Micol
Advanced
BASI(C-

Structured Compiled
Language System
for

the Apple Ile and Apple Ilc

Version 4.0

Micol
Advanced
BASIC-

Structured Compiled
Language System
for
the Apple Ile and Apple Ilc

Version 4.0

Micol Systems, 9 Lynch Road, Willowdale, Ontario M2J 2V6, Canada

Introduction

Limit Of Liability

While every precaution has been taken to ensure the correctness of the software and
its accompanying manual, Micol Systems Inc. cannot assume any responsibility or
liability for any damage or loss caused by our software. It is the responsibility of the
user to make the necessary backups for the data and programs.

Apple Computer, Inc. makes no warranties, either express or implied,
regarding the enclosed computer software package, its merchantability or its
fitness for each particular purpose. The exclusion of implied warranties is not
permitted by some states. The above exclusion may not apply to you. This
warranty provides you with specific legal rights. There may be other rights
that you may have which vary from state to state.

ProDOS 8 is a copyrighted program of Apple Computer, Inc. licensed to
Micol Systems Inc. to distribute for use only in combination with Micol
Advanced BASIC (e/c version). Apple software shall not be copied onto another
diskette (except for archival purposes) or into memory unless as part of the
execution of Micol Advanced BASIC. When Micol Advanced BASIC (e/c
version) has completed execution, Apple software shall not be used in any
other program.

Product Revision

Micol Systems Inc. reserves the right to make improvements to this software and
manual at any time without notice.

The text file INFO.DOC on the reverse side of the System Disk contains the _latest
information about this product which could not be included in the manual at the time of
publication. Be sure to read this file into the editor for up-to-date information.

Copyright Notice

This technical manual and the related software contained on the diskettes are
copyrighted materials. All rights reserved.

Duplication of any of the above described materials for other than personal use of the
purchaser, without express written permission of Micol Systems Inc., is a violation of.the
copyright laws of the United States and Canada, and is subject to both civil and criminal
prosecution.

Apple, the Apple logo, Apple Ile, Apple Ilc, Apple IIGS, AppleShare, ImageW.rifter,
LaserWriter, Apple 3.5, Finder, ProDOS 8, GS/OS, QuickDraw, AppleDisk and UniDisk
are trademarks of Apple Computer, Inc.

Micol BASIC, Micol Advanced BASIC, Micol Advanced Utilities, Desktop
Construction Set, System M2000, and Micol Macro are trademarks of Micol Systems Inc.

ii Introduction

Micol BASIC, Micol Advanced BASIC, the Micol Advanced Utilities, the Desk}fop
Construction Set, System M2000, and Micol Macro are copyrighted programs of Micol
Systems Inc.

Micol Systems Inc. is an independent software developer.

Copyright ©1989-93 by Micol Systems Inc.

Published in Canada.

ISBN 0-921270-10-0

Software and Documentation: Micol Systems Inc., Willowdale, Ontario
FIRST EDITION, July 1989.

SECOND EDITION, revised, corrected, and enlarged.

First printing, March, 1992
Fourth printing, November, 1992

Micol Advanced BASIC

Table of Contents iii

Table of Contents
Introduction
Limit Of Liability....ccveeeieiieeiiecieciicceiececreeerre e s e essecove e s i
Product RevISIONc.ccveevieeeiecrieciecriecrieereeeteeerresraesesesssesseeseesssessneesne i
CoPYTIZht NOICE ...covvivieriierieiieceeesiee ettt et sae et eassr e s eane i
Table Of CONtENtS......coiiiiieiieiciceet et reervesebesseeseessnee iii
Part One: Overview of the Language
Chapter One: General RevieW......c..eceecssssecssesnene weesseessesnnsssssanacs 1
Comments on the Second Editionc..coevveevieeirieiriiieirieceeieeiesveorenae 1
OVEIVIEW ..vveivrenrieeeecete et rre et seteebeestesbeesbestsessseesbesbsessaenbesseenseensens 1
Some Advantages of the Languagecccceveevvevvevienvieneeiencnneieseeinens 1
The Components of the Language Systemccooeeeeevuenrieenieneeneas 2
1. The Command Shell............ et eteeeerreeeneaeearbeaaerreaesrreeesibtaeernaeanss 2
2. The Source Code EQitOrccoevvenrieiieriiecriesrecsreeseeeeee e s 2
3. The Full-featured Compiler and Linkercccccoceenveienenccirienne 3
4. Full-featured Structured BASIC Languageccccccvevervrrereences 3
How this Manual is Organized.........cccuvvvviienveeireiveecrecenrienereerveeenens 4
The Micol Advanced BASIC System DisK......cccooeeveviciiiicveneenennennens 4
What You Need t0 KNOW....ooovooviiviiiniiiiiciieecee e svae s ssen e 5
Hardware Requirements............covoeveiiieiiiiccie e s eseeseeeene 5
Suggested Additional Hardwareccoccoovvviiveiiinvecnneienreenreensvesnns 6
How Micol Advanced BASIC Loadscceeuvieveereeirienrienrienieeniceseeneenns 6
Using Micol Advanced BASIC on a Single Drive System 6
Using Micol Advanced BASIC on a 3.5inch Driveccceceevveenieennnne 7
Using Micol Advanced BASIC from a RAM Disk ...cccooovvveevveeiennenen. 7
Setting up Micol Advanced BASIC on a Hard Drive........cccceevevennne. 8
If You Need ASSISLANICEooveevuvieeiiiiicriie et ere e esreessesseennnen 8
Compatibility OVEIVIEWc.cevevrierieriieeereerienresteereereesreereseesseesessesseone 9
ADDLESOft BASIC.......ooovieeeceeeeeetecie et erveereeesresrsesraseseesnasens 9
Micol Advanced BASIC for the Apple IIGSccccceevvvinennvennne 9
Earlier Versions of MAB for the Apple ITe/c......ccocevrreieecccencnnnnnn 10
Syntactic Symbols Used in this Manual........cccoceeveiiinivenrinienrenennens 10
Chapter Two: Getting Started.... v . . § |
A Brief History of BASIC........oooioiiecieeerecvtee et eese e evaenes 11
Writing Your First Program in Micol Advanced BASIC.................... 11
Entering Program Examples.........ccccecnienienceiienineninesieseeseesaeseeneens 13
AcCKnOW]edgments........covevvvviveviviieceeeee bt et ee 14

Introduction

iv Table of Contents

Part Two: The Programming Environment

Chapter One: The Command Shell...........cou..... cesssnesessssnssnsssassne 15
OVEIVIEW ..ottt ee sttt ne e e 15
Line Editing Commandsccueeveouieeeeiereeeeeeeeeeeeeeeeeeeereeeeeeeee e 15

Up and Down Arrow Keys (Td) ..o et 15
Left and Right Arrow Keys (—¢=) ...ocvoriieieeeeeeeriieeee oo evensenns 15
The Return KeYcouooviviieiiiieeeeee e 15
The Delete KeY ...c.oovvvvieiieieieceee et ee et 15
<CONLLOISC (Break)ooueiueeeeeeeeeeeeeeeeeee e eeee et eeee e eeee s eeeeseeees 16
<Control>R (REPEAL)vvevveieieceeeeeeeeeetee ettt 16
<Control>S (Space/Stop/Start)cccceeveeeeiieeveereeereeeeeeereeeeveaen 16
<Control>X (Cancel).....c.oc.ouiveiveieeeeriieeeeecreeetieee et es e eseeseane 16
Built-in Shell Commandsccooveviveeeieieeeeeeeee et 16
BATCH Pathname..........ccoeviveieeieioeeeeeeeeeee et eeeeeeeveee e 16
COMPLINK FIle ...cooviiiviieiiciieeeeteeeeeee et 17
AULOEREC FIIE .oviiiiiiiieiiiie ettt etee e eeeeea 17
CATALOG [Pathname]c.oocovueeereeeeeeeeeeeereeeeeeeeeeeeeer e eeesevenens 17
COMPILE Pathname [, Pathname]cccoeveeeeereeeeereeeeeereereeerenenns 18
COPY Pathnamel TO Pathname2.........ccocvevveveeeeeeeeeeeeeeeeeeeeens 18
CREATE Pathnameccoceoveeoioieoeeeeeeeeeeeeeer oo eeeeereeeeeser e 18
DELETE Pathnameccooouvoteueieeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeres 19
EDIT [Pathname]cooouoieoiieeieeeeeeee et eee e eeeeeeeee e 19
HELP ..ottt et e e e e ee e 19
HOME ..ottt ettt ettt seaee 19
LIST Pathnamec.ccoovoueiieieeeeeeeeeeeee e eee e evee e 19
LOCK Pathnamecooueviviiieeieeeeeeeeee et eeeseeeesaeenaaeas 20
ONLINE ..ottt ettt ettt en v e eeee 20
PREFIX [Directory_Name]cc.ccoeeoueerioeeeeeeeeeeeeeeeereereereesvenenne 20
PREFIX < [&] ttioiiiietiee ettt 21
PRINTER ..ottt et et s ee e s 21
QUIT ettt et ee e eeeaeeeas 21
RENAME Pathnamel TO Pathname2cccooeeeeeveeeeeeeeeennnn. 21
RUN Pathnamecooviiiiiiiiiieeieeeeeee e eree e eeee 22
UNLOCK Pathnameccccoovieiiieieeeeceeeiee ettt 22
Adding Your Own Commands to the Shell......cccooeoeeeeeieeeeeeeeeeene 22
How to Write a Shell Utilityccoooevivieriieeerieieeiceeceece v 22
Passing Parameters to the Utility......c.cccooovvivveiiviccriviecnne 23
SUPPLEd ULIHEIES. ...cverieviieeiceietecriere ettt seeaee e ss e eeeoee 23

Chapter Two: The Source Code Editor......... cecesensnransarasasessessesene 24
OVEIVIEW ..ttt ettt ettt e et te et e e e eaeeaeseamnene 24
Entering and Quitting the Editorcccoovvviieeiiiiieececeeeeeeen, 24

Entering the Editor (EDIT [Pathname])c..cooovevevinvvevenenenn. 24
Quitting the Source Code Editor (<Apple>Q).......cccvvvvvevivicvininne. 24

Introduction

Table of Contents v

Description of the Editor’s Displaycccccoeevevririereereieiereseinsssnsnnns 24
The Command Line.ccoeiiereiiriiereieceeerereesseerereneseresssseesees 24
The Reference Ruler.......cccoouiicveiiviiceiiicececeteeeeieeevee et 25
The Editing Display ATeac..coovvvveemeeeeeeieeeeeeeeieeereeesesseeeesennns 25
The Data LiNe ...c.ccccoivirveiieiieereeeeeceeee vt erersse s esessenane 25
The Sound INAiCatOr........ccccveiirecreriieieeeer et esessrsreseseaes 25

Basic Editor Commandsccouvmiverireneniieeeneesesnsessseesssessnassns 25
Control Command Keysocovveeueerevueeeeiereeervereieseeressesseseensenens 25

<Control>B Erase to start of lineceeevevevevereceenieencnnnninenas 26

<Control>X Erase current linecccceceeveeererenvereriieieeenennnnns 26

<Control>Y Erase to end of linecccceeeveevevieenenrniererererssennenas 26
The Apple and Option KeYS.......ccoeeeereeeeeieieriereercienrerreneereenesnersennes 26
ESCAPE KEY (FSC) wvveviivriieiieieiietiee st eatseeeeaesesostesessesntesseassnes 26
RELUIN KOY ..ottt et s e an 26
Deletion Mode (<Apple>Delete).......oviririvirveenrenieenienecvnririessienens 26
DElete KeY ..uvovievirieicriiiceietece ettt sv et et sa st 27
Help screen (<Apple>H or <Apple>?)....cociicinecreecireeeeseerevcenniens 27
Enter/Overstrike Mode (APPIESE)ovcvieviiireriiciceieseereeeveennns 27
Upper/LowerCase Mode (APPIe>X)....coecverivivivirerirereineeneserenennns 27

MOVING 10 the FUIE cuvivieeeeieeeee et ee e veee et ee e e eeaeeaeesesateeaeseeenees 28
Cursor Control (TUe—) ..o 28
Move Down one screen (SAPPIesd)o.vvcviveeeciiiiiieieeeere s 28
Move Up one screen (APPIEST) ..o 28
Move To Beginning of Line (APPIe>«=)......cccvverreiiierecerirerereennn, 28
Move To End of Line (APPIE>—3) c.ovoivvviieeeerivirieeeereveeee v 28
Move to Previous Word (<Option>«=)ccccoeverevricvireereresieresnenens 29
Move to Next Word (<Option>=3)......ccceriievevenrereciererennesiessesssnnns 29
Relative Motion within the File...........ccccccoviiviiiveiiieeeeiiene s 29

(<Apple>1 through <ApPPIe>9)ocvivivveiiieivecee e 29
Go to Program Line (APPIe>G).....cveevvreienieneeeiereecie e, 29
Setting Tab Stops (<APPIe>Tab)occovvevveveereeieeeeeeeeee e, 29
Tabbing (Tab Key)....cooooeveuiieireiceieeeeieeee et cevesveseeeessaesaenesaeees 30

Text Block Editing Commands.............cooeeveieevenreinieereneeesneceneenns 30
Copy Text Block from Buffer (<Apple>C).....cooviiveceiivecrieriinnns 30
Delete Text Block from Code (<Apple>D)......cccoeveevevenevererireererennns 30
Move Text Block to Buffer (<ApplesM)covveeereeririeerinrerreneerennens 31

Find/Replace Commandsc.ovveuivevvieveveeinseneeieneeeeeseesesessesseeosenns 31
Backward Find/Replace (<APPIe>B)ccocovvveevverererererereierere e 31
Forward Find/Replace (KAPPIESF)......ovvieviereireeeceeeeieree s 31

Filing Commandsc.covevuivvirueieiceeeieeieseeeresvesteeeeeesesssessassessesssneens 32
New Source Code File (APPIESN)...ccvevivreiiecrireeecvieereererereeeeees 32
Insert Source File from Disk (<Apple>I) ...covvvivevreveviiieecriinen 32
Save, Kompile and Execute File (<ApplesK)cccooovveviinievrnereins 33
Load Source Code File (APPle>L)...cccvnviriivivieiiiciirecrererereeennn, 33

Introduction

vi Table of Contents

Save File (high bit on) (APPIE>S) c.cvovoiieiieieeieeeeeee e 34

Save File as ASCII (high bit off) (<APPIe>T)uveveeeivvenrieiereraennn. 34
Printing Commandsc.ocoeuvireeeeeeiieeeeeieeseeeeeee et eeeeeseesesessenes 34
Print Source Code (KAPPIESP).....ououeviveeeeciiee e 34

Text Window Printout (<APPle>W).......c.cooveeeeiereiineseceeeeias 34
Miscellaneous Commandsc.oeeueeeereieeeeeneeeneeeereeeeereesesneessesenns 35
Convert Decimal to Hex (APPIES#) ...cocovvieiieriiiereieeeesee e 35
Convert Hex to Decimal (APPIES#)oocurueveverereieeriieeeevevennas 35

Version Information (<Apple>V)........ccoovevvvevereeeeieeeeeeeeeeene, 35
Chapter Three: The COmMPIler.......ueieereseereresressesesseseoseesessaseses 36
OVEIVIEW ..ottt ettt ettt st a s s et et 36
Invoking the Compiler.........ccocovvieiiiiiiiiicceiee e 36
Compiler Commands...........ccuveevveeeeeereieeeeeeeeeeeeereeeeveeeeveeeeesseseeraneans 37
Aborting a Compilation.............cceeeiieviriviieeeeeee et 37
Compiled Listings to the Screen..........cccocveevvvieviiveneiieeereeeeenes 37
Compiled Listings to the Printer..........cccovevvevvieieveeireceeiieeeenns 37
Dealing with Syntax Errors............... e s 38

Code GENETratioNcoveevivieveeieiiece ettt sttt 38
Chapter Four: The LinKkercccoceeeeeseeessncesens cersevnsenases ceverersanneceecs 40
OVEIVIEW ..ottt ettt sttt st n e ss s entene e 40

How the LInKer WOTKS........c.ccoooioviiiiieiiee oot eeeeeeeeeieeseasenena 40

How t0 Use the LINKer.......ccooviiiiee ettt eeeee e eveeres e 40
LANKING ETTOIS ..ottt e et e ee e ee s er et eaeenaeseaeeeneenerensens 41
Chapter Five: The Run Time Library ... ceenesesessssneens 42
Reference SeCtionccooiiiieeiiiiiiciiect ettt 42

The Micol Systems Licensing Agreement.............ccocooevevevmreerericennnn. 42
Educational and Industrial Site Licensesc...ccovvvrverivveerererennnn 43

Part Three: The Advanced BASIC Language
Chapter One: Compiler Rules and Directivescecvrerueeenes 44

OVEIVIEW ..ovtiiiieectie ettt e et e et eae e eaessaeaesseeoseeaesaes 44
General Information...........c.occeeveeiiuieeeeeeeeeee e e 44
Multiple Statements per Lineccccovveveiereeecreieenecreeeree v 44
Line NUMDEIS c..oovviiiiieceeeee ettt ee e e 44
Program Line Continuation Character (\).......cccccovvviivnivvevvecnnn. 45
Commenting Your Programs............cceveiviiveecriieneceeeee e, 45
Comment Statement (Old Method)ccovevvvuveeiivieeiririereeennan, 46
Comment Delimiter Characters [{ }] (Preferred Method).............. 46
Program Order.........oovicieciieeiiieeceee ettt et eee 47
Program Name.........ccocvieiiriiiciiicieceececeece sttt seve st 47
Compiler DIreCtiVes.......cccoviivericviieccecieceetece ettt se et 48
Compiler OPIONS......ccoviviiiiiciereee ettt ceereaes 48
CODE ..ottt sttt sttt s ea e srens 48
ERROR ..ottt ettt s ess ettt sasnae 49

Introduction

Table of Contents vii

GRAPHIC ...ttt ettt e ene e even 49
HI_BUF .ottt e ev et evsnsesbess e s sanens 50
JO_BUFS = <ValUe>.....ooiiiiiiciieieee et enen 50
LIST .ttt ettt st et sv b er e teeabessseasaraans 50
LODATA = <VAIUED ...cvoveviiecrviececreeerreereeeerree s eeseeveesanaes 51
LOMEM = <Value>ccoovvvivririieececieeenresnrecrveennens reverrreeeeeennin 51
NOGOTO .ottt rreeerreerrareenrraeanns 51
NOT.C..oveevveevn, reerrrrenraeeirerraenn eeetren b renanraratreetees 52
OPTIMIZooevveeveveevine. e e e e beeeeraeaeraas vererareeenines 52
PRINTER ..ottt ers s eveenens vrrrenennen D2
SHAREcooooovieiiiierieeenn, v reeee et e ae e teaeer b bearateaeairraesnrres 53
VAR2Z ...ttt eren crereeerrraaraeeeaaans 53
Compiler AlIASES ...c..cvivveuiceieerirenececeecr et beereene ...b4
ALIAS “User statement” = “BASIC Expression”..........cc.cceueuue.. 54
~User Statement........cccccceenn.n. raereee ettt e e eirere e atee e eeairre e 54
Variable Type Declarationsccccoeeevvereeveerineevvenrenennes vreerreneen DD
INT(letterl-letter2) : STR(letter3-letterd)..........cceeuvennen... .55
Compiled Listing rreerrerr e eaeerraans creestreeaeeaeans cerernrenaerennaenns DT
Program Lines et eteraeseteteen——.s et te———etaaetotr i arrnraa, 57
Symbol Table INformationcccoveceeeuereereieeerieesieereeeeesesereesreeses 58
Statistical INformationc.ocvevvveeiviiiireeeecrie et esre e 58
Chapter Two: Basic Elements of the Languageccoeeeeecnenss 59
OVEIVIEW ..ttt et et st ea et se s eas et senseaeesssersenbeeneans 59
Basic SymDOLS ...ccvicieiiice et st senreen 59
DiZItS (0= 9)eveoeiieeeiee ettt sb et enens 59
LIS (A = Z, @ = Z)eueeieeeeeeeeeeeeeee e ee e e e ereeneeeenaeseestesseareasesenneees 59
Special Characters.........ocveoviiiveeciiieeieeeeeeeeee et e erreerbens 59
Separators................ et e e s et e et es et e et s es et ae e 59
(070 [+ + SR OO OOV SUUTOURUUUSUURUPOOON 59
COMIMA.......cieiiiieeieiiie ettt ettt eseeas st erseseesseae s arsens s 59
Parentheses........ccocoecveeiniinriiniinnnne et ee et et e e eabaeearreaens 60
Space.............. e eeeeeereeerbeeeateeearaeahte et bt eere s erbe et aeerbe e teeenreeebbeessneans 60
Variable NAmMEScceovieiiereeecic ettt e e sab s evsannes 60
Variable Data Types......ccccocueverveerecrnnenene crereer et erte et e sbe st ae st e s senses 60
Simple Data Types ettt a e et te e be e ee s teeate et reasae e e te e saenreenraas 60
BO0lEANS... ..ot et sae s 61
Integers...cccvveevnieeneecciiecreccreee ebreeeeireraeeeeeertaesesararaeaeasren 61

Real (Floating Point)ccoveevieienviniiciiceierieee e creernesnveseneennes 62
Scientific Notationccecevveeevvevvuvecnnn. vereeraeen verrereeiraeenns 62
Strings.....cceevevvnneene terrrnrrarrrrrreesreresienons et eeerrrtrre it i rtrrraanbaes 62
SEALIC SEOTAZE....vecvieeeeeiieieiicretceee ettt oo sesr e ebeebaeereans 63
Dynamic String Storage................. reeeteeeeerbeeeehtae s eestbeassateesersaae s 63
Structured Data Types: The Arrayccccveveveerieiiieieerieseeseesenens 63
Declaring Arrays.......ccccceveeveerereeerineeeseeenenn ettt saesaarbe e 63

Introduction

viii Table of Contents

Multi-dimensional ArTays...........cccvvvveeeeeeevvieieevesseer e 64
Array Memory USAZE ...c.c.ovvoveeeeeeeeieeeeeeeeeeeeeee e sttt eneseeaan 65
ATTAY NESEINE cvoiviiviieiieiee ettt et e et e te et s e ereet e e et seseseesseeseens 65

OPEIALOTS ...ttt ee e e eeas 65
Arithmetic OPeratorsccooivveicvieiieieeeeeeeee e, 65
Relational Operatorsccuevvveeeeieiieeeiveeiieeceseee e, 66
Logical OPEIatorSc.ooviviieeieeeeeeeeeeeee et eeeee e vesseeeeae s 66
Evaluation of an Expression: Precedence Rulesc.ccoovvevnene... 66

Hexadecimal Literalsc.c.c.ouiiieuieeeeeieeeeeeeiee et seetanenns 67

Mixed Arithmetic EXPressionscccococevieviieveiiineseseseeseeseneenas 67
Expressions with Simple Variables..........c.cccccoeveiriiieeereireiennns 67
EXpressions With ATTAYSccooveveeeeoeeeeieeeereeeeseeeseeeveeeeeeessseneens 67

Simple Variable Declarationco.cooceeeoeeeeeeereeeeseeseseeeeeseeeeereenne 68
DECLARE Boolean!, Integer%, Real&, String$.........cccccovvvevvennenns 68

Variable ASSINMENtSc.oooviviiieiiiiiiiecceceee et 69

Initializing the Data SPaceccoouivivieievvieieee oo e 69
CLEAR ..ottt ettt ettt en ottt eeenensnsenaeans 69

Chapter Three: Mathematical Functions cereessassnsesns vessnnene 70

OVEIVIBW ..iiietitiie ettt ettt ee e et et s ee et e aeae 70

General Purpose FUNCEIONSc.ooovvveveveeeeeeeeeeeeeeeeeeee e eeeren et se e 70
ABS (ABKDY) ottt et ettt ene e 70
EXP (AEKDY) ..ottt ettt 70
INT CAGXDI) oottt e e et e s e ae et e e e e e aaeesseenes 70
LOG (A@XDT) ettt ettt ee e eeaeseeas 71
MOD ..ot 71
ROUND (A@XDPI)....cvivivieiieetceeeteteeeee et 71
SGIN (ABKDT) ettt et ee et eneaes 72
SQR CAGKDY) c.eeeeeeeeeeeeeeeeee e e e oot e e oo e e e aeanen 72

Trigonometric FUNCHIONS.coveeeeeeeeeeeeee e etee s eeees e e esaane 72
ATN (ACKDI) ettt ev e et en e senene 72
COS LAEXDT) ettt et et e nne 73
SIN (ABKDPE) oottt ettt e ee et oo eene e 73
TAN (ABKDT) vttt ettt ev e eees e es v eeaeseeane 73
Radian/Degree Conversion FUnctions..........o.oceeveeueeeeeveereerevenn. 73

Chapter Four: Strings........... cessssnscsssseenennessssensssssssons cesssaneeees T 74

OVETVIEW ..ottt ettt et e e e 74

String Function NOes..........ovouiieiiiieeeeieeeeceeeee oo sttt 74

The ASCII Character Set..........ouoiiviiieeeiieiiiee et 74

String COmMPArISONS......coovevivivieiereeieeetceeeiieree et eeereesae ettt seesanes 75

String Concatenationc.ooveveveieeieeeeeieeeee oot eeeeeeeeeeeererees e ens 75

Conversion FUNCHONSc.o.oveiiieiiiccececieeee et 75
ASC (SEXDPT) ittt ettt ettt et 75
CHRS (ABKDI). cviiereeereriiieiieeeet vttt st st renene 76
LEN (SEXDI) 1tetteiiitirieieetiiietcteeee ettt ettt seeeneneenen 76

Introduction

Table of Contents ix
STRE (AEXPL).....eevrireetrrieieieieve e ieeessesesetesss et sssssasssssassasesebsaes 76
VAL (SEXDT).ttt ettt e et e saesanessteaseeesassesseeeessenes 77

SEENE SEATCRES ..ottt et e st e eae e e s enae s eee et ens 77
INDEX (SubString$, String$, [Aexpr]) ...ccooveveeiriererrenereneecreennenne 77
String Manipulation.....ooueeeeeveeeeecireereseeeeneereissesssesssesssesssosssssssesseesens 78
INSERTS$ (String1$, String2$, Pos_Number)cccccecveveeererrennne. 78
LEFTS (SVAT, ACXDPI) .vcviviviriieiierireneetetersesessessssssessesessessssessosessssas 78
LOWERS (SVAT) c.vevereuieieiteieeseneeteierseeersesesssres s sececens RO 79
MID$ (Svar, Aexprl [LAeXPr2]).....cccoermeverereensesrersnsessensseeresensens 79
RIGHTS (SVAT, ACXDI).....ovivieiveitiereeeeeeieee s vese s evasesserassesnseasann 79
UPPERS (SVAT) ..ottt ettt st st s s e esaesenn 79
System String FUNCHIONScceveeeeiieeeeeee e eissveeteeesee st eerveerseereeeee 80
DATES ...ttt ettt esse st vt te sttt svensessensanssees 80
PREFIXS ..ottt ettt et ereea e evsaeneas 80
TIMES ..ottt ev st ev ettt ss s sabenbasaeneens 80
String Garbage ColleCtion.......cc.ueeceveeeeeeeeeeeeeeeeeeeeeeesreeeseeesneessssesiarens 81
FRE (0) cooovviieieiieeieee e, et e e et te et bearbbeerreenres 81
Chapter Five: Making DecCiSIONScueceeeeensssnsesssssssassnsasssesnes 82
OVEIVIEW ..ottt ettt es et eae st e eas ot sessenvesnsensenaeasbenssrsens 82
Program INdentation......coooceeeeeeeeeeeeee e e eree e e eeeeeeeesrereesesineseesaaees 82
Single Choice DECISIONS ..vevveeereeeeeieeeeeeeeeeeeeeeeereeeseesseeseessseesssososses 82
The IF Statementcccocveviveeeieceeeieiiet ettt et ere b sreeraenes 82
SIMPIE IF oottt 82
Block IF. THEN..ELSEoooviiiiiiiiieiicceiee et e nevaeans 83
Multi-Choice DeCISIONSoc.ovuveeiieiieceieceier e err e sre e 84
The CASE_OF Statementc.ccccoivviviieeieiieeicieeeeeseseeeeeevseseasnens 85
Chapter Six: Basic Input/Output of Informationcceeeeeeeeee. 87
OVEIVIBW ..ottt ettt ettt ve st eas s eetesansenbeesnsennseereernea 87
Data INPUL...c.ooieririeiec ettt e e 87
Internal Data ENtry ..o 87
DATA Var [{{Var}] ..ot e eevreeevne v 87
READ Var [{,VAr}]cocooiioiiiieeeceecreerecreee e e e sin e snsae v 88
RESTORE.......covi ottt et sest et evae e eras e evneereeren 89
Keyboard ENtIY ...ttt vesve s ens e 89
GET SVAT ...ttt ebesabe st e esaeesaesasens 89
INKEY SVAT ..ot ccrreecereeseenseesvaesseassaessvsaessssnnann 90
INPUT [“Prompt string”;] Var [{, Var ... 90
String Input RULESccvvoveiiiricececreee e 91
Numeric Input Rulescooeeviiiiiiiiriiniiiincescenceicccvinsies 91

Entry from Other Devices........cocviiviiiiinivenieiirieeeereeeecneseneeneenenas 92
INSLOT (Slot_NUMDET)ccoviieiiiiiiiie it 92

Data OQutPUL...c.coviieieiiieieieesee et been e 92
Screen Display Controlc..c.ooeveiieerinreriereecicreee e eveanenene 92

Introduction

). 4 Table of Contents

DELAY = AGXDY c.ocvivivieieeeeeeeeceeteiee ettt en e essavenenan 92
HOME ...ttt 93
INVERSE ...ooiieiticeec ettt et 93
MO _TEXT ..ottt ettt et eers e sasea e s anen 93
NORMAL. ..ottt eteeeev ettt estsassasans s neeavene s 94
SPEED = AGXDT ..ocvoviviiiieictie ettt st vtes s sttt snereans 94
Unformatted Text Qutput.........ccooveiiieiiiiriciieicceeeceer e, 94
PRINT [EXPr] [;] LJIEXPI] coooeiiieeiieeeieeeece e evee e ereens 94
Formatted Text Output......ccovvevieeeviiiiiiieieree e 95
PRINT USING Mask$; [Expr] [;1 LI [EXPI] cooeererivrireierereeennns 95
Cursor PoSIHIONINGc.oovviiieriiiececiiee ettt evease s 96
POS (A@KDY)ittt ettt ereans 96
SPC (AEXDT)c.vivivieeeerieieriet et ettt et er s ene v ereae s easens 97
TAB (AEXDY) wviieetiiecieeeeeet ettt et e e 97
HTAB (AGXDY) c.eveevieieieeeiiee ettt erseae e 98
VTAB (AEXDI) .ottt eee e e ves v er s evrenaeeraene s 98
Output to Other DeviCesc.ovviveeereiieeieeeeeeee et eereiees oot seens 99
OUTSLOT (SIot_NUMDET).....c.ccooviviiirieiiiiiieieeececeeeeee e 99
PRTON L.ttt evaeae s 99
TEXT oottt et eee s seas et aee s eae 99
Chapter Seven: Disk Filingcceceeerenseresssesssssssssssessessssesssenns 101
OVEIVIEW ..ottt e ettt et eeeeene et 101
File Management........c..oovoeeioeeoe et eee et aeeeee e eeee s 101
CATS oo e oot 101
COPY Svarl TO SVAT2......ccoouiiieeeeeeeeeeeeeeeeeee oot ssenaens 102
CREATE SVAT ..ottt ettt e er e es o 103
DELETE SVAT ...ttt et e e 103
FLUSH ..ottt et srea 103
LOCK SVAT .ottt ettt eavee s sn s snr e 103
ONLINES ...ttt 104
PREFIX SVAT ..ottt 104
RENAME Svarl TO SvAr2ccucooiioeieeeeeeeeeee et eeeeeeeaeseeeeenaeens 104
UNLOCK SVAT ...ttt saae st eseas s eenes 104
Direct Access to the Operating Systemccoevevveivevieieineiiecr e 105
PRODOS (Operation_Code, PathName$, Int_Array% ().............. 105
GENEral File ACCESSoovivvieiieeieieeeciectieect ettt sttt ettt 106
File AcCeSS NUMDETcviiiiiiiceieieeeeeeee ettt 106
APPEND (File Access NUmMDEI)....cooovvioviiiniieeieeee e 106
CLOSE (File Access NUMDET).....c.coiviivivioirieestereceeeeeoseseesessins 107
FILE (SVAT) cutiiiiiiiiiecice ettt evve st srte st s asat s snvesnassnnae 107
GET (File Access Number) Svar.......cccooevevvevveevervveieeeeesieeesnens 108
INPUT (File Access Number) Var [{,Var}]......ccocvovvvevmvceereeiirien 108
OPEN (File Access NUMDEY) SVAT......cccovieeiiiiiieeeeeeeeeseeereeeeeeeeenns 109
PRINT (File Access Number) [USING Mask$;] Var[{,Var}].......... 109

Introduction

Table of Contents xi
ROPEN (File Access Number) Svar.......ccceveeveeeeeueeeannn. RRSTI 110
WOPEN (File Access NUMber) SVATccovvveevieeeeeeeeeeeeeeeeeeeeeenen. 111

Sequential File ACCESS.oovmiuieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeene 111
EOF (File Access NUMDBET).........oooooiiieevieiceieeeiesreeeeieetieessesesns 111
Random ACCess FilesSoiviiuiviieeieeiee oot eteeaeevessessesseesessesseesees 111
SEEK (File Access Number) Record Number, Record Size........... 111
Chapter Eight: CONntrol of FIOWcccereeseeessessseseessessessessessossess 114
OVEIVIEW «.ovireitieectitee ettt ettt es e st e te e st asnesesase st assessesesns seenens 114
Program Terminationooeeceveieeeeeriieeeeteisseseeseseeesessesessssanes 114
External FIOWc.coovviviivieieeceeeeeeeeene e rerereera——be e e b 114
RUN Pathname.........cc.coovvevieirineieceieesrieecsvesvessesseesreneisnsans 114

Flow Interruption.......................... rerreeeeieraeeens veveeeee cereeseresenraassares 114
END ettt bt st eaaane 114
STOP .ottt sttt ns e b e s esra st seananes 115
BYE....en.. e e re e e r et e —eeeihbe st be e e be e e e e b resbbaeernres 115
Branching........ vrereens v e e——————— et eeerbereee e ——areaeerebraeraaaas 115
The Routine Declaration...........ccoccovevvvvvevvivveeeineenenn. crrreennrennnnn. 116
ROUTINE Idcovviviiiievieeieeeeeeeeeeeeenns trreeerrreeeerteeesiiereennns. 116
Unconditional Branching.......... e teeeeeeeeerree et e e etaeertreaeenaaeearaesans 116
The Dreaded GOTOo..ooeeeeeeiiceeeeeeeeeeeeteeee e e eee e seve e senee 116
Selective Branching.........ooocueveeeeieeeeeeeeeeeeeeeeeeie e ees et eeenesnens 117
The ON..GOTO Statement........ccocvevevveeereieeeeeereiseeeieresresesens 117
LL00PDS ettt ettt ettt a sttt e e eraenesaeene 118
Finite LOOPS ..oviciriiiiiieietiee ettt s et 118
FOR .. NEXT LOOPS wvoovevieveeiritieiece ettt eresseae s evessesasenens 118
NEXT LOOP COUNLEToovivvieeiiieiieeteiesiireesvereeensessensenenas 118

FOR .. UNTIL LOOPS....ciiciiiiiieiiietieeeeceteetisesieesieessveesssensensnes 120
Conditional LoOPScueeveriviieeeeieieeeeevceeeececeiteete v et stesnese s eneseens 121
REPEAT LOOPS «.cveevienvieceeeece et et enveevenes reerr e ee e 121
WHILE LOOPSuiiiiiiiieeeicceete ettt steassvsessesessnvansassseneens 122
Chapter Nine: Modularizationcececnsesccssesssssnesesssssenss 123
OVEIVIEW ..ottt ettt ettt e aeea e st essasas st e s e st aneeaens 123
Advantages of Modularityccoceeveviereecriviieeeereeeece et erevennene 123
Module Types......... eeeeeeseetae e e a bt aeatraeantaaeeenaesensaeeennns erereeeerie s e saeas 123
Module Identification........ccvioiiiiiioreeeiee et cre et er e eneons 124
Program Order with Modules........c..ccuene...... eeeererrareereeneraraeennranes 124
Routinescocceevvuvvennns teeereenrererraar—eeees eerererrtrrrtetteseieiaraabrbatarraresessenan 125
Functions and Procedures rereeren reeeberreeerrae et erebbestbeerrants 125
General Rules e e treeireeeeierteeeabteesareeernreeebaaeearbreeeeraeerntes 126
Global and Local Variables.......... e reeeeaeee e e e ebr e tereearaeenetbeaesnes ...126
Global Variables.........ccovieviiiiiiieiee ettt s st esressesasenean 126
Local Variables..........coovvieniiiniineciieccec et eee s eevesresrseneen 126

The Optional Parameter LisSt........cccovueveeereeieireeeeeeeeeeeeeeseesressennes 127
Ways of Passing Parameters.........oc.oecveevevueeiereeeeeeeseeeseenssreenens 128

Introduction

xii Table of Contents

Passing by VAlUeccccooviiviiiiciereccceecee e 128

Passing by AdAresscccuovvieiieeiieieeieeieeeieeeeeeeeet e 128
Function Definitioncc.oocviviiviiiiiiiceceeee et 129
Procedure Definitionc.ocveeveveieeiieieceeeeeeeeeeeieeeeeeseeee e 130
Explicit Variable Declarations...........cccoueeevveevveeveeerereeveeieesnsnnenns 131
Passing Control to a SUbroutineccccecveeuivveeeeeineeeeseeeeveeeeeceeenns 131
FN Identifier [Parm-1, Parm-n]ccooeeviveveeerieiieeiieeeeereee v 131
GOSUB Identifier [Parm-1, Parm-nl.......cccccocvvenveiereeereresrereennnns 131
POP ...ttt r e e s 132
PERFORM Routine_Id UNTIL Relopcccccoureemururmerevrvsirenenes 132
Computed Routine Selectioncceeeeeeeeeeeroveeeeeieeeeeesesisesesiesenns 133
ON Aexpr GOSUB Routine_Id1 [{,Routine_Idn)}]....ceeeruernnnn. 133
Module Library USAgecccoovvveviiiiiiciieie ettt sveeneeane s 133
Creation of a Library of Modules............cccoevveeveeviveveciereeeireeeereens 133
INCLUDE Pathnamecccoovcovvvvvivneiiiiieeieeeeceeeveesveeneenes 134
RECUTSION L.ttt ettt st sa e sas e e 134
Chapter Ten: Graphics......... corersessrssrannnenasesas eecsreensesnnnnsassssssnnse eeeee 137
OVEIVIEW ...ttt ettt ettt ettt et et e et eane e ennane 137
Low Resolution Graphics........cceeivveiviiiiiieciieieeeeeeeee e 137
COlOT = ABKDYT ettt ettt 137
DGR oottt ettt et e 138
DGR2 ..ottt et 139
R e ettt et 139
GR2 ..ottt 139
HLIN <X-Coordl>, <X_Coord2> AT <Y_Coord>......cccecoevevveevennnn. 139
PLOT <X _Coord>, <Y_COo0rA>...ueeiieeeeeeeeeeeeeeeeeeeereeeeeaeesereeeeereeeens 140
SCRN (X_C00rd, Y_Co0rd).......covovievieeeeeseiecieeeereeeeeeeseeresesneeseenns 140
TEXT ..ottt sttt s sn e enene 141
VLIN <Y_Coord1>, <Y_Coord2> AT <X_Co0rd> ...ccocecvveeerveeneenn.. 141
High Resolution GraphiCs.........ccovvieiiiviieeiieiieiieieee et ens s 141
DHGR and DHGR2c.oooviiiieiiece ettt esaesn e savsans 142
DRAWSTR (SVAT) covoviiieirieceeeececteeecees et eerestssnesasesssnseaesnens 142
ERASE ...ttt s e s st enbe et 143
HGRaAnd HGRZ........coooiiiiiieeeeeee ettt r et 143
HCOLOR = <C0l0r COAE> ..ovoveiieieciiicteeeie ettt sveesiseseveeane e 144
HPLOT <X_Coord>, <Y_C00rd>.......ccooovvivvricrieeeeiieieerecineerveesee e 145
HPLOT TO <X_Co0rd>, <Y_COOTA> ..eovvveeeeeerieereeeeeecereeineseneennneens 145
SDHGR and SDHGRZ............oovveeeeieeereteeeevieeresresresssoriossnversasnesns 145
High Resolution Shapes.........cocvueenieieininierecreececieeseeiesieee e 146
Single High Resolution Shapescccoceevevenvivrieveeseneecesreeeerenees 146
DRAW X_Coord, Y_Coord At Shape_Table_Number................ 147
XDRAW X_Coord, Y_Coord AT Shape_Table_Number............ 147
Double High Resolution Shapesccccovvieiiiiceiricienieineneceeeenes 147

Introduction

Table of Contents xiii

Chapter Eleven: The Sound of MUSICcceecrerrersesseeseesaesasssssaeseess 149

OVEIVIEW «.otiiieeieteece ettt ettt st es et esaos e s s seseenen 149
AUGIO OULPUL vttt sttt e s 149
BELL .ottt st sr s srssn st ss b ene e 149
SOUNG.... ottt ettt e sses s s st s b re st st esenes 149
MUSIC (Pitch, DUration)......ccc.eceveeeeeseecveeveeeesereeeeseeesneesessessssonns 149
Chapter Twelve: Creating The Human Elementcoceeeenenee. 151
OVEIVIEW .ottt ettt se st e sete st et ssesas st essenosssessenes 151
Pseudo Random NUmDbBETs...........ccovvivviieviriieiicrceieeeeeeee v ss v 151
Integer Pseudo Random NUMDETS ...c.cocveevevivvvervevietiieeieeee s 151
Integer% = RND (AEXDT)cccovvvuererrrerirrrrerernesesssnieiessssesessssssenns 151

Real Pseudo Random Numberscccccevevvvvevecnenviviecieesesveeenes 152
Real& = RND (A€XPTI)...ccocuiierirerieirerereriieeessess e seesesnessenesssssens 152
Controlled Uncertainty™............ccccoouiiiveiiierieireeeereeees s eeensons 152
Setting the Uncertain Conditionccocoeveeeevieriviiireeevreerisreeenas 152
Chapter Thirteen: Direct Memory ACCESS......cevurvesersecssssesessess 155
OVEIVIEW ..ttt ettt ettt s e sa s st st eseaneseseesenen 155
Examining and Changing Memoryccovvivieivecvieeveesrsreneesinns 155
PEEK (AEXDT) oottt et eeeteaeeveeesessesesestestosesasesosesenen 155
POKE A€XDPI1, ABXPI2 ...oovivieieciieieeeeiereeeeeeee e eereeeesereesesssesessenea 155
Finding the Address of a Variable or Array..........ccccocoeeecverneernnans 156
ADDR (Variable [(J) ...ooviviveeeeeeeeeieeteeeeeeee e eeeeeeeeesaeeesevesresseenenns 156
Memory IMmages and FIIeS.......oe.ueeeeeveeeeeieeeeieeeeeeeseseeeeseseeeeessessesseeas 156
BLOAD Svar, Start_Address, Bytes_to_Loadc.c.ccoevevevrrennne 157
BSAVE Svar, Start_Address, Bytes_to_Saveccccocoeveveeiereeeenn. 157
MOVINE MEIMOTY ..ottt ees e v eeteeeeeeeeeaessee e esseeneeeeeeas 157
MOV_MEM Start_Addr, Num_of Bytes AT Dest....cooevevveveirennnn 158
Chapter Fourteen: Run Time Error Handlingcoeeseeserereees 159
OVETVIEW ettt ettt et et et e s e anes e e st eneanesssesssaen 159
Handling the EXTor.........c.oooviiiiieeeeeeeeeeeeee e e e eeeeeeeeeeenes 159
ONERR GOTO Module_IQ.........ooooiiriiereeeeeeriiee e eeeeereeverenens 160
RESUMEttt ettt saee e ss e e sssseneaoston 161

Part Four: Humanizing the Interface
Chapter One: Desktop DescCription........cooeeeseneensassosesssasasseses 162

OVEIVIEW ..ottt ettt s st aane 162
Hardware Requirements...........c.oeevevievriicriinneseerereeneseeneesssesseseissnsns 162
The Desktop Environment.............ccuoveevevemiireveneeeresesssssesesssesesssssssnns 162
The Desktop Construction Set.........ccocueeveeeieveeiiineceeereseeseeseereeeseeseene 163
MEDIUS ...uitviieiesteiiieee ettt ettt et er s e se st st ss e ebs et ensebeassaesrenans 163
WINAOWS ...ttt ettt eb e bevset e s 164
Saving and Restoring Windows and Menus............ccoeevveivereeeranenns 164
Monitoring the DesKtopccccecuevererierereriiiireceeesiereeisie s evavaseanons 165

Introduction

xiv Table of Contents

Chapter Two: Monitoring the User Response R { . v
OVEIVIEW ..ottt et es e eneenssarannnen 167
The Mouse Commandoc.oueueeveeeiueeeeeeeeeeeeeeeeeeeeseeee e s eeeeesses 167

MOUSE (ATTAY ()).vererireneieieeeeeiee et eeeseee e e et essens s eeraeneeeenes 167
Homing the MOUSe......ccooovvveeieecieeeeeeeee et eeeeeee e s, 168
Positioning the MOUSEc.ccvvveevivveiiiiiieeiiee e ereenee s erea 168
Reading the MOUSEcocoovuviiiiieeeeeeeeteeeieeee et eas 168
Altering the Mouse CUISOT...........covovevviiiiciseereceieeevensiee e 169
Turning the Mouse Cursor Offoocueeeveeeeeeevieeeeieeeeie e 169
Turning the Mouse Cursor On..........cccoevivvvivieeeiieneiereereeseereenenns 170
Setting the Fast MOUSEc.cccovvviveeviieiiiiceiee et ereeneens 170
Setting the SIOW MOUSEveecvieeieeeeeeeeee e e svessre v snsenns 170
Limiting the Mouse’s Horizontal Movements.............cccvenenien. 170
Limiting the Mouse’s Vertical Movementsc.ccoovevrevvenenn. 171

Example Program...........cccoovviiiiiiciiicceceeeeee et 171

Part Five: Program Management
Chapter One: Program Debuggingccevveneerensernesessesnesnssnensenes 172

Overview ettt eentae e ae et ee e et aeree et be et e e ahaeetbeanssaentbeenbaeeeraeeane 172
Debugging StatemMeEnts. ... cc.eoveeeeeeeeeeeeeeee oo eee e ereeeeeee et e e ereeeeeees 172
BELL oottt ettt et sttt 173

PRINTottt e v e et et as e o 173

STOP et ettt et es ettt sttt on s 173

TRACE ..ottt ettt enans 173
NOTRACE ..ottt ettt eve et es e sa e ees 174

Chapter Two: Program Optimization...........eveeeseereseessesessenns 175
OVEIVIEW ..ottt ettt st eeee v e e ee e aenees 175
SAVINE MEIMOTY ...t e et e s et eeseeeeseaeearesaeesssesesensseneeene 175
Working within the Editor’s Workspace..........coooeeveeeneecrerieenennnn. 175

Saving Space in @ Programcccccovceuieveriioeierisieee e erseeeenens 175
Speeding Up Your Programs..........coccoeveiviveveieineeeeeeteeeeeeereee v 176

Chapter Three: Managing Large Programs ... cerssres 177
OVEIVIEW ..ottt ettt ettt te et sssas st st senesneanns 177
Chaining Source Code FilesS.........ccvvuiiienieeeiieeeeeeeeeeeeeeeseeeeeesesessesen 177
Segmenting the Source Code Files.....oouiiiiveieceeeeeeeeeeeeeeeereeeneeen 177

CHAIN String_Literal.........ccoocviiiieviveceieee e creene e 177

How to Debug a Chained Programcceeeeovveeviivvienreeeennnenn, 178

Sharing Executable Code Filesccoovviioiereieoeeeeeeeeieeeeeeeeeeeeeessen, 178

How to Share Programscccoeovvvieiioiieiciicieceseieee e e 179

Using Shared Programs...........cc.cooovveeevieeeneiiineienriere e seveeveasns 179
Chapter Four: Assembly Language Integration vesnereses 181
OVEIVIEW ..ottt ettt et ee ettt eaeebeee et s s etsesens 181
Bringing in the Assembly Language Program........c..cccocevvivveevennnnn. 181
LINK PathIName...........coooviiiiiiieeiceceeeceeceeteeeee e er e en e 181

Introduction

Table of Contents

Chapter Five: Creating Independent Programs........ccosesseeeee. 184

OVEIVIEW .ttt eb et e st er e er et e easesassneesssareessens 184
Creating a TurnKey Systemc.ccceveeveieniieiciecieesieeeieeensneeenne 184
The Micol Program Launcher..........cccooovoiiovieieciciieeinsecieseeneeeienennes 185
Chapter Six: Converting Applesoft Programs ... 186
OVETVIEW ..ottt et ee e er e ereeaestne b esesssersesbessessaassessensens 186
Source File CONVEISIONcc.cccevirieieviiereiercriee e sessnessesresseneeneone 186
Program Conversion RUIEScccueevvveveieeniieeeeeeerierenecssesssrseesreeerseeenes 187
DIM Statementsccocoviieieeeeiiieie e cere e eereete e seesrseessessaesseenne 187
DATA Statements.......c.ccovevvuiiieeereecieeie e eriecresrieseveevresseeseeesenesneenne 187
SEYINES cveeitieiti ettt teeaeceteeebesssosaaeserbestaeaeansesebaesanneersessbees 187
Slot INPUt/OULPUL ..ot s 187
Turning the Printer On and Off.........c.cccovvieieiiieenieiecere e 188
PRINTINEZ .ottt et er sttt e e n e aet e eane 188
FLASH Commandc..ccooiuvieiiiriiieiieiccieeseesiinessiinaesineesvnecsesnees i 188
Cursor POSItIONINGc.covveiiiiie et cae e sie e srie e sivesaeesrnesanesenenes 188
Control of Flow........cc.ccvevnnnen. et ettt st et b e res 188
High Resolution Shape Tables...........ccooeeivenniiinieneenencnenieeens 188
PEEKS and POKESccccocvieiiiinierieeeetcceeee e eseesesiesnie e enes 189
FUNCUIONS....vi ettt ettt st et sate e eeneesaaeeaees 189
DiSK FilING ..ottt erre st se e s sea e s 189
GO TOT T oottt er s st e e er et e b e aese s 190
Appendices
Appendix A: Memory USAge......ocvueunsecnsunseresacsesnresssassnsesssssaeesssass 191
OVEIVIEW ..ottt et ettt et et e et e er s e srbebaeseesbaesaessaesees 191
Run Time Library System Locationscccoeevveeviiireenieeniennneeneennenne 192

Appendix B: Screen QutpPuteceecnecssscsssscssssssscsssssssssssassosessses 195
Appendix C: Run Time Exror Codescccenneneecrssssnersesssssssessecs 196
Appendix D: ProDOS Error Codesccnensssnsesssssnseessssececss 198
Appendix E: Compiler Reserved Words......ccecnnsicnssscrssrceses 200
Appendix F: ASCII Character Set ...eeeccscssenesesccrensasessssessnes 202
Glossary. crersesserersossaransnsssassssssssssssssssassessansessanses S04

Index.....uineinesinsnsassnans ceesessassssssssssrsasanssssassassssss 208

Xv

Introduction

Chapter One: General Review 1

Part One: Overview of the Language

Chapter One

General Review

Comments on the Second Edition

We are proud to present the Second Edition of the Micol Advanced BASIC for thg
Apple Ile/c reference manual. This manual has been completely reorganized to make it
easier for everyone, especially the novice, to use.

If you are one of those who owns a First Edition copy of the manual, take the time to
carefully look at the table of contents and the index to see where the changes were made.
The table of contents and the index have been greatly expanded to make it easier for you
to find the information you are looking for.

Take the time to read the manual through. You will find many programming t_ips
written by people who have discovered and are already enjoying the power of the Micol
Advanced BASIC Structured Language.

This reference manual has program examples throughout the entire manual.. We
recommend you study these program examples very carefully. You may also wish to
compile and execute some of the more important ones. This way the explanations will
become clearer to you and you will get practice in programming.

Send us your suggestions, comments and criticisms. We read all the letters we
receive, even if we cannot reply to all of them. We will answer you if you include a
self-addressed envelope with your letter.

Overview

The purpose of Part One is to give an overall look at Micol Advanced BASIC so you
will get a general idea of what this language system has to offer.

Micol Advanced BASIC is a full-featured, compiled language system. Its purpose is
to let you develop structured BASIC language programs for your Apple Ile, Apple Ilc or
Laser computer.

The BASIC program is created using the full-screen Editor. Communication with the
ProDOS 8 operating system is done by means of the Command Shell. The Compiler and
Linker translate BASIC source code into binary instructions which the microprocessor
can directly execute.

Some Advantages of the Language

Micol Advanced BASIC will operate on any Apple Ile with 128K RAM memory and a

Part One: Overview of the Language

2 Chapter One: General Review

65C02 CPU and an 80 column card (almost every Apple 1le), any Apple Ilc, any Apple
IIGS and any Laser 128 computer. Yet, the entire operating system and language
system can fit on a single 5.25 inch floppy diskette with some room to spare.

The executable files created by Micol Advanced BASIC are binary files, but becguse
the Run Time Library is maintained separately, a special Micol loader is required.
However, because all loading is done automatically, this will be transparent to the user.

Source code files created with the Apple IIGS version of Micol Advanced BASIC are
highly compatible with those created with the e/c version; memory permitting, only a few
changes are needed to use the full power of the Ile/c version.

Micol Advanced BASIC can use all the memory available to your Apple Ile/c gmd %s
written in assembly language, the fastest code possible on your computer. Little time is
spent compiling or linking, giving you more time do to what you can do best... program.

The Components of the Language System

1. The Command Shell

The Command Shell (or Shell, for short) allows the user to interface with the rest of
the language system. Through the Shell, for example, it is possible to see the contents of
a disk, invoke the Text Editor, compile a program, etc.

The Shell also has the capability of accepting commands from a file on disk. Utilities
written by the user may also be added to the Shell. Because of these utilities, the
possibilities of tasks the Shell can perform are almost unlimited. The Shell has the
following features:

« Easy to remember commands

+ Full complement of filing commands

+ Test of compiled programs

+ Commands executed in a Shell Batch program

» AutoExec batch file

» Uses commands written in BASIC

+ Easy-to-read help screen.

2. The Source Code Editor

The Source Code Editor lets you create, and modify BASIC source code files. The
Editor has word-processor-like features to ease the maintenance and revision of the
source code files. The Editor can read most any standard ASCII text file. The Editor has
the following features:

« 80-column, full-screen editor

+ Word-processor-like commands

« Fast-easy copy/movement of text

+ Saves source code files in normal ASCII format

Part One: Overview of the Language

Chapter One: General Review 3

Decimal to hex (and back) converter
Easy-to-read help screen

3. The Full-featured Compiler and Linker

The Compiler reads the source code created using the source code Editor and
generates an object code file which the Linker will convert to a machine usable format.
The Compiler has the following features:

Rapidly generates 65C02 code
Easy-to-remember Compiler Directives
Ultra fast screen displays

Support of source code libraries

Link to assembly language programs
Easy creation of large programs

Easy creation of TurnKey system

4. Full-featured Structured BASIC Language

With Micol Advanced BASIC, you can write programs that are more understandable
than almost any other BASIC language. The use of meaningful variable names,
indentation, structured loop control, improved data file handling, and many other
features will make the creation of your programs a breeze. Now you can write those
GOTOless programs that were impossible to do under Applesoft BASIC.

Micol Advanced BASIC can produce graphics and sounds that could never l}ave been
done before on an Apple II using Applesoft BASIC. Five totally distinct graphics modes
are supported and it is easy to create interesting sound effects.

The Micol Advanced BASIC language systems offers the following features:

Upward compatible with the Applesoft BASIC language
Optional line numbers

Dynamic character strings with ultra-fast garbage collection
Simple variables and arrays of type boolean

Ultra fast and sophisticated string manipulation

True integer calculations (no conversion to real and back)
MouseText character display

INKEYS$ input and PRINT USING output
IF..THEN..ELSE, CASE_OF conditional statements
REPEAT. UNTIL, WHILE. WEND conditional loops
Pascal language-like Functions and Procedures

Support of recursive calls :

Low, Double Low, High, Double High and Super Double High Resolution graphics

Part One: Overview of the Language

4 Chapter One: General Review

+ Mixed text and graphics with Super Double High Resolution graphics
« Sound capabilities

+ Complete and easy-to-use ProDOS 8 file handling

+ Exclusive Controlled Uncertainty™

How this Manual is Organized

This manual is divided into seven distinct parts:

 First is the Copyright pages and Table of Contents. We have taken pains to
make this Table of Contents as useful as possible. We hope you agree.

 Part One (this part) gives you a general overview of Micol Advanced BASIC
(MAB), and how to use Micol Advanced BASIC with the usual equipment. There
is a brief tutorial in Chapter Two all beginners should try.

+ Part Two discusses the Programming Environment: what is needed to write and
use a Micol Advanced BASIC program: Shell, Editor, Compiler/Linker, Library.

 Part Three is the most important section and describes the Micol Advanced
BASIC language itself.

+ Part Four is a brief introduction to Desktop programming.

+ Part Five discusses program management. Management includes debugging
techniques, code segmentation, code optimization, and using assembly language
routines with your Micol Advanced BASIC programs.

+ Last come the Appendices, Glossary of words and Index. The Index is very
complete, so if you have trouble finding something, feel free to consult it.

Special Note

Special paragraphs marked “Programmers”, “NOTE”,
“IMPORTANT”, and “WARNING” will be contained
within a paragraph such as this one. These paragraphs

describe tricks of the trade, indicate some special things
to watch out for or alert you to a potential dangerous
situation. “Programmers” denotes advanced topics that
novices may ignore.

The Micol Advanced BASIC System Disk

You have received with this product:

« The Micol Advanced BASIC e/c Reference Manual, Second Edition

« One 5.25 inch system disk labeled Micol Advanced BASIC

« A product registration card

+ Information about the Micol Advanced BASIC Users Group (MABug)
» Other Product information

Part One: Overview of the Language

Chapter One: General Review 5

Side one of the System Disk contains the operating system, ProDOS 8 (file
PRODOS), the Micol Advanced BASIC language system itself, an AutoExec file, and a
UTILITY folder. Side two of the system disk contains some repeated system files, an
information file, file INFO.DOC, a UTILITY folder and example programs in folder
PRG.EXAMPLES. Be certain to look at the reverse side of the System Disk.

IMPORTANT :
Make backup copies of both sides of the System Disk

before starting your program development. Use the

copied disks for your work and store the original disks
somewhere safe.

The Micol Advanced BASIC language system consists of the following files:
MICOL.SYSTEM, SHELL, EDITOR, COMPILER, LINKER, LIBRARY, and the
UTILITY/ folder. MICOL.SYSTEM is the system loader. SHELL is the system
Command Shell. EDITOR is the source code Editor. COMPILER is the system
Compiler. LINKER is the system Linker and LIBRARY is the run time Library.

The UTILITY folder will contain the external Shell commands you may write later
to add more functionality to the Command Shell. The file AutoExec will tell you about
any updates to the Language System or the Reference Manual; it may be deleted.

File INFO.DOC on side two of the system disk contains the latest information which
is not contained in this manual. If this file is absent, the manual is complete.

What You Need to Know

Before you continue reading this manual, you should know:

+ How toset up and use your Apple Ile/c system (see the manuals that came with
your computer)

+ Some knowledge and understanding of the ProDOS file structure and use of
Pathnames to access these files

+ How to use ProDOS 8 to manipulate disk files (see the Apple Ile or Apple IIc
System Software User’s Guide)

+ Some knowledge of Applesoft BASIC or any other dialect of BASIC

Hardware Requirements

To use Micol Advanced BASIC for the Apple Ile/c, you need one of the following
computer systems:

« An Apple Ile with: a 65C02 CPU, an 80 column card and 128K RAM

+ AnApple Ilc

+ A Laser 128

» An Apple IIGS

Part One: Overview of the Language

6 Chapter One: General Review

With:

* One 5.25 inch disk drive
* A monochrome monitor capable of displaying 80 columns
» ProDOS 8, the DOS required by Micol Advanced BASIC, is supplied on disk.

Suggested Additional Hardware

+ A second 5.25 inch drive or one, or more, 3.5 inch drives
* A printer

« A hard disk drive

* A color monitor

* An Apple Ile/c Mouse

How Micol Advanced BASIC Loads

There is not enough memory in your computer to hold all the system software for
Micol Advanced BASIC. For this reason, the system must go to disk whenever it
requires a different function such as the Compiler or Editor.

When Micol Advanced BASIC boots, the system takes note of the directory
containing the Micol Advanced BASIC files and set this directory as the System
Directory. Anytime a system file is required, the System Directory is accessed for the
file. This means this directory and its files must always be online during development.

For example, if you are in the Shell and wish to edit a program, the Editor is loaded
from the System Directory and the Shell disappears from memory. When you wish to
compile a program, the Compiler is loaded from the System Directory and the Editor
disappears from memory. The same is true for the Linker, Shell and Run Time Library.

Using Micol Advanced BASIC on a Single Drive System

If you only have a single 5.25 inch drive, you may still develop programs under Micol
Advanced BASIC, but there are a few things you must do first. Note that your programs
cannot be as long as those developed under a two drive system, a system with a 3.5 inch
drive, or a hard drive.

To create a single 5.25 inch drive system, do the following:

1. Using any suitable ProDOS copy utility, make two exact copies (on two diskettes) of
side one of the Micol Advanced BASIC System Disk.

2. On the second disk, delete all the files except: SHELL, EDITOR, COMPILER,
LINKER and LIBRARY. This means you will be deleting files: ProDOS,
MICOL.SYSTEM, AutoExec and the UTILITY folder (and maybe others).

3. Mark the first diskette (Disk One) something like “Disk One” and the second
diskette (Disk Two) something like “Disk Two” to distinquish them. '

Part One: Overview of the Language

Chapter One: General Review 7

When you wish to boot Micol Advanced BASIC, use Disk One. Once Micol Advanced
BASIC has booted, remove Disk One and insert Disk Two. Disk Two will be your work
diskette. Unfortunately, there is not a great deal of room on Disk Two for program

development. We strongly recommend you purchase a second drive, a 3.5 inch drive, or a
hard drive.

Using Micol Advanced BASIC on a 3.5 inch Drive

One 3.5 inch diskette has about 800K of storage. This is enough room for the
operating system, the language system, the UTILITY folder, and your program
development. To transfer Micol Advanced BASIC to a 3.5 inch diskette, using any
suitable ProDOS 8 copy utility, do the folllowing :

1. Insert a blank disk into the 3.5 inch drive. Format the diskette with any suitable
volume name other than /Micol. Adv.BASIC (you cannot have two identical
volume names in your system while copying).

2. Insert the Micol Advanced BASIC System Disk, label side up, into a 5.25 inch
drive. Copy all files on this side of the System Disk to the 3.5 inch diskette.

3. Turn the System Diskette over and copy all the files, except SHELL, EDITOR and
LIBRARY (if present) to the 3.25 inch drive. You may now rename the 3.5 inch
diskette to /Micol. Adv.BASIC if you wish.

4. Label the 3.5 inch diskette. This is your new Micol Advanced BASIC System Disk.

Using Micol Advanced BASIC from a RAM Disk

You may copy the Micol Advanced BASIC system files to a RAM disk and use this
RAM disk as the directory from which all system files are accessed. However, if you do
not have an Apple manufactured RAM disk, then you may have trouble. This is due, we
believe, to a memory conflict between the RAM disk driver and Micol Advanced BASIC.
We attempted to work around this problem, but were unable to.

Please note that if your RAM disk is non-standard, and the system should
malfunction during development, you will have to abandon the RAM disk for system
usage. Other uses should still be okay, however.

To set up Micol Advanced BASIC on your RAM disk, using any suitable ProDOS 8
copy utility, do the following:

1. Insert the Micol Advanced BASIC System Disk into any suitable drive.

2. Copy the files: MICOL.SYSTEM, SHELL, EDITOR, COMPILER, LINKER and
LIBRARY from the System Disk to the RAM disk. You may also copy PRODOS.

3. Quit the copy utility (this will probably be to a ProDOS Quit).
4. Set (or select) the default prefix to that of the RAM disk (this step is not optional).
5. Asnext application, stipulate (or select) MICOL.SYSTEM.

You are now in Micol Advanced BASIC. Anytime a system file is required, the RAM
disk will be accessed.

Please note that you can set up an AutoExec file that will do most of this work just

Part One: Overview of the Language

8 Chapter One: General Review

described anytime you boot Micol Advanced BASIC. Please see Part Two, Chapter One,
for a discussion on the AutoExec file.

Setting up Micol Advanced BASIC on a Hard Drive

1. Create a subdirectory called Micol. Adv.BASIC anywhere of your hard disk.

Copy the Micol Advanced BASIC system files: MICOL.SYSTEM, SHELL, EDITOR,
COMPILER, LINKER, LIBRARY, and the UTILITY folder from side one of the
System Disk to the subdirectory Micol. Adv.BASIC you just created on your hard
disk. Lock these files.

3. Put the original Micol Advanced BASIC disk away in your archive box.

Now, if you set the default prefix to that of the folder to which you copied the system
files, and execute the file MICOL.SYSTEM, you will start up Micol Advanced BASIC.

If You Need Assistance

Four good rules to follow are:

1. Don’t panic. Take a deep breath and relax for a minute.
2. Go through the following checklist to delimit the problem.
a) See if you computer meets the minimum hardware requirements (see Hardware
Requirements)

b) Make certain that your hardware and peripherals are connected correctly and
that all connections are secure. If a particular peripheral needs a device
driver, make sure that it is installed on the boot disk

¢) Get your reference manual and consult
— the Table of Contents and/or Index

— find and read carefully the sections pertinent to your problem. More than
sixty percent of all calls for technical support can be answered simply by
reading the manual.

3. Ask a friend who has a computer to come and help you. Your friend may have
enough experience to explain what you do not understand.

4. Contact us at Micol Systems. You can communicate with us by mail or by phone.
We provide free technical support to our registered customers:

a) By mail, write to Micol Systems Inc. 9 Lynch Road, Willowdale, Ontario
CANADA M2J 2V6. We will answer your letter by mail if you include a
self-addressed envelope
— Please include: a description of your hardware (computer brand and model,

size of memory on expansion card), and the list of the peripherals in the
computer

— acomplete listing (preferably on disk) of the program causing the problem.
Determine where the problem is and clearly mark its location. If this is
not done, we cannot help you.

Part One: Overview of the Language

Chapter One: General Review 9

b) By phone, call our office at (416) 495-6864. You can reach us during normal
business hours Monday to Friday, 9:00 AM to 5:00 PM Eastern Time. There
is no fee to pay except for the long distance call, if applicable. Sorry, we
cannot accept collect calls.

Compatibility Overview

Applesoft BASIC

Micol Advanced BASIC is not a simple compiler of Applesoft BASIC programs and
should not be thought of as such; it is much more than that. However, since Micol
Advanced BASIC is a language system based upon Applesoft BASIC, you may convert
your Applesoft BASIC programs to Micol Advanced BASIC programs with very little
effort. Most programs written under Applesoft BASIC will run under Micol Advanced
BASIC with modest changes. Please see Chapter Six, Part Five for more information.

You will have to modify the portions of code using:

« Disk filing

« Graphics

* Machine language routines

+ Special memory locations (PEEKs and POKEs)
« Error handling

* Program segmentation

By making additional changes, you may take advantage of additional memory for
programs or data, create better graphics and sounds, etc.

Micol Advanced BASIC for the Apple IIGS

Micol Advanced BASIC for the Apple 1IGS source code files are highly compatible
with Micol Advanced BASIC for the Apple Ile/c. You may use the same source files.
Since you have less program and data space, you may have to reduce the program’s
abilities.

You will have to modify the portions of code using:

« Graphics and Sound

+ Machine language routines

« Special memory locations (PEEKs and POKEs)

« Error handling

« Program segmentation

Programs developed under the Apple IIGS version must
be recompiled under the Apple Ile/c version. :

Part One: Overview of the Language

10 Chapter One: General Review

Earlier Versions of MAB for the Apple Ile/c

Programs developed with Micol Advanced BASIC e/c v2.0 to v3.1 are compatible with
Micol Advanced BASIC v4.0. You may use the same source code. Of course, all
programs developed with an earlier version of Micol Advanced BASIC for the Apple Ile/c
must be recompiled to execute under Version 4.0 of Micol Advanced BASIC.

Syntactic Symbols Used in this Manual

Within this manual we will follow certain syntactic rules which you must know
before reading this manual. The rules are:

Brackets [] are used when something is optional.

NOTE: Brackets are used in the syntax of some statements.

Braces {} are used to indicate that something is optional and may be repeated.

NOTE: Braces are also used to delimit comments.

Bold capital letters are used whenever a reserved word is denoted.

Aexpr is used to denote an arithmetic expression either integer or real An Aexpr
may simply consist of an integer or real variable.

Alop is used to denote an arithmetic operator. An arithmetic operator may be a + - *
/A" MOD.

Relop means a relational operator. A Relop is a: <, >, <>, >=, <=, = and may also
include the logical operators: AND, OR, NOT

Sexpr is used to denote a string expression. An Sexpr may simply be a string
variable.

Expr is used to denote any expression, integer, string or real. In short, an Expr is an
Aexpr or Sexpr.

Identifier is used to denote a Function, Routine, Procedure, Program or variz?ble
name. An identifier is made of letters, digits, underscore, ampersand, dollar sign,
percent sign to a maximum of 62 characters.

Letters are either uppercase or lowercase and are case insensitive (no distinction is
made between A and a).

Unop is a unary logical operator. It may be a plus sign, minus sign and NOT
operator.

Filename is a string of alpha-numeric characters no longer than 15 characters in
length.

Volume name is a string of alpha-numeric characters no longer than 15 characters
in length. A slash (/) precedes the actual name.

Pathname is a string made of a volume name, directories (if any) and a file name. It
may be no longer than 64 characters in length including slashes.

Part One: Overview of the Language

Chapter Two: Getting Started 11

Chapter Two

Getting Started

A Brief History of BASIC

The original BASIC was written in 1964 under the direction of John Kenemy and
Thomas Kurtz at Dartmouth College, New Hampshire, United States of America.

BASIC is the acronym for Beginners All-purpose Symbolic Instruction Code. It was
intended to be relatively easy to learn and inexpensive to implement. The original
BASIC was an interactive language, so that the programmer would get instant results.
BASIC was originally intended as a teaching tool, so its capabilities were very limited.

Originally, a program line in a typical BASIC program had to begin with a line
number. Subsequent implementations of the BASIC programing language required no
line numbers and featured structured programming statements like REPEAT..UNTIL
and WHILE. WEND. .

Applesoft BASIC was installed in the Apple II+ computer in 1979 as the successor to
the primitive integer BASIC. Apple hadn’t yet developed a disk operating system, so
Applesoft had no built-in DOS commands, among many other limitations.

Micol BASIC was released in 1985 by Micol Systems as a structured and compiled
BASIC language system based on Applesoft BASIC. Micol BASIC was designed to run
on an Apple I+, ITe (64K) and Ilc. Although Micol BASIC was much more powerful than
Applesoft BASIC, it still was designed for a computer with limited abilities.

Micol Systems entirely rewrote Micol BASIC for the Apple IIGS and added numerous
enhancements and improvements which became Micol Advanced BASIC, version 1.0, for
the Apple IIGS in 1988. The next year, a special version for the Apple Ile (128K), Ilc,
and Laser 128 computers was released which took advantage of the better graphics and
Auxiliary memory in these computers and has most of the features found on the GS
version.

Writing Your First Program in Micol Advanced BASIC

Okay, let’s write a simple program in Micol Advanced BASIC. If you only have a
single drive, create a single drive system as described in the previous chapter. If you
have a two drive system, format a blank diskette and call it WORK.DISK Insert
WORK.DISK into drive two of your system.

This program won’t do much, but it'll be a start. Just follow these simple steps:
1. Insert a copy of the Micol Advanced BASIC System Disk into drive one. Turn on
the monitor and the computer.

a) The ProDOS 8 operating system (the program that tells the computer how to
use the devices connected to the computer) will load and execute

b) The Micol Advanced BASIC Language System will load and execute. The

Part One: Overview of the Language

12 Chapter Two: Getting Started

Command Shell prompt (}) will be displayed with the Command Shell waiting
for a response from the user.

2. Enter HELP<CR> (<CR> means press the key marked Return). This command
lists all the commands known to the Shell. Take the time to read the commands
that are available. Enter HOME<CR> to remove the Shell’s Help display.

3. Insert a work disk into a drive:

a) If you have a second disk drive, insert the work disk named WORK.DISK into
the second drive and go to step 4

b) If you have a single drive, remove the Micol Advanced BASIC master disk and
insert Disk Two (the System Disk with the deleted files) into the drive.

4. If you have a two drive system, enter PREFIX /WORK.DISK<CR>. PREFIX tells
the Shell to use the work disk as the default disk. The Command Shell does not
care where the disk is, as long as ProDOS 8 can find it; otherwise the message
“Volume not found” will be displayed. Unless otherwise instructed, the system
always uses the “prefixed” disk for saving and loading of program files. To see
which default directory the system is using, enter PREFIX<CR> without a disk
name. To see the names of all of the volumes available in the system, enter
ONLINE<CR>.

5. Enter EDIT<CR>. This Shell command will cause the Source Code Editor to load
and execute.

6. Press <Apple>H (hold down the key with the white apple on it and the H key at the
same time). This command shows the commands known to the Micol Advanced
BASIC Source Code Editor. Press any key to make this screen disappear.

7. Enter the following program; be certain to press Return after each line. Press
Delete to erase a character. Press the Arrow keys to move the cursor. Press Tab
to make an indentation in a program line.

PROGRAM First Program
HOME
INPUT “Hello, I'm your Apple II, what’s your name? ”; Name$
PRINT “Nice to meet you ”; Name$
PRINT “Watch me count from one to ten”
PRINT “But first, press any key so I can start”
GET Any Key$
FOR Count% = 1 TO 10
PRINT Count$%
NEXT Count$%
PRINT “Good-bye ”; Name$; “, I hope we meet again”
END

Take the time to check and revise what you entered.

8. Press <Apple>S to save the program to disk. The Editor prompts for a program
name. Enter any name (letters only) of no more than eleven characters and
press Return. The program will be saved to disk.

Part One: Overview of the Language

Chapter Two: Getting Started 13

9. Press <Apple>Q to quit the Editor and return to the Shell.

10. Enter CATALOG<CR>. The contents of the disk directory will be displayed on
the screen. Notice the name of the file you just saved.

11. To compile your program, enter the word COMPILE followed by a space, followed
by the name you gave the program in step 8, followed by a Return. The
Compiler will display “Compiling...<Program name>”. If you have entered the
program correctly, your program will be transformed into a format that can be
executed. If there is an error in the program, the message “Continue
compilation, Edit program, or use Shell (C/E/S)?” will be displayed on the screen.
Press “E” to return to the Micol Advanced BASIC Source Code Editor and
correct the mistake. Continue with Step 8.

12. After the program has compiled without any errors, you will receive the message
“Execute the program (Y/N)?”. Press “Y” to cause the program to load and
execute.

13. The program will ask you for your name. Enter your name followed by the Return
key. Notice the action on the screen. That was all caused by the program you
just wrote.

When the program has finished execution, control will be returned to the Shell.
Congratulations! You have written and executed your first Micol Advanced BASIC
program. '

Entering Program Examples

Some program examples within this manual cannot fit in the manual’s page Fhe
same way they would appear on the screen. If you see the Program Line Cont}nuatlon
character, the backslash (\), this indicates that the remainder of the line is continued on
the next line (you may also enter the program lines exactly as they appear in the text if
you wish, the Compiler can handle this syntax).

Example:

PROGRAM Example

HOME

INPUT “Enter name: ”;Name$

INPUT “Enter age: ";Age%

INPUT “Enter any floating-point value: ”; \
Numberé&

END

Enter the line(s) containing a backslash as if the line(s) were continuous (do .not
enter the backslash, in this case). If the line has more than 80 characters, the Editor

will follow you by scrolling the display from left to right. The Editor will reposition the
display to its usual place when you press the Return key.

Part One: Overview of the Language

14

Chapter Two: Getting Started

Acknowledgments

Micol Systems Inc. wishes to thank the following people for their generous
assistance:

All our beta testers, especially Peter Cameron.

Walter Torres-Hurt for his selfless dedication over the years. We also wish to
thank him for the Micol Advanced BASIC Users Group (MABug).

Michael Crawford for his generous support and assistance.

And all of those who took the time to write or phone to provide us with their
comments, suggestions and constructive criticism.

Part One: Overview of the Language

Chapter One: The Command Shell 15

Part Two: The Programming Environment
Chapter One

The Command Shell

Overview

The Command Shell is the control program. Through the Shell, you can do basic disk
filing, enter the Source Code Editor or compile, link and execute a program. The
Command Shell performs a similar function to the ProDOS 8 command interpreter, file
BASIC.SYSTEM, performs under Applesoft BASIC.

The Right Brace character “)” is the prompt character of the Shell.

Line Editing Commands

These commands allow you to edit the commands entered from the keyboard.

Up and Down Arrow Keys (T!)

The Up and Down Arrow Keys are not used in the Shell.

Left and Right Arrow Keys (—«)

The Left and Right arrow keys will work only within the range of an input field.

The Return key

The key marked Return terminates a command and may be pressed anywhere in an
input field without loss of characters.

The Delete key

The Shell recognizes two deletion modes, true delete and destructive backspace. By
default, the Delete key performs a destructive backspace. To toggle between the two
deletion modes, press <Apple>Delete.

The destructive backspace mode erases the character to the left of the cursor. The
true delete mode erases the character under the cursor. All characters on the right of the
cursor are moved to the left. The shape of the cursor is not changed.

Part Two: The Programming Environment

16 Chapter One: The Command Shell

The delete mode will remain until it is modified by another <Apple>Delete or until
the system is restarted.

<Control>C (Break)

Pressing <Control>C will terminate a listing of a text file started with the LIST
command.

<Control>C may also be used to interrupt the execution of a program while it is
running.

<Control>R (Repeat)

Pressing <Control>R displays the last command executed. The command is not
executed, but is displayed so it may be modified if necessary. Press Return to execute
the command again.

<Control>S (Space/Stop/Start)

Pressing <Control>S inserts a space character at the current cursor position, moving
every character after the cursor one position to the right.

This command may also be used to stop and start a file listing or program execution.

<Control>X (Cancel)

Pressing <Control>X cancels the command being entered. A backslash character (\)
appears as the last character on the line to indicate that the previous command has been
cancelled.

Built-in Shell Commands

These commands allow you to perform the basic tasks of the Command Shell.
Additional Shell commands may be written using Micol Advanced BASIC.

BATCH Pathname

The BATCH command allows Shell commands to be read from a text file on disk and
executed as though the commands were entered from the keyboard. The Pathname is
the name of a text file in a directory currently online.

The Batch file is usually created by the Source Code Editor, and is simply a text file
containing the Shell commands described here which are to be executed by the
Command Shell. The commands are displayed as they are executed.

Part Two: The Programming Environment

Chapter One: The Command Shell 17

Any shell command except another BATCH command is a legitimate entry into a
batch file. An EDIT or COMPILE command will execute, but will end the batch
stream.

Any line in the Batch file beginning with a semicolon (;) will be considered a
comment.
<Control>C will cancel the execution of a Batch file.

BATCH is particularly helpful to users who are doing their program development on
a RAM disk and wish to set up their system to their own needs.

COMPLINK File

There is a special type of batch file you can create that is especially designed for
program development, i.e. designed for compiling and linking files.

A normal batch file will terminate if it is told to compile and link a program, at the
end of the process. If you wish to compile several programs at one time from a batch file,
then create a text file that contains all the compile commands you would enter from the
keyboard, and save this file as COMPLINK. Then if you BATCH COMPLINK<CR>, all
the COMPILE commands in the batch string will execute.

AutoExec File

When Micol Advanced BASIC is first booted, the system checks under the current
directory for a Batch file called AutoExec. If this file is present, the Batch stream
contained within AutoExec is executed, otherwise the system simply enters the Shell.

The Micol Advanced BASIC System Disk has an AutoExec file on it, so you may wish
to examine this file to better understand AutoExec files.
Example:
LIST INFO.DOC
;Erase or rename the AUTOEXEC file to stop
; INFO.DOC from appearing again.

The batch file AutoExec lists the INFQ.DOC file on the screen.

CATALOG [Pathname]

CATALOG and its abbreviation CAT are used to display the contents of a volume or
any of its directories. The directory information indicates if a file is locked or not, lists
its name, type, size of the file in blocks, its date and time of creation, its date and time of
modification and the size of the file in bytes. The quantity of blocks used and unused are
listed after the list of the contents.

If a Pathname is stipulated, the directory will be read from the stipulated volume. If
the Pathname does not begin with a slash (/), the default prefix will be used with the
stipulated directory name. If a Pathname is not stipulated, the directory of the default
prefix will be displayed.

Part Two: The Programming Environment

18 Chapter One: The Command Shell

Example:
CAT /RAM6

CATALOG SUBDIR/
CAT

COMPILE Pathname [, Pathname]

This command summons the Compiler from the System Directory. The first
Pathname is the source code Pathname of the file you wish to compile. If the source code
Pathname cannot be found, an error will occur and the Shell prompt will return.

If the Pathname is followed by a comma and another Pathname, then the object code
file will have this stipulated pathname with the appropriate extension added. After the
compilation is completed, the filename containing the compiled program will end with a
“BIN” extension.

If a syntax error is detected, the BASIC source code line will be displayed in inverse
video. You will be prompted “Do you want to Continue, Edit or return to the Shell
(C/E/S)?. To continue the compilation, press "C". The Compiler will continue the
program’s compilation. To edit the error, press “E”. The Editor will load and place the
cursor on the line and approximate character where the compilation error occurred. To
return to the Shell, press “S”. The Shell will load and the Shell prompt will appear.

COPY Pathnamel TO Pathname2

COPY duplicates the contents of the file Pathnamel by creating a new file and
giving it the name Pathname2. If the original file and the duplicate file are in the same
directory, Pathnamel must be different from Pathname?2.

Example:
COPY /Disk/0ld.File TO /RAM5/New.File

The file Old.File in volume /Disk will be copied to volume /RAM5 with the name
New.File.

CREATE Pathname

CREATE generates a new directory file (folder) under the main or a subdirectory
with the name stipulated by Pathname.

Examples:
CREATE /RAM6/DIRECT.1

CREATE /Library/Math/Trig

In the first example, the subdirectory Direct.1 will be created on volume /RAM6. In
the second example, the subdirectory Trig will be created on volume /Library in the
subdirectory Math/.

Part Two: The Programming Environment

Chapter One: The Command Shell 19

DELETE Pathname

DELETE erases a file from a directory. A subdirectory file must be empty before it
can be deleted. The disk must not be write protected and the file must be unlocked.

Example:
DELETE /RAM6/Filename

EDIT [Pathname]

The EDIT command summons the Source Code Editor from the System Directory.
The stipulated file must be a text file to be edited.

If the command EDIT is entered without a Pathname and no file is being edited, the
Editor will appear. No file name appears on the Data Line as there is currently no file
being edited.

If EDIT is entered without a Pathname and a file is being edited, the Editor will
automatically load the file to let you continue the editing process. The cursor will appear
on the identical line and position as when you last left the Editor. The Pathname of the
file is displayed on the Data Line.

If the EDIT command is followed by a Pathname, the stipulated file will be loafied
from disk into the Editor’s workspace. The file’s Pathname will appear on the Data Line.

Example:
EDIT/RAM6/TXT.FILE

HELP

HELP lists the built-in Shell commands available with a brief description.
User-written Shell commands are not listed.

Example:
HELP

HOME

HOME is simply used to erase the contents of the screen and place the cursor at the
upper left corner.

Example:
HOME

LIST Pathname

LIST displays the specified source file on the screen, so you may preview it without

Part Two: The Programming Environment

20 Chapter One: The Command Shell

entering the source code editor. Only files of type TXT ($04) will be displayed.
Pressing <Control>C ends the listing; pressing <Control>S pauses the listing.
Pressing any key after that will restart the scrolling of the listing.
Example:
LIST /RAM6/INFO.DOC

LOCK Pathname

LOCK protects a file from being deleted or modified. When a file is locked, an
asterisk (*) precedes the file name when a directory is displayed.
Example:
LOCK /RAM6/FILE

ONLINE

ONLINE displays the names of all the bloék devices such as floppies, hard drives,
and RAM drives connected to the computer. ONLINE displays the names of the
volumes currently recognized by ProDOS.

Example:

ONLINE

PREFIX [Directory_Name]

The command PREFIX indicates the path used by the system or sets a different
default prefix. The default prefix contains part of the path leading to a specific file.

The default prefix is the prefix that is used unless another path is specified. If the
Master Disk is booted, at startup, the (default) prefix is set to /Micol. Adv.BASIC/.

The names of the volumes or directory files must be from online volumes. If nojc, the
previous prefix will remain in use. The error message “Volume not found” will be
displayed if the volume is not online.

If Directory_Name is preceded by a slash character (/), the prefix will be changed to
this new volume name.

If Directory_Name is not preceded by a slash character, the current prefix will be
used with the Directory_Name appended to form the path leading to the directory.

Examples:

PREFIX {Displays the current prefix}

{Add System/Desk.Accs/ to the current prefix}

PREFIX System/Desk.Accs/

{Prefix will becomes /Micol.Adv.BASIC/System/}

PREFIX /Micol.Adv.BASIC/System

Part Two: The Programming Environment

Chapter One: The Command Shell 21

PREFIX <« [«]

This PREFIX command lets you move back one or more levels within a path by
adding one or more less than symbols (<) with no separating spaces. One less than
symbol (<) equals one directory level.

Use PREFIX with a Pathname to go “outside” any subdirectory.

Example 1:
PREFIX < {Go back one level}
PREFIX {Display the current prefix}
PREFIX << {Go back two levels}

Example 2:

If the current default prefix is /VOLUME/FIRST/SECOND/THIRD/FOURTH/, the
command PREFIX << will set the new default prefix to /VOLUME/FIRST/SECOND/.

PRINTER

PRINTER is used to set the slot number the printer is connected to, as well as:
whether a line feed will be issued before a carriage return, whether to issue a carriage
return character (line overflow) when a line is sent to the printer, and if a RAM disk
exists (any volumes named RAM1-RAM7). Use this RAM disk for Compiler scratch
work (greatly speeds up compiling and linking).

Image writers will need to take advantage of the second two options. To the first
prompt, any key will increment the slot number, a carriage return will accept. To the
other prompts, only 'Y’ and N’ are accepted.

Example:
PRINTER

QUIT

Use QUIT to leave the Micol Advanced BASIC language system. You will be
prompted: “Are you certain you want to quit (Y/N)?”. If “N” is entered, this command
will be ignored. If “Y” is pressed, control will be returned to the operating system. Once
you have entered “Y”, you will leave Micol Advanced BASIC.

Example:
QUIT

RENAME Pathnamel TO Pathname2

RENAME changes the name of a file or directory. To rename, Pathnamel must be
unlocked and Pathname2 must not already exist.

Part Two: The Programming Environment

22 Chapter One: The Command Shell

Example:
RENAME /RAM6/FILE TO /RAM6/NEWFILE

RUN Pathname

RUN Pathname loads and executes the compiled and linked program specified in
Pathname. The Pathname is usually the name of the source file of the program (the
“BIN” extension is added by RUN).

Whenever a program is RUN, the values of all booleans are set to false, nupneric
variables are set to 0 and all string variables to empty before executing the first line of
the program.

Examples:
RUN /MICOL.ADV.BASIC/MT.FRACTAL

UNLOCK Pathname

UNLOCK removes the protection on a file, so it may be modified, deleted or
renamed. A space rather than an asterisk will precede the filename when the proper
directory is displayed.

Example:
UNLOCK /RAM6/FILE

Adding Your Own Commands to the Shell

When the Command Shell receives a command it does not understand, it assumes
the command is the name of a Utility, a compiled Micol Advanced BASIC program, in
the folder UTILITY directly under the Micol Advanced BASIC System Directory, and
attempts to load and execute it.

If there is no such program name in the UTILITY folder, the Shell will display the

message “Illegal command line”. This filename is treated as equivalent to a built-in
Shell command.

How to Write a Shell Utility

The first step in writing a Shell Utility is simply to write a Micol Advanced BASIC
program, compile and link it. After your Shell Utility program is thoroughly debugged,
take the compiled code and use the RENAME command to give the utility a meaningful
name (no extension is necessary). Copy the completed program into the folder UTILITY
under the System Directory. To access this Utility from the Shell, just enter the name of
the command exactly as it appears in folder UTILITY.

Part Two: The Programming Environment

Chapter One: The Command Shell 23

Passing Parameters to the Utility

Micol Advanced BASIC Utilities may accept parameters. This parameter is a string
entered by the user after the Utility name when the Utility is invoked. This parameter
may not contain any spaces because a space is also a delimiter within the Shell (there
must be a space between the Utility name and the parameter on the command line).

Example (from Shell command line):
INDENTER MICOL.PROG
The optional parameter, a simple ASCII string ended by a carriage return, will be

placed into a buffer at location $280 hexadecimal (640 decimal). To access this string,
concatenate the values in this buffer using the CHR$ function until a zero is detected.

Example:
PROGRAM My Utility
Param$ = “”
Address% = $280
REPEAT

Number$% = PEEK (Address$%)
IF Number% <> 0 THEN BEGIN
Param$ = Param$ + CHRS (Number$)
ENDIF
Adress% = Adress% + 1
UNTIL Number% = 0 {Your utility code follows}

The parameter may then be used within your Utility program for any purpose you
require.

Supplied Utilities

There are two supplied Utilities which come with the Micol Advanced BASIC System
disk: FONT and INDENTER. FONT is used for creating graphics fonts on the Super
Double High Resolution screen (see Part Three, chapter Ten), and INDENTER is
designed to indent programs reflecting their flow and logic.

INDENTER is on side one of the System Disk, while FONT is on the reverse side of
the System Disk, both in their respective UTILITY folder.

Both Utilities have built in documentation, so if you simply invoke the Utility with
the Utility name, you can easily get information with a simple command. It is therefore
unnecessary to discuss these details here.

Both of these Utilities source code are on side two of the Micol Advanced BASIC
System Disk, in folder PRG.EXAMPLES.

Part Two: The Programming Environment

Chapter Two: The Source Code Editor 24

Chapter Two

The Source Code Editor

Overview

This full-screen Editor has word processor like features plus easy Compiler access
and debugging assistance. The Editor has easy-to-remember, two-keystroke commands
that ease the entry and revision of the source code.

Entering and Quitting the Editor

Entering the Editor (EDIT [Pathname])

To summon the Editor from the System Directory, enter EDIT or EDIT Pathname at
the Command Shell level. The Editor may also be entered by pressing “E” from the
Compiler if an error is detected, or from a program if a run time error occurs while
executing a program.

Quitting the Source Code Editor (<Apple>Q)

To leave the Editor and return to the Shell, press <Apple>Q. If you have made any
changes since the file was last saved, you will be prompted to save the file. Press “Y” if
you wish the file saved, otherwise press “N”. The Command Shell will then load and
wait for a command.

Description of the Editor’s Display

The screen display of the Editor consists of 24 lines. The Command Line is at the top
of the screen. A reference ruler appears on the second line. Directly under the Reference
Ruler is the Editing Display Area where your program will appear. At the bottom of the
screen on line 24 is the Data Line.

The Command Line.

The Command Line displays prompts and messages when the Editor needs to get or
return information.

The Editor’s Command Line uses the following keys to edit the input to a command:
Left Arrow, Right Arrow, Delete, <Control>S, and <Control>X.

Part Two: The Programming Environment

25 Chapter Two: The Source Code Editor

The Reference Ruler

The second line displays a ruler. This line may be used to align text within the
screen.

The Editing Display Area

The Editing Display Area is a window that uses 21 lines of the screen to show the
text being edited. When necessary, this window moves up and down and from side to
side to show text that cannot be entirely displayed within one screen.

The Data Line

This inverse video line gives information about the text file being edited:

+ Line Counter
— This number represents the cursor’s current line position in the text buffer.
It is affected by up and down cursor movements and the Goto Line function
(<Apple>G).
+ Column Counter
— Entering characters or moving the cursor left or right causes the column
counter to increase or decrease between 1 and 254.
+ Line Length
— The Line Length counter shows the total number of characters in the
current line.
+ Pathname Indicator
— This area has a Pathname in it only after an existing file is loaded or after
a new file is saved to disk. The Pathname will be truncated to fit the
display if it is too long. This Pathname display remains until a new file is
loaded or the text buffer is emptied.
« Calendar/Clock Display
— Ifthere is a clock installed, the date and time will be displayed on the
lower right side of the screen. When a file is saved, the date and time are
automatically stamped on the file’s directory entry.

The Sound Indicator

The Editor will beep when the wrong command key is pressed.

Basic Editor Commands

Control Command Keys

These Control key commands allow editing on a single line of source code.

Part Two: The Programming Environment

Chapter Two: The Source Code Editor 26

<Control>B Erase to start of line

<Control>B deletes the portion of the line from the cursor position to the beginning of
the line.

<Control>X Erase current line

<Control>X deletes the line where the cursor is.

<Control>Y Erase to end of line
<Control>Y deletes the portion of the line from the cursor position to the end of the

line.

The Apple and Option keys

The Apple key and the Option key are used in combination with another key to give
commands to the Editor. Either the Apple or Option key plus the other key must be
pressed at the same time for a command to be executed.

NOTE
The Apple key is also called Command or Open-Apple.
The Option key is also called Closed-Apple. In this
manual, <Apple> will refer to the White Apple key and
<Option> will refer to the Black Apple key.
Escape key (Esc)

The Esc key may be used to cancel most commands at any time.

Return key

When the Return key is pressed, the cursor moves down to the beginning of the next
line and the file is shifted one line down. If the cursor is in the middle of the line, the
part to the right and under the cursor will be moved to the next line. The left side of the
line will remain as it was.

Deletion Mode (<Apple>Delete)

The Editor recognizes two deletion modes: true delete and destructive backspace. To
change the deletion mode, press <Apple>Delete. <Apple>Delete toggles from destructive
backspace to true delete. By default, the Delete key performs a destructive backspace.

Part Two: The Programming Environment

27 Chapter Two: The Source Code Editor

The destructive backspace mode erases the character to the left of the cursor. The
true delete mode erases the character under the cursor. All characters on the right of the
cursor are moved to the left. The shape of the cursor is not changed. Destructive
Backspace mode is shown by a Caret symbol (*) on the command line. True Delete mode
is indicated by a Less Than symbol (<) on the command line. The Deletion mode
character is displayed at the left of the Copyright notice on the Command Line.

The delete mode will remain until it is modified by another <Apple>Delete or until
the system is restarted.

Delete Key

To delete a character, press the Delete key. The character will be erased and the line
will move to fill the blank. If the cursor is over a line with no characters, this line will be
erased and the following lines will move up one line. If the cursor is at the end of a line
in the True Delete mode, or at the beginning of a line in Destructive Backspace mode,
the previous and the current line will be merged and that section of the file will move up
one line.

Help screen (<Apple>H or <Apple>?)

To see a summary of the commands available to you, press <Apple>Shift-/ or
<Apple>H. The contents of the Editing Display Area will be replaced by the list of Editor
commands. To remove the help screen and resume editing, press a key.

Enter/Overstrike Mode (<Apple>E)

To alter the edit mode, press <Apple>E. Pressing these keys changes from Enter to
Overstrike mode. Overstrike writes over existing characters without inserting other
characters; Enter mode automatically inserts the character. The default setting is Enter.
Enter mode is indicated by a flashing inverse space. Overstrike mode is shown by a
flashing underscore.

Upper/LowerCase Mode (<Apple>X)

<Apple>X allows the user to enter uppercase characters without having to press the
Shift key even when the Caps Lock key is in the Up position.

To activate this feature, press <Apple>X; the “C” in the copyright symbol on the
command line will change to a lowercase “c”. The upper/lowercase entry will be reversed
from what it was. To enter lowercase characters while using this feature, press the Shift
key. To deactivate this feature, press <Apple>X again.

Part Two: The Programming Environment

Chapter Two: The Source Code Editor 28

Moving in the File

Cursor Control (Tl«—)

All arrow keys are functional. For any line greater than 80 characters, any attempt
to move the cursor past the right edge of the screen will cause the display to shift to the
left. If the screen has been shifted left, any attempt to move the cursor past the left most
position of the screen will cause the display to shift right. Upward and downward
motions work in the regular manner.

Think of the display as being an 80 column, 21 line window to the text file, with the
cursor keys allowing you to move anywhere you want within the file.

When the cursor is moved up or down, you will eventually reach either the top or
bottom of the screen display. When the cursor reaches the bottom, the file scrolls up.
When the cursor reaches the top, the file scrolls down.

Move Down one screen (<Apple>l)
Move Up one screen (<Apple>T)

<Apple>Down-Arrow ({) will move the cursor to the bottom of the screen, or if the
cursor is already at the bottom of the screen, it will scroll the display one screen page (20
lines) up.

<Apple>Up-Arrow (T) will move the cursor to the top of the screen, or if the cursor is
already at the top of the screen, it will scroll the display one screen page (20 lines) down.

NOTE

The screen scrolling commands may also be used while
selecting a block of source code that will be moved, copied

or deleted using the <Apple>C, <Apple>D or <Apple>M
commands.

Move To Beginning of Line (<Apple>«)
Move To End of Line (<Apple>—)

<Apple>Left-Arrow («) will move the cursor to the first character of the current line,
scrolling the display to the right if necessary. <Apple>Right-Arrow (—) will move the
cursor one character past the end of the line, moving the display to the left if needed.

Part Two: The Programming Environment

29 Chapter Two: The Source Code Editor

Move to Previous Word (<Option>«)
Move to Next Word (<Option>—)

<Option>Left-Arrow («) moves the cursor to the first character of the previous word
on the line, scrolling the display to the right if necessary.

<Option>Right-Arrow (=) moves the cursor to the first character of the next word on
the current line, moving the display to the left if needed.

Pressing the <Apple> key instead of the <Option> key
will not enable this command.

Relative Motion within the File

NOTE

(<Apple>1 through <Apple>9)

Because a program source code file grows larger with every line you enter, the Editor
“separates” the file into 9 parts. Each part is recalculated as you add lines to your file.
Pressing <Apple> and a digit key will bring this “relative” portion of the file to the
display window.

To move to the beginning of the file, press <Apple>1. To move to the middle of the
file, press <Apple>5. To go to the end of the file, press <Apple>9.

Go to Program Line (<Apple>G)

To move quickly to a specific sequential program line, use <Apple>G: the Goto Line
command. The command line prompts for an input. Give a line number and press
Return. The line will be displayed on the first line of the display. This command helps
locate the errors signaled by the Compiler.

WARNING

Do not confuse the sequential program line numbers with
the optional BASIC source code line numbers. The

sequential program line numbers are created by the
Editor and the Compiler and are in no way related to any
line numbers the user may create.

Setting Tab Stops (<Apple>Tab)

To set tabulation positions, press <Apple>Tab. The current tabulation marks are
indicated by diamonds on the Command Line. The default tab settings are placed one

Part Two: The Programming Environment

Chapter Two: The Source Code Editor 30

every fifth position. Tab stops may be set only for the first 80 columns.

To set or delete tab stops, move to the desired position using the Right-arrow key
(Left-arrow will move back to position one) and press the Tab key. The first Tab pressed
will set the first position, the second pressed, the second tab position, and so on up to the
80th column. Press Return to confirm the new tab settings.

Tabbing (Tab key)

Use the Tab key to indent your source code. To move to the next tabulation position,
press the Tab key. The default tab settings are every fifth position and may be altered as
desired by <Apple>Tab. If the cursor is past the current end of line, pressing Tab will
expand the current line to one character less the required Tab position, then the cursor
will move to the required position.

NOTE . _
If the next Tab stop is currently occupied by text, pressing

the Tab key will simply reposition the cursor without
indenting.

Text Block Editing Commands

Copy Text Block from Buffer (<Apple>C)

This command is designed to copy a block of text from the copy buffer to the text
area. You must have first moved the required lines to the copy buffer using the Move
Block command (<Apple>M) described below, otherwise you will receive an error. Move
the cursor to the line just after the position where you want to place the lines, then press
<Apple>C. The lines will be copied from the copy buffer. You may copy a maximum of
12K (about half of the normal text buffer).

Delete Text Block from Code (<Apple>D)

To delete a block of text, press <Apple>D. Then press the Down arrow key to “mark”
the lines to delete. The Up arrow key will unmark the lines. To confirm the deletion
command, press the Return key. The marked text will be deleted.

This command operates on whole lines only: the Delete Block command cannot be
used to remove a portion of a line.

WARNING

The Editor cannot recover deleted text once this

command is executed. Use the Move Text Block command
(<Apple>M) instead if you wish a possible recovery later.

Part Two: The Programming Environment

31 Chapter Two: The Source Code Editor

Move Text Block to Buffer (<Apple>M)

To move a block of text to the copy buffer for later copying, and optionally, to delete a
block of text, press <Apple>M. To mark the lines to be moved, press the Down-arrow
key. To unmark the lines, press the Up-arrow key. Press the Return key to move the
marked text to the copy buffer. You will then be prompted if you wish to delete the
marked text. Accepted input is “Y” for yes and “N” for no. A copy of the moved text will
remain in the copy buffer until this command is used again or you leave the Text Editor.

Find/Replace Commands

Backward Find/Replace (<Apple>B)
Forward Find/Replace (<Apple>F)

The Backward Search and Forward Search commands are used to quickly move the
cursor to a specific word or to search for and replace that word. A search always begins
at the current cursor position.

These commands can search for a specific word or phrase (from 1 to 64 characters in
length).

If the occurrence(s) of the word you want to search for is near the beginning of the
file, use <Apple>F (Forward Search and Replace). Use <Apple>1 to start from the
beginning of the file, if necessary. If the occurrence(s) of the word you want to search for
1s near the end of the file, use <Apple>B (Backward Search and Replace). Use <Apple>9
to start from the end of the file, if necessary.

We will use Forward Search (<Apple>F) in the examples (backward search works the
same way). The Editor prompts: “Forward search: Find which string?”. Enter the word(s)
to find, then press Return. The text must appear exactly as it appears in the source code.

“Case sensitive search (Y/N)?”. Press “N” to find all occurrences regardless of the
case. Press “Y” to find only occurrences having the same upper and lowercase pattern as
the one entered for the search string. A case sensitive search will look for word(s) with
the exact combination of upper and lowercase letters that match the character string you
are looking for.

The prompt “Replace with” asks for the string that will replace the word(s) you are
looking for. If you are looking for a word, not replacing it, press Return without entering
anything; otherwise, enter the replacement string.

Do an “Automatic replacement (Y/N)?” If “Y” is entered, all matches will be replaced
without user intervention. If “N” is entered, the user will be prompted to confirm the
replacement of each occurrence as it is found.

If the Editor finds the word(s) you are looking for, it will show the occurrence in the
center of the editing area displayed in inverse video. The editor will prompt if you want
to “Continue the search (B/F/Q) ?”. To continue the search forward, press “F”. To
continue the search backward, press “B”. To quit the search, press “Q”.

Part Two: The Programming Environment

Chapter Two: The Source Code Editor 32

Example:
{Looking for a function}
Forward search: Find which string? FUNC
{Any case pattern}
Case sensitive search(Y/N)? N
{No replacement}
Replace with (Press Return)
{Prompt for every occurrence?}
Automatic replacement (Y/N)? N

WARNING

Because this command may make extensive changes to
your file, we recommend you save your file before using
the automatic replacement feature, Until you are

familiar with this feature, it is easy to make mistakes.
Just reload the file to “undo” all the changes, if it did not
do what you wanted.

Filing Commands

New Source Code File (<Apple>N)

To clear the text buffer and start anew, press <Apple>N. You are prompted for
confirmation. If you respond “Y”, you will be as if you had just entered the Editor.

WARNING

Once this command is executed, the text cannot be

recovered unless it has been previously saved to disk.

Insert Source File from Disk (<Apple>I)

To insert or merge another text file into an already existing text file, move the cursor
to the line preceding the insertion/merge position, then press <Apple>l. You will be
prompted for a Pathname. Enter the Pathname and press Return. If the file does not
exist, you will be notified. The text will be read from the disk one line at a time. Each
time a line is entered, the screen displays this new line. The cursor will remain on the
line it was on before the command was given.

Part Two: The Programming Environment

33 Chapter Two: The Source Code Editor

WARNING
Never use <Apple>I to insert a file at the last line of the

current file as Insert cannot be used to Append text.

Create a dummy line as the last line and Insert to just
before this line.

Save, Kompile and Execute File (<Apple>K)

This command will perform a Save (<Apple>S), compile, link and execute the file
being edited without the operator’s intervention as long as no compilation or linking
erTor occurs.

If a compilation error occurs, the process is stopped, and the Compiler prompts:
“Continue Compilation, Edit file or Shell (C/E/S) ?”. An “E” entered here will return the
user to the Editor at the position where the error occurred. A “C” will continue the
compilation, and an “S” will take the user to the Shell.

If a run time error occurs during execution of the program, you will be prompted
whether or not you wish to reenter the Editor to fix the problem. A “Y” will place the
cursor at the line containing the error. An “N” returns control to the Shell.

Regular use of this command is highly recommended as it
greatly simplifies program development.

Load Source Code File (<Apple>L)

IMPORTANT

To load a text file into the Editor, press <Apple>L. This will bring up the command
prompt line allowing a 64 character Pathname. Enter the Pathname and press Return
to load the file. Loading a file into memory removes the previous file in the text buffer.
After the file has been loaded, the Editor will display the first 21 lines starting from line
one. The line and column counters will display one. The Pathname is shown on the data
line before the clock display.

If you want to load a new file after having made changes to the current file, the
Editor will prompt you to save the current file before loading the new file.

If you try to load a file larger than the text buffer can hold, the part which will not fit
in the buffer will be cut.

IMPORTANT

The <Apple>L command does not erase the text contained

within the copy buffer. Use this command to copy text
from one file to another, if necessary.

Part Two: The Programmilig Environment

Chapter Two: The Source Code Editor 34

Save File (high bit on) (<Apple>S)

To save to disk the program you are currently editing, enter <Apple>S. This is the
usual file save command. If you save to an already existing file, this file will be deleted
first, then the new file will be saved in its place.

The Save command “remembers” the last Pathname entered. To reuse this previous
Pathname, simply press “Y” to the prompt. The file saved with <Apple>S is of type TXT
($04).

WARNING

The Compiler generates the object file from the file on the

disk, not from any Editor buffer, so be certain to save your
file before you call up the Compiler.

Save File as ASCII (high bit off) (<Apple>T)

<Apple>T saves the source code text file as an ASCII file. The text file created can be
read by most word-processors. This command works the same way as <Apple>S.

Printing Commands

Print Source Code (<Apple>P)

To output a program listing to your printer, press <Apple>P. The command line will
prompt you for the line number to start printing. Enter any positive number. Simply
pressing Return is a line one. The command line will prompt you again for the line
number to stop printing. Enter the second line number, or simply press Return as this is
an implied last line. The printing of the listing will start immediately. To print the
entire file, press the Return key twice. The Esc key may be used to cancel a print in
progess.

Example:
First Line: 100<CR>
Last Line: 701<CR>

Text Window Printout (<Apple>W)

To print the text appearing in the text window, press <Apple>W. This command is
most useful when you want a quick printout of the Editing Display Area.

To cancel the printout in progress, press the Esc key.

Part Two: The Programming Environment

35 Chapter Two: The Source Code Editor

Miscellaneous Commands

Convert Decimal to Hex (<Apple>#)

To convert a decimal number to hexadecimal, press <Apple># (<Apple>Shift-3). The
command line will prompt you for input. Enter the decimal number to be converted to
hexadecimal and press the Return key. Only valid numeric (0-9) characters will be
converted properly as no error checking is done. Press any key to restore the command
display.

Convert Hex to Decimal (<Apple>#)

To convert a base 16 number to base 10, press <Apple># (<Apple>Shift-3). The
command line will prompt you for input. Enter a dollar sign ($) as the first digit to
indicate that a base 16 number will be converted, then the base 16 number followed by
the Return key. Only valid alphanumeric (0-9, A-F) characters will be converted
properly. Press any key to restore the command display.

Version Information (<Apple>V)

By pressing <Apple>V, the Editor’s Editing Display Area will clear and something
like the following display will appear:

ProDOS 8 Version 1.8

Micol Advanced BASIC e/c version 4.0

Last Modification Date 07 Mar, 1992
Bytes free in editor 1453

Bytes available in copy buffer 10009

Lines available for editing 200

The Editors’ maximum buffer size is 26K kilobytes: enough for about 800 lines of
code. The copy buffer is about 12 thousand bytes.

Part Two: The Programming Environment

Chapter Three: The Compiler 36

Chapter Three

The Compiler

Overview

The Micol Advanced BASIC Compiler is a one pass compiler; it reads the source code
only once while generating the object code. The Compiler translates the ASCII file
containing your BASIC program into an intermediate code which can be linked, then
executed.

This chapter is short, but don’t assume any lack of importance to the Compiler
because of this chapter’s short length. This chapter is simply a brief overview. The
Compiler is the heart of the language system. Part Three, the longest Part, is a
description of the language the Compiler can accept and in many ways is a description of
the Compiler.

Invoking the Compiler

You may invoke the Compiler from the System Directory by using the Shell command
COMPILE or by <Apple>K (Kompile) in the Text Editor (please see the appropriate
section for details). If you do not use <Apple>K from the Editor, be certain to save your
file before exiting the Editor as the Compiler works on the disk file, not any file in
memory.

Example One:

{Default prefix is /Micol.Adv.BASIC/}
COMPILE DISK.UTIL

The file DISK.UTIL will be compiled onto the volume Micol. Adv.BASIC as file
DISK.UTIL.BIN.

Example Two:

COMPILE DISK.UTIL, /RAM5/FILER

The file DISK.UTIL will be compiled as file FILER.BIN (a .BIN is always
automatically appended) on volume RAMS5.

WARNING

Never forget that four characters are always appended to
the object filename during compilation. If the total
number of characters in the object filename results in

more than 15 characters, you will receive an error at
compilation time. To avoid this minor problem, always
specify a source code filename of 11 characters or less.

Part Two: The Programming Environment

37 Chapter Three: The Compiler

During compilation, the Compiler generates three scratch files for its work. These
scratch files are:

+ <Filename.COD> the object code file
» <FileName.LIT> the file where literal constants are stored
» <FileName.LN> the file where forward references are stored.

The above three scratch files are then used by the Linker to create the executable
binary file, <FileName>.BIN

WARNING

As soon as the compilation and linking processes are
completed, the three scratch files are deleted. If however,
during compilation, you should receive a disk full

message, it is because there is not enough storage for
these scratch files as well as the other files on the disk.
In this case, you will have to delete some files or direct
compilation to another volume.

Compiler Commands

The Micol Advanced BASIC Compiler has three Control key commands that may be
used while a program is being compiled.

Aborting a Compilation

Pressing <Control>C stops the compilation in progress; control is returned to the
Command Shell. If you use this command, you will probably notice several error
messages generated by the Compiler. Simply ignore these messages as the compilation
was not completed.

Compiled Listings to the Screen

If you press the letter “L” during compilation, the Compiler will send a compiled
listing to the screen. This listing may be turned off by pressing the letter “L” again and
may be paused by pressing <Control>S. Pressing any other letter will continue the
compilation. This compiled listing is the same as that generated by the compiler option
LIST described later in this manual.

Compiled Listings to the Printer

If you press the letter “P” during compilation, the compiled listing will be directed to
your printer. This listing is the same as that sent to the screen described above.

Part Two: The Programming Environment

Chapter Three: The Compiler 38

WARNING

The printer must be online at the time of compilation. By
default, the printer must be connected to slot one or the

system may hang. This slot number may be altered by
the Shell command PRINTER.

Dealing with Syntax Errors

Unlike the Applesoft BASIC interpreter, Micol Advanced BASIC has dozens of
different error messages, only one of which is the dreaded “Syntax Error”. When the
Compiler cannot make sense of a particular statement, it will send to the screen, in
inverse video, the source code line as far as it could “understand” it, and relate what the
Compiler “thinks” is the problem. The Compiler is sometimes wrong, but it is more often
correct. In any case, you easily should be able to determine the real cause of the problem
by taking time to read the error message and the line of code carefully.

You may be tempted to ask, when the Compiler gives you a message like “/ (’
expected in line <line number>”, that if the Compiler knows what to expect, then
why doesn’t it simply insert the character and continue?

Do not attribute any intelligence to the Compiler. It is little more than a very
sophisticated pattern matcher and code generator. Some compilers do insert the
character they “think” is missing, usually with very bad results.

The problem is that the Compiler often does not know what is really expected. With
the information the Compiler has at the time, it is usually correct about what is needed.
But maybe the cause of this error happened earlier.

For example, the programmer may have mistakenly entered a reserved word and
used it as a variable name. The Compiler might expect a left parenthesis when what it
actually found was an equal sign. If the Compiler had replaced the equal sign with a left
parenthesis, the situation would be worse, not better.

Code Generation

As you probably know, the BASIC program you write is really only a representation
of the actual code that is executed by the computer. This is true whether your program
is compiled as under Micol Advanced BASIC, or interpreted as under Applesoft BASIC.

If you believe that Applesoft code that you entered is what is actually executed, try
this little experiment. Write a small program in Applesoft, then do a CALL -151 to get
into the machine language monitor. Begin looking at the code starting at location $801
(2049 decimal). You will not recognize much; it is a special tokenized code.

The Micol Advanced BASIC Compiler scans your code and writes assembly language
code as it goes. This is true of most (but not all) compilers.

With most language systems, code generation is regarded as a sort of black box. All
you need to know is that a particular program will generate the necessary machine code
to performs its task. You seldom get to see the code that is generated; you have to look
upon it as a sort of magic.

Part Two: The Programming Environment

39 Chapter Three: The Compiler

Micol Systems takes a different approach. We believe that if you can see the code
generated, you will better be able to understand what is going on and therefore write
more efficient programs.

In order to speed compilation and save disk space, the Compiler writes an
abbreviated assembly language code to disk. If you were to look at the file
<FileName>.COD file generated by the Compiler, you would not recognize very much,
even if you knew 65C02 assembly language. However, if you specify the CODE compiler
option at the top of your program, the Compiler will display this code in an assembly
language format (see Part Three, Chapter One for additional information).

You will need a basic understanding of 65C02 assembly language to understand this
code, but as most of the detailed work of the compiled program is done by the run time
Library routines, you won’t need very much.

Most of the generated code is either setting encoded addresses and calling Library
routines to perform the task, or generating code to control the flow of the program. Most
of the work performed by your programs must be performed by the Library routines as
the 65C02 CPU is not very powerful. It cannot even multiply simple integer values.

Many Library routines used by the compiled program fall into one of three
catagories: integer, real or string. The Compiler generates subroutine calls according to
the following criteria: if the Compiler recognizes an operation to be integer, it appends
an “I” to the function name stem. If it recognizes real arithmetic, it appends an “R”, and
it appends an “S” for string routines. If the Library routine R+ is being called, for
example, real addition is being performed. Some important Library routines are:

LNOUT Saves the line number information

MVARY Used with array manipulations

FASS Places FOR loop counter values onto its stack
FOR FOR loop controls

NEXT Decrements the FOR variable stack pointer
LDAC Gets the boolean result from the stack

Part Two: The Programming Environment

Chapter Four: The Linker 40

Chapter Four

The Linker

Overview

The Micol Advanced BASIC Linker will be summoned automatically from the
System Directory if no error is detected during compilation. Because of this, the task of
the Linker is mostly transparent to the user.

After the source code file has been compiled, the program is still not yet ready for
execution. Three intermediate code files were created by the Compiler. These files
contain all the information the Linker needs to generate the executable module.

The Linker will read files created by the Compiler from the volume where these files
were written and create the file FileName.BIN in the appropriate folder.

How the Linker Works

First, the Linker reads the jump table (FileName.LN) that contains the names and
addresses of all Functions, Procedures, Routines and other possible forward references
in the source code.

Second, the Linker creates the binary load module FileName.BIN by reading the
FileName.COD file. The Linker replaces the references to all the names of the
Functions, Procedures, Routines and internally generated labels with their addresses,
and generates the necessary code as it goes. The Linker sends a period to the screen for
every 250 lines of code it has processed.

Third, after the generation of the executable code, the Linker converts the literal
values written in the file FileName.LIT into binary and places this code at the top of the
executable module. These values will be loaded into their proper locations at
initialization time (when the program is first executed).

After the linking process, the Linker will then try to delete the three scratch files
generated by the Compiler and used by the Linker, as they are no longer needed.

How to Use the Linker

As was already mentioned, the Linker is invoked automatically by the Compiler. The
Linker does, however, require some user input after its task is finished.

If the Linker was summoned via the Shell using the COMPILE command, and the
link is successful, you will receive the prompt, “Execute the file (Y/N)?”. If you enter “Y”,
the program will load and execute. If you enter “N”, you will be taken to the Shell.

If the Linker was called via the Editor with the Kompile (<Apple>K) command, the
Linker will automatically load and run the executable object file after a successful link
process. '

Part Two: The Programming Environment

41 Chapter Four: The Linker

Linking Errors

When the Linker detects an error, usually a non-existent Function, Procedure or
Routine call (FN Module.Id or GOSUB Module.Id), the Linker displays “Undefined
subroutine <ID>” in inverse video. <ID> refers to the name used to define the Function,
Procedure or Routine in the program.

You are prompted to fix the error in the Editor, “Edit the linker error (Y/N)?”. A“Y”
response to the prompt will load the Editor with your file waiting to be edited. If you
enter “N”, the Shell will be loaded.

Because the Linker does not know at which line the error occurred, the cursor is

placed at the beginning of the source code file. Use the Forward Find/Replace command
(<Apple>F) to locate the module call with the “undefined” subroutine <ID>.

Part Two: The Programming Environment

Chapter Five: The Run Time Library 42

Chapter Five

The Run Time Library

Reference Section

The run-time Library, file LIBRARY on the System Disk, is the workhorse of the
compiled program. The Library contains all the routines needed by the compiled code to
accomplish its tasks. The functions performed by the run time Library may be anything
from doing integer multiplication to string garbage collection. The Library uses the
floating point math and Single High Resolution graphics routines in ROM, but almost all
other functions are performed by internal run time Library routines.

The run time Library is brought into memory when any compiled program is loaded.
Initially, the Library is loaded to Main memory, but then transferred to Auxiliary
memory, where it performs its tasks.

The Library consists of scores of run time routines and buffer memory. It comprises
about 26 thousand bytes of code. Because most of the work the Library performs is done
by internal routines, the speed of these routines is greatly increased.

The Micol Systems Licensing Agreement

The purchaser of Micol Advanced BASIC has the right to make backup copies of the
Micol Advanced BASIC software for his/her own personal use. This software may not be
given to another party except with express written permission of Micol Systems.

The purchaser of Micol Advanced BASIC has the right to make and distribute copies
of the Micol Advanced BASIC Program Loader, the Micol Program Launcher and the
Run Time Library to execute a program developed by the legal owner of the Micol
Advanced BASIC Language System if one of the two specifications below is followed.
The Micol System Loader, the Micol Program Launcher and the run time Library (files
MICOL.SYSTEM, MICOL.LAUNCHER and LIBRARY) consist of copyrighted code
belonging to Micol Systems Inc.

That person or commercial entity owning a legal (non-pirated) copy of Micol

Advanced BASIC is hereby granted a license to distribute free of charge compiled Micol
Advanced BASIC programs provided one of the two conditions below is followed:

1. The Micol Systems Copyright notice is displayed while the Micol Advanced BASIC
program is booting.

2. Anegotiable, one time fee, is paid to us before the release of the product on the
commercial market. Once this fee is paid to us, you will receive a copy of a
“Commercial Distribution License” from us to use the Run Time Library, as well
as the Micol Systems Loader which does not display the Micol Advanced BASIC
Copyright notice, to be used with a specific product.

Part Two: The Programming Environment

43 Chapter Five: The Run Time Library

IMPORTANT

You do not have the right to use the the Micol Advanced
BASIC Run Time Library, the Micol Program Launcher

or the Micol Advanced BASIC System Loader with a
program intended for commercial purposes unless you
have met one of these two conditions.

Educational and Industrial Site Licenses

Micol Systems Inc. offers to companies and school districts and boards the possibility
of making unlimited copies of Micol Advanced BASIC by purchasing a site license.

The site license package consists of:

* The Micol Advanced BASIC System Disk. This disk contain a special, fully
networkable version of Micol Advanced BASIC, not otherwise obtainable

+ Two copies of the Micol Advanced BASIC reference manual

+ Asite licensing agreement which allows you legally to make unlimited copies of
the system disks and manuals for use with the specified site

* A product registration card
« Theright to purchase additional manuals at a reasonable cost.

District and Board licenses are also available. For further details, contact the Micol
Systems office during regular business hours.

Part Two: The Programming Environment

Chapter One: Compiler Rules and Directives 44

Part Three: The Advanced BASIC Language

Chapter One

Compiler Rules and Directives

Overview

This chapter describes the general rules for writing Micol Advanced BASIC
programs. You must pay special attention to this section as there is nothing in Applesoft
of a similar nature. This chapter also describes special features of the language that can
greatly aid you in your program development.

General Information

The programs you create with the Micol Advanced BASIC cannot be as free form as
those created with Applesoft BASIC. You must follow certain rules regarding the
sequential order of certain statements. This is something inherent to compiled
languages.

A Micol Advanced BASIC program consists of a series of program lines. Each
program line consists of one or more program statements. A program line may have a
maximum of 250 characters and must end with a carriage return.

Multiple Statements per Line

A colon may be used to separate two or more program statements on the same line.
Try to avoid this usage as it hinders program clarity.

Example:
TEXT:HOME

Line Numbers

If you wish, you may precede each program line with a line number as under
Applesoft BASIC. Line numbers may range between 1 and 65535.

Part Three: The Advanced BASIC Language

45 Chapter One: Compiler Rules and Directives

IMPORTANT

Line numbers are NOT required by Micol Advanced
BASIC and their use is NOT recommended. Line
numbers are no longer useful, and were retained solely

for compatibility with Applesoft BASIC. Unless line
numbers are referenced within a program, they will be
ignored. Use of line numbers within a program is entirely
up to the programmer.

IMPORTANT

When the Compiler or run time routine refers to a line in
your program, it is referring to sequential line numbers

given to the source code by Micol Advanced BASIC, not to
any line numbers you have specified in your program.

Program Line Continuation Character (\)

The Editor and Compiler accept source code lines up to 250 characters long. The
Editor’s display will scroll from left to right when a source line of more than 80
characters is entered. To keep the program line within one screen, you may divide a
source code line into two or more parts by terminating the line with a backslash (\).
Enter the remaining source code line anywhere on the next line.

The backslash (\) must be the last character on the line and may appear only where
extra spaces could appear. It may not be used to break reserved words or identifiers.
The backslash may not be repeated on the same line, or you will receive an error.

Example:
PROGRAM Math
HOME
Number% = (1 * 6) + \
(2 * 5)
PRINT Number%
END

Commenting Your Programs

Micol Advanced BASIC provides two ways to help you document a program:
comment statements and comment delimiters.

Use annotations to better understand what the program does in order to make
changes, corrections, or add new features to the program at a later time.

Part Three: The Advanced BASIC Language

Chapter One: Compiler Rules and Directives 46

NOTE

Unlike Applesoft BASIC, Micol Advanced BASIC does not
generate any code for the comments in a program (except

perhaps for line number information). Write whatever
comments which aid in the understanding of the
program,

Comment Statement (Old Method)

The REM (for remark) keyword instructs the Compiler to ignore all characters until
the beginning of the next line. REM provides compatibility for programs originally
written in Applesoft BASIC.

Example:
REM You may write comments like this as in Applesoft,
REM but the method described next is much better.

Comment Delimiter Characters [{ }] (Preferred Method)

Comments may also be enclosed within brace brackets [{ }], which may be placed
anywhere in a program where extra spaces could be written. These comments may cover
multiple lines if you wish.

NOTE
Comment delimiter characters may be nested. An

annotated section of code may be “commented out”
without having to worry about the comments already
written. “Commented out” code is treated like any other
comment.

WARNING

The right brace bracket (}) closes the comment and is
extremely important. Do not forget to terminate the
comment with a right brace bracket [}]; otherwise, the
rest of the program will be considered a comment.

Examples:
PROGRAM Show_Comments
{This is a comment
covering a couple of lines}
HOME

Part Three: The Advanced BASIC Language

M

B
rand

47 Chapter One: Compiler Rules and Directives

{{This FOR loop will not be in the program}

FOR Counter$% {Comment here too} = 1 TO 100
PRINT Counter%

NEXT Counter%}

END {Show_Comments}

Program Order

A Micol Advanced BASIC program must begin with a program name. Compiler
options are the next statements to be included, if needed. ALIASes, then DATA
statements are declared thereafter. The optional identifier’s type declaration follows
next. Array declaration statements round up the program declarations.

Except for the program name, the lines just mentioned are optional, but if compiler
directives, DATA statements or array declarations are used, they must not appear out of
the order mentioned above, otherwise Compiler errors will arise.

Example:
PROGRAM Definition {Program Identifier}
{Compiler Options}
@ LIST, HI BUF

.z, ALIAS “UNTIL 1 = 0" = ”FOREVER"
DATA 1, 1.0, “1" {DATA statements}
{Identifier’s Type Declaration}

. INT (I - N): STR (S - Z)

DIM Alpha% (2), Beta (3), Coma$ (4) {Array declarations}
{Actual Program Start}
END

Program Name

The first line of each program must begin with the reserved word PROGRAM
followed by a program identifier. The name of the program must begin with a letter and
may only consist of letters (A-Z), digits (0-9) and underscores (_), and may not be a
reserved word.

This line is not optional. Ifit is left out, the Compiler will return an error.
Note that a period (.) is not allowed in a program identifier.
Examples:

PROGRAM First_Program

PROGRAM Test.file {Not Allowed}

Part Three: The Advanced BASIC Language

Chapter One: Compiler Rules and Directives 48

Compiler Directives

Compiler directives are special commands given to the Compiler to tell it to do a
special task, such as send a listing to the printer. Compiler directives consist of both
compiler options such as LIST, and other instructions to the Compiler such as ALIAS.

The fact that the Compiler must see all the code before any program can be executed
allows it to do certain things an interpreter is incapable of doing, such as giving more
precise syntactic error messages. A thorough knowledge of these directives will help to
get the most out of the compiled language and make programming more enjoyable.

Compiler Options

To use one or more compiler options, the line must begin with an at sign (@) followed
by one or more options separated by commas (,). The compiler options may appear on
separate lines, but the lines must be consecutive.

Example:

PROGRAM Example
@ LIST, CODE
<Program Code>

CODE

This option lets you see how assembly language code is generated by the Compiler as
it processes the program. Assembly language programmers will be able to see the code
generated, and may be able to write better programs. CODE is included for the benefit
of those who have an interest in learning more about how a compiler generates code.

To see the code generation displayed to the output device, use the CODE option. The
Compiler writes the object code to disk in a compact assembly language-like format.
With this option, the code will be expanded to look like true assembly language.

Example:

PROGRAM Example
@ LIST, CODE
HOME

END

The Compiler produces a listing like this for this simple program:

3 [0] 2048 $0800 HOME
ORG $0800
JSR LIBRARY
BYT PREINIT
WOR 0900
WOR 4C00

Part Three: The Advanced BASIC Language

49 Chapter One: Compiler Rules and Directives

JSR LIBRARY
BYT INIT
WOR 0000
WOR 0000
JSR LIBRARY
BYT HOME
4 [0] 2070 $0816 END

JSR LIBRARY
BYT LNOQUT
WOR 0004
JSR LIBRARY
BYT END

ERROR

If a RESUME is used in a program which causes it to continue execution at the same
line where a run time error occurred, the ERROR compiler option must have been
specified to make the program function properly.

This option causes the Compiler to generate six extra bytes of code for each line or
loop. If you are short of memory, don’t use it.

NOTE
ONERR GOTO branches will work without this compiler
option, but the program will not be able to RESUME
execution. See also RESUME in Part Three, Chapter 14.
Example:
PROGRAM Example
@ ERROR

<Program Code>

GRAPHIC

If your program will be using Double High Resolution or Super Double High
Resoluton graphics, then you may wish to make use of the GRAPHIC compiler option.

GRAPHIC starts the program space at 16384 ($4000), above the High Resolution
graphics page in Main memory. GRAPHIC will also force the Compiler to avoid using
data space between $2000 and $3FFF (8192 through 16383), i.e. the High Resolution

graphics memory in Auxiliary memory. _
This compiler option requires significant memory. If you are not using either Double
or Super Double High Resolution graphics, then do not use this compiler option.

Part Three: The Advanced BASIC Language

Chapter One: Compiler Rules and Directives 50

HI_BUF

As will be descibed in the next chapter, strings are normally stored in Auxih'ary
memory, above the normal data storage unless memory is short. If memory is short,
strings are stored in a seldom used area of Auxiliary memory between $D000 and
$FFFF.

Sometimes strings cannot reside in normal Auxillary memory. For example, because
strings build down to the normal data area, if Double High Resolution graphics are used,
the strings may build down into this graphics memory.

HI_BUF avoids this by forcing the strings into the high Auxiliary memory between
$D000 and $FFFF which is away from everything else.

However, there is one drawback if you using HI_BUF. Because of a delay caused by
bank switching, as well as other reasons, strings will react somewhat slower. Only use
HI_BUF if you have reason to believe there will be a memory conflict.

Example
PROGRAM Example
@ HI BUF
<Program Code>

IO_BUFS = <Value>

ProDOS 8 requires 1024 bytes for each open file. If only one file is open, referenced
either by File Allocation Number one or File Allocation Number eight (see Part Three,
chapter Seven), one buffer is allocated away from all program and data space and need
not concern you. However, if more than one file must be open at a time, then additional
buffers must be allocated just below the run time Library, and just above the end of
string storage.

If you must have two or more files open at the same time, then yo‘u.must have an
IO_BUFS compiler option within your program. <Value> must be a.dlglt between one
and eight. You can determine the value of <Value> by subtracting one from the
maximum number of files open at one time in your program. But don’t forget, every
value above one requires 1024 bytes of data memory. If you are short of memory, avoid
this compiler option.

Example

PROGRAM Example
@ IO _BUFS = 3 {Allow four open files at the same time}

<Program code>

LIST

The LIST compiler option instructs the Compiler to generate a source code listing as
the program is being compiled.

A compiled source code line consists of the sequential line number, the nest.ing leyel,
the address expressed in decimal notation where the first byte of this line will reside,

Part Three: The Advanced BASIC Language

51 Chapter One: Compiler Rules and Directives

this address expressed in hexadecimal notation, and the source code line. A symbol table
dump of the variables followed by the memory usage information is displayed after the
program lines. See “Compiled Listing” later in this chapter for additional information.

LODATA = <Value>

The default starting address for data is at location $900 (2304 decimal) in Auxiliary
memory. Because 256 bytes starting at $800 (2048 decimal) are required for temporary
storage, $900 is the lowest possible address at which to begin data storage.

However, if you are using Double High Resolution graphics, which makes use of
memory between $2000 and $3FFF (8192 through 16383 decimal) in both Main and
Auxiliary memory, you may wish to use a different starting address for your data
storage. This is the compiler option LODATA. The syntax for LODATA is identical to
LOMEM, and <Value> may be either a decimal or hexadecimal value.

Example
PROGRAM Example
@ LODATA = 16384 {Start data at location 16384}
<Program Code>

LOMEM = <Value>

Unless overridden, the Compiler assigns a starting address of $800 (2048 decimal) in
Main memory for any Micol Advanced BASIC program. Under most circumstances,
because this is the lowest possible address at which a program may reside, this is the
starting address to use.

However, if you are using any of the High Resolution modes, you may wish to move
your program higher in memory. This is the function of LOMEM.

All High Resolution graphics modes use Main memory between locations $ZQOO and
$3FFF (8192 through 16383 decimal). If you are using High Resolution gr'aphlcs, you
may wish to start your program at 16384, above the High Resolution graphics (also see
the GRAPHIC compiler option).

Example

PROGRAM Example
@ LOMEM = $4000 {Decimal 16384}
HGR

NOGOTO

This compiler option is intended for teachers who wish to restrict their students to
structured programming without using GOTOs and POPs. By specifying this option,
GOTO and POP statements will become illegal and cause a compiler error if used. The
reserved words GOTO and POP may then be used as variable names.

The ONERR GOTO statement is not affected by the NOGOTO compiler option.

Part Three: The Advanced BASIC Language

Chapter One: Compiler Rules and Directives 52

Example
PROGRAM Example
@ NOGOTO

NOT_C

This compiler option turns off the <Control>C interrupt command ability during
program execution. Pressing <Control>C from the keyboard during a program’s
execution will have no effect on programs if this option is used.

Example:
PROGRAM Example
@ NOT C
IMPORTANT ' .]
Do not use this compiler option until the program is
thoroughly debugged.
OPTIMIZ

The compiler normally generates line information to let the programmer know where
a run time error has occurred in the program.

This compiler option turns off the consecutive line information usually generated by
the Compiler. This gives programs a significant increase in execution speed. Use
OPTIMIZ to speed up the program once it is completely debugged.

IMPORTANT . .
Another very important function of OPTIMIZ is to
conserve memory. A program using OPTIMIZ is about
one-third smaller than one without it.

PRINTER

This option functions the same way as the compiler option LIST, except output is
directed to the printer instead of the screen. Output is directed through slot one unless
changed by the Shell PRINTER command. The listing is printed according to values set
by the Shell PRINTER command.

Example:

PROGRAM Example
@ PRINTER

Part Three: The Advanced BASIC Language

63 Chapter One: Compiler Rules and Directives

SHARE

Micol Advanced BASIC allows about 42K exclusively for your programs (excluding
data space). Because the Compiler is very efficient in its code generation, this allows you
to create very large programs indeed.

However, the time may arise when you require even more space, and two or more
Micol Advanced BASIC programs must share the same data space and values. This is
the function of SHARE, to give you more program space.

When the Compiler sees the SHARE compiler option, it retains the symbol table
used by the previous compilation, and generates special code hindering the run time
initializion of the the data space.

This means that the programs being SHAREd must be compiled in the order in
which they will be executed, with the SHARE compiler option only being in the second
and subsequent programs.

DATA statements and array DIMensions may not be contained in a program which
contains this compiler option.

In order to execute the SHAREd programs, you must make use of the RUN
command described later in this manual.

You may wish to make use of a batch stream to compile your SHAREd programs.
See COMPLINK in Part Two, Chapter One. Also see Part Five, Chapter Three.

Example:

PROGRAM First

@ LIST

HOME

<Program>

RUN “Second.BIN”

PROGRAM Second
@ SHARE

<Program>

VAR2
This option restricts to two (or three if an exclamation mark (!), a dollar sign ($), an

ampersand (&) or a percent sign (%) is at the end of the variable name) the number of
significant characters in a variable name, as in Applesoft BASIC.

NOTE

Use this compiler option only if you are compiling source

code files converted from Applesoft BASIC programs and
do not wish to modify the variable names.

Part Three: The Advanced BASIC Language

Chapter One: Compiler Rules and Directives 54

Example:
PROGRAM Example
@ VAR2

Compiler Aliases

ALIAS “User statement” = “BASIC Expression”
~User Statement

The ALIAS compiler directive lets the programmer change a Micol Advanced BASIC
statement or expression to another statement or expression of his/her own choosing.

ALIAS definitions are placed after the compiler options and before the variable type
declarations.

The purpose of Aliases is to give more meaning to your programs. For example, if
you have a loop which you wish to execute as long as the computer is on, you may
substitute Forever for the Micol Advanced BASIC code that actually creates this
condition.

An Alias is defined by using the keyword ALIAS followed by the replacement
statement, followed by an equal sign, followed by the statement that the Compiler will
substitute. Both strings on either side of the equal sign must be enclosed in quotation
marks ("").

To make the replacement within a program, use the tilde (~) character followed by
the user replacement string (without the quotation marks). When the Compiler detects
the tilde, it will search the ALIAS list (created at the top of the program) for a match
and make the replacement during compilation.

An Alias substitution may not be the first executable statement or the Compiler will
issue an error.

IMPORTANT

All string literals used with Aliases are case sensitive; the
Alias definition and user statements must exactly match,

or no change will occur. No error will be flagged, but as
no substitution will occur, an error condition will
undoubtably arise when the line is compiled.

o ‘Example:
PROGRAM Example
ALIAS “Pi” = “3,14159"

ALIAS “Forever” = “UNTIL 1 = 2"
ALIAS “Clear Screen” = “HOME”
INT (A - Z2)

Part Three: The Advanced BASIC Language

55

NOTE

Chapter One: Compiler Rules and Directives

{Start of executable code follows}
Trig_Const = ~Pi
~Clear Screen
REPEAT
PRINT “Trig Const = ”;Trig Const

~Forever
END
NOTE :
If two Alias declarations beginning with the same letters
are declared, the wrong match may be made. This
problem may be avoided by declaring the longer Alias
declaration first.
Example:

PROGRAM Example

@ List

{Note the order here, it’s important,
if reversed, only first Alias matched}
ALIAS “Pi Long” = “3.14159"

ALIAS “Pi” = “3,14"

ALIAS “Circumference” = “20.0"

{Note! Order here is unimportant}
Diameter = ~Circumference / ~Pi

Diameter = ~Circumference / ~Pi Long

When the Compiler generates a compiled listing, the Alias
substitution made during compilation will be displayed.

If you are getting error messages that don’t make sense to
you, try generating a compiled listing.

Variable Type Declarations

INT(letterl-letter2) : STR(letter3-letterd)

The variable type declaration allows the programmer to write the integer and string
identifier’s of simple and structured data types (simple variables and arrays) without the
percent (%) or string ($) character required by Applesoft BASIC. These statements are
optional and are placed before the arrays are declared.

Part Three: The Advanced BASIC Language

Chapter One: Compiler Rules and Directives 56

To declare a range of variables, specify the data type (INT for integer or STR for
string) followed by a range of letters in parentheses. Separate the variable type
declarations by a colon (:).

The range of letters used for integer variables must be different from the range used
for string variables. If the declarations between the integer and string data types should
overlap, the Compiler will indicate that an error occurred.

Any possible implied declaration with the following characters, a “%” for integer “&”
for real, “$” for string and “!” for boolean after the variable name, will override the
declaration types mentioned above. These characters are still significant. Note that
there is no implicit declaration for booleans.

NOTE

A one letter range may be declared by specifying the same

letter twice in the declaration.

Example:
PROGRAM Examplel
INT (K-K): STR (S-8)

Variables beginning with the letter K and having no special character at the end will
be integer variables, while variables beginning with the letter S and having no special
character at the end will be string variables.

Example:

INT (I-R): STR (S-2)
First$ = “W»

Second = W

Second$ = “”
Second% 0

Third wo

Forth 0.0

Ninth 0

Ninth& = 0.0

i

First$ is a string variable

Second is a string variable

Second$ is a string variable different from Second
Second% is an integer variable

Third is a string variable

Forth is a real variable

Ninth is an integer variable

Ninth& is a real variable

Part Three: The Advanced BASIC Language

67 Chapter One: Compiler Rules and Directives

In the above example, all variables which begin with letters A through H will be real
variables (unless followed by the character !, % or $). All variables which begin with
letters I through R will be integers (unless followed by the character &, ! or $), and all
variables which begin with letters S through Z will be string variables (unless followed
by the character &, % or !). Second and Second$, although string variables in the above
example, are different variables.

Compiled Listing

Whenever you use the LIST or PRINTER compiler options, you generate what is
called a compiled listing. This compiled listing contains much information that may be
of use to you during your program development.

A compiled listing looks something like this:

PROGRAM Example
Compiled listing of Example

3 [0] 2048 $0800 HOME

4 [0] 2070 $0816 FOR Counter = 1 TO 10

5 (1] 2101 $0835 PRINT “Counter = ”;Counter
6 [1] 2123 $084B NEXT Counter

7 [0] 2136 50858 END

No errors in compilation

SYMBOL TABLE DUMP
1 RO905 10 RO90A Counter RO900
26 bytes variable storage
102 bytes code generated
17126 bytes string buffer in low memory

Program Lines

The first position in the program line is occupied by the sequential line number.
This is the number that is used whenever a line is referenced.

The second position in the program line is occupied by a number in square brackets
([D. This number is the level of nesting in which the program line appears. For
example, this number tells you how many FOR loops or IF statements are currently
active at the beginning of the line. This can be very valuable debugging information.

The third value displayed is the address in decimal, followed by the address in
hexadecimal, followed by the actual program text line itself.

Part Three: The Advanced BASIC Language

Chapter One: Compiler Rules and Directives 58

Symbol Table Information

After the program lines, the Compiler displays the list of all types of simple and
structured variables used in the program.

The Symbol Table contains the hexadecimal addresses of all simple boolean, integer,
real and string variables, numeric constants (literals), and arrays.

The capital letter in the address indicates the type of the variable. B indicates the
address of a boolean, I indicates the address of an integer, R indicates the address of a
real, and S indicates the address of a string

The local simple variables (accessible only to Functions or Procedures) are the first
variables listed in alphabetical order. The values assigned to simple and structured data
types are listed second, also in alphabetical order. The simple and structured data types
are listed third, also in alphabetical order.

During compilation, the names of all variables have been converted into uppercase
letters and so appear in the Symbol Table. The name of a local simple variable is
preceded by a number sign (#). An array name is followed by a left parenthesis [(].

Statistical Information

After the Symbol Table has been displayed, there appear three lines which give a bit
of helpful information. These lines are:

26 bytes variable storage
102 bytes code generated
17126 bytes string buffer in low memory

The first line indicates how many bytes of memory were used by the boolean, integer,
floating point, and string variables and arrays, and all literals. The second line shows
how many bytes of program code were generated by the Compiler. The third line tells
you how much memory is available for storing strings, and in which part of memory,
either low or high, the strings will reside.

NOTE

The program will actually occupy a bit more memory than
is specified by the second statistical information line.
This is because some memory will be occupied by code

generated by the Linker to store initialization
information. The first line of statisical information (bytes
required for variable storage) will give you a rough idea of
how much more.

Part Three: The Advanced BASIC Language

Chapter Two: Basic Elements of the Language 59

Chapter Two

Basic Elements of the Language

Overview

In order to understand any computer language, you first have to learn the basic
elements comprising the language. This chapter will deal with these basic elements that
you will need to build upon to create Micol Advanced BASIC programs.

Basic Symbols

Micol Advanced BASIC uses letters of the alphabet, digits, and special characters to
form the symbols of the language.

Digits (0-9)
Digits are used to form numbers, keywords, identifiers, and character strings.

Letters (A-Z, a - z)

These characters are used to make keywords, identifiers and character strings.

Special Characters

These characters (1, @, $, %, &, _, ~ (,) {,}) may be used to give a specific meaning
to identifiers, declare an array, specify a comment, etc.

Separators

Colon

The colon (:) separates two statements on a line.

Comma

The comma (,) separates two or more constants or variables on a line.

Part Three: The Advanced BASIC Language

60 Chapter Two: Basic Elements of the Language

Parentheses

The parentheses [()] separate complex string and math expressions as well as array
element designators.

Space

A space specifies where one symbol ends and another symbol begins.

Variable Names

A variable name consists of letters, digits and the underscore character. A variable
name may have up to 62 characters, but it is wise to limit its length to about 20
characters or less. Unless the VAR2 compiler option is used, all characters are
significant.

The variable name must begin with a letter of the alphabet. Characters may'be
either in upper or lowercase, but lowercase letters will be converted to uppercase during
compilation.

A variable name may not be a reserved word and should be meaningful. By
convention, variable names are easily destinquished from reserved words in that
reserved words are entered in uppercase letters while variable names are in lowercase
with only the first character in uppercase.

Unlike Applesoft, a variable name under Micol Advanced BASIC may contain a
reserved word within it. For example Go_Home and For_Ctr are legal variable names.

Examples:
Factorial, General Ledger, Tax, Price

instead of variables like

213, XYZ, Al123
which are not meaningful.

These variables are not legal:

General.ledger, 10%_Tax, Home

Variable Data Types

The data type defines the interpretation of values that simple variables, arrays, and
expressions may have. Micol Advanced BASIC has four simple data types and four
structured data types, one for each simple data type.

Simple Data Types

Micol Advanced BASIC supports boolean, integer, real and string variables as simple

Part Three: The Advanced BASIC Language

Chapter Two: Basic Elements of the Language 61

data types.

Booleans

A boolean variable is assigned either a value of TRUE or FALSE. The function of a
boolean variable is to be set to one state or the other, so that necessary action(s) may be
taken later (this is often called a flag or switch). A boolean occupies only one byte of
memory. The initial value of a boolean variable is FALSE.

The normal convention for variable names applies, but an exclamation mark (!) must
be added at the end of the variable name to force the Compiler to type the variable as
boolean.

Boolean variables may also hold an indefinite value if necessary. See Controlled
Uncertainty in Chapter Twelve of this Part for details.

Examples:
Flag! = FALSE {Init flag for test}
Number = 10

IF Number > 6 THEN Flag! = TRUE
IF Flag! THEN BEGIN
PRINT “Number is greater than Six”

ENDIF
NOTE
The keyword TRUE or FALSE is displayed to the current
output device when a boolean variable or relational
expression is evaluated within a PRINT statement.
Example:

PRINT 1 <> 2 {Will print TRUE}

Integers

An integer value represents a numeric value that has no fractional part and has a
limited range. The initial value of an integer variable is 0.

The normal convention for naming variables applies, but a percent sign (%) must be
added at the end of the identifier to force the Compiler to type the variable as integer
unless an INT variable type declaration is in force.

Example:
Dividend% = 1
Divisor% = 3
PRINT Dividend% / Divisor% {Result is 0}

Micol Advanced BASIC can represent integer values in the range +32767. Negative

Part Three: The Advanced BASIC Language

62 Chapter Two: Basic Elements of the Language

values are represented as two’s complement numbers. An integer occupies two bytes of
memory.
Example:
Integer% = 32000

Real (Floating Point)

A real number represents a value that can represent a large range of values and may
have a fractional part. The default number of significant digits that may accurately be
represented is nine digits. The initial value of a floating point variable is 0.0.

The normal convention for naming variables applies, but an ampersand (&) may be
added at the end of the identifier to force the Compiler to type the variable as a real to
override an INT or STR variable type declaration.

Examples:

Dividend& = 1

Divisor& = 3

PRINT Dividend& / Divisoré
{Result is 0.3333333}

Reals can represent values in the range 3.4 X 10", Nine digits are significant in
calculations. A real variable uses five bytes of storage.

Examples:

PRINT EXP(1.0) {Prints 2.718282}

Scientific Notation

Large real values that are too large to be represented in decimal format (more than
nine digits) may be represented using scientific notation. Scientific notation
representation uses a multiple of 10 raised to a power of 10. Values may either be set or
displayed using scientific notation.

Example:
Real& = 4E6 {Equivalent to 4,000,000 or 4 x 106}
Real& = 4E-6

Strings

A string is a sequence of characters including letters, digits, special characters, the
space character and control characters.

The normal convention for naming identifier applies, but a dollar sign ($) must be
added after the variable name to force the Compiler to type the variable as string. The
dollar sign may be omitted if the STR Variable Type Declaration applies to the variable
identifier in question.

Part Three: The Advanced BASIC Language

Chapter Two: Basic Elements of the Language 63

The length of a string is equal to the number of characters inside it. Each string
variable occupies two bytes in data memory plus four (3) bytes of system information in
addition to the characters in a separate string buffer. The maximum size a string can
grow is 255 characters.

Micol Advanced BASIC uses two types of string storage: static and dynamic storage.

Static Storage

Static strings are used when a string of characters is encased in double quotation

marks ("") within a program.
Example:
Name$ = “Steve”

Dynamic String Storage

Dynamic string storage is used in all other cases. A dynamic string variable holds
the address where the actual string is in memory, but the actual string is stored in
Auxiliary memory, normally just above the last declared variable. However, whenever
the compiler option HI_BUF is used, or the Compiler notices that, because of a large
amount of data space usage, probably caused by large arrays, it will assign High
Auxiliary memory (between $D000 and $FFFF) as the string buffer area. Although this
technique maximizes memory usage (giving you about 30K for data storage alone), extra
time will be required to access these strings due to moving strings while bank switching.

Structured Data Types: The Array

Micol Advanced BASIC has four kinds of structured data types: Arrays of boolean,
integer, real and string.

Declaring Arrays

DIM Array_Name [!,%,&,$] (Size) \
[{, Array_Name [1,%,&,$ 1 (Size) }]

Arrays are always declared and dimensioned at the beginning of the program after
the optional compiler options, the ALIAS declarations, and DATA statements.

An array is a set of data of the same type. Each piece of information is called an
element. Access to each element is made via a subscript (an index number to the array).

The DIM statement will allocate to the array the number of elements plus one,
element O being the first array element.

Part Three: The Advanced BASIC Language

64 Chapter Two: Basic Elements of the Language

NOTE
Unlike Applesoft, all arrays, no matter how small, must

be declared before they are used. If an array needs more

memory than is available to the computer, an error will
be issued during compilation. DIM sizes may only be
numeric constants, not variables.

To declare an array, use the reserved word DIM, give the array any legal variable
name followed by its size between parentheses.

To declare more than one array, separate each array name and size by a comma.

Multi-dimensional Arrays

DIM Name [!, %, &, $] (Size[{, Size}])\
[,Name[!, %, &, $]1(Size[{,Size}])]

A multi-dimensional array is an array having two or more dimensions. A different
size may be used for each dimension.

To add another dimension to an array, enter a comma followed by another size value
after the first size dimension. To declare more than one array, separate each array name
and size declaration by a comma.

Example:

PROGRAM Month Temp
DATA 23, 34, 32, 12, 11, 22, 20
DATA 18, 14, 17, 15, 16, 13, 12
bAaTA 11, 10, 7, 3, 0, =3, -6, -14
paTa -17, -19, =15, -12, =10, -8
DIM February (3, 6)
HOME
Temp Totals& = 0
FOR Week = 0 TO 3
FOR Day = 0 TO 6
READ Temperature% {Must read integer data}
February (Week, Day) = Temperature$
Temp Totalé& = Temp Total& + February (Week, Day)
NEXT Day
NEXT Week
Aver Temp = Temp_ Total& / 28
PRINT “The average temperature for February is: ”;Aver_ Temp
END

Part Three: The Advanced BASIC Language

Chapter Two: Basic Elements of the Language 65

Although it is possible to have an array with more than three dimensions, it is rare
that one has to use such arrays. Review the logic of the program if such a large array is
required.

Array Memory Usage

A boolean array uses one byte to hold the number of dimensions, two bytes per
dimension size plus one byte times the number of elements plus one.

An integer array uses one byte to hold the number of dimensions, two bytes per
dimension size plus twice the number of elements plus two bytes.

A real array uses one byte to hold the number of dimensions, two bytes per
dimension size plus five times the number of elements plus five bytes.

A string array allocates one byte to hold the number of dimensions, two bytes per
dimension size plus two times the number of elements plus two bytes.

Array Nesting

Under most circumstances, integer index variables should be used with boolean,
integer and string arrays; real index variables should be used with real variables to
reduce array access time.

WARNING

If arrays are nested, that is, an array element is used as
an array counter, you must nest arrays of the same type

or an error will result. This means you may only nest
real arrays within real arrays and integer arrays within
string, integer and boolean arrays.

Operators

Micol Advanced BASIC has three types of operators: arithmetic, logical and
relational.

Arithmetic Operators

Arithmetic operators are used with either integer or real variables. The arithmetic
operators are addition (+), subtraction (-), multiplication (*), division (/), exponentiation
(*) and modulo (MOD). Here are some general rules to note:

1. An overflow error will be indicated when the result of any calculation is over the
allowed range for that variable type.

2. Exponentiation works only with positive numbers; negative numbers will result in
an error. Zero raised to any power is zero. Any positive number raised to the

Part Three: The Advanced BASIC Language

66 Chapter Two: Basic Elements of the Language

power of zero equals one.

3. The asterisk (*) is used in many programming languages as the operator for
multiplication to avoid confusion with the capital letter X.

4. The unary minus sign (-) indicates the change of sign when it is used with one
operand. Unary plus (+) is redundant and is ignored by the Compiler.

Relational Operators

A relational operator tests relationships between two conditions and produces a
boolean result (TRUE or FALSE). It is this operation, more than anything else, that
allows your programs to “think”.

The relational operators are: less than (<), less than or equal to (<=), equal to (=), not
equal to (<>), greater than or equal to (>=) and greater than (>).

Logical Operators

Logical operators operate on relational expressions to produce a boolean result of
TRUE or FALSE.

The logical operator are: NOT, AND, OR.

Example:
IF (Real < 5.3) AND (NOT (Integer$% > 20)) THEN \
Flag! = TRUE

Evaluation of an Expression: Precedence Rules

The evaluation of an expression is done following a priority list established by math
conventions. Ifthe priority of the expressions is equal, the evaluation is done from left to
right. The established math priorities are as follows:

1. Expressions between parentheses ()

2. Unary operators -+

3. Exponentiation operator A

4. Multiplication, Division, and MOD operators */MOD

5. Addition and Subtraction operators + -

6. Relational operators >, >=, <=, <, <> =
7. AND logical operator AND

8. ORlogical operator OR

9. NOT logical operator NOT

You may wish to use parentheses to make certain an expression is evaluated in the
intended order. An expression may contain any number of parentheses.

Part Three: The Advanced BASIC Language

Chapter Two: Basic Elements of the Language 67

Hexadecimal Literals

A hexadecimal number may be assigned to any integer or real variable. A
hexadecimal number is a base 16 number and is always preceded by a dollar sign ($) and
consists of the digits 0 through 9 and the letters A through F.

Example:

Hex Number% = $12FF
Long_Real = S$FFFFFF

Mixed Arithmetic Expressions

What dictates how the Compiler evaluates a line of code? Basically, the Compile'r
determines the type of calculation to perform by the first data type (real or integer) it
encounters in a statement.

Micol Advanced BASIC handles mixed arithmetic very well, but extra code will need
to be generated which requires extra time to execute. If possible, it is best to be
consistent with your variable types when coding.

Expressions with Simple Variables

Example:
Real Varé& = Integer% * 3 + Realg

Because this assignment is made to a real variable, the above formula will be treated
as areal formula. The integer value in variable Integer% will be converted to real.

Example:
Integer% = Reall& * Real2& / Real3& + Realds
In this example, each real value must be converted to its integer equivalent before
the expression can be evaluated. It would be better to assign the formula to a real
variable, then reassign the real variable to an integer variable in another statement.

Example:
Real& = Reall& * Real2& / Real3& + Realds

Integer% = Reals&

Expressions with Arrays

As with simple variables, the Compiler determines the type of calculation by the first
variable type it encounters. What is different with arrays is that the array counter is
also effected. It is best to maintain the same type of array and array counter. Integer
arrays should have integer counters, and real arrays should have real counters. String
and boolean arrays should use integer counters.

Part Three: The Advanced BASIC Language

68 Chapter Two: Basic Elements of the Language

Example:
Arrayé& (Reals) = 3
Array% (Int%) = Integer$%
Array$ (Int%) = “String”
Array! (Int%) = TRUE

Any other choices from the above examples will force a conversion to the other type
before the correct array element can be accessed.

Simple Variable Declaration

In Micol Advanced BASIC, simple variables may be declared in one of two ways:
implicitly and explicitly. Implicit declarations are done simply by using the variable.
The Compiler determines whether a variable has not been used before and automatically
allocates space for it if need be. This is the method used by Applesoft BASIC.

Micol Advanced BASIC also offers the option of explicitly declaring a simple variable,
similar to the way arrays are explicitly declared. This means, you must state within
your program, that you are using this particular variable. This is similar to the system
used in Pascal and C. This method almost completely eliminates the possibility that you
will later enter this variable incorrectly.

Explicit variable declarations are also a very good idea for documentation purposes,
as you can easily determine all variables used within the program. You may wish to
include comments to better explain the variable’s usage.

Although the explicit declaration adds some complexity to the language, it is
probably preferable to use implicit declarations as program maintainance is made easier.

DECLARE Boolean!, Integer%, Real&, String$

To explicitly declare a variable, enter the reserved word DECLARE followed by a list
of simple variables separated by commas. A program may have as many DECLARE
statements as needed, but they must be the first and only statement on a program line.

IMPORTANT
If no DECLARE statement is encountered in the

program, all simple variables will be placed automatically
into the Symbol Table. Once a DECLARE statement is
detected in the program, all subsequent variables, not

already defined, must be declared by a DECLARE
statement; otherwise, the Compiler will signal an error.
If you attempt to DECLARE a variable a second time,
you will receive an error at compile time.

Part Three: The Advanced BASIC Language

Chapter Two: Basic Elements of the Language 69

Example:
PROGRAM Declaration
DECLARE Real, Integer%, String$
Reals = 5.0
Integer% = 25
String$ = “This variable has been declared”
Any Thing% = 23 {Error here, not in DECLARE list}

Variable Assignments

[LET] Avar = Aexpr
[LET] Svar = Sexpr

The assignment instruction is the equal sign (=) and is used to assign an expression
to a variable. The equal sign also implicitly declares this variable if it has not been used
before (if DECLARE is not being used). The expression is always located on the right
side of the equal sign. The result is stored in the variable to the left of the equal sign.

The reserved word LET may be used to specify an assignment. LET was retained
solely for compatibility with Applesoft BASIC and is ignored by the Compiler.
Examples:
Number& = 35.1
Number% = 10 * 2 / 5
String$ = “This is a small message”
Boolean! = TRUE

Initializing the Data Space
CLEAR

CLEAR will reinitialize all simple and structured variables. All numeric variables
will be set to zero, all strings will be set to empty and booleans will be set to FALSE as
was the case when the program was first executed.

Example:

Variable = 10
CLEAR
PRINT Variable {Value is 0}
Note that an implicit initialization is done at the first line of executable code.

Branching to this line of code will reset all variables to zero or null as if the program
restarted.

Part Three: The Advanced BASIC Language

Chapter Three: Mathematical Functions 70

Chapter Three

Mathematical Functions

Overview

The mathematical functions under Micol Advanced BASIC have been classified into
two categories: general purpose functions and trigonometric functions. All use integer or
real arguments and yield integer or real results.

General Purpose Functions

ABS (Aexpr)

ABS (Absolute) returns the absolute (positve) value of the argument. The argument
may be negative, zero or positive.

Example:
Number% = ABS (-10)
PRINT Number% {Will print 10}

EXP (Aexpr)

EXP (Exponent) yields the value of the constant e (2.71828183) raised to the power
of the argument. An argument smaller than zero always returns zero. An argument of
zero returns one.

Example:
Exponent = EXP(10)
PRINT Exponent

INT (Aexpr)

INT (for integer) returns the whole number portion of the argument, discarding the
fractional part, if any.

Part Three: The Advanced BASIC Language

71 Chapter Three: Mathematical Functions

NOTE

INT does not convert a real argument to an integer as the
function name implies, but simply truncates the value. A
real value remains a real value after INT has performed

its work. In Micol Advanced BASIC there are no
functions to convert values from real to integer and
integer to real, but rather this conversion is done
automatically and need not concern the user.

Examples:
Real Numé& = INT (95.9)

LOG (Aexpr)

LOG (for logarithm) yields the natural logarithm base e (e = 2.718282) of the positive
argument passed to it. If an argument equal to zero or negative is passed, a run time
error will occur.

Example:

Logrithm = LOG (10)

MOD

MOD (for modulo) returns the remainder of the real or integer division of the
nominator by the denominator.
Example:
Nominator% = 25
Denominator% = 4
Remainder% = Nominator% MOD Denominator%
PRINT Remainder% {Writes a 1}

ROUND (Aexpr)

ROUND returns the rounded value of the argument. For a positive value, if Aexpr is
between x.5 to x.9, the result is rounded upward. If the value is between x.0 to x.4, the
number is rounded downward.

For a negative value, if Aexpr is between -x.5 to -x.9, the number is rounded
downward. If the value is between -x.0 to -x.4, the value is rounded upward.

If the number to be rounded is assigned to an integer result, the value will be
returned unchanged. :

Part Three: The Advanced BASIC Language

Chapter Three: Mathematical Functions 72

Example:
Kappa& = 1.8
Delta& = ROUND (Kappa&) {Deltas will = 2}
Kappa& = 1.4
Delta& = ROUND (Kappaé&) {Delta& will = 1}
SGN (Aexpr)

SGN returns the sign of the argument. A negative argument returns a negative one.
If the argument equals zero, SGN returns a zero. A positive argument returns a one.

Example:
Result = SGN (0) {Equals zero}
Result = SGN (-123) {Equals negative one}
Result = SGN (123) {Equals positive one}
SQR (Aexpr)

SQR returns the square root of the argument. The argument must be a positive, real
or integer expression, otherwise a run time error will occur.

If the value returned by SQR is multiplied by itself, the result may be less than the
initial value. The loss of precision occurs because of truncation.
Example:
FOR Count% = 1 TO 10
Product% = Count% * Count%
PRINT Count%, Product%, SQR (Count%)
NEXT Count%

Trigonometric Functions

Micol Advanced BASIC has four trigonometric functions. All arguments or results
are expressed in radians (not degrees).

ATN (Aexpr)

ATN yields the arc tangent (inverse tangent) of the parameter. The value returned
represents an angle expressed in radians in the range +rn /2.

Example:
Tangent& = TAN (Radians)
Inv_Tan& = ATN (Tangenté&)

Part Three: The Advanced BASIC Language

73 Chapter Three: Mathematical Functions

COS (Aexpr)

COS returns the cosine of the argument. The cosine is the ratio of the length of the
adjacent side to the length of the hypotenuse (in a right-angled triangle). The argument
is the angle as expressed in Radians.

Example:

Cosine& = COS (30 * Pis& / 180)

SIN (Aexpr)

SIN yields the sine of the argument. The sine is the ratio of the length of the
opposite side to the length of the hypotenuse (in a right angled triangle). The argument
is the angle as expressed in Radians.

Example:

Sine& = SIN (60 * Pis& / 180)
PRINT Sines

TAN (Aexpr)

TAN returns the tangent of the argument, (a number between 0 and the accuracy
limit of the data type used). The tangent of 90 degrees is infinity.
Example:
Tangent& = TAN (Radiansé&)

Radian/Degree Conversion Functions

Most of you are used to working with degrees instead of radians. You may find the
following conversion Functions useful to use within your programs.
{Take Degree as input}
FUNC DegreeToRadian [Degrees]
Pig = 3.,1415927
Radian& = Degree& * (Pis& / 180)
ENDFUNC [Radian&] {Return Radian as output}

{Take Radian as input}
FUNC RadianToDegree [Radiané&]
Pi& = 3.1415927
Degree& = Radian& * (180 / Pi&)
ENDFUNC [Degree&] {Return Degree as output}

Part Three: The Advanced BASIC Language

Chapter Four: Strings 74

Chapter Four
Strings

Overview

A string may be thought of as text. Each word or sentence of this manual may be
thought of as a string. All data sent to the screen or the printer are sent as strings.

Under Micol Advanced BASIC, strings are dynamically stored. This means that
string lengths do not have to be declared in advance.

This section deals with strings and string manipulation functions at your disposal
under Micol Advanced BASIC. You must pay special attention to this chapter as some of
the string functions operate somewhat differently than under Applesoft. Also, there are
several additional string functions that give the string handling abilities of Micol
Advanced BASIC much greater power than any other language you have probably seen.

String garbage collection, a topic not well understood by many users, is also
discussed in this chapter.

String Function Notes

Here are some things to pay special attention to:

1. No string shaping function such as LEFT$ may be used until the string argument
has been explicitly given a value.

2. String shaping functions assume integer arithmetic and will make the conversions
from real to integer as needed. The sole exception is STR$ which assumes a real
value as its parameter and will make the conversion from integer to real as
needed. Therefore, any real number within string functions, except STR$, will
be converted to integer before the manipulation is done. Since the type
conversion delays the programs a bit, use integer values whenever practical.

3. Strings may grow to a maximum length of 255 characters.

The ASCII Character Set

Each character has a numeric value, and this numeric value is used in order to
evaluate strings.

“‘A” < “B” and “B” > “A” are true. If you look at the ASCII chart (Appendix F), you
will see that “A” has the numeric value 65 and “+” has the numeric value 43. These
numbers are used to evaluate string expressions.

Part Three: The Advanced BASIC Language

75 Chapter Four: Strings

String Comparisons

Strings are compared using relational operators to determine if, for example, one
string is the same or is different from another string. Comparisons are made using the
ASCII numeric value of each character in both strings.

Examples:

“Ronald” = “Ronald”
“Ronald” <> “RONALD”
“Ronald” < “Steve”
“Walter” > “Steve”

By comparing one string with another, strings may be sorted in alphabetical order or
inverse alphabetical order. See also the ASC and CHRS conversion functions.

String Concatenation

Concatenation is the act of merging two or more strings into one. The concatenation
operator is the plus sign (+). The maximum length a string can grow under
concatenation is 255 characters. Any attempt to create a string greater than 255
characters will result in an error during program execution.

Examples:

String$ = “This is ” + “one big ” + “string”
Stringl$ = Stringl$ + String2$

Conversion Functions

The following functions are used to return numeric results for string arguments or
string results for numeric arguments.

ASC (Sexpr)

ASC returns the ASCII value of the first character of the string argument. If the
string is empty (has no characters in it), a value of zero will be returned.

The value returned is always between 0 and 127. Most characters, however, are
actually stored internally with a value greater than 127. To know the true value of the
character, PEEK at location 48881 (True_Value) in zero page immediately after using
the ASC function. (See Appendix F: the ASCII chart.)

Example:

Letter$ = “a”
ASCII = ASC (Letter$) {Prints 65}

Part Three: The Advanced BASIC Language

Chapter Four: Strings 76

CHRS (Aexpr)

CHRS$ takes the numeric argument and returns the character corresponding to its
ASCII value. The argument must be between 0 and 255 or a run time error will occur.
Values greater than 128 will repeat the text mode character set. (See Appendix F: the
ASCII chart.)

Normally, if the parameter passed to CHRS$ is less than 128, 128 is added to the
passed value. This is necessary for internal purposes. However, for some uses (i.e. file
output), adding 128 may not be desirable.

For this reason, a special location has been reserved in memory to override adding
128 and using the actual value specified in the parameter.

If you set memory location $BEDF (48863) to zero before performing a CHRS$, the
character representing the actual value will be sent by CHR$. $BEDF must be set to
zero every time before CHRS is called as the default value is restored at the completion
of the CHRS function.

Example:

Letter$ = CHRS (65) .
PRINT Char$ {Prints the letter A}

LEN (Sexpr)

LEN (Length) returns the number of characters within a string or string variable. If
no character appears within Sexpr, LEN will return a zero. All strings have a length of
zero initially. You may need to use LEN to check the length of a string when using a
string shaping function, as a possible error condition can arise.

Example:
String$ = “Micol Systems Inc.”
PRINT “Number of string characters is:”; LEN (String$)

LEN returns a value of 18.

STR$ (Aexpr)

STRS$ converts the numeric argument into its string equivalent.

Example:
Stringl$ = STRS$(12.34)

NOTE]
The string “12.34" and the real number 12.34 will appear

the same when they are displayed; however, inside the
computer’s memory, they are stored quite differently.

Part Three: The Advanced BASIC Language

77 Chapter Four: Strings

VAL (Sexpr)

The VAL function converts the contents of the string argument into its numeric
equivalent. VAL removes any leading spaces from the string argument before doing the
evaluation.

If VAL evaluates an argument with non-numeric characters, VAL will convert and
return all the digits appearing before the non-numeric character or space. If the first
character in the argument is non-numeric, VAL yields a zero.

Example:

String$ = “12.34"
Real& = VAL (String$)

String Searches

The following function is very useful and has no equivalent in Applesoft. Its purpose
is in searching for sub-strings within a string, but this has very many applications
seemingly unrelated to string searches. Examples throughout this manual will
demonstrate some of these uses.

INDEX (SubString$, String$, [Aexpr])

INDEX will return the position number of the first character where SubString$
occurs in the String$ from 1 to the length of String$. If SubString$ does not appear
within String$, a zero will be returned.

An optional occurrence value ranging from 1 to 255 may also be specified. The match
will not be made unless the stated instance of SubString$ exists.
Example 1:
String$ = “This is a string”
PRINT INDEX (" is “, String$)
The PRINT statement will display 5. The first space character is the fifth character
of the string.
Example 2:
Alpha$ = “abcdebxyz”
Beta$ = “b”
PRINT INDEX (Beta$, Alpha$, 1)
PRINT INDEX (Beta$, Alpha$, 2)
The first PRINT will show that the first occurrence of “b” is at the 2nd position and
the second occurrence will show the second “b” at the 6th position in the string.
Example 3:
Allowed$ = “AEIOUaeiou”

Part Three: The Advanced BASIC Language

Chapter Four: Strings 78

REPEAT

GET Char$
UNTIL INDEX (Char$, Allowed$) > 0
PRINT Char$

This code will allow only a vowel to be entered.

String Manipulation

The following functions will allow you to manipulate strings in any manner required
by your program. This string shaping ability is one advantage BASIC has over almost
any other language and Micol Advanced BASIC has more than most BASICs.

INSERTS$ (String1$, String2$, Pos_Number)

To write over a portion of a string using the contents of another string., use
INSERTS$. Both string arguments must be string variables. The contents of Stnpg1$
will be used to write over the characters of String2$ starting at the specified position.
Each character will be copied over String2$ until all characters are copied or the end of
either string is reached.

Example:

Stringls$ = “Italy”

String2$ ="The rain in Spain falls mainly on the plain."
INSERTS (Stringl$, String2$, 13)

PRINT String$

This code will print “The rain in Italy falls mainly on the plain.”

LEFTS (Svar, Aexpr)

LEFTS yields the number of characters specified by Aexpr starting from the left side
of Svar. If the number of characters requested is greater than the string length, a run
time error will occur. If in doubt, check the string length with the LEN function before
executing this function.

Example:

String$ = “Micol Systems Inc.”
PRINT LEFT$ (String$, 5)

The word “Micol” will be printed.

Part Three: The Advanced BASIC Language

79 Chapter Four: Strings

LOWERS (Svar)

LOWERS changes all the uppercase characters of a string into lowercase characters.
All other letters in the string variable are left unaltered. A string variable is the only
argument accepted.

Example:
String$ = “ABCDEFGHIJ”
Low$ = LOWERS (String$)
PRINT Low$ {Will print abcdefghij}

MIDS$ (Svar, Aexprl [, Aexpr2])

MIDS$ returns a substring of Svar starting at Aexprl. If Aexpr2 is not present, the
entire string is returned from Aexprl to the end of Svar, otherwise MID$ returns the
number of characters specified. If the starting character position is beyond the last
character of Svar, a run time error will occur.

Example:
String$ = “Micol Systems Inc.”
PRINT MIDS$ (String$, 7, 7)

The word “Systems” will be printed.

RIGHTS (Svar, Aexpr)

RIGHTS$ returns the characters specified by Aexpr starting from the right side of
Sexpr. If the number of characters requested is greater than the length of Svar, a run
time error will occur. If in doubt, check the string length with the LEN function before
executing this function.

Example:
String$ = “Micol Systems Inc.”
PRINT RIGHTS (String$, 12)

The words “Systems Inc.” will be printed.

UPPERS (Svar)

UPPERS$ will change all lowercase characters of a string into uppercase characters.
All other characters in Svar are left unaltered. A string variable is the only parameter
accepted.

Example:
String$ = “abcdefghij”

Part Three: The Advanced BASIC Language

Chapter Four: Strings 80

Up$ = UPPERS (String$)
PRINT Up$ {Will print ABCDEFGHIJ}

WARNING

Avoid writing string manipulation functions on both sides
of a comparison operator, where both sides return a string
result. A problem arises because a single string
manipulation buffer is maintained for all string

manipulation functions which allows only one function to
be performed at a time. This greatly increases the speed
of the operations as string transfers are minimized.

System String Functions

These functions let you use some system functions by converting the information into
a character string. You may manipulate these string data as any other string.

DATES$

DATES returns the date as returned by the clock installed in your computer. If there
is no clock installed, do not use this command.

Example:
Day$ = DATES
PRINT Day$

Something like 25/Feb/92 will be displayed.

PREFIX$

PREFIXS returns a string with the name of the current default prefix.

Example:
Volume name$ = PREFIXS
PRINT Volume Name$

TIMES$

TIMES returns the time (hours and minutes) from the clock installed in your
computer. If there is no clock installed, do not use this command.

Example:
Clock$ = TIMES

Part Three: The Advanced BASIC Language

81 Chapter Four: Strings

PRINT Clocks$
The time is displayed something like this: 10:24

String Garbage Collection

Garbage is memory which was once used for a purpose, but is now unused and lost to
the system.

When a string is reassigned another value, the new string must be built in another
area of memory. The pointer (or address) to the old string is changed to point to the new
string, and the area in memory to which the string variable originally pointed becomes
lost, or garbage. Eventually, most of the string memory will become garbage and need to
be reclaimed. This reclaiming is done using a process called “String Garbage Collection”.

FRE (0)

FRE (for Free) forces a collection of all unused character strings and returns the
number of bytes available to the system for building further character strings.

The argument may be any legal mathematical expression, but a value of zero is used
by convention. The parameter has no effect on the result, but is required by the
Compiler, otherwise an error will occur.

Example:
Free Bytes% = FRE (0)

Micol Advanced BASIC uses an efficient, double-linked garbage collection algorithm
that seldom produces, if ever, any noticable delay.

Part Three: The Advanced BASIC Language

Chapter Five: Making Decisions 82

Chapter Five

Making Decisions

Overview

We all have to make a large number of decisions in our daily lives. The vast majority
of programs also have to make decisions, and actions have to be taken based on these
decisions.

We have discussed relational operations earlier in this manual. In this chapter you
will learn to use these relational operations and have your programs take action based
on the results of these relational operations.

Decision making is probably the most important aspect of computer programming. It
is important you have a complete understanding of this topic if your programs are to
function as intended.

Program Indentation

It is important that your program source code reflect the logic within your programs.
The logic within your programs can best be represented by line indentation. Once a
statement falls under a particular control structure, this statement should be indented
one Tab. Once this control structure is resolved, the Tab should be removed. There
should be one Tab for each active control structure.

If you are confused, simply look to the examples within this manual. Each example
reflects the standard indentation.

Single Choice Decisions

As we have stated earlier in this manual, a relational operation yields a result of
TRUE or FALSE. Based on this result, we may wish to have a certain set of actions
taken. In addition, we may also wish that an alternate set of actions will be taken in the
event the first set of actions is not taken. That is, we have a choice to make, one set of
actions or another. It is in this circumstance that we will wish to make use of the most
important statement in computer programming, the IF statement.

The IF Statement

Simple IF

IF Relop THEN Statement [{: Statement }] \
[ELSE Statement [{: Statement }]]

Part Three: The Advanced BASIC Language

83 Chapter Five: Making Decisions

Relop is evaluated and produces a boolean result (TRUE or FALSE). If the result is
TRUE, the statement(s) following the keyword THEN until the end of the line or
optional ELSE keyword are executed. If the ELSE statement is present and Relop is
FALSE, the statements following the ELSE until the end of the line will be executed. In
both cases, when the instructions have been executed, the flow of execution continues on
the next line of instructions.

The IF. THEN.ELSE statement is designed to provide an ELSE option to the
Applesoft IF.THEN structure. This statement works correctly when the statements to
be executed after the THEN or the ELSE are on a single line of code. More than one
statement may be written after the THEN or the ELSE by preceding the second and
following statements by a colon (:).

Example:

Op$ = Ww_w»m
IF Op$ = “+” THEN Num = 2 ELSE Num = 3

Block IF..THEN..ELSE

IF Relop THEN BEGIN
Statement
[{: Statement}]
[ELSE BEGIN
Statement
[{: Statement }]]
ENDIF
Relop is evaluated and produces a boolean result (TRUE or FALSE). If the result is
TRUE, the statements following the keywords THEN BEGIN until the ELSE (if
present) or ENDIF are executed. If an ELSE BEGIN block is present and Relop is
FALSE, the statements following the ELSE BEGIN until the ENDIF will be executed.

In either case, when the instructions have been executed, the flow of execution continues
after the ENDIF.

To allow more than one line of code for either the IF or ELSE statement, add the
BEGIN keyword. The BEGIN keyword encloses other Micol Advanced BASIC
statements within the IF. THEN..ELSE..ENDIF block structure.

ENDIF is used to close an IF BEGIN or ELSE BEGIN (if present). ELSE or ELSE
BEGIN also close an IF BEGIN. If no BEGIN is present, the end of line will terminate
the conditional statement. If confused, just study the examples that follow.

Example:

IF 1 = 2 THEN BEGIN
PRINT “This line will never be executed”
PRINT “Neither will this line”

ELSE BEGIN
PRINT “This line will be executed”

Part Three: The Advanced BASIC Language

Chapter Five: Making Decisions 84

PRINT “And so will this one”
ENDIF
END

The IF..THEN also accepts a boolean variable as part of the expression.

Example:
Flag! = TRUE

IF Flag! THEN Num Of Truck% = 10
or
IF Flag! = TRUE THEN Num Of Truck% = 10

It is preferable, however, to use the first method because if the boolean has been set
to an uncertain value, the expression may never evaluate to TRUE.
An IF block may contain one or more IF blocks within it. There may be as many as
20 IF blocks nested within another.
Example:
IF Outer_Flag! THEN BEGIN '
IF Middle_Flag! THEN BEGIN
IF Inner Flag! THEN BEGIN
PRINT “All conditions met”
ELSE BEGIN
PRINT “Inner_ Flag! not true”
ENDIF
ELSE BEGIN
PRINT “Middle Flag! not true”
ENDIF
ELSE BEGIN
PRINT “Outer_Flag! not true”
ENDIF

Consider using the multi-choice construct CASE_OF if more than two
IF.. THEN..ELSE structures are nested.

Multi-Choice Decisions

Multi-choice decisions occur whenever there are several possible actions that may be
taken based on a particular situation. Suppose, for example, an office manager has to
base the bonus situation of the salespeople in his office on the number of products sold
by each salesperson in a month. If there are several categories of bonuses, determining
the correct bonus can get very difficult using IF statements. One solution is a
CASE_OF statement that functions in many ways as an IF statement, but allows for
many possible choices.

Part Three: The Advanced BASIC Language

85 Chapter Five: Making Decisions

The CASE_OF Statement

CASE_OF Aexpr
DO Labell, Label2
Statement(s)
ENDDO
[{DO Label3, Label4
Statement(s)
ENDDO }]
[ELSE_DO
Statement(s)]
ENDCASE
CASE_OF allows the user to choose one option among many without having to make
use of multiple single conditional statements.

The CASE_OF statement evaluates Aexpr and selects one DO..ENDDO block from
the other DO..ENDDO blocks using the result of the evaluation. If Aexpr yields a real
result, only the whole number portion is used.

A CASE_OF statement must have at least one DO..ENDDO block of statements,
and may have as many DO..ENDDO blocks of statements as is necessary.

The DO.. ENDDO structure is made of a list of CASE labels followed with a block of
statements to be executed on the lines of code below. When a label within a
DO..ENDDO block matches the result of the arithmetic expression, the statement(s) in
the DO...ENDDO block of statements will be executed.

The DO list may have from one to twenty labels separated by commas. The label is
always an integer constant ranging between zero and 255 (all values converted to
modulo 256). A label may be preceded by a lesser than (<) or greater than (>) symbol to
make a range of labels. No label should be repeated as only the first match is used.

If a match is not made and an ELSE_DO appears after the last DO..ENDDO block,
the statement(s) following the ELSE_DO until the ENDCASE will be executed. The
ELSE_DO must be the only statement on the line of code. The control of flow will
continue at the line of code after the ENDCASE. It is always a good practice to have an
ELSE_DO block to handle the unexpected conditions.

Example:

Number$¥ = -100
REPEAT
CASE OF Number$
po1, 2, 3, 4, 5, 6, 7, 8, 9, 10, > 80
PRINT Number%;" is positive"
ENDDO
Do -1, -2, -3, -4, -5, -6, -7, -8, =9, < - 79
PRINT Number%;" is negative “;

Part Three: The Advanced BASIC Language

Chapter Five: Making Decisions 86

PRINT “isn’'t it?”
ENDDO
ELSE_DO
PRINT Number%:;" is not in range"
ENDCASE
Number = Number + 1
UNTIL Number$% > 100

If a match is not made and an ELSE_DO does not appear after the last

DO..ENDDO block, control of flow continues at the line of code after the ENDCASE
statement. '

NOTE
A static string may also be used as a label within a DO
line. Only the first character of the string will be used,
and is the same as if the label had been entered as the
ASCII value of the first character instead.
Example:
String$ = “Aardvark”

Ascii% = ASC (String$)
CASE_OF Ascii%
DO “a”,"a"
PRINT “Letter was upper or lower case A"
ENDDO
ENDCASE

CASE_OF statements may be nested within other CASE_OF statements. The

maximum level of nesting allowed is 8 levels deep. The nested CASE statement is
placed in a DO..ENDDO structure.

Part Three: The Advanced BASIC Language

Chaper Six: Basic Input/Output of Information 87

Chapter Six

Basic Input/Output of Information

Overview

Virtually all programs accept information from some source, process this
information, and send this processed information to a storage or display device.

Principal sources for input are through the computer keyboard and a storage device
such as a disk drive. Less often, the input of information is from the program itself. The
output from the program is usually sent to a display device such as a monitor or the
printer or to a long term storage device such as a disk drive.

Data Input

Input is anything that can be entered into the computer using an input device,
usually the keyboard, or read from a storage device such as a disk drive.

Internal Data Entry

DATA Var [{,Var]]

DATA statements are used to place specific values into memory that may later be
retrieved during execution of the program.

DATA statements are placed at the beginning of the program after the optional
compiler directives. The DATA statement must be placed in the correct position in the
program in order to be compiled. Please see the Program Order section in Chapter One
of Part Three.

Only integer, real and string literals are accepted as datum for a DATA statement.
Each datum is separated from the next by a comma. The length of a DATA statement is
limited only by the length of the program line. The number of DATA statements is
limited only by the memory available.

Real literals must be distinguished from integer literals by having the terminating
fraction written in decimal form (i.e 13.0). Integer literals greater than 65535 will be
considered real. String literals must be enclosed between double quotes. Booleans may
not be used in a DATA statement.

Example:
PROGRAM Data_Example
DATA 1, 1.0, 1.0E25, “One”

DATA statements may not be empty (have a non-definite value) as in an Applesoft
BASIC program or be followed by any other statements on the same line. A DATA line

Part Three: The Advanced BASIC Language

88 Chaper Six: Basic Input/Output of Information

must have a literal between each comma otherwise the Compiler will signal an error.

Example:
{Missing values are illegal and will
cause errors during compilation}
DATA “TEXT”,,"MORE TEXT",,0,0,,0

READ Var [{,Var}]

The function of the DATA statement is to give a method to store constant
information that may be used each time the program is executed. These data are
accessed within a program by means of a READ statement. A DATA statement only has
meaning when used in conjunction with a READ statement.

To READ data, a loop of some kind is usually used. The DATA values are read one
by one, starting from the first line of DATA. The DATA pointer cannot turn back or skip
any values, but may be moved back to the beginning using the RESTORE command.

If the program tries to read more values than are available, an error will occur.
Leaving values unread does not produce an error.

If the data types in the DATA and READ statements do not match, an error will
occur when the program tries to read in the datum.
Example 1:
PROGRAM Read Data
DATA 1, 1.0, “One”
{Main Program}
READ Integer% {Read integer datum}
READ Real& {Read real datum}
READ String$ {Read string datum}
END

Example 2:

PROGRAM Read Numbers

DATA 1, 2, 3, 4

DATA 5.0, 6.0, 7.0, 8.0

DIM Number% (3), Number (3)

{Main Program}

FOR Counter% = 0 TO 3 {Read first DATA line}
READ Number$% (Counter%)
PRINT Number% (Counter%)

NEXT Counter$%

FOR Counter = 0 TO 3 {Read second DATA line }
READ Number (Counter)

Part Three: The Advanced BASIC Language

Chaper Six: Basic Input/Output of Information 89

PRINT Number (Counter)
NEXT Counter
END

RESTORE

RESTORE places the DATA pointer back to its starting position. This means the
values in the DATA statements may be reread.
Example:
PROGRAM Read Numbers
DATA 1, 2, 3, 4
DATA 5, 6, 7, 8
DIM Number$% (7)
{Main Program}
HOME
{Read values in DATA statements}
FOR Counter% = 0 TO 7
READ Number$% (Counter%)
PRINT Number$% (Counter$%)
NEXT Counter$%
RESTORE {Bring DATA pointer to position one}
{Reread values in DATA statements})
FOR Counter% = 0 TO 7
READ Number% (Counter%)
PRINT Number% (Counter%)
NEXT Counter%
END

Keyboard Entry

GET Svar

GET is used to read one character from the keyboard and place it into a string
variable. The character entered is not echoed on the screen.

The program continues execution with the next statement without waiting for a
press of the Return key. The cursor is displayed until a character is entered.

GET accepts only a string variable as its argument. The Compiler will issue an error
if a numeric variable is used. Use the VAL function to convert the digit if required.

Part Three: The Advanced BASIC Language

90 Chaper Six: Basic Input/Output of Information

NOTE

<Control>C will not interrupt the execution of GET. All

Control characters may be read from the keyboard with
GET.

See also the next chapter for another use of GET.

Example:
REPEAT
GET Vowel$
IF INDEX (Vowel$, “AEIOUaeiou”) > 0 THEN PRINT Vowel$
UNTIL INDEX (Vowel$, “AEIOUaeiou”) > 0

INKEY Svar

INKEY scans the keyboard to determine if a key has been pressed. INKEY is
similar to GET except INKEY does not wait for a key press and does not display a
cursor.

If no key has been pressed,. an empty string is returned in Svar. If a key has been
pressed, a one byte string representing the key pressed is created in Svar.

NOTE
To be effective, INKEY must be used within a loop.

Example:
REPEAT
INKEY Character$
IF Character$ <> “” THEN PRINT Character$
UNTIL Character$ <> “”

INPUT [“Prompt string”;] Var [{, Var }]

INPUT accepts data from the current input device (usually the keyboard). An
optional message, enclosed in quotation marks, may be displayed prompting the user for
the necessary input.

The prompt must appear after the keyword INPUT, and be followed by a semi-colon
(;), and the list of variables. If no prompt is specified, INPUT automatically displays a
question mark (?) as the prompt.

Part Three: The Advanced BASIC Language

Chaper Six: Basic Input/Output of Information 91

NOTE

No question mark is displayed when the prompt string is

present but empty; use this to hinder any prompt.

INPUT may have any number of variables, each separated by a comma.

INPUT accepts simple variables and arrays of type integer, real and string. Boolean
variables are not accepted.

The INPUT statement will ask for the second, and any subsequent input on a
separate line by displaying a question mark (?) for each missing input.

WARNING

Pressing the Return key for each piece of information is
the only way to accept data from an INPUT with

multiple variables. The comma (,) and semi-colon (;) are
not accepted as delimiters as under Applesoft BASIC.

In order to make programs easier to understand, use one INPUT statement for each
piece of information.

INPUT accepts <Control>S to insert a space. An input may be terminated by
pressing <Control>C only if the NOT_C compiler option is not used. The Delete key
erases a character during response to an input (the delete mode may be altered during
execution, see Appendix A).

The bell will ring if the maximum number of characters allowed in an INPUT line
has almost been reached.

String Input Rules

Characters with ASCII codes from 32 to 127 may be entered from the keyboard.
Control characters will be ignored.

Numeric Input Rules

If, during a numeric input, the user enters something other than a numeric value,
the message “?Reenter” will be displayed. A question mark prompt will appear on the
next line and the computer will wait for the appropriate input. For a real input, all
non-numeric characters except a capital “E”, a period (.), a comma (,), a plus sign (+), and
a minus sign (-) will be rejected. For integer input, only digits, a comma (,) and the plus
and minus signs are allowed input. The commas are for user convenience and are
ignored.

A numeric expression, such as “3 * 4 /6", is not accepted as numeric input.

Examples:
INPUT “Enter name: ”; Name$

Part Three: The Advanced BASIC Language

92 Chaper Six: Basic Input/Output of Information

INPUT “Enter age: ”; Age%
INPUT “Enter any real value: ”; Numbers

See also the next chapter for other uses of INPUT.

Entry from Other Devices

INSLOT (Slot_Number)

INSLOT is used to get characters from the device connected to the slot or port
number specified. The argument may be any integer literal between 0 and 7; a 0 is used
to return input to the keyboard. Any negative value or a value greater than 7 will return
an error.

IMPORTANT
INSLOT is best used in conjunction with a GET.

INPUT may be used after an INSLOT, but because

INPUT expects a carriage return to terminate an entry,
INPUT is only suitable in limited situations.

Example:
INSLOT (2) {Input from slot 2}
GET Char$ {Reads character from port 2}
INSLOT (0) {New input from keyboard}

Data OQutput

Output is information that can be sent from the computer, usually to a screen display
or printer, or to a disk device for long term storage.

Screen Display Control

The following commands control the manner in which text is output to the screen.

DELAY = Aexpr

DELAY pauses the program the stipulated time. One increment equals about 0.01
seconds for a normal Apple Ile/c. If you have an accelerator card installed, the delay will
be that much quicker.

Example:
DELAY = 100 {Pause about one second}

Part Three: The Advanced BASIC Language

Chaper Six: Basic Input/Output of Information 93

HOME

HOME erases the contents of the text window and places the cursor at the top left
corner of the screen.

Example:
FOR Line% = 1 TO 23
PRINT “This fills part of the screen”
NEXT Line%
HOME
PRINT “Now the screen is almost clear”

NOTE
To move the cursor to the top left corner of the screen

without erasing the screen, use VTAB (1): HTAB (1).

INVERSE

INVERSE causes the subequent character(s) sent to the screen to be displayed in
inverse video (reversing the black and white of a character block).

INVERSE will stay in effect until a NORMAL command is encountered.

Example:
INVERSE
PRINT “This is an inverse display”
NORMAL
PRINT “This is a normal display”

MS_TEXT

MS_TEXT (for MouseText) allows the ability to send MouseText characters to the
screen.

MouseText characters are a set of graphical characters designed specifically for the
Apple II computer. This character set has the ASCII range 64 ($40) through 95 ($5F).

Example:
{Display keycap symbols}
MS_TEXT {Turn on MouseText}
PRINT “"@ HU J K M”
MS_TEXT {Turn off MouseText}

Part Three: The Advanced BASIC Language

94 Chaper Six: Basic Input/Output of Information

IMPORTANT .
A second MS_TEXT turns off the effect of the previous
MS_TEXT.
NORMAL

NORMAL restores the display to the standard text characters. NORMAL turns off
the previous INVERSE. NORMAL character display is the default mode.

See the example for INVERSE.

SPEED = Aexpr

SPEED controls the rate at which the characters appear on the screen. Aexpr must
be between 1 and 255; the minimum speed being 1 and the maximum speed being 255.
The default display rate is set to 255, the maximum speed. A speed of zero is equal to a
speed of 255.

Example:
SPEED = 100
PRINT “This line will print slowly”
SPEED = 255

PRINT “Now printing at normal speed”

Unformatted Text Qutput

PRINT [Expr] [;]1 [,] [Expr]

PRINT is used to display all data types including boolean.

Any legal math or string expression, literal or variable may appear inside a PRINT
statement. Each expression will be evaluated when it is executed. If a logical expression
is in a PRINT statement, the result of the comparison (TRUE or FALSE) is printed.

When a semi-colon (;) is placed at the end of a statement, the semi-colon prevents a
Carriage Return (ASCII #13), needed to move the cursor to the next line. Any
subsequent output following the semi-colon is printed on the same line. The cursor
remains to the right of the last character printed. The next item to be printed will
appear at the current cursor position.

A comma (,) at the end of a statement places the cursor at the next tab column (1, 16,
32, 40, 48, 56, 64, 72 or 80). The contents of the next PRINT is displayed starting at
that position.

Anything other than a semi-colon (;) and a comma (,) as the last character in a
PRINT statement will generate a carriage return (ASCII #13) as the last character
output and place the cursor at column 1 of the next line. If the cursor is already on a
new line, an empty blank line will be displayed or printed. The screen will scroll if
necessary.

Part Three: The Advanced BASIC Language

Chaper Six: Basic Input/Output of Information 95

TAB and SPC may also be used within a PRINT to format the display.

NOTE
A question mark (?) may not be used as a shorthand
notation for PRINT as under Applesoft BASIC.
Examples:

PRINT “Your name is ”; Name$;" your age is “; Age%
PRINT {Only sends a <CR>}
PRINT “1 + 2 + 3 =", 1+ 2 + 3
PRINT 1, 2, 3, 4, 5
PRINT 1.5 > 9.3 {Will print FALSE}
See also the next chapter for other uses of PRINT.
See also Part Five, Chapter One for debugging uses of PRINT.

Formatted Text Output

PRINT USING Mask$; [Expr] [;] [,] [Expr]

PRINT USING is used to display real values to the current output device using a

particular format. Formatting is made to both sides of the period of the real value.

Except for the real value formatting ability, PRINT USING functions just like

PRINT. TAB or SPC statements may be used within PRINT USING if needed.

A mask is used to define the format of the output. The mask may be a string literal

or string variable. Rules for the mask are as follows:

1. Only dollar signs ($), number signs (#), commas (,) and a single period (.) are
allowed within a mask.

2. Commas may appear only to the left of the period. If digits are to be output,
commas will appear in the printed output in the same position they appear in
the mask.

3. Number signs may appear on either side of the period. Every occurrence of the
number sign will be replaced with digits or padded with spaces on the left of the
period and by digits or padded with zeros (0) on the right of the period.

4. Dollar signs are allowed only on the left side of the period. Each occurrence of a
dollar sign will be replaced with a space until just before a digit would appear,
then a single dollar sign will be printed. Additional dollar signs will be replaced
by the appropriate digits.

5. Afraction will be truncated, not rounded.

6. If the number should require more places on either side of the period than are
specified in the mask, the digits will not be displayed. Make sure to allow
enough room in the mask for all possible values.

Part Three: The Advanced BASIC Language

NOTE

NOTE

96 Chaper Six: Basic Input/Output of Information

The character value of the comma and period may be
changed to conform to the non-English speaking world.

The comma and period may be changed to other
characters by modifying the appropriate memory
locations listed in Appendix A.

To print monetary values, use a mask similar to this: Mask$ = “$,$$$,$$3$.#4”.
To print numeric values, use a mask similar to this: Mask$ = “#,### ### ##”

Example:
Numberé& = 1234.567
PRINT USING “$$5,$$S$,588S.##"”; “The value is”; Numberé&

The line above will print: The valueis $1,234.56 (with five leading spaces).

Example:
Mask$ = “##4#, ##4#, #44 . %"
Number& = 123456.78
PRINT USING Mask$;"The value is “; Number&

The line will indicate The value is 123,456.7 (with four leading spaces).

To format the output of an integer value, then simply
assign this integer value to a dummy real variable, and

use the dummy real variable in the PRINT USING
statement.

Cursor Positioning

The following commands affect the movement of the screen cursor, and sometimes
the printer head. The cursor positioning is affected by the borders of the screen which
may be altered during execution of the program making it possible to create text
windows. Please see Appendix B for specific information.

POS (Aexpr)

POS (for Position) returns the current horizontal position of the cursor at the
moment POS is executed. The value returned is from one to 80. One is the left-most
side and 80 is the right-most side of the screen.

The argument is ignored, and has no effect on the result of the evaluation of POS,
but must be present, otherwise an error will occur during compilation.

Part Three: The Advanced BASIC Language

Chaper Six: Basic Input/Output of Information 97

Example:
HOME
PRINT “Position: ”;P0OS (0)

This statement returns the number 11 for the position of the cursor.

SPC (Aexpr)

SPC (for space) prints the specified number of spaces to the current output device
and may only be used inside a PRINT statement.

Aexpr may be any valid arithmetic expression. SPC must be in the range one to 255
otherwise an error occurs at run time. If Aexpr is real, its value will be truncated.

SPC moves the cursor or print head the number of spaces specified starting from the
current cursor position. If the cursor is moved past the right margin, it continues
spacing on the line below.

IMPORTANT .
Semi-colons must be used after each SPC, otherwise a
carriage return will be generated destroying the effect of
SPC.

Example 1:

PRINT SPC(15);:;"The total is:";Total$

TAB (Aexpr)

TAB (for Tabulation) is used to position the cursor to the specified position on either
the screen or printer and may only be used inside a PRINT statement. The position
values range from 1 to 80. The first horizontal position (1) being on the left margin and
the last one (80) on the right margin.

Aexpr may range from one to 255. Values from 81 to 255 will tab on lower lines of
the screen.

If Aexpr is real, only the whole number portion will be used.

If a PRTON statement is in effect, TAB will move the print head at the position
specified, in a forward direction only.

IMPORTANT
Semi-colons must be used after each TAB statement,

otherwise a carriage return will be generated, destroying
the effect of the TAB.

Part Three: The Advanced BASIC Language

98 Chaper Six: Basic Input/Output of Information

Example 1:
PRINT TAB (15);Total$

HTAB (Aexpr)

HTAB (for horizontal tab) moves the cursor to the horizontal position specified by
Aexpr. The cursor may be moved from left to right or right to left.

Aexpr may range from one to 80. Any values outside this range will result in a run
time error. If Aexpr is real, only the whole number portion will be used.

Example:

PROGRAM Demo_HTAB

HOME

HTAB (36)

PRINT “is the”;

DELAY = 50

HTAB (31)

PRINT “This”;

DELAY = 50

HTAB (43)

PRINT “proper order.”

END

VTAB (Aexpr)

VTAB (for Vertical tab) moves the cursor vertically to a specific line on the screen.

The argument may be any valid arithmetic expression with a result ranging frgm one
to 24. Any values outside this range will result in an error at run time. If Aexpr is real,
only the whole number portion will be used.

The cursor may move in either vertical direction.

Example:
PROGRAM Demo_ VTAB
HOME
VTAB (4)
PRINT “On line four"
END

Part Three: The Advanced BASIC Language

Chaper Six: Basic Input/Output of Information 99

Output to Other Devices

OUTSLOT (Slot_Number)
OUTSLOT is used to send subsequent output through a device connected to the

specified slot number. The argument must be a digit between 0 and 7; any negative
value or value greater than seven will cause an error.

IMPORTANT
A 3 is used to return output to the screen.

NOTE

None of the screen formation statements such as TAB

will work when used in conjunction with OUTSLOT.

Example:
OUTSLOT (2) {Output through slot 2}
PRINT String$; {Sends character(s) to port 2}
OUTSLOT (3) {Sends output to the screen}

PRTON

PRTON (Printer On) turns on the communication link to the printer and redirects
all output to it. PRTON assumes the printer is connected to slot one (printer port) of
the computer. If this is not the case, use OUTSLOT.

PRTON does not interrupt the execution of the program if the computer is connec.ted
to a serial printer even if the printer is turned off. However, the program may hang if a
parallel printer is turned off.
Example:
PRTON
PRINT “This line is written on the printer”
TEXT
PRINT “This line is written on the screen”

TEXT

TEXT turns off the communication link to the printer and restores the screen as the
current output device.

Example:
PRTON

Part Three: The Advanced BASIC Language

100 Chaper Six: Basic Input/Output of Information

PRINT “This line is sent to the printer.”
TEXT

PRINT “This line is sent to the screen.”

NOTE ‘
TEXT may only be used to turn the printer off and the

screen display back on if the printer was originally turned
on with a PRTON.

Part Three: The Advanced BASIC Language

Chapter Seven: Disk Filing 101

Chapter Seven
Disk Filing

Overview

It is often the case that data generated by a program must be stored in some long
term device for later usage. Also, data stored from some outside source often must be
read in from a long term storage device for immediate usage. Such data are usually
stored as disk files.

A typical example of such file usage is in a word processor. Once the text is
generated within the word processor, it must be saved, or all the work would be wasted
once the computer is turned off. Conversely, this text may have to be read back into the
word processor at a later time for further modifications.

Disk filing commands are necessary to maintain and access these files. Access and
maintenance of disk files is the topic of this chapter.

File Management

These commands allow you to manage the disk files on your system.

CATS

CATS$ is designed to get file information from a directory. Each use of CATS$ returns
a string containing a file directory entry from the default directory, just as it is displayed
using the CATALOG command under the Shell (minus the heading).

The volume information is returned on the last line, concatenated with the last file
name and information, separated by a carriage return (ASCII 13).

CAT$ must be contained in a loop. If more directory information can be read,
True_Value (memory location 48881) will contain a zero. If the last line has been read,
True_Value will be non-zero. Remember that True_Value is used for other purposes
and should be tested immediately after each use of CATS$.

Example:

PROGRAM Show_Directory

{Display directory header}

HOME

PRINT “Filename”; TAB(21); “Type”; TAB(27); \
"Blocks"; TAB(36): “Created”; TAB(43); \
"Time"; TAB(55); “Modified”; TAB(64);"Time"; \
TAB(74) ; "EOF"

Part Three: The Advanced BASIC Language

102 Chapter Seven: Disk Filing

PRINT
{Get directory listing}
REPEAT
String$ = CATS
IF PEEK(48881) <> 0 THEN BEGIN
PRINT String$
ENDIF
UNTIL PEEK(48881) <> 0
END

IMPORTANT

The entire directory file must be read at one time,
otherwise the directory file will remain open

unnecessarily, which will probably cause problems at a
later time. You may have to read the directory entries
into a string array.

NOTE
If you wish the contents of a directory other than the

default directory, you will have to change the default
prefix with the PREFIX command. You may first have to

save the current directory with use of the PREFIX$
command, then reinstate the original directory after the
directory has been read.

COPY Svarl TO Svar2

COPY duplicates the file defined in Svarl into a file with name Svar2. Svar is the
Pathname of the files and may be either a string variable or a string literal.

If Svar2 is assigned an empty string, the file specified in Svarl will only be read. If
an error occurs during the read, True_Value (location 48881) will contain a non-zero
value. This allows you to verify a file without generating an error.

Example:
Filel$ = “/RAM5/File”
File2$ = “/RAM6/New.File”

COPY Filels, “” {First Verify Filel$}
IF PEEK (48881) = 0 THEN COPY Filel$ TO File2$

Part Three: The Advanced BASIC Language

Chapter Seven: Disk Filing 103

CREATE Svar

CREATE will generate a directory file (type DIR). Svar is the Pathname of the new
directory and may be either a string variable or a string literal. Svar must not already
exist or an error will be generated.

CREATE locks the newly created directory.

Example:
CREATE “/Micol.Adv.BASIC/New.Dir”

DELETE Svar

DELETE will erase the file specified from the appropriate directory. .Svax.' is the
Pathname of the file to be deleted and may be either a string variable or a string literal.

A file may not be deleted if it is open or locked. A directory file may only be deleted if
it is empty. Use this command when a specific file is no longer needed.
Example:
DELETE “/RAM6/FILE”

FLUSH

FLUSH will empty all open file buffers to their respective files.

The main function of FLUSH is in file security. If any program runs a significant
time with open files and the program malfunctions, without periodic use of FLUSH, the
information in the buffer(s) may be lost. This command ensures that all data inside the
file buffer(s) will be transferred to their respective disk files.

A program using the command FLUSH will be slightly slower because of the time
needed to copy the information to disk, but you will be certain to have all the
information saved should a power surge or interruption occur.

Example:

FLUSH

LOCK Svar

LOCK is used to protect a file from being deleted or modified. Svar is the Pathname
of the file to be locked and may be either a string variable or a string literal.

When a file is locked, an asterisk (*) precedes the filename when a directory is
displayed to show that the file is protected.

Example:
LOCK “/RAMG/FILE”

Part Three: The Advanced BASIC Language

104 Chapter Seven: Disk Filing

ONLINES$

ONLINES returns a string which contains all the current online volume names.
Each volume name is separated by a Return character (ASCII 13). This Return
character may be used to isolate each online volume name within your program.
Example:
OnLine Name$ = ONLINES
PRINT OnLine_ Name$

PREFIX Svar

PREFIX uses Svar to set the default prefix. Svar is the Pathname to a directory and
may be either a string variable or a string literal.

If Svar contains an empty string ("), the system will only display the default prefix
to the screen. If Svar is not empty, the default prefix will be set to Svar. The volume
must be online when this command is executed; otherwise, an error will occur.

Example: ‘
PREFIX “/RAM6/Directory”

RENAME Svarl TO Svar2

RENAME will change the name of a file or directory. Svarl and Svar2 may be either
string variables or string literals.

Svarl is the Pathname to the original file and Svar2 is the Pathname the file will
have.

Svarl must be unlocked, and Svar2 must not already exist.

Example:
RENAME “/RAM6/File” TO “/RAM6/Newfile”

UNLOCK Svar

UNLOCK removes the protection on a file so that it may be erased, modified or
renamed. Svar is the Pathname of the file and may be either a string variable or a
string literal.

A space rather than an asterisk indicating that the file is unprotected will precede
the filename when the appropriate directory is displayed.

Example:
UNLOCK /RAM6/FILE

Part Three: The Advanced BASIC Language

Chapter Seven: Disk Filing 105

Direct Access to the Operating System

PRODOS (Operation_Code, PathName$, Int_Array% ()

The PRODOS command makes it possible to communicate directly with the
operating system of the Apple Ile/c, ProDOS 8.

PRODOS is designed to call individual operations within the operating system.
These calls can do a whole assortment of things such as get file information, etc;
whatever ProDOS 8 is capable of. All of the disk access commands done by Micol
Advanced BASIC are done by such calls to ProDOS 8.

To make use of this command, you will need a ProDOS reference manual. Your Apple
dealer should have one available.

PRODOS requires three parameters: a ProDOS 8 call number, a string variable
whose contents may or may not be required, and an integer array which will contain the
parameter list required by the ProDOS 8 call. The three parameters are:

1.

The call number is the value required by ProDOS 8 to determine which operating
system command is needed. This value is an integer literal (either decimal or
hexadecimal).

A Pathname is not required by all ProDOS 8 calls, but PathName$ must appear in
the PRODOS command. If an Int_Array% element contains a negative one (-1),
the string contained within PathName$ will be used for this call. PathName$
may be any legal Micol Advanced BASIC string.

The list of parameters required by the call is provided to ProDOS 8 using
Int_Array% starting with element zero. The size of the integer array must be at
least as large as the maximum number of words sent or returned by the call and
must be so dimensioned. The left parenthesis is required in the syntax of this
command.

a) The first parameter which goes into each parameter block, the number of

parameters, must be multiplied by 256. If there are ten parameters required
by the call, element zero of the integer array must contain a 2560. This is
because the first byte of the array is ignored, allowing you easily to specify a
string in element one.

b) The integer array is passed to ProDOS 8 exactly as specified (except for element

zero, as mentioned). Most ProDOS 8 calls are specified in bytes; don’t forget
that each integer array element is two bytes.
If an error occurs as a result of the call, the ProDOS 8 error value will be returned
in True _Value (location 48881). A zero indicates that the call was made
correctly. Any other value signals that an error occurred (or that the call was
made improperly). Please see Appendix D for ProDOS 8 error codes.

Example:

PROGRAM OS_Example
@ LIST
INT (A-2)

Part Three: The Advanced BASIC Language

106 Chapter Seven: Disk Filing

DIM Array%%20) {Minimum size array allowed, else error}
2560 {10 ProDOS parameters (10 times 256)}
Array (1) = -1 {Use string in pathname}
PathName$ “/MAB/File” {File we require information on}
PRODOS ($C4, PathName$, Array () {$C4 is GetFileInfo}
IF PEEK (48881) = 0 THEN BEGIN {No error}

Adr = ADDR (Array () + 4

FOR Ctr = Adr TO Adr + 20 {Display the result returned}

PRINT PEEK (Ctr)

NEXT Ctr
ELSE BEGIN

PRINT “ProDOS 8 error” ;PEEK (48881)
ENDIF
END

i

Array. (0)

It

General File'Access

File Access Number

The commands within this section require a File Access Number. This is simply a
digit (no variables allowed), from one to eight, that you give the file when it is opened.
This value, rather then the Pathname, is used to access the file for further operations.

IMPORTANT

Except for File Access Number eight, you must use
consecutive digits. This is because file buffers are
allocated according to the File Access Number. For
example, if you have two files open at the same time, the

second file must be opened with File Access Number two.
You cannot use File Access Numbers one and eight at the
same time. You may also need to specify the IO_BUFS
compiler option in your program. Please see Part Three,
Chapter One for information on I0_BUFS.

APPEND (File Access Number)

APPEND moves the file pointer to the end of the open file. Any future reads or
writes to the file will be from this position. The File Access Number must be the same
one that was used under the OPEN, ROPEN or WOPEN command.

Example:
ROPEN (1) “File” {Open an existing file}

Part Three: The Advanced BASIC Language

Chapter Seven: Disk Filing 107

APPEND (1) {Write after end of file"
PRINT (1) “After old end of file”
CLOSE (1)

CLOSE (File Access Number)

CLOSE will close the file specified by the File Access Number. The File Access
Number must be the same one that was used when the file was opened with an OPEN,
ROPEN or WOPEN command. If you wish to close all currently open files, then specify
a File Access Number of zero.

CLOSE does not generate an error, but stores the ProDOS 8 error number in
True_Value (location 48881) if an error occurred. PEEK location 48881 after issuing a
CLOSE. If the value is zero, no error occurred, else the returned value is the ProDOS 8
error number. Refer to Apendix D for a list of all ProDOS 8 error codes.

All files must be closed after having been used. The closure of the files ensures that
all data have been transferred from memory buffers to their disk files. An END or
STOP will also close all files currently opened.

Example:
WOPEN (1) “FILE”
CLOSE (1)

FILE (Svar)

FILE verifies that a file with the corresponding Pathname exists. Svar is the
Pathname of the file, and may be either a string variable or a string literal.

FILE is a boolean function which returns TRUE if the file exists or FALSE if there is
no such file. The FILE state may also be assigned to a boolean variable: Flag! = FILE
(File$).

Example:

IFr FILE ("/RAM6/HELLO") THEN BEGIN
ROPEN (1) “/RAM6/HELLO”

ELSE BEGIN
WOPEN (1) “/RAM6/HELLO"

ENDIF

The type of file may be determined by PEEKing into memory location True_Value
(48881) right after using the FILE command. This value is a number representing the
file type.

In addition, if FILE is TRUE, the file size, in blocks of 512 bytes, will be returned in
locations 48848 and 48849 in LSB, MSB order; in location 224 and location 225 is stored
the Auxiliary file type.

Part Three: The Advanced BASIC Language

108 Chapter Seven: Disk Filing

Example:
File Exists! = FILE (InputFile$)
IF File Exists! THEN BEGIN
FileType%$ = PEEK (48881)
IF FileType% = 4 THEN BEGIN
PRINT “The file ”; InputFile$; “ is of type TXT”
ELSE BEGIN
IF FileType% = 6 THEN BEGIN
PRINT “The file ” ; InputFile$; “ is of type BIN”
ENDIF
ENDIF
ELSE BEGIN
PRINT InputFile$;" does not exist"
ENDIF

GET (File Access Number) Svar

GET will read characters, one at a time, from disk and place the character into Svar.
The File Access Number must be the same one that was used when the file was opened.

If the end-of-file marker is encountered during a GET, the variable waiting for a
value will be undetermined, whereas the end-of-file flag will be set to TRUE.
Example:
IF FILE ("File™"™) THEN BEGIN
ROPEN (1) “File”
REPEAT
GET (1) Char$
IF NOT EOF (1) THEN PRINT Chars$;
UNTIL EOF (1)
CLOSE (1)
ENDIF

INPUT (File Access Number) Var [{,Var}]

INPUT functions like the keyboard based INPUT statement except it accepts data
coming from a file instead of the keyboard.

The File Access Number must be the same number that was used when the file was
opened. Var may be any simple or array variable type except boolean.

As with the keyboard INPUT command, the data read from the device must
correspond to the type required by the variable in the variable list.

Part Three: The Advanced BASIC Language

Chapter Seven: Disk Filing 109

WARNING
INPUT is only suitable for reading text files. Note that

the only delimiter for a string input is the carriage return
(ASCII 13). Commas (,) and semicolons (;) are regarded

as data for this purpose. If more than 255 characters are
read before a carriage return is encountered, an error will
be generated.

Example:
IF FILE ("/RAM6/File") THEN BEGIN
ROPEN (1) “/RAM6/File”
REPEAT {Read from disk}
INPUT (1) String$
INPUT (1) Real
INPUT (1) Integer%
PRINT String$, Real, Integer$%
UNTIL EOF (1)
CLOSE (1)
ENDIF

OPEN (File Access Number) Svar

OPEN establishes a link between the file specified in Svar and future commands
directed at the file. Svar may be either a string variable or a string literal.

OPEN will check for the existence of the file stipulated in Svar. If the file exists,.it
will simply open the file (perform an ROPEN). If the file doesn’t exist, OPEN will
create a new file with the stipulated name, then open it (perform a WOPEN). In both
cases, the file pointer will be pointing to the beginning of the file.

Example:

OPEN (1) “/RAM6/FILE”
PRINT (1) “String”
CLOSE (1)

PRINT (File Access Number) [USING Mask$;] Var[{,Var}]

PRINT and PRINT USING function exactly like their screen-based counterparts
except they send their data to the disk instead of the screen or printer.

The File Access Number must be the same number that was used when the file was
opened. Var may be an integer, real or string variable or array.

Part Three: The Advanced BASIC Language

110 Chapter Seven: Disk Filing

NOTE
TABs will not produce spaces in a text file.

WARNING
If the data created with a PRINT are to be read by an
INPUT statement, then be certain not to suppress the
carriage return by using a comma(,) or a semi-colon(;)
after each variable list. It is best to have one variable per
PRINT statement.
Example:

WOPEN (1) “FILE”

PRINT (1) ™“Output to file”

FOR Loop_Ctr% = 1 TO 10
PRINT (1) Loop_Ctr%

NEXT Loop Ctr%

CLOSE (1)

The end-of-file marker is pushed forward as each variable’s contents are written to
disk.

ROPEN (File Access Number) Svar

The ROPEN command will open an already existing file and will position the file
pointer to the beginning of the file. The File Access Number used with the ROPEN
command must be used with all the commands referencing the file being accessed later.

Svar is the Pathname of the file and may be either a string variable or a string
literal. The Pathname of the file being read must exist on the disk being accessed. Any
attempt to ROPEN a non-existent file will cause a run time error.

ROPEN establishes a relationship between the File Access Number and the
Pathname. Without this relationship established, the system cannot know which File
Access Number belongs to which file.

IMPORTANT

File Access Number 8 will provide much faster access to
sequential files than File Access Numbers 1 thorough 7.
However, because File Access Number 8 maximizes file

access by reading several file blocks into internal memory
from which the file information is then accessed, it is
unsuitable for random access files.

Part Three: The Advanced BASIC Language

Chapter Seven: Disk Filing 111

Example: (See GET)

WOPEN (File Access Number) Svar

WOPEN will erase any existing file with the same Pathname stipulated by Svar, and
create an empty file with the specified Pathname. If the file already exists, and that ﬁle
is locked, an error will be generated. Svar may be either a string variable or a string
literal.

The File Access Number used with the WOPEN command must be used with all the
commands referencing the file being accessed.

WOPEN establishes a relationship between the File Access Number and the
Pathname. Without this relationship established, the system cannot know which File
Access Number belongs to which file.

Example: (See PRINT)

Sequential File Access

EOF (File Access Number)

EOF is used to detect the end-of-file marker when a sequential file is being read.
The File Access Number must be a digit between 1 and 8 and must be the same value
used when the file was opened.

EOF is a boolean function and may be assigned to a boolean variable as: Flag! =
EOF (1). This boolean variable may then be tested like any boolean variable.

If the end-of-file is encountered while reading a variable’s value, the value of the
variable is undetermined, but the EOF flag will be set to TRUE.

If you try to test the end-of-file on a file which has not been opened, you will receive a
run time error.
Example:
ROPEN(8) “/RAM6/FILE” {Get fast access with 8}
REPEAT
INPUT (8) String$
IF NOT EOF (8) THEN PRINT String$
UNTIL EOF (8)
CLOSE (8)

Random Access Files

SEEK (File Access Number) Record Number, Record Size

SEEK is used to move the file pointer within a random access file. SEEK will move

Part Three: The Advanced BASIC Language

112 Chapter Seven: Disk Filing

the end-of-file marker if the position is past the current end-of-file. You may then read
or write to this file location as you require.

The SEEK command must be used before any read or write operation to a random
access file, otherwise the next read or write operation will be done right after the
previous read or write. Be certain not to leave out this command if a random access file
is used.

You must decide what record size you wish; the record may be any size. Once the
record size is specified, any record may be accessed within the file; even sub-records
within the file may be accessed by specifying the correct record size.

To access a specific field within a certain record, you may skip the previous fields
using dummy INPUTSs. To do so, each field must end with a carriage return. If the
Return characters at the end of each field have been suppressed, then the INPUT
statement(s) will not be able to read the data since INPUT expects the Return character
as the end-of-field delimiter.

NOTE)
The use of a File Access Number 8, reserved for use with
sequential file access, will result in an error during
compilation.

NOTE
When calculating the record size, remember that the
Return character also requires one byte.

NOTE

SEEK may function the same way as the POSITION

statement of the Applesoft BASIC interpreter by
specifying a record size of 1.

PROGRAM Random_Access

HOME

WOPEN (1) “/Volume2/File”

INPUT “Enter record size” ;Size

REPEAT
INPUT “Enter record number” ; Record
INPUT “Enter any number” ; Number
SEEK (1) Record, Size
PRINT (1) Number

UNTIL Number = 100

CLOSE (1)

Part Three: The Advanced BASIC Language

Chapter Seven: Disk Filing 113

HOME
ROPEN (1) “/Volume2/File”
PRINT “The values entered were:”
REPEAT
INPUT “Enter record number ";Record
SEEK (1) Record, Size
INPUT (1) Number
PRINT Number
UNTIL Number = 100
CLOSE (1)
END

NOTE

From the programmer’s standpoint, the only difference

between a sequential file and a random-access file is the
use of the SEEK command.

Part Three: The Advanced BASIC Language

Chapter Eight: Control of Flow 114

Chapter Eight

Control of Flow

Overview

Unless special action is taken, each program statement will execute after the
preceding statement has finished execution. Very few programs would have any real
worth if this linear program flow could not be altered.

It is the purpose of this chapter to discuss the methods available under Micol
Advanced BASIC to direct program flow in an appropriate manner. In this regard, Micol
Advanced BASIC is one of the most powerful languages for any computer. Use these
commands wisely and your programs will be something to be proud of.

Program Termination

The termination statements are designed to end the execution of a program; control
passes out of the program.

External Flow

RUN Pathname

To execute another Micol Advanced BASIC program, use the RUN command.
Pathname must be the Pathname, including the “.BIN” extension, if any, of the program.
Pathname may be a string literal or string variable. The file must be online at execution
time or an error will be issued.

Examples:

RUN “MAR.BIN”
Path Name$ = “PROGRAM”
RUN Path Name$

Flow Interruption

END

END terminates the program’s execution, and invokes the Command Shell from the
System Directory (if the program was entered from the programming environment).

END may be placed anywhere in a program. END closes all open files, frees all
memory, and sets the screen to text mode.

Part Three: The Advanced BASIC Language

115 Chapter Eight: Control of Flow

NOTE
Although the Compiler automatically generates an END
at the end of the program code, it is recommended to
conclude all programs with END for documentation
purposes.

IMPORTANT
If the program was started as a TurnKey system, a
ProDOS Quit will be performed.

Example:

PROGRAM EXAMPLE
PRINT “This is a sample program”
END

STOP

STOP is identical to END except it prints the line number where the program
halted. STOP’s primary function is in debugging.
Example:
PROGRAM Example
PRINT “This is a simple program”
STOP

BYE

BYE terminates the execution of the program and returns control to ProDOS 8 (even
if the program was started from the Command Shell). BYE performs what is called a
ProDOS QUIT.

Example:
PROGRAM Hello
HOME
PRINT “Hello”
BYE {Pass control to ProDOS 8}

Branching

Branching consists of unconditional and selective branching. With unconditiopal
branching, the flow will be altered exactly as specified by the control structure. W1th
selective branching, the branch will be based upon a condition previously determined.

Part Three: The Advanced BASIC Language

Chapter Eight: Control of Flow 116

With selective branching, if the conditions are not right, the flow will not be altered at
all.

With branching, control is directed to another area of the program. Careless use of
this construct may cause havoc in your programs. For this reason, it is recommended

you avoid branching as much as possible. Ideally, branching should only be done in error
handling.

The Routine Declaration

ROUTINE 1Id

Before we can discuss branching, it is necessary to discuss a little about Routine
declarations. This topic will be covered again in the next chapter in more detail.

Whenever you wish to branch to another line with the use of GOTOs, it is possible to
branch to a mnemonic name instead of a line number. In order to do this, you must first
declare the area of code you wish to branch to with a ROUTINE name. The syntax is
simply the keyword ROUTINE followed by a unique identifier. This identifier has the
exact same syntax as a simple variable and may be an existing variable name.

During compilation, the Compiler checks for the existance of duplicate ROUTINE
names. If a second ROUTINE name is detected, an error will be issued.

Unconditional Branching

Unconditional branching takes the program flow to the statement indicated. The
abusive use of unconditional branching may considerably reduce the legibility of a
program, so its use should be avoided whenever possible.

The Dreaded GOTO

GOTO Identifier
GOTO Line_Number

GOTO forces the program flow to the line indicated. If the reference line does not
exist, the linker displays the message “Undefined line or subroutine”. When a GOTO
makes a reference to a line number (not recommended), the line number is treated as a
ROUTINE identifier.

NOTE
The use of GOTOs is recommended only in recovery from

an error. To disable GOTO, use the NOGOTO compiler
option.

Part Three: The Advanced BASIC Language

117 Chapter Eight: Control of Flow

Example:
IF Number = 5 THEN GOTO Routine Name
END
ROUTINE Routine_ Name
END

Selective Branching

Selective branching may be used when three or more selections are needed. The use
of this option is not recommended as it can lead to problems in determining the program
flow, if errors arise. The multi-decision CASE_OF is probably a more appropriate
structure, and its use is recommended.

The ON..GOTO Statement

ON Aexpr GOTO Identifier [{Identifier}]
ON Aexpr GOTO Line_Number [{, Line_Number}]

ON..GOTO branches to a specific statement or line depending on the value of Aexpr
between the words ON..GOTO. If Aexpr is real, the value is truncated before the branch
is taken.

Aexpr is evaluated. If the value is less than one or greater than the number of
identifiers or line numbers, the program flow will continue with the statement following
the ON..GOTO. Otherwise, the flow will be directed to the sequential label or line
determined by the result.

Example:
PROGRAM Example
HOME
REPEAT
PRINT “Enter a number from 1 to 3 ”;
GET Digit$

PRINT Digit$
UNTIL INDEX (Digit$, “123") > O
Digit$% = VAL (Digit$)
ON Digit% GOTO One, Two, Three
{Exit point for program}
ROUTINE Finish
END {End of Program Execution}
{Selection is handled below}
ROUTINE One

Part Three: The Advanced BASIC Language

Chapter Eight: Control of Flow 118

PRINT “One chicken soup”
GOTO Finish
ROUTINE Two

PRINT “Two Fetucinni entrees”
GOTO Finish
ROUTINE Three

PRINT “Three turkey breasts”
GOTO Finish

Loops

Repetitive statements are used to repeat an action until a condition is met. Micol
Advanced BASIC has four repetitive control statements: FOR..NEXT, FOR.UNTIL,
REPEAT. UNTIL, and WHILE.. WEND.

Finite Loops

The statements in this section are useful for loops that have a predetermined
number of iterations or repeat execution until another condition arises.

FOR .. NEXT Loops

FOR Loop Counter = Initial TO Terminal [STEP Increment]

This statement begins with the keyword FOR followed by an integer or real variable
as the Loop Counter. The Loop Counter is assigned the value in Initial and then verified
to see if its value is greater than Terminal. If Loop Counter’s value is greater than
Terminal’s, the statements within the loop will not be executed and control will continue
to the statement after the following NEXT. If Loop Counter’s value is smaller than or
equal to Terminal’s value, the statements within the FOR loop will be executed.

When all the statements in the loop have been executed, Loop Counter \.vill eithgr b’e
incremented or decremented and the FOR statement will continue until Terminal’s
value is exceeded.

When there is a STEP Increment, if the result of Increment is positive, the value of
Increment is added to the Loop Counter. If the result of Increment is negative, the
positive value of Increment is subtracted from Loop Counter. If STEP is not specified,
the increment is always a positive 1.

NEXT Loop Counter

NEXT followed by a Loop Counter signals the end of a FOR loop. The Loop Counter
must match the one used in the previous FOR statement.

Part Three: The Advanced BASIC Language

119 Chapter Eight: Control of Flow

If, during compilation, a FOR statement is without its matching NEXT, the
Compiler will issue an appropriate error message at the end of compilation.
Example:
FOR Loop_A% = 1 to 10
FOR Loop_B% = 1 TO 10
PRINT “Loop_B = ”; Loop_B%
PRINT “Loop A = "; Loop_A%
NEXT Loop_B%
NEXT Loop_A%
Please note the following rules for FOR..NEXT loop construction:
1. The loop will not be entered if the loop counter’s value is already satisfied.

Example:
FOR Loop_Counter% = 10 TO 9
PRINT Loop_Counter%
NEXT Loop Counter$%

2. The NEXT statement must contain the same variable used as the loop counter in
the previous FOR statement, otherwise an error will occur during compilation.

3. Aloop cannot be “exited” by changing the value of the loop counter. The value of
the loop counter cannot be changed since the actual loop counter’s value is
maintained elsewhere. If any attempt is made to reassign the loop counter
within the FOR..NEXT loop, the loop counter will be reassigned the value it
otherwise would have at the top of the next iteration of the loop.

4. There may be only one NEXT for each FOR. A line of code like IF Value = 10
THEN NEXT Ctr is not allowed in Micol Advanced BASIC.

5. The terminal expression is calculated each time at the top of the loop. The FOR
loop may end prematurely if a variable is used for the Terminal value and this
variable is being reassigned inside the loop. Watch out for an unintentional
reassignment. Also, if the terminal expression is somewhat complicated, it may
eat up valuable execution time. It is preferable to assign that expression to a
dummy variable just outside the loop, and use this dummy variable as the
terminal value within the FOR.. NEXT loop.

Example:
FOR Ctrl% = 3 TO 32000 STEP 2

Dummy% = SQR (Ctrl$%)

FOR Ctr2% = Ctrl% TO Dummy% STEP 2
IF Ctr% MOD Ctr2% = 0 THEN BEGIN

Dummy% = 1 {Stop the inner loop}

ENDIF

NEXT Ctr2%

IF Dummy% > 1 THEN PRINT Ctr2%

Part Three: The Advanced BASIC Language

Chapter Eight: Control of Flow 120

NEXT Ctrl$%

Be certain the variable (Dummy%) is not unintentionally changed within the active
FOR..NEXT loop as the loop may not act as desired.

6. Never use a GOTO to exit a FOR..NEXT loop, otherwise the pointers necessary for
the functioning of FOR..NEXT statements will not be reset correctly. The
program may malfunction if this loop is used again. If a FOR..NEXT loop must
be left prematurely, use the FOR..UNTIL loop structure instead.

7. The use of integer loop counters is recommended, where practical, as they execute
much faster than their real counterparts.

FOR .. UNTIL Loops

FOR Loop Counter = Initial TO Terminal UNTIL Relop

The FOR..UNTIL structure repeats one or more statements a precise number of
times or until the specific condition is TRUE.

This statement begins with the keyword FOR followed by a Loop Counter. The Lo'op
Counter is assigned the value in Initial. The Loop Counter is then verified to see if its
value is greater than the Terminal value.

If the Loop Counter’s value is greater than the terminal value, the statements in the
loop will not be executed and control will be directed to the statement following the next
NEXT. If the Loop Counter’s value is smaller than or equal to the Terminal value, a test
1s made to see if the UNTIL condition is TRUE or FALSE. If the condition evaluates to
TRUE, control is passed to the statement after the NEXT statement. If the UNTIL
condition is FALSE, the loop is entered.

When all the statements in the loop have been executed, Loop Counter will have one
added to its current value and the FOR statement will continue until the value of Loop
Counter is greater than Terminal or until Relop become TRUE. Loop Counter is always
incremented by one.

As with the FOR.NEXT loop construct, this statement must also be closed by a
NEXT statement with a matching Loop Counter. The pertinent rules described above
for FOR loops also apply here.

Example:

FOR Loop_Ctr% = 1 TO 10 UNTIL Animal$ = “cat”

INPUT “Enter any animal’s name ”;Animal$

PRINT “The ”;Animal$;" is a fine animal”

Animal$ = LOWER$ (Animal$) {Need lowercase for test}
NEXT Loop Ctr%

FOR..NEXT and FOR..UNTIL loops may be nested. The maximum nesting is 20
levels deep.

Examples: {Notice the nesting order)

FOR Out_loop Ctr$% = 1 TO 10

Part Three: The Advanced BASIC Language

121 Chapter Eight: Control of Flow

FOR In_loop Ctr% = 1 TO 10
PRINT “In_loop Ctr = ”;In loop Ctr$%
PRINT “Out_loop Ctr = ”;Out loop Ctr%
NEXT In_loop Ctr%
NEXT Out_loop Ctr%
This second example will show an alternate way of writing nested FOR..NEXT
loops, but the logic is also more difficult to follow.
FOR Out_loop% = 1 to 10: FOR Inloop% = 1 TO 10
PRINT “Inloop = ”;Inloop%:PRINT “Out_loop = ”;Out_loop%
NEXT Inloop%: NEXT Out_loop%

Examples of what NOT to do are:

FOR 1 =1 TO 50 FOR j = 1 TO 10
PRINT i,3 NEXT i
NEXT j {Misplaced loop variables}

Conditional Loops

Conditional loop structures will execute the statements inside the structure until a
particular condition does or does not arise.

REPEAT Loops

REPEAT
Statement
[{: Statement }]
UNTIL Relop
The REPEAT..UNTIL structure executes the statement(s) enclosed between these
keywords until Relop is TRUE. The statement(s) in the loop will always be executed at
least once. The program flow continues after the UNTIL statement.
Example:
REPEAT
INPUT “Enter any animal’s name: ”;Animal$
Animal$ = LOWERS (Animal$)
IF Animal$ <> “cat” THEN BEGIN
PRINT “The ”;Animal$;" is a fine animal"”
ENDIF
UNTIL Animal$ = “cat”

Part Three: The Advanced BASIC Language

Chapter Eight: Control of Flow 122

WHILE Loops

WHILE Relop
Statement
[{: Statement }]
WEND
The WHILE.WEND structure executes the statement(s) enclosed between these
keywords as long as Relop is TRUE. The statement(s) in this loop will not be executed if
the expression is not initially TRUE. The program flow continues after the keyword
WEND (for WhileEND).
Example:
Animal$ = “” {Make certain loop is entered}
WHILE Animal$ <> “cat”
INPUT “Type any animal’s name’”;Animals$
Animal$ = LOWERS (Animal$)
IF Animal$ <> “cat” THEN BEGIN
PRINT “The ”;Animal$;" is a fine animal"
ENDIF
WEND

The REPEAT.UNTIL and WHILE.WEND structures may be nested to a
maximum of 20 levels each.

Part Three: The Advanced BASIC Language

Chapter Nine: Modularization 123

Chapter Nine

Modularization

Overview

When a project becomes a large programming task, it becomes necessary to break
this task into smaller portions, making this project easier to conceive. This method
applies the old maxim: “Divide and Conquer.”

A large program may be divided into modules. A module is like a small program that
may be executed whenever needed. Each module performs a specific task. Breaking a
program into small, easy-to-maintain portions is called modularization.

Not only does modularization simplify the programming task, it also has the
advantage of creating routines that may be reused by other programs.

A module is a very important construct to the concept of structured programming.
Once control is passed to a module, unless an unforeseen circumstance occurs, control
will return to a known location.

Advantages of Modularity

1. Ease of conception. It is easier to create an ensemble of short and simple
modules than a long and linear program. Each module will perform a certain,
well-defined task.

2. Maintainance. Because each module performs a single well-defined task, it is
relatively easy to debug and modify this module as the need arises.

3. Portability. The modules written may be as independent as possible from other
modules. Thus a module may then be used in another program with no or very
few changes.

4. May be written by different programmers. Once the task to be done is well

defined, the modules may be written by more than one person. After the
modules are written, they also may be individually tested.

Module Types

Micol Advanced BASIC has three different types of modules: the Routine, the
Function and the Procedure.

A Routine is probably what you are already familiar with. A Routine is the typical
BASIC “subroutine”. All variables are global (available to the entire program), and
parameters are not passed to it. Control is passed to the Routine with a GOSUB or
PERFORM statement and control is returned through a RETURN statement placed
ideally at the end of the Routine. Unlike most BASICs, a Routine in Micol Advanced
BASIC may be given a name with which the Routine may be later referenced.

Part Three: The Advanced BASIC Language

124 Chapter Nine: Modularization

A Function is a module which returns a numeric result. The Function may have both
local and global simple variables, accepts one or more parameters and always returns a
single numeric value. A Function is given a name and is implicitly called within an FN
statement. Control is not returned until the end of the Function is encountered.

A Procedure, like a Function, has both local and global simple variables and accepts
parameters. Control is passed to a Procedure by means of a GOSUB, and control is
returned following the Procedure call. Values that need to be shared between a
Procedure and the main body of the program are shared by means of parameters passed
by address or by global variables declared earlier in the main program body.

Module Identification

As described under ROUTINE names in the previous chapter, all Routines,
Procedures and Functions may have distinct identifiers.

The Compiler saves the module names declared after a FUNC, PROC or ROUTINE
reserved word during compilation. If duplicate module identifiers are found, the
Compiler will report an error.

If you attempt to reference a Function, Procedure or Routine within your program
which you have not defined, during the linking phase, you will receive the message,
“Undefined Line or Subroutine” error. Since the Linker has no way of knowing at which
line this error occurred, you will need to use the Source Code Editor to locate the
undefined Routine.

Program Order with Modules

PROGRAM Identification

ALIAS “UNTIL 1 = 2" = "FOREVER"
INT (I-N): STR (S-2)

DATA statements

DIM statements

DECLARE Boolean!, Integer%, Realé&, String$
Function Declarations

Procedure Declarations

Main Program Body

Routine Declarations

END

The above list of declaration statements should be followed to ensure a structured
program.

Part Three: The Advanced BASIC Language

Chapter Nine: Modularization 125

Routines

ROUTINE Identifier
[{ Statement(s)}]
RETURN

A Routine is declared by using the reserved word ROUTINE followed by an
identifier, which has the same syntax as any variable.

The body of the Routine may contain any legal executable statements: DIM, DATA
and compiler directives are not executable statements.

RETURN marks the end of the Routine, and tells the program to return to the
statement following the GOSUB which caused the branch to this Routine. Only one
RETURN should appear in a Routine.

RETURN must never be used to end a Procedure or Function as the Compiler will
return an error if so attempted.

A Routine module is called by means of a GOSUB statement followed by the
identifier of the Routine.

If the return stack is empty when the RETURN is executed, the message “RETURN
without GOSUB error” is displayed when the error occurs at run time.

All variables included in a Routine are global and may be used by other Routines.

WARNING
If the normal program flow reaches a Routine, the
Routine will execute. This must be avoided. For this
reason, Routines should be placed after the main program
body, so they will not be executed without being explicitly
called. There should be an END statement at the end of
the main program body to stop the program flow.
Example:
GOSUB Box
END

ROUTINE Box
PRINT “In subroutine”
RETURN

Functions and Procedures

As in the Pascal and C languages, Micol Advanced BASIC has the concept of
Procedures and Functions that are separate from the main body of the program and that
may receive values as parameters.

Part Three: The Advanced BASIC Language

126 Chapter Nine: Modularization

General Rules

A program may have a maximum of 127 Functions or Procedures. The Functions
and Procedures may reside anywhere in the program, but it is best to declare them all at
the top of the program.

Unlike a Routine, a Procedure or Function will not execute by simply letting the
normal program flow reach the Procedure or Function: it must be called. Also, unlike a
Routine, a Function or Procedure may have both local and global variables and accept
values as parameters.

Nesting of Procedures and Functions is not allowed.

Global and Local Variables

Global Variables

A global variable is a variable that may be used and modified by any part of the
program. Any variable declared at the top of the program outside a Procedure or
Function is always global. Arrays are always global. This means the entire program is
able to access any array element.

It is sometimes necessary for the entire program, including Procedures and
Functions, to be able to “see” certain variables. Whenever a variable is declared outside
of a Procedure or Function, but before this Function or Procedure, any subsequent code,
including Functions and Procedures, will have access to this variable. The variable is
declared simply by being used; initializing the variable(s), or placing it in a DECLARE
statement is all that’s necessary.

Example:

PROGRAM Global Test
{Variable Globals may be used by the Procedure}
Globals = 567.89
PROC Example [Real&, Integer%]
PRINT Realé&
PRINT Integer%
PRINT Globals
ENDPROC
GOSUB Example [100.1, 123)
END

Local Variables
Any variable declared within a Procedure or Function is local to that Procedure or

Function only if that variable has not been declared globally before this Procedure or
Function.

Part Three: The Advanced BASIC Language

Chapter Nine: Modularization 127

By local, we mean that only the Function or Procedure in which the variable is used
will have access to it. Neither the main body of the program, nor another Function or
Procedure can see the variable. Two variables within two Functions or Procedures may
look the same, but in reality these variables are different.

Using local variables has the great advantage that the value of a variable with the
same name outside the Function or Procedure is not accidentally changed by the
program.

Values may be shared outside the Function or Procedure only if a parameter is
passed by address or a variable has been declared earlier as global.

If the LIST or PRINTER compiler option is in effect, a number sign (#) will precede
the names of local variables in the Symbol Table listing (displayed after the compilation).

Example:

PROGRAM Global Test

PROC Example [Number$%]

PRINT Number$%

ENDPROC

Number% = 567

GOSUB Example [123]

PRINT Number$

In this example, the local variable Number% within the Procedure will have a value
of 123, and the global variable Number% outside the Procedure will have a value of 567.

The Optional Parameter List

Values may be passed to a Function or Procedure by means of parameters.
Parameters are variables within a Function or Procedure that will contain a value
passed to it after it has been called. A parameter list is a series of values sent to the
Function or Procedure when the Function or Procedure is being called. Both parameters
and parameter lists are enclosed in brackets.

The rules for the declaration of the parameters are the same as those for any othe;r
variable. For all practical purposes, the number of parameters that may be passed is
unlimited.

Each parameter will have a corresponding value passed to it when the Function or
Procedure is being called. A strict one to one correspondence exists between the type of
value passed and the receiving parameter; they must be of the same data type.

Parameters may be simple variables of boolean, integer, real, or string. Parameter
lists may be arithmetic expressions or variables, string variables and literals or booleans
which may also be the reserved words TRUE and FALSE.

A real literal, if passed in the parameter list, must have its fractional part explicitly
written, so that the Compiler knows whether a real or an integer literal is intended. If
the real value has no fractional portion, you must specify a .0 as in 123.0.

If a mismatch occurs between the parameter type and the passed value type, an error

Part Three: The Advanced BASIC Language

128 Chapter Nine: Modularization

will occur during execution. For example, if a real expression is passed as the first value
to a Function, the first corresponding parameter must be a real variable; the same
applies to integer, string or boolean parameters.

Ways of Passing Parameters

Each parameter that is passed to either a Procedure or Function may be passed in
one of two ways: pass by address or pass by value.

It is important to understand the difference, as this can affect the program’s logic.
People familiar with either the Pascal or C languages should already have a good
understanding of these concepts.

Passing by Value

To declare explicitly that a parameter is passed by value, use the reserved word
VALUE before the parameter declarations. Passing a parameter by value is the default.
Every parameter encountered up to an ADDRESS reserved word or the end of the
parameter declarations will be passed by value.

If a parameter is passed by value, only the value in the passing variable is giveq to
the Procedure or Function. This means, that under no circumstance will the passing
variable have its value changed within the receiving subroutine.

Example:
PROGRAM Example
{Passing by Value is default}
PROC Add [VALUE Gamma]
Gamma = Gamma + 1
ENDPROC
Upsilon = 10
Gamma = 25
GOSUB Add [Upsilon]
PRINT Upsilon, Gamma
The values printed are 10 and 25. Thus, the value of the parameter passed was not
modified by the Procedure. When the Procedure Add was called, the variable Gamgla
was created and the value of the parameter (25) was assigned to it. The incrementaf,lon
Gamma = Gamma + 1 was done with this new variable and not to the variable Upsilon
where the value was unchanged. The value of Gamma is 25 outside the Procedure

because the one is added to the local variable Gamma, not the global (but declared after
the Procedure) variable Gamma.

Passing by Address
When a parameter is passed by address, the address of the passing variable is also

passed to the Procedure or Function so that the passing variable will be modified if the
parameter 1is altered within the called Procedure or Function.

Part Three: The Advanced BASIC Language

Chapter Nine: Modularization 129

WARNING
When an integer or real literal is passed by address, that

value is made vulnerable to change within the program.
For this reason, never pass a literal as a parameter when

it is passed by address as the literal’s value in memory
may also change.

To pass a parameter by address, use the reserved word ADDRESS followed by the
parameters to be passed by address. All parameters up to the end of the parameter
declaration or the reserved word VALUE will be passed by address.

Example 1:

PROGRAM Example

PROC Add [ADDRESS Gamma]
Gamma = Gamma + 1

ENDPROC

Upsilon = 10

Gamma 25

GOSUB Add [Upsilon]

PRINT Upsilon, Gamma

END

I

The values printed are 11 and 25 respectively. The value of the passed parameter
Upsilon was modified by the Procedure.

Note that the local Gamma and the global Gamma still have different values.

Function Definition

FUNC Identifier [Parameter list]
Statement(s)
ENDFUNC [Variable]

To define a Function, use the reserved word FUNC followed by any unique, legal
identifier. The Function identifier may be followed by an optional list of parameters
encased in brackets ([]).

The body of the Function may contain any legal executable statements, the same as a
Routine.

A Function is terminated with an ENDFUNC. Following the reserved word
ENDFUNC must appear brackets enclosing a simple variable which contains the value
which needs to be returned by the Function. The variable must be of the same type,
either integer or real, as the calling formula with the FN statement; otherwise, an error
will occur at run time. :

A Function is implicitly called within a formula by preceding the Function identifier

Part Three: The Advanced BASIC Language

130 Chapter Nine: Modularization

and an optional parameter list by the reserved word FN.

WARNING

Do not attempt to access a Function with a GOSUB. If
you do, you cannot access the value returned by the

Function. Also, do not use a parameter variable as the
variable used to return the Function value as the result
may become corrupted.

If the Function which you try to access does not exist, you will be informed during
the linking phase.
Example:
FUNC Square [Param]
Variable = Param * Param
ENDFUNC [Variable] {Square}
INPUT “Calculate the square of what number?”; Digits
{Function call follows}
Number = 2 * FN Squ‘are [Digits] + 1

If you enter 5, for example, the Function Square will return 25.

Procedure Definition

PROC lIdentifier [Parameter list]
Statement(s)
ENDPROC

To declare a Procedure, use the reserved word PROC followed by a Procedgre
identifier. The Procedure identifier may be followed by an optional parameter list
encased in square brackets ([]).

The body of the Procedure may contain any legal executable statements: DIM, DATA
statements and compiler directives are not executable statements.

The Procedure must be terminated by an ENDPROC, which ends the Procedure and
generates an automatic return to the statement following the Procedure call. The
Compiler will inform you if an ENDPROC has been omitted at the end of compilation.

NOTE

If you attempt to use a RETURN in a Procedure, the

Compiler will issue an error.

A Procedure may be called only with a GOSUB followed by the Procedure identifier

Part Three: The Advanced BASIC Language

Chapter Nine: Modularization 131

and the optional parameter list. The GOSUB must not branch to a line within the
Procedure as unexpected results will occur. If the Procedure does not exist, a message
will be displayed during the linking phase.

Explicit Variable Declarations

If a DECLARE is used in a program containing Functions and Proced}lres, every
subsequent Procedure and Function which contain local variables will negd a
DECLARE. Include the DECLARE following the Procedure or Function deﬁnltlop.
There is an implicit DECLARE within the parameter declarations, so no DECLARE is
required there.

Example:

PROGRAM Declare_Test

PROC Example [Parml, Parm2%]
DECLARE Real&, Integer$%
Real& = Parml
Integer$% = Parm2%

ENDPROC

GOSUB Example [100.1, 123]

Passing Control to a Subroutine

FN Identifier [Parm-1, Parm-n]

A Function cannot be called explicitly as a Routine is called, but must be called
implicitly within a mathematical formula.

In order to call a Function and have it return a value, within the formula where the
value is required, insert the keyword FN followed by the Function name followed by the
optional parameter list. In effect, the Function is treated as a sort of variable.

Example:
Number = 100 + 32 * FN Square [Parm] / 22

GOSUB Identifier [Parm-1, Parm-n]
GOSUB Line_Number [{, Line_Number}]

GOSUB is used to pass control to either a Routine or Procedure. If control is given
to a Routine, control is returned with a RETURN statement. If control is given to a
Procedure, control is only returned at the end of the Procedure by an ENDPROC. In
both cases, the execution will continue after the statement following the calling GOSUB.

Part Three: The Advanced BASIC Language

132 Chapter Nine: Modularization

Example:
GOSUB Label
PRINT “Program will resume here”
END
ROUTINE Label
PRINT “Now in subroutine”
RETURN

POP

POP is the enemy of structured programming. POP removes the latest GOSUB
address from the stack. This can be very dangerous making it difficult to determine
where an error occurred.

Although some use for POP can be found, the use of POP is not encouraged as it
may lead to chaos in your programs. POP was retained solely for compatibility with
Applesoft BASIC.

The NOGOTO compiler option may be used to disallow the use of POP.

PERFORM Routine_Id UNTIL Relop

A PERFORM executes a Routine continuously until the Routine sets the Relop
following the UNTIL to TRUE.

As with a GOSUB, a RETURN is expected at the end of the called Routine to cause
areturn to the PERFORM statement.
Example:
PERFORM Animals UNTIL Animal$ = “cat”
END {This statement is necessary}
ROUTINE Animals
HOME {No offense to cat lovers}
INPUT “Type in any animal’s name ”;Animal$
Animal$ = LOWERS (Animal$)
IF Animal$ <> “cat” THEN BEGIN
PRINT “The ”;Animal$;" is a fine animal"
ENDIF
RETURN

Part Three: The Advanced BASIC Language

Chapter Nine: Modularization 133

Computed Routine Selection

ON Aexpr GOSUB Routine_Id1 [{,Routine_Id(n)}]

The ON..GOSUB structure works in a similar manner to the ON..GOTO structure.
ON..GOSUB also allows you to use named Routines. Based upon the result of Aexpr,
the proper module identifier will be used.

If the result of the expression is one, the first label in the list will be used. If
expression is two, the second label in the list will be used, etc.

If the value is none of the above possibilities, the first sequential statement following
ON..GOSUB will be taken. As with any GOSUB to a Routine, when the system
encounters a RETURN, the next statement following the computed GOSUB will be
executed.

Example:
INPUT “Enter a value between 1 and 3 ”;Integer%
ON Integer% GOSUB One, Two, Three

END

ROUTINE One
PRINT “One”

RETURN

ROUTINE Two
PRINT “Two”

RETURN

ROUTINE Three
PRINT “Three”

RETURN

Module Library Usage

A library of modules is a collection of often used Functions and Procedures that may
be used in several programs.

Why create a library of modules? Because you don’t want to keep reinventing the
wheel. Using a library of modules in your programs give them consistency and makes
your programs easier to develop and maintain because the modules are already written
and debugged.

Creation of a Library of Modules
First, you must decide what Procedures or Functions you require for future use. Be

certain each subroutine is completely reliable and thoroughly commented.
Create a subdirectory on a suitable volume and save the source code of the

Parf Three: The Advanced BASIC Language

134 Chapter Nine: Modularization

subroutines to a suitable filename under this directory.

When you wish to use a Function or Procedure from this library, make use of the
INCLUDE statement described below.

INCLUDE Pathname

To include a module in a program, add the line INCLUDE Pathname in the source
code file. Pathname indicates the path to a source code text file. Pathname may only be
a string literal.

The INCLUDE statement may appear anywhere in a program after the compiler
directives. An INCLUDE file may have DATA and array declaration statements but the
DATA and DIM statements must still appear in their established order.

The file being read in must be available (online) at compilation time. When the
Compiler detects an INCLUDE statement, it looks for a file with the specified
Pathname and starts reading it as though it were included inside the program itself.
The Compiler displays the message “INCLUDING pathname” each time it detects an
INCLUDE statement.

Using the INCLUDE statement also has the advantage of having only the necessary
program code in the Editor, saving the Editor’s work space for the code specific to your
application.

IMPORTANT

Make sure your module has been thoroughly debugged
before you include it in your program as the sequential

line number information is frozen at the line of the
INCLUDE statement and resumes only after the module
has been read. Run time errors may be difficult to detect.

Example:
INCLUDE “/Micol.Adv.BASIC/Library/Math.Routines”

Recursion

Recursion is an important topic in computer science. Those of you who have studied
computer science at the college or university level are already well aware of this fact.
Those of you who are planning to study computer science will soon be finding this out for
yourselves. What is recursion, and why is it so important?

Recursion is the act of stipulating something in terms of itself. We have all heard it
said, “a rose is a rose is a rose”. This, in a way, is a recursive definition of a rose. The
rose is defined in terms of itself.

The concept of recursion is not something we deal very often with in our daily lives as
the previous definition of a rose proves. Not many things around us can be defined in
terms of themselves. '

Part Three: The Advanced BASIC Language

Chapter Nine: Modularization 135

Mathematics has some use for recursion though. The most common example of a use
for recursion in mathematics is the definition for the factorial of a number: N! =N * (N -
1)

This formula translated is: the factorial of a number N is equal to the number N
times the factorial of the number N minus one. As you can see, the factorial of a number
is defined in terms of lower orders of itself. If we add to this the definition that when N
reaches its lowest allowed value of one, that N! is equal to 1, we have a complete
recursive definition for factorial.

There is much in computer science that can be defined in terms of itself. This
programming language, Micol Advanced BASIC, was designed with a parse table that
has many features defined in terms of themselves.

As with the definition of factorial above, the definition must be complete, or our
recursive definition is worthless. If factorial had been left undefined for its smallest
value of one, we could not have made use of it. One minus one is zero, and anything
multiplied by zero is zero.

Because much of what is defined in computer science is defined recursively, it is only
natural that computer scientists would like programming languages that allow them to
express the solution in the manner in which they have laid out the problem in question.
This is the principal reason recursion in programming languages is so stressed in
computer science.

But, recursion in programming languages suffers some severe problems which we
will now demonstrate. Let us take the definition for factorial just given and program it
in Micol Advanced BASIC making use of recursion. You will soon see why recursion
might be desirable, and also why it is often not the best way to solve a problem.

Example:
PROGRAM Recursion
FUNC Factorial [N]
IF N <= 1 THEN BEGIN

Factorial = 1
ELSE BEGIN

Factorial = N * FN Factorial [N = 1]
ENDIF

ENDFUNC [Factorial]
{Start of Program}
HOME INPUT “Take the factorial of what number ? ”;Number
Factor = FN Factorial [Number]
PRINT “The factorial of ”;Number; “ is ”;Factor
END
As you can see, the function Factorial looks very much like the mathematical
definition for factorial. This function will continue to call itself until N is less than or

equal to one, at which time it will simply unwind the stack, successively returning
another value for Factorial [N - 1].

Part Three: The Advanced BASIC Language

136 Chapter Nine: Modularization

One problem has to do with implementation of recursion under the programming
language being used. How is the parameter N treated by the language? If the
programming language does not reinstate the previous value of N as the return stack
unwinds, as Micol Advanced BASIC does, the recursive function will not act as desired.

Another problem is that we are only looking at the theory and not at the real world of
programming. In the real world, there is much that goes on behind the scenes in the
execution of the programming language to maintain these calls. For example, each time
the FN statement is executed, a run time stack must be saved and then reinstalled after
the return from the call. There is also a certain overhead with the passing of each
parameter, etc. Factorial could be programmed more effectively using a simple loop
instead of recursion.

A question once asked on a final exam in a computer science class was: “True or false,
anything that can be programmed in a loop can be programmed using recursion?”.

The author of this question was looking too much at the theory of recursion, and not
enough at the reality. Recursion is, itself, simply a type of controlled looping, so that the
question had little real meaning. Use recursion when it is practical, but do not lose sight
of reality.

Part Three: The Advanced BASIC Language

Chapter Ten: Graphics 137

Chapter Ten

Graphics

Overview

Micol Advanced BASIC certainly has the greatest variety of graphics ever offered a
programmer on an Apple Ile, an Apple Ilc or Laser. In this regard, we have given you
full access to the graphics capabilities of the hardware. In addition to the Low
Resolution graphics (40 by 48) and High Resolution graphics (280 by 192) supported by
Applesoft, Micol Advanced BASIC also supports Double Low Resolution graphics (80 by
48), Double High Resolution (color defined) graphics (140 by 192) and Super Double High
Resolution (black & white) graphics (560 by 192). In addition, Super Double High
Resolution graphics supports graphics text. Because all modes support text displays at
the bottom of the screen, you have a total of 10 graphic modes available at your disposal.

Although there is a great deal of variety in graphics modes, the graphics under Micol
Advanced BASIC are easy to learn, because this versatility has been achieved with just a
few commands. Most of these graphics commands are already familiar to you.

If you wish your graphics to be as fast as possible, issue all of the commands
described in this chapter using integer values. Real values will function just fine, but at
about half the speed.

Low Resolution Graphics

There are two Low Resolution Graphics modes. You are probably already familiar
with Low Resolution graphics so there is little to learn in this section. There also exists
a Double Low Resolution graphics mode which is identical to Low Resolution graphics
except Double Low Resolution mode has twice the resolution as Low Resolution graphics.

Color = Aexpr

Before you can use any of the Low Resolution or Double Low Resolution plotting
routines, you must set the color by use of the COLOR command.

Aexpr may be any value between zero and 15 inclusive. Upon issuing the GR,
COLOR is set to zero, or black. Colors under Low Resolution and Double Low
Resolution graphics range from black at zero to white at 15. Colors in both Low
Resolution graphics modes are identical.

Part Three: The Advanced BASIC Language

138 Chapter Ten: Graphics

Table 3.10.1 Low Resolution Colors
Value Color

Black
Magenta
Dark Blue
Purple

Dark Green
Gray
Medium Blue
Light Blue
Brown

© 00 3O U W = O

Orange

o
o

Grey
Pink
Green
Yellow
Agua
White

I T S O VTG
Gt & W N =

Example

PROGRAM Lo Resolution

INT (A-Z) {Maximize speed}

GR2

FOR Loopl = 0 TO 39

FOR Loop2 = 0 TO 47

COLOR = RND (14) + 1
PLOT Loopl, Loop2

NEXT Loop2
Loopl
DELAY = 500
TEXT
END
DGR

DGR is used to set the mixed text/graphics Double Low Resolution graphics mode.
This will give you a graphics screen 80 blocks by 40 blocks. Each block will be half the
width as under normal Low Resolution graphics, but there may be twice as many blocks.

Part Three: The Advanced BASIC Language

Chapter Ten: Graphics 139

IMPORTANT

No Double Low Resolution command will execute without

either a DGR or a DGR2, so be certain this command is
issued before setting the Low Resolution color.

DGR will clear the Double Low Resolution screen and set the Double Low Resolution
color to black (0).

The bottom four lines of the screen will be available for text, if you wish, and all text
screen statements will function there.

DGR2

DGR2 is identical to DGR except you have a pure graphics screen instead of a mixed
graphics/text screen. The Y coordinate may range between zero and 47.

GR

GR is used to set the Low Resolution mode. The screen will fit 40 blocks by 40 blocks
(as in the example above).

You will have available for your use, at the bottom of the screen, four lines for text.
All the usual screen output commands will still function there.

GR will also clear the Low Resolution screen so that you will have a clear slate with
which to begin.

If you do not use the GR command before you use one of the Low Resolution graphics
commands, the Low Resolution graphics commands will have no effect.

Under GR, the X and Y coordinates may range between zero and 39.

GR2

GR2 is identical to GR except you will have a pure graphics screen, 40 by 47, instead
of the mixed text/graphics screen. Under GR2, the X co-ordinate may range between
zero and 39 and the Y coordinate may range between zero and 47.

HLIN <X-Coordl>, <X_Coord2> AT <Y_Coord>

Each argument may be either an integer or real value.
HLIN will draw a Low or Double Low Resolution horizontal line in the most recently
defined COLOR from point X_Coord1, Y_Coord to X_Coord2, Y_Coord.

UnderLow Resolution graphics, the X Coordinates may not be negative or greater
than 39, and under Double Low Resolution graphics, the X coordinates may not be
negative or greater than 79. The Y coordinate may not be negative or greater than 47 or

Part Three: The Advanced BASIC Language

140 Chapter Ten: Graphics

you will receive an error at run time.

Example
PROGRAM Example
INT (A-Z)
DHGR?2
FOR Loopl = 0 TO 79
FOR Loop2 = 0 TO 47
Y Coord = RND (47)
X Coordl = RND (79)
X Coord2 = RND (79)
COLOR = RND (14) + 1
HLIN X_Coordl, X Coord2 AT Y Coord
NEXT Loop2
NEXT Loopl
DELAY = 1000
TEXT
END

PLOT <X_Coord>, <Y_Coord>

PLOT places a Low Resolution or Double Low Resolution block at the location
specified. The range of coordinates are the same as under HLIN described above,

The COLOR of the block must be specified before this command is executed, or the
block will be black (invisible).
Example
PROGRAM Example
INT (A-Z)
DGR2
FOR X Coord = 0 TO 79
FOR Y _Coocrd = 0 TO 47
COLOR = RND (15)
PLOT X Coord, Y Coord
NEXT Y Coord
NEXT X Coord

SCRN (X_Coord, Y_Coord)

SCRN returns the Low Resolution or Double Low Resolution COLOR code (0 to 15)
of the block whose location is specified by the arguments passed.

Part Three: The Advanced BASIC Language

Chapter Ten: Graphics 141

X_Coord and Y_Coord must be within the range as specified under HLIN.

TEXT

TEXT will change the screen from Low or Double Low Resolution graphics to the
normal text screen with its character screen we all know and love.

IMPORTANT

The text screen will probably be filled with garbage after

a TEXT is issued. Use HOME to clear the screen.

VLIN <Y_Coordl>, <Y_Coord2> AT <X_Coord>

VLIN functions exactly as HLIN except it draws a vertical line instead of a
horizontal line. This also means that the X and Y coordinates in the statement are
reversed.

Example

PROGRAM LOW Resolution
INT (A-2Z)
GR
FOR Loopl = 0 TO 39
FOR Loop2 = 0 TO 39
X Coord = RND (39)
Y Coordl = RND (47)
Y Coord2 = RND (47)
COLOR = RND (14) {Don’'t want black} + 1
VLIN Y Coordl, Y Coord2 AT X Coord
NEXT LoopZ2
NEXT Loopl
TEXT
END

High Resolution Graphics

Micol Advanced BASIC supports three modes of High Resolution graphics: Single
(Applesoft) High Resolution grahpics, color-defined Double High Resolution graphics,
and black/white Super Double High Resolution graphics.

Single High Resolution graphics uses an 8K graphics screen in Main memory
(between locations $2000 through $3FFF) and has a maximum resolution of 280 by 192.
This graphics mode is what you are already familar with in Applesoft BASIC.

Part Three: The Advanced BASIC Language

142 Chapter Ten: Graphics

Color-defined Double High Resolution graphics uses a 16K graphics screen in both
Main and Auxillary memory (between $2000 and $3FFF) and has a resolution of 140 by
192. Although this resolution is lower than Single High Resolution graphics, the color
definition is far superior.

Super Double High Resolution graphics uses a 16K graphics screen in both Main and
Auxillary memory (between $2000 and $3FFF), has a maximum resolution of 560 by 192,
but supports no colors.

NOTE . '
If you are using Super Double High Resolution graphics

and are using a color monitor, you should turn off or lower

the color ability on your monitor, as false colors will be
created by your computer’s hardware.

The graphics mode you are using is entirely determined by the command issued to
start the graphics mode. These commands are: HGR, HGR2, DHGR, DHGR2,
SDHGR, and SDHGR2. These commands are described below.

DHGR and DHGR2

DHGR and DHGR2 are used to set the color-defined Double High Resolution
graphics screen. This graphics mode differs from the Super Double High Resolution
graphics mode in that its resolution is less and that it supports colors set by the
HCOLOR command described later (see Table 3.10.3).

Like Super Double High Resolution graphics, Double High Resolution graphics has a
dot resolution of 560 by 192. However, because 4 bits (half a byte) are required to define
the colors, you effectively have a pixel resolution of only 140 by 192. As all examples we
have seen by Apple using Double High Resolution graphics have to do with drawing
horizontal lines, it is possible drawing horizontal lines is its primary function.

As is the case with other commands described in this section, DHGR sets a mixed
text/graphics mode (as under Low Resolution graphics) and DHGR2 sets a pure
graphics mode.

DRAWSTR (Svar)

DRAWSTR is used for placing text directly on the Super Double High Resolution
graphics screen. Svar may be either a string variable or string literal.

DRAWSTR will draw the characters contained within Svar determined by the
current Super Double High Resolution plotting position. You may use HPLOT, describe
later in this section, to move the plotting point to the necessary position.

Any visible character may be drawn, and placed in inverse, if an INVERSE
command has been issued and is still active.

Part Three: The Advanced BASIC Language

Chapter Ten: Graphics 143

NOTE

Characters are drawn on the Super Double High

Resolution screen. If the colors of your monitor are too
intense, the letters will be illegible, so be careful.

DRAWSTR is designed to be used with Super Double High Resolution graphics and
assumes Super Double High Resolution co-ordinates. If you set the Double High
Resolution screen with an DHGR or DHGR2 command, you will not be able to move the
X co-ordinate past position 139 in a Super Double High Resolution position. You may
wish to pad your text with spaces to push the characters over.

Note that you may create your own characters to be used with DRAWSTR.
Contained on side two of the Micol Advanced BASIC System Disk is a Utility called
FONT. With the reverse side of the System Disk in a drive, from the Command Shell,
simply enter FONT<CR>. The Utility should load and execute and you will be able to
get instructions.

Example

SDHGR2

HPLOT 10, 100

DRAWSTR ("This i1s a Super Double High Resolution display")
INVERSE

String$ = “This string is in inverse”

HPLOT 10, 120

DRAWSTR (String$)

ERASE

This command may only be used after an SDHGR or SDHGR2 command is active.
ERASE is designed for erasing Super Double High Resolution dots or lines from the
screen. Once this command is issued, HPLOT and HPLOT TO, rather than plotting a
point or line, will erase any dot or line that exists within the co-ordinates specified.

In order to cause HPLOT or HPLOT TO to function normally again, simply issue
this command a second time. This sequence may be repeated as often as desired.

HGR and HGR2

These commands set the Single High Resolution graphics modes that are 280 by 160
or 280 by 192 respectively as under Applesoft.

Unlike HGR2 under Applesoft, HGR2 under Micol Advanced BASIC makes use of a
single graphics screen located between $2000 and $3FFF in Main memory.

HGR sets a mixed graphics/text screen while HGR2 sets a pure graphics screen.

Part Three: The Advanced BASIC Language

144

HCOLOR = <Color code>

Chapter Ten: Graphics

As with Low Resolution graphics, before you can display any graphics, you must set
the color which will be used. The High Resolution color set differs between Single High

Resolution and Double High Resolution graphics.

HCOLOR has no effect on Super Double High Resolution
graphics; the colors are always black and white.

NOTE

The following color table is used if you have issued an HGR or HGR2 command:

Table 3.10.2 Single High Resolution Colors

Value

A O A WN - O

7

Color

Black
Green
Violet
White
Black
Orange
Blue
White

The following table is used if a DHGR or DHGR2 command was issued:
Table 3.10.3 Double High Resolution Colors

Value

© 00 30 O & W NN - O

[y
(@)

Part Three: The Advanced BASIC Language

Color

Black
Magneta
Brown
Orange
Dark Green
Gray
Green
Yellow
Dark Blue
Purple
Gray

Chapter Ten: Graphics 145

Value Color

11 Pink

12 Medium Blue
13 Light Blue
14 Aqua

15 White

Any of these values will set one of the above colors, modulo 16.

HPLOT <X_Coord>, <Y_Coord>

HPLOT places a dot on the screen at the coordinates specified in the mode specified
by the initial graphics command.

If you issued an HGR or HGR2, X coordinates may range between 0 and 279 and Y
co-ordinates may range between 0 and 191.

If you issued a DHGR or DHGR2, X coordinates may range between 0 and 139 and
the Y coordinates may range between 0 and 191.

If you issued an SDHGR or SDHGRZ2, X coordinates may range between 0 and 559
and Y coordinates may range between 0 and 191.

If you are using Super Double High Resolution graphics and wish to use the
DRAWSTR command, you will probably wish to issue an HPLOT to position the first
character.

HPLOT TO <X_Coord>, <Y_coord>

HPLOT TO will plot a straight line from the last graphics point plotted to 'Fhe
position stipulated, using the latest HCOLOR (if not in Super Double High Resolution
mode). The same ranges apply as under the HPLOT command.

SDHGR and SDHGR2

SDHGR or SDHGR2 will set the Super Double High Resolution mode. This
graphics mode gives you a graphics screen of 560 dots horizontally by 192 vertically.

When this mode is active, the position(s) stipulated is simply set to on (or off if
ERASE is active).

Although HCOLOR has no effect on these commands, colors will be set on a color
monitor according to the position of the dots in memory. This is a complicated subject,
and you will have to experiment with this graphics mode to determine the graphics
effects you wish.

Example
PROGRAM Draw_Box

Part Three: The Advanced BASIC Language

146 Chapter Ten: Graphics

SDHGR2 {Super Double High Resolution set}
HPLOT 10, 10

HPLOT TO 549, 10

HPLOT TO 549, 150

HPLOT TO 10, 150

HPLOT TO 10, 10

HPLOT TO 549, 150

HPLOT 549, 10

HPLOT TO 10, 150

HPLOT 250, 20

DRAWSTR ("The box is drawn")
DELAY = 1000

END

This example will plot a box crossed with an X and text in the display for about 10
seconds. '

High Resolution Shapes

Under High Resolution graphics there are two types of shapes you can draw:
Applesoft High Resolution shapes, and Double High Resolution shapes.

Single High Resolution Shapes

You may already be familar with this mode of shapes as these shapes are drawn with
the shape tables as described in the Applesoft manual.

Shape tables is a complex topic. Because this topic is discussed in detail in the
Applesoft manual, there is no need to repeat this discussion here. Suffice to say, the
shape tables supported by Micol Advanced BASIC are identical to the shape tables
supported by Applesoft BASIC.

Shape tables are supported in Single High Resolution graphics only. This means, you
may only use shape tables if you have issued an HGR or HGR2.

There are two changes between Applesoft BASIC and Micol Advanced BASIC you
must observe:

+ ROT and SCALE are not directly implemented. The ROTation factor must be
POKEd into location True_Value (location 48881) and the SCALE factor must
be POKE(into location $E7 (location 231) directly before the DRAW or
XDRAW command is issued.

« The syntax to DRAW and XDRAW is slightly different than under Applesoft.

Part Three: The Advanced BASIC Language

Chapter Ten: Graphics 147

DRAW X _Coord, Y_Coord At Shape_Table_Number
XDRAW X_Coord, Y_Coord AT Shape_Table_Number

Notice that the order of the arguments is different than under Applesoft. Except for
this factor, and the manner in which ROT and SCALE have been implemented, DRAW
and XDRAW function exactly as under Applesoft BASIC.

Example:

HGR2
HCOLOR = 3 {Must be 3 or 7 for XDRAW to work}
POKE SE8, 00 {Shape table at location $1E00}
POKE S$E9, S1E
FOR Ctr = 1 TO 50
POKE S$SE7, Ctr {Scale factor; Applesoft was SCALE = Ctr}
POKE 48881, Ctr {Rotation; Applesoft was ROT = Ctr}
X _Coord% = 139
Y Coord% = 79
Shape_Table% = 1
DRAW X Coord%, Y Coord% AT Shape Table%
DELAY = 100
XDRAW X Coord%, Y Coord% AT Shape Table%
DELAY = 100
NEXT Ctr

Double High Resolution Shapes

With the Double High Resolution commands described in this chapter, it is very easy
to draw a large variety of shapes, from triangles to circles, in any size, shape, or rotation.
All that is required is the inclusion of the following Procedure into your Micol Advanced
BASIC program. This technique may be used with all High Resolution graphics modes.

PROC Draw_Shape [No_Of Sides, Radius, X Offset, \
Y Offset, Distortion, Rotation]
Flag! = TRUE
SDHGR2
Step_Size = 6.28 / No_Of_ Sides
Limit = 6.28 + Step Size
FOR Degree_Step = 0 TO Limit STEP Step_ Size
X _Cord = Radius * COS (Degfee_Step + Rotation)
Y Cord = Radius * SIN (Degree Step + Rotation)

Part Three: The Advanced BASIC Language

148

Chapter Ten: Graphics

X Step Distortion * X Cord + X Offset
Y_Step Y Offset - Y Cord
IF Flag! THEN BEGIN
HPLOT X Step, Y Step
Flag = FALSE
ELSE BEGIN
HPLOT TO X Step, Y Step
ENDIF
NEXT Degree_Step
ENDPROC

No_Of_Sides determines the figure. Three sides is a triangle, four a rectangle.
More than 15 sides makes a circle.

X_Offset is the value of X from the middle of the screen.
Y_Offset is the value of Y from the middle of the screen.

Radius is the radius if the shape is a circle (more than 15 sides).
Distortion is a distortion factor, which is used to alter the shape.
Rotation is a rotation factor in radians (about 57 degrees).

Note that these variables are all real. If you have overridden the default types with
an INT or STR compiler directive, you will have to force real variables with an ’&’ after
the variable name.

Example:
X_Offset = 260
Y Offset = 96

Radius = 90

Distortion = 2

Rotation = 0 {Use default rotation}

FOR No_Of_Sides = 3 TO 30 {Draw different shapes}
GOSUB Draw_Shape [No_Of Sides, Radius, X Offset, \

Y Offset, Distortion, Rotation]

DELAY = 500
TEXT

NEXT No Of Sides

END

Note that this technique for drawing shapes was adapted from a program in the
manual Microcomputer Graphics by Roy Myers. If you wish to develop sophisticated
graphics on your Apple II or Laser computer using Micol Advanced BASIC, then you will
probably find this book very useful. All of the examples in this text are in Applesoft and
can therefore be easily adapted to Micol Advanced BASIC.

Part Three: The Advanced BASIC Language

Chapter Eleven: The Sound of Music 149

Chapter Eleven

The Sound of Music

Overview

Micol Advanced BASIC for the Apple IIGS has a great sound and music ab.ilit.y.
Great sound was possible to implement because the Apple IIGS has its own built-in
sound generator, which is reputed to be the best in the personal computer world.

Your Apple Ile, Apple Ilc or Laser doesn’t have the built-in sound hardware an Apple
IIGS has, but that doesn’t mean you can’t create delightful sounds with your computer.
Your Apple does have one sound making ability, it can make a click. While this doesn’t
sound like much, when you click your computer at machine language speeds, as Micol
Advanced BASIC does, it is possible to get some great sound effects.

Under Micol Advanced BASIC you have two sound commands, one for simply getting
attention, and the other for making music or game sounds.

Audio Output
BELL

Use BELL to provide an aural feedback to the user when the program is being used
improperly or as a warning to a possibly dangerous situation.

BELL will produce a beep sound through the speaker of your Apple.
Example:
BELL: BELL {Ring bell twice}

Sound

In order to complement the graphics capabilities of Micol Advanced BASIC, we have
implemented a command for playing music. With a little inventiveness, you should be
able to get some very interesting effects.

MUSIC (Pitch, Duration)

If you wish to play a musical note under Micol Advanced BASIC, then make use of
the MUSIC command. Only integer variables or integer literals are accepted as
arguments for this call.

How high the note will be played is determined by the first argument. The length
the note is played is determined by the second argument.

Part Three: The Advanced BASIC Language

150 Chapter Eleven: The Sound of Music

The duration of the note will deviate somewhat with pitch, so please take note of this
fact. You will have to experiment to get the sounds you desire.
Example:
PROGRAM Sound
INT (A-2Z)
FOR Pitch = 1 TO 20
MUSIC (Pitch, 10)
NEXT Pitch

Part Three: The Advanced BASIC Language

Chapter Twelve: Creating the Human Element 151

Chapter Twelve

Creating The Human Element

Overview

Unlike computers, human beings are not regulated by On and Off. What makes
humans special is the ability to see the different shades of gray, to make a decision based
on related information or on a hunch. Programming languages try to imitate this
randomness using pseudo-random numbers. Micol Advanced BASIC takes this one step
further by introducing Controlled Uncertainty™.

Pseudo Random Numbers

Pseudo random numbers are not really random, but only appear to be. The only
random number in the sequence is the first, or the seed as it is called. After that, the
generator goes through a complex set of calculations to get what appears to be a random
result.

Micol Advanced BASIC has two pseudo random number generators: one for integers,
one for reals, both activated by the RND function.

Be cautious with the use of RND. It is easy to call the real pseudo random number
generator by mistake when you want to use the integer generator or vice versa. Be
careful not to call the wrong one since they behave differently.

Integer Pseudo Random Numbers

Integer% = RND (Aexpr)

The integer pseudo random number generator is invoked when the assignment is
made to an integer variable. The integer RND function yields a pseudo random number
between 0 and Aexpr inclusive. Thirty-two thousand (32,000) is the largest argument
that may be passed to RND.

If an INKEYS$, INPUT or GET is executed within a program, the integer random
number generator will be reseeded. This reseeded value is an actual random number.

To use the integer random generator, do something like this:

FOR Ctr% 1 TO 6
Dice% = RND (5) + 1 {Random values between 1 and 6}
PRINT “Throw # ”; Ctr%; “ of the dice is a “; Dice%
NEXT Ctr%

Part Three: The Advanced BASIC Language

152 Chapter Twelve: Creating the Human Element

Real Pseudo Random Numbers

Real& = RND (Aexpr)

The real RND function yields a floating point pseudo random number between zero
and one inclusive. A zero argument returns the previous random number. A set
negative argument returns a set result. Any other argument returns the random result.

To use the real random generator, do something like this:

FOR Ctr% = 1 TO 100

Real Random& = INT (RND (1) * 100)

PRINT “Pass # ”; Ctr%;" is “; Real_Randomé&
NEXT Ctr%

Controlled Uncertainty™

Programming languages usually deal in absolutes of logic. Something is either true
or false, and actions are always taken depending on this condition.

Micol Advanced BASIC goes one step further and gives the programmer the
possibility to set conditions that may or may not take a certain action based on this
condition. We feel this is a feature that has many possibilities if intelligently used.

We call this feature Controlled Uncertainty. It is uncertain because there is th.e
possibility an alternate decision will be made. It is controlled because the decision is
being made within one of the structured constructs of Micol Advanced BASIC.

When could Controlled Uncertainty be useful? Anytime you wish to program human
uncertainty within a program. Many things in life are based on assumptions, not facts.
Any condition that is not absolutely true or false may use this feature.

Setting the Uncertain Condition

Controlled Uncertainty may be set using certain settings of boolean variables.
Usually a boolean variable is set to TRUE or FALSE. Under Micol Advanced BASIC, a
boolean variable may also be set to DUNNO, DOUBT or BELIEVE. BELIEVE is used
if the condition is probably true, but there is a chance it is false. DOUBT is used if the
condition is probably untrue, but there is a possibility it is true. There also exists
DUNNO. DUNNO is the logical equivalent to a random number generator and will
randomly select one of the other four possibilities.

If a boolean variable is set to BELIEVE and then tested, there is about an eighty
percent chance the condition will be TRUE, about twenty percent chance the condition
will be FALSE. If a boolean variable is set to DOUBT and then tested, there is about a
twenty percent chance the condition will be TRUE, and about eighty percent chance the
condition will be FALSE.

In addition, booleans set to an uncertain condition may be ANDed or ORed with
other booleans which will often make one of the other alternatives. We have collected all

Part Three: The Advanced BASIC Language

Chapter Twelve: Creating the Human Element 153

the possibilities into an uncertainty table which we display here.

Table 3.12.1. Uncertainty Table

AND
False Doubt Believe True
False False False False False
Doubt False Doubt Doubt Doubt
Believe False Doubt Believe Believe
True False Doubt Believe True
OR
False Doubt Believe True
False False Doubt Believe True
Doubt Doubt Doubt Believe True
Believe Believe Believe Believe True
True True True True True
Example:
PROGRAM Human Computer
HOME

"

PRINT “Hello, I'm your Apple computer, ”;
PRINT “I've been turned off for a while.”
PRINT “I do remember the time and the date, ”;
PRINT “but not your name.”
INPUT “What is it again? ”; Name$
Mood! = BELIEVE
IF Mood! THEN BEGIN

PRINT “Im feeling well today, and ”;

Bealth! = DOUBT

IF Health! THEN BEGIN

PRINT “hope you’'re feeling fine too.”

ELSE BEGIN
PRINT “certainly hope you’re not feeling poorly.”
ENDIF
ELSE BEGIN
PRINT “I'm sorry, I'm not well today, can’t talk anymore.”

Polite! = DUNNO

Part Three: The Advanced BASIC Language

154

Chapter Twelve: Creating the Human Element

IF Polite! THEN BEGIN
PRINT “Have a nice day ”; Name$
ELSE BEGIN
PRINT “Get lost “; Name$; ” and don’'t call again!!”

ENDIF
ENDIF
END

WARNING

NOTE

The statements IF Flag! THEN and IF Flag! = TRUE
THEN do not have the same effect when Controlled
Uncertainty values such as DOUBT or BELIEVE are
used. If the variable Flag! is assigned to DOUBT and

Flag! is tested as IF Flag! = TRUE THEN, the variable
Flag! will never be true, while if the variable Flag! is
tested as IF Flag! THEN, the variable Flag! will be true
about 20 percent of the time.

The condition at which a boolean variable is currently set
may be determined by using the PRINT <Boolean!>

statement to print the boolean value of FALSE, DOUBT,
BELIEVE or TRUE.

Part Three: The Advanced BASIC Language

Chapter Thirteen: Direct Memory Access 155

Chapter Thirteen

Direct Memory Access

Overview

This chapter discusses how to look at and change the contents of specific memory
locations, and to move memory within a Micol Advanced BASIC program.

Examining and Changing Memory
PEEK (Aexpr)

To see the value of a particular memory location, use the PEEK command where
Aexpr is the address to be referenced.

NOTE
All memory locations less than 256 (i.e. in zero page) are
different in Micol Advanced BASIC than in Applesoft
BASIC. If you are compiling an Applesoft BASIC
program, you must note this. Refer to Appendix A for a
memory map of Micol Advanced BASIC.
Example:

Integer% = PEEK (Location$%)
Real& = PEEK (Locationég)
PRINT PEEK (Locationé&)

POKE Aexprl, Aexpr2

POKE may be used to change the contents of the memory location specified. Aexprl
is the address in memory. Aexpr2 is the value to be stored in the memory location and
cannot be greater than 255, otherwise, an error will occur at run time.

If a negative integer address is used, POKE will convert the address into a two’s
complement address.

Part Three: The Advanced BASIC Language

156 Chapter Thirteen: Direct Memory Access

IMPORTANT
As mentioned under PEEK, all addresses less than 256
are different under Micol Advanced BASIC and Applesoft
BASIC. See Appendix A for the Micol Advanced BASIC
memory map.
Example:

POKE Location%, Number$%
POKE Locationé&, Numberg

Finding the Address of a Variable or Array

ADDR (Variable [(])

The ADDR (Variable) command returns the address of any variable. If the variable
is an array, the left parenthesis must be included to inform the Compiler that an array is
being referenced.

The address returned is the address used during execution of the program which is
the same as the address displayed by the Symbol Table Dump at the end of compilation
(if the LIST or PRINTER option is used).

NOTE
If ADDR is assigned to an integer variable and the result
returned is greater than +32767, this value will be
represented as a negative number. Add 65535 to a real
variable get the positive value.
Example

Simple Address& = ADDR (Variable)
Array Address& = ADDR (Array ()

Memory Images and Files

Sometimes it is necessary, within a program, to be able to bring information from a
disk file directly into memory. Also, the opposite may be true, memory locations must be
saved to disk to be used sometime later, perhaps even by another program.

Micol Advanced BASIC has two commands to accomplish these tasks. You must
however be very careful, as there is no protection, any part of memory may be accessed.

Part Three: The Advanced BASIC Language

Chapter Thirteen: Direct Memory Access 157

BLOAD Svar, Start_Address, Bytes_to_Load

BLOAD stands for Binary LOAD. Use BLOAD to bring binary data or a binary
program into memory.

Svar is the Pathname of the file. Svar may be either a string variable or a string
literal. Start_Address is the address of the first memory location to which the file will be
loaded. Bytes_to_Load represents the size of the file in bytes. Start_Address and
Bytes_To_Load may be either a variable or literal of type integer or real.

All parameters must be present to be accepted by the Compiler. The disk which
contains the file must be online upon execution of the statement, otherwise a run time
error will be generated.

BLOAD will load the file in the specified memory area in Auxiliary memory. If
Start_Address is zero, the file will be loaded to the address specified by the file
information on disk, otherwise the file will be loaded to the address specified. If
Bytes_to_Load is zero, the entire file will be loaded, otherwise only the specified number
of bytes will be loaded.

Example:
BSAVE “FILE”, 8192, 8192
BLOAD “FILE”, $2000, $2000

BSAVE Svar, Start_Address, Bytes_to_Save

BSAVE stands for Binary SAVE. Use BSAVE to save any information from
Auxiliary memory into a binary file on disk. The file will be saved as type BIN ($06).

Svar is the Pathname of the file. Svar may be either a string variable or a string
literal. Start_Address is the address of the memory location whose memory image will
be saved. Bytes_to_Save represents the size of the file in bytes. Start_Address and
Bytes_To_Save may be either of type integer or real in a variable or literal.

All parameters must be present to be accepted by the Compiler. BSAVE will save
the Bytes_to_Save number of bytes from Start_Address.

You can BSAVE a Double High Resolution graphics image you create with a Micol
Advanced BASIC program, but the image must be saved to two files, one for each
memory bank, Main and Auxillary. You must first BSAVE the image in Auxiliary
memory, then using the MOV_MEM command described later in this chapter, move the
image in Main memory to Auxiliary and do another BSAVE. When you wish to BLOAD
the memory image you saved, BLOAD the files in the reverse order in which you
BSAVEd them.

Example: (See example at end of chapter)

Moving Memory

It sometimes becomes necessary to move a significant amount of memory from one
location in memory to another. We have already mentioned one example with saving

Part Three: The Advanced BASIC Language

158 Chapter Thirteen: Direct Memory Access

graphics images. Another good example is in creating text windows on the screen that
have to be quickly restored.

MOV_MEM Start_Addr, Num_of Bytes AT Dest

To copy memory from one location to another, use the MOV_MEM command. The
arguments may be either of type real or integer.

Start_Addr is the address of the first byte that needs to be moved. Num_of_Bytes is
the total number of bytes to be moved, and Dest is the address to where these bytes need
to be moved.

The direction of the move is determined by the value in True_Value (location 48881)
according to the following rules:
+ Ifthere is a zero in True_Value, the copy will be made from Auxiliary memory
to Main memory.
+ Ifthereis a 128 in True_Value, the copy will be made within Auxiliary Memory
only.
« Ifthereis a 254 in True_Value, the copy will be within Main Memory only.

* Any other value in True_Value, the copy will be made from Main memory to
Auxiliary memory.

Example
PROGRAM Save Pic
INT (A-2)
SDHGRZ {Make the graphics screen)
FOR Ctr = 1 TO 30
HPLOT TO RND (559), RND (191)
NEXT Ctr
BSAVE “SCREEN.AUX”, 8192, 8192
POKE 48881, 1 {Copy from Main to Aux. memory}
MOV_MEM 8192, 8192 AT 8192 {Move half 2X Hi Res picture}
BSAVE “SCREEN.MAIN”, 8192, 8192

PROGRAM Load Pic

INT (A-2Z)

SDHGR2

BLOAD “SCREEN.MAIN”, 0, 0 {Load at default}
POKE 48881, 0 {Move from Aux. memory to Main}
MOV_MEM 8192, 8192, 8192

BLOAD “SCREEN.AUX”, 0, 0

Part Three: The Advanced BASIC Language

Chapter Fourteen: Run Time Error Handling 159

Chapter Fourteen

Run Time Error Handling

Overview

Error handling, or error trapping as it is also called, is the art of dealing with
unexpected situations. These situations may be, for example, bad user input, an empty
disk drive, improper data, or even an intentional user response which causes an error
condition, such as pressing <Control>C.

When an error occurs, control is usually passed to an error handling routine. An
error handling routine, for example, may allow the user to recover from the error by
giving precise instructions on how to correct the situation. After the error has been
corrected, the program usually resumes execution at a suitable point.

IMPORTANT

Do not confuse error trapping with debugging. Error
handling is a normal operation of almost every properly
functioning program and 1is simply dealing with

unexpected situations. Never use any of the commands
described in this chapter until your program is properly
debugged (unless, of course, you are debugging the error
trap itself).

Handling the Error

During the program development phase, whenever an error condition arose, a
message was displayed on the screen describing the error and the line where the error
occurred. You more than likely went to the Text Editor to fix the problem. This situation
was carefully devised to help you debug your program.

Now, you have gone beyond this phase so that your program operates as it should, or
at least as close as possible. Unfortunately, unforseen conditions may arise during the
execution of the program and the system sending a message to the screen isn’t adequate
anymore.

Now, the program error must be dealt with internally, and usually the program must
continue on with its work. That is, the error must be handled.

The Micol Advanced BASIC commands described in this section are all you should
need to take care of these unexpected situations. However, this is a topic where
creativity is required, so actually designing what happens in your error handling routine
is largely up to you.

Part Three: The Advanced BASIC Language

160 Chapter Fourteen: Run Time Error Handling

ONERR GOTO Module_Id

If an error occurs during program execution, ONERR GOTO deactivates the normal
debugging capability of Micol Advanced BASIC and transfers control to an error
handling routine. ONERR GOTO also passes information to the program to help
determine what the problem is and where it happened.

When an error occurs during the execution of a program, the error number is placed
into one of two memory locations (location 48856 or 48857).

Location 48856 holds the error number returned by the run time routine. Location
48857 holds the error number returned by the operating system. Under no circumstance
can both error conditions arise at the same time. The list of the error codes from the run
time routines is in Appendix C. The list of the error codes from the operating system is
in Appendix D.

Place the ONERR GOTO at a location prior to where you believe the error is likely
to happen; in practice, this is often at the beginning of the program.

To deactivate an ONERR GOTO, place a zero into location 48861 using a POKE.
This will enable the normal debugging capability of Micol Advanced BASIC.

It is often very useful to know on which sequential line number the error happened.
The sequential line number where the error occurred is stored as a binary value in
locations 48882 and 48883 in LSB, MSB order. The following program line will
determine at which sequential line the error occurred:

Line_Error& = PEEK (48882) + 256 * PEEK (48883)
It may be desirable to place the error handling routine as the last portion of code

before the final END statement. This will help avoid confusion with the normal
program code.

To avoid an infinite error loop, you may want to deactivate the ONERR GOTO if
execution errors should occur within the error handling routine. Don’t forget to
reactivate the ONERR GOTO by placing another ONERR GOTO as the last line of the
error handling routine, if necessary.

Example:

PROGRAM Error_Example
ONERR GOTO Error_Trap
{<Program code>}
END
ROUTINE Error_ Trap
POKE 48861,0 {Turn off future ONERR GOTOs}
IF PEEK (48856) > 0 THEN BEGIN
PRINT “Language error # ”;PEEK (48856);
ELSE BEGIN
PRINT “ProDOS error # “;PEEK (48857);
ENDIF
PRINT ™ in line ”; PEEK (48882) + 256 * PEEK (48883)

Part Three: The Advanced BASIC Language

Chapter Fourteen: Run Time Error Handling 161

END

RESUME

RESUME instructs the program to continue execution at the same line or structured
statement in which the error was encountered.

RESUME restores the previous FOR loop stack pointer as well as the stack pointer
used for Procedures, Functions and Routines. If you intend to use a RESUME, then the
error handling routine should contain neither FOR loops nor calls to subroutines
(GOSUBSs) as the values on the stack(s) may become corrupted.

WARNING
If RESUME is used in a program, the ERROR compiler
option must be specified in the program. If ERROR is
not specified, an error will occur at run time when
RESUME is encountered.
Example:

PROGRAM Example
@ ERROR {Required for RESUME}
ONERR GOTO Error_Trap

HOME

Divisor = 0

Dividend = 100

Quotient = Dividend / Divisor

PRINT “Quotient is: ”;Quotient

END {END needed to terminate program before error trap}
ROUTINE Error_Trap

HOME

PRINT “In Error Trap”

Divisor = 10 {Stop another division by zero error}
PRINT “Press Return to resume program”

GET Wait$

RESUME {Will execute the error line again}

Part Three: The Advanced BASIC Language

Chapter One: Desktop Description 162

Part Four: Humanizing the Interface

Chapter One

Desktop Description

Overview

Most of you have heard of the Apple Desktop used on the Macintosh and Apple IIGS
computers. This is the interface designed to make computers available to people who
know nothing about computers. This interface is so effective that even Microsoft has
created a similar interface on the IBM which has precipitated some tensions in the
microcomputer world.

This chapter explains the Desktop metaphor created by Apple and describes what is
needed in a Desktop program written in Micol Advanced BASIC on the Apple Ile and
Apple Ilc.

Hardware Requirements

Part Four is the only part of this manual that may cost you additional money to
implement. To have a proper Apple Desktop you will need an Apple II Mouse. If you
have an Apple Ilc, the firmware for the Mouse is built into your computer already and
only requires purchasing an Apple Mouse that can plug directly into your computer.

The Apple Ile has absolutely nothing built into itself to support a Mouse. A card,
together with the Mouse, must be purchased and this card must be installed into one of
the Apple Ile slots. If you have an Apple Ile, and wish to have a Mouse controlled
interface, you will have to purchase this card and Mouse, and we understand it still costs
more than $100 dollars.

If you are using the Apple Ile/c version of Micol Advanced BASIC on an Apple IIGS,

then you have nothing more to buy. You may use your Apple IIGS Mouse without
difficulty.

The Desktop Environment

What is the the Apple Desktop? The Desktop is a metaphor used by Apple to help
individuals use computers without having to learn hard-to-remember and often
difficult-to-use commands. This metaphor uses objects used in everyday life to
conceptualize computer operations.

It is not necessary to remember commands when a Desktop program is used; the
operations appear on the screen in a manner the user is already familiar with. The user
only has make a selection to perform the action. If you wish to learn more about the
Desktop metaphor, get a copy of the Human Interface Guidelines from Apple Computer,

Part Four: Humanizing the Interface

163 Chapter One: Desktop Description

Inc.

Desktop programming is somewhat difficult. It requires a lot of planning and
attention to details. A Desktop application does a lot of little things in the background
that take a little time to write into code.

Essentially, there are three types of displays on the Apple Desktop: Menus, Windows
and Dialog Boxes. We will only discuss Menus and Windows in this section. Dialog
Boxes can be simulated by means of Windows.

Unlike the Apple IIGS version of Micol Advanced BASIC, there are no commands
built into the Apple Ile and Apple Ilc version to create the Menu and Window displays.
However, it is possible to create text-based Menus and Windows in Micol Advanced
BASIC, and then monitor the user response to these displays with the built-in MOUSE
command.

The Desktop Construction Set

Micol Systems has spent considerable time developing routines that can create a
Desktop display on your Apple Ile, Apple IIc or Laser. We call this set of routines the
Desktop Construction Set. If you do not wish to take the time and effort to write your
own Menu and Window displays described below, you may purchase the Desktop
Construction Set directly from Micol Systems. An order form was probably included with
this package.

The Desktop Construction Set is a set of subroutines, written in Micol Advanced
BASIC, you can easily integrate into your own programs that will automatically create
Menus and Windows and allow a user response either from the Mouse or from the
keyboard. You simply include the Desktop Construction Set routines within your
program and make the appropriate calls.

The Desktop Construction Set comes with complete documentation on disk.

If you wish to have an Apple Desktop on your Apple II, then we recommend you
purchase the Desktop Construction Set.

Menus

Pull-down Menus allow a user to make a single selection from a list of selections (a
Menu List), among a set of lists (the Menu Bar), and perform a task based on this
selection.

Menu Lists may be easily created, enabled (made selectable), disabled (made
non-selectable), and removed. Each selection within a Menu List is called an Item.
Items within a Menu List may be enabled, disabled, and removed just as easily.

A distinction must be made between the Menu Bar, Menu List, and Menu Item. A
Menu Bar, the rectangle that appears on the top of the Menu display, contains the Menu
Lists. When a List in the Menu Bar is selected, a pull-down List of Items is displayed.
The List of Items disappears from the screen when the List is released. The pull-down
List is the entire collection of Menu Items for this Menu List.

A Menu Item is the actual command the computer will respond to when selected by

Part Four: Humanizing the Interface

Chapter One: Desktop Description 164

the user. The code to perform this command must be contained within the program
containing the Menu.

Windows

A Window is a structure in which information, such as a document or a picture, is
presented to the user by the application program. Any text or text image that may be
created with the normal text commands may be used within a Window.

A Window consists of a frame that surrounds the image and a content area inside the
frame in which the image is presented. A Window frame is rectangular. In order to
allow scrolling within the content area of the Window, you will probably wish to change
the screen borders to that of the content area. See Appendix B for further information.

The controls in a document frame are optional, and may be used in any combination.
They include:

« The title bar at the top of the Window which describes the Window’s function.

« A small close box, also at the top of the Window, which, when referenced by the
user, causes the Window to disappear from the screen.

« Avertical scroll bar, on the right side of the Window, which caues the contents
of the Window to scroll up and down when accessed by the user.

« A horizontal scroll bar, at the bottom of the Window, which causes the contents
of the Window to move left and right when accessed by the user.

Saving and Restoring Windows and Menus

When a Menu list is displayed and then released, the screen background must be
restored. Windows are usually designed so that multiple Windows may appear on the
screen, with the last most referenced being the active Window. This action can be easily
simulated in Micol Advanced BASIC with the use of MOV_MEM.

There is a one-to-two correspondence between the image that appears on the screen
and memory in your computer. In Main memory, from locations $400 through $7FF are
stored one set of characters, and in Auxillary memory, also between locations $400 and
$7FF are stored the alternate characters. This means every other character is stored in
one of the two memory banks.

To save the Window or Menu List, so it may later be restored, you may make use of
the MOV_MEM command, and save the proper locations in both memory banks.

To save the entire contents of the screen requires 2048 bytes of memory. If you wish
to support only five Windows at a time, this will require more than 10K of memory. If
you are clever, you do not need to save the entire screen, but only the lines on the screen
that are displayed. This is the technique used by the Desktop Construction Set.

Unfortunately, the lines of text as represented in memory are not consecutive. Table
4.1.1 is a memory map of the text display. Don’t forget that these locations apply to both
Main and Auxiliary memory, and one line consists of 40 characters from each bank.
Every first character is stored in Auxiliay memory, and every second character is stored
in Main memory.

Part Four: Humanizing the Interface

165 Chapter One: Desktop Description

Table 4.1.1 Text Screen Memory Map

Line Number Memory Location
1 $400 (1024)
2 $480 (1152)
3 $500 (1280)
4 $580 (1408)
5 $600 (1536)
6 $680 (1664)
7 $700 (1792)
8 $780 (1920)
9 $428 (1064)
10 $4A8(1192)
11 $528 (1320)
12 $5A8 (1448)
13 $628 (1576)
14 $6A8 (1704)
15 $728 (1832)
16 $7A8 (1960)
17 $450 (1104)
18 $4D0 (1232)
19 $550 (1360)
20 $5D0 (1488)
21 $650 (1616)
22 $6DO0 (1744)
23 $750 (1872)
24 $7D0 (2000)

Monitoring the Desktop

One you have created the Menu and/or Window(s) on the screen, you must monitor
the user’s response to the display.

There is a Micol Advanced BASIC command, MOUSE, which is designed to monitor
this user response. This command allows you to control the Mouse and passes back the
following information:

* The current position of the Mouse. If you know the horizontal and vertical
position of the Mouse then, because you have built the Menu or Window display,
you also know what the Mouse is currently referencing.

» Whether the Mouse button is being pressed or not. By knowing the Mouse

Part Four: Humanizing the Interface

Chapter One: Desktop Description 166

location and knowing that the Mouse botton is down, you therefore know the
selection the user is making.

« The character currently under the cursor. This can be an aid in restoring the
screen display.

The MOUSE command is discussed in detail in the next chapter, so please read on.
You will certainly still have questions and the following chapter will probably answer
them.

Part Four: Humanizing the Interface

Chapter Two: Monitoring the User Response 167

Chapter Two

Monitoring the User Response

Overview

As mentioned in the previous chapter, any Apple Ile or Apple IIc may have a Mouse
connected to it. If you wish to create a human engineered interface, similar to what’s
possible on the Macintosh or Apple IIGS, then there is a command in Micol Advanced
BASIC that will be a great help. This command is the MOUSE command, and is the
subject of this chapter.

Unfortunately, Apple Ile’s and Apple Iic’s do not come equipped with this piece of
equipment, but it must be purchased extra. This chapter may give you some incentive to
buy one.

The Mouse Command

MOUSE (Array ())

MOUSE is the command to control the Apple Mouse. Array is an integer array that
must be DIMed to at least seven elements. The Mouse command is controlled by the
value placed into element zero (Array (0)) of the passed array, the Mouse Control
Number.

MOUSE functions under the text screen, not the graphics screen, and maintains its
own cursor. The following Mouse Control Numbers determine the MOUSE command’s
functionality:

Table 4.2.1 Mouse Control Numbers
Value Function

Home the Mouse cursor
Position the Mouse to specified co-ordinates

Set a new Mouse cursor

Turn Mouse cursor off

Turn Mouse cursor on (default)
Set fast Mouse (twice as fast)
Set slow Mouse (default)

© 00 3 O Ot b W N -

Limit the vertical co-ordinates of movement (1-24)

-
o

Part Four: Humanizing the Interface

Read the Mouse cursor position, button status, etc.

Limit the horizontal co-ordinates of movement (1-80)

168 Chapter Two: Monitoring the User Response

The screen positions recognized by MOUSE are the same as those specified in the
HTAB and VTAB commands (1-80, 1-24) respectively. Please note that some of these
commands alter the values within the passed array, so you should always set the array’s
values before invoking MOUSE. Also, because internal calculations are done using
integer math, sometimes a value set by the user may be off by one. If this is important,
be certain to test the setting.

In order to test whether a Mouse is available on the host computer, issue a read
MOUSE command (Mouse Control Number 3) and test location True_Value (location
48881). If there is a Mouse card installed, this location will contain a zero, else a
non-zero value will be in True_Value.

Homing the Mouse

If you set integer array element zero to one, you will home the Mouse cursor, i.e. set
the Mouse’s cursor to the upper left corner of the screen. Values in elements one and two
of the integer array are ignored. This command will probably be the first command
executed after the initial read to determine if a Mouse card is available.

Example:

Array (0) = 1
MOUSE (Array ()

Mouse cursor is at top left most position of screen.

Positioning the Mouse

Setting integer array element zero to two will position the Mouse. Position 'N.Iouse
sets the Mouse’s position according the the values in elements one (horizontal position, 1
- 80) and element two (vertical position, 1 - 24) of the passed array.

Example
Array (0) = 2
Array (1) = 40 {Row 40}
Array (2) = 10 {Line 10}

MOUSE (Array ()

Mouse cursor sits at row 40 and line 10.

Reading the Mouse

To read the Mouse, set integer array element zero to three.

Read Mouse is the work horse of the Mouse control. You will probably make more
use of this command than all the other commands combined. Read Mouse fetches the
values set by the firmware, and places these values into their respective array locations
starting with array element one in the following order:

Part Four: Humanizing the Interface

Chapter Two: Monitoring the User Response 169

Table 4.2.2 Read Mouse Return Values

Array Element # Function

One X co-ordinate (1 - 80) of Mouse

Two Y co-ordinate (1 - 24) of Mouse

Three 1 = Mouse was moved; 0 = Mouse not moved
Four 1 = Button was down last; 0 = was not down last
Five 1 = Button is down; 0 = Button not down

Six ASCII value of character under cursor

To be effective, Read Mouse must be placed into a loop which tests the condition of
the Mouse Button by reading one of the elements in the passed integer array.

Example:
REPEAT
Array (0) = 3
MOUSE (Array ()
UNTIL Array (5) =1
PRINT “Mouse clicked at X ":Array (1)
PRINT “Mouse clicked at Y = ”;Array (2)
PRINT “Character under cursor is ”;CHRS (Array (6))

]

Note that delays may be needed in your program as many lines of code can be
executed in the time the botton is held down. This can be true even for a very fast click.

Altering the Mouse Cursor

To set the Mouse cursor to one of your own choosing, set integer array element zero
to four. The ASCII value of the new cursor, usually a MouseText character, is placed in
array element one. Initially, the Mouse cursor is a MouseText arrow (66). The new
value should be between 64 and 95 (no check is made). The time delay cursor is 67.

Example:
Array (0) = 4
Array (1) = 67

Mouse (Array ()

Turning the Mouse Cursor Off

To turn the Mouse cursor off (and replace the cursor with the character under the
cursor), set integer array element zero to 5. The position will remain unchanged.

This command is necessary if you are saving and restoring the screen to make
Windows or Menus (by means of the MOV_MEM command). Without use of this
command, you will also be saving and restoring the Mouse’s cursor, and the character

Part Four: Humanizing the Interface

170 Chapter Two: Monitoring the User Response

under the cursor will be lost. Use the following described command to turn the cursor
back on.
Example:
Array (0) =5
MOUSE (Array ()

Turning the Mouse Cursor On

To turn the Mouse cursor back on, set integer array element zero to six. If tl‘1e
Mouse cursor has been turned off by the command described just above, the cursor will
probably need to be restored. The Mouse cursor position will be that determined by the
Mouse itself, which may not be the Mouse cursor’s previous position.

Example:
Array (0) = 6
MOUSE (Array ()

Setting the Fast Mouse

To set the fast Mouse, set integer array element zero to seven. The Mouse will move
four times as fast as the normal slow Mouse.

Because the Mouse’s position may change with this command, you may wish to
position the Mouse to the co-ordinates using Array (0) = 2 (position Mouse) and set the
co-ordinates to that of the last position read.

Example:

Array (0) = 7
MOUSE (Array ()

Setting the Slow Mouse
To set the slow Mouse, set integer array element zero to eight. This is the default
speed.

Example
Array (0) = 8
MOUSE (Array ()

Limiting the Mouse’s Horizontal Movements
To set the left and right most position the Mouse may move horizontally, set integer

array element zero to nine. The minimum X positon is in element one of the passed
array, and the maximum X position is in element two of the passed array.

Part Four: Humanizing the Interface

Chapter Two: Monitoring the User Response 171

Example
Array (0) = 9
Array (1) = 10
Array (2) = 20

MOUSE (Array ()

Mouse may now move only between rows 10 and 20.

Limiting the Mouse’s Vertical Movements

To set the minimum and maximum co-ordinates the Mouse may move vertically, set
integer array element zero to ten. Integer array element one will contain the top most
position to which the Mouse may move, and integer array element two will contain the
bottom most position to which the Mouse may move.

Example
Array (0) = 10
Array (1) =5
Array (2) = 10

MOUSE (Array ()

Mouse may now only move between lines 5 and 10.

Example Program

Included on the Micol Advanced BASIC System Disk, on the reverse side, in folder
PRG.EXAMPLES, is an example program, file MOUSE.ALIAS that demonstates how
to use the MOUSE command, as well as the power of Aliases discussed in Part Three,
Chapter One. Be certain to give this file a look-see.

Part Four: Humanizing the Interface

Chapter One: Program Debugging 172

Part Five: Program Management

Chapter One

Program Debugging

Overview

This chaper is designed to help you debug your programs.
What Is Debugging? Debugging is the act of finding errors within a program.

In general, two classes of errors can occur in a program; syntax errors and logic
errors.

Syntax errors occur when the syntax rules of the language are violated and are
caused mainly by typing errors or by a misunderstanding of the rules of the language.
These errors are almost always very easy to solve and will not concern us here.

Logic errors are much more difficult to determine than syntax errors and occur when
a program is not properly designed to solve the problem in question. Logic errors cause
the program to give different results and/or behave differently than what was expected.

No language system can find such logic errors because no language system can do
what a human can do, think. The most a language system can do is to give the
programmer some tools to help him/her find these logic errors. This is what Micol
Advanced BASIC does and this is the subject of this chapter.

Debugging Statements

Often, a variable has a different value than is intended, or an area of code has
executed when it should not have executed, or vise-versa.

Programs do exactly what you tell them to do; they do not do what you think you tell
them to do. This is very often the cause of logic errors; the programmer has told the
computer to do something other than had been intended. Do not assume that any code is
automatically correct; this is a big mistake.

Another cause of logic errors is that the programmer has devised an incorrect
solution to the problem. The program operates as intended, but incorrect results are
coming out. This is a more serious problem, and more difficult to solve. Once the
problem is located, the code must be rewritten.

The following statements are designed to help inform you where you are going
wrong; they cannot find the problems themselves. Use these commands wisely, and your
job will be a lot easier.

Part Five: Program Management

173 Chapter One: Program Debugging

BELL

BELL can be a good tool to help you find your logic errors. Just place BELL in the
section(s) of code where the program seems to be malfunctioning. If the speaker beeps
when it should not or fails to beep when it should, a bug may have been found in the
program. The beep gives you an aural message telling that something may be wrong.

Example:

IF PEEK (48881) = 2 THEN BELL

PRINT

Insert a PRINT statement at strategic points in the program to determine what the
contents of a particular variable are.
Example:
Alpha% = PEEK (True_Value)
PRINT “Alpha% = ”; Alpha

STOP

STOP halts the program’s execution, prints the line number where the program
halted, and returns control to the Command Shell while using the programming
environment.

Line number information can be valuable information in debugging as it is
sometimes the case that a particular line should or should not be executing at a certain
point in the program’s execution. Then it’s necessary to trace the logic in your program
to determine why the program flow got to where it did.

This is what is known as setting a break point, and is the most frequently used
debugging technique in assembly language programming. Break points may also be
useful in high level debugging.

STOP may be placed anywhere in a program as it closes all files currently open and
sets the screen to text mode.
Example:
Variable = 3
IF Variable = 3 THEN STOP

TRACE

TRACE will print the sequential line numbers of the program as the ling or
structured loop statement is executing. Tracing a program’s flow can be a great aid in
determining the program’s actual logic.

TRACE may be placed anywhere in a program and follows the flow of execution used

Part Five: Program Management

Chapter One: Program Debugging 174

in the program.
To use TRACE, place it before the location from which you wish to begin the trace of
your program. Any code executing before TRACE will not be displayed.

The tracing may be paused by pressing any non-Control character. Restart the
tracing by pressing any non-Control character again.

WARNING _ . o
Do not use the OPTIMIZ compiler option as it hinders

the generation of line information required by TRACE.

Example:
PROGRAM Try Trace
PRINT “This program will be traced”
HOME
TRACE
FOR Number% = 1 TO 4
PRINT “Number$% = ”;Number$
NEXT Number%
NOTRACE {Turn off the TRACE}
END

NOTRACE
NOTRACE turns off the effects of a TRACE. The number of the line will no longer

appear after NOTRACE is executed.
Example: (see example under TRACE.)

Part Five: Program Management

Chapter Two: Program Optimization 175

Chapter Two

Program Optimization

Overview

This chapter discusses some simple tricks to help you maximize the speed of your
programs while at the same time minimizing the program size.

Saving Memory

Because of the limited amount of memory available to Apple Ile or Apple Ilc, you may
have need for this section. Under the Apple 1le and Apple IIc version of Micol Advanced
BASIC, a program may have a maximum of 42K for program space and about 30K for
string and data space.

Generally, the tricks to help save memory are the same as in Applesoft BASIC.

Working within the Editor’s Workspace

The Text Editor has enough work space for about 800 or 900 lines of code. Use
INCLUDE or CHAIN in the program if the program exceeds about 600 lines.

Saving Space in a Program

» Use the OPTIMIZ compiler option once your program is free of bugs; this can
shrink your programs as much as one-third. If limited space is a problem during
program development, you may use this compiler option to save memory, but
determining where run time errors occur will become much more difficult.

« Avoid the use of the ERROR compiler option. The only function this compiler
option has is in regards to the RESUME command, but ERROR causes a
significant amount of code generation. You will have to handle your error
recovery in a different fashion.

+ Analyze your programs for repeated code. It may be possible to create one
subroutine that will do the work of several portions of your program.

» Use arrays as rarely as possible. If you must use arrays, use integer arrays
whenever possible. Do not make arrays any larger than you have to.

« Avoid DATA statements. DATA statements require significant memory. Data
may just as well be stored on disk and recalled at run time.

« Avoid mixed arithmetic. Mixing reals and integers within a statement forces the
Compiler to generate extra code, code that may possibly be avoided.

« As with any programming language, code efficiently.

Part Five: Program Management

176 Chapter Two: Program Optimization

Speeding Up Your Programs

Certain methods may be used to make a program execute more quickly. Some of the
tips mentioned above apply here too.

+ Make use of the OPTIMIZ compiler option as soon as your program is
completely free of bugs. The code required for debugging purposes usually takes
significant time to execute. Once your program is debugged, this code no longer
has a useful purpose and may be eliminated.

* Do not mix your arithmetic. If calculating in real, be consistent with real;
likewise for integers.

« Use integer variables whenever practical. Micol Advanced BASIC has its own
built-in integer routines. The average increase in speed over real arithmetic may
be as great as 400%.

« Use arrays wisely. Some time is needed at run time to calculate the address of
the array element. However, if you have an algorithm which is faster than
another and uses arrays, feel free to use them

+ Avoid disk access as much as possible. If you have frequent disk access with the
same file(s) being read again and again and you have the use of a RAM disk,
make use of this RAM disk together with the COPY command to transfer the
files from a static disk to the RAM disk before your program reads these files.
Use file access number eight for sequential files.

Part Five: Program Management

Chapter Three: Managing Large Programs 177

Chapter Three

Managing Large Programs

Overview

This section shows how to segment both source code and executable load modules
under Micol Advanced BASIC and how to conceive large programs which would
otherwise be very difficult to do.

Chaining Source Code Files

For very large programs, it may be necessary to segment your source code into two or
more portions in order to manage the source code within the Text Editor. Micol
Advanced BASIC has two methods to allow you to segment your program code: chaining
text files, and creating a library of modules. Because the creation of library modules has
been discussed in Part Three, Chapter 9 in this manual, it will be only briefly discussed
here.

Segmenting the Source Code Files

In order to segment the source code file, you must first decide where you can logically
break the program. You must make every attempt to keep subroutines intact.

Using the Text Editor, break this large program into several smaller source code files.
To be safe, keep the original file safe just in case something goes wrong.

Then, simply terminate each source code segment, except the last, with a CHAIN
statement, using the next source code filename as the CHAIN string parameter.

The second, and subsequent source code file(s) are just a continuation of the program
code (as if there were a single file). The next file finishes with an END or with another
CHAIN if another file is to be chained.

CHAIN String_Literal

The CHAIN statement must be the only statement on the line. It should be the last
statement in the file: any subsequent line(s) of code following the CHAIN statement will
be ignored by the Compiler.

String_Literal must be the Pathname of the source code file you wish to compile after
the previous source code has finished compiling. The only accepted parameter to
CHAIN is a string literal; a string variable will be rejected by the Compiler.

The file referenced must be online at the time of compilation, otherwise the
appropriate operating system error will occur.

The Compiler displays the message “Chaining <Pathname>” before it starts reading

Part Five: Program Management

178 Chapter Three: Managing Large Programs

the file to be chained.

Example:
(Contents of file: Chainl)
PROGRAM Chain_Example

@ LIST

FOR Ctr% = 1 TO 10
PRINT Ctr$%

NEXT Ctr%

CHAIN “/RAM5/Chain2"

(Contents of file: /RAM5/Chain2)
FOR Ctr% = 11 TO 20

PRINT Ctr%
NEXT Ctr% {End of chained program}
END

How to Debug a Chained Program

The Compiler does not number the lines of a segmented, chained program ‘the_same
way the Editor does; the Text Editor always begins numbering from the first line in the
editor buffer.

During compilation, the chained file is treated as if it were a part of the previous file.
This mean that the sequential line numbers continue uninterrupted. If an error with a
specific line number within a chained file occurs during execution, you will have to
recalculate its Editor line number to be able to correct the problem in the Editor. The
same situation is true of syntax errors.

Consider using the INCLUDE statement as an alternative method of pompiling
large source code files. See Chapter Nine in Part Three for additional information.

Sharing Executable Code Files

Your Apple Ile, Apple Ilc or Laser computer has 128K of memory in two separate 64K
memory banks. This is a significant amount of memory. However, not all of this 128K is
available for your Micol Advanced BASIC programs. There are three primary reasons
why all this memory cannot be used.

Firstly, some of the memory is needed exclusively for the computer. The operating
system, screen displays, etc., require a certain amount of memory. ProDOS 8 alone
. requires 16K. Secondly, the 128K memory is divided into two 64K memory banks, each
of which is separate from the other (the 65C02 microprocessor, the CPU in the Apple Ile,
and Apple IIc can only access 64K bytes at one time). Some duplication of memory usage
is necessary to overcome this problem.

The third reason has nothing to do with your computer. You've probably noticed that

Part Five: Program Management

Chapter Three: Managing Large Programs 179

Micol Advanced BASIC is very powerful, giving you features unheard of in any Apple Ile
and Apple Ilc. This power requires memory usage in the form of the run time Library.
The run time Library is about 26K bytes in length and resides mostly in Auxillary
memory, but also has some shared locations in Main memory.

Micol Advanced BASIC programs may be a maximum of about 42K bytes of memory.
This limitation may be overcome by the means of sharing.

Sharing refers to the ability of several programs to share the same data space.
Normally when a program is executed, the data space is initialized. Sharing stops this
initialization except in the starting program.

Another aspect of sharing is that all variables of the same name share the same
memory locations. This means, in effect, the variables within shared programs are
identical and may be treated as such.

How to Share Programs

In order to make programs share data space, there are four points you must observe:
1. Make use of the SHARE compiler option (only) in secondary programs.

Compile the programs in the order in which they will execute, with the first
executing program not having the SHARE compiler option, and all other
programs requiring it.
3. All DIM and DATA statements must appear in the first executing program.
4. Make use of the RUN command to cause execution of subsequent programs.

Any SHAREd program may RUN any other SHAREd
program, but if you RUN the top program again, you will
reinitialize the data space (i.e., a CLEAR will be
performed).

NOTE

You will probably wish to make use of a COMPLINK
batch file to compile your shared programs. Once this
batch file is created, the entire set of programs may be
compiled automatically. Please see Part Two, Chapter
One for further information.

Using Shared Programs

Once the programs are compiled, the rest of the work is easy. The final task is to
cause the execution of the programs.

Shared programs are executed by means of the RUN command. At the suitable
location in the program, simply RUN the next shared program.

Part Five: Program Management

180 Chapter Three: Managing Large Programs

Example
PROGRAM Main
INT (A-2Z)
DATA 1, 2, 3, 4, 5
DATA 6, 7, 8, 9, 10
DIM Array (10)
HOME
PRINT “In starting program”
FOR Loop Ctr = 1 TO 10
READ Array (Loop_ Ctr)
NEXT Loop Ctr
RUN “SUBSEQUENT.BIN”
END

PROGRAM Subsequent
@ SHARE
INT (A-Z)
PRINT “In subsequent program”
FOR Ctr = 1 TO 10
PRINT Array (Ctr)
NEXT Ctr

When Main is compiled, the Compiler’s Symbol Table (the list of all variables and
addresses which the Compiler maintains) is set to empty. This Symbol Table memory
space, located between $D000 and $FFFF in Auxillary memory, is used by Micol
Advanced BASIC only for Compiler symbol table storage, a possible string buffer during
program execution, and a copy buffer in the Text Editor, and is therefore safe as long as
programs are being compiled without interruption.

When Subsequent, above, is compiled, the SHARE compiler option tells the
Compiler not to reinitialize the Symbol Table, but rather reuse the previous variables
and their respective addressed in the current compilation. The Compiler also generates
code which will hinder reinitialization of the data space. Because the Symbol Table from
Main is still available, all variables (and their addresses) referenced in Main will also
be available in Subsequent.

Part Five: Program Management

Chapter Four: Assembly Language Integration 181

Chapter Four

Assembly Language Integration

Overview

Sometimes, a specific task cannot be done by a higher level language or even greater
speed is needed than is possible in this higher level language.

In these cases, a good solution is to integrate (or link) an assembly language module
into the program. Under Micol Advanced BASIC, it is very easy to link in machine
language programs you have developed.

Bringing in the Assembly Language Program

LINK PathName

The LINK statement links in the assembly language program specified by
PathName. PathName must be a string literal and is the complete Pathname of the
assembly language file to be linked. The file must be online at compilation time. If it
cannot be found, the Compiler will signal an error. The assembly language program
must be already assembled and error free.

The Compiler will indicate, “Linking file” Pathname when it is linking in the binary
file. You may only link in a file of type BIN or you will receive an error at compile time.

Example:
LINK “/System.M2000/ClrScreen.B”

IMPORTANT

Not any machine language file can be linked in by the
LINK command. During linking, the binary file is
brought into a Micol Advanced BASIC program and the

binary program is relocated to the location at which the
LINK statement resides in the program. For the
relocation to be successful, there are certain rules,
described below, you must follow.

NOTE
Any suitable assembler may be used to develop your

machine language programs as long as the assembler can

generate a binary image. You may purchase, at a special
price, a very fine assembler package from us called
System M2000. Order form included with this package.

Part Five: Program Management

182

Chapter Four: Assembly Language Integration

How to write an assembly language program to be linked into a Micol Advanced
BASIC program:

1. Write the assembly language program as required:

a.

g
2.

a.

b.

The first part of the machine language program must contain only program
code, no data at all (if you are using System M2000, RES statements are
allowed).

Following the program section, you may have a data section, but it must be
preceded by two $FF's (in System M2000 WOR $FFFF).

You must not attempt to pass an address in immediate addressing mode orin a
pseudo operation. Such statements as LDA #>LAB, LDX #<ADDRESS, or
address labels within a WOR or BYT pseudo op will not be relocated by the
Linker. In the demo program below, the label Str_Addr demonstrates how to
define (and reference) addresses which must be relocated to a new address by
the Linker.

By default, an executing Micol Advanced BASIC program reads from Main
memory, and writes to Auxiliary memory. However, your machine language
program will probably need to write to Main memory. A STA $C004 at the
beginning of your program will accomplish this. Be certain to restore the
default mode of read from Main memory and write to Auxiliary memory with
a STA $C005 before exiting your program.

Remember that the page $BE vectors (see Appendix A) are in Auxiliary memory
which can be PEEKed from a Micol Advanced BASIC program, but not

LDAed directly from your machine language program, which will reside in
Main memory.

Do not use an RTS ($60) instruction to end the program; just let the assembly
language code “fall” through. The Micol Advanced BASIC program will

resume on its own

Thoroughly test this program for any errors before linking it.

Link the assembly language file into the Micol Advanced BASIC program:

Using the LINK statement, link this assembly language module into your Micol
Advanced BASIC program where it is required. We recommend allocating a
special Procedure for the assembly language module.

Remember, it is the binary file which gets linked in, not the assembly language
source code text file.

Example (assembly language):
;Example of an assembly language program that can
; be linked directly into Micol Advanced BASIC.

.
7

;Done using System M2000 syntax, your assembler may
1be different

.
’

ZPG_Tmp EQU $SAQ This is a safe temp location

Part Five: Program Management

Chapter Four: Assembly Language Integration 183

CouT
HOME

TOP
LOOP

LOOP_END

EQU
EQU
ORG
STA
JSR
LDA
STA
LDA
STA
LDY
LDA
BEQ
JSR
INY
BNE
INC
BNE
BRA

SFDED
SFC58
$1000
$C004

HOME
STR_ADDR+1
ZPG_TMP
STR_ADDR+2
ZPG_TMP+1
#0

(ZPG_TMP) ,y

LOOP_END
COUT

LOOP
Ctr
TOP
FINISH

Apple’s character output
Apple’s Clear Screen
Any address will do

Read/Write Main memory

Fetch only the address part

Print line 256 times

Skip data section to follow

; The following statement is to force a relative address that

; can be used by the program. The LDA is necessary to force

; the linker to relocate the address of “String”. This line

; will never be executed by the program.

Str_Addr

String

Ctr
FINISH

LDA
WOR

String
SFFFF

Terminate the program, start data

STR 'This is the output string’

BYT
BYT
STA
EQU

$8D, 0
0
$C005

*

Write to Auxiliary memory again

Fall down to BASIC program

Example (Micol Advanced BASIC program using above program)

PROGRAM Example

@ LIST
HOME

PRINT “Linking in a machine language program”
LINK “/System.M2000/EXAMPLE.B”

END

Part Five: Program Management

Chapter Five: Creating Independent Programs 184

Chapter Five

Creating Independent Programs

Overview

Once you have developed your Micol Advanced BASIC programs, you will probably
wish to have a method to execute these programs without going into the programming
environment every time.

There are two methods that allow you to execute your Micol Advanced BASIC
programs outside of the normal programming environment, the first is from a TurnKey
system, and the second is by means of the Micol Program launcher. We will discuss both
methods in this chapter.

Creating a TurnKey System

A TurnKey system is simply a program that automatically executes when the disk on
which it resides is booted. The normal ProDOS 8 system disk is actually a TurnKey
system for the BASIC.SYSTEM file, as BASIC.SYSTEM is automatically executed after
ProDOS 8 has booted. You will be creating a similar system, but for a Micol Advanced
BASIC program.

To create a TurnKey system, take the following steps (you may use any suitable
ProDOS 8 copy utility such as Copy II Plus or System Utilities that came with the
system disk):

1. Format a 3.5 inch or 5.25 inch diskette as a ProDOS disk. You may give the disk
any suitable volume name.

2. From the Micol Advanced BASIC system disk, side one, copy the operating system,
file PRODOS, the Micol Advanced BASIC loader, file MICOL.SYSTEM and
the run time Library, file LIBRARY to the volume directory of the diskette
formatted in step one.

3. Copy, to the volume directory of this new diskette, the Micol Advanced BASIC
program you wish automatically executed.

4. Rename this Micol Advanced BASIC program to Micol.Adv.BASIC.
5. Copy all files required by your Micol Advanced BASIC program to this new disk.

Now, whenever this disk is booted, your Micol Advanced BASIC program will
automatically load and execute.

If you have a hard disk, you may create launchable Micol Advanced BASIC programs
by creating a separate folder for each program you wish to launch and perform steps two
through five of the above procedure (do not copy file PRODOS). The Micol Advanced
BASIC program may then be launched from a ProDOS Quit by setting the default prefix
to that of the specific folder and specifying MICOL.SYSTEM as the next application, or
by double clicking MICOL.SYSTEM from the respective folder from the GS/OS Finder.

Part Five: Program Management

185 Chapter Five: Creating Independent Programs

The Micol Program Launcher

There is a program on the back side of the Micol Advanced BASIC System Disk
called MICOL.LAUNCHER which is designed to allow easy access to your Micol
Advanced BASIC programs independent of the normal programming environment.
MICOL.LAUNCHER is the Micol Program Launcher.

When the Micol Program Launcher is executed, it will display all of the Micol
Advanced BASIC programs, in alphabetical order, contained under the default directory.
The program being selected is displayed in inverse, and using any arrow key will select
another file. Once you have selected the file you wish, press the Return key, and the
selected file will be launched.

In order to make use of the Micol Program Launcher, you must do the following:

1. Do one of the following to create a suitable environment for the Launcher
a) Either format any suitable 3.5 or 5.25 inch diskette. You may give the diskette
any suitable name. You may create a special folder on this diskette for
launching your programs, if you so wish

b) On your hard disk, create a folder with any suitable name.
2. From side one of the Micol Advanced BASIC System disk, copy the following files to
the volume or directory stipulated in step one:
a) MICOL.SYSTEM
b) LIBRARY

3. Turn the Micol Advanced BASIC System Disk over, and to the same directory as
these other two files were copied, copy file MICOL.LAUNCHER. Do not give
this file another name, or the Micol Loader will not be able to find it.

4. Copy, to a maximum of about 80 files, the Micol Advanced BASIC programs you
will wish to launch. Do not copy any other binary type files to this folder as
these files are unsuitable for this environment. No program should have the
name Micol.Adv.BASIC or Micol.Launcher.

In order to make use of the system just created, the default prefix must be set to that
of the volume or folder in which these files reside, and the Micol Loader, file
MICOL.SYSTEM, must be the first file executed.

From a ProDOS Quit, select the folder containing your Micol Advanced BASIC
programs, then cause MICOL.SYSTEM to execute. This will cause the Micol Program
Launcher to automatically execute.

Once the launched program has finished execution, a ProDOS Quit will be
performed. If you launch MICOL.SYSTEM again from this folder, you will be able to
select and launch another program.

Part Five: Program Management

Chapter Six: Converting Applesoft Programs 186

Chapter Six

Converting Applesoft Programs

Overview

Micol Advanced BASIC is a language system that is based on Applesoft BASIC. This
means, that when Micol Advanced BASIC was first being developed, Applesoft was
taken as the root language. Structured capabilities and the ability to access the full
power of the Apple Ile, Apple Ilc or Laser computer were added to make what is now
Micol Advanced BASIC for the Apple Ile and Apple Ilc.

What this means to you is that, with a little work, you should be able to use your
Applesoft programs under Micol Advanced BASIC.

It is the purpose of this chapter to explain most of the modifications you will have to
perform in order to compile your Applesoft programs as Micol Advanced BASIC
programs.

Source File Conversion

Applesoft files are essentially tokenized text files. Whenever you entered an
Applesoft line of code and pressed Return, you probably noticed a slight delay before the
cursor returned. This delay was caused by the Applesoft interpreter tokenizing this line
of code. This means the Applesoft reserved words were converted into numeric
equivalents, pointers to the next line were established and line numbers were converted
into binary. This was done to speed the execution of the Applesoft program. If you think
Applesoft is slow, think how slow it would be if these lines had not been tokenized.

The first task you will have to perform is to convert these Applesoft source files into
text files which Micol Advanced BASIC can use. Don’t worry, this task has been largely
automated, so all you have to do is follow a few steps.

On the back side of the System Disk, under the volume directory, is a text file called
CONVERT designed to convert your Applesoft programs to text files. Simply take the
following steps (you will have to modify this procedure somewhat if you only have a
single 5.25 inch floppy disk drive):

1. Boot any ProDOS 8 System Disk. This will probably be the disk you used when you
were originally developing your Applesoft programs.

2. Load the Applesoft program you wish to convert into memory. This program must
not have a line number less than twenty.

3. Insert the Micol Advanced BASIC system disk, reverse side up, into any suitable

drive.
4. Enter EXEC /Micol.Adv.BASIC/CONVERT<CR>.
5. Enter RUN<CR>.

6. Enter SAVE <Pathname><CR> where Pathname will be the source filename of this

Part Five: Program Management

187 Chapter Six: Converting Applesoft Programs

text file. Your Applesoft program will be converted into a text file and saved
with the stipulated filename.

7. Boot Micol Advanced BASIC and get into the Text Editor.
8. Load this converted text file into the Micol Advanced BASIC source code Editor.
You are now in a position to make the changes required to compile this file.

Unfortunately, your first task will be to remove the leading spaces in each line generated
by the file conversion.

Program Conversion Rules

Following is a list of things to look out for when you are modifying the converted
Applesoft program into a Micol Advanced BASIC program. Although this list is as
complete as possible, we unfortunately cannot forsee every circumstance. Some
problems probably will require a good knowledge of Micol Advanced BASIC.

DIM Statements

Applesoft allows DIM statements anywhere in a program and the dimensioning may
be done with variables. Micol Advanced BASIC requires the DIM statements to be at
the top of the program, and only integer literals are accepted as parameters.

DATA Statements

DATA statements must be at the top of the program, they cannot reside anywhere as
in Applesoft. The following rules also apply with DATA statements:

1. Quotation marks must be around string literals, for example “This is a string”.

2. Values read into real variables must be expressly specified as reals. For example,
22 must be written as 22.0.

3. Noempty entries such as ,, are allowed.

Strings
If you are forcing a string garbage collection with a PRINT CHR$(4); “FRE (0)”,

simply remove it. Our garbage collector is faster anyway.

String functions such as LEFT$ and MIDS$ check for overflow errors which Applesoft
does not do. You may have to check the string lengths before making these calls.

Slot Input/Output

Replace IN# and PR# with INSLOT and OUTSLOT respectively. Refer to the
appropriate sections in this manual to understand the use of these commands.

Part Five: Program Management

Chapter Six: Converting Applesoft Programs 188

Turning the Printer On and Off

Turn the printer on with a PRTON instead of PR#1. Your printer must be in slot
one, however.

Turn the printer off and the screen on with a TEXT.

PRINTing

Unlike the PRINT statement in Applesoft, semi-colons are required and cannot be
implied. The statement PRINT “Your name is ” N$ may be rewritten as PRINT
“Your name is ”; Name$

FLLASH Command

FLASH is not supported. Replace FLASH with INVERSE.

Cursor Positioning

HTAB and VTAB require the parentheses around the parameter. SPC, TAB, and
POS must have a semi-colon following the parameter to hinder a carriage return.

Control of Flow

1. IF <Real Variable> THEN is not allowed. Only boolean variables may be so used.
You may replace this statement with IF <Real Variable> > 0 THEN.

2. IF Relop GOTO is not allowed. An IF statement requires a THEN.

3. NEXT without its corresponding variable is not allowed. You will have to explicitly
specify this variable.

4. Statements like NEXT X, Y are not allowed. These should be rewritten NEXT X:
NEXTY.

5. FOR loops behave a little differently than they do under Applesoft. If you are
having trouble with your FOR loops, check the FOR loop rules described in this
manual.

High Resolution Shape Tables

Although Applesoft Shape Tables are supported, the syntax to the respective
commands will have to be modified. Please see the section on Shape Tables in Part
Three, Chapter 10 for more information.

Part Five: Program Management

189 Chapter Six: Converting Applesoft Programs

PEEKs and POKEs

Some of the addresses you may have referenced in your Applesoft program with
PEEKs and POKEs may be different under Micol Advanced BASIC. In particular, pay
attention to addresses in zero page, that is, addresses betweeen 0 and 255.

Check Appendix A in this manual. Appendix A is the memory map for Micol
Advanced BASIC. This should tell you which locations need to be modified. Note that
some locations have no equivalent.

Functions

Any DEF FN lines may be converted to multi-line functions using the
FUNC..ENDFUNC construct.

Disk Filing
Filing commands are the most complicated to modify. Unfortunately, these lines will

have to be rewritten. Here are some thing to note:

« PRINT CHRS (4); has no affect on the operating system under Micol Advanced
BASIC

« Setting a new default prefix is PREFIX “String” or PREFIX Svar

* Getting the default prefix is Volume_Name$ = PREFIXS$

* You will have to use CAT$ to get a catalog

The following tables should help you make additional filing conversions:

Sequential Access Commands

Reading a File
Applesoft Micol Advanced BASIC
“OPEN /VOL.NAME/FILE.NAME” ROPEN (1) “VOL.NAME/FILE NAME”
“READ VOL.NAME/FILE.NAME”
“INPUTL$” INPUT (1) Line$
“CLOSE VOLNAME/FILE.NAME” CLOSE (1)
ONERR GOTO <Line Number> IF EOF (1) THEN <Stms>

Part Five: Program Management

Chapter Six: Converting Applesoft Programs 190

Writing a File
Applesoft Micol Advanced BASIC
“OPEN /VOL.NAME/FILE NAME”
“DELETE VOL.NAME/FILE NAME”
“OPEN VOL.NAME/FILE.NAME” WOPEN (1) “VOL.NAME/FILE.NAME”
“WRITE /VOL.NAME/FILE NAME”
“PRINT L$ PRINT (1) Line$
“CLOSE /VOL.NAME/FILE NAME” CLOSE (1)

If you are using random access files in your program, then you will have to lgarn the
use of the SEEK command in Micol Advanced BASIC. Its usage is too complicated to
explain here.

Note that the PRINT CHRS$ (4); statement in the above tables has been removed
from the Applesoft lines for reasons of space.

Go for It

Now that you have made the conversion, the fun can begin. Start using Micol
Advanced BASIC as more than just an Applesoft compiler.

The first thing you will probably want to do is speed up your programs. If practical,
convert the real variables into integers. You may want to use the compiler directive INT
(A-Z) to force all reals to integers; then, in your program, you may selectivly convert
some of these integers into reals with the “&” character.

Add structure to your programs. Make your arrays larger. Change Applesoft High
Resolution graphics to Super Double High Resolution graphics. Etc. Etc. Now, get your
money’s worth out of Micol Advanced BASIC.

Part Five: Program Management

Appendix A: Memory Usage 191

Appendices

Appendix A

Memory Usage

Overview

As was noted earlier, the Apple Ile and Apple IIc have 128K of RAM built in.
However, the 65C02, the CPU inside these computers, has only a 16 bit program counter.
This means this chip can access a maximum of only 64K of memory at one time. Apple
has gotten around this limitation by means of a technique called bank switching.

Bank switching is the ability to make the CPU look at different segments of memory
at different times. For example, at one time, one block of 64K can be active (the program
bank, for example), and at another time, another bank can be active at another time (the
data bank, for example). While this is an oversimplification of what actually happens to
give you access to more than 64K of memory in your programs, this should give you an
idea of what is happening.

Micol Advanced BASIC uses each 64K bank of memory for different purposes. The
tables below will detail this memory usage.

Main Memory Usage

Location Usage
$0000 - $00FF Zero page (primary)
$0100 - $01FF Run Time Stack (Primary)
$0400 - $07FF Main text and Low Res graphics screen
$0800 - $BFFF Compiler, Editor, Linker code & buffers
$2000 - $3FFF High & Main Double High Res graphics screen
$0800 - $B3FF Program space
$B400 - $BSFF Shared Run Time Library Routines
$B900 - $BDFF Reserved for future usage
$BE0O - $BEFF MAB System locations (see below)
$BF00 - $BFFF ProDOS 8 Usage (If Library is inactive)
$D000¢ - $FFFF ProDOS 8 (Applesoft and Monitor in ROM)

Appendices

192

Location

$0000 - $00FF
$0100 - $01FF
$0400 - $07FF
$0800 - $08FF
$0900 - $4BFF
$2000 - $3FFF
$4C00 - $B5FF
$B400 - $BSFF
$B900 - $BCFF
$BDO00 - $BDFF
$BEO0O - $BEFF
$BF00 - $BFFF
$D000 - $FFFF

Appendix A: Memory Usage

Auxiliary Memory Usage

Usage

Alternate Zero Page (if high strings active)
Alternate run time stack (if high strings active)
Secondary text & Double Low Res graphics screen
Run time workspace

Data space & primary string storage

Alternate Double Hi-res graphics screen

Run Time Library and buffers

Shared Run Time Library routines

First disk file & Fast disk file buffer

FOR/NEXT buffer, etc. usage

Micol Advanced BASIC Library usage (see below)
ProDOS 8 usage (only if Library is active)

" High string buffer, Compiler Symbol Table,

and Editor Copy buffer

Run Time Library System Locations

Note the distinction between zero page locations for the Run Time Library given

below, and zero page locations used by Applesoft. There is no relationship between the
two.

Because of system requirements, we could not make any locations the same, so all
PEEKSs and POKEs to zero page, either under Micol Advanced BASIC for the Apple
IIGS or under Applesoft BASIC will have to be modified. Some Applesoft locations will
have no comparable locations under Micol Advanced BASIC because compiled and
interpreted languages behave differently.

We have avoided using Zero Page as much as possible in order to avoid conflicts with
Apple software and in order to allow you as much Zero Page usage as possible.

Please note that Micol Advanced BASIC uses the Monitor ROM only if output is
directed through a printer or another slot, and makes use of Applesoft routines only for
floating point calculations, and for single high resolution graphics. All other functions
are performed within the Run Time Library.

Note: If the comment column in the tables below has a “DM” for “don’t modify”, then
any POKE:s to these locations may cause the system to malfunction.

Appendices

Appendix A: Memory Usage 193

Zero Page Usage
Location (in decimal) Usage Comment
6-9 Misc. usage DM
11-12 Garbage collection Temporary usage only
24 - 25 Garbage collection Temporary usage only
26 - 29 Temporary usage Okay to modify
72 -73 Temporary screen usage Okay to modify
78 -79 Integer random # seed Modified by GET, INPUT , INKEY
105 Library routine number DM
106 - 107 Address of first variable DM
108 - 109 Address of second variable DM
109 - 110 Address of third variable DM
115 - 116 Temporary usage Okay to modify
121-122 Temporary usage Okay to modify
125 - 126 Address of current DATA DM
129 - 130 Temporary usage Okay to modify
157 - 163 1st floating point accum. Okay to modify
165 - 172 2nd floating point accum. Okay to modify
203 - 204 PRINT USING usage DM
206 File usage DM
207 RESUME stack pointer DM
214 Internal stack counter DM
215 FOR stack counter DM
224 - 228 Double Hi-Res usage DM
231 Shape Table SCALE value Set by user
232 Shape Table address Set by user
235 Horizontal cursor position Values between 1 and 80
236 Vertical cursor position Values between 1 and 24
242 - 243 File buffer pointer DM
254 - 255 Misc addresses Okay to modify

The following address may be accessed by PEEKSs, modify at your own risk.

Appendices

194 Appendix A: Memory Usage

Useful Page $BE Library Usage (Auxiliary memory)

48856

Run time error code

Location (in decimal) Usage Comment
48848 File block size Used only by FILE
48850 Character ouput mask Default 255
48852 - 48853 Start of string storage
48854 - 48855 Top of string storage

> 0 if run time error

48857 ProDOS 8 error code > 0 if ProDOS 8 error
48858 - 48859 PC at program line start

48860 - 48861 ONERR GOTO address

48862 Used by INDEX

48863 Used by CHR$ See CHRS in manual
48865 - 48866 End of DATA storage

48871 SPEED value Values are 0 - 255
48872 TRACE flag 0is NOTRACE

48874 - 48875 Misc PRINT USING usage

48876 PRINT USING comma Modify if “,” not desired
48877 PRINT USING “$” Modify if “$” not desired
48878 PRINT USING period Modify if “.” not desired
48879 - 48880 Start of DATA values Used in RESTORE
48881 True_Value Misc. usage, very important

48882 - 48883
48884 - 48885
48886 - 48887
48892 - 48893
48894 - 48894

Use for error trapping
Only if no OPTIMIZ used

Line where error occurred
Current line executing
RESUME address

Micol output vector Alter for own char. output

Micol input vector Alter for own char. input

Some Useful Page $BE System Usage (Main Memory)

Location (in decimal) Usage Comment
$48640 - 48701 System prefix Length followed by ASCII string
48720 - 48783 Current text file edited Length followed by ASCII string
48710 Delete/Backspace flag 0 = delete, 1 = BS (Apple normal)

48784 - 48887 Editor tab values Initially set at boot up

Appendices

Appendix B

195

Appendix B

Screen Output

Micol Advanced BASIC has its own super fast screen output routines, as you
probably already have discovered. The screen output, however, functions very much as
the screen output on older Apple IIs in that certain control codes perform certain actions,
and certain memory locations control certain features. We will describe these briefly

here.

Use PRINT CHRS$ (Value); to perform the stated action:

Value

8
10
11
13
14
15
21
22
23
29
64-95

Location

235
236
248
249
250
251
252
48850

Action

Move cursor left one position

Move cursor down one line, scroll if necessary
Move cursor up one line, scroll if necessary
Carriage return

Set normal text mode

Set inverse text mode

Move cursor right one position

Scroll screen down one line

Scroll screen up one line

Clear to end of line

MouseText characters; issue MS_TEXT first

Important Memory Locations

Function

Current horizontal cursor position

Current vertical cursor position250

Top border of text screen, default is 1

Bottom border of text screen, default is 24
Left border of text screen, default is 1

Right border of text screen, default is 80
Cursor character. Default is 32, inverse space
AND mask for character output, default is 255

The above memory locations may be modified (POKEd) to alter the text screen
display. But be careful! Incorrect values may cause a system crash. For example, if you
wish to create text windows, you may shrink the text screen by changing locations 248,
249, 250 and 251. Be certain the values are valid, and the cursor is within the new text

screen before PRINTing.

Appendices

Appendix C: Run Time Error Codes 196

Appendix C

Run Time Error Codes

Whenever a run time error occurs, the error code is placed into one of two locations in
the run time Library’s $BE Page which may be accessed by a user’s program.

If the error is generated within the run time Library itself, the error code is placed
into location 48856 and location 48857 is zero. If the error was generated by the
operating system, location 48857 will contain the error code, and location 48856 will be
zero.

Each code is generated by a unique error situation which causes a unique message to
be printed (if ONERR GOTO is not active). The run time Library’s error codes are
listed below, in this appendix, while ProDOS 8’s error codes are listed in Appendix D.

You may disable an active ONERR GOTO by POKEing a zero into location 48861.
This is the high order ONERR GOTO address byte.

Code Message output to screen Comment

1 Exponent error Integer '~ range exceeded

2 RETURN without GOSUB Perhaps a GOTO to a routine

3 RESUME without ERROR option Need ERROR compiler option

4 End of data No more DATA to READ

5 Bad subscript error Array limit exceeded

6 Illegal LOG value Error in using LOG command

7 Illegal POKE value Value > 255 or bad address

8 Add overflow Integer addition range exceeded

9 Return stack underflow Too many RETURNSs for GOSUBs
10 Comma tab error Implied tabs overflowed before <CR>
11 EXP error EXP function exceeded limits

12 Out of string data DATA is not of string type

13 TAB overflow TAB parameter is negative or > 80
14 Division by zero error Integer division by zero

15 Subtraction overflow Integer subtraction result < -32767
16 String function overflow Attempt to create string > 1023 chars.
17 Concatenation overflow Same as 16

18 Illegal string assignment General string error

19 String overflow error Too many characters in string

20 Graphics error General graphics error message

21 Illegal real literal error String cannot be converted to real
22 FOR variable overflow Integer FOR counter out of range

Appendices

197

Code

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
48
59
60
64
65
66

Message output to screen

Multiplication overflow

String overflow

FOR underflow

Negative SQR

Illegal PDL number

Illegal SPEED value

Out of string space

Unassigned string

File input error

Past EOF

Invalid pathname

Dim and array mismatch
Mismatched parameters

Assign in ADDRESS mismatch
SPC overflow

More than 255 matches in INDEX
Time or date error
READ/DATA mismatch
Invalid floating point operation
Floating point underflow
Floating point overflow
Floating point division by zero
Stack underflow

Parameter stack overflow
FUNCtion stack overflow
FUNCtion returns incompatible type
Where is the System Shell?
Undefined library procedure

Appendices

Appendix C: Run Time Error Codes

Comment

Integer multiplication out of range
Maximum of 255 characters in string
FOR loop stack problem

Only positive values for SQR

Only 1, 2, 3 or 4 allowed

Attempt to set SPEED > 255

No more memory for string storage
String var. in shaping function not set
Probable SEEK error. No data at point.
Read past last write, or SEEK error
Probable unassigned string variable
Number of dimensions mismatch
Procedure and call parameters wrong

- Probable parameter corruption, rare

Only 0 through 255 allowed in SPC

INDEX position parameter > 255

Can’t read clock

READ attempt to other data type

General floating point error

FP value less than 10738

FP value greater than 10°8

Bad denominator in division

Perhaps bad recursion attempted

Maximum of 16 parms stored during recursion
Too many unresolved Function calls

FN variable and FUNC are of different types
Probable insertion of system disk requested
Possible Compiler bug, please call us

Appendix D: ProDOS Error Codes 198

Appendix D

ProDOS Error Codes

As mentioned in the previous Appendix, whenever ProDOS signals an error, that
error number is placed into location 48857 and location 48856 is zero. On some rare
instances, the Library routine may have trapped the error first.

Decimal Error Code Message sent to screen

1 Invalid call number
Invalid parameter

37 Interrupt vector table full

39 Input/output error

40 No device connected

43 Write protected

46 Disk switched

64 Invalid pathname

66 FCB table full

67 Invalid file reference number
68 Path not found

69 Volume not found

70 File not found

71 Duplicate pathname

72 Volume full

73 Volume directory full

74 Version error

75 Unsupported storage type

76 End of file encountered (out of data)
77 Position out of range

78 No Access allowed

79 Buffer too small

80 File is open

81 Directory structure damaged
82 Unsupported volume type

83 Parameter out of range

85 VCB table full

86 Invalid I/O buffer

Appendices

199 Appendix D: ProDOS Error Codes

Decimal Error Code Message sent to screen

87 Duplicate volume name
90 Block number out of range
127 Illegal numeric value in file

All the error codes and messages but the last are standard ProDOS errors. The last
is a special Micol error code.

In future versions of ProDOS 8, it may be possible for other errors to happen. If an
error number is returned that is not in this list, you will have to check the latest ProDOS
manual for its meaning.

Appendices

Appendix E: Compiler Reserved Words 200

Appendix E

Compiler Reserved Words

The following words have a special meaning and may not be used for any other
purpose then they were intended. In particular, they may not be used as Program
names, variable names, or Function, Procedure or Routine names.

ABS, ADDR, ADDRESS, ALIAS, AND, APPEND, ASC, AT, ATN
BEGIN, BELIEVE, BELL, BLOAD, BSAVE, BYE

CALL, CASE_OF, CATS$, CHAIN, CHR$, CLEAR, CLOSE,
COPY, COLOR, COS, CREATE

DATA, DATES$, DELAY, DGR, DGR2, DHGR, DHGR2, DRAW,
DRAWSTR, DECLARE, DELETE, DIM, DO, DOUBT, DUNNO

ELSE, ELSE_DO, END, ENDCASE, ENDDO, ENDFUNC, ENDIF,
ENDPROC, EOF, ERASE, EXP

FALSE, FILE, FLUSH, FOR, FN, FRE, FUNC
GET, GOSUB, GOTO, GR, GR2
HCOLOR, HGR, HGR2, HLIN, HPLOT, HOME, HTAB

IF, INCLUDE, INDEX, INKEYS$, INPUT, INSERTS, INSLOT,
INT, INVERSE

LEFTS$, LEN, LET, LINK, LOCK, LOG, LOWERS$
MID$, MOD, MOUSE, MOV_MEM, MS_TEXT, MUSIC
NEXT, NORMAL, NOT, NOTRACE, NOTICE

OPEN, ON, ONERR, ONLINES$, OR, OUTSLOT

Appendices

201 Appendix E: Compiler Reserved Words

PDL, PEEK, PERFORM, PLOT, POKE, POP, POS, PREFIX,
PREFIXS$, PRINT, PRODOS, PRTON, PROC

READ, REM, RENAME, REPEAT, RESUME, RESTORE, RETURN,
RIGHTS, RND, ROPEN, ROUND, ROUTINE, RUN

SCRN, SDHGR, SDHGRZ2, SEEK, SGN, SIN, SQR, SPC,
SPEED, STEP, STOP, STR$

TAB, TAN, TEXT, THEN, TIMES$, TO, TRACE, TRUE
UNTIL, UNLOCK, UPPERS, USING

VAL, VALUE, VLIN, VTAB

WARNING, WEND, WHILE, WOPEN

XDRAW

Note: compiler options are not reserved words within a program.

Appendices

Appendix F: Ascii Character Set 202

Appendix F

ASCII Character Set

The following is the table of the ASCII (American Standard Code for Information
Interchange) codes supported by Micol Advanced BASIC. You may use the ASC and
CHRS functions to go between the code and the character representation.

Value Character Value Character
0 NUL 29 GS
1 SOH 30 RS
2 STX 31 US
3 ETX 32 (Space)
4 EQOT 33 !

5 ENQ 34 "
6 ACK 35 #
7 BEL(Bell) 36 $
8 BS (Left Arrow) 37 %
9 HT (Tab) 38 &
10 LF (Line Feed) 39 ’
11 VT (Up Arrow) 40 (
12 FF (Form Feed) 41)
13 CR (Carriage Return) 42 *
14 SO 43 +
15 SI 44 ,
16 DLE 45

17 CD1 46 .
18 DC2 47 /
19 DC3 48 0
20 DC4 49 1
21 NAK (Left Arrow) 50 2
22 SYN 51 3
23 ETB 52 4
24 CAN 53 5
25 EM 54 6
26 SUB 55 7
27 ESC (Escape) 56 8
28 FS 57 9

Appendices

203 Appendix F: Ascii Character Set

Value Character Value Character
58 : 93]
59 ; 94 A
60 < 95 -
61 = 96 ‘
62 > 97 a
63 ? 98 b
64 @ 99 c
65 A 100 d
66 B 101 e
67 C 102 f
68 D 103 g
69 E 104 h
70 F 105 i
71 G 106 j
72 H 107 k
73 I 108 1
74 J 109 m
75 K 110 n
76 L 111 o]
77 M 112 P
78 N 113 q
79 0] 114 r
80 P 115 S
81 Q 116 t
82 R 117 u
83 S 118 v
84 T 119 w
85 U 120 X
86 A" 121 y
87 W 122 z
88 X 123 {
89 Y 124 !
90 Z 125 }
91 [126 ~
92 \ 127 DEL (Delete)

Appendices

Glossary

6502 addressing format
6502 microprocessor

65C02 microprocessor

65816 microprocessor

Alphanumeric

ASCII code

Assembler

Assembly code

Assembly language

Batch processing

Binary code
Binary files
BIT

Byte

Chaining

204

Glossary

Two byte addresses specified in least significant byte, most
significant byte order.

CPU used in the Apple II+ and early models of the Apple
ITe.

CPU used in the enhanced Apple Ile and Apple Ilc.
Software written for the 6502 will run on it. This chip has
27 additional machine language instructions.

CPU used by the Apple IIGS and Apple Ile upgraded GS.
Most software written for the 6502 and 65C02 will run on
it. It is more than just a 16 bit version of the 6502 since it
has many more instructions and can acess as many as 16
million bytes of memory.

Usually used to describe characters which consist of letters
of the alphabet and digits.

The acronym of American Standard Code for Information
Interchange. A standardized code used to represent letters,
digits and punctuation symbols. The capital letter A is 65
(decimal) in ASCII code.

A program which can take as input an assembly language
text file and translate it into the binary code the computer
can execute.

A formatted text file an assembler can translate into binary
code.

The lowest level of the programming languages, specific to
a given microprocessor. AL uses short mnemonics
corresponding directly to machine instructions and allows a
programmer to use symbolic codes. At this level, the
programmer is programming the CPU.

Allows the system to take its commands from a file on disk
rather then the keyboard. Under Micol Advanced BASIC,
the BATCH command creates a batch process.

The same as machine code.
Machine language files saved to tape or disk.

Acronym of BInary digiT. The smallest unit of information
in a computer. Has a value of zero or one.

A collection of bits wired together. In almost all cases, a
byte consists of 8 bits. A byte can represent a character, a
number between 0 and 255 or a machine instruction,
among other things.

The process of joining separate text files by the compiler.
The compiler can successfully compile separate text files, as
though they were a whole program.

Appendices

205 Glossary

Compiler A program that converts a program, usually a text file
written in a higher level language, into an intermediate
code called an object module. Alinker is then required to
convert this object module into a machine usable file that
can later be executed.

CPU Stands for Central Processing Unit, the “brain” of a
computer. When writing in machine language, you are
programming the CPU.

Cursor A special character, often blinking, used to show the user
where on the screen he/she is entering characters.

Decimal A numbering system based on the number 10; the
numbering system we use in every day life.

Direct Page A special 256 byte area in memory bank zero which can be

treated as a zero page by a program. Unlike zero page,
which begin at location zero in bank zero, direct page is
referenced by a special register for this purpose and can
begin at any location in bank zero. This distinction
between direct page and zero page is important because
PEEKSs and POKEs referencing addresses less than 256
under Micol Advanced BASIC reference the run time
library’s direct page, and not zero page.

Editor Same as text editor. A program which allows the user to
create, modify and save text files.

Error condition The state of a program after it has detected an error during
its execution.

Executable module The binary code created by the linker, which is the actual
code which will be executed.

Flag A boolean variable which can be set or unset, so that later a
determination can be made based on its value.

File A collection of data stored in some memory device; this can

be the computer’s memory, disk or tape. On magnetic
media, a file name is usually associated with the file.

Hexadecimal A number system based on the number 16 (base 16).
Letters A through F are used to stand from 10 to 15.
Integer A variable type which has a limited range and no fractional

part. Micol Advanced BASIC for the GS has two ranges of
integers, short and long. Short integers have a range of
132767, while long integers have a range of +2,147,483,647.

Interpreter A program which reads program code written in a
high-level language one statement at a time, executes it,
then goes to read the next instruction until the program
terminates. Traditional BASIC language systems are
interpreted. Interpreters are remarkable for their
convenience and lack of speed.

Library Contains the run time routines required by the executable

Appendices

Glossary

Linker

Load

Machine code

Memory location

Micol Systems

Mnemonic

Modularization

Octal
Program

Real number

Reserved word

Run time library
Save

String

Structured design

206

module at execution time.

A program that converts the object module(s) created by the
compiler into an executable load module.

The act of bringing in information to the computer’s
memory from some long term storage device such as a disk
drive.

Almost synonymous with assembly code. Usually refers to
the binary code which the computer directly executes.

The same as a byte of memory. Can be thought of as an
addressable little box in the computer containing a piece of
information.

A dynamic software house located in a suburb of Toronto,
Canada. Dedicated to quality systems’ software, MICOL is
an acronym of MIcro COmputer Languages.

A collection of characters which can help you remember
something. “JMP”, for example, can represent $4C in
machine code and is a mnemonic for it.

The act of breaking a program into small, easily
maintainable parts. While little overhead is involved, it
greatly minimizes program maintenance.

A number system based on the number 8 (base 8). Octal
was once used more than today. A 10 in octal is decimal 8.

A collection of instructions designed to perform (a) specific
action(s).

The same as floating point number. A number which can
contain a fractional part and has a large range. Under
Micol Advanced BASIC there are two ranges of real
numbers, normal and extended. Normal reals require two
bytes of storage and have about seven digits of accuracy.
Extended reals require 10 bytes of storage and have about
19 digits of accuracy.

A, usually English, word which has a special meaning to

the compiler and cannot be used as a variable name.
GOSUB is an example of a reserved word in BASIC.

See Library

The act of storing all or part of a computer’s memory to
some long term storage device such as a disk.

A collection of characters. The double quotation mark is
used by the compiler to declare strings, e.g. “Thisis a
string”.

A systematic approach to the creation of software by using
a step-by-step procedure for solving the problem. It
consists of a smooth program flow, modularization of code,
meaningful identifiers, etc.

Appendices

207

Glossary

Two’ complement value A number in which the negative value is achieved by

Zero Page

Appendices

adding one to the inverse bit pattern of the positive value.
-11s $FFFF in two’s complement for short integers.

The area in memory between locations 0 and 255 in bank

zero. Do not confuse zero page with direct page which can
be anywhere in bank zero.

Index
!
L 61
Do .. 61
& .. 62
S 65
+ e 65, 75
e e e 65
[L. 65
N 45
46
46
A
ABS 70
ADDR 156
Aexpr 10
Aliases 54
Order 47
Alop 10
APPEND 106
AppleIle 1
Applelle 1
AppleIIGS 9
Arithmetic operators65
Arrays 63
Multi Dimensional . .64
Nesting 65
Subscripts 65
ASC 75
ASCIT 74-75
Assembly language 181
ATN 72
AutoExec 5,17
B
BASIC 11
BASIC.SYSTEM 15
Batchfiles 16
BELIEVE 152
BELL 149, 173
Binaryloadfile 2
BLOAD 157
Branching

Two Hundred Eight

Index
Selective 117
Unconditional 116
BSAVE 157
BYE 115
C
Case statement
Defining 85
Case statements
Nesting 86
CASE_OF 85,118
CAT 17
CAT$S 101
Catalog 13, 17
CHAIN 177
CHR$ 76
CLEAR 69
CLOSE 107
CODE 48
Code optimization 52
COLOR 137
Command Shell 1
Command Shell 2
Commercial license 42
COMPILE 18, 36
Compiler 5
Aborting compilation . 37
Advantages 3
ALIASES 54
AND 66
Arrays 67
Chaining 177
Code generation . 38
Comments 45
Compiled listings .. 37,57
Control-C 37
Control-S 37
Directive definition . . 48
Error messages .. 38
Filing Commands ... 101
L 37
Line continuation .. 45
Listings 50, 52, 57
Logical operators . 66
NOT 66

Appendices

Two Hundred Nine
Options 48
OR 66
P 37
Precedencerules66
RAM disk usage 37
Scratchfiles 37
Statistical information .58
Symbol Table 58
Syntaxerrors 38
Variables 60
Compiler Commands
ABS 70
ADDR 156
ADDRESS 128
APPEND 106
ASC 75
ATN 72
BELL 149,173
BLOAD 157
BSAVE 157
BYE 115
CASE_OF 85,118
CATS$ 101
CHAIN 177
CHR$ 76
CLEAR 69
CLOSE 107
COLOR 137
COPY 102, 176
CoOS 73
CREATE 103
DATA 87,175
DATE$ 80
DECLARE 131
DELAY 92
DELETE 103
DGR 138
DGR2 139
DHGR 142
DHGR2 142
DIM 63-64
DO 85
DRAW 147
DRAWSTR 142-143, 145
ELSE 82-83
ELSE DO 85
END 107,114
ENDCASE 85
ENDDO 85

Appendices

Index

ENDFUNC 129
ENDPROC 130
EOF 111
ERASE 143
EXP 70
FALSE 127
FILE 107
FLUSH 103

FN 124, 131
FOR 118
FREWO) 81
FUNC 124, 129
GET 89, 108
GOSUB 123-124,130-131
GOTO 51,116
GR 139
GR2 139
HCOLOR 144
HGR 143
HGR2 143
HLIN 139
HOME 93
HPLOT 142, 145
HPLOTTO 145
HTAB 98

IF .00 000 82-83
INCLUDE 134
INDEX 77
INKEY 90
INPUT 90, 108
INSLOT 92

INT 55, 70-71
INVERSE 93, 142
LEFT$ 78

LEN 76

LET 69
LINK 181
LOCK 103
LOG 71
LOWER$ 79
MID$ 79
MOD 65
MOUSE 165, 167-170
MOV_MEM 158, 164
MS_TEXT 93
MUSIC 149
NEXT 118
NORMAL 93-94
NOTRACE 174

Index
ON..GOTO 117
ON..GOSUB 133
ONERR GOTO 51, 160
OPEN 109
OUTSLOT 99
PEEK 155
PERFORM 123, 132
PLOT 140
POKE 155
POP 132
POS 96
PREFIX 104
PREFIX$ 80
PRINT 94,109, 173
PRINT USING 95, 109
PROC 124, 130
PRODOS 105
PROGRAM 47
PRTON 97,99
READ 88
REM 46
RENAME 104
REPEAT 121
RESTORE 89
RESUME 49,161,175
RETURN 123, 130
RIGHT$ 79
RND 151-152
ROPEN 110
ROUND 71
ROUTINE 116, 124-125
RUN 114, 179
SCRN 140
SDHGR 145
SDHGR2 145
SEEK 111
SGN 72
SIN 73
SPC 97
SPEED 94
SQR 72
STOP 107,115,173
STR 55
STR$ 76
STRACE 174
TAB 97
TAN 73
TEXT 99
TIME$ 80

Two Hundred Ten

TRACE 173
TRUE 127
UNLOCK 104
UNTIL 120-121, 132
UPPER$ 79
VAL 77
VALUE 128
VTAB 98
WEND 122
WHILE 122
WOPEN 111
XDRAW 147
Compiler Directives
ALIAS 47
DECLARE 68
INT 55, 61-62
STR 55, 62
Compiler Options
CODE 39,48
ERROR 49, 161, 175
GRAPHIC 49
HI_BUF 50
IOBUFS 50, 106
LIST 50
LODATA 51
LOMEM 51
NOGOTO 51
NOTC 52,91
OPTIMIZ 52,174-176, 194
PRINTER 52
SHARE 53,179-180
VAR2 53
COMPILER.SHELL ... 5
COMPLINK 17
Concatenation 75
Conditional statements . . 82-83
Control-C 37, 52,91
Control-S 91
Controlled uncertainty . . 152, 154
Table 153
CONVERT 186
COPY 18,102, 176
Copyright i
COS 73
CR 12

CREATE 18

Appendices

Two Hundred Eleven
D

DATA 87,175
Dataentry 87-90
Dataoutput 94
DATA Statement

Order 47
DATE$ 80
Debugging 172,174,178
Default prefix 104
DELAY 92,94
DELETE 19, 103
Deletekey 91
Desktop 162

Construction Set163
Hardware requirements 162

Menus 163
Mouse 166
Windows 164
DGR 138
DGR2 139
DHGR 142
DHGR2 142
DIM 63-64
Directory 101
Diskfiling 106
DO 85
DOUBT 152
DRAW 147
DRAWSTR 142-143, 145
DUNNO 152
E
EDIT 12,19, 24
Editor 2,5
Applekey 26
AppleM 31
Arrows 28
Beginning ofline28
Compilation from . .33,40
Controlkeys 25
Control-B 26
Control-X 26
Control-Y 26
Converting numbers . .35
Copytext 30
Delete character 26
Deletekey 27

Appendices

Delete text
Deletion mode
Down screen
End of line
Enter mode
Entering the
Esc key
Find (backward) .
Find (forward)
Goto line
Help screen
Insert file
Load file
LowerCase
Move block
Movement in
New file
Option key
"Overstrike mode .
Previous word
Printing
Quitting
Relative motion
Return key
Saving a file
Setting tabs
SRC file
Tabbing
TXT files
Up screen
UpperCase
Version number
Editor Commands

.........

.......
.....
......
.......
......
......

.........

.....
........
......
........
........

.......

.......
......
........

.......

.....

......
......
........
........
........
.......

.......

.........

........

Apple-D
Apple-Delete
Apple-Digit
Apple-Down Arrow

......

.........
........
........
.........

........

Apple-Left Arrow

Index

30
26
28
28
27
24
26

.31

31
29
27
32
33
27
31
28
32
26

.27

29
34
24

. 29

26
34
29
34
30
34
28
27

. 35

35
27
31
28,30
28, 30
26
29

. 28

27
31
29
27
32
33, 36, 40
33

. 28

Index Two Hundred Twelve

AppleeM 28 FOR..UNTIL 120
Apple-N 32 Formatted text output . . 95
Apple-P 34 FREWO) 81
Apple-Q 24 Functions 125-129
Apple-Right Arrow . . .28
Apple-S 34 G
Apple-T 34
Apple-Tab 29 Garbage collection 81
AppleV 35 GET 89,108
AppleW 34 Global Variables 126
AppleX o7 GOSUB 130-131
Option-Left Arrow .. 929 GOTO 51, 116
Option-Right Arrow . . .29 GR 139
ELSE 82-83 GR2 139
ELSEDO 85 GRAPHIC 49
END 107, 114 Graphics
ENDCASE 85 Character creation . . 23
EOF 111 Colors 137, 144
ERASE 143 Double High Resolution 142
ERROR 49,161, 175 Double Low Resolution 137
Trapping 160 Fonts 143
Error handling 159 High Resolution 51,141-147
EXP 70 Low Resolution 137-140
Expr 10 Manual 148
Memory usage 141-143
F Saving todisk 157
Shapes 146-148
Factorial 135 Super Double Hi-Res . 142-143
FALSE 152 andtext 142
File 107
Memory allocation . . .50 H
File Access Number106
Filename 10 Hard Disk 8
Files Hardware
Deleting 103 Minimum requirements 5
Locking 103 Hardware Requirements . 1
Random access 111 HCOLOR 144
Renaming 104 HELP 12, 19, 27
Sequential 111 Hexadecimal numbers . . 67
Unlocking 104 HGR 143
Filing Commands 102-104, HGR2 143
.............. 107-111 HLBUF 50
Find 31 HLIN ... 139
FLUSH 103 HOME 19,93
FN 131 HPLOT 142, 145
Folder HPLOTTO 145
UTILITY 5, 22 HTAB 98
FONT 23
FOR 118

Appendices

Two Hundred Thirteen
I
IF 82-83
INCLUDE 134
INDENTER 23
INDEX 77
INFO.DOC i, 5
Informationfile i
INKEY 90
INPUT 90, 108
INSIOT 92
INT 61, 70-71
INVERSE 93, 142
IOBUFS 50, 106
K
Kompile 36
L
Laser Computer 1 -
LEFTS$ 78
LEN 76
LET 69
LIBRARY 5,42
Library of routines 133
Library routines 39
Limit of Liability i
Line Numbers 44-45
LINK 181
LINKER 5, 40
LIST 19,50
Local variables 126
LOCK 20, 103
LODATA 51
LOG 71
LOMEM 51
Loops
FOR 118
FOR..UNTIL 120
Repeat 121
WEND 122
While 122
LOWERS 79
M
Memory 175
Menu

Appendices

Index

Bar 163
Item 163
Title 163
Micol Advanced BASIC
Earlierversions 10
Micol Advanced BASIC GS 2
Micol BASIC 11
Micol Systems
Address 8
Telephone 9
MICOL.LAUNCHER . .. 185
MICOL.SYSTEM 5,185
MID$ 79
MOD 65-66, 71
Modularity
Advantages 123
Defining 123
MOUSE 165, 167-170
Availabletest 168
Cursor 169-170
Fast 170
Homing 168
Horizontal movement . 170
Positioning 168
Reading 168
Slow 170
Vertical movement . . 171
MouseText characters . . 93
MOV_MEM 158, 164
MS_TEXT 93
Multi-Decision
CASE_OF 85
MUSIC 149
N
Nesting
CASE_OF 86
FOR.NEXT 120
Function 126
IF statement 84
Procedure 126
REPEAT.UNTIL ... 122
WHILE..UNTIL 122
NEXT 118
NOGOTO 51
NORMAL 93-94
NOTC 52,91
NOTRACE 174

Index

ON..GOTO

ON..GOSUB
ONLINE

Operator precedence

.............

Output

Formatted
Unformatted
Output through slots . . .

OUTSLOT

Parameters

Passing by ADDRESS
Passing by VALUE

Pathname........:
PEEK

........

PLOT

PREFIX

and CAT$
PREFIX$
and CATS$
PRG.EXAMPLES

PRINT
PRINTUSING
PRINTER

Printer output
Procedures
PRODOS

Accessing
Program
Compiled listings

Compiling

Execution start
Indentation

ONERR GOTO

.........

OPEN

........

.......
.........
.......

......
........
.........

ProDOSS8

.......

e s e .

......

Line numbers

........

117
133

51, 160
12,20
109

... .66
OPTIMIZ

52,174-176,
194

95
94

.99

99

127

128
128

10

155

132

140

155

51, 132

96

12,20-21, 104
102

80

102

5
94,109,173
95, 109
21,37,52,99
52

125-128, 130
105

105

Two Hundred Fourteen

Sharing
Termination

Program order

Program Separator .

Programs

Batch compilation . . .
Examples
Launching
Linking

Self booting
PRTON

RAMdisk

Compiler usage

Random numbers . . .
READ
Recursion

Relational operators
Relop

RENAME
REPEAT

Replace

RESTORE

RESUME
RETURN

RIGHT$
RND

........

SEEK

o e e e

........

.........

.........

........

.......

SDHGR

..........

47
178-179
114-115
124

.. 44

17,179
5

185
181-183
184
97,99

21

7,37

. 21

151
88
134

. 66

10

21, 104
121

31

89
49,161, 175
130

79
151-152
110

146

71

116

. 116

22,114, 179
42

Appendices

Two Hundred Fifteen
Sexpr 10
SGN 72
SHARE 53, 179-180
SHELL 5

Arrowkeys 15
Built-in commands . .16-18, 20-22
Command 23
Control-C 16
Control-R 16
Control-S 16
Control-X 16
Deletekey 15
Deletion modes 15
Esckey 34
Returnkey 15
Utilities 22
Shell Commands
AutoExec 17
BATCH 16
CATALOG 17
COMPILE 18
COMPLINK file 17
COPY 18
CREATE 18
DELETE 19
EDIT 19
HELP 19
HOME 19
LIST 19
LOCK 20
ONLINE 20
PREFIX 20-21
PRINTER 21, 38
QUIT 21
RENAME 21
RUN 22
UNLOCK 22
SIN 73
Single drive systems6
Sitelicenses 43
Slotinput 92
SPC 97
SPEED 94
SQR, 72
STOP 107,115,173
STR$ 76
STRACE 174
String comparisons 75
Strings 62

Appendices

Dynamic
Static
System Directory
System disk
System M2000

........
..........
.....
........

......

............

TAN
Technical assistance
TEXT
Text display
Quality of
Speed of
Text Screen
Memory map
Text window
THEN
Time delay
TIME$

............
...........

.......

........

......
.......
...........
........
...........

..........
TRUE
........
.............

.............

Turnkey system
Turnkey systems
Tutorial

......
.....

..........

UPPER$
Utilities
Utility folder

..........
..........

.......

............

VAR2

...........

.............

Addresses
Arrays
Assignment

.........

......

Index

152
75,101-102,
105, 107, 146,
158, 168, 194
115

10

79

58, 156
63-65, 126, 176
69

Index

Declaration 68
DECLARE 131
Explicit declaration . . .68
Flag 61
Floating point 62
Forcedreal 62
Global 126
Implicit declaration . . .68
Integers 61,176
Local 126
Name 53, 60
Parameter passing . . .128
Passing 127
Real 62
Reinitializing 69
Rounding 71
Scientific notation62
String 50, 62
String length 76
Switch 61
Truncation 70
TYpes « o oo oot .. 55, 60
Volumename 10
Volumes
Online 104
VITAB 98
A%
WARNING 4
WEND 122
WHILE 122
X
XDRAW 147

Two Hundred Sixteen

Appendices

Printed in Canada ISBN 0-921270-10-0

