte of the
pointer, check to see if it's $40 yet (in which case we're done); and
if not, repeat the process. Writing a $00 in a hires memory location
produces a short black horizontal line seven dots long (the most
significant bit holds color information), effectively erasing a small
portion of the TVC display with each write.

Once you've watched a couple of cycles of this program under TVC
execution, you probably think you've seen enough. If we let it run
all the way through under simulation mode, eventually the screen would
be cleared, but you would be bored into a coma. Now's the time to
bring a couple of commands out of the closet.

MASTER MODE

Thus far we've been in non-master mode exclusively. This is a good
place for beginners to be; non master-mode makes it just about impos-
sible for you to hang up the computer (short of prying the 6502 out of
its socket with a fingernail file). Writes to memory locations inside
the TVC program are not allowed, certain I/0 references that can do
messy things are locked out. Most importantly, you are denied access
to the GO command.

THE GO COMMAND

The GO command causes a program in memory to be executed not by the
simulator but by the 6502 itself. If you are in master mode, and if
the next instruction is a JSR, then TVC will pass execution of that
subroutine directly to the 6502. When the 6502 encounters the RTS at
the end of the subroutine, TVC will regain control and redisplay the
X, Y, P, A, and PC registers with the values they acquired in the
subroutine, and place the JSR in the disassembly window.
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There are a million and one ways (conservative estimate) that a
machine language program can go wrong, and almost all of them will
cause you to lose control of the computer. You may spray a deadly
hail of bytes into the TVC program-in which case you'll have to
reboot, or, if you're lueky, your sick program will be stuck in a
harmless infinite loop, and a reset should (no guarantees) restore
control.

To GO CLEARPROG, first enter master mode with the command:
MASTER

The M flag on the status line illuminates. You are now a Visible
Computer Master. (Feels great, I know.) A side effect of master mode
is that you can no longer read the TVC disk (you can try, but you'll
get 1/0 errors). However, you can now read and write to DOS 3.3
disks, something you'll be doing a lot more of down the road.

If you want to bload a program from the TVC disk, do it before you
enter master mode, or, exit master mode with MASTER OFF, load the
program, and reenter master mode.

Get the program counter pointing to the JSR instruction at $800. GO
won't work if you're not on a JSR. Now GO it, and be prepared to not
be bored. Doesn't take long, does it? RESTORE the display. Change
the $00 at $80E to a different value and run the program again. $FF
makes the screen all white. $55 makes nice pin stripes. Have fun
while you can, because we're about to spin your head completely around.

INDEXED, INDIRECT

If you liked indirect indexed, you'll love indexed, indirect. Whereas
indirect indexed addressing is only available with the Y register,
indexed indirect is only available with the X register. Confusing?
You know it. In mnemonic form:

LDA ($45,X)
Again, an examination of the operand and some educated guessing fur-
nish clues to how this addressing form works. Indexed indirect uses X

to index a particular pointer pair out of many, which then is used to
point to an address in memory. By way of example:
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Suppose the first eight bytes in memory held these values:

$00= $00 $04= $00
$01= $08 $05= $0A
$02= $10 $06= $00
$03= $09 $07= $0B

Eight locations make up four pointer pairs. The first points to $800,
the second to $910, the third to $A00, and the fourth to $B00. In-
dexed indirect addressing uses the X register to select one pointer
pair of many. LDA ($00,X) will load the accumulator from $800 if X is
0; from $910 if X is 2; from $A00 if X is 4; and from $B00 if X is 6.
This addressing mode is usually used to select under program control
which of several tables will be used in an operation. In practice it
doesn't get as much use as (IND),Y, but the day will come when you'll
be glad it's there.

Only the biggies of the 6502 instruction set have these modes avail-
able to them: ADC, AND, EOR, SBC, ORA, CMP, STA, and of course, LDA.
For opcode values consult appendix F.

REVERSEPROG is a takeoff on CLEARPROG. It does an EOR #$FF on every
byte in the hires display. You may remember that this has the effect
of complementing every bit in a byte. PROGXX quickly (under GO execu-
tion, anyway) produces a negative, black-on-white version of the TVC
display. At the very end it checks for a keypress; if it sees one,
the program ends. If not, it goes back and EOR's everything again;
this puts the display back to normal. Run REVERSEPROG a couple of
eycles under the simulator. Ready to GO it? Sorry, you can't.
There's no JSR at the start of the program.

You'll have to write a JSR instruction that calls REVERSEPROG at $800.
Edit the instruction:

0300: 20 00 08 JSR $0800
into page three. Now set PC to $300, and GO.
When you hit a key to end the program you have a 50-50 chance of

leaving the display in negative form (doesn't hurt anything; RESTORE
if it bothers you).
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14.

Some Fine Points

You may have noticed that this manual is filled with phrases like

"this is a powerful group of instructions", or "this instruction gets a
lot of use". This chapter concerns a couple that aren't so powerful,
or don't get a lot of use, or both.

NOP (No OPeration), opecode $EA, implied addressing, doesn't do a
thing. Nada. If you execute a NOP, the only effeet is that the pro-
gram counter will end up one bigger and a little time will have been
wasted. What good is an instruction that does nothing? It has two
uses: As a short delay in a carefully timed counting loop, and most
importantly, as a means of plugging blank spaces in memory, usually as
a debugging technique.

If you were debugging this program:
0800:20 00 10 JSR $1000

0803:20 00 20 JSR $2000
0806:20 00 30 JSR $3000

and determined that the second subroutine had a problem, you could
quickly check the functioning of the third subroutine by writing over

the middle JSR instruction with three NOP instructions.

0800:20 00 10 JSR $1000

0803:EA NOP
0804:FA NOP
0805:EA NOP

0806:20 00 30 JSR $3000

When we execute this program now, after the subroutine at $1000 re-
turns we fall through to the subroutine at $3000.

One word of caution: On pages 127-128 of the ARM there is a misleading
chart that implies that any of the 105 undefined opcodes can be used
as a NOP. This is not the case. Only $EA is NOP. If you put one of
these undefined values in the instruction stream, TVC knows to not
execute it, but a 6502 doesn't. It will do something undefined, i.e.,
who knows what. Appropriately enough, there is no demonstration pro-
gram for NOP.
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NOP's potential as an innocuous time waster brings up the subject of
instruction execution times. Normally, we are only concerned that a
program run fast, or at least fast enough. Sometimes, for example in
tone generation routines, we have to know exactly how long an in-
struction takes to run. The basic unit of time for the 6502 is the
instruction cycle. In an Apple II, one instruction cycle takes

1.023 microseconds (.00000123 seconds). All instructions require two or
more instruction eycles to complete. In general, the less reading and
writing of memory an instruction requires, the faster it runs. DEX
and SEC are fast, requiring only 2 eycles. LDA $45 takes 3 cyeles.
LDA ($01),X requires six eycles.

A RARE ONE

RTI (return from interrupt) is a rare instruction in Apple programs,
because under normal circumstances, interrupts never occur to return
from. But first, the $64 question: What's an interrupt?

Three of the 6502's 40 pins are interrupt lines, places where cir-
cuitry external to the 6502 can impact its normal fetch/execute
/fetch/execute pattern. The three lines are called Reset, Non
Maskable Interrupt (NMI), and Interrupt Request (IRQ). All three
cause the 6502 to stop what it's doing (executing some program or
other) and do something else. Some are more courteous to the program
that's being executed than others, however.

RESET

There are two ways to generate a RESET signal on the reset pin of the
6502: Turn the machine on, or press the reset key. Either method
causes the 6502 to drop whatever it's doing and immediately do an
indirect jump (or "vector") to $FFFC (i.e., to the address stored in
locations $FFFC and $FFFD). For machines with the Autostart ROM
(built since 1979) this program begins at $FA62.

The reset handling program (laid bare for all to see in the ARM) takes
care of some busy work, like the familiar beep, making sure that the
screen is properly set up to display characters, etc., and then pops
the big question: "Have I just been turned on, or was the reset key
pressed?". It gets the answer by looking at a couple of bytes in
memory. If they don't look just right, it assumes that it was just
turned on, and goes through an array of startup, housecleaning jobs
like eclearing the screen, displaying "Apple II" at the top, and, if it
finds a controller card plugged into one of the expansion slots,
trying to boot.
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If the two test bytes look okay, program flow is shunted to whatever
activity is appropriate for continuing what was happening when RESET
got pressed; If you were in Basic, you'll get back perfectly healthy
Basie, with your program intact, but not running. There's no way it
can pick up exactly where it left off, because we didn't save the
program counter when the reset occured. The reset cycle is discussed
in detail on pages 36-38 of the ARM.

INTERRUPT REQUEST

If we put a signal on the 6502's IRQ pin, we command the 6502 to drop
what it's doing and do something else, but to first save where it is
now so that we can get back later. This is done by saving the program
counter and the P register on the stack. Once saved, we "vector" to
the code pointed at by locations $FFFE and $FFFF, the highest two
locations in the memory map.

Two bits of the P register are involved with interrupts. The I
bit, interrupt disable, is used to "mask out" interrupts. If I
is set, interrupts are disabled—the 6502 ignores whatever is
messing around with the IRQ pin. You'd want to mask out other
interrupts, for example, when you're in the midst of handling an
interrupt request already.

BRK: THE WHOLE TRUTH AND NOTHING BUT

Have you wondered why the P register has a B flag that doesn't have
anything to do with borrow? Or why BRK is sometimes called a software
interrupt?

BRK causes the 6502 to behave exactly as though an interrupt request
had occured on the IRQ pin. An indireect JMP is made to the same
program, pointed to by $FFFE and $FFFF. How can the interrupt hand-
ling program determine if it got there because of a hardware break or
a software break? By checking the B flag. If set, the interrupt was
due to BRK. If reset, it was a bonafide hardware interrupt. Let TVC
execute a BRK instruetion in master mode, and you'll see the code that
makes this decision.

If the interrupt was due to the IRQ pin (which is unlikely, since
normal Apple hardware will never generate one) the RTI instruction is
used to get back to where you were just before the interrupt happened,
by pulling the program counter and P register from the stack.

In non-master mode, the simulator doesn't execute a BRK the way a 6502

does; It does what we ultimately use BRK for—as a signal to stop
execution for debugging purposes. In master mode the simulator exe-
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cutes BRK the real way.

If the 6502 encouters a BRK while executing a subroutine via the GO
command, TVC will regain control and update the programmer’'s registers
with the values they held at the moment of the BRK. By convention, the
program counter is the address of the BRK instruction plus two. The
message "BREAK" appears on the error line.

The purpose of BRK is not to assist in the execution of a useful 6502
program, but for debugging. By setting BRK instructions at key points
in your program you can usually find out what's working and what's
not.

NON MASKABLE INTERRUPT

Then there's the non-maskable interrupt. NMI is similar to IRQ, only
it has a different vector ($FFFA) and it may not be ignored. One use
for NMI (but not in the Apple) is to connect it to a power supply
sensor. When the sensor gives warning that the incoming AC line has
dropped below some minimum value, the time remaining to the system is
short, maybe only a hundreth of a second or so. We can't afford to
be polite and wait for another interrupt to finish. The NMI vector
points to an orderly shutdown procedure.

SIGNED NUMBERS

All the programs we've seen so far have assumed that the numbers being
added, subtracted, decremented, ete. were always positive. Many times
machine language programs face the same problem as the overdrawn
checkbook: How to handle numbers less than zero. Or, put another way,
what shows up in the acecumulator when we subtract 6 from 3? You won't
see any minus signs anywhere, that's for sure.

Any guesses as to how to represent negative numbers? (It has some-
thing to do with bit 7, hint, hint.) As a suggestion, how about using
the lower 7 bits as the absolute value of a byte, and the 7th bit as a
sign flag. Thus:

0011 1111
1011 1111

+ $3F
- $3F

1t
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and

0100 1010
1100 1010

+ $4A
- $4A

That wasn't so bad, was it? Almost the way people do it—if there's no
minus sign, numbers are positive; here, if we have a clear sign bit,
we mean positive. A nice, sensible solution.

Using the most significant bit as a plus/minus indicator limits the
range of values that can be represented with a single byte to 127 to
+127. (Again the formula: 27 -1 = 127.) Two byte numbers can use the
7th bit of the most significant byte for the sign, with the remaining
15 bits storing the absolute value. This limits us to the range
-32,767 through 32,767 (ring a bell somewhere about the storage limi-
tations of Applesoft integer variables?).

But hold on. Even though this scheme has a certain pleasing
logie, it has a non-trivial problem: It doesn't work. Adding 3 + -6
should produce ~3. Does it?

0000 0011 (3)
+ 1000 0110 (-6)
1000 1001 (-9)

No. Any way you slice it, -9 is not -3. How about 26 + (-14)?

0001 1010 {(1A)
+ 1000 1110 (-0E)
1010 1010 (-40)

Not even close. And there's another problem. We have two bit pat-
terns that mean zero: "Positive zero", 0000 0000, and "negative zero",
1000 0000. Ouch.

Logical, maybe—_correct, uh-uh. Rather than subject you to a whole
series of potential solutions that don't work, let us proceed imme-
diately to a way to represent negative numbers that does work,
two's complement.

As with non-functional method #1, bit 7 still indicates whether a
number is negative or positive. It's the other 7 digits that are
handled differently. A two's complement is formed by complementing
(reversing) each bit and adding one to the result. We represent -$19
with the two's complement form of positive $19.
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$19 = 0001 1001
-$19 = 1110 0110 + 1 = 1110 0111
$64 = 0110 1000
-$64 = 1001 0111 + 1 = 1001 1000

While somewhat less logical than the first method, two's complement
representation possesses the desireable property of actually working
when we put it into action adding numbers. It also solves the problem
of two zeros. There's just one, 0000 0000.

To perform the addition 3 + (-6), first express -6 into two's comple-
ment form:

-6 = two's complement of 6 = two's complement of 0000 0110 =
1111 1001 + 1 = 1111 1010.
Now do the addition:

0000 0011 (3)
+ 1111 1010 (-6)
1111 1101 (?)

Since the result has bit 7 set, we know the answer is negative, and by
performing a two's complement to switeh it to positive, we can see if
we got the right answer. :

Two's complement of 1111 1101 = 0000 0010 + 1 = 0000 0011 = 3.

It worked. We got minus three for an answer. Since the function of
this book is to get you started in machine language, not to win you
the George Boole Chair of Binary Studies at Stanford, there will be no
rigorous proof attempted here of why this method works. (Audible sigh
of disappointment.)

To practice, use PROGXX to add one byte negative numbers to positive
numbers. Represent negative numbers with two's complement form; if
you're lazy (and/or smart), you'll use the calculator for this. Sub-
tract the number you want in two's complement form from zero. (e.g.,
to obtain the two's complement form of $3411, perform the subtraction
$0 - $3411.)
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A final note: For many, signed arithmetic proves to be one of the
most elusive aspects of machine language. If this presentation left
you more confused than enlightened, take comfort in the fact that most
machine language programs don't need signed numbers. And when the day
comes, six months or five years from now when you'll need to know it,
I think you'll find you can pick it up.

BINARY CODED DECIMAL

The Decimal flag (D) of the P register hasn't seen a lot of action. In
fact, except for a couple of sets and clears back in Chapter 7, we've
ignored it entirely.

The D flag controls how the SBC and ADC instructions work. If reset,
as it has been so far in all the demonstration programs (or should
have been) SBC and ADC perform standard binary arithmetic. If D is
set, the 6502 adds and subtracts using Binary-Coded Decimal (BCD)
numbers. BCD is a numbering system in a limbo somewhere between
binary and decimal. Because you will almost certainly have no imme-
diate use for additions and subtractions of binary coded decimal
numbers (unless you're planning to write a Pascal compiler and are
worried about rounding errors), no further mention of it will be made
here. Except, keep this flag clear or all your adds and subtracts
will be wrong. As a matter of fact, the very first instruction exe-
cuted when an Apple comes to life during a power-on reset is CLD.
Leave it that way.
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1 5-
Putting It All Together

So far we've been using 6502 programs without considering how they
were produced in the first place—we said BLOAD and there they were.
Since the purpose of this manual is to get you writing machine lan-
guage programs, it's about time we wrote one, taking an idea all the
way to a working 6502 program.

Hmmmm. What can we use for an idea... No, already done that. No,
too complicated. How about. . . no, too easy. I've got it: Play
music with the Apple keyboard. Catchy name: "ASCII Organ".

Now to flesh it out a little,
The higher the ASCII value of a keypress, the lower the note. We

won't control duration (each note will last the same length of time).
Escape exits the program.

The next step is to put the problem in computer terms, using a repre-
sentation about halfway between the design's English and the mnemoniecs
of 6502 language. If Basic seems a natural way to express the prob-
lem, feel free to use it.

ASCII ORGAN FLOWCHART

START, GOSUPB [GETKEY/
/F KEY ='ESC’ THEN END
Gosus [Beep]

Goro SrarT

Next, translate this semi-program into the mnemonies of the 6502 in-
struction set. We're going to use labels in some places because we
don't want to tie ourselves down to real addresses yet.
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START « Jsg 6eETREY

CMP #H49B
BNE sKIP
RTS
SKIP JsR BEEP
JIMP START
GETKEY(: LbA  3c0dd
BPL  CETEEY
BIT dcoid
BEEP: zgs 42
BeEP) ﬁ)\!
(22 EX
e gme BEEPL
B'V $¥co3¢
QSE BeEP!
| g =S

This form of the program is called assembly language. It's not ma-
chine language yet-the 6502 can't cope with "JSR BEEP", anymore than
it can understand the whispered command, "Beep the speaker, please",

Before ASCII Organ can be run, we must "assemble" it into machine
language.

800 ~20 START: SBE GIETKEV
8o3 —cq 4B cMP  #4qB
eos—0¢ ¢l BNE sKP
207 - 664 ers
808 —-20 sEIP g5 BEEFP
BoB -uc ¢4 o9 Jmp  START
BoE-AD 80 <o GETKEY: LDA $cdbd
8l -1 FB Br. gFrkeY
@13~ 2¢ (g <P aIr scbid
8- 6d BEEP: for; wi8s
a17-Ad 29 q
819 -AA BeEP)] TAX
L A BEEP2. DEX
e Fp BuE BEEPL
gI1p-2¢ 3¢ < BIT 3c¢3d
g20 - 88 pEY
gz1—Dé Fo BNE  BEEP/
25— 6o Prs

Assembling each instruction into object code is a tedious, error prone
job. After a half hour of flipping pages in reference manuals, calcu-
lating relative branch values, replacing labels with addresses, all of

a sudden learning machine language doesn't seem like such a good idea
after all.
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Once we've translated the source program into a flock of bytes,
(call it the objeet program), we must EDIT it into the computer.
And hope we get every byte right, and don't change JSRs into RTIs
along the way.

A test to see how good a job we've done of assembling and entering is
to disassemble memory where we've placed our bytes and see if it
resembles the original source program. It probably won't and we'll
need to make a patch or two or three. Even once we do get it entered
right, the program still won't work if the original source program had
logical errors. If we do much rearranging at all of the source pro-
gram, we'll have to re-assemble from scratch.

Yes, Virginia, there is a better way. The phase of the machine
language programming process least suited to the talents of humans
(and best suited to those of a computer) is the assembly itself.
Wouldn't it be nice if we had a program that could assemble a source
program automatically?

Happily, such programs, called assemblers, exist. An assembler con-
verts 6502 assembly language ("source™) programs into 6502 machine
language ("objeet™) programs. One fly in the ointment is that you
won't have much luck getting an assembler to make sense of a pen and
paper source program. You'll need a special program called an editor,
a programmer's word processor, to produce the source program. Using
an editor is ultimately faster than writing on paper, although it
takes some getting used to.

1000 *# ASCII ORGAN

10210 *

1020 START JSR GETKEY
1030 CMP #$9B
1040 BNE SKIP
21050 RTS

1060 SKIP JSR BEEP
1070 JMP START
1080 *

1090 *

21100 GETKEY LDA $#CL000
1210 BPL GETKEY
1120 BIT $£010
11230 RTE

1140 »

22150 *»

1760 BEEP LDY #$80
1170 BEEPI TAX
1180 BEEPZ DEX

1190 BNE BEEPZ
1200 BIT $£030
1210 DEY

1220 BNE BEEPI

1230 RTS 93



This editor-produced source program for ASCII Organ looks remark-
ably like the hand written version, with a few exceptions. Every
line is numbered. The editor that produced it uses line numbers
as a means of editing in the same way Applesoft does.

Asterisks are this assembler's equivalent of Basic's REM. All
lines beginning with an asterisk are comments intended to en-
lighten the person reading the source program. The assembler
ignores them. The asterisk can be omitted if the comment begins
to the right of an instruction in an area reserved for comments.

Once the source program is ready, in a separate step we command
the assembler to assemble it into object code. A short program
like ASCII Organ takes four seconds to assemble, with guaranteed

accuracy. Is that better than half an hour, and making mistakes to

boot? (Rhetorical question.) Once assembled, we can save the object

program to disk, or run it, or whatever.

1000 * ASCII ORGAN

1010 *
0800~ 20 Qf 08 1020 START JSR GETKEY
0803- €9 9B 1030 CMP #$9B
0805~ DO 02 1040 BNE SKIP
0807~ 60 1050 RTS
0808- 20 I7 08 1060 SKIP JSR BEEFP
Q80B- 4C 00 02 1070 JMP START

1080 *

1090 *
Q80E- AD 00 C£O 1100 GETKEY LDA $L£000
0811- 10 FR 1110 BPL GETKEY
0813- 2C 10 €O 1120 BIT $#L010
0816~ 60 1130 RTS

1140 #*

1150 *
0817- RO 80 1160 BEEP LOY #$80
0g819- AA 1170 BEEP! TARX
Q81A- CA 1180 BEEPZ DEX
081B- DO FPD 1190 BNE BEEPZ
081p- 2C 30 O 1200 BIT $L030
0820- 88 1210 DEY
0gzl- DO Fé 1220 BNE BEEP?
0823- 60 1230 RTS
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That's how the ASCII Organ came into existence. Now, how does it
work?

ROUTINE BY ROUTINE

GETKEY is the same keystroke grabbing routine from Chapter 11. Waste
not, want not. It returns with the ASCII value of the key pressed in
the accumulator, bit 7 set.

When the main loop gets back control, it checks to see if the key is
escape. If it was, we RTS to end the program. If it wasn't, call the
BEEP subroutine, which produces a beep related in some way to the
value stored in the accumulator. After the beep we jump to the top of
the loop, and repeat the process.

BEEP deserves more coverage than "produces a beep related to the
number in the accumulator". First, Y is loaded with $80. This is an
outer loop counter that determines how many times we will repeat an
inner loop, and ultimately the duration of the tone. The pitch is due
to a delay loop based on A. We transfer A to X, and use X as the
counter in an inner delay loop. After this delay, we do a speaker
click; decrement Y (our duration counter), and if non-zero, reload
inner loop (piteh) counter X, and repeat. We end up clicking the
speaker 128 times, with a pause of variable length in between.

One more time, with test data. JSR to GETKEY and wait. After hun-
dreds or thousands or millions of microseconds, finally, the human
presses the X key. This causes the keyboard location to contain $D8
(check those ASCII tables), and makes the BPL test fall though to the
keyboard strobe clear. Now $C000 contains $58, ($D8 with the high bit
off). The accumulator still has the original, high bit set version.
Which is promptly tested after we RTS to see if it's the code for
escape, $9B. It isn't, so we take a detour around the RTS that would
end the program, and JSR to BEEP.

BEEP always uses $80 for its outer (duration) loop. The $D8 from
GETKEY figures into the piteh delay. Since the inner loop works down
(DEX), the largest values for the accumulator produce the lowest
tones, because longer delays between speaker clicks produce lower
frequencies. Anyway, once we've run the inner-loop-toggle speaker
combination $80 times, BEEP returns to the main loop, where the whole
process repeats. A flaw of this program (I didn't say it was perfect,
only that it has a good name) is that higher pitched notes have



shorter durations. Since the inner loop takes less time with smaller
pitch-value keypresses, the beep routine as a whole takes less time.

PLAYING ASCII ORGAN

Make a couple of passes through ORGANPROG with the simulator. As with
all programs that do keyboard checking, your keystroke will not be
captured unless you press it during the read of $C000. You will find
that even with great patience, and many passes through the loops of
BEEP, that nothing resembling music ever oceurs. The simulator is too
slow to produce a tone. We need to click the speaker hundreds, or
even thousands of times a second to do that. GO just the beep sub-
routine. That's more like it, beep-wise. Now GO the whole program.
The first person to send in a tape of The Moonlight Sonata played on
the ASCII Organ wins a special No Prize and a hearty "Well done".

BUBBLE SORT

A problem you will eventually face, probably sooner than later, is
sorting. A common sorting technique is the bubble sort. There are
more sophisticated sorts around, in fact, there aren't many less so-
phisticated, but when you're using machine language, and moderate
amounts of data, there's no reason to get fancy.

A bubble sort works by "floating" the lightest (smallest) numbers in
an unsorted list to the top. We start at the bottom and compare the
bottom element with the next-to-the-bottom element. If they're not in
the right order already, swap them and move up to the next pair. When
we've been all the way through the list, the lowest number in the list
is at the top. Has to be. Next, we repeat the entire process, except
that we don't check the topmost number; we know it's the lowest
already. After pass 2, the top two elements in the list are correct.

After as many progressively shorter passes as there are elements in
the list, we are done. Let's work through a sample bubble sort on
paper. The arrow points to the lowest member of the pair under test.

34
19
77

(@:: 22

Starting at the bottom: Compare 22 to 77. Since 22 is less than 71,
bubble it up a notch by swapping it with 77. Advance the pointer.
Now the list looks like this:
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34
19

(W 22

7
Compare 22 to 19. We don't need a swap this time. Move the pointer.

34
<< 19
22
77

Compare 19 to 34. Swap. Since the pointer is as high as it can go,
this completes one full pass through the list. The smallest item in
the list is now at the top. Move the pointer down to the bottom and
repeat the process, only this time, we can stop one comparison sooner,
since we know the top value is already correct.

19
34
22

W'”

When we've made three passes through the list, we're done.

The reason Basie sort programs are so slow is that even for short
lists there's a lot of comparing and swapping to do. In the neighbor-
hood of 32,000 comparisons for a list of 256 numbers, and roughly half
that many swaps, depending on how well the list is sorted already.

Bload SORTPROG. It comes complete with $100 scrambled bytes in $A00 -
$AFF. (Actually, the "scrambled bytes" are one page of machine lan-
guage routines snatched from the Autostart ROM. One man's program is
another man's scrambled bytes.) Before you execute it, study the
assembler listing. It uses a couple of tricks. Lines 1070 and 1080
are equates. ".EQ" is a "pseudo op" , an assembler directive that
makes it internally associate the name "COUNTR" with the number $FA.
In writing the source program, you use the name, not the number.
Notice that the assembler didn't generate any bytes in response to .EQ
statements.
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1000 BUBBLE SORT

*
2010 *
1020 *
1030 * SORTS DATA FROM $A00 -~ SBAFF
1040 * SMALLEST VALUVES TO TOFP
1050 *
*

1060
2070 COUNTR .EQ ¥FA
1080 TARLE .EQ $ROO

1090 *
1100 *
0800- A9 FF 1110 START LDA #$FF
0802~ 85 FA 1120 STA COUNTR COUNT = 255
0804- AO 00 1130 LOOP LDY #3300 Y IS PONTER
0806~ B9 00 OA 1140 LOOPZ LDA TABLE,Y
0809~ (8 1150 INY
0808~ D9 00 08 1160 CHMP TABLE,V
0g0D- BO 0D 1170 BES NOSKARFP
1180 *
1190 * SHAP TABLE.Y AND TABLE,V-1
1200 *
080F- AA 1210 TAX SAVE IT
0810- B9 00 0A 1220 LDA TABLE,Y
Q813- 88 2230 REY
ogr4- 92 00 0OA 1240 STA TABLE,Y
0817- €38 1250 INY
0gle- 2A 1260 XA RESTORE I7
0819- 99 00 0R 1270 STA TABLE.,Y
0giC- €4 FA 21280 NOSHAP CPY COUNTR
Q81E~- DO EE 1290 BNE LOOPZ
0820~ €6 FA 1300 DEC COUNTR
0822~ pO EO 1310 BNE LOOP
Q824- &0 1320 RTS
Line by line:
1110 - 1120 Initialize counter to $FF. Counts how

many passes we must make through the list.
We're done when this is reduced to zero.

1130 Starting point of outer loop. Puts us at
the bottom of the list for the start of
each pass. The Y register is the pointer.

1140 Starting point of the inner loop, where we

work our way up, pair by pair, until we
reach the top.
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1140 - 1270 The actual comparing and swapping. Test
each consecutive pair. If the byte with
the lower address is smaller than the
addressed byte, swap them.

1280 Have we gone all the way through the list
yet? Remember, we don't need to go any
higher than we've already done passes.

1300 An entire pass has been completed. If
we've done 256 passes, we're done. Other-
wise, make another pass.

Now execute it. Unless you've really got a handle on every step, use
the simulator for a couple of comparisons. Understanding the compar-
ison step requires understanding the borrow flag. Take a whole day if
you must to get it down pat, but do it, once and for all. This program
(all $25 bytes of it) takes less than a second to sort the list in
6502 mode. Not bad for 32,000 comparisons and 16,000 swaps.

THE GREAT DRAW LINES AND BEEP PROGRAM

This last program, at a whopping $130 bytes, is by far the longest and
most complex in this manual. Beep-a-Sketch (don't like the name? Send
us a better one) draws a free running line on the screen. You control
where the line goes with the [-J-K-M diamond. Accompanying the line
is a tone that goes up when the line goes up and down when the line
goes down. The arrow keys control how fast the line moves (left arrow
slows it down, right arrow speeds it up). Pressing "C" (Clear) erases
the screen. Escape ends the program. For a change, we're going to
run this program before we try to understand it. Bload it and GO
(again, use a JSR at $300 to fire it up).

Now that you've had your fun, let's figure out how these $130 bytes
made it happen. Consult the assembler listing of the program at the
end of this chapter as we work through it.

APPLE HIRES GRAPHICS FUNDAMENTALS

In high resolution mode (also known as Root Beer, or Hires, graphies),
the Apple programmer works with a grid of 280 horizontal points by 192
vertical points. The upper left corner is point 0,0, the lower right
corner 279, 191. Each dot on the screen corresponds to a bit in
memory. Bits that are set display as white. Bits that are reset
display as black. Hires page one resides in memory from $2000 -
$3FFF. This "bit mapping" technique is discussed in detail on pages
19 - 22 of the ARM.
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Applesoft hires graphies programs don't have to worry about the nuts
and bolts of addresses and bits. Executing the Basic command HPLOT
123,16 causes a hard working machine language routine in ROM to locate
the correct address in memory (somewhere between $2000 and $3FFF) and
set whatever bit needs setting to light up grid position 123,186.

The problem faced by the machine language programmer is how to take an
X,Y coordinate (the natural way to express an object's position on a
grid), and locate the exact address and bit position required to plot
the point. It just so happens that the whereabouts of the Applesoft
subroutine that performs the nitty gritty plotting is known, and may
be called by a machine language program. Beep-a-Sketch makes exten-
sive use of Applesoft graphics subroutines, and was therefore much
easier to write (and shorter) than it would have been if we had had to
write our own routines to do these things.

APPLESOFT HIRES GRAPHICS ROUTINES

HLIN ($F53A) Draws a line from the last plotted point or line
destination to the horizontal and vertical coordinates passed in the
registers.

Horizontal MSB = X
Horizontal LSB = A
Vertical =Y

HPLOT ($F457) Plots a dot at the horizontal and vertical coordinates
passed in the registers. Note that the registers are used differently
from HLIN.

Horizontal MSB
Horizontal LSB
Vertical

non
P>

HCLR ($F3F2) Clears the screen to black. No parameters.

SETCOL ($F6EC) Sets the hires color. In the X register, pass it the
same 0 - 7 values of the Applesoft HCOLOR command.

HGR ($F3E2) Clear hires page 1, mixed text and graphics. Same
as Applesoft HGR command.

Lines 1130-1180 equate appropriate words with the addresses of the
Applesoft graphics subroutine. Lines 1220-1250 do the same for some
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I/O addresses. (NOMIX is an address dependent switch that makes hires
graphies display all the way to the bottom, instead of sharing space
with four lines of text.)

START is Beep-a-Sketch's entry point. It is convention to have the
first address in a program the starting point (DOS's BRUN command
assumes this). This is the first line of the source program that
causes the assembler to generate any code.

The first instruction jumps around several bytes in memory that are
used as data and variables. The .DA (data) psuedo op tells the
assembler to set aside a byte, assign it a label, and initialize it
to a given value. Once we've allocated space for a variable and
assigned it a name, we can use it almost the same way we use
variables in Basic.

-HS (hex string) is a psuedo op that causes the assembler to
produce several consecutive bytes initialized to the values in the
operand. The label DELTA is the address of the first of the five
bytes in the table.

BEEP A SKETCH VARIABLES

VP - Vertical Position. Current Y coordinate.

HP - Horizontal Position. Current X coordinate.

HINDX and VINDX (Horizontal and vertical indexes). These values
control how new VP and HP's will be calculated with each pass through

the loop.

SPEED - Used as the duration parameter in the BEEP subroutine. Con-
trols how fast the program runs by determining how long BEEP lasts.

MAIN LOOP

Like all good machine language programs, the main loop is & simple
series of subroutines. We can understand the overall operation of the
program without knowing exactly how each subroutine works.

The INIT subroutine does a couple of things that only need doing once,

such as clearing the hires display and setting the plotting color to
white.
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DRWLIN is the working heart of Beep-a-Sketch. First we use the Apple-
soft HPLOT routine to draw a white dot at the current HP and VP values
(initialized to 125,80).

Next, calculate a new value for HP and VP with subroutines NEWH and
NEWYV. We'll discuss these routines in a minute; for now, all we care
is that HP and VP return from this routine with (slightly) different
values. Now, use the Applesoft HLIN routine to draw a line connecting
the dot we drew a second ago to the new HP,VP value.

When the line is drawn, we return to the main loop, and do a beep.
This version of BEEP takes its duration value from the variable SPEED,
and its piteh from VP. The less VP is (closer to the top of the
screen) the higher the piteh.

Next, the main loop checks the keyboard to see if there's a request to
deal with. Note that this program doesn't check the keyboard repeat-
edly like ASCII organ did. ASCII organ would wait forever for a
keypress. Beep-a-Sketch checks it, and if there wasn't a key pressed,
jumps to the top of the loop.

If there is a key pressed, we call subroutine KEYPRS that checks to
see what key it is, and if one of the keys that control the program,
performs the requested funetion. Eventually we get back to the main
loop and the process repeats.

THE HARD STUFF-NEWH/NEWV

The NEWH/NEWV routines calculate new values for HP and VP based on
three facts:

1) The values of HP and VP coming in

2) The maximum and minimum vertical and horizontal
positions allowed. (2 < HP < 250, 2 < VP < 180)

3) The current horizontal and vertieal indexes.

First, HP is checked for range. We don't let it get larger than 250
or less than 2. Beep-a-Sketch simplifies things by keeping X to a
value that can be represented by one byte, at the cost of not using
the full screen width. If the range tests pass (let's say they did),
we calculate a new HP according to HINDX. This calculation is Beep-a-
Sketeh's stickiest wicket. HINDX controls how much larger or smaller
HP will be when we leave this subroutine. HINDX can range from 0 - 4,
and is used to index one of the five bytes in the data table DELTA
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(i.e., DELTA is a label equivalent to the address of the first byte in
the table).

DELTA contains the two's complement form of the numbers -2, -1, 0, 1,
and 2, in that order. An HINDX of 0 causes the ADC DELTA,X statement
in line 2000 to add the two's complement form of -2, $FE, to HP.
Because of the magic of two's complement, this has the effect of
reducing HP by two. A different HINDX would index a different byte of
the table, and a different change for HP. The possible values of
HINDX are 0-4, corresponding to changes of -2, -1, 0, 1, and 2. Once
we've range tested and calculated a new HP, NEWH is done.

NEWV is identical to NEWH, only with different range testing values.

KEYPRS tests for the eight keys that are defined to mean something.
If one of the control diamond keys was pressed, we must increase the
tendancy of the line to move in the selected direction, by altering
the appropriate index either up or down. If J is pressed, for exam-
ple, we want to increase the tendency of the line to go left; going
left means smaller X values. We decrease HINDX, so that in the next
DRWLIN, we'll calculate an HP that is smaller than it was previously.
A small HINDX indexes a negative value to add to HP. The table DELTA
is only five elements long, though, so we can't let HINDX get below
zero. Pressing K increases HINDX (but no larger than 4); I decreases
VINDX; M increases VINDX.,

If one of the arrow keys was pressed, we change the variable SPEED
that controls how long BEEP lasts. There is no range testing on
SPEED—-we let it roll over.

If "C", wipe the screen clear with the Applesoft call HCLR.

If escape, we abort by returning all the way out of the program. Two
pulls of the accumulator produce a stack with the return address of
the next most recent subroutine on top; RTS now puts us back where we
started, either in the monitor, or back in TVC, depending how we got
here. This is similar to Basie's POP instruction.

Beep-a-Sketch is a whole fistful of programming tricks, no doubt about
it. Take it a subroutine at a time, top down, in trying to understand
it. Run it with the simulator at first; Use GO to run time consuming
subroutines like beep, or to skip over the mysteries of Applesoft's
hires graphies routines. These routines are one place where we are
willing to accept a gift without worrying about the particulars. They
work—just learn how to use them. Use the simulator for the tricky
steps of KEYPRSand NEWH, NEWYV,
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BEEP-A-SKETCH ASSEMBLER LISTING

1000 # BEEP & SKETCH
1001 #

1002 + BY GEORGE CONSAR
1004 #

1010 ¢
1020 ¢ I-J-K-% BIANONB CONTROLS
5838 # NOVENENT Of LINE

#
1030 # *(* CLEARS SCRELK
1060 # <ESC) ABORTS PROGRAN
?

1080 + ARROW KEYS CONTROL SPEED
1090 #

1100 +
1110 # APPLESOFT SUBROUTINES
1120 #

1130 BLIN  .E0 $F53R
1140 BPLOT  EQ $F457
1150 RPOSK .EQ $F411
1160 HCLR  JEQ $F3F2
1170 SETCOL LEQ $FEEC
1180 #6R  LEQ $FIE2

1150 +

1200 # 1/0 LOCATIONS
1210 ¥

1220 KEYRD .EQ $0000
1230 KEYSID .EQ $0010
1240 SPRR  .EQ #0030
1250 NOKIX .EQ #0052
1260 #

1270 #
0800- 4C 0D 08 1280 START JHP SKETCA
1290 #

1300 #
1310 # UARIABLES
1315 ¢

1320 #
0803- 03 1330 #INDK DA M3 CHANGE OF X
080¢4- 03 1340 VINDK DA #3 CHANGE OF ¥

1345 & PLOT A POINT M #P,0P
0805- 54 1350 ¢P .0h #90 VERTICAL POSITION
0804~ 78 1360 4P BA 1125 HORIZONTAL POSITION
0807- 81 1370 SPEED DA #8581 LENGTH, DELAY LOOP

0808~ FE FF 00
0803- 01 02 5%;3 DELTA .XS FEFFOO0102 -2,-1,0,1,2
#

1400 SEERERFEERREEERIEEEEES
1410 # ]

1420 # NAIK LOOP #
1430 ¢ #
1440 # ¢
080D- 20 24 08 1450 SKETCH JSR IMIT i
0810- 20 30 08 1460 LOOFP  JSR DRALIN  #
0813- 20 16 09 1470 JSR BEEP 4
0816- AD 00 L0 1480 LA KEYBD ¢
0819- 10 F§ 1490 BPL LoOP +
0818~ 20 10 £0 1500 BIT KEYSTR ¢
081E- 20 AB 08 1310 ISR REYPRS  *
0821- 40 10 08 1520 NP Loop *
1530 # 4
1540 FERFEFRBMEREEREEIERILE
1550 #
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1560 #
20 £2 £3 1570 I

ot2s- ISR HGR INITIALIZE BIRES GRAPRICS
7- 2 52 €0 1 BIT MONIE UL S
000 45 03 1390 u REEN ERAPALCS
082L- 20 £C F6 1600 JSR SETCOL  LOLOR = WRITE
082F- 60 1610 RIS
1620 +
1630 + DRAN LINE SUBROUTINE
1640 +
1650 # CALLULATE NEW #P AND UP
1660 ¢ IRAN LTNE T0 NEN 37, 0P
D80- i 0 08 1680 DRALIN LD) #P
0833- 40 00 169 LBy #00
0895 01 03 08 1700 L8h op
0838- 20 57 F4 1710 ISR BPLOT  LOT B POINT AT OLD KR, VP
0838~ 20 40 08 1720 JSRONENE  CALCULATE NEN JORTZONTAL POS
083E- 20 7C 08 1730 JSRNENU  CALC REW VERTICAL POS
0841- AB 06 08 1740 104 #p § = LS OF BORIIONTAL POS
0844- A2 00 1750 LY #0 X = NSB OF HORIZONTAL POS
0846- AC 05 08 1760 {3y op Y = YERTICAL POS
0849- 20 34 £5 1770 JSRBLIN  DRAN LINE
0842- 60 i s
1800 & CALCULATE NEN P
080 9 0 LS10 NS LBR 4250 NAKINOK 4. ROSITION
dg4r- 1 06 09 1830 th
0852- B0 0B 1840 58 NEURL NoT 100 16 YET
0836~ §1 06 08 1850 §TA #P ELSE, NAKE IT 250
0857- A9 01 1860 108 #1 AND CHONGE NOTION INBEX
0859- 8B 03 08 1870 STA FINDX
085L- 4t GE 08 1880 NP NENR?
+
085F- A9 02 1900 NEWRI LDA #2 RIN B POS = 1
0861- (B 06 08 1910 ChP 4P #2100 SKALL?
0864- 90 08 1920 3L NENn2
0866- 80 06 08 1930 ST 4P YES, MRE 17 2
0869- 49 03 1940 12 #3 AND'SET NEN § INDER
086} 90 03 08 1950 STA HINBX
#
086E- AD 06 08 1970 NENHZ LDA HP RANGE TESTING OVER
0871- AE 07 08 1980 LEX RINDR  READ ATH ENTRY OF BELTA TABLE
0874~ 18 1990 £Le AKD 430 1710 8P (KAY BE KEG OR POS)
0873- 70 08 08 2000 RBC DELTA R
0878- 40 06 08 2010 ST WP
0878- 60 2020 #Is
2030 +
2040 ¢ CALCULATE NEN VP
2050 #
087C- A9 B4 2060 NEWU  LDA #180  1B0<KAX ¥
07E- 11 05 08 2070 CAP 0P 100 1167
0881- B0 0B 2080 BS NENI  NOPE
2090 #
0883- 80 05 08 200 §TA 4 yES, 1T MRS
0886~ 09 01 2110 L34 #1 SET NEN VINDX
0888- 80 04 08 2120 ST VINDK
0883 4t 30 06 2130 NP NENV
#
088E- A9 02 2150 NEWV! LDA M2 25414 ¢
0890~ CD 05 08 2160 CHp v 100 SKALL?
0893- 90 08 2170 BCC NENV? v
2180 +
0895- 80 05 08 2190 ST U
0898- A9 03 2200 L0 #1 SET NEN VINDX
0894- 8B 04 08 2210 ST VINDK
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0890- AB 05 03 2230 HEHU! Lgﬂ V; -

0840~ AE 04 0

0883- 18 2250 I

08A4- 70 08 08 2260 ADC BELTA,K  SAME TRICK AS IN NEKH
0847- 88 05 08 2270 STA VP

084~ 60 2280 1163

2290 ¢
gig% + KEYPRS -- BAMDLE BUNAN’'S INPHT
#
08A8- £9 C9 2320 KEYPRS [NP #il9 1 REY?

08A8- D0 09 2330 DNE KEYZ L1
2340 #
084F- A0 04 08 2350 LBA CINDX
0882- 10 03 2360 BEQ REYL BLREABY 1ER0?
0884~ CE 0¢ 08 2370 BEC VINDX N0, BEC IT

0887- 60 2380 REY! RIS
2390 *
08B8- (9 (D 2400 REYZ (NP 40D zOKEY?

08Ba- DO 0B 2410 BNE KEYY

2420 ¢
08BC- 4D 04 08 2430 LB VIRDX
088f- €9 04 2440 CHP #04 ALREARY 42
08C1- FO 03 2430 BEQ KEVZ JES, RIS
08L3- £E 04 08 2460 IXC GINDX NO,INC IT
086~ 60 2470 REYZ RIS

2480 +
08C7- C9 CA 2490 KEY4 NP #4808 7 REY?
08C9- B0 09 %gg% BAE KEYS KEEP LOOKING

#

08CB- AE 03 08 23520 LBX RINDX
08CE- FO 03 2330 BEQ REYS ALREADY 0 27
0800- LE 03 08 2540 DEC HINDX N0, BEC 1T
0803- 60 gggg KEYS RIS

#
08D¢- [9 LB 2370 KEY6  CAP #4(B K REY?
0806- DO 0B %%%% BAE KEYS BARBLY
#

08D03- AD 03 08 2600 LBA HINRX
08BB- (9 04 2610 Che 104 A1NBR=4?
080- FO 03 2620 BEQ KEYV7 YES,RTS
08DF- EE 03 08 2630 INC RINDK Mo, INC IT.
08E2- 60 %g;% LI3/4 1}

#

2660 + NON CHECK FOR ARRON KEYS--
gg;g # (AREN'T WUNANS A LOT OF TROUBLEY)
#

08E3- [9 88 2690 KEYS (AP #3848 BACK ARROK?

08£5- B0 OF 2700 BNE KEY9
2710 #
08E7- A 07 08 2720 LDA SPEED
08EA- L9 FO 2730 CHP #3F0
08EC- FO 06 2740 BEG KEYI0
08EE- 18 2750 tie
08EF- 69 10 2760 ABC #5810
08F1- 80 07 08 2770 STA SPEED
08F4- 60 2780 KEYI0 RIS
2790 ¢
08F5- C9 95 2800 KEYS  LAP #3895 RIGHT ARRON?
08F7- DO O 2810 BHE KEYI2
08F9- AD 07 08 2820 LBA SPEER
08FC- €9 10 2830 cHe #s10
08FE- £0 06 2840 BEQ KEYIL
0900- 38 2850 SEC CLEAR BORRON!!!!
0901- £9 10 2860 SBC #5810
0903- 8B 07 08 2870 STH SPEED
0906- 60 2880 KEY1D RIS
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0907- £9 {3
0909- B0 04
0908- 20 F2
090t- 60

090f- £9 9B
0911- B0 02
0913- 68

0914- 68
0915- 60

2890 #
g;g% # TNO POSSIBILITES LEFT, { AND (<£SC)
#

2920 KEYIZ CNP #3023

2930 BNE KEVLZ
2940 JSR HCLR

2950 RIS

2960 *#

2970 KEYIZ (NP #39B

2980 BNE KEYI4
2990 PLA

3000 PLA

3010 KEYI4 RIS

3020 #

3030 #

?
ERASE SCREEN

(ESC)?

THESE PULLS
NAKE RTS GO ALL TRE NAY BACK

3040 + SANE OLB BEEP ROUTINE
3050 # BUT NITH VARIABLE DURATION VALUE

3060 ¢

3070 ¥
0916- AC 07 08 3080 BEEP  LDY SPEED
0919- AE 05 08 3090 BEEP! LDX VP

091C- (A

0910- B0 fB
091F- 20 30 (0
0922- 88

0923- D0 4
0923- 60

SYNBOL TABLE

KE

KEYPRS 088
KEYY  080¢
KEYE  08D4
KEYIO O8F4
KEYIZ 0907
BEEP 0916

3100 BEEP2
i
3120
3130
3140
3150

#PLOT 457
SETCOL FOEC
KEYSTB [010
START 0800

|3

B¥E BEEP2

BIT SPKR

BEY
BNE BEEP!
RIS

BPOSH
LIl
SPKR
RINDX
Ll

il

SKETCH 0800

DRNLIN
NENH

0830

7 084f

0897
0838
0803

09135
0910

107



16.

Where Do | Go From Here?

Buy an assembler. Quick. Now that you know what an assembler can
do, never again waste time looking up opeodes or calculating
relative branches.

A good value is the Editor-Assembler of Apple's DOS Tool Kit. Not
only do you get a serviceable text editor and assembler, they throw in
two products that no Apple programmer should be without: The High
Resolution Character Generator, and the Apple Programmer's Assistant.
If you don't have the Tool Kit already, run, don't walk, to your
nearest Apple dealer and get one. (No charge for the promo, Steves.)

The non-trivial programs of the PROG series (i.e., longer than six
bytes) were done with the SC Assembler 11, one of the earliest Apple
assemblers. Although not as powerful as the Tool Kit Assembler, it's
a good choice for beginners, because in many ways (like editing and
use of DOS) it acts like Basic. It's available from your local soft-
ware dealer, or from the publisher:

S-C Software Corporation
2331 Gus Thomasson, Suite 125
Dallas, Texas 75228

Other assemblers with good reputations are LISA from On-Line Systems
and Southwestern Data Systems' Merlin.

One of the things you get when you buy a 16K RAM card is access to
Apple's mini-assembler. It gets loaded along with integer Basic when
you boot the system master. A mini-assembler offers convenience
between raw hex and a full assembler. For programs 20-30 bytes long
nothing can beat it. Programs longer than about 50 bytes become a
real hassle to keep straight. If you couldn't justify the cost of a
RAM card on the basis of integer Basic alone, think seriously about
getting one to acquire the mini-assembler.
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Whichever assembler you decide on, don't expect to be doing great
things with your new assembler the first day you peel off the shrink
wrap. With all this power come a host of new things to learn. The
editing commands. What you do to delete, add, and change lines in
your source program. You may have to unlearn some editing commands
you learned to run a word processing program.

You'll have to learn your assembler's "pseudo ops", special mnemonics
that are not 6502 instructions, but commands for the assembly process
to follow. Such as turning the printer on for page three of a listing
and off on page five. Or determining where in memory a source program
will be assembled to run. Expect to work as hard learning to effect-
ively use an assembler as you did getting this far in machine lan-

guage.

I used my assembler to write a program but it doesn't work and I don't
know why. Programs never work the first time, especially machine
language programs. A machine language program that takes a wrong turn
can go a lot of places and do a lot of bad things in a hurry. To
debug it you can either use the time-honored Apple monitor techniques,
or The Visible Computer, or both.

THE APPLE MONITOR

While not as flashy or friendly as TVC, the Apple monitor has every-
thing you need to debug and perform simple patches to machine language
programs. It is well documented in Chapter 3 of the ARM.

Let's walk through a session of using the Apple monitor (hereinafter
referred to as the monitor). Boot your computer with an ordinary 3.3
disk. When Basic signs on tell it to get lost and put you in the
monitor with: CALL -151. The monitor prompt is the asterisk.

DOS is still active; although you can't use Basic commands (RUN, LIST)
because they don't make sense to the monitor, you may still use DOS
commands (CATALOG, BLOAD). The same cursor movement-editing tech-
niques may be used, also.

To execute a program you'll need to either write it on the spot, or
load it from disk at the address you specify with DOS's bload command.
(Consult the DOS manual for particulars.)

Once loaded, you can list it with the monitor's disassembly command,
"L" (how original). The Apple L command does not need or want a space
between the address and the "L". While this difference from TVC
syntax may take a little getting used to, be consoled by the fact that
not only do you get 20 instructions at a time instead of TVC's 5, you
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get them lightning fast. Vivid proof of the speed difference between
Basie and machine language.

You can execute your program by typing the address of the program's
entry point and a "G". Not GO, but G. This is not a buffered,
protected execution, but the real McCoy. No polite stopping when you
use invalid opcodes, or access I/O addresses that make things go
crazy. You will return to the monitor when your program executes a
final RTS.

How can you run your program in pieces so you can see where it is
going wrong? At one time all Apples had the monitor functions Step
and Trace. 1 almost hate to mention their existence, because your
Apple probably doesn't have them. They were purged in the transition
of 1979 from the "Old Monitor ROM" to the Auto-start ROM.

Don't get me wrong—-the new ROM has some good stuff in it, like
automatic boot on powerup; staying in Basic when you press reset; the
ability to stop scrolling with Ctrl-S (like a cursor, another thing
you don't appreciate until you don't have it); enhanced editing capa-
bility. But machine language programmers must make do without the
debugging commands Step (execute one instruction, display the regis-
ters and return to the monitor) and Trace (execute one step after
another).

Fortunately, BRK can be used to do the same thing. As we learned in
Chapter 15, BRK causes a jump to $FA62, a ROM routine that displays
the registers and exits to the monitor. By judiciously placing $00's
in your program you can find out if it's getting to certain points of
your program, and if so, what values the registers have achieved.
You'll end up using BRK in a monitor debugging session the same way
that the TVC simulator does in non-master mode, as a signal to stop
execution.

The monitor also has provisions for simple hex math, moving memory,
and numerous other tricks, all documented in the ARM.

BASIC AND MACHINE LANGUAGE: SHARING THE WORK

We said way back in Chapter 1 that the smart Apple programmer doesn't
use machine language unless he has to. Even then, he first tries to
get the job done with a hybrid program: Basic providing the main
framework and machine language for the part that isn't fast enough in
Basic. To accomplish sharing requires an understanding of what Basic
is and isn't.
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WHAT IS BASIC?

Applesoft is a long (real long) 6502 machine language program that
resides in ROM from $D000 - $F800. Physically, these 10K bytes are
stored in five fat 24 pin IC's just the keyboard side of the 6502.
Applesoft hogs, and rightfully so, about half of the addresses in page
zero for its variables. If it didn't, Basic programs would run even
slower. Pages 140 and 141 of the Applesoft II Basic Programming
Reference Manual (the green one), give a detailed breakdown on what
locations are used for what.

Applesoft creates an environment in which the programmer works with
concepts instead of registers and addresses. Where you can copy a
formula like X = SIN (2*Y) almost straight out of a math book, without
worrying how sines are calculated. Where you can say X =Y + Z
without considering where in memory to store variable X. Applesoft
helps to bridge the enormous gap between the English language and
standard mathematical representation, and the 8 bit, 56 instruction
world of the 6502.

If you learned one thing in this book, it's that a 6502 can no more
understand:

1000 INPUT "ENTER YOUR NAME ";A$

than it can play chess or dance the two-step. 6502 programs can be
written to do these things, but the 6502 just rolls, shifts, jumps,
adds, subtracts, ete...

A Basic program is an elaborate data table constructed and maintained
by the machine language program Applesoft. The table begins at $801
and works up. Actually, it works up from $801 and down from high
memory; you run out of space when the two parts meet. When you run a
Basic program, at no time does the 6502 JMP or JSR to any of the data
in this table. Instead Applesoft executes a series of subroutines in
ROM that first decode, ("parse") and then execute, this data.

The appendices of the Applesoft Manual contain information about how
Applesoft organizes its data; particularly how variables are stored.
In general, however, Applesoft is not as well documented as we'd like,
at least not by Apple. Trade secrets, that kind of thing.



If you read enough computer magazines, you will find articles on how
Applesoft does things, painstakingly mined by Applesoft cultists
through hours of careful disassembly. Of particular interest are the
locations of subroutines that perform functions your machine language
programs can tap. Who needs to write a floating point square root
routine or a hi-resolution line drawing routine when there's already
one there?

HOW TO ORGANIZE BASIC AND MACHINE LANGUAGE

To run a machine language subroutine from Basic, use Applesoft's CALL
instruetion. Give it the decimal version of your routine's starting
address. To call a subroutine at $280, use CALL 640. When it exe-
cutes a final RTS, Basic will pick up execution with the statement
immediately after the call.

Where do I put them? If your machine language routines are fairly
small, you can hide them in the first $D0 bytes of page 3, left vacant
for just this purpose. CALL 768 appears in so many programs it's
almost a bonafide Applesoft command. Page 2 is used by the monitor’'s
GETLN subroutine (used by Applesoft to get lines from the keyboard
during editing and INPUT statements—see page 33 of the ARM) as a
keyboard buffer; if you're not planning on using INPUT statements to
colleet answers that long, you can use the upper regions of this page
safely.

There's no room for programs in page zero, but a few spaces are left
unused by DOS, Applesoft, and the monitor, and you are welcome to them
for your important variables and pointers.

If you need more room than what's available in pages two and three,
you'll need to relocate Basic. Applesoft defaults to $801 for program
storage, but this can be changed. Loecations $87 and $68 point to the
beginning of space used for Applesoft. If you change the numbers
stored there, the next program loaded will run from the new address.

This short program sets Basic's start-of-memory pointer to $4001. This
is a good spot, because not only does it free up about 6K of space for
programs, it leaves hires graphics page 1 safely underneath the doings
of Applesoft. You still have 22K of Basic program space to work with,
and that's plenty, especially considering that you may chain back and
forth between different programs.
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100 POKE 104,64
110 POKE 16384,0
110 PRINT CHR$(4)"RUN PROGRAM"

For some reason (probably a good one), Applesoft goes crazy if it
doesn't find a zero loaded just below the start of programs.

Parameter Passing. If the machine language routine needs little or no
additional information when it is called, you can get by with POKEing
a few values into memory (naturally, at the place where the machine
language subroutine knows to look for its data.) If the application
requires a lot of data transfer between Basic and machine language,
you can have the subroutine act on the desired Applesoft variable(s)
directly. This is more difficult, as it requires a thorough under-
standing of Applesoft's variable handling.

THE END OF THE ROAD

That's it for the tutorial part of the Visible Computer. Obviously,
you haven't learned everything there is to know about machine lan-
guage. Like any discipline, learning machine language involves more
than reading one book. Here are three sure-fire ways to improve your
programming skills:

1. Read good books. Three good ones are listed below. There are good
ones I've left out, but beware of the Judging-by-the-Cover syndrome in
programming books. There are some bad ones out there.

2. Study other people's assembly language programs. The monitor
listing in the ARM is a rich (too rich, sometimes) source of ways to
get things done in machine language.

3. Give yourself projects. Pick a task that seems suited to your
capabilities (although sometimes the most innocent projects prove to
be bottomless pools of complications). Maybe you could alter Beep-a-
Sketeh to have a no-beep mode. Or to use the whole width of the
screen. When you lick one project, move to a more difficult one.

SUGGESTED READING
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Assembly Lines: The Book — A Beginner's Guide to 6502
Programming on the Apple 11

By Roger Wagner. Softalk Publishing, 11021 Magnolia Boulevard,
North Hollywood, CA 91601

A clear, friendly presentation full of small programs that do a
lot. Extensive use of monitor subroutines.

Programming a Microcomputer: 6502
By Claxton Foster. Addison-Wesley Publishing Company, Inc.
A funny little book, with some of the worst diagrams, but best
descriptions anywhere. You'll need to read between the lines of

this book somewhat, as its target vehicle is not the Apple, but
the KIM single board computer. It did a lot for me, though.

6502 Programming

by Rodnay Zaks. SYBEX, Inc.
A detailed reference guide, with extensive discussions of signed

numbers, and demonstration programs implementing various arithmetic
and sorting problems.
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Appendix A
Behind the Scenes of TVC

TVC Memory Map

§ 1l
:

e %0 os % s 90 go e+ oy

TVC (Applesoft Basic program)
$4000
Hires Page 1-Main Display
$2000
TVC Decode Tables

$1A00: TVC Machine Language Routines

DOS Tool Kit Hi-res Character Generator
$0EFF
JSR Handler
0
TVC Stack

TVC Zero Page

e8¢

80 50 g0 B¢ go ST e P eu S8 e S8 g 00 ge S8 ga SE se 00 s

1K User Memory
$0800
Display Buffer
$0400
Page 3; $3D0-$3FF = DOS and monitor vectors
$0300
GETLN buffer. Not used by TVC.
$0200
6502 Stack
$0100

$0000

6502 Zero Page—TVC uses locations $06-$09, $FE-$FF
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To protect itself from user programs in non-master mode, The Visible
Computer maintains separate zero and stack pages. You can verify this
by comparing reads of $0000-$01FF and $0C00-$0DFF.

The Visible Computer: 6502 is a machine language and Applesoft
Basic hybrid. The Basic part does 95% of the work (it would have
been almost as easy to write The Visible Computer: 6502 on the TRS-
80, a Z-80 machine). Machine language routines are used primarily
to calculate the result of arithmetic, logical, and shift
instructions. Basic is singularly unsuited for bitwise
manipulations.

THE GO COMMAND

The sequence of events in a GO command: The address of the subroutine
is poked into locations $EO7 (LSB) and $E08 (MSB). The zero page
share flag goes to $E86. This flag controls whether or not a swap is
made of the real zero page and the TVC zero page before giving your
program control. Basic then calls $E00, the Go handler:

0EO00- 20 10 OF JSR $0£10
OEO03~ 20 26 OF JSR $0E26
O0EQE~ 20 FF FF JSR BFFFF
OE09~ 20 35 O& JSR $O0E3S
OEOC~- 20 10 OF JSR $0E10
OEOF - &0 RTS

$E10 swaps the TVC and real zero pages (if the swap flag is set). $E26
loads the registers with values that were in the TVC registers. We
then call the user's program, and when it returns, save the registers,
and swap the zero pages back.

If you swap zero pages, (i.e., execute a GO with TVC in zero page
noshare mode), be aware that many monitor routines are going to go
nuts now that they have a zero page full of zeros or random data where
their variables should be. You may want to prepare a dummy zero page
for just such an occasion. On the other hand, if you share the real
zero page, and don't make the swap, you run the risk of stomping on
memory locations that Basie, DOS, and the monitor need to be healthy.
Such is the life of a machine language programmer.

There is no way to share the stack. The simulator always uses

the bogus stack page at $D00. A subroutine passed to the 6502 via the
GO command will use the real 6502 stack for all pushes, pulls, and
subroutine addresses. Any data you write to the stack page during a
GO will not appear to be there when you get back to TVC.
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DISCLAIMER

The Visible Computer: 6502 is a tool for teaching machine language
programming; a secondary function is the debugging of 6502 programs.
It is not intended to be a rigorous copy of a 6502's internal work-
ings. It does execute all 151 defined opcodes correctly, down to the
JMP (IND) bug. It may, however, arrive at identical results through
different mechanisms. The term "microstep" has a conceptual kinship
to microcode, but any similarity between the real working microcode of
a 6502 and the eight TVC microsteps is coincidental.
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Appendix B
ASCIl Character Set

HEX

BINARY
0 0000

-

0001
0010
0011
0100
0101
0110
o111
1000
1001
1010
1011
1100
1101

1110

mom YD 0w o W 0N W N

111
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000
NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
S1

Most Significant Bits

1
001
DLE
DC1
DC2
DC3
DCY
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
us

2 3
010 OMN
SPACE O
L 1
" 2
# 3
$ 4
L] 5
& 6
' 7
( 8
) 9
* :
+ H
’ <
. >
/ ?

n
100
e

- @ " m o Q

[

o = X =

5

101

N O X X < S = wn o= O "

~

6

110

~

T
m

p
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ASCI1 NOTES

Codes $00- $1F are control characters. They have no printed equiv-
alent but rather serve to "control" a device. Sending a printer ASCII
code $46 makes it print an "F". Sending it a form feed character
($0C) makes it seroll to top of form, without printing anything.

Control codes $01 through $1A can be generated by the Apple keyboard
by depressing the Control key in conjunction with one of the 26 alpha-
betic keys. Some of the important control codes have specific keys
dedicated to them; the return key generates the same code as Ctrl-M,
$0D. The following control characters are the ones most likely to be
encoutered using Apple computers:

CODE MNEMONIC OPERATION
$07 BEL Sound Bell (or beep)
$08 BS Backspace Cursor
$0A LF Line feed
s$oc FF Form feed
$0D CR Carriage return
$1B ESC Escape

The Apple left arrow key generates a backspace, code $08. The right
arrow key generates a NAK, ($15).

The Apple keyboard cannot generate the codes for lower case letters.
Normal Apple protocol is to store characters with bit 7 set.

The codes for lower case letters are the same used for upper case with
bit 6 set. The lower four bits of the ASCII code for the numbers is

equivalent to their value. If you mask off the high order four bits
with AND #$0F, you turn an ASCII value into a binary number.
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Appendix C
Monitor Commands Reference

Monitor mode is indicated by the "#" (pound sign) prompt on the last
line of the display. This indicates TVC's readiness to accept one of
the 21 commands that control it.

Monitor commands have the general form:

<cammand> [argumentl] {argument2]

You must separate a command and its arguments by one or more spaces.
You must not use spaces within a command or argument.

This list of TVC monitor commands uses the following conventions:

<address> A number valid in the current monitor base that is
greater than or equal to zero, and less than 65536.

<value> A number valid in the current base, where n = 0 256.

<{register> An on-screen register. They are: DL, DB, IR, A, S, P, X,
Y, PC, AD, RAMA, RAMD

<filename> A valid DOS file name, without embedded spaces.
"TESTFILE"; "PROGRAML"

Slashes "/" are used to indicate equivalent command parameters.

Square brackets "[]" indicate optional parameters.
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THE COMMANDS

BASE
Change display or monitor base.
Syntax: BASE <register> HEX/BIN/DEC
This command controls how numbers will be both displayed on the screen
and or interpreted when entered in the monitor. In place of <register>
one may use:

ALL change base of all registers.

MEM change base of mem display.

MON change monitor base.

Example: BASE PC BIN

STEP
Set simulator step mode.
Syntax: STEP 0/1/2/3

This function sets the stepping rate of the 6502 simulator. The
effect of each step value is summarized below.

Value Funection

3 Pause at various key points in each instruection.
Return to monitor when instruction complete.

2 No pause during instruction execution. Return
to monitor when instruction complete.

1 Like (2), but when finished with one instruetion,
immediately begin executing the next.

0 Like (1), but without display update.
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Example: STEP 3

PRINTER

Turn printer on or off.
Syntax: PRINTER ON/OFF

Determines whether or not disassembly will be sent to a printer.
Printing occurs after the simulator's execution of each instruection.
If you have selected this option, a "P" will be present on the TVC
Status Line.

If you don't have a printer, or if it is off-line, or if you have a
non-standard interface, when you use this funetion, TVC will lock up,
and you must reset to regain control.

Example: PRINTER ON

WINDOW

Set screen window.
Syntax: WINDOW OPEN/CLOSE/MEM

This command controls what is shown in the "window" area of the dis~
play (approximately the central third). There are three options:
CLOSE, the default setting, displays the entire processor-Ram combina-
tion. MEM displays 16 selected memory locations. (See RC and LC fune-
tions). The programmer's registers (PC-A-X-Y-P-S) always remain on-
screen. OPEN clears the area and leaves it blank.

Example:  WINDOW MEM
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ERASE

Erases display.
Syntax: ERASE

Clears entire display, but does not keep subsequent processes from
writing to it. Step Mode 0 will help keep it clear.

Example: ERASE

RESTORE

Restores display.

Syntax: RESTORE

Undoes the work of the ERASE command by redrawing entire screen,
according to the current window and register base settings. If issued
while in Step Mode 0, the RESTORE command will redraw the screen and
set the Step Mode to 1.

Example: RESTORE

LC/RC

Sets first address of right or left memory columns.
Syntax: LC/RC <address>

The effect of this command will not been seen unless the window is in
MEM mode.

Example: RC 900
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BSAVE

Save binary data to disk.
Syntax: BSAVE <filename> [P3/P2]

Master mode only. Saves binary data specified by the argument to the
floppy disk in drive 1 under the name <filename>. You must give it a
non-null name (i.e., something). The P3 (page three) argument saves
$DO0 bytes from $300 to $3CF. P2 saves from $200 to $2FF. If no argu-
ment is given, then BSAVE will save $400 bytes from $800-$BFF.

The standard DOS conditions must be met for this command to succeed.
Namely, the drive door closed on an initialized, un-write protected
DOS 3.3 disk with some room on it. Do not attempt to defeat the write
protection of the TVC disk.

Examples: BSAVE MAGNUMOPUS P3
BSAVEMAGNUMOPUSDATA

BLOAD

Load binary information from disk.
Syntax: BLOAD <filename> [P3/P2]

This command retrieves the programs and data stored by the BSAVE
command. As with BSAVE, the default loading location is $800, and
you are faced with the same set of DOS errors. And a special problem.
BLOAD specifies the starting address a file is to be loaded at, not
the length. If you load a file that is larger than TVC has room for,
you will overwrite areas that TVC needs for itself.

After every BLOAD, TVC does a quick check to see if anything was
overwritten. If it was, it attempts to boot to restore itself.

As a consequence of TVC's copy protection system, you will get 1/0

errors if you attempt a BLOAD from a standard DOS 3.3 disk from non
master mode, or a BLOAD from the TVC disk in master mode.
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If the window is currently in memory mode, BLOAD redisplays the win-
dow, even if it does not contain locations affected by the load. The
next instruction line is also updated.

Examples:  BLOAD MAGNUMOPUS
BLOAD HIRESTUFF P3

L

Disassemble Memory.

Syntax: [<address>] L

Disassembles 5 instructions beginning at <address>. If no address is

specified, disassembly picks up where it left off previously.

Example: 800 L
L

CALC
Turn on calculator.
Syntax: CALC
This command invokes a four function, three base, integer calculator.
The four functions are +, -, ¥, and /. As with monitor commands, the
operands and operator must be separated by spaces.
Your first keystroke has a special effect.
A Control H, B, or D (Hex, Binary, Decimal)
changes the calculator base and redisplays the

number in that base.

An ese exits back to the monitor (or to a
simulator pause, depending on how you got here).

Any other character clears the line and waits
for your input.
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To use the calculator for base conversion, enter the number you want
converted, and use one of the base conversion keystrokes.

To convert $3CF into decimal: Set calculator base to hex with Ctrl-H.
Enter 3CF return. Your entry will be redisplayed with the cursor at
the leftmost character. Enter AD to see the number expressed in deci-
mal. Or AB for binary.
To multiply $3FF by $10, enter:

3FF * 10.
If the operation produces a value greater than 65,535 or a negative
value less than -32,767 you will get a range error. Negative values
are displayed in two's complement form.
Answers are displayed with the same routines that refresh the regis-
ters, and therefore include leading zeros and, with binary numbers,
embedded spaces. You need not include leading zeros, and must not

include spaces within numbers.

Example: CALC

EDIT
‘Edit memory.
Syntax: EDIT <address>
Entering EDIT mode displays the EDIT message, followed by the selected
location and its contents. As with CALC mode, the first character
entered has special significance.

return -- Display next location.

esc -- Exit edit mode to monitor.

left arrow -- Display previous location.
Any other character enters the standard input routine. When return is
pressed, your entry is checked for validity in the current monitor
base. If valid and within range, it replaces the value formerly at

that address.

If that value is part of the instruction pointed at by the program
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counter, the next instruction window will be updated.

See the discussion of the MASTER command for a description of what
locations can be read and written to under various conditions.

Example: EDIT 800

LOAD REGISTER
Manually load register with selected value.
Syntax: <register> <value)>

If one of 16 bit registers is specified,<value> can range from 0-
65,535. Otherwise, loads greater than 255 produce range errors.

Example: PC 300

LOAD MEMORY

A shorteut to editing ram.

Syntax: <address > <value>

If <address> is a location that may be written to, <value> replaces
the current contents of <address>. See the MASTER command for more

information.

Example: AO00 FF
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BOOT

Boots disk.

Syntax: BOOT

Only way to exit TVC without eyeling power. Boots the disk in slot

six,

drive one.

Example: BOOT

MASTER

Enters or exits master mode.

Syntax: MASTER ON/OFF

Master mode is for experienced users of TVC who desire more flex-
ibility in debugging and executing programs. It is indicated by an
"M" on the status line, and has the following effects:

1.

2.

Enables the GO command.

Enables the ZP command.

Enables the BSAVE carmmand.

Enables the BLOAD cammand to read standard DOS 3.3 disks.

Allows reading and writing all memory locations, including
those that would potentially alter or even crash TVC.

Changes interpretation of the BRK instruction (Opcode 00).

In non-master mode, a BRK instruction causes the simulator

to quit execution and return to the monitor. In step mode 0 and
1, BRK will change the step mode to 2. In master mode, BRK
instructions are processed according to normal 6502 protocol.

Example: MASTER

MASTER OFF
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ZP

Set zero page mode.

Syntax: ZP SHARE/NOSHARE

Master mode only. Controls where TVC will store zero page memory
locations. If in SHARE mode, the "real" zero page used by Applesoft,
DOS, the Monitor, and TVC itself is used. In noshare mode, you get
256 locations all to yourself. Defaults to NOSHARE. SHARE mode
indicated by a Z on the monitor status line.

TVC uses zero page locations $06 through $09 and $FE-$FF. If you are
displaying zero page addresses in ZP SHARE mode, locations changed by
something other than the TVC monitor or simulator (such as Applesoft
itself) will not change onscreen automatically; you must force the
issue by executing RC/LC instructions to refresh the display.

Example: ZP SHARE

GO

Transfers program execution to the 6502.
Syntax: GO

Master mode only. If the next command is a JSR, execution of that
subroutine is passed direetly to the 6502,

Assuming the routine does no damage in the process of running, and
there is no way TVC can proteet itself in this situation, TVC will

regain control when the 6502 executes the RTS at the end of the
subroutine. This command is intended for use in quickly skipping over

long known good routines, or to test in battle some code that seems to
work correctly under TVC.

During 6502 execution, the message "6502 Mode" will appear on the
error line of the monitor status area. When control is returned, the
PC-A-X-Y-P registers, the disassembly window, and the next instruction
line are updated.

More on GO in How TVC Works.
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Example: GO

POP

Pop program counter from stack.
Syntax: POP

Simulates an RTS by loading the program counter with the stack's two
topmost bytes and incrementing the stack pointer by two. The value
placed in the PC as a result of this instruction will be meaningful
only if the top of the stack contains the return address of the
calling routine. If S contains $FE or greater, POP is ignored.

Useful as a way of backing out of slow, monotonous routines (such as a

delay loop), or in figuring out how you came to be in a section of
code.

Example: POP
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Appendix D
6502 Simulator Reference

The 6502 simulator is the portion of The Visible Computer that runs
6502 machine language. It is indicated by the absence of the monitor
prompt at the bottom of the display, and usually, a lot of on-screen
activity. The simulator interactively executes the 151 defined in-
structions of the 6502 instruction set, by animating the microsteps
necessary to perform each. Certain instructions (e.g., BRK) are
executed differently depending on the setting of the MASTER flag.
Undefined opcodes are trapped and refused.

THE MESSAGE WINDOW

If the simulator is active, the first line of the message window will
display either "FETCH" (if the fetch cycle is in progress), or the
mnemonic and addressing mode of the instruction under execution.
MICROSTEPS

The second line of the message window displays the "microstep" cur-
rently being executed. Microsteps are individual small tasks accom-
plished in sequence to complete a given instruction. The eight TVC

mierosteps are:

T: (transfer) Transfer a number from one register to another.
The source register is unchanged.

READ Read into the data latch the contents of the
address in AD.

WRITE Write the number in the data latch to memory
location AD.

AMPUTE Do an arithmetic or logical operation.
OND FLAGS Condition the flags.
CALC ADDRS Use the X or Y registers to modify AD.
INC Increment a register.

DRC Decrement a register.
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CONTROLLING THE SIMULATOR

The simulator is largely controlled by the monitor command STEP. The
affect of each of the four step values is outlined here.

Step mode 3: The slowest, most instructive mode. The simulator
pauses at each microstep. Pressing any key will
cause execution to proceed to the next microstep.
When the instruction is complete, the monitor is
entered.

Step mode 2: Pauses do not occur automatically at microsteps. A
pause may be forced by pressing any key except 1-9
and esec. The monitor is entered after the comple-
tion of a full instruetion.

Step mode 1: Like mode (2) but instead of entering the monitor
after completion of an instruetion, the next in-
struction in memory is executed. Esec will force
monitor entry after completion of the current in-
struetion.

Step mode 0: Similar to step mode (1) but without update of the
display. Only the disassembly and next instruction
areas are kept current. As with (1), you can force
monitor entry with ese. When you enter the monitor, the
programmer's registers are updated to their proper
values. Because this mode skips time consuming display
routines, it gives the greatest execution speed, approx-
imately .5 instructions per second.

SPEED CONTROL

The number keys control execution speed. 1 produces the fastest
execution, 9 the slowest. They are ignored in step mode 0.

You can force the simulator to pause by typing any key except
escape. Once in pause mode, pressing any key except C resumes

execution. Pressing C puts TVC in calculator mode, the only
monitor function available from within the simulator. Exiting
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the calculator returns you to the pause state.
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Appendix E
Error Messages

GOMAND

NOT JSR

NOT MASTER

DIV BY 0

BAD OPOODE

DISK FULL

NO FILE

FILE LXK

W.PROTECT

1/0

The command interpreter cannot understand your
instruction. Try again, and wateh your syntax.

TVC is unable to digest a numeric value you have
fed it. Make sure you use values valid in the
selected base, without embedded spaces.

You have entered a number too large for the
situation. For example, trying to load the X
register with $101,

A GO command has been issued without JSR as the
next instruction.

You have tried to execute a command only avail-
able under master mode, such as JSR or ZP.

The calculator was told to divide by zero.

The simulator was given one of the 104 undefined
6502 instructions.

You are trying to BSAVE a file to a disk that has
no room for it. Use another disk.

File not found. Check your spelling, and
remember, no embedded spaces.

You tried to BSAVE a file with the same name as a
locked file.

You attempted a BSAVE on a write protected disk.
Note: do not attempt to defeat the write-pro-
tection of the TVC disk. Use an ordinary initial-
ized DOS 3.3 diskette to save your files.

Covers a multitude of sins related to disk oper-
ations, including: Drive doors left open, disks
inserted upside down or not at all, uninitialized
diskettes (or initialized by something other than
DOS 3.3), and real problems like faulty or
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glitehed disks.

As a consequence of TVC's copy protection system,
you will get I/O errors whenever you execute a
BLOAD from a DOS 3.3 disk if you are not in
master mode, or if you try to BLOAD from the TVC
disk in master mode.

MISMATCH Type mismatch error. Happens when you try to
BLOAD something besides a binary file, like an
Applesoft program, or if you BSAVE a file under a
name currently in use by a non-binary file.

ER XXXX-XX An internal error has occurred in TVC. This
error is caused by either a bug in the program or
something your activities in master mode have
done to damage it. If you feel the first case is
likely we'd like to know about it. Drop us a
letter listing the exaet error message and a
thorough description of what you were doing when
you got the error. You must reboot to recover from
an internal error.

RESET AND CONTROL C

Never press Control C. This accomplishes nothing useful, and may
cause TVC to funetion improperly afterwards.

Almost never press reset. Use it only as a last resort in situa-
tions such as when you have crashed the system by GOing a bugged
subroutine, or trying to send disassembly to a non-existent
printer. If you do press either of these keys, the display is
redrawn and you are placed in the monitor.
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Appendix F
6502 Reference Material

PROGRAMMING MODEL

7 []
7 0
7 )]

PCH

<

PR | L VOIT x>

<pp--s

0
PCL ]  PROGRAM cOUNTER
0
] stack poinTER

Nivis|DlI|Z|C PROCESSOR STATUS REGISTER, "P"

J S— CARRY
ZERO
INTERRUPT DISABLE

DECIMAL MOCE
BREAK COMMAND
OVERFLOW
NEGATIVE

THE FOLLOWING NOTATION
APPLIES TO THIS SUMMARY:

Accumulator FIGURE 1. ASL-SHIFT LEFT ONE BIT OPERATION
Index Registers

Borow [Tl T o)

Processor Status Register

Stack Pointer FIGURE 2. ROTATE ONE BIT LEF¥ (MEMORY
Change OR ACCUMULATOR}
No Change

Add M OR A
Logical AND ' | ] .
Subtract 7 | 8 I 5 ] 4 3 2 1 0 c

Logicat Exclusive Or
Transter From Stack
Trenster To Stack FIGURE 3
Transter To

Transter To
Logicat OR 7[6[5[4'3[2'1 [}

Program Counter

Program Counter High
Program Counter Low
Operand

immediate Addressing Mode
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Assembly HEX '
Nams DOperation Addressing Languags op Mo, | “P" Status Aesg.
Oescription Mode Form Code |Byies| NICIDV

ADC
Add memory to A-M-C —AC | Immediate ADC #Oper 63 2 V-V
accumulator with carry Zero Page ADC Oper 65 2

Zero Page.X ADC Oper.X 75 2

Absolute ADC  Oper 60 3

Absolute X ADC  Oper.X D 3

Absoiute.Y ADC Oper.Y 79 3

(indirect.X) ADC  (Oper.X) 61 2

(Indirect).Y ADC  (Oper).Y n 2
AND
“AND" memory with AAM —A Immediate AND #0per 2 2 Y
accumulator Zero Page AND  Oper 25 2

Zero Page.X AND Oper.X 35 2

Absolute AND Oper 2D 3

Absolute X AND  Oper,X kit] 3

Absolute Y AND OperY 39 3

(Indirect.X} AND  (Oper.X) 2 ?

(Indirect).Y AND {Oper).Y k)l 2
ASL
Shift left one bit (See Figure 1) | Accumulator | ASL A 0A 1 VVV-——
(Memory or Accumulator) 2ero Page ASL Oper 06 2

Zero Page.X | ASL OperX 16 2

Absolute ASL Oper 0F 3

Absolute X ASL Oper.X 1E 3
BCC
Branch on carry clear Branch on C=0 | Refative BCC Oper 90 2| —
8Ccs
Branch on carry set Branch on C=1 [ Relative BCS Oper 80 2§ e
BEQ
Branch on result zero Branch on Z=1 | Relative BEQ Oper FO 2| -
BIT
Test bits in memory AAM. M; =N, | Zero Page BIT* Oper 1] 2 My/———Mg
with Mg~V Absolute BIT* Oper € 3
BMI
Branch on result minus Branch on N=1 [ Relative BMt Oper 30 2 —————
BNE
Branch on result not zero | Branch on Z=0 | Relative BNE Oper 00 2| -
BPL
Branch on result plus Branch on N=0 | Relative BPL oper 10 2 | -
BRK
Force Break Forced Implied BRK” 00 1 ==

Intesrupt
PC24PH

BVC
Branch on overtlow clear | Branch on V=0 | Relative BVC Oper 50 2| -

*

result of A AND M is 0 then Z=1, otherwise Z=0.

* A BRK cannot be masked by setting I.

Bits 6 and 7 are transferred to the status register.
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Assembly WEX ]
Name Bperation Addressing Language oP No. | "P” Stalug Reg.
Description Mode Form Code | Bytas NZcioy
BVS
Branch an overflow set Branch on V=1 | Relative BVS Oper 70 2| -———
CLe
Clear carry flag 0—~C Imptied CcLC 18 1 ———(—=
CLD
Clear decimal mode 0—D implied CLD D8 1 —Q-———
cL
0 -t Implied cLt 58 1 ——0--
CLv
Clear overflow flag 0~V implied CLv B8 1 0~ ————
CMp
Compare memary and A—M Immediate CMP #0per o] 2 vV
accumulator Zero Page CMP  Oper cs 2
Zero Page, X | CMP  Oper X 0s 2
Absolute CMP  Oper co 3
Absolute.X CMP Oper X ] 3
Absolute.Y CMP  Oper.Y 09 3
(Indirect.X) CMP  (Oper.X) c1 2
{indirect).Y CMP  {Opern.Y D1 2
CPX
Compare memory and X—M immediate CPX #Oper E0 2 V-
index X Zero Page CPX  Oper E4 2
Absolute CPX Oper EC 3
CPY
Compare memory and Y—M Immediate CPY «#0per 0 2 VNV ——
index Y Zero Page CPY Oper (o] 2
Absolute CPY  Oper cC 3
DEC
Decrement memory M—1—M Zero Page DEC Oper cé 2 e
by one Zero Page X DEC Oper.X D6 2
Absolute DEC Oper Ct 3
Absolute X DEC Oper.X DE 3
DEX
Decrement index X X—1-—X implied DEX CA 1 Vv -
by one
DEY
Decrement index Y Y—1-Y Impiied DEY 88 1 VvV
by one
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| ‘ " Assembly HEX
Name | Operation Addressing Language 0P No. | "P" Slatus Reg
Description | ! Mode Form Code Bytes| NZCIDV
EOR I \
“Exclusive-0r' memory AVM <A immediate EOR #Oper 49 2 W -
with accumulator ! Zero Page EOR  Oper 45 2
: Zero Page X | EOR OperX 85 2
i Absolute EOR Oper 40 3
| Absolute. X | EOR Oper.X 50 3
! Absotute.Y EOR OperY 59 3
{Indirect.X) EOR  (Oper.X) 41 2
(Indirect).Y EOR {QOper).Y 51 2
INC
Increment memory M+1-+M Zero Page INC Oper €6 2 B
by one Zero Page X | INC Oper.X F6 2
Absolute INC Oper £E 3
Absolute.X INC Oper.X FE 3
INX
fncrement index X by one [ X + 1 =X Implied NX EB 1 -
INY
Increment index Y by one (Y + 1 —Y Implied INY c8 1 VV————
JMP
Jump to new location {PC+1) —PCL | Absolute JMP Oper 4AC 3| -
{PC+2} —=PCH | Indirect JMP (Oper) 6C 3
JSR
Jump to new location PC-2¢ Absolute JSR Oper 20 3 ——
saving return address (PC+1) —~PCL
(PC+2) ~PCH
LDA
Lead accumulator M A Immediate LDA #0per A9 2 V==
with memory Zero Page LDA Oper AS 2
Zero Page X | LDA Oper X BS 2
Absolute LDA Oper AD 3
Absolute. X LDA  Oper.X 8D 3
Absolute.Y LDA Oper.Y 89 3
(Indirect.X) LDA (Oper.X) Al 2
(Indirect).Y LDA (Oper).Y B1 2
LDX
Load index X M X immediate LDX #Oper A2 2 V===
with memory Zero Page L0X  Oper A6 2
Zero PageY LDX Oper.Y 86 2
Absolute LDX  Oper AE 3
Absolute.Y LDX Oper.Y BE 3
LDY
Load index Y M —Y Immediate LDY #0per AD 2 VvV
with memory Zero Page LDY Oper A4 2
Zero Page X | LDY OperX 84 2
Absolute LDY Oper AC 3
Absolute.X LDY  Oper.X BC 3
LBA
Load accumulatar M A Immediate LDA #Oper A9 2 V=
with memory Zero Page LDA Oper AS 2
Zero Page.X | LDA OperX BS 2
Absolute LDA Oper AD 3
Absolute X LDA Oper.X 8D 3
Absolute.Y LDA OperY B9 3
{Indirect. X} LDA  (Oper.X) Al 2
(indirect).Y LDA (Oper)Y B1 2
LbX
Load index X_ M X Immediate LDX #Oper A2 2 A
with memory Zero Page LDX Oper A6 2
Zero Page.Y | LDX OperY 86 2
Absolute LDX Oper AE 3
Absolute.Y LDX OperY BE 3
LDY
Load index ¥ MY Immediate LDY #0per A0 2 N et
with memory Zero Page LDY Oper Ad 2
Zero Page.X | LDY OperX B4 2
Absolute LOY Oper AC 3
Absolute X LDY Oper.X 8C 3




Aszambly HREX
Nams Oparatian Addressing Languags oP No. | “P" Status Aeg.
Description Mode Feorm Cods {Byles| NZICIDV

LSR
Shitt right one bit (See Figure 1) | Accumulator | LSA A 4A 1 0vVvV-——~
(memory or accumulator) Zero Page LSR Oper 46 2

Zero Page X | LSR OperX 56 2

Absolute LSR Oper 4E 3

Absolute X LSR Oper.X SE 3
NOP
No operation No Operation | implied NOP EA 1 [ -
ORA
“OR™ memory with AVM <A Immediate ORA Oper 1] 2| VW
accumulator Zero Page ORA Oper 05 2

Zero Page.X | ORA Oper.X 15 2

Absolute _ ORA  Oper 00 3

Absolute X ORA  Oper.X 10 3

Absolute.Y ORA  Qper.Y 19 3

(Indirect X} ORA  (Oper.X) 01 2

(Indirect).Y ORA {Oper).Y " 2
PHA
Push accumutator Ay Implied PHA 48 1| e
on stack
PHP
Push pracessor status P Implied PHP 08 1) ——
on stack
PLA
Pult accumulator At Implied PLA 68 1 O
trom stack
PLP
Puil processor status [ X} Implied PLP 28 1 From Stack
from stack
ROL
Rotate one bit left (See Figure 2) | Accumulator | ROL A 2A 1 VVV——
{memory or accumulalar) Zero Page ROL Oper % 2

Zero Page,X | RAOL Oper.X k3 2

Absolute ROL Oper 2% 3

Absolute, X ROL Oper X 3E 3
ROR
Rotate one bit right (See Figure 3) | Accumulator | ROR A BA 1 VVV-——
{memory or accumulator) Zero Page ROR Oper 66 H

Zero Page.X | ROR Oper.X 76 2

Absolute ROR Oper 6E 3

Absolute X ROR Oper X TE 3
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Assembly HEX
Nams Dperation Addressing Language oP No. [“F" Status Reg.
Dascription Mods Form Cods |Bytes| NICIDYV
RTI
Return from interrupt P{PCH Imphied AT 4 1 From Stack
RTS
Return from subroutine PC#. PC+1 —PC| Implied RTS 1| ————
SBC
Subtract memory from A-M-C—~A |Immediate SBC #0per E9 2 VYV
accumutator with borrow Zero Page SBC Oper ES 2
Zero Page X SBC OperX F5 2
Absolute SBC Oper ED 3
Absolute. X S8C Oper.X FD 3
Absolute.Y SBC Oper.Y F8 3
{Indirect.X) SBC  (Oper.X) 3} 2
(Indirect).Y SBC (Oper).Y F1 2
SEC
Set carry flag 1-=C Implied SEC 38 1 —————
SED
Set decimal mode 1D Implied SED ] 1 ————1-
SEl
Set interrupt disable 11| Implied SEl 78 1 ——y
status
STA
Store accumulator A—-—M Zeto Page STA Oper 85 2
in memory Zero Page.X | STA OperX 95 2
Absolute STA Oper 8D 3
Absolute X STA Oper X 20 3
Absplute,Y STA OperY 99 3
(Indirect X) STA (Cper.X) 81 2
(indirect),Y STA (Open).Y 91 2
STX
Store index X in memory | X —M Zero Page STX Oper 86 2| -
Zero Page.Y STX Oper,Y 96 2
Absolute STX Oper 3
STY
Store index Y in memory | Y —M Zero Page STY Oper 84 2| —
Zero Page X STY Oper.X 94 2
Absolute STY Oper 8C 3
TAX
Transfer accumulator A —X Implied TAX AA 1 Vo
10 index X
TAY
Transfer accumulator A=Y Implied TAY A8 1 V-
fo index Y
T8X
Transfer stack pointer S =X Implied T8X BA 1 N
to index X
TXA
Transfer index X XA Imphied TXA BA 1 N
10
TXS
Transfer index X to X -8 Implied ™8 9A 1| ———
stack pointer
TYA
Transfer index Y YA Implied TYA 98 1 YV
to accumulator

This material reprinted from the Apple II Reference Manual
through the courtesy of Apple Computer Inc.
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