Apple 2 Computer Information ¢ Document 047

s i
S Apple 2 Computer Technical Information S

Apple]| Computer
Family Information

/l/a//e/ S BAsIC JZ%

/%é“{ o ’.’/z‘ g’\‘/o/’a /Z%A;d /4 /4/’/’4‘]0#
Me sz tony — Apple Orebard- S pring (14

Document # 4?

Ex Libris David T. Craig

“DTCA2DOC-047-00.PICT” 148 KB 2001-03-29 dpi: 300h x 300v pix: 2065h x 2784v
| Source: David T Craig Page 0001 of 0004 |

Apple 2 Computer Information ¢ Document 047

SPRING 1981

APPLE ORCHARD

PAGE 17

NOTES ON HI-RES GRAPHICS
ROUTINES IN APPLESOFT

Checking out the entry points given
by J. Crossley in the article “APPLE-
SOFT INTERNAL ENTRYPOINTS” in
the March/April 1980 Apple Or-
chard, | found the given entry
points were 4 bytes off from the
given ones in our APPLE Il Plus. Fur-
thermore, after checking out the
routines in more detail, | thought to
share my experiments with other
APPLE 1l Plus owners interested in
machine language programming. In
the first section, | describe the
essential data storage area, in the
second | give the entry points of the
subroutines somewhat more detail-
ed than in the above article, and in
the last section | give some listings
of instructions following the entry
points so that one could identify it
for different versions of Applesoft.

1. DATA STRUCTURE
There are four data in five mem-
ory locations which specify a point
on the high resolution screen
(whether the screen is displayed or
not, is irrelevant). | call these data
collectively as external cursor data.
The five memory locations, and

their contents are as follows:

$E0: Low order bits of the hori-
zontal screen coordinate

$E1: High order bit of the hori-
zontal screen coordinate

$E2: Vertical screen coordinate

$E4: Color masking word from
the color table ($F6F6-
$F6FD)

$E6: Page indicator ($20 for
Page 1, $40 for Page 2)

by C. K. Mesztenyi
Washington Apple Pi

1 have called the above set of data
as external cursor data since the ac-
tual point plot is performed by the
following five instructions:

LDA $1C
EOR ($26),Y
AND $30
EOR ($26),Y
STA ($26),Y

which uses data located at $1C,
$26, $27, register Y and $30. The
contents of register Y are always
picked up from location $E5 prior
to the above instructions, thus we
may call the data in the following
five locations as internal cursor
data:

$1C: The color masking byte
shifted for odd address and
none black or white, un-
changed otherwise.

$26, $27: (Low, high order) ad-
dress of the byte corre-
sponding to the page, verti-
cal coordinate and leftmost
seven points of the screen.

$E5 (register Y): The integer
part of the horizontal
screen coordinate divided
by 7.

$30: The bit position taken from
Bit Position Table corre-
sponding to the remainder
of the horizontal coordi-
nate divided by 7.

“DTCA2DOC-047-01.PICT” 242 KB 2001-03-29 dpi: 300h x 300V pix: 2232h x 3093v

These two cursor data (external
and internal) are rquivalent in the
sense that given one, the other can
be derived from it. There would be
no need to make any distinction if
they would correspond to each
other all the time, but unfortu-
nately, this is not always the case,
e.g. the following sequence of
BASIC instructions:

HCOLOR=1

HPLOT 0,0 TO 10,10
HCOLOR =2

HPLOT TO 10,50

plots two lines, (0,0) to (10,10) and
(10,10) to (10,50), both with color
1, i.e. HCOLOR=2 has no effect.
Actually it resets the color code in
$E4 but it does not change $1C, and
the statement HPLOT TO picks up
whatever was left in $1C.

A machine language programmer
can write his/her own graphics rou-
tines which takes time and uses
sometimes much-needed memory
space. Thus using the available pro-
grams in Applesoft ROM can be ad-
vantageous. If execution time is also
important, as in the case of anima-
tion, then one should concentrate
only on the internal cursor data,
and modify the external cursor only
when it is necessary. The entry
points INTX and INTY, provide the
basic routines for incremental plot-
ting which are not available directly
in BASIC. Also, modifying the exter-
nal cursor coordinates allows the
use of HLINE with off-set.

| Source: David T Craig

Page 0002 of 0004 |

Apple 2 Computer Information ¢ Document 047

PAGE 18

2. ENTRY POINTS IN APPLESOFT

Page and Color:

HGR2 ($F3D8): Displays page 2
with all graphics mode,
sets $E6 to $40, clears
page 2 (black) and sets
$1C to zero (black 1).

HGR ($F3E2): Displays page 1 in
mixed mode, sets $E6 to
$20, clears page 1 (black)
and sets $1C to zero
(black 1).

BKGND ($F3F4): Clears the page
defined by $E6 to the
color defined by the con-
tents of register A, which
should be one from the
Color Masking Table. Also
stores register A in $1C.

HCOLOR ($F6F0): Assumes regis-
ter X contains the color
index (0 to 7). The rou-
tine picks up the appro-
priate color code from
the Color Masking Table
and stores it in $E4.

Positioning Entries:

HPOSN ($F411): Assumes the in-
put upon entry in the re-
gisters as:

register X =low order bits
of the horizontal screen
coordinate,

register Y = high order bit
of the horizontal screen
coordinate,

register A=vertical screen
coordinate. ’

The routine stores the re-
gisters in $EO, $E1 and
$E2. Then, using $E6, sets
$26, $27, $30 and $E5
together with register Y,
and sets $1C to the con-
tents of $E4. Thus this
routine makes the internal
curser equivalent to the
external one.

INTX ($F465): rodifies the internal
cursor data in $1C, $ES5,
registe: Y and $30 so
that it corresponds to
incrementing/decre-
menting the horizontal

APPLE ORCHARD

screen coordinate X by
one. Upon entry, if the
N-flag is zero (positive)
then it increments; if N
is set (negative) then it
decrements. The modi-
fication has a wrap
around feature, i.e., in-
crementing/decrement-
ing at the extreme sides
of the screen defined
by the internal cursor
causes it to come back
on the other side. The
routine assumes that re-
gister Y corresponds to
$E5 upon entry, and
leaves the routine cor-
rectly modified if
necessary.

Upon testing the N-flag
the routine jumps to
DECRX or INCRX.

DECRX ($F467): The routine modi-
fies the internal cursor
data by decrementing
the horizontal screen
coordinate by 1 (see
INTX).

INCRX ($F48A): The routine modi-
fies the internal cursor
data by incrementing
the horizontal screen
coordinate by 1 (see
INTX).

INTY ($F4D3): Modifies the inter-
nal cursor data in $26,
$27, so that it corre-
sponds to incrementing/
decrementing the verti-
cal screen coordinate
by one. Upon entry,
the N-flag is checked,
and if it is set (negative)
then goes to INCRY to
increment by one, if it
is not set (positive) then
goes to DECRY to de-
crement by one. Note
that the sign convention
is used opposite of
INTX. These entries also
have the wraparound
features, i.e. if the in-
crementation/decre-
mentation causes the
cursor to leave the
screen on the bottom/
top, then it comes back
on the top/bottom.

SPRING 1981

DECRY ($F4D5): The routine modi-
fies the internal cursor
data by decrementing the
vertical screen coordinate
by 1 (see INTY).

INCRY ($F504): The routine modi-
fies the internal cursor
data by incrementing the
vertical coordinate by 1
(see INTY).

IPOSN ($F5CB): Sets the external
cursor data in $EO, $E1,
$E2 equivalent to the in-
ternal cursor coordinate
data.

Plotting Entries:

HPLOT ($F457): Assumes input data
in the registers as
HPOSN:

register X: low order bits
of horizontal screen
coordinate,

register Y: high order bit
of horizontal screen
coordinate,

register A: vertical screen
coordinate.

The routine calls HPOSN

with the above data, then

goes to PLOT.

PLOT ($F45A): The routine exe-
cutes the five instructions
listed in the beginning of
the article which plots a
point using the internal
cursor data. If this entry is
used directly, then the
user should make sure
that register Y contains
the data from $E5.

HLINE ($F53A): The routine as-
sumes input in the
registers:

register A: low order bits
of horizontal screen
coordinate,

register X: high order bit
of horizontal screen
coordinate,

register Y: vertical screen
coordinate.

(Note that it is in different
order than (HPOSN.)

“DTCA2DOC-047-02.PICT” 233 KB 2001-03-29 dpi: 300h x 300V pix: 2137h x 2963v

| Source: David T Craig

Page 0003 of 0004 |

Apple 2 Computer Information ¢ Document 047

SPRING 1981

The routine draws a line.
from the internal cursor
position to the point de-
fined by the input. Upon
exit, it leaves the external
cursor data corresponding
to the input, the internal
cursor data corresponding
to the last plot point of
the line. If the internal
and external cursor data
were not equivalent, then
an off-set occurs. This can
be visualized as follows:
Draw a line segment
from the external cursor
coordinates to the input
coordinates. Now move
this line segment parallel
to itself so that the end-
point at the external cur-
sor position gets into the
internal cursor position.
This is the actual line seg-
ment which will be
drawn. If it gets outside of
the screen, then a wrap-
around occurs, i.e. it
comes back on the oppo-
site side of the screen.

APPENDIX
The first few instructions are listed
for each entry point so that one
could identify them using the Moni-
tor list feature.

Bit Position Table:

$F5B2: $81=10000001
$F5B3: $82=10000010
$F5B4: $84=10000100
$F5B5: $88=10001000
$F5B6: $90=10010000
$F5B7: $A0=10100000
$F5B8: $CO=11000000

Color Masking Table:

$F6F6: $00=00000000 (black I)
$F6F7: $2A=00101010
$F6F8: $55=01010101
$F6F9: $7F=01111111 (white I)
$F6FA: $80=10000000 (black II)
$F6FB: $AA=10101010
$F6FC: $D5=11010101
$F6FD: $FF=11111111 (white 11)

BIT $CO055
BIT $C052
LDA #$40
BNE $F3EA

HGR2: $F3D8:

APPLE ORCHARD
HGR: $F3E2: LDA #$20
BIT $C054
BIT $C053
STA $E6

$F3F4: STA $1C
LDA $E6
STA $1B

LDY $#00

BK'G.r'\ID:

HCOLOR: $F6F0: LDA $F6F6,X
STA $E4

RTS

HPOSN: $F411: STA $E2
STX $EO
STY $E1
PHA

AND #3$C0

STA $26

LDA $26
ASL

LDA $27
AND #%03
ROL

ORA $26

IPOSN: $F5CB:

IN.T.X.: $F465:
DECRX: $F467:

BPL $F48A
LDA $30
LSR

BCS $F471
EOR #$C0
INCRX: $F48A: LDA $30
ASL

EOR #$80
BMI $F46E

INTY: $F4D3: BMI $F505
DECRY: $F4D5: CLC
LDA $27
BIT $F5B9
PNE $F4FF
INCRY: $F505: CLC
LDA $27
ADC #$04
BIT $F5B9

HPLOT: $F457: JSR $F411
LDA $1C
EOR ($26),Y
AND $30
EOR ($26),Y
STA ($26),Y
RTS
$F53A: PHA

SEC

SPC $EO

PHA

TXA

SPC $E1

HLINE:

“DTCA2DOC-047-03.PICT” 236 KB 2001-03-29 dpi: 300h x 300V pix: 2208h x 2968v

PAGE 19

AN APPLE i QUICKIE

by Gordon Stallings
Tulsa Computer Society

Here is a simple program which
has been in use by the TCS Apple
Users for the past year, and which
should be more wiciely known:

To copy a cassette tape from one
recorder to another, you can use
the Apple Il as an intermediary to
restore the signal levels.

Recorder #1| “mon”

(playback)

‘in Apple 11 “out”

“mic” Recorder #2
(record)

Put this program into the Apple II:

0000 20 FD FC JSR S$FCFD
0003 AD 20 CO LDA $C020
0006 4C 00 00 JMP $0000

Start the program: *0G

As long as this program is run-
ning, any signal received from re-
corder #1 will be sent to recorder
#2. For best results, the following
tips should be observed:

1. Be sure that Recorder #1 is set
up to reliably read the tape which
you are wanting to copy-volume,
tone, and head alignment must be
set so that the Apple can read the
tape.

2. Recorder #2 should have cor-
rect head alignment so that the new
tape will be compatible with other
machines.

HOW IT WORKS

The JSR calls subroutine $FCFD in
the Monitor ROM, which watches
the cassette input port waiting for a
change of state, which indicates a
zero-crossing on the playback tape.
When the transition occurs, the
subroutine RETURNS. The LDA
$C020 toggles the cassette output
port, recording a transition on the
new tape. The JMP closes a pro-
gram loop which can only be
broken by RESET.

| Source: David T Craig

Page 0004 of 0004 |

