Pt

TransFORTH

Language Reference Manual

ATM
EXP

LOG
ENG

SCl
READLN

ARRAY

Do
LOOP

BEGIN
WHILE
REPEAT

IF
ELSE
THEN

-TransFORTH JI B*

by PauliLutus

B soft"

For Apple ll, Apple 1l Plus, Apple lle, Apple lll Emulation Mode

TransFORTH I[B”
LANGUAGE MANUAL

Disclaimer of all Warranties And Liabilities

Insoft Inc. and Paul Lutus make no warranties, either expressed or implied, with
respect to the software described in this manual, its quality, performance,
merchantability or fitness for any particular purpose. This software is licensed
“as is”. The entire risk as to the quality and performance of the software is with
the buyer. Should the software prove defective following its purchase, the buyer
(and not INSOFT INC., or Paul Lutus, their retailers or distributors) assumes the
entire cost of all necessary servicing, repair or correction and any incidental or
consequential damages. In no event will INSOFT INC. or Paul Lutus be liable
for direct, indirect, incidental or consequential damages resulting from any
defect in the software even if they have been advised of the possibility of such
damages. Some states do not allow the exclusion or limitation of implied
warranties or liabilities for incidental or consequential damages, so the above
limitation or exclusion may not apply to you.

The word Apple and the Apple logo are registered trademarks of Apple
Computer inc.

Apple Computer Inc. makes no warranties, either expressed or implied,
regarding the enclosed computer software package, its merchantability or its
fitness for any particular purpose.

DOS 3.3 Copyright 1979-1981 Apple Computer, Inc.

This manual is copyrighted. All rights are reserved. This document may not, in
whole or part, be copied, photocopied, reproduced, translated or reduced to any
electronic medium or machine readable form without prior consent, in writing,
from Insoft Inc.

Notice

Insoft Inc. and Paul Lutus reserve the right to make improvements in the
product described in this manual at any time and without notice.

© 1982 by Insoft Inc.
7933 S.W. Cirrus Dr.
Beaverton OR 97005
(503) 641-5223

Manual written by Phil Thompson

TABLE OF CONTENTS

Disclaimer and Warranty

Table of Contents Page

CHAPTER ONE: INTRODUCTION

Introduction to TransFORTH 1-1
System Requirements 1-7
What You'll Need to Know 1-8
About This Manual 1-9
Starting Up 1-12
CHAPTER TWO: STARTING TransFORTH
Starting Up 21
The Data Stack 2-4
Numbers 2-8
Manipulating Numbers on the Stack 29
More Words 2-11
Mathematical Operations 2-13
Overflow/Underflow 2-14
Printing Text 2-15
Summary 2-16
Problems 2-17
CHAPTER THREE: DEFINING NEW WORDS
Immediate Mode Execution 31
Defining New Words 31
Forgetting Words 39
Miscellaneous Thought on Word Definitions 3-10
Summary 3-14
Problems 3-14

CHAPTER FOUR: LOOPS AND TESTS
DO-LOOP

The Return Stack

Comparing Numbers

Decision and Branching Words
Summary

Problems

CHAPTER FIVE: THE TEXT EDITOR

Cursor Movement

Introduction: Using the Text Editor
The Text Editor

Program Compilation

Comments

Examples

Memory Considerations
Summary

CHAPTER SIX: DATA STRUCTURES

Variables

Number Format and Storage

Arrays

Strings

Combining Text and Numerical Data in an Array
Summary

Problems

Ppsb s
[\o N S ReoNe, BN -N
- O

Teopaaa o
— bk k) = -
CON=--O

6-1

6-5
6-7
6-17
6-29
6-31
6-32

CHAPTER SEVEN: MISCELLANEOUS WORDS

AND FUNCTIONS

Screen Display Words

Number Formatting

Program Control Words

Saving the TransFORTH System
Miscellaneous Words

Scientific Functions

Summary

Problems

DN NN
=t OOOPAN =

[{eNo-F-N

CHAPTER EIGHT: INPUT AND OUTPUT

The 1/0 System

Apple DOS Disk Access

Using Textfiles for Data Storage
Saving the Contents of Arrays
Overlays

Summary

Problems

CHAPTER NINE: GRAPHICS
High Resolution Graphics

Turtlegraphics

Larger Graphics Programs
Screen “Dumps” and Saves
Low Resolution Graphics
Summary

Problems

8-1

8-11
8-12
8-13
8-14
8-17
8-18

9-1

9-10
9-15
9-16
9-17
9-21
9-22

CHAPTER TEN: APPLE //e AUXILIARY MEMORY

Installing the Auxiliary Memory Features

Understanding Auxiliary Memory

Using Auxiliary Memory

Saving High-Resolution Pictures in Auxiliary Memory
Summary

APPENDIX A: WORD LIBRARY LISTING
APPENDIX B: SYSTEM MEMORY MAP
APPENDIX C: “TECHNICALITIES”
APPENDIX D: TransFORTH FILES

APPENDIX E: DIFFERENCES BETWEEN
TransFORTH][AND TransFORTH | [B

10-1

10-1
10-2
10-8
10-9

APPENDIX F: ASCIl CHARACTERS
APPENDIX G: INDEX

CHAPTER ONE: INTRODUCTION

CHAPTER TABLE OF CONTENTS:

Introduction to TransFORTH

Why TransFORTH

A Family of Languages
Comparison with TransFORTH 1[
Comparison with GraFORTH
gome%arison with Standard Forth

pe
Error Handling

System Requirements
Hardware

Recommended Peripheral Options
(No) Firmware Requirements

What You'll Need to Know
Minor Modifications in DOS 3.3

About This Manual

The Chapters

The Appendices

In Reading This Manual
Request for Feedback

Starting Up

Registration Card and Product Replacement

Making Back-ups
Running the Demonstration Program
Learning and Using TransFORTH

Introduction‘to TransFORTH

The Apple computer has come a long way since it was first
introduced in 1977. It was originally designed with an Integer
version of the Basic language, some graphics and sound features,
a simple access to machine language, and 4 to 16K of RAM memory.
Since that time, an incredible number of new features have been
added or made available, including more memory, Applesoft Basic,
disk drives, 80-column video cards, CP/M, keyboard enhancers,
speech synthesizers, even more memory.... The list goes on and
on.

One aspect of this expansion is in programming languages being
created for the Apple. New versions of Basic, as well as other
languages with names like Pascal, C, Lisp, and Forth, seem to be
springing up every day. Why bother with another programming
language?

Every language has its strengths and weaknesses. Integer Basic
is easy to learn, but it cannot handle floating-point numbers,
“and its reliance on line numbers and GOTOs can sometimes make
programs difficult to follow. Applesoft Basic adds
floating~point capabilities and a few other features, but shares
Integer Basic's lack of structure. Pascal provides a clear
structure, using a variety of looping and conditional tests.
Pascal also includes a wider variety of data types, and allows
the user to give programs and subroutines English names.
Unfortunately, Pascal is large and sometimes cumbersome, and it
is not interactive like Basic, i.e. you cannot enter and execute
Pascal commands directly from the keyboard.

Why TransFORTH?

TransFORTH was developed as a general purpose scientific and
business language for the Apple. It is based loosely on the
Forth language, but with changes and enhancements designed to
make it much more familiar to the average Apple owner. The
resulting system then contains the best of several worlds. To be
specific:

* TransFORTH is modular: Programs are broken into manageable

segments, called "words", which can be given easy-to-remember
English names.

INTRODUCTION 1 -1

* TransFORTH is structured, with a variety of looping and
branching constructs that help make programs more readable.

* TransFORTH uses floating-point numbers with 9 decimal digits of
accuracy, and includes a number of scientific and mathematical
functions.

* TransFORTH is fully compiled, producing machine language code,
increasing speed and efficiency.

* TransFORTH is interactive: Commands can be entered and run
directly from the keyboard, unlike most compiled languages.

* TransFORTH can be customized: You can create your own
special~purpose commands, and add these permanently to the
language. ’

* TransFORTH uses Reverse Polish Notation, a method of entering
commands that gives you greater control over the tasks the system
performs, and allows you to evaluate complicated expressions
without using parentheses.

* TransFORTH is compact, about one-eighth the size of the Pascal
system. On 64K systems, you have nearly as much free RAM for
programs and data as with Basic.

* TransFORTH includes a sophisticated Input/Output system, for
routing data between disks, memory, and printers and other
peripherals.

* TransFORTH is DOS 3.3 compatible: Programs and data can be
saved as standard DOS binary files or textfiles. This means
TransFORTH can access data from other DOS programs.

* TransFORTH programs can be saved as stand-alone systems, which
are executable DOS binary files. These files can be run by
themselves, and do not require the original TransFORTH system.

* TransFORTH includes a variety of graphics features, including
high-resolution and low-resolution graphics, Turtlegraphics, and
text printing on the graphics screen.

* TransFORTH can make use of the auxiliary memory found in Apple
//e computers with an extended 8#-column text card.

INTRODUCTION 1 -2

A Family of Languages

TransFORTH is part of a family of languages developed by Insoft.
TransFORTH][was the first of the family to be introduced. The
next one was GraFORTH. GraFORTH is similar to TransFORTH in many
ways, but is designed for different needs. The product which
this manual describes, TransFORTH][B, is Insoft's new updated
version of TransFORTH]{. All of these languages are related to
each other and to the Forth language in general.

Comparison with TransFORTH][

TransFORTH][B is a direct outgrowth from TransFORTH][, with
several specific enhancements and changes. TransFORTH][B works
with both the Apple][and //e. It includes a modified disk
operating system (DOS) that will automatically load itself into
high memory on an Apple //e or an Apple][with a language card
or RAM card, freeing up more room for programs and data.
TransFORTH][B also uses a somewhat different method of variable
storage, which helps make programs shorter, faster, and easier to
read. All high-resolution graphics routines are now built into
the language. This means TransFORTH][B is completely
independent of which Basic resides in the computer. Peripheral
card input and output using TransFORTH's I/O system has been made
more general purpose and will work with any standard peripheral
cards. A number of minor changes have also been made.

Comparison with GraFORTH

While the main emphasis of TransFORTH is in business and
scientific programming, GraFORTH is intended for the graphics,
educational, and game markets. GraFORTH is a very fast integer
language, similar in basic structure to TransFORTH, but with a
large number of graphics commands built into the system. These
include standard line and point graphics, turtlegraphics, fast
character font and block graphics, and 3-D graphics. GraFORTH
lacks TransFORTH's floating-point, scientific, array, and
sophisticated I/0 capabilities. On the other hand, TransFORTH
does not have as many graphics features as GraFORTH has.

INTRODUCTION 1 -3

Comparison with Standard Forth

TransFORTH is a fully compiled version of the Forth language,
i.e. TransFORTH programs are converted directly to machine
language instructions for speed. Most other versions of Forth
(as well as most Apple languages) use a run-time interpreter,
slowing programs down.

Two "standards" have been developed for the Forth language:
Forth-79 and Fig-Forth. The two standards are very similar, and
represent a common ground for writing programs in Forth. Anyone
familiar with the Forth standard can write a program on any
computer if the version of Forth used adheres to the standard.
Unfortunately, the standard then cannot make use of the special
features of any one computer.

TransFORTH is instead designed specifically for the computer you
own, the Apple. While the general structure of Forth is used, no
attempt was made to closely follow the Forth-79 standard. This
was based on the assumption that most Apple owners have no great
need for writing programs compatible with other computers, and
prefer a language which is well suited to the Apple. Perhaps
TransFORTH can then be thought of as a language similar to Forth,
rather than as a version of Forth.

TransFORTH includes most of the main Forth concepts: Reverse
Polish Notation, data and return stacks, word library, and the
looping and testing constructs (DO - LOOP, IF - ELSE - THEN,
BEGIN - UNTIL, etc.). Several standard TransFORTH words use
names borrowed from Apple Basic, rather than Forth, to make them
more familiar to Apple users. The contents of variables are
stored and retrieved using a different, more readable, method.
The looping and branching commands can be run directly from the
keyboard (outside of a colon definition), unlike most Forths.

TransFORTH uses standard Apple DOS files rather than the Forth
"disk block"™ structure. DOS compatibility means that data can be
shared with other DOS-based programs, and reduces the time it
takes to learn TransFORTH.

While most Forths handle only integers, TransFORTH is a fully
floating-point language. All numbers on the stack are stored
internally in a five-byte floating-point format. Numbers can be
saved in memory, however, in one or two byte integer format as
well as in floating-point. TransFORTH does not have the Forth
<BUILDS - DOES> construct, but instead includes a versatile

INTRODUCTION 1 -4

built-in array declaration. The array type can be easily used
for nearly all common data applications.

Speed

These days, everybody seems to be very concerned with speed. A
common practice is to ask for "benchmark™ results, which are the
times it takes a language or program to perform usually very
simple tasks. Unfortunately, some benchmark-type tests are often
terribly misleading.

For example, if a simple do-nothing loop in TransFORTH is
compared to a similar loop in Applesoft:

TransFORTH: 30006 & DO LOOP
Applesoft: FOR N=1 TO 30060 : NEXT

the two will take about the same amount of time to run. However,
when longer (and more realistic) programs are compared,
TransFORTH's speed advantage becomes both noticeable and
significant. This is because Applesoft gets bogged down hunting
for variables to read and line numbers to jump to. Since
TransFORTH is fully compiled, it makes direct machine language
calls and jumps.

A more realistic benchmark test, "Eratosthenes Sieve" prime
number program, is described in the article "A High-Level
Language Benchmark®" in the September 1981 issue of Byte magazine.
You may wish to find the issue and read this informative article.
A version of this program written in TransFORTH can be found on
the TransFORTH system disk in the textfile "PRIMES". Here is a
table containing the times (in seconds) of TransFORTH and other
Apple languages running the benchmark:

TransFORTH: 94
Applesoft Basic: 28¢.6
Integer Basic: 232
GraFORTH: 17.9
Fig-Forth: 20.0
Apple Pascal: 51.6

Notice that TransFORTH is much faster than either version of
Basic.

The PRIMES program does not require floating-point capabilities.

TransFORTH is slower than some integer languages because it
handles five-byte floating-point numbers with every stack

INTRODUCTION 1 -5

manipulation, rather than two-byte integers. gApple Pascal loses
much of its speed advantage if the programs being compared rely
heavily on floating-point and scientific calculations.)

Error Handling

TransFORTH is like other versions of Forth, but unlike languages
such as Pascal, in that it does not include comprehensive error
checking. TransFORTH does check for most errors, such as
division by zero, missing labels, etc. However, for functions
that expect numbers within a given range, TransFORTH does not
check that the numbers are in that range. For example, if you
declare an array with 188 elements, then ask for the value of the
1@1st element, TransFORTH will not print an error message. It
will instead return a nonsensical value. Other functions that
expect certain numbers may have unpredictable results if given a
"wrong" number.

Range checking was left out of TransFORTH for a good reason: It
uses time and memory space, and has no value to a program if the
program already works. This of course means that you must be
careful to always provide the correct values. If you need error
checking, you can write routines to do this. 1If you don't need
error checking, it is not included.

In addition, TransFORTH provides you with the flexibility to
easily read from or write to any location in Apple memory. This
includes the ability to intentionally or accidentally overwrite a
portion of the TransFORTH language itself. If this ever happens,
the system may "hang", and you will have to reboot. 1If the
language ever does hang up and can't be recovered with Reset,
check your program. You'll probably find that a value was
written to an "illegal™ area of memory. The memory map in
Appendix B shows how TransFORTH uses Apple memory.

INTRODUCTION 1 -6

System Requirements

Hardware

TransFORTH requires that you have the following miminum hardware
components:

An Apple 1{ or Apple][Plus computer with 48K RAM
or an Apple //e
or an Apple /// with an Apple][emulation disk
One DOS 3.3 disk drive with controller
A video monitor, and/or
A TV with an RF modulator

Recommended Peripheral Options

In addition to the above, you may also want to use:

A 16K RAM card or language card (for an Apple][), to provide
extra memory

A color monitor or TV, for color graphics displays

An 86-column video display card

A second disk drive

(No) Firmware Requirements

TransFORTH was written in 6582 machine language using the ALD
System Assembler which was written by Paul Lutus and is also
available from Insoft. All floating-point and graphics routines
are internal and are therefore completely independent of either
Apple Basic (Integer or Applesoft). TransFORTH boots directly
from the 'monitor', without a Basic 'HELLO' program, as you will
notice by the asterisk prompt (rather than the Basic prompt)
during bootup. This makes the boot program independent of any
resident language in ROM, avoiding the differences between the
various Apple II computers which are sometimes troublesome to
software.

INTRODUCTION 1 - 7

What You’ll Need to Know

This book is intended to be a complete tutorial and reference
manual for TransFORTH][B. It does make a few assumptions,
however, that you already know some things about your Apple or
can learn about them from the Apple manuals.

You should be generally familiar with the Apple computer itself:
the Return key, arrow keys, Reset, the video display.... It's
also helpful to have a little programming experience with either
Pascal, or Applesoft or Integer Basic. Some of the examples i
this manual compare TransFORTH and Applesoft program lines. Even
if you know only Pascal, the meaning of the Basic lines should be
obvious.

This manual assumes you know what things like "subroutines",
"variables", and "arrays" are. How they apply to TransFORTH is
described completely, but the general underlying concepts are
only outlined here.

TransFORTH uses the standard Apple Disk Operating System Version
3.3, known affectionately as DOS 3.3. If you are at all
unfamiliar with the disk operating system and the DOS commands,
we suggest you take the time to study the DOS manual which came
with your disk drive(s). How well you need to understand DOS
depends on what kind of programs you will be writing with
TransFORTH.

The manual also does not explain all of the details of Apple's
low and high resolution graphics modes. An overview provides
most of the basic information. If you've ever used graphics from
either Basic or Pascal, you know everything you need to know. If
not, a few minutes with the Apple manuals will be time well
spent.

Throughout this manual, we'll be referring to 48K Apples and 64K
Apples. If you have an Apple][or Apple][Plus with a 16K RAM
card or language card, or if you have an Apple //e, then you have
a 64K Apple. If you have an Apple][or][Plus without the
memory card, then you have a 48K Apple. TransFORTH automatically
makes use of the extra 16K of RAM on 64K Apples.

TransFORTH will also run on an Apple /// in emulation mode. The
emulation mode acts like a 48K Apple][Plus.

INTRODUCTION 1 -8

Minor Modifications in DOS 3.3

As mentioned above, minor modifications have been made to the
disk operating system that is provided on the TransFORTH system
disk. A normal DOS master disk, when booted, will first
determine how much memory is available, and load itself into the
highest memory area under 48K. It then enters Basic, and loads
and runs a Basic "greeting" program.

The TransFORTH disk, however, also checks for RAM higher than
48K, found on 64K Apples as discussed above. If it finds this
RAM, it loads DOS here. It then enters through the Apple system
monitor (as shown by the asterisk "monitor" prompt, rather than
the Basic prompt), and BRUNs the binary file OBJ.FORTH. This
file contains the TransFORTH language system. Running OBJ.FORTH
actually starts the language.

About This Manual

This book is designed to serve as both a tutorial and a reference
manual. The main body of the manual is written in a tutorial
format, with many examples for you to try as you read. (If you
bought this book alone, the text will explain what the system
does at any particular moment.) At the end of each chapter is a
concise summary of the main points in the chapter. In most
chapters, a set of example problems (with solutions) follows.

A number of appendices are included, providing more technical

information along with a quick-reference guide to many of
TransFORTH's features.

The Chapters

Chapter Two introduces the fundamentals of TransFORTH, describing
the word library and showing you how to manipulate numbers on the
stack, do arithmetic, and print numbers and text.

Chapter Three shows how to define new words, either to customize
your system or as part of a larger program.

Chapter Four discusses the various looping, testing, and
branching words in TransFORTH.

INTRODUCTION 1 -9

Chapter Five describes how the text of word definitions can be
saved using either the TransFORTH text editor or any DOS textfile
editor, then compiled onto the word library.

Chapter Six explains the data structures in TransFORTH
(variables, arrays, and strings) and how best to use them.

Chapter Seven describes a variety of TransFORTH words, for
printing and number formatting, controlling programs and saving a
compiled system to disk, and other miscellaneous functions.

Chapter Eight shows you how to use the I/0 system to move data,
execute DOS commands directly from TransFORTH, manipulate
textfiles, and implement overlays for very large programs.

Chapter Nine discusses the graphics features of TransFORTH,
including high-resolution and low-resolution graphics,
turtlegraphics, and the provided graphics module.

Chapter Ten is for users that have an Apple //e with the extended
8f-column text card. It describes how you can use up to 46K of
auxiliary memory on the card for storing data.

The Appendices

Appendix A is a quick-reference guide to every word in the
TransFORTH language. If you need to know what a given word does,
look here first, A brief description of the word is provided,
along with the page number where the word is discussed more fully
in the manual.

Appendix B is a memory map of the system, showing how TransFORTH
uses memory in both 48K and 64K Apples, and includes a table of
useful system locations.

Appendix C provides a discussion of some of the more complicated
technical aspects of TransFORTH, including word library structure
and memory usage, errors, floating point format, and recursion.

Appendix D describes many of the demonstration and utility files
on the TransFORTH system disk, and how to use them for various
programming applications.

Appendix E lists the differences between TransFORTH][and

TransFORTH][B, to assist users who are updating from the old
version to the new.

INTRODUCTION 1 - 18

Appendix F is a table of ASCII characters and values.

Appendix G is the index for this manual. The index includes the
main references to all TransFORTH words, chapter and section
headings, and general topics.

In Reading This Manual

The tutorial part of this manual is sequential in nature. Each
chapter builds on the previous chapter. The easiest way to learn
the TransFORTH language is to simply read through the chapters in
order. Many people find they learn best by reading the manual
twice, first away from the computer to gain a better perspective
on the system, then again at the computer while following the
examples. If you decide to skip around the manual to learn about
your favorite features first, we suggest you at least the read
chapter summaries, to see what you might have "missed".

Many of the problems at the end of each chapter provide excellent
examples in using the features of TransFORTH in actual programs.
Whether or not you "work through" the problems is up to you.
Either way, studying and testing the solutions will help you
become more comfortable with writing your own programs.

After you've become reasonably accustomed to working with
TransFORTH, you will probably want to refer to Appendix D. This
section includes a number of miscellaneous handy routines that
you can use in your programs.

Request for Feedback

We tried to design this manual to be as complete as possible, but
we know that something somewhere may be confusing. 1If there is
something about this manual (or the TransFORTH system) that you
don't like, and you think it can be improved, let us know about
it. And if there is something that worked especially well for
you, let us know about that too, so that we can continue to
produce high-quality products.

INTRODUCTION 1 - 11

Starting Up

Registration Card and Product Replacement

You should fill out and return the enclosed product registration
card as soon as possible. It registers you as one of our
customers, which can improve service if you ever have a problem
with the TransFORTH disk. It also keeps you up to date. If we
decide to release an update to TransFORTH, then we can let you
know about it.

If the TransFORTH disk ever fails to boot for any reason, return
the disk to Insoft. If the disk itself is in good condition, we
will send you a replacement (or recopy the same disk) at no
charge. If the disk is damaged, there is a five dollar charge
for replacement.

Making Backups

The TransFORTH disk is not copy-protected. You can make back-up

copies for your own use with any standard disk copy program, such
as COPYA. The easiest way to make customized system disks is to

copy the original, then delete any files you don': need from the

CopY.

You can also copy the TransFORTH system file by file onto an
initialized disk. If you do, however, the DOS on your
initialized disk will not make use of the top 16K of memory.
(This is no problem if you have an Apple][without a RAM card.)
In addition, the TransFORTH language will not boot automatically.
You can instead write a Basic greeting program that BRUNs the
OBJ.FORTH file to start TransFORTH.

We encourage you to make back-ups immediately, before using
TransFORTH. Then put the original in your lead-lined vault.
Whenever this manual refers to "your TransFORTH disk", use your
working copy of the original. That way, if anything goes wrong
(your dog mistakes the disk for a frisbee), another copy of the
original can be made.

INTRODUCTION 1 -12

Running the Demonstration Program

To start TransFORTH, insert the system disk in your disk drive

and boot it. (Apple 1[users turn on the machine and type 6 CHAPTER TWO: STARTING TransFORTH
CTRL-P;][Plus and //e users simply turn the computer on.) In a

few seconds, the following will appear on the screen:

TransFORTH Demonstration? (Y/N)

Type 'Y' to run the TransFORTH demonstration program. The disk
will whir for a few more seconds, then the demonstration will
begin. This program was written in TransFORTH, to give you a
basic "feel" for what the system can do. For now, rebooting is

the simplest way to return to TransFORTH. CHAPTER TABLE OF CONTENTS: Page
Learning and Using TransFORTH Starting Up 21
There are only two things you need to do in order to begir %Cr'égm“”d gg
learning and using TransFORTH: Program Execution 23
1. Be adventurous, inquisitive, and have fun! The Data Stack ’ 24
2. Turn the page to Chapter Two....
Numbers 28
Manipulating Numbers on the Stack 2-9
More Words 2-11
Mathematical Operations 2-13
Overflow/Underflow 2-14
Printing Text 2-15
Summary 2-16
Problems 217
Solutions to Problems 2-18

INTRODUCTION 1 -13

TransFORTH is a powerful language in two ways. It has a powerful
structure, giving you great flexibility and control over your
Apple. It also has powerful features, enabling you to perform
sophisticated operations more easily.

In the next three chapters, we'll introduce the basic structure
of TransFORTH, giving you the groundwork for learning the
language. This chapter will discuss using the stack, printing
text, and performing operations using Postfix notation. Chapter
Three will describe how to write programs by adding new words to
the word library, and Chapter Four will introduce the basic
decision and branching words. 1Individual features will be more
fully described in later chapters.

This tutorial contains numerous command and program examples. If
you have purchased the TransFORTH system software along with this
manual, we strongly encourage you to try these examples. They
provide the difference between "book" learning and "experience"
learning. As you enter examples, you may mistype something and
find yourself in a situation you don't quite yet know how to get
out of. If you can't recover things properly by pressing Reset,
don't worry: The power switch was put on the Apple for a good
reason! Just turn the power off and reboot again (Apple //e
users can reboot by pressing CTRL-open apple-Reset), then try to
figure out what went wrong. We'll help you along the way.

Starting Up

Insert the TransFORTH system disk in the drive and boot the disk.
In a few moments, you should see something like:

TransFORTH Demonstration? (Y/N) :
We assume that since reading the first chapter, you've already
run the demonstration program. Answer "N" to the prompt. The

screen will clear and the TransFORTH header will be reprinted
along with a "Ready" prompt:

TransFORTH 1{ B (C) P. Lutus 1982

Ready

If you have an 8f-column display card (in either slot 3 or the
//e auxiliary slot), the 88-column display will be automatically

turned on. If you don't have a display card, the 4@-column Apple
screen is used. On an Apple][, the above displays will appear

STARTING TransFORTH 2 -1

as upper-case only characters.

TransFORTH is designed to print both upper and lower case to any
external device or the Apple //e video screen, and upper case
only to the Apple][display. The program examples in this
manual will use both upper and lower case.

The "Ready" prompt is displayed whenever TransFORTH is ready for
you to enter commands. If at any time you don't see the "Ready"
prompt when you think you should, it may be time to start
wondering....

Before continuing, let's back up for a moment to get a better
look at what TransFORTH is.

Background

As mentioned in Chapter One, the TransFORTH system is actually a
machine language program stored on disk with the name OBJ.FORTH.
Booting the disk runs this program.

The language can be divided into two main parts. The first part
consists of the compiler and low-level system routines. These
routines keep track of internal housekeeping and do the things
that need to be done without a lot of fanfare. The second part
is the word library. This is the visible, active part of
TransFORTH.

Words

The word library is made up of a large number of TransFORTH
"words". You can see this list of words by typing the word
"LIST". VLIST is a TransFORTH word that lists all of the
TransFORTH words. (The listing stops every 16 words. You can
press CTRL-C to stop the listing, or any other key to continue.)

STARTING TransFORTH 2 -

Ready LIST

NOTE
NEGATE
ABS
SIGN
CALL
PREG
YREG
XREG
AREG
POKEW
POKE

Everything in TransFORTH is either a "word" or a number. Words
can be variables, arrays, commands, subroutines, or programs.
Each TransFORTH word accomplishes a particular task. For
example, the word "NOTE" plays a note, the word "+" adds two
numbers together, and the word "PRINT" prints text. Programs are
written, not by entering program "lines" (as in Basic), but by
stringing TransFORTH words together.

As you write programs, you will be defining new words with their
own unique names. A TransFORTH word name can be any string of
ASCII characters, except that it cannot begin with a control
character, and there cannot be any spaces or carriage returns in
the name. Spaces are used to separate words, and a carriage
return is used to end a line, telling TransFORTH to compile the
line into memory, then either execute it or save it as part of a
new word. Since spaces are used to determine the end of one word
and the beginning of another, the spaces in the program examples
are very important.

Word names can be in either upper or lower case (or both).

However, they must be typed in the same way each time. For
example, the name "TEST" is not the same as "test" or "Test".

Program Execution

Here is a program line written in Basic:

PRINT 5.6 + 12.8

STARTING TransFORTH 2 -3

Consider how the computer reads the line and how it acts upon it.
First the word PRINT is read, but the computer doesn't yet know
what to print. The "5.6" follows, but still nothing can be done
because there are more characters to read. With the "+" sign,
the computer knows that something is to be added to 5.6. The
"12.8" is read, and the end-of-line is finally reached. Only now
does the computer have enough information to act upon. It can
now add the 5.6 and 12.8 together, then print the result. Note
that PRINT was the first item on the line, but the last item to
be executed.

Unlike Basic, in most cases TransFORTH executes words in the same
order they are read. When it reads a word from an input line, it
usually acts on that word immediately. For example, when
TransFORTH reads the word "+", it wants to add two numbers
together right then and there. This means that the numbers to be
added must be waiting somewhere for it. Where do they wait? On
the "data stack".

The Data Stack

The data stack is simply a stack of numbers, arranged much like a
stack of dinner plates or a deck of cards. Numbers (like plates)
can be placed on the top of the stack, or removed from the top of
the stack. Most TransFORTH words use the data stack in some way.
Some words place numbers on the stack, some words remove numbers,
and some do both. For example, the word "+" removes two numbers
from the top of the data stack, adds them together, then places
the result back onto the top of the stack.

Simply entering numbers places them on the data stack. Type:
Ready -4 5.5

The numbers -4 and 5.6 have been placed on the data stack. To
verify this, type "STACK". STACK is a TransFORTH word that
causes the contents of the stack to be displayed after every
command or program is executed:

Ready STACK

[-4 1]
[5.6]
Ready

STARTING TransFORTH 2 -4

Now place the number 12.8 on the data stack:
Ready 12.8

[-41]
[5.6 1
[12.8]
Ready

Note that the stack display is "upside-down". The 12.8 was the
last number placed on the stack, so it should be on the top of
the stack, but it is displayed below the other numbers. Here's
why: Stacks and "top-of-stack™ are standard computerese
conventions, and we didn't want to break tradition by calling it
the "bottom-of-stack". However, the TransFORTH stack can hold up
to 55 numbers at a time, while the Apple can only display 24
lines. With an upside-down stack display, even if the stack
contains too many numbers and some scroll off the screen, the top
stack number (the most accessible value) will still be on the
screen,

If you type the word STACK again, the stack display feature will
turn off. Hence, STACK "toggles" the stack display on and off.
You may want to type STACK a couple of times to verify this, but
before continuing with these examples, have the stack display
turned on.

With numbers now on the data stack, you can add two of them
together. Type:

Ready +

{ -4]
[18.4]
Ready

The word "+" removed the 5.6 and the 12.8 from the stack, added
them together, then placed the result, 18.4, back onto the stack.
Typing "+" again will add the -4 and 18.4 together:

Ready +

[14.4]
Ready

The result has been placed on the stack, but nothing has been

done with it yet. If the stack display were off, you would have
to print the number in order to see it. The TransFORTH word "."

STARTING TransFORTH 2 -5

(a period) removes the top number from the stack and prints it:

Ready .
14.4

Putting numbers on the stack, adding them, and printing the sum
can be combined on one line:

Ready 5.6 12.8 + .
18.4

Notice how this compares with the Basic example shown above. The
Basic format is <number> <add> <number>, while the TransFORTH
format is <number> <number> <add>. This notation, where the
numbers (or "operands") precede the plus sign (the "operator"),
is called Postfix or Reverse Polish Notation (RPN), and is used
in all versions of Forth as well as in many Hewlett-Packard
calculators.

This notation might seem "backwards" to people who may be more
familiar with Basic or Pascal. Perhaps a better adjective would
be "sideways", considering that some computer languages, such as
Lisp, place the operator before the operands: <add> <number>
<number>. There are two significant advantages to RPN: 1) You
have greater control over the machine because you specify exactly
what order in which you want the machine to perform tasks. 2)
You can evaluate complicated mathematical expressions without
using any parentheses,

For example, suppose you want to add 3 to 5, then add 6 to 7,
then multiply the two sums together. 1In Basic, you would enter a
line like the following:

PRINT (3 + 5) * (6 + 7)

The parentheses were needed to prevent Basic from performing the
multiplication first. With TransFORTH, no parentheses are
needed:

Ready 3 5
[3]
[5]

Ready +
[8]

STARTING TransFORTH 2 -6

This
oper

y * (The word "*", an asterisk, multiplies the top two
stack values.,)

example was "unfolded” so that you could see the individual
ations. For most applications, you would enter the example

on one line:

Read
104
Read

You
you

You
and
fami

Read
[1
[2
[3

y 35+6 7+ *,

y

can perform most operations using as few or as many lines as
like. There are a few exceptions, and these will be noted.

now know how to place numbers on the stack, print numbers,
add or multiply numbers. Here are a few more examples to

liarize you with stack operations:
y 123 (Place the numbers 1, 2, and 3 on the stack.
]
]
]
y 57 43 (Place 57 and 43 on the stack.)
]
]
]
]
]

STARTING TransFORTH 2 -

)

Ready . (Print the 43.)

dy . . (Print both the 57 and the 3.)

(Note that the 57 and the 3 were printed without any separating
spaces. We'll show how to insert spaces shortly.)

Ready 99 (Place 99 on the stack.)

[1]

[2]

[991}

Ready * (Multiply the 2 and the 99 together.)
[1]

[198]

Ready 2.2 + (Add 2.2 to the 198 on the stack.)
[1]

[200.2]

Ready . (Print the result.)

208.2

[11

Numbers

TransFORTH is a full floating-point language. It keeps nine
decimal digits of accuracy, and can handle positive and negative
numbers as large as 1E38 (1 times 16 to the 38th power) and as
small as 1E-38. All values on the stack are stored as
floating-point values.

STARTING TransFORTH 2 -

Numbers accepted by TransFORTH use the following general
guidelines:

1. At least one numeric digit must appear somewhere in the
number, along with any other appropriate symbols.

2. Commas, dollar signs, and plus signs can appear anywhere in
the number, and are ignored.

3. A minus sign appearing anywhere before the optional exponent
causes the number to be negative.

4. A decimal point is not needed if there are no digits to the
right of the decimal.

5. The letter E marks the beginning of the optional exponent.
6. A minus sign after the E causes the exponent to be negative.

Here are some examples using the proper numeric format:

[

827

-25

14E4

9@.1E6
$600,000
-1.23456789E12
17.9E-8

Notice that, while still following the above guidelines, a few
unusual formats are accepted by TransFORTH. For example:

2+3 Without spaces to separate the characters, this is
read as 23.

2-3 The minus sign causes this to read as -23.

$4$556$ This reads as 455.

Manipulating Numbers on the Stack

Following the earlier examples, the number 1 was left on the
stack. Suppose you want to remove the 1 from the stack without
printing it. There are a number of TransFORTH words designed for
manipulating stack values, including duplicating, swapping, and
dropping values from the stack. While these operations may not
sound terribly exciting, you will find that they are very useful
for arranging numbers so that they can be correctly used by other
TransFORTH words.

The word DROP simply removes the top number from the stack. The

STARTING TransFORTH 2 -9

number is lost.

The word DUP duplicates the top stack value, placing the
duplicate on the top of the stack.

The word SWAP trades the positions of the top two numbers on the
stack.

The word OVER copies the second number on the stack to the top.

These examples continue from the previous ones:

Ready 5 6 (Place 5 and 6 on the stack.)

[1]

[5]

[6]

Ready DUP (DUPlicate the top stack wvalue.)
[1]

[5]

[6]

[6]

Ready DROP (DROP, or remove, the top number from the stack.
[1]

[51

[6]

Ready SWAP (SWAP the top two stack values.)
(1]

[6]

[51

Ready OVER (Copy the second stack value OVER the first to
top-of-stack.)

[1]

[6]

[51

[6]

Ready DROP . DROP DROP (DROP the top stack value, print the
second, and DROP the last two.)

5

Ready

Since so many TransFORTH words affect the stack, a

STARTING TransFORTH 2 - 10

)

general-purpose diagram for showing exactly how a word uses the
stack would be handy. Below is such a diagram. Each word is
listed, followed by a "before" and "after" picture of the stack,
with any numbers shown as letters. The top of stack is to the
right of each list of letters. For example, here is the stack
diagram for "+":

Word Before After Description
+ m n P p=m+n

This diagram shows that two numbers, m and n are removed from the
stack, and one number, p, is placed on the stack. If a before or
after picture does not contain any numbers (empty or unused
stack), then a dash will be shown instead. (Remember that there
may be other stack values beneath the ones used.) Here are the
stack diagrams for the words discussed so far:

Word Before After Description
LIST - Lists the words in the word library.

STACK - - Toggles the stack display on and off.
+ mn P P=m+n

* mn P p=m@®*n

. n Prints n.

DUP n nn Duplicates n.

DROP n - Removes n from stack.

SWAP m n nm Swaps position of m and n on stack.
OVER mn mnm Copies m to top of stack.

This same stack diagram is used in Appendix A in describing the
operation of every word in the TransFORTH word library.

More Words

There are three other words for manipulating numbers on the data
stack. These words are a little more complicated, and are not
used as often:

PICK removes a number (call it "n") from the stack, then uses
this number n as an index into the stack, copying the nth number
to the top of stack. For example, 4 PICK would copy the 4th item
on the stack to the top of stack. 1 PICK is equivalent to DUP,
and 2 PICK is equivalent to OVER. To return meaningful values,
the index number used with PICK should not be greater than the
number of values on the stack.

ROLD "rolls™ the top three stack values down, copying the 3rd

STARTING TransFORTH 2 - 11

number to the 4th, the 2nd to the 3rd, the top number to the 2nd,
and the 4th value up to the top. ROLU rolls the stack up, in the
opposite direction. If less than 4 numbers are on the stack, the
operation of ROLU and ROLD can be unpredictable!

Here are examples of PICK, ROLU, and ROLD:

Ready 1 2 3 4 5

1]

{271

[31

[4]

[5]
Ready ROLD
[1]

[3]

[4]

[5]

[2]
Ready ROLD
(1]

[4]

[5]

[2]

[3]
Ready ROLU
[1]

[3]

[4]

[5]

[21
Ready DROP DROP
{11

[31

[4]
Ready 2 PICK
[1]

[3]

{41

(31
STARTING TransFORTH 2 - 12

Ready 4 PICK

— o ———
w0 W
et et et et

Mathematical Operations

There are also a large number of mathematical functions included
in TransFORTH's word library. Here is a summary of those
functions. Some of these will be described in greater detail in
Chapter Seven:

Word Before After Description
+ m n P p=m+n (addition)
- mn P p=m - n (subtraction)
* mn P p=m*n (multiplication)
/ mn P p=m/n ({division)
MOD m n P p =m MOD n (modulo, or remainder
after division)
~ m n p p=m "~ n (power function)
NEGATE n m m = -n (negate)}
ABS n m m = absolute value of n
SIGN n m m=11if n > 8 (sign)
g if n=20
-1 if n< @
SQRT n m m = square root of n
SIN n m m = sine of n (n in radians)
COSs n m m = cosine of n (n in radians)
TAN n m m = tangent of n (n in radians)
STARTING TransFORTH 2 - 13

ATN n m m = arctangent of n (m in radians)
LOG n m m = natural logarithm of n

EXP n m m=e " n (where e = 2,71828...)
INT n m m = integer portion of n

FRAC n m m = fractional portion of n

PI - n n = pi (where pi = 3.14159...)

random number where 0 <=m < 1.
generates new random sequence,
@ repeats last random number,
@ generates new random value.

RND n m

o e Bk 81
v Al

These words can be combined using the rules of Postfix notation
to evaluate complicated expressions. The problems at the end of
the chapter provide a few examples of evaluating expressions with
TransFORTH.

Quite complicated expressions can usually be evaluated using only
the stack, though the gymnastics (with SWAP, DUP, etc.) required
to keep track of all of the values can sometimes become
confusing. Keep in mind that named variables will be introduced
in Chapter Six. By using variables, you can keep stack
manipulations simple. For any application, you can decide how
much data you want to keep on the stack and how much you want to
put into variables.

Overflow/Underflow

The TransFORTH data stack can hold up to 55 numbers. If you
intentionally or accidentally attempt to place more numbers on
the stack than it can hold, TransFORTH will abort what it is
doing and print:

R Error : STKO (Press RETURN)

This cryptic message stands for "Run Error : STacK Overflow"”,
meaning that the last word or operation has "overflowed" the
stack. Since this is never a desirable occurrence, it creates a
"fatal" error, which stops whatever command or program TransFORTH
is executing. Press the return key, and the TransFORTH system

STARTING TransFORTH 2 - 14

will reset itself.

If the stack is empty and you execute any words that attempt to
remove numbers from the stack, this message will be displayed:

R Error : STKU (Press RETURN)

This stands for "Run Error : STacK Underflow", and is also a
fatal error.

Note: 1In the interests of speed, a few TransFORTH words bypass
the usual error checking routines, and rather than producing a
stack underflow error, will fool TransFORTH into believing its
stack contains 256 values. For example, with an empty stack and
the stack display on, type "DROP". This will try to remove a
number from the empty stack, and 256 stack values will scroll up
the screen. You can type "ABORT" or press Reset to recover.
(ABORT will be discussed in greater detail later.)

If the stack ever (apparently) becomes filled with 256 values,
you have probably produced an unchecked stack underflow.

Printing Text

So far we've been dealing heavily with numbers and the data
stack, but TransFORTH is equally adept at manipulating text
information. Printing text is staightforward: Type the word
PRINT, the word " (a quote), the text to be printed, and another
quote:

Ready PRINT " A SAMPLE PHRASE "
A SAMPLE PHRASE

Note that since the quote is a TransFORTH word, spaces must
. appear between the word PRINT and the quote, and between the
quotes and the text. A dquote can appear in the text to be
printed, as long as it is not set apart with spaces on both
sides:

Ready PRINT "™ A "BREAKTHROUGH" IN SCIENCE! "
A "BREAKTHROUGH" IN SCIENCE!

Two other words are useful when printing text or numbers: CR

causes a carriage return to be printed, and SPCE prints a space.
Notice the differences in these three examples:

STARTING TransFORTH 2 - 15

Ready PRINT " TRANS " PRINT " FORTH "
TRANSFORTH

Ready PRINT " TRANS " SPCE PRINT " FORTH
TRANS FORTH

Ready PRINT " TRANS " CR PRINT " FORTH "
TRANS
FORTH

Remember that the word "." prints numbers without any spaces.
SPCE and CR can be used to provide the spacing:

Ready 21 . 45 .
2145

Ready 21 . SPCE 45 .
21 45

Summary

Every TransFORTH command is called a "word", and resides in the
"word library”. The words in the word library can be listed by
typing the word LIST.

Most TransFORTH words are executed in the order they are read by
the system. A data stack is used to store numbers temporarily.
Most TransFORTH words either remove numbers from the top of the
stack, place numbers on the top of the stack, or do both. Using
Postfix notation, expressions can be evaluated without using
parentheses, and the user can completely control what functions
the computer performs.

The words introduced in this chapter can be broken into four
categories:

Stack Manipulation:
DUP DROP SWAP OVER PICK ROLU ROLD

Arithmetic:

+ - * / ° MOD SIN COS TAN ATN LOG EXP SQRT SIGN ABS RND INT
FRAC PI

STARTING TransFORTH 2 - 16

Text and Printing:
. PRINT SPCE CR

Miscellaneous:
LIST STACK

Problems

Translate these lines of Basic code to equivalent TransFORTH
program lines. (There may be more than one "correct" solution.)

(1)
PRINT 5

(2)
PRINT 6 / 7

(3)
PRINT SQRT(81)

(4}
PRINT (5 + 18) / 2 (The average of 5 and 14.)

(5)

PRINT (68 - 32) * 5 / 9

(This uses the formula C = (F - 32) * 5 / 9 to convert 68
degrees Fahrenheit to degrees Celsius.)

(6)
PRINT INT(RND(1l) * 6) + 1
(A random number between 1 and 6.)

Translate these TransFORTH lines to Basic:

(7)
Ready 89 12 - .

(8)
Ready 36 9 * 5 / 32 + .
(Converting 30 degrees Celsius to degrees Fahrenheit.)

(9)
Ready 2 3 + 4 5 + *

STARTING TransFORTH 2 - 17

(18)
Ready 2 3 4 + *

A11)

Ready 2 3 4 * + ,

(12)
Ready 3 3 3 * *

(13)
Ready 3 DUP DUP * * .

(14)
Ready 4 DUP DUP * * ,

(15)
Ready 17 SOQRT DUP * .

Solutions to Problems

(1)
Ready 5 .

(2)
Ready 6 7 / .

(3)
Ready 81 SQRT .

(4)
Ready 5 18 + 2 / .
[]
(5)
Ready 68 32 - 5 * 9 /

(6)
Ready 1 RND 6 * INT 1 +

(7)
PRINT 89 - 12

STARTING TransFORTH

2 - 18

(8)
PRINT 38 * 9 / 5 + 32

(9)

PRINT (2 + 3) * (4 + 5)

(Parentheses are needed to force Basic to perform the additions
first.)

(10)
PRINT 2 * (3 + 4)

(11)

PRINT 2 + 3 * 4

(Parentheses are not needed here since Basic will do the
multiplication first automatically.)

(12)
PRINT 3 * 3 * 3

(13)

PRINT 3 * 3 * 3

(Notice that problems 12 and 13 accomplish the same task in two
different ways.)

(14)

PRINT 4 * 4 * 4

(The TransFORTH line for this problem performs the same
"function” on the number 4 as the last example performed on the
number 3. Only one number was changed.)

(15)
PRINT SQRT(17) * SQRT(17)

In this example, the word DUP provided a copy of the square root
of 17. Another way to write this in Basic uses named variables:

X = SQRT (17) : PRINT X * X

STARTING TransFORTH 2 -19

CHAPTER THREE: DEFINING NEW WORDS

CHAPTER TABLE OF CONTENTS:
Immediate Mode Execution
Defining New Words

The Process of Defining Words
Forgetting Words
Miscellaneous Thoughts on Word Definitions

Word References
Words Which Look Forward
Keeping Track of Memory Usage

Summary
Problems

Solutions to Problems

Page

3-1
3-8

. 3-10

3-11
3-11
3-12
3-14
3-14
3-15

Immediate Mode Execution

All of the examples in the previous chapter were done in
"immediate"” mode. Each line entered was compiled, executed, then
forgotten, To be more specific, here are the basic tasks
TransFORTH performs for a line entered in "immediate" mode:

1. TransFORTH looks for spaces to separate the line into
individual word names.

2. Each word name is compared with the word names in the word
library until a match is found. (If no match is found,
TransFORTH attempts to read the characters as a number.)

3. For each word, TransFORTH creates (compiles) a machine
language "call" to the word in memory above the top of the word
library. Therefore, a line containing 6 TransFORTH words will
create a total of 6 "calls" in memory, one to each word.

4, The system then directly executes this new string of code
that it just created, calling each word one at a time to perform
the desired task.

The next line entered will then compile another string of code
directly over the previous code, overwriting it.

(Note: 1If this discussion of compiling and executing seems a bit
mystifying, don't worry. Understanding this material is helpful
in using TransFORTH, but not necessary.)

Defining New Words

One of TransFORTH's great strengths lies in the ability to define
new words in terms of old ones. When defining new words,
TransFORTH compiles the lines entered (as in immediate mode),
then simply saves the code rather than executing and discarding
it. This code then becomes a new TransFORTH word which is added
to the word library. 1In this way, the TransFORTH language itself
(of which the word library is a part) "expands"™ to become your
program!

DEFINING NEW WORDS 3 -1

New words are created with "colon definitions"™ (so named because
they begin with a colon). The form for a colon definition is:

: <word name> <string of defining words> ;

The colon tells the system to begin a new word definition. The
name that immediately follows the colon will be the name of the
new word. The words that follow the name make up the
"definition" of the word; they are the words to be executed
whenever the defined word is typed. These words behave just as
if they had been typed in "immediate" mode each time. The
semicolon marks the end of the word definition, and causes the
word to be compiled into machine language and added to the word
library.

Suppose you want to print the sum of two numbers along with the
message "THE SUM IS ". 1In immediate mode, you would enter:

Ready 17 24 (Two numbers to be added.)
{17]

[24]

Ready PRINT " THE SUM IS " SPCE

THE SUM IS

[17 1]

[24]

Ready + .
41

Or on one line:
Ready 17 24

[17]

[24}

Ready PRINT " THE SUM IS " SPCE + .
THE SUM IS 41

Rather than typing the line:
PRINT " THE SUM IS " SPCE + .

every time, the words can be placed in a colon definition:

DEFINING NEW WORDS 3 -

Ready : SUM point to the destination can be found:

Ready PRINT " THE SUM IS " SPCE Ready 5 5 * (Square the 5.)
[25)
Ready + . ;
Ready 12 12 * (Square the 12.)
The colon marks the beginning of the word definition, and SUM is [251
the name of the new word. The following words make up the [144 1
definition of SUM. The semicolon ends the word definition,
returning the system to the immediate mode. SUM is now a new Ready + (Add the squares together.)
TransFORTH word, and can be seen by typing LIST: { 169]
Ready LIST Ready SOQRT (Take the square root.)
[13]
SUM
NOTE Ready . (Print the result.)
NEGATE 13
ABS
SIGN (We could have used the """ (power) function to square the
. numbers, but multiplication is much faster.)
. By making use of the stack manipulation words, you only need to
enter the initial values once:
The word SUM is now as much a part of the TransFORTH system as Ready 5 12 (Enter the two values.)
the original TransFORTH words. The system literally expanded to [5]
include the word SUM. Executing SUM is exactly the same as [12]
executing the words which defined it:
Ready DUP (Duplicate the 12)
Ready 17 24 SUM [5]
THE SUM IS 41 {12]
[12]
Ready 99 2 SUM
THE SUM IS 141 Ready * (and square it.)
[51
As you can see, TransFORTH words, including new colon [144]
definitions, are somewhat similar to Basic GOSUB subroutines in
that they are self-contained procedures which can be called from Ready SWAP (Swap the two values to move the 5 to top of
immediate mode or a running program. However, TransFORTH stack,)
programs are made up entirely of new word definitions, whereas [144]
Basic programs often do not use subroutines at all. {51
Here is a more involved example of a colon definition: ?eijg ?UP * (Duplicate and square the 5.)
To £ind the length of the diagonal (hypotenuse) of a right [25]
triangle, you square the lengths of the two sides, add them
together, then take the square root. For example, if you walk 5 Ready + (Add the two squares.)
miles north, then 12 miles east, the distance from the starting [169]

DEFINING NEW WORDS 3 -3 DEFINING NEW WORDS 3 -

Ready SOQRT . (Take the square root and print it.)
169

We now have a set procedure for finding the diagonal distance:
DUP * SWAP DUP * + SQRT

These words can be used in a new word definition:

Ready : DIAGONAL

Ready DUP *

Ready SWAP DUP *

Ready + SQRT ;

Note that the definition can extend over several lines. Using
the colon definition format, the colon begins the definition,
DIAGONAL is the name of the new word, the following words define
what DIAGONAL will do when it is executed, and the semicolon ends
the word definition. DIAGONAL has been added to the word
library:

Ready LIST

DIAGONAL
SUM

NOTE
NEGATE
ABS

Executing the new word DIAGONAL is equivalent to executing the
words which defined it:

Ready 5 12

[5]

{12]
Ready DIAGONAL
[13}

Ready .
13

DEFINING NEW WORDS 3 -5

Ready 10.63 5.007 DIAGONAL .
11.7501893

Ready 5 7 DIAGONAL .
8.60232527

The word DIAGONAL can of course be called from inside yet another
new word definition. In this next example, the numbers to be
used with DIAGONAL are printed with some explanatory text, the
diagonal is found, then the answer is printed. (Note that to
separate the printed text and numbers with spaces, either SPCE
can be used or extra spaces can be inserted between the text and
the quotes as shown below.)

Since printing numbers removes them from the stack, copies of the
numbers must be made so that they will be available both for
printing and for the word DIAGONAL. The best way to copy a pair
of numbers is to use the word OVER twice:

Ready 5 12 (Numbers to find diagonal of.)
[51

(12]

Ready OVER (Copies the 5 to top of stack.)
[5]

[12]

[51

Ready OVER (Copies the 12 to top of stack.)
[5]

{12]}

[51

(121

Ready PRINT " IF YOU WALK " .

IF YOU WALK 12

[5]

[12]

[5]

Ready PRINT " MILES NORTH, THEN " . CR

MILES NORTH, THEN 5

DEFINING NEW WORDS 3 -6

Ready PRINT " MILES EAST, THE DIAGONAL DISTANCE IS " CR
MILES EAST, THE DIAGONAL DISTANCE IS

(5]

[12]

Ready DIAGONAL .

13

Ready PRINT " MILES. "
MILES.

All of this can be placed in a colon definition:

Ready : HOW.FAR

Ready OVER OVER

Ready PRINT " IF YOU WALK " .

Ready PRINT " MILES NORTH, THEN " . CR

Ready PRINT " MILES EAST, THE DIAGONAL DISTANCE IS " CR

Ready DIAGONAL .

Ready PRINT " MILES. " ;

(Note the period in the word name "HOW.FAR". A space could not
be used because that would break the name into two words, "HOW"
and "FAR". The period is simply a convenient convention:
"HOW.FAR" is easier to read than "HOWFAR".)

Ready 5 12 HOW.FAR

IF YOU WALK 12 MILES NORTH, THEN 5

MILES EAST, THE DIAGONAL DISTANCE IS

13 MILES.

Ready 5 5 HOW.FAR

IF YOU WALK 5 MILES NORTH, THEN 5

MILES EAST, THE DIAGONAL DISTANCE IS
7.97166781 MILES.

DEFINING NEW WORDS 3 -

The Process of Defining Words

As mentioned above, in immediate mode the TransFORTH system
carries out a number of tasks for each line:

1. Input the line.

2. Compile the line into machine language code on the top of the
word library.

3. Execute the code.

4. Discard the code (allow it to be overwritten by the next line
compiled).

When TransFORTH sees the word ":" (colon), it switches into a
"compile—-and-save" mode. The word name which follows is placed
directly onto the word library. The following code is then
compiled onto the word library as in immediate mode, but not
executed. When the semicolon is read, the system marks the end
of the definition on the word library, then switches back to
immediate mode.

When entering a colon definition, nothing can be executed until
after a semicolon is read. If the system ever responds to a
command with only a Ready prompt (without doing anything), you've
probably forgotten a semicolon and are still inside of a word
definition. The command you tried to execute immediately has
instead been added to the word. Type a semicolon to return to
immediate mode.

If you are not inside of a word definition and you type a
semicolon, TransFORTH will print the error message:

C Error : UNEQ (Press RETURN)

This stands for "Compile Error : UNEQual word balance", which
means that the semicolon could not be matched with a
corresponding colon. There are also other TransFORTH words which
must be used in conjunction with another word. Any mismatch will
produce the UNEQ error. These other words will be discussed in
the next chapter.

The actual word definition as stored in the word library is made
up of 6502 machine language code, and the lines you typed to
define the word cannot be read back or modified. This has two
ramifications: 1) After a word has been defined, and the
definition typed in has scrolled off the screen, there is no
direct way to know how the word was defined. At first this might

DEFINING NEW WORDS 3 -8

sound somewhat limiting, but in Chapter Five we'll show you how
to save the text of a word definition before it is added to the
word library. 2) If you want to change the definition of a word
on the word library, you must first delete the word (using
FORGET, which is described below), then redefine the word.

Forgetting Words

If you were to continue defining words, the word library would
expand until eventually all available memory was filled.
Sometimes words are no longer needed, or a word might contain a
mistake. In either case, to delete one or more words, the word
FORGET is used. It takes the form:

FORGET <wordname>

FORGET cannot selectively remove words from the middle of the
word library. It only truncates off the top,,6 deleting the
specified word and every word above it. 1In our example, the word
HOW.FAR (on the top of the word library) can be deleted by

typing:
Ready FORGET HOW.FAR
Ready LIST

DIAGONAL
SUM

NOTE
NEGATE
ABS

HOW.FAR has been removed from the word library. Since FORGET
deletes the specified word and every word above it, a number of
words on the word library can be deleted with one FORGET. For
example, both SUM and DIAGONAL can be deleted by typing:

DEFINING NEW WORDS 3 -9

Ready FORGET SUM
Ready LIST

NOTE
NEGATE
ABS

Anytime you need to delete a large group of words that are on the
top of the library, simply type "FORGET" followed by the word in
the group lowest in the LIST. Also remember that the top
"standard" TransFORTH word is NOTE. To clean every additional
word from the word library, LIST the library, find the word above
NOTE, and FORGET that word. Everything above NOTE will be
deleted.

Some of the words at the top of the supplied TransFORTH word
library are not frequently used or can be duplicated with other
words. If you find that you don't need a number of words at the
top of the library, you can FORGET these too, to give you a
little more memory for your own words. The rest of the
TransFORTH system will behave normally.

Miscellaneous Thoughts on Word
Definitions

Defining new words is the heart of writing programs with
TransFORTH. Each new word is a self-contained subroutine that
can call any previously defined subroutines. Writing programs is
simply a matter of breaking the task into a number of smaller
tasks, then writing word definitions (subroutines) that
accomplish each of these tasks. A TransFORTH program, then, is
simply a collection of one or more word definitions on the word
library that work together to perform a task.

With separate word definitions, you can also have more than one
"program"™ in memory at a time. Words can be defined completely
independently of each other, and used as individual programs or
routines. This is very different from Basic, where only one
"program” can reside in memory at one time.

An example at the end of the next chapter will demonstrate how
word definitions can be grouped together to form larger programs.

DEFINING NEW WORDS 3 - 19

....Which brings us back to some specific points on TransFORTH.

Word References

Words in TransFORTH can only be defined in terms of already
existing words, which reside in the TransFORTH word library at
the time. In fact, any reference to a word that is not currently
in the word library will produce an error message, and the line
with the error will be ignored:

Ready 5 DUP @ SWAP STRANGE CR
"STRANGE" Not Found (Press RETURN)

Another source of trouble is defining a word with the same name
as an already existing word. If this happens, the new word is
added to the word library, but a warning message is printed:

Ready : OVER PRINT " OVER THE RIVER AND THRU THE WOODS " ;
"OVER" Not Unique (Press RETURN)

If two different words in the word library have the same name,
how does the system choose between them? For our example, any
words that referenced OVER before the new definition was added
will still reference the earlier word. Any new references to
OVER will reference the new definition. That means that the
original definition is no longer available from the keyboard! 1In
general, defining words with existing word names should be done
with care if done at all.

Programmers who like to dabble with recursion will be happy to
hear that TransFORTH words can call themselves. Word definitions
can also be nested one definition inside another, allowing the
inside and outside words to call each other. These capabilities
are very useful for certain recursive applications, but should be
avoided if not needed. The looping and branching structures
discussed in the next chapter provide for sophisticated nested
loops without having to resort to recursive looping. (Recursion
is also discussed in Appendix C.)

Words Which Look Forward

Most words in TransFORTH look to the stack for any data or
information they might need. Some words, like PRINT or FORGET,
instead look forward down the input line for further data. You

DEFINING NEW WORDS 3 -11

might be tempted to build a colon definition like the following:
Ready : TESTWORD CR CR PRINT ;

Ready TESTWORD " HI THERE "

Don't try it! (...at least not with expectations of success.)

The word PRINT looks for the text to be printed as it is
compiled, not when it is executed. The above example will not

work, and it may cause the system to go off the deep end.... The

other words (introduced in later chapters) which look to the
input line for data work the same way, and should be used as
described.

Keeping Track of Memory Usage

Because of the word library structure, a number of different
"programs" can reside in memory at one time. The only limitation
is the amount of memory available for programs. For 64K Apples,
the word library can expand by over 36,980 bytes. For 48K
systems, the library can expand by over 27,008 bytes. The memory
map in Appendix B shows how TransFORTH uses Apple memory. When
working with larger programs, it is generally a good idea to
remain aware of what is on the word library, and how much memory
is being used.

There are two words to help you:

The word HERE places the address of the top of the word library
on the stack. This can let you know how large things are
getting. This example was done with no additional words on the
word library. (The addresses printed here are for example
purposes only. The address numbers displayed may be slightly
different.)

Ready HERE .
12611

For people who like to "think" in hexadecimal, the word $LIST can
also be very useful, $LIST is identical to LIST, except that it
also displays the hexadecimal address of each word in the word
library. By comparing adjacent numbers, you can determine how
much memory each word takes. Here is a sample of S$LIST:

DEFINING NEW WORDS : 3 - 12

Ready S$LIST

$3121 NOTE
$310B NEGATE
$30F8 ABS
$30DD SIGN
$30AC CALL
$30A2 PREG

. .

Since $LIST displays the address at which each word begins, the
first address shown in the $LIST is for the beginning of the top
word, not the top of the word library at the end of the word. To
determine the address of the top of the word library in
hexadecimal, you can define a "dummy" word and then use $LIST.
The top address will be the top of the word library after the
dummy word is deleted:

Ready : IT ; ("IT" does not execute anything.)
Ready S$LIST
$3143 IT

$3121 NOTE
$310B NEGATE

Ready FORGET IT

$3143 is the hex address of the top of the word library.

If the word library is filled until there is no more free memory,
the line or word currently being compiled will be forgotten, and
the following error message will appear:

C Error : PRGO (Press RETURN)

PRGO stands for PRoGram Overflow. If you get this message, you
can either work with what you have in memory, or FORGET some of

the words from the word library to make more room.

(For more information on the internal structure of the word
library, see Appendix C.)

DEFINING NEW WORDS 3 - 13

Summary

New words can be defined and added to the word library. The word
library expands as new words are added, and these words follow
the same conventions as the original TransFORTH system words.

All words behave as subroutines: they perform a particular task,
then return to whatever program or line called them.

A new word is created with a "colon definition". It consists of
a colon, the name of the new word, a str%ng of words making up
the definition, and a semicolon. Executing a new word is exactly
equivalent to executing the words which defined it.

Once a word is defined, it cannot be examined or modified,
because it has been compiled into low-level machine language
instructions. Chapter Five will describe how to save the text of
a word definition so that changes can be made at any time.

Words can be removed from the word library with the word FORGET.
FORGET cannot selectively remove words from the middle of the
word library; it can only truncate off the top.

"Programs" in TransFORTH are written by defining one or more new
words that work together to accomplish a particular task. Since
programs are simply collections of word definitions, more than
one program can reside in memory at a time. The only limitation
is in available word library space. The words HERE and $LIST can
be used to help find the amount of free memory.

Problems

Note: For these problems, there may be more than one "right" way
of doing things. Actually trying out the word definitions with
TransFORTH is always the best way to check your answers.

(1)

Write a word definition called AVERAGE which removes two numbers
from the stack, finds their average, and places the result back
on the stack.

DEFINING NEW WORDS 3 - 14

(2}

The formula for converting degrees Fahrenheit to degrees Celsius
is: C = (F - 32) *5 / 9. Write a word definition called F-C
which performs this conversion.

(3)

The formula to convert back (Celsius to Fahrenheit) is F =C * 9
/ 5 + 32. Write a word called C~F which converts degrees Celsius
to degrees Fahrenheit.

(4)

Write a word called C.AVERAGE that removes two Fahrenheit
temperature values from the stack, averages them, then converts
the average to degrees Celsius. This word should make use of two
of the three previous word definitions.

(5)

With these four new words on the word library, what single
command will delete the words F-C, C-F, and C.AVERAGE, leaving
only AVERAGE?

Solutions to Problems

(1)
: AVERAGE
+ 2/ ;

(2)
: F-C
32 -5 *9 /;

(3)

: C-F

9 * 5 / 32 + ;
(4)

: C.AVERAGE
AVERAGE F-C ;

(5)
FORGET F-C

DEFINING NEW WORDS 3 -15

CHAPTER FOUR: LOOPS AND TESTS

CHAPTER TABLE OF CONTENTS:
DO-LOOP

The Return Stack
Comparing Numbers

Decision and Branching Words

IF—THEN

IF—ELSE—THEN

BEGIN—UNTIL
BEGIN—WHILE—REPEAT
CASE:—THEN

Program Structure

The Set of Decision and Branching Words

Summary
Problems

Solutions to Problems

Page

4-1

4-5

4-8

4-8

4-10
4-13
4-14
4-15
4-18
4-19

4-20

4-21
4-22

TransFORTH includes a number of words for performing tasks
repetitively, testing certain conditions, and making program
decisions on the basis of those tests. Most of these constructs
are similar to ones used in Pascal, and there are also some
similarities to Applesoft Basic.

Do-Loop

The TransFORTH DO - LOOP structure is used for performing tasks
repetitively when the number of repetitions is known ahead of
time. The form for the DO - LOOP is:

<ending value> <initial value> DO <words to be repeated> LOOP

The word DO removes two numbers from the stack. The top stack
number specifies an "initial" value; the next number is the
"ending" value. The words between DO and LOOP are executed, then
the initial value is incremented by one. If this incremented
value (which we'll call the "loop value") is 5till less than the
ending value, the program loops back to execute the words between
DO and LOOP again. This cycle is repeated as long as the loop
value is less than the ending value.

I1f you are familiar with Applesoft Basic, you will notice that DO
- LOOP is similar to Applesoft's "FOR -- NEXT" looping structure.
Here is an example that prints the phrase "HI THERE" 3 times:

Ready 3 @ DO PRINT " HI THERE " CR LOOP
HI THERE
HI THERE
HI THERE

"3 g DO" sets up the looping structure for 3 loops. Inside the
loop, the words PRINT " HI THERE " CR are executed. LOOP marks
the end of the loop.

It is often handy to retrieve the current loop value. Inside the
DO - LOOP, the word "I" retrieves the loop value and places it on
the stack. Here is an example:

Ready 5 @ DO PRINT " HERE IS NUMBER " I . CR LOOP
HERE IS NUMBER
HERE IS NUMBER
HERE IS NUMBER
HERE IS NUMBER
HERE IS NUMBER

[VEI O)

LOOPS AND TESTS 4 - 1

"5 g DO" starts a loop that will repeat 5 times. 1Inside the
loop, the phrase "HERE IS NUMBER " is printed, then the loop
value is retrieved by I and printed with ".* CR causes the
carriage return to put each number on its own line, and LOOP
again marks the end of the loop, causing the loop value to be
incremented and compared with the ending value. Note that the
loop continues only as long as the loop value is less than the
ending value. That's why the loop stops at 4, not 5 as in
Applesoft.

The words DO and LOOP work as a pair and must always be matched
up, either on the same line together or entered in a colon
definition. This is so that one of the words will not be
executed unless the other word is also present in the code. If
the DO and LOOP are not together, the "C Error : UNEQ" error will
occur.

To make a loop with an increment other than 1, use +LOOP instead
of LOOP. +LOOP removes a number from the stack to use as the
increment. This number can be either positive or negative (for
loops that count backwards). Here is an example:

Ready 10 6 DO I . CR 2 +LOOP

0N =

The 2 was used by +LOOP as the increment.

Ready 150 200 I . CR -1 +LOOP
200
190
18¢
170
168

1.9 DO I . SPCE -.1 +LOOP
.7 1.6 1.5 1.4

Note that DO - LOOPs that count backwards continue as long as the
loop value is greater than the ending value. If this seems
confusing, just remember that every DO - LOOP (either forwards or
backwards) will stop before it reaches the ending value.

Loops can be nested inside one another. The loop value for the

LOOPS AND TESTS 4 - 2

current innermost loop is always access by "I", and the loop
value for the next outer level is accessed with the word "J" as
in this colon definition:

Ready : DOUBLELOOP

Ready 4 @ DO

Ready PRINT " OUTER LOOP: "I .CR
Ready 3 ¢ DO

Ready J . SPCE I . CR

Ready LOOP

Ready LOOP ;

Ready DOUBLELOOP
OUTER LOOP: @
]

OUTER LOOP: 1

OUTER LOOP: 2

ER LOOP: 3

The inner loop is cycled three times for each cycle of the outer
loop. Note that the outer loop value is referenced in the outer
loop with "I", but is rzferenced from the inner loop with "J".
Just remember that "I" always references the loop value for the
current innermost loop.

If more than two nested loops are being used, the loop value of

the third loop out can be accessed from the innermost loop with
the word "K".

LOOPS AND TESTS 4 -

The Return Stack

DO - LOOPs make use of another stack in the TransFORTH system,
similar to the data stack, known as the "return stack". The
return stack can also hold 55 numbers, though for most programs
it rarely contains more than a few. (Most versions of Forth,
because they are interpreted, use the return stack for a variety
of purposes. Because TransFORTH is compiled directly into
machine language, the Apple's processor itself takes care of
these things.)

When the word DO is encountered, the top two values on the data
stack are moved over to the return stack, with the loop value on
the top and the ending value underneath. The word LOOP
increments the loop value on the return stack. The word "I"
places a copy of the top return stack value on the data stack.
When the loop is finally exited, the two return stack values are
removed.

There are a few words in TransFORTH that enable you to use the
return stack directly. The return stack can be a handy place to
put numbers for a moment while playing games with other numbers
on the data stack. (Chapter Six will explain how to declare
variables for more permanent storage.) Care should be taken to
avoid disturbing the value and placement of existing return stack
entries when using DO - LOOPs. (In other words, if you're not
sure, don't!) Here are the words that directly control the
return stack:

PUSH moves the top data stack entry to the return stack.

PULL moves the top return stack entry back to the data stack.
POP removes the top return stack entry. The number is lost.

If there are numbers on the return stack, the stack display will
show these too, as in the following example. Suppose there are

three numbers on the stack and you want to reverse the order of
the bottom two. Here is one way to do it:

— o —
=W
et e

LOOPS AND TESTS 4 - 4

(The 1 is now on the return stack.)

The return stack display cannot be used to see the loop values
inside of a DO - LOOP. This is because the entire loop is
executed and completed before the system returns to the immediate
command mode, where the stack is displayed. (Note: There is a
utility file on the system disk which includes a routine for
viewing the stack from within a running program. It is described
in Appendix D.)

Comparing Numbers

A number of TransFORTH words are devoted to comparing numbers.
These words are:

> not equal to)

equal to)

greater than)

less than)

greater than or equal to)
less than or equal to)

ANV ANV IAN
=~

Each of these words removes two numbers from the stack, comparing
the second stack number down with the top stack number, and
returns on the stack either a 1 if the comparison is true, or a 8
if the comparison is false. Here are a few examples:

Ready 5 5 .
1

Ready 5 7 B
2

LOOPS AND TESTS 4 -5

Ready -32 -6 < .
1

Ready 45 46 >= .
2

There are four other words related to the comparison words.

These words treat nonzero numbers as "true" and zeros as "false".
The first three remove two numbers from the stack, then return
either a 1 or a 4.

AND returns a 1 if the top stack value and the next value are
both "true" (nonzero). Otherwise it returns a 9.

OR returns a 1 if the top stack value or the next value are
nonzero. It returns a @ only if both values are zero.

XOR (which stands for eXclusive OR) returns a 1 only if the top
stack value or the next stack value (but not both) are nonzero.
In other words, it returns a 1 if the true/false status of the
two numbers is different, if one number is zero and the other is
nonzero. If both numbers are zero or both are nonzero, XOR
returns a 9.

NOT removes one number from the stack. If the number is zero,
NOT returns a 1. If the number is nonzero, NOT returns a 4.

Here are diagrams outlining the way each of these words works:

AND

zero zero a
zero nonzero %]
nonzero zero %]
nonzero nonzero 1
OR

zero zero %}
zero nonzero 1
nonzero zero 1
nonzero nonzero 1
XOR

zero zero %]
zero nonzero 1
nonzero zZero 1
nonzero nonzero "]
LOOPS AND TESTS 4 - 6

NOT
zero 1
nonzero @

These words are useful for combining or rearranging the results
of tests. The following example tests whether or not a number is
greater than 5 and less than 10.

numbers, 7 and 13:

7 is greater than

Ready 13
[13]

Ready DUP 5 >
[13]
(1]

Ready SWAP
[1]
[13

Ready 10 <

[1]
[o8]

LOOPS AND TESTS

(Number to be tested.

5

Greater than 57?7)

The same test is done with two

)

The "1" means "true".)

Less than 187?)

Are both results true?)

Yes.)

and less than 10.

Number to be tested.

)

Ready AND . (Are both results true?)
2 (No.)

13 is not both greater than 5 and less than 18.

Decision and Branching Words

An essential part of a computer language is the ability to test a
condition, then make a decision on the basis of the test.
TransFORTH has five different constructs that accomplish this.
Each of the constructs contains a word which removes a number
from the stack. In most cases, the "decision" is made on the
basis of whether the number is zero or nonzero. Any nonzero
number represents a condition being true, and a zero represents
false. (Note that the comparison words place a one on the stack
if the comparison is true, and zero if the comparison is false.)

A simple flowchart is included with each of the following
constructs, showing the "flow" of the program. The arrows
indicate what is executed in what order. The boxes represent a
group of words to be executed. The diamonds represent a test,
usually for a zero or nonzero number.

Note: Each of these constructs is made up of two or more words.
Like DO - LOOP, these decision words work together, and cannot be
entered alone. They must be entered either on one line or from
within a colon definition.

IF-THEN

The simplest decision construct is IF - THEN. The form for IF -
THEN is:

<test stack value>
IF

<words to be executed>
THEN

The word IF removes a number from the stack. If the number is
not zero, then the words between IF and THEN are executed. 1If
the number is zero, then the words between IF and THEN are
skipped over. 1In either case, the program then continues on
after the word THEN. Here is the flowchart for IF - THEN:

LOOPS AND TESTS 4 - 8

0

words

THEN

Here are IF and THEN in a couple of colon definitions:
Ready : TEST1

Ready PRINT " THE NUMBER IS "

Ready IF PRINT " NOT " THEN

Ready PRINT " ZERO. " ;

The first and third PRINT words are executed every time. The
word IF removes a number from the stack (which we'll supply
before we execute TEST1l). If the number is nonzero, then PRINT "
NOT ", which is sandwiched between IF and THEN, is executed. If
the number is zero, then it is not executed.

Ready 5 TESTI1
THE NUMBER IS NOT ZERO

Ready # TEST1
THE NUMBER IS ZERO

IF - THEN constructs can be used with number comparison words.
Remember that these words return either 1 or @, depending on the
success or failure of the comparison. Suppose that for some
application, you want to set a limit on the size of numbers. The
following word will let any number less than 25 pass through
"unharmed", but any number over 25 will be replaced with a 25:

LOOPS AND TESTS 4 -9

Ready : UPPERLIMIT
Ready DUP

Ready 25 > IF
Ready DROP 25
Ready THEN ;

The word DUP makes a copy of the top stack value. The word ">"
compares the copy with the number 25, leaving a 1 on the stack if
the number is greater than 25, or a # if it is not. The word IF
removes the one or zero from the stack to decide whether or not
to execute the following words. Remember that the original
number is still on the stack. If the comparison is false, then
the words between IF and THEN are not executed, and the number is
left intact. If the comparison is true, then DROP 25 is
executed, which removes the original number from the stack and
replaces it with 25.

Ready 16 UPPERLIMIT .
16

Ready 37 UPPERLIMIT .
25

IF-ELSE-THEN

Another version of the IF - THEN construct is IF - ELSE - THEN.
The form is:

<test stack wvalue>

IF

<words executed if "true">
ELSE

<words executed if "false">
THEN

As before, the word IF removes a number from the stack. However,
if the number is nonzero, then the words between IF and ELSE are
executed. If the number is zero, then the words between ELSE and
THEN are executed. The program then continues after the word
THEN. Here is the IF - ELSE - THEN flowchart:

LOOPS AND TESTS 4 - 10

tesi\ﬁ— IF

0

words

ELSE

words

e———' THEN

This word definition determines whether or not a number is
greater than 100:

Ready : TEST2

Ready DUP .

Ready 109 > IF

Ready PRINT " IS GREATER THAN 10¢ "

Ready ELSE

Ready PRINT " IS LESS THAN OR EQUAL TO 1g¢9 "

Ready THEN ;

Again, the word definition duplicated the number before printing,
so that the number could be used for the comparison. Also note
that the controlled words are indented. This is certainly not a
requirement, but it greatly improves the readability of the word
definition. (The next chapter will show you how to use the text

editor to save the text of the word definitions.)

Ready 186 TEST2
146 IS GREATER THAN 100

Ready 54 TEST2
54 IS LESS THAN OR EQUAL TO 108

LOOPS AND TESTS 4 - 11

As with loops, IF - THEN constructs can be nested. This example
puts checks for both upper and lower limits on a number:

Ready : TWOLIMITS

Ready DUP 25 > IF

Ready PRINT " GREATER THAN 25 "
Ready DROP

Ready ELSE

Ready 18 < IF

Ready PRINT " LESS THAN 18 "
Ready ELSE

Ready PRINT " BETWEEN 14 AND 25 "
Ready THEN

Ready THEN ;

One IF - ELSE - THEN is placed between the ELSE and THEN of
another one. Note that before the first comparison, the number
is DUPlicated because the program doesn't know yet whether or not
it will be needed for the second comparison. If the number is
greater than 25, then it is not needed again, and is DROPped.

Ready -62 TWOLIMITS
LESS THAN 19

Ready 19 TWOLIMITS
BETWEEN 18 AND 25

Ready 684 TWOLIMITS
GREATER THAN 25

LOOPS AND TESTS 4 - 12

BEGIN-UNTIL

Another construct that allows repeated execution is BEGIN -
UNTIL. The form is:

BEGIN
<words to be repeated>
<test stack value>
UNTIL

The word BEGIN marks the beginning of the construct. The words
between BEGIN and UNTIL are executed, then the word UNTIL removes
a number from the stack. If the number is zero, then the program
branches back and the words between BEGIN and UNTIL are executed
again. This loop is repeated until the stack value is nonzero,
then the program continues past the UNTIL. This is the flowchart

for BEGIN - UNTIL:
BEGIN
words
test =0 UNTIL
[91¢]

The following example starts with a zero on the stack, then
prints the number, adds one to it, and loops back until the
number equals 8:

LOOPS AND TESTS 4 -~ 13

Ready @ BEGIN DUP . CR 1 + DUP 8 = UNTIL

A AT WN ™R

8]

The words "DUP . CR" print the number without losing it and issue
a carriage return, "1 +" increments the number, and "DUpP 8 ="
determines if the number equals 8. Notice that this loop leaves
a copy of the number on the stack when it finishes. Adding DROP
to the end of the line takes care of this,

BEGIN-WHILE-REPEAT

The BEGIN - WHILE - REPEAT construct is similar to BEGIN - UNTIL.
The form is:

BEGIN

<words to be repeated>

<test stack value>
WHILE

<controlled words>
REPEAT

The word BEGIN again marks the beginning of the construct. The
words between BEGIN and WHILE are executed, then WHILE removes a
number from the stack. If this number is nonzero, then the
controlled words between WHILE and REPEAT are executed, then
execution jumps back again to the words after the BEGIN. If the
number is zero, then the program jumps directly past the word
REPEAT and continues on. The key to remembering this is that the
controlled words are REPEATed while the stack value remains
nonzero. This the flowchart for BEGIN - WHILE - REPEAT. Note
that the test is at the beginning of the controlled part:

LOOPS AND TESTS 4 - 14

N0
test

0

words

L]

—

BEGIN

WHILE

REPEAT

The following example is similar to the previous example. The

number is tested first this time.
is printed and incremented,

Ready ¢ BEGIN DUP 8 <> WHILE DUP .,

i ECANCA N SRV RN IR T o

8]

CASE.-THEN

CR 1 + REPEAT

While it is not equal to 8, it
and the cycle is repeated:

Sometimes a choice needs to be made from a range of possible

numbers. The CASE:

is:

LOOPS AND TESTS

construct allows you to do this.

The form

4 - 15

<{stack value>

CASE:

<word @>
<word 1>
<word 2>

<word n>

THEN

The word CASE:

removes a number from the stack and uses this word

to select and a execute a single word from a list of words. A
a one selects word 1, etc. The word THEN

zero selects word 0,
marks the end of the CASE: construct,
the flowchart for CASE:.

and is required.

word O CASE:
word 1
word 2
|
=n word -n
THEN

The following example

Ready
Ready

Ready

LOOPS

X PRINT " THE
: Y PRINT " THE

: Z PRINT " THE

AND TESTS

shows how CASE:
NUMBER IS ZERO
NUMBER IS ONE "

NUMBER IS TWO "

works:

’

’

’

Here is

4 - 16

Ready : CASE.TEST

Ready CASE:

Ready X
Ready Y
Ready A

Ready BELL
Ready THEN ;

X, ¥, and Z are words we have defined and are called by the word
CASE.TEST. The CASE: list in CASE.TEST contains four words, so
the construct uses the numbers @ through 3. Zero selects X, 1
selects Y, 2 selects Z, and 3 selects BELL:

Ready @ CASE.TEST
THE NUMBER IS ZERO

Ready 1 CASE.TEST
THE NUMBER IS ONE

Ready 2 CASE.TEST
THE NUMBER IS TWO

Ready 3 CASE.TEST
(The Apple speaker beeps.)

Warning: TIf the number which CASE: removes from the stack is too
large or is less than zero, something strange and probably
not-so-wonderful will happen. For example, the system may hang
up. (In the above example, the only acceptable numbers for
CASE.TEST are 8, 1, 2, and 3.) The key to avoiding trouble is to
simply not let numbers out of the CASE: range go into the word
CASE:. There are a number of ways to do this. Here is one for
the above example:

LOOPS AND TESTS 4 - 17

Ready : SAFE.CASE

Ready DUP DUP 3 <= SWAP @ >= AND

Ready IF

Ready CASE.TEST

Ready ELSE

Ready PRINT " THE NUMBER IS NOT BETWEEN @ AND 3 "
Ready DROP

Ready THEN ;

SAFE.CASE first checks the number to see that it is between 8 and
4 before passing it on to CASE.TEST. If it is out of range, a
message is printed. (You may want to try the words "DUP DUP 3 <=
SWAP ¢ >= AND" directly from the keyboard to see how they work
together.)

Ready 2 SAFE.CASE
THE NUMBER IS TWO

Ready 7 SAFE.CASE
THE NUMBER IS NOT BETWEEN @ AND 3

Ready -6 SAFE.CASE
THE NUMBER IS NOT BETWEEN 0 AND 3

Program Structure.

Notice that in the last example for CASE: above, we began by
defining three short words: X, Y, and Z. Then we defined the
word CASE.TEST, which calls one of those three words. Finally we
defined SAFE.CASE, which calls CASE.TEST.

This "chain" of definitions is the way long programs in
TransFORTH are built up. The "low-level" words, which usually do
rather menial tasks, are defined first. Then the next level of
words, which call the first set of words, are defined. This
process builds layer by layer until one last word is added to the
top of the word library, which "coordinates the show". The
entire program can be run by simply typing the name of this top
word.

LOOPS AND TESTS 4 - 18

The beauty of this scheme is that each level of words can be
thoroughly tested and debugged before moving on to the next
higher level. This helps to prevent the all-too-familiar scene
of a programmer helplessly wading through miles and miles of
computer print-out trying to find the elusive "bug" in a program.

The Set of Decision and Branching Words

The decision and branching words make TransFORTH a "structured"”
language. This structure is complete, in the sense that any type
of looping or branching can be accomplished using combinations of
these constructs. In addition, the words always clearly mark the
beginning and ending of any loop or branch (e.g. a BEGIN - UNTIL
loop always begins with BEGIN and ends with UNTIL). This
improves readability over languages like Basic, where loops and
branches can become confusing with an overabundance of GOTOs and
line numbers. Using the TransFORTH words, GOTO is not needed.

In fact, TransFORTH does not even include a GOTO word.

Proper use of the decision and branching words can make
programming simpler and programs more readable, Following are a
few thoughts on how TransFORTH words can be best used for certain
applications.

BEGIN - WHILE - REPEAT and BEGIN - UNTIL are very similar. The
main difference is that the BEGIN - UNTIL is always executed at
least once, because the test is not performed until the end of
the loop. The test is performed first with BEGIN - WHILE -
REPEAT, and if the test fails, the controlled words between WHILE
and REPEAT are not executed at all.

An often-used construct is the endless loop. In Basic this is
usually written as several lines of code followed by a GOTO back
to the top. In TransFORTH, the same loop can be written with
BEGIN - UNTIL. Remember that the loop repeats until the stack
value removed by the UNTIL is nonzero. By placing a zero on the
stack immediately before the UNTIL, this condition is never
satisfied, and the loop repeats endlessly. This example simply
loops round and round, with no way out:

Ready BEGIN @ UNTIL

Pressing RESET is the only way to recover. In this next example,
the loop counts while repeating forever:

Ready 1 BEGIN DUP . CR 1 + @ UNTIL

LOOPS AND TESTS 4 - 19

The language Logo is similar to TransFORTH in that new words (or
"procedures" in Logo) can be defined in terms of old ones.
Endlessly looping procedures in Logo are often created by
defining procedures that "call themselves". This uses recursion
in an odd way, where a "GOSUB"-like call is used to replace a
"GOTO"-like jump. This technique can be duplicated with
TransFORTH:

Ready : TEST

Ready PRINT " ENDLESS LOOP " CR

Ready TEST ;

Ready TEST (Press Reset to stop.)

This does work, but a BEGIN - UNTIL loop provides a much more
readable way to accomplish the same thing, because both the

beginning and end of the loop are clearly marked with BEGIN and
UNTIL.

Summary

TransFORTH includes a number of decision and branching
constructs., DO - LOOP is used for performing tasks repetitively
when the number of repetitions is known ahead of time. DO - LOOP
is similar to Basic's FOR...NEXT loop. 1Inside the loop the word
I retrieves the value of the loop. DO - LOOPs can be nested. J
retrieves the value of the next outer DO - LOOP, and K retrieves
the loop value for the third outer loop.

DO -~ LOOPs use another stack called the return stack. The words
PUSH, PULL, and POP can be used to access the return stack
directly.

There are several words for comparing numbers: <>, =, >, <, >=,
and <=. Each of these removes two numbers from the data stack,
makes the comparison, and returns a 1 if the comparison is true,
or 9 if false.

The words AND, OR, and XOR remove two numbers from the stack and
perform functions that depend on whether the numbers are zero or
nonzero. They return either a 1 or a 8. NOT removes one number
from the stack, and also returns a 1l or a @.

LOOPS AND TESTS 4 - 29

The following constructs each remove & zero or nonzero number
from the stack to perform a branching or looping function:

IF - THEN

IF - ELSE - THEN

BEGIN - UNTIL

BEGIN - WHILE - REPEAT

The CASE: - THEN construct removes a number to select and execute
one of the words in a list between the CASE: and THEN.

By using combinations of these constructs, complicated tests and

branches can be performed. A GOTO-like word is not needed, and
is not included in TransFORTH.

Problems

(1)
Write a word definition called RND.LOOP which prints 5 random
values.

(2)
Write a word called ANY.LOOP that removes a number from the
stack, then prints that number of random values,

(3)
Write a word called GRID that prints the following pattern. Use
two nested DO - LOOPs, printing one "A" at a time:

AAAAA
AAAAA
AAAAA
AAAAA

(4)

Write a short word definition called TEST which removes a number
from the stack. If the number is greater than 25, the word
should place a 1 on the stack. If the number is less than or
equal to 25, a # should be returned.

(5)

Write a word called TEST1 that removes a number, returning a 1 if
the number is between 14 and 84, or returning @ otherwise.

LOOPS AND TESTS 4 - 21

(6)

Write a word called TEST2 that, like TEST1, checks whether or not
a number is between 14 and 84. If it is, print a -999; if not,
print the number. (Have TEST2 call TESTI1.)

(7)
What does this TransFORTH word definition do? How many numbers
does it remove from the stack? How many does it leave on the

stack?

PUZZLE
* PUSH * PULL + ;

(8)

The problems in the previous chapter included routines for
converting between degrees Fahrenheit and degrees Celsius. Write
a word definition called CONVERT that removes two numbers from
the stack., If the top number is 1, convert the second number
from Fahrenheit to Celsius; if the top number is @, convert from
Celsius to Fahrenheit. Call F-C and C-F to do this. Write the
definition in two ways: using IF - ELSE - THEN, and using CASE: -
THEN.

Solutions to Problems

(1)
RND.LOOP
5 8 DO
1 RND . CR
LOOP ;

2)
ANY.LOOP
DO

1 RND ., CR
LOOP ;

= e~

(3)
¢ GRID
4 8 DO
5 @ DO
PRINT " A "
LOOP
CR
LoOoP ;

LOOPS AND TESTS 4 - 22

(4)
: TEST
25 > ;

(5)

: TESTI
DUP 14 >
SWAP 84 <
AND ;

(6)
: TEST2
DUP TEST1

IF DROP -999 THEN ;

(7)

PUZZLE removes 4 numbers from the stack, and leaves one number on

the stack. This TransFORTH line:

Ready 2 3 4 5 PUZZLE

26

is equivalent to this Basic expression:

PRINT 2 * 3 + 4 * 5

26

(8)
CONVERT
IF F-C
ELSE C-F
THEN ;

: CONVERT1
CASE:

C-F

F-C
THEN ;

LOOPS AND TESTS

4 - 23

CHAPTER FIVE: THE TEXT EDITOR

CHAPTER TABLE OF CONTENTS:
Cursor Movement

Introduction: Using the Text Editor
The Text Editor

Line Entries

LIST

AUTONUM
DELETE

ERASE

Automatic Insertions
INSERT

SAVE

GET

DOS Commands
Printing Files
Leaving the Text Editor

Program Compilation
Comments

Examples

Memory Considerations
Summary

&
0

S OOOOUOION AN

o

Qoo aaEn

5-10

5-11

5-11

5-16

5-18

Chapter Three discussed how to define new words in terms of
existing ones. The words were added to the dictionary and could
be called at any time. However, there was no way to save the
text of a definition, to go back to the string of words which
defined it.

Enter the TransFORTH text editor. This is a straightforward
general purpose line-oriented editor. Text can be created here,
modified, saved to disk, read back in, and more.

TransFORTH includes words to compile text into the system from
the editor or directly from the disk. If any defined words need
to be modified, they do not have to be completely re-entered.
They can be changed from the editor, then recompiled by the
system.

In this chapter, we'll discuss how to use the text editor and how
to compile TransFORTH programs from the editor or from disk.
We'll also give you some pointers to keep both system and editor
memory happy.

Cursor Movement

As you may have discovered by now, the Apple arrow keys work as
they do in most Apple applications. The left arrow is a
"backspace" key that enables you to back up on the line to
correct mistakes. The right arrow is a "retype" key. 1If you use
the right arrow key to move the cursor over text on the screen,
the text will be treated by TransFORTH as if it were being typed
again directly from the keyboard.

The Apple 1[and //e ESCape codes for moving the cursor also work
from TransFORTH. These can be handy for making fast corrections
from the TransFORTH text editor. If you're unfamiliar with the
Apple ESCape codes, we suggest you consult one of the Apple
manuals. Most of the manuals discuss these codes.

Introduction: Using the Text Editor

As discussed in Chapter Three, when the TransFORTH system reads a
line typed at the keyboard, it compiles the line directly into
machine language code. The actual characters typed are
discarded.

THE TEXT EDITOR 5-1

The text editor provides a place to save the characters you type.
The editor allows you to enter text, modify or change it, and
save or retrieve it from disk. The editor doesn't care whether
you're typing TransFORTH programs or dquotes from "MacBeth". It
simply stores the text in memory.

TransFORTH includes some special commands for reading this text.
When these commands are given, the TransFORTH system reads the
text in memory exactly as if it were being typed from the
keyboard line by line. If the text includes immediate-mode
commands, the system will read them and execute them. If the
text includes new word definitions, the system will compile them
and add them to the word library.

TransFORTH can also read textfiles directly from disk, again
treating the text as if it were being typed at the keyboard.
This is very similar to the DOS command "EXEC",.

Here is a quick overview for using the text editor for creating
word definitions: Enter the editor, and type in the text of the
word definitions. 1If you make any mistakes, you can easily make
changes to the text. While in the editor, you can also save the
text to disk as a DOS textfile. Return to TransFORTH, then enter
the command for reading the text in memory. (This command will
be described later in the chapter.) The system will read each
line from memory, and compile the word definitions. You can then
test and run the new words, as before.

If you find that you want to change one or more word definitions,
first FORGET the words to remove them from the word library, then
re-enter the text editor. Make the desired changes in the text,

then return to TransFORTH. Type the command to read the text in

memory again, and this new corrected text will be compiled.

The Text Editor

There are actually two text editors on the TransFORTH system
disk, named OBJ.EDITOR1 and OBJ.EDITOR2. The first is used on
48K Apples and can edit (without changing the 'default' settings)
over 12,000 characters (12 Kbytes). The second is used with 64K
systems and can edit over 22,080 characters. Otherwise, the two
editors are identical. When the word EDIT is entered, TransFORTH
automatically loads the appropriate editor.

Note: TransFORTH and the TransFORTH editor both use standard DOS
textfiles for program storage. If you already have a text editor

THE TEXT EDITOR 5 -2

that can use DOS textfiles, you may want to use it for editing
longer programs. The TransFORTH text editor does not have all of
the features found in some larger editors and word processors,
but it has the advantages of 1) residing in the Apple memory at
the same time as the TransFORTH system and 2) being compatible
with any standard 80-column card. Compiling programs into the
TransFORTH system from a textfile on disk is the same regardless
of what editor is used to create the file.

For some of the editor examples in this chapter, we will use
English sentences for text instead of TransFORTH programs. The
editor doesn't know the difference, and it makes the examples
easier to read. The editor is of course usually used for writing
TransFORTH programs. Later in the chapter, we'll give examples
of editing and compiling actual TransFORTH programs.

To enter the editor from TransFORTH, type EDIT. The appropriate
editor will automatically be loaded. In a few seconds you should
see the TransFORTH editor header:

TransFORTH][Editor (C) 1981 P. Lutus

The first command to know in the editor is "?", the question
mark. Entering a question mark (followed by Return) provides you
with a list of all the other editor commands:

?

Save
Get
Insert
Delete
Program
Memory
List
Write
Erase
Autonum
Bye
ConTRoL-D=D0S

We'll discuss each of these commands in turn, but first let's
find out how to enter text into the text editor.

THE TEXT EDITOR 5 -3

Line Entries

The TransFORTH text editor uses line numbers to identify each
line of text. These line numbers are only used within the
editor, and are not read by the TransFORTH system or kept when
the file is saved to disk. They are simply used for specifying
certain lines while in the editor. The line numbers are in steps
of 18, and whenever insertions or deletions are made, the file is
renumbered automatically, in steps of 1@ again.

To enter a line, simply type a line number followed by the line.
Here are some example lines to enter:

18 MY VERY FIRST EDITOR LINE!
20 ENTERING LINES IN THE EDITOR IS
3¢ SIMILAR TO ENTERING LINES IN BASIC.

LIST

To see that these text lines have been stored, they can be listed
by typing "LIST" or simply the letter "L". (All of the editor
commands are single letters.)

L

1¢ MY VERY FIRST EDITOR LINE!

20 ENTERING LINES IN THE EDITOR IS

3¢ SIMILAR TO ENTERING LINES IN BASIC.

Done

(The "Done" message is printed whenever an editor command is
successfully completed. We're not going to show it in all of our
examples, though.)

Inserting lines in the text is much like from Basic. Simply
enter a line number between the line numbers you want the text
inserted into. Remember that after the insertion is made,
however, the lines will be renumbered in steps of 14. Insert a
line between line 14 and line 20 by giving it a line number of
15:

15 WITH SOME IMPORTANT EXCEPTIONS,

Now list the file again to see that the line was inserted and the
following lines were renumbered:

THE TEXT EDITOR 5 - 4

L

16 MY VERY FIRST EDITOR LINE!

20 WITH SOME IMPORTANT EXCEPTIONS,

3@ ENTERING LINES IN THE EDITOR IS

49 SIMILAR TO ENTERING LINES IN BASIC.

If the file being edited gets rather long, you don't have to list
the entire file every time. The listing automatically stops
every 16 lines. If you press ConTRoL-C during the pause, the
listing will stop. If you press any other key, the listing will
continue.

You can also use "List"™ to list a single line or a range of
lines. Assuming a file contains at least 15 lines (numbered 14
to 158):

L 80 lists line 8@ only.

L 80,120 1lists lines 8@ through 124.

L 89, lists from line 88 to the end of the file.

L ,88 lists from the beginning of the file to line 86.

AUTONUM

The editor also provides automatic line numbering. Going back to
the original example, list the file, then press "A" for
"Autonum"”. The next line number, line 58, will appear for you.
Enter a couple of lines with Autonum on:

5¢ THIS IS MUCH NICER THAN HAVING
60 TO ENTER THE LINE NUMBERS MYSELF.

To stop the Autonum feature, just press Return at the beginning
of the line after the line nugper.

To change a line already -iri the editor file, simply retype the
line number followed by the corrected line. The ESCape Keys and
the right-arrow key can be used to retype a line that is on the
screen.

Entering a line number with no text creates a blank line; it does
not delete the line as in Basic, Blank lines between word
definitions are recommended, as they can make programs much more
readable. If the Autonum feature is being used, a blank line can
be created by typing a space followed by a Return.

THE TEXT EDITOR 5-5

DELETE

The "D" ("Delete") command is used for deleting a line or range
of lines., 1Its format is identical to "List"™ (though its effects
are very different!):

D 8¢ deletes only line 8@.

D 88,120 deletes lines 86 through 128.

D 89, deletes from line 88 to the end of the file.

D ,80 deletes from the beginning of the file to line 88.

After any lines are deleted, the remaining lines are again
renumbered in steps of 10.

ERASE

To erase the file in memory, press "E" for "Erase". A prompt
will appear:

Erase (Y/N) :

This prompt prevents inadvertent file erasure. Enter "Y" and
press Return to erase the file.

Automatic Insertions

In a previous example, Autonum was used to add to the end of the
file. When used in the middle of a file, Autonum also
automatically inserts the text, making room for the text and
renumbering later lines. For these examples, let's start with a
new file. Erase the file in memory, then enter a couple of
lines:

13 THE FIRST LINE IN THE FILE...
20 THE LAST LINE.

An insertion can be started by entering the first line number
manually:

15 MUST SURELY BE FOLLOWED BY OTHERS.
Now, pressing "A" will cause automatic line numbering that starts

following the last entered line (line 15) and insert this text
into the file. Since line 15 is renumbered to become line 24,

THE TEXT EDITOR 5 -6

the next line number, printed with the Autonum feature, is line
30:

A

390 AUTONUM DOES MORE THAN GENERATE
49 LINE NUMBERS. IT ALSO INSERTS
5¢ INTO THE MIDDLE OF A FILE.

60

Again, Autonum is turned off by pressing Return with no text.
List the file now:

16 THE FIRST LINE IN THE FILE...

29 MUST SURELY BE FOLLOWED BY OTHERS.
39 AUTONUM DOES MORE THAN GENERATE

40 LINE NUMBERS. IT ALSO INSERTS

5¢ INTO THE MIDDLE OF A FILE.

6@ THE LAST LINE.

INSERT

The "I" ("INSERT") command can also be used to initiate
insertions into a file. Instead of typing the first inserted
line before using Autonum, INSERT can be used to specify the
starting line number. For this example, delete the lines just
entered, then re-enter them, this time using INSERT.

D 2¢,50

Done

L

19 THE FIRST LINE IN THE FILE...

2¢ THE LAST LINE.

To insert between lines 14 and 28, enter:

I 15

Autonum will use this line number as the point of insertion,
instead of the last accessed line.

THE TEXT EDITOR 5 -

A

2@ MUST SURELY BE FOLLOWED BY OTHERS.
3¢ AUTONUM DOES MORE THAN GENERATE

49 LINE NUMBERS. IT ALSO INSERTS

5¢ INTO THE MIDDLE OF A FILE.

60

List the file again, and you will see that these lines have been
re-inserted into the file.

SAVE

To save a file to disk, press "S". A prompt will appear:

S
(Filename)

Enter the file name you want the file to be saved under. If
desired, you can also specify a disk slot and drive number here,
separated by commas using the standard DOS format. Here are a
couple of examples:

{Filename) : TESTFILE
(Filename) : TESTFILE,S6,Dl

If you want to save only a portion of the file to disk, enter a
slash after the filename, followed by the range of line numbers
to be saved:

(Filename) : TESTFILE/80,150 saves lines 80 to 158
(Filename) : TESTFILE/,80 saves from the beginning of the
file to line 8@

(Filename) : TESTFILE/88, saves from line 80 to the end o
the file

(Filename) : TESTFILE,S6,D1/88, slot and drive numbers can also
be used

GET

To get a file from disk and load it into the editor memory, press
"G". A prompt will appear:

G
(Filename) :

THE TEXT EDITOR 5 -

Enter the name of the file to be loaded an , if desired, the disk
slot and drive where it is located, using the same format as
SAVE.

To get a file and insert it at a particular location in the
existing file, enter a slash after the filename, followed by the
line number where the file is to be inserted. This example will
insert the file TESTFILE into the current editor file between
lines 110 and 120:

(Filename) : TESTFILE/115

If you want to begin work on a new file without regard to the
text currently in memory, simply use "E" to Erase the text memory
before Getting the new file from disk.

Note: Since "GET" and "SAVE" use slashes to specify certain
lines in a file, filenames that contain slashes cannot be used
with the text editor.

DOS Commands

To enter a DOS command directly from the editor, press ConTRoL-D
and Return. A prompt will appear:

Enter DOS Command :

From this prompt, you can enter any DOS command, to get a
catalog, delete files, lock files, etc. The prompt repeats after
each DOS command so that you can execute several commands without
having to press ConTRoL-D every time. To return to the editor
prompt {(a flashing cursor with no prompt line), simply press
Return twice.

Printing Files

Editor files can be printed directly from the editor. Type
ConTRoL-D and Return to get the DOS prompt, then type "PR#1".
(If your printer is in another slot, substitute that number.)
The printer will be activated; press Return twice to remove the
DOS prompt.

With the printer activated, you can type "L" to list the file to
the printer, pressing Return when the listing stops every 16
lines. A better way is to type "W" for "Write". This option
writes the editor file out without any pauses.

THE TEXT EDITOR 5-9

Since "PR#8" does not reconnect TransFORTH's special upper/lower
case output, press Reset to turn the printer off and return to a
normal display. Chapter Eight includes a discussion on how to
access peripherals, print files, and return to TransFORTH in a
normal manner under program control.

Leaving the Text Editor

To leave the text editor and return to TransFORTH, simply type
"B" for "Bye". (TransFORTH is reinitialized when it is
reentered. The words in the word library are untouched, but the
stacks are cleared and any screen settings are returned to
normal.)

Program Compilation

There are TransFORTH commands for reading the text from the
editor memory or from a disk file, rather than the keyboard.
They are actually general-purpose I/0 routines, and will be
discussed fully in Chapter Eight. Their use in compiling text
from memory or disk is described below.

To read text stored in the editor memory into the TransFORTH
system, type:

Ready PROGRAM MEMORY INPUT

Any text in memory will be read in and compiled. 1If the text
contains immediate-mode commands, they will be executed as each
line of text is read. 1If the text contains word definitions, the
new words will be added to the library. If any errors occur
during compilation, an error message will be displayed and the
system will stop reading memory. The "Ready" prompt will appear
when the system is finished reading.

Note that if you want to, you can define PROGRAM MEMORY INPUT as
a single word to save typing:

: P
PROGRAM MEMORY INPUT ;

THE TEXT EDITOR 5 - 10

To read text stored in a textfile on disk, type:
Ready DISK> " <filename> " INPUT

where the name of the file is substituted for <filename>. The
text will be read in the same way text in memory is read.

Comments

When PROGRAM MEMORY INPUT or DISK> " <filename> " INPUT are used
for reading text, the TransFORTH system expects to read only
valid TransFORTH words. However, comments and remarks in the
file can often be very helpful for understanding and keeping
track of long programs.

The TransFORTH word "(", a left parenthesis, is available for
inserting comments into program files. 1In compiling the program,
when TransFORTH sees a " (" set off with a space on either side,
it ignores everything that follows until it sees a ")", also set
apart with spaces. Comments can be inserted freely in the source
file, and do not use any space on the word library when the
program is compiled. Here is an example of a comment line:

12 (PARENTHESES AROUND A COMMENT)

A comment can extend over several lines, using one pair of
parentheses. You should be careful to always finish comments
with a ")". 1If you do not close a comment, TransFORTH will
merrily accept the rest of the text, and whatever you type,
without doing anything. This is similar to what can happen if
you forget a semicolon at the end of a word definition. 1If this
happens, try typing a right parenthesis ")" to return TransFORTH
to normal. Pressing Reset will work, too.

Later examples in this manual include many comments. These

comments are included to better explain the examples, but do not
need to be entered with the programs.

Examples

Suppose you want to write and save a word definition that prints
the squares of the numbers 1 through 106. One word definition to
do this is:

THE TEXT EDITOR 5 - 11

: SQUARES
11 1 DO

II * . CR .
LOOP ;

To create this word with the editor, first type "EDIT" to enter
the editor. If there is already some text stored in the editor,
type "E" then "Y" to erase it. Now type “"A" to turn on the
Autonum feature, and enter the word definition:

A
18 : SQUARES

20 11 1 DO

30 I I *,.CR
40 LOOP ;

58

Press Return at line 5@ to exit the Autonum feature. To save the
text to disk, type "S" (for Save), then enter a filename:

S
(Filename) : DOSQUARES

(Note that filenames and word names are totally unrelated. You
can use the same name for the word name and the filename if you
like. 1If many word definitions are included in the text, giving
the file the same name as the last word definition can be a handy
way to keep track of what is in the file.)

The disk will whir as the file is saved. Now type "B" to exit
the editor and return to TransFORTH., To compile the editor text
into the system, type:

Ready PROGRAM MEMORY INPUT

The system will compile the text and return almost immediately

with another "Ready" prompt. You can see that SQUARES has been
added to the word library by typing LIST:

THE TEXT EDITOR 5 -12

Ready LIST

SQUARES
NOTE
NEGATE
ABS

.
.

To run SQUARES, type:

Ready SQUARES
1

4

9
16
25
36
49
64
81
100

The squares of the numbers 1 through 14 are printed. Suppose
that you now want to change the definition to print the numbers
being squared along with the squares. You must first remove the
old definition from the word library:

Ready FORGET SQUARES

Now enter the editor again:

Ready EDIT

and list the program:

L

19 : SQUARES

20 11 1 DO

30 I T *,CR
49 LOOP ;

Done

THE TEXT EDITOR 5 - 13

The following addition will change the definition to print the
numbers being squared:

25 I . SPCE

L

19 : SQUARES

20 11 1 DO

30 I . SPCE
40 I I*.CR
5¢ LOOP ;

Done

Now exit the editor, then recompile the text from the TransFORTH
system:

Ready PROGRAM MEMORY INPUT

Ready SQUARES

Since the original definition of SQUARES (not the latest version)
is saved on the disk, you can replace the new version with the
old again:

Ready FORGET SQUARES

Ready DISK> "™ DOSQUARES " INPUT

The disk will whir as the textfile is compiled.

THE TEXT EDITOR 5 - 14

Ready SQUARES
1

4

9
16
25
36
49
64
81
100

0f course, the editor text can include more than one word
definition, or a combination of word definitions and
immediate-mode lines. Try this step-through example. A
description of how it works follows.

Ready EDIT

(Now in the editor:)
E

Erase file (Y/N) : Y
Done

A

19 PRINT " NOW COMPILING WORD DEFINITIONS " CR
20
39 : AVERAGE

49 + 2 / ;

50

60 : SEE.AVERAGE

786 OVER OVER

83 . SPCE . SPCE

98 AVERAGE . CR ;

100

114 PRINT " WORDS HAVE BEEN COMPILED " CR
120

136 5 3 AVERAGE . CR

140 5 3 SEE.AVERAGE

150

B

THE TEXT EDITOR

5 - 15

(Now back in TransFORTH:)

Ready PROGRAM MEMORY INPUT
NOW COMPILING WORD DEFINITIONS
WORDS HAVE BEEN COMPILED

4

354

The editor file entered is a mixture of immediate commands and
word definitions. Remember that the TransFORTH system reads the
editor file line by line. The first line prints the message "NOW
COMPILING WORD DEFINITIONS", then the two word definitions,
AVERAGE and SEE.AVERAGE are compiled onto the word library.
AVERAGE removes two numbers from the stack and averages thenm,
leaving the result on the stack. SEE.AVERAGE removes two
numbers, copies and prints them, calls AVERAGE to find their
average, then prints the result to the screen.

After the colon definitions are compiled, line 110 is read and
executed, printing "WORDS HAVE BEEN COMPILED". Line 138 finds
and prints the average of 5 and 3 by calling the new word
AVERAGE, and line 140 uses SEE.AVERAGE to do both the averaging
and printing.

If you were to try using PROGRAM MEMORY INPUT to read the text

again, the system would compile the two word definitions a second
time, producing "Not Unique" errors.

Memory Considerations

The amount of usable editor file memory is determined by the
presence or absence of the extra 16K of memory. 1In a 48K systenm,
the editor can store up to 12,285 characters. 1In a 64K Apple,
the editor can store up to 22,013 characters.

When editing programs, to find the amount of free memory left in
the editor file area, press "M" for "Memory". You will see:

Free Memory

followed by the number of bytes {or characters) of memory left.
The TransFORTH system, Apple DOS, the text editor program, and
the text being edited all reside in the Apple memory

simultaneously. As long as the TransFORTH word library has not
grown too large, there aren't any problems with memory conflicts.

THE TEXT EDITOR 5 - 16

However, if the word library grows large enough, it can begin to
overwrite the editor text in memory. Conversely, if the word
library is already large, using the text editor can overwrite the
top of the word library, crashing the system.

With large programs, it is a good idea to remain generally aware
of what areas of memory in the Apple are being used. The memory
map in Appendix B shows how TransFORTH uses Apple memory.

In some cases you may have a very large word library, but not
need much space for editing. In other situations you may want to
edit a very large textfile, but not use much word library space.
To accomodate these situations, the text editor includes a
command that allows you to change the starting address of the
text buffer in memory. By making this address higher, you can
leave more room for the word library to grow. By making it
lower, you can create more space for editing text.

To change the position of the editor file, press "P". A display
will appear:

Program Length
Position

Free Memory

Change Position (Y/N) :

The Program Length, Position (starting address of the editor file
area), and Free Memory labels will be followed by their present
numeric values. To change the editor file position, enter "Y".
You will be prompted:

Enter New Position :

Enter the address where you want the editor text to begin. Note
that this must cover a valid address area. If you enter an
invalid address (zero for example), any editing will most likely
crash the TransFORTH system.

(Note: The Position shown will always be 1 greater than the
position value you type in. (This is because the first byte of
the editor buffer is a special beginning marker.) For example,
if you enter a position of 30808, then run the ("P") Program
Position command again, it will show a Position value of 30001.)

For extremely large programs on the word library, there may not
be enough memory available to support both the word library and
the editor file (or even the editor program itself). 1In this

case, extra care must be taken: Before entering the editor, use

THE TEXT EDITOR 5 - 17

" FORGET to remove any extra words you've defined from the word

library. Enter the editor, adjust the text position if
necessary, erase any stray characters left in the buffer, load
the text from disk, and make any additions or changes. Then be
sure to save the text back to disk before leaving the editor.
Return to TransFORTH, and use either PROGRAM MEMORY INPUT or
DISK> ™ <filename> " INPUT to compile the text. 1If you have to
return to the editor, again use FORGET to clear your words from
the word library. This will prevent the top of the library from
being destroyed by subsequent editing.

As you become more comfortable with programming in TransFORTH,
you will probably want to use the editor to list some of the
program files on the system diskette. We encourage you to do
this. The system files provide excellent programming examples in
TransFORTH. Appendix D provides a discussion of some of these
files. You can use the editor to catalog the disk, then Get and
List the files, or compile the files onto the word library and
run them.

Program examples later in the manual are printed in a simple list
form. You can enter the examples using whatever method you
prefer. For short examples, you may want to type them directly
at the keyboard. For longer examples, you will probably want to
use the TransFORTH text editor or another editor if you have one.
Each method works equally well, and we leave the decision to you.

Summary

The TransFORTH system does not allow you to modify word
definitions once they have been compiled. They must be deleted
with FORGET, then re-entered. Using a text editor to save the
text of the word definitions can make this process much simpler.
TransFORTH includes words for reading and compiling text stored
in memory or in a textfile on disk. Any DOS-compatible editor
can be used; the TransFORTH text editor is convenient because it
can reside in memory along with TransFORTH.

To enter the TransFORTH editor, type EDIT. Inside the editor,

lines are indexed with line numbers. After any insertions or
deletions, lines are automatically renumbered in steps of 14.

THE TEXT EDITOR 5 - 18

All editor commands can be entered as single letters.

commands include:

?

Save

Get

Insert

Delete
Program
Memory

List

Write

Erase

Autonum
automatically
Bye
ConTRo1-D=D0OS

The TransFORTH

the text residing in editor memory,

Lists the editor
Save the text in
Reads a textfile
Specifies a line

Displays amount of free memory in the editor

commands
memory to disk

on disk into memory

number for insertion with Autonum
Deletes one or more lines
Allows adjustment of the text buffer position

Lists one or more lines of text
Lists without pauses
Erases text in memory

Provides line numbers and allows insertions

Exits the editor

Allows DOS commands to be entered

command PROGRAM MEMORY INPUT reads and compiles

being typed from the keyboard.

INPUT reads a textfile on disk in the same way.
included in a file if surrounded by parentheses.

THE TEXT EDITOR

treating it as if it were

The command DISK> " <filename> "

Comments can be

5 - 19

CHAPTER SIX: DATA STRUCTURES

CHAPTER TABLE OF CONTENTS:

Variables

Number Format and Storage

Storage and Retrieval Words

Arrays

Accessing Array Elements
Clearing Arrays

Array Error Checking

Array Sizes

Memory Arrays

Accessing Arrays from Loops
Sequential Memory Access

Strings

String to Number Conversion
“Arrays” of Strings

PAD: The System String
String Manipulation Words

Accessing Individual Characters

Character Input and Output

Combining Text and Numerical Data in an Array

Summary
Problems

Solutions to Problems

Page
6-1

6-5
6-5

6-7

6-8

6-11
6-11
6-12
6-12
6-13
6-15

6-17
6-19
6-21
6-22
6-23
6-26
6-27

6-29
6-31

6-32
6-35

All of the numbers used in previous examples have been stored on
the stack. The data stack provides an excellent temporary
storage for a few numbers at a time, but is not well suited for
storing and manipulating many values at once.

TransFORTH includes words that allow you to set aside separate
variables, arrays, and strings for storing numerical and text
data. In addition, TransFORTH includes capabilities for reading
or writing values to any location in the Apple memory. This
chapter will discuss how these words are used for more convenient
and complete data manipulation.

Variables

TransFORTH allows you to set aside space for number storage
through the word "VARIABLE". VARIABLE is a special word, in that
it creates a new word and places it on the TransFORTH word
library. 1In this way it is similar to the TransFORTH word ":"
(colon). VARIABLE has two forms; the first one is:

VARIABLE <variable name>

The variable name is the name of the word created and placed on
the word library. For example:

Ready LIST

NOTE
NEGATE
ABS

Ready VARIABLE TEMP
Ready LIST

TEMP
NOTE
NEGATE
ABS
SGN

DATA STRUCTURES 6 -1

The new word TEMP (created with VARIABLE) consists of two parts:
a five-byte space set aside for storing a floating-point number,
and a call to an internal TransFORTH routine that either places

the value of the variable on the stack or stores the stack value
into the variable.

To recall the value stored in the variable TEMP, just type its
name:

Ready TEMP
[8]

Ready DROP

When TEMP was created with the word VARIABLE, it was given an
initial value of zero. By calling TEMP, this value was copied
onto the stack. With the value of the variable on the stack, it
can be used by any appropriate TransFORTH word.

To store the number 123.45 into TEMP, type:

Ready 123.45
[123.45]

Ready -> TEMP
Ready

The TransFORTH word "->" is a special word that says "store
into". It is created by typing a minus sign "-" followed by a
greater-than sign ">". This word sets an internal flag used by
variables to determine if a "store" or "recall" operation is to
take place. When the "->" word is executed it sets this flag so
that the next referenced variable will perform a store, rather
than a recall. Calling the variable will also clear the flag so
that subsequent variable accesses will do a recall unless the
"->" word is executed again.

Whenever you need to recall the value of a variable, simply type

its name. To store a value into a variable, always type the
TransFORTH word "->" before typing the variable name.

DATA STRUCTURES 6 —

For convenience, we'll call the "->" word a "store-arrow" and
read the example:

Ready 123.45 -> TEMP

as "123.45 store-arrow TEMP", or simply "123.45 is stored into
TEMP". You can see that 123.45 has been stored, by recalling the
value of TEMP again:

Ready TEMP .
123.45

Ready -67 -> TEMP

Ready TEMP .
-67

Unless otherwise specified, when a variable is first created and
compiled using the word VARIABLE, the initial value of the
variable is zero. To give a variable a different initial value,
the second form of VARIABLE is used, where the initial value is
entered on the line with the declaration:

<initial value> VARIABLE <variable name>
Ready 35 VARIABLE COUNT

COUNT will contain the value 35 until another value is stored
over it:

Ready COUNT .
35

Ready 87 -> COUNT

Ready COUNT .
87

If you need to use the same number many times in a program, you
can put the number in a variable that has a descriptive name,
then call the variable rather than entering the number every
time. This saves program space and can often help make a program
more readable.

We should bring up something important here. The word VARIABLE
(as well as ARRAY and MARRAY, which we'll discuss shortly) is a
compiling word, in that it produces new words itself. It is also
a word that looks forward down the input line for the word name.

DATA STRUCTURES 6 — 3

It therefore must be used with more care than most TransFORTH
words.

To be specific, a VARIABLE declaration cannot appear inside of a
colon definition. It should be alone on its own line, not mixed
with other TransFORTH words. Any initial value provided when the
variable is declared is taken directly from the input line, not
from the stack. Since the initial value is not from the stack,
it cannot be a computed number. For example, the following line
will not work:

Ready 25 7 / VARIABLE THING

Using variables, TransFORTH expressions are often easier to read.
For example, this line of Basic:

Q = P"2*3 + P*5 + 4

can be translated into TransFORTH (after defining the variables)
as:

P2"3* P5* + 4+ >0

An equivalent TransFORTH expression that doesn't use variables
would be:

DUP 2 © 3 * SWAP 5 * + 4 +
Here is a short program that removes 5 numbers from the stack,

then prints the largest of the numbers. A variable is used to
keep track of the maximum value:

VARIABLE X
MAX5
-> X (Put 1lst number into variable as "maximum")
4 ¢ DO (Loop to get next 4 numbers)
DUP X > (Copy number, then compare to current "maximum")
IF -> X (If greater, save it as new maximum)
ELSE DROP (Otherwise, don't need it)
THEN
LOOP
X . ; ({ Print maximum)
DATA STRUCTURES 6 - 4

Ready 7 4 -26.2 187 .083 MAXS
197

Ready 96 0 1 -288.1 .6 MAX5
96

Number Format and Storage

The Apple]{ memory space is divided into 65,536 separate
locations. Each location has a numbered "address", ranging from
to 65,535. Most locations contain RAM; some are used for ROM
or I/0. The memory map in Appendix B shows how these areas are
divided, and how TransFORTH uses Apple memory. (For more
information on Apple memory locations, consult the Apple
Reference Manual.)

Any single RAM location contains one byte of memory, and can
store an integer number between # and 255. Two consecutive
locations used together can hold a number as 'large as 65535.
TransFORTH internally uses a floating-point format that uses 5
bytes of memory. All values on the stack and in variables are
stored in the floating-point format.

You can store numbers anywhere in the Apple memory in any one of
these three formats: Numbers between @ and 255 can be stored as
single bytes in integer format. Values between § and 65535 can
be stored in the two-byte integer format. (TransFORTH
automatically makes the conversion between integer and
floating-point format when moving numbers between the stack and
other memory.) Any numbers out of the integer range must be
stored using the floating-point format, which uses five bytes of
memory per value.

Storage and Retrieval Words

There are six separate words for storing and retrieving numbers
in memory: PEEK, PEEKW, PEEKN, POKE, POKEW, and POKEN. The
"POKE" words are used for storing numbers into memory; the "PEEK"
words are used for retrieving numbers:

DATA STRUCTURES 6 - 5

PEEK - Reads 1 byte (0 to 255) from memory

PEEKW - Reads 2 bytes (8 to 65,535) from memory

PEEKN - Reads 5 bytes (floating-point number) from memory
POKE - Stores 1 byte (@ to 255) into memory

POKEW - Stores 2 bytes (@ to 65,535) into memory

POKEN - Stores 5 bytes (floating-point number) into memory

PEEKW and POKEW stand for "PEEKWord" and "POKEWord", because a

number stored as two bytes is sometimes called a "word" (not to
be confused with TransFORTH words). PEEKN and POKEN stand for

"PEEKNumber" and "POKENumber".

The format for the three POKE words is:
<value> <address> POKE

The POKE words remove two numbers from the stack, the value to be
stored and the address it is to be stored into. They then poke
the value into that address. For POKEW, the two-byte number is
stored into given location and the one immediately after it. For
POKEN, the given location and the next four are used to store the
floating-point value.

For example, this line will store the number 697 into locations
20008 and 20981 as a two-byte integer:

Ready 697 20000 POKEW

The next line pokes the number 2.3 in floating-point format into
the 5 locations starting with address 128:

Ready 2.3 128 POKEN

(POKEW will only poke numbers up to 65535. If you try to POKEW a
number greater than this, TransFORTH will instead poke a 4. Also,
if you try to POKE a number greater than 255, TransFORTH will
poke only the first byte of the number.)

The format for the three PEEK words is:

<address> PEEK

The PEEK words remove one number from the stack, interpret this
number as an address, read a value from that address, then place

the value on the stack. This example reads the number that was
poked into location 20008:

DATA STRUCTURES 6 - 6

Ready 20000 PEEKW .
697

Note that a number stored into memory in one format usually
cannot be read correctly in another format. This example tries
to read the floating-point number at location 128 using the
one-byte integer format:

Ready 128 PEEK .
51

PEEK returned a wrong value, 51 rather than 2.3, because
different formats were used for POKEing and PEEKing.

To summarize, here is a table of the six storage and retrieval
words:

Word Before After Description

POKE n a - Puts single-byte n into address a
POKEW n a - Puts two-byte n into address a

POKEN n a - Puts floating-point n into address a
PEEK a n Reads single-byte n from address a
PEEKW a n Reads two-byte n from address a

PEEKN a n Reads floating-point n from address a

Arrays

Arrays in TransFORTH are words with space set aside for storing
many numbers. Each number, or element, stored in an array is
accessed by entering the array name along with one or more index
numbers (called "subscripts"). Arrays can be declared with any
number of dimensions, limited only by available memory. A
one-dimensional array uses one subscript to access each element,
a two-dimensional array uses two subscripts, etc. Arrays can
also be created for storing text and string data, or a
combination of text and numbers.

TransFORTH arrays provide an extremely versatile method of data
storage, but require a little extra care to use. We'll introduce
the simpler uses of arrays first, then move on to the more
sophisticated applications.

DATA STRUCTURES 6 - 7

Arrays are created with the TransFORTH word ARRAY. ARRAY is a
word that, like VARIABLE, places a new word on the word library.
The form for ARRAY is:

<element size> <dimensionl> <dimension2>. . . <# of
dimensions> ARRAY <array name>

<array name> is the name of the new array word placed on the word
library. Working backwards from the word ARRAY, <# of
dimensions> is a number specifying how many dimensions the array
will contain. Before this number, there should be one or more
numbers designating how many elements lie along each dimension,
one number per dimension. The first value on the line, <element
size>, specifies how many bytes each element contains.

The following examples should clarify this:
Ready 5 16 28 2 ARRAY GRID

This line creates a new TransFORTH word, an array named GRID.
The array has two dimensions, and is 10 elements "wide" by 20
elements "deep", for a total of 208 elements. Each element of
the array can hold 5 bytes, or one floating-point number.

Ready 2 208 1 ARRAY NUMBERS

This example creates an array named NUMBERS. NUMBERS is a
one-dimensional array with 208 elements (see "Array Sizes"
below), each 2 bytes in length.

Ready 5 8 8 8 3 ARRAY CUBE

This line creates a three-dimensional array named CUBE, with 8
elements on each side, storing 5 bytes per element.

It should be pointed out that, like VARIABLE, ARRAY is a
compiling word, and draws all of its information from the input
line, not the stack. This means that the same restrictions that
were discussed for variables also apply for arrays: Array
declarations must be on separate lines outside of colon
definitions, and the numbers used on the line cannot be computed
values.

Accessing Array Elements

You can access an individual array element by placing one or more
subscript numbers on the stack, then entering the array name. A

DATA STRUCTURES 6 - 8

one~dimensional array requires one subscript, a two-dimensional
array requires two, etc, For example, "6 14 GRID" will access
element (6,14) from the array GRID. "199 NUMBERS" will access
the 199th element in NUMBERS, and "1 2 3 CUBE" accesses element
(1,2,3) in CUBE. Note that the array words "know" how many
dimensions they contain, and will pull the appropriate number of
subscript values from the stack when executed. The correct
values must therefore be waiting on the stack.

Accessing an array element as just described places the Apple
address of that array element on the stack. With the address
available, the PEEK and POKE words can be used to store and
retrieve values from the array. Here is an example:

Ready 25 NUMBERS
[13966]

The Apple address of the 25th element of NUMBERS is 13966.

(Note: This address is shown for example purposes. Depending on
what other words lie on the word library, you may get a different
address.) With the address of the array element on the stack,
you can now use POKEW to store a value into that element:

Ready 256
[13966]
[256]

Ready SWAP
[256]
[13966]

Ready POKEW

POKEW removes the two numbers from the stack, storing the 256
into location 13966, which is element 25 in NUMBERS. POKEW is
the appropriate word to use, since it stores two bytes into
memory, and NUMBERS was defined as an array of 2-byte elements.
By placing the values on the stack in the order needed by POKEW,
the SWAP shown above is not needed:

Ready 256
[256]

Ready 25 NUMBERS
[256]
[13443]

Ready POKEW

DATA STRUCTURES 6 -9

The above example can also be duplicated on one line:
Ready 256 25 NUMBERS POKEW
The number can be retrieved using PEEKW:

Ready 25 NUMBERS PEEKW .
256

Here is another example. A two-dimensional array is declared,
with an element length of one byte. Two values are stored into
the array, then read back out:

Ready 1 6 7 2 ARRAY THING

Ready 268 6 7 THING POKE

Ready 212 6 6 THING POKE

Ready 6 7 THING PEEK .
208

Ready 6 6 THING PEEK .
212

Arrays with five-byte elements are accessed in the same way:
Ready 987.654 3 4 5 CUBE POKEN
Ready 1.05946309 7 7 4 CUBE POKEN

Ready 3 4 5 CUBE PEEKN
[987.654 }

Ready 7 7 4 CUBE PEEKN
[987.654]
[1.85946309)

Ready DROP DROP

DATA STRUCTURES 6 -

19

Clearing Arrays

When an array is declared, all of its elements are initially
cleared to zeros. You can also clear an array to all zeros at
any time with the word ERASE. ERASE has the form:

ERASE <array name>
To clear the array THING to zeros, enter:
Ready ERASE THING

The word ERASE can be used freely inside of colon definitions,
but is only intended for erasing arrays. Following the word
ERASE with something other than an array name will confuse, and
probably hang, the TransFORTH system.

Array Error Checking

When array elements are accessed, TransFORTH does not check if
the index numbers are in bounds for the array. For example,
TransFORTH will not prevent you from trying to access element
(300,300) in the array THING, even though THING is only a 6 by 7
array. Reading an out-of-bounds array element will simply return
an invalid number from somewhere in the Apple memory. However,
writing to an out-of-bounds element will store a number into
Apple memory, overwriting its previous contents. If this memory
is in an important part of the TransFORTH system or the disk
operating system, the computer will most likely hang. Therefore,
do not write to an element outside of the array.

Array error checking was left out of TransFORTH on purpose. The
reason for this is that error checking is a time-consuming
process that contributes nothing to a program if the program
already works correctly. If you need error checking, you can
write a routine that checks the numbers before they are passed on
to the array name to select an element. If you don't need error
checking, you don't have to include it.

DATA STRUCTURES 6 - 11

Array Sizes

Arrays have slightly more storage capacity than previously
suggested. A subscript number of zero will select a valid
element for any array. This means that an array declared as:

5 16 10 2 ARRAY EXAMPLE

can index along each dimension from # to 14, which is 11
elements. The entire array actually contains 11 * 11 = 121
elements, not 100 elements. (For the sake of continuity, we will
continue to call this a "1¢ by 16" array.)

Memory Arrays

Another kind of array, called a memory array, can be created
using the word MARRAY. This array is nearly identical to a
normal array. The difference is that the array data itself can
reside anywhere in the Apple memory. The form for MARRAY is
similar to ARRAY, except that an extra number is included which
specifies the starting address for the array.

Ready 5 8 8 2 32768 MARRAY STUFF

This example creates a memory array named STUFF. It is a
two-dimensional (8 by 8) array of 5-byte floating-point values,
and the array elements themselves begin at location 32768 in the
Apple memory.

As will be discussed in Chapter Seven, TransFORTH can call
machine language routines that lie in free areas of memory. A
memory array provides one way of passing data to and from these
routines, since the array can be kept in a fixed place in the
Apple memory, regardless of the size of the word library. (It is
up to the user make certain that the memory array resides in a
free area of memory.)

DATA STRUCTURES 6 - 12

Accessing Arrays From Loops

DO - LOOPs provide an excellent way of printing the contents of
arrays. In the following example, a few values are stored one at
a time into a one-dimensional array, then the the elements are
printed from a loop. The loop value ("I") is used to select each
element in turn:

Ready 5 10 1 ARRAY SHOW
Ready 243 2 SHOW POKEN
Ready 1.1 6 SHOW POKEN
Ready -19 7 SHOW POKEN

Ready 11 ¢ DO I SHOW PEEKN . SPCE LOOP
0 @ 243 5 9 @ 1.1 -19 2 2 @

All eleven elements of the array (numbered @ to 10) were printed

out from the loop. The following word definition also prints the
subscript number along with the value of each element. (You can

enter the definition either "live" from the keyboard or using the
TransFORTH text editor.):

SEE.SHOW
11 2 DO
I . SPCE
I SHOW PEEKN . CR
LOOP ;

Ready SEE.SHOW
0

2

243

HOOJAUVdWND SR
=

=
[

An array with two or more dimensions can be accessed using nested
loops. This example includes a word definition that fills an

DATA STRUCTURES 6 - 13

array with numbers, and two word definitions for printing the
values in the array:

5 3 4 2 ARRAY SHOW2

STUFFIT
g DO (Loop for first index)
5 @8 DO (Loop for second index)
J 186 * I + (Outer loop value * 18 + inner loop
value)
J I SHOW2 POKEN (is stored into element of SHOW2)
LOOP
LooP ;

o

SEEIT1
5 ¢ DO
4 9 DO
I J SHOW2 PEEKN .
SPCE
LOOP
CR
LOOP ;

SEEIT2
2 DO
5 9 DO
J I SHOW2 PEEKN .
SPCE
LOOP
CR
LOOP ;

4

STUFFIT places a number in each element of the array, using the
loop values as indices into the array. Executing the nested loop
is equivalent to:

DATA STRUCTURES 6 - 14

9 @ @ SHOW2 POKEN
1 @ 1 SHOWZ2 POKEN
2 0 2 SHOW2 POKEN
3 @ 3 SHOW2 POKEN
4 P 4 SHOW2 POKEN
19 1 0 SHOW2 POKEN
11 1 1 SHOW2 POKEN
12 1 2 SHOW2 POKEN
32 3 2 SHOW2 POKEN
33 3 3 SHOW2 POKEN
34 3 4 SHOW2 POKEN

Note that the only difference between SEEIT1 and SEEIT2 is the
order of the loops. SEEIT1 increments the first index 4 times
for every increment of the second index. SEEIT2 increments the
second index more often than the first. After compiling the word
definitions, they can be executed:

Ready STUFFIT

Ready SEEIT1
10 20 30
11 21 31
12 22 32
13 23 33
14 24 34

oW NS

Ready SEEIT2
21234

16 11 12 13 14
20 21 22 23 24
38 31 32 33 34

Notice that the orientation of the array simply depends on the
order of the loops. By using the correct order, you can display

arrays with either: first index=columns, second index=rows; or
second index=columns, first index=rows.

Sequential Memory Access
For most applications, it doesn't matter what order TransFORTH
actually stores the array elements in memory. 'For some string

applications, however, this information can be helpful.

In arrays with 2 or more dimensions, the elements are stored with

DATA STRUCTURES 6 - 15

the first index being incremented most often. For example,
array is defined as:

Ready 1 3 4 2 ARRAY IT

then TransFORTH stores the elements in the following order:

NEFR WS
RS
4
-3

IT
IT
IT

Sl b e

1
2
3

The next section on strings will discuss when this order is
important to TransFORTH programs.

DATA STRUCTURES

6

an

16

Strings

Strings are used when text data, rather than numerical data, need
to be manipulated. Some languages, such as Applesoft Basic, have
separate string data types (e.g. "A$") for handling strings. In
TransFORTH, arrays are used for storing string data. Each text
character uses one byte in the array. A number of TransFORTH
words are included for reading, writing, and manipulating strings
in memory.

(Note: If you have been entering and running the examples of the
previous section, there are now a number of arrays and colon
definitions on the word library. Now would be a good time to
FORGET them, to clear space for the next set of examples.)

Before a string can be stored, an array must be declared. The
following example creates a one-dimensional array with 58
single-byte elements. When a string is stored in this array, one
character will be stored as an ASCII value in each byte, or each
element of the array:

Ready 1 58 1 ARRAY STRI1

To store text into an array, the word ASSIGN> is used. The form
for ASSIGN> is:

<address> ASSIGN> " <text> "

ASSIGN> removes a number from the stack, interprets this number
as an address, then places the following quoted text into memory
starting at that address. Usually the address is supplied by
entering the name of a string array before typing ASSIGN>. Here
is an example:

Ready @ STRI1
{ 12628]

Ready ASSIGN> " SHE SELLS SEASHELLS "

The phrase "SHE SELLS SEASHELLS" has been stored into the array
STR1. Each character occupies one element of the array.

To write the contents of a string array to the screen, the word

WRITELN is used. WRITELN removes a number from the stack,
interprets it as a memory address, then writes the text starting

DATA STRUCTURES 6 - 17

at that address to the

<address> WRITELN

screen. The form of WRITELN is:

The following example writes the contents of the string STR1:

Ready ¢ STR1 WRITELN
SHE SELLS SEASHELLS

Note: WRITELN, like ".

carriage returns after

" (period), doesn't print any spaces or
writing the string. You can use SPCE or

CR to add these if you want.

Text can be read in from the keyboard and stored in a string (or

anywhere in memory) us
number from the stack,
line of text from the

ing the word READLN. READLN removes a
interprets it as an address, then reads a
keyboard and stores the text into memory

starting at that address. Like WRITELN, the form for READLN is:

<address> READLN
Here is an example:

Ready 0 STR1 READLN
SEASHELLS

(You type this line)

The word "SEASHELLS" has been read into the string STR1,
overwriting its previous contents.

Ready @ STR1 WRITELN
SEASHELLS

Of course, assigning,

reading, and writing don't have to start at

the beginning of a string array. Strings can be modified by
reading into the string, but starting with an array element in

the middle of the stri

Ready 3 STR1 READLN
SHORE

Ready # STR1 WRITELN
SEASHORE

ng:

The word "SHORE" was read into STR1, starting at element 3

(character number 3),

Ready 2 STR1 WRITELN
ASHORE

DATA STRUCTURES

over the top of "SHELLS".

The string was printed starting with character number 2,
bypassing the "SE" in "SEASHORE".

Here is a short example word definition which shows a simple use
of READLN and WRITELN:

: ASK.NAME

PRINT " WHAT IS YOUR NAME? "
¢ STR1 READLN

PRINT " HI, "

@ STR1 WRITELN

PRINT " . ALL DONE... " ;

Read name into STR1)
Print "HI")

then name from STR1)
then "ALL DONE...".)

Ready ASK.NAME
WHAT IS YOUR NAME? FREDDY
HI, FREDDY. ALL DONE...

When a string is stored into memory using ASSIGN> or READLN, a
single-byte zero is placed after the last character, marking the
end of the string. When WRITELN writes a string from memory, it
starts at the specified string address and continues until it
finds either a carriage return or a byte containing a zero.
Either of these mark the end of a string for WRITELN. (WRITELN
also recognizes a user-definable End-0f-File-CHaRacter, which
will be introduced in Chapter Eight.)

Note: STR]1 was defined to store 58 elements, or 58 characters.
If a string longer than 58 characters (including the
end-of-string marker) is read into STR1l, the extra characters
will be stored past the end of STR1l over a part of the TransFORTH
system, causing the system to hang! Storing strings that are too
large for an array is equivalent to writing numbers into an
out-of-bounds array element. The moral of the story is: Make
certain that the string array is large enough to accommodate
anything that might be read into it. There are a couple of
techniques to make this a little easier; these will be discussed
shortly.

String to Number Conversion

Sometimes a string will contain a number stored as text. You can
use the TransFORTH word GETNUM to read the number from the text,
placing the number on the stack. GETNUM removes a number from
the stack, again interpreting it as a memory address. It then
reads the text starting at that address and attempts to find a
number, which it places on the stack.

DATA STRUCTURES 6 — 19

In the following example, the number 321 is first read into a
string as text, then converted to a stack value with GETNUM:

Ready @ STR1 READLN
321

Ready @ STR1 GETNUM
{ 321]

When using GETNUM, nonnumeric characters may follow the number
without interfering with the conversion, but the number must
begin as the first character of the string.

If GETNUM cannot find a number in the text at the given string
address, it places a zero on the stack. To determine for certain
whether or not the string-to-number converion was successful, the
word VALID is used. VALID leaves a number on the stack. If the
last GETNUM was successful, the number will be nonzero; if the
conversion failed, VALID will return zero:

Ready # STR1 ASSIGN> " -55 "

Ready # STR1 GETNUM .
-55

Ready VALID .
254

VALID is nonzero since GETNUM was able to convert the number.
Ready @ STR1 ASSIGN>» " YOU CALL THIS A NUMBER?? "

Ready @ STR1 GETNUM .
[’}

Ready VALID .
[

VALID is zero since GETNUM failed to find a number.
Whenever you want to read a number from the keyboard in a
program, simply READLN it into a string as text, then convert it

to a number with GETNUM. For convenience, you can define this
operation as a single TransFORTH word:

DATA STRUCTURES 6 — 20

: READ.NUMBER
STR1 READLN
STR1I GETNUM ;

Ready READ.NUMBER
33.6 (You type this.)

[33.6 1 (READ.NUMBER returns this.)

‘Arrays” of Strings

Because arrays can be created with any practical number of
dimensions, an array can be used for storing more than one text
string. One method for storing a number of strings is to define
a two-dimensional array:

Ready 1 5@ 15 2 ARRAY STR2

This creates a string array with 15 "rows" of 50 characters.
Because the characters in a string array are stored in sequential
bytes, the proper index must be used to access the 15 rows. (See
"Sequential Memory Access", discussed earlier.) For example:

Ready @ 9 STR2 READLN
HE IS INNOCENT

Ready 3 @ STR2 READLN
KILLED IT

Ready @ @ STR2 WRITELN
HE KILLED IT

In the above example, 3 @ STR2 is only three locations away from
@ @ STR2. Thus, the second string partially overwrote the first.

This can be avoided by incrementing the second index instead of
the first index:

Ready @ @ STR2 READLN
HE IS INNOCENT

Ready @ 3 STR2 READLN
THE MAID DID IT

Ready # # STR2 WRITELN
HE IS INNOCENT

(The first string is now unharmed by the second.)

DATA STRUCTURES 6 - 21

Probably the best way to create an array of strings is to use an
array element length that is at least as long as the longest
string. Then the string will be written as a sequence of bytes
within a single element of the array. This example creates a
string array with 15 strings of 50 characters each:

Ready 58 15 1 ARRAY STR3

Ready @ STR3 READLN
WHAT WAS THE MOTIVE?

Ready 3 STR3 READLN
IT WAS THE MONEY

Ready @ STR3 WRITELN
WHAT WAS THE MOTIVE?

(Again, the second string does not overwrite the first.)

The middle of a string can still be accessed by adding an offset
to the address:

Ready 3 STR3
[13811]

Ready 7 +
[13818]

Ready WRITELN
THE MONEY

PAD: The System String

TransFORTH includes a predeclared temporary string space of 144
characters called PAD. PAD is convenient for reading keyboard
input without having to define a string first.

Actually, PAD is two things: a 144-byte free area of memory used
for storing string data, and a word in the TransFORTH word
library named PAD which places the address of this free area of
memory on the stack. Note that the usual array indexing is not
used with PAD:

Ready PAD

[832]

DATA STRUCTURES 6 - 22

(832 is the address of the PAD string buffer.)

[832]
Ready READLN
WHY AM I HERE?

Ready PAD WRITELN
WHY AM I HERE?

To access the middle of the PAD buffer, simply add an offset to
the address:

Ready PAD
[832]

Ready 4 +
[836]

Ready WRITELN
AM I HERE?

Note: PAD is considered a temporary string space because the
same memory is used by the TransFORTH system when creating
arrays, overwriting the previous contents of PAD. Predeclared
string arrays should be used for more permanent string storage.
In addition, since PAD is not an actual array, ERASE cannot be
used to erase the contents of PAD.

String Manipulation Words

TransFORTH also includes a number of words for manipulating
string data in various ways.

The TransFORTH word LENGTH removes a string address from the
stack and returns the length (number of characters) of that
string:

Ready PAD ASSIGN> " HOW LONG AM I? "

Ready PAD LENGTH
[14]

The LENGTH value returned does not include the end-of-string
marker. Remember that array indexing starts at element # and
ends at the string length-1. If a string is 3 characters long,
it is stored at character positions 8, 1, and 2, with the zero

DATA STRUCTURES 6 - 23

end-of-string marker at character position 3. (A string of
length 3, then, actually requires 4 bytes of memory.)

Pressing only Return when READLNing a string returns a "null”
string with a length of zero:

Ready PAD READLN
(Press Return.)

Ready PAD LENGTH

[8]

MOVELN simply copies a string from one address to another. The
form is:

<source> <destination> MOVELN

The following example reads a string into PAD, then copies the
contents of PAD to STR1:

Ready PAD READLN
ONE GOOD STRING LEADS TO ANOTHER

Ready PAD @ STR1 MOVELN

Ready 8 STR1 WRITELN

ONE GOOD STRING LEADS TO ANOTHER

CONCAT concatenates two strings together. The form for CONCAT
is:

<stringl> <string2> CONCAT

CONCAT copies the contents of <string2> to the end of <stringl>.
The contents of <string2> are unchanged. 1In this example,
strings-are read into both PAD and STR1l, then CONCAT is used to

combine the strings in PAD:

Ready PAD READLN
STUCK-

Ready @ STR1 READLN
TOGETHER

Ready PAD @ STR1 CONCAT

DATA STRUCTURES 6 - 24

Ready PAD WRITELN
STUCK-TOGETHER

COMPARE makes an alphabetical comparison between two strings,
returning a value on the stack. The form for COMPARE is:

<stringl> <string2> COMPARE

If <stringl> is greater than <string2> (in alphabetical order,
<stringl> comes after <string2>), COMPARE returns a 1. 1If
<stringl> is less than <string2>, COMPARE returns a -1. If the
two strings are equal, COMPARE returns a #. Here is an example:

Ready PAD ASSIGN> " BAD "
Ready @ STR1 ASSIGN> " BOLD "

Ready PAD @ STR1 COMPARE
[-11]

The word COMPARE placed a -1 on the stack because the contents of
PAD is "less than" the contents of STRI.

Here is a sample program that uses some of these string features.
The program asks the user to type in his/her name, then a
password. If the password entered is "TOP SECRET", then the
program congratulates the person by name. If the password
entered is not correct, "INVALID PASSWORD" is printed.

1 15 1 ARRAY PASSWORD
1 106 1 ARRAY NAME

: EXAMPLE

PASSWORD ASSIGN> " TOP SECRET " (Set up correct password.)
PRINT " WHAT IS YOUR NAME? "

SPCE (@ NAME READLN (Input name.)

PRINT " WHAT IS THE PASSWORD? "
SPCE PAD READLN

Input password.)

PAD @ PASSWORD COMPARE (Is password correct?)

IF (No: COMPARE was nonzero.)
PRINT " INVALID PASSWORD "

ELSE ({ Yes: COMPARE was zero.)
PRINT " HI, " SPCE
@ NAME WRITELN (Write message with name.)
PRINT " . YOU GUESSED THE PASSWORD! "

THEN ;

DATA STRUCTURES 6 - 25

Ready EXAMPLE

WHAT IS YOUR NAME? FREDDY

WHAT IS THE PASSWORD? RUBBER DUCKIE
INVALID PASSWORD

Ready EXAMPLE

WHAT IS YOUR NAME? FREDDY

WHAT IS THE PASSWORD? TOP SECRET

HI, FREDDY. YOU GUESSED THE PASSWORD!

Two more string manipulation words, LEFT$ and RIGHTS, can be
found in the textfile "UTILITIES". These words work much like
the LEFT$ and RIGHTS$ functions in Applesoft Basic. See Appendix
D for more information.

Accessing Individual Characters

As mentioned earlier, strings are stored as ASCII character
values, one ASCII value for each byte in the array. (If you are
used to Applesoft Basic, you should know that the ASCII values
used by TransFORTH, and by the Apple internally, are different
from the Applesoft CHRS values. Add 128 to the Applesoft CHRS
values to obtain the equivalent TransFORTH ASCII values.) A
table of ASCII characters and their equivalent values can be
found in Appendix E.

Strings can be accessed one character at a time by PEEKing or
POKEing the individual ASCII values in memory. For example:

Ready @ STR1 READLN
A DOG IS A MAN'S BEST FRIEND

Ready # STR1 PEEK .
193

The last line PEEKed the ASCII value of the first character of
STR1. 193 is the ASCII value for the letter "A". Every
character of the string can be printed as an ASCII value by using
a loop:

Ready 29 @ DO I STR1 PEEK . SPCE LOOP
193 160 196 207 199 169 201 211 166 193
160 205 163 2¢6 167 211 16@9 194 197 211
212 160 198 218 201 197 206 196 @

The loop PEEKed each byte of the string in turn, printing the

DATA STRUCTURES 6 — 26

ASCII value. You can (if you feel so inclined) verify that the
numbers printed are the ASCII values for all of the characters in
the string.

You can also change individual characters. The ASCII value for
the letter "H" is 200. This example POKEs the letter "H" over
the "D" in "DOG":

Ready 280 2 STR1 POKE

Ready @ STR1 WRITELN
A HOG IS A MAN'S BEST FRIEND

Writing a zero (which is the end-of-string marker) into a string
ends the string at that point:

Ready @ 5 STR1 POKE

Ready @ STR1 WRITELN
A HOG

Character Input and Output

Individual characters can be printed using the word PUTC. PUTC
removes a number from the stack, interprets the number as an
ASCII character, then prints this character. Here is an example:

Ready 193 PUTC
A

The word PUTC removed the 193 from the stack and printed its
equivalent ASCII character, "A". The next example prints several
characters:

Ready 200 PUTC 197 PUTC 294 PUTC 204 PUTC 2@7 PUTC
HELLO

This next example PEEKs and prints each character of STR1 in
turn, including characters past the end-of-string marker itself.
The Apple II 4@-column display will print the ASCII characters
for the zero bytes as inverse "@" signs as shown below. The zero
bytes may or may not be printed by 88-column cards.

Ready 29 @ DO I STR1 PEEK PUTC LOOP
A HOGE@IS A MAN'S BEST FRIEND@

Individual characters can be read from the keyboard using the

DATA STRUCTURES 6 - 27

TransFORTH word GETC. GETC flashes the cursor, waits for a
keypress, then places the ASCII value of the character typed on
the stack.

(Note: The operation of both PUTC and GETC are actually more
"general purpose" than described here. The details will be
explained in Chapter Eight.)

Here is an example:
Ready GETC
(The cursor flashes. Type the letter "A".)

[193]
Ready

GETC placed the ASCII value for the letter "A", 193, on the
stack. Note that GETC flashes the cursor, but does not print the
character typed. PUTC can be used to print characters as they
are entered. This next example reads 10 characters from the
keyboard, printing each one:

Ready 19 6 DO GETC PUTC LOOP

PUTC removed the values that GETC placed on the stack. If you
want to print a character and use it for something else, you must
DUPlicate its ASCII value. The following example accepts and
prints characters until the letter "A" (ASCII 193) is typed:

Ready BEGIN GETC DUP PUTC 193 = UNTIL

In some cases, you may want to monitor the keyboard for a
keypress without actually stopping program execution. A couple
of word definitions and an understanding of how the Apple
software reads the keyboard make this simple.

The keyboard uses two address locations in the Apple, which can
be called the "keyboard data" location and the "clear keyboard
strobe" location. The ASCII value for the last key pressed is
always stored in the keyboard data location. 1If a key has been
pressed, the number in this location is 128 or greater. By
PEEKing this location, you can retrieve this ASCII value.
Accessing the clear keyboard strobe location (PEEKing or POKEing)
will reset the keyboard data location, forcing its value to be
less than 128. The next keypress after this access will again
bring the value to 128 or greater.

DATA STRUCTURES 6 - 28

Thus to read the keyboard, first access the clear keyboard strobe
location to make the value in the keyboard location less than
128, then periodically PEEK the keyboard data location until the
returned value is 128 or greater. This number will be the ASCII
value for a key that has been pressed. The PEEKing can be
interspersed with other tasks so that other things can occur
while simultaneously reading the keyboard.

The address of the keyboard data location is 49152; the address
of the clear keyboard strobe location is 49168. Using the
following short word definitions can make keyboard access more
readable. GETKEY reads the keyboard data location, and CLRKEY
clears the keyboard strobe:

GETKEY
49152 PEEK ; (Read keyboard data location)
: CLRKEY
49168 PEEK DROP ; (Access clear keyboard strobe location)

Here is a simple example that uses GETKEY and CLRKEY to "grab" a
character without displaying a cursor:

: GRAB.CHAR

CLRKEY (Clear keyboard strobe before reading keyboard)
BEGIN (Loop to:)
GETKEY DUP (Read keyboard data location and make a copy of
value)
128 < (Continue as long as value is less than 128)
WHILE
DROP (Don't need copy of value; loop back to get
another)
REPEAT
CLRKEY ; (Clear keyboard strobe for next keypress)

Combining Text and Numerical Data in
an Array

Since accessing an array element simply places the address of the
element on the stack, TransFORTH arrays have great flexibility in
data storage. As discussed above, arrays can be used for storing
single-byte integers, two-byte integers, five-byte floating point
numbers, and strings. By choosing the right element lengths and
offsets, you can store both text and numerical data in a single
array.

For example, suppose you want to write a checkbook register

DATA STRUCTURES 6 - 29

program, to keep track of checks written and deposits made. For
each check or deposit, you need to store 1) a "category” number
describing whether the entry is a (1) check or (2) deposit, 2)
the check number, 3) amount, and 4) who the check is payable to
(or a description of the deposit). All of this information can
be stored in a single element of an array if each element is many
bytes wide:

1. The first byte of each element (byte) contains the category
number as a (@ to 255) one-byte integer.

2. The next two bytes of each element (bytes 1 and 2) contain
the check number as a (2@ to 65535) two-byte integer.

3. The next five bytes (bytes 3 through 7) contain the check
amount as a floating-point number.

4, The last 48 bytes of each element (byte 8 and up) store the
check/deposit description as a 40-byte string.

This comes to a total of 48 bytes per element. To store up to
588 checks/deposits in this way, the following array declaration
can be used:

Ready 48 504 1 ARRAY CHECKS

As described earlier, the middle of an array element can be
accessed by adding an offset to the address. Following this
idea, a set of simple word definitions can be written to access
any part of any entry. Before calling one of these words, the
array subscript (@ to 588) should be waiting on the stack.

: GET.CATEGORY CHECKS PEEK ;
: PUT.CATEGORY CHECKS POKE ;
: GET.NUMBER CHECKS 1 + PEEKW
: PUT.NUMBER CHECKS 1 + POKEW
: GET.AMOUNT CHECKS 3 + PEEKN
: PUT.AMOUNT CHECKS 3 + POKEN
: GET.DESCRIP CHECKS 8 + WRITELN ;
: PUT.DESCRIP CHECKS 8 + READLN ;

~ we =

Ready 25 GET.CATEGORY .
1 (Category 1 means this is a check.)

Ready 25 GET.DESCRIP
JOE'S FEED STORE ON 2/8/83

Ready 25 GET.AMOUNT .
13.95

DATA STRUCTURES 6 - 30

Ready 26 GET.CATEGORY .
2 (This is a deposit.)

Ready 26 GET.DESCRIP
PAYCHECK ON 2/16/83

To record a payment, for example:
Ready 250 27 PUT.AMOUNT (Put $250 into amount for entry 27.)

Ready 27 PUT.DESCRIP
RENT ON 2/20/83

{ You type this.)
etc...
This is simply one example of how arrays can be used for storing

a combination of text and numerical data. Many other options and
uses are possible.

Summary

In addition to being manipulated on the stack, numbers can be
stored in predeclared variables, created with the word VARIABLE.
Variables are TransFORTH words, like colon definitions, and can
be found on the word library with LIST. Executing a variable
usually places the value of the variable on the stack. However,
if the store—-arrow ("->") was executed since the last variable
access, executing a variable instead removes a number from the
stack and stores it into the variable.

Numbers can be stored and recalled from any location in the Apple
memory. PEEK, PEEKW, and PEEKN remove an address from the stack,
read the value at the location(s), and place the value on the
stack. POKE, POKEW, and POKEN remove both value and address from
the stack, storing the value at the address. PEEK and POKE
access single bytes, PEEKW and POKEW access two bytes, and PEEKN
and POKEN access 5 bytes.

Arrays are used for storing many values. Arrays can be declared
with any number of dimensions, elements, and bytes per element,
limited only by available memory. Memory arrays can also be
created, which place the array data anywhere in Apple memory.
The word ERASE can be used to clear every element of an array to
zero.

Executing an array word removes one or more subscript numbers

DATA STRUCTURES 6 - 31

from the stack (depending on how many dimensions the array has)
and returns the address of that element. The PEEK and POKE words
can then be used to store or retrieve a number from that
location. Array accesses are not checked for subscripts that are
out of bounds.

Arrays are also used for storing string data in TransFORTH. A
string is stored as a number of single-byte ASCII values followed
by a zero end-of-string marker. A string array must be at least
as long as any text that might be stored in it. The TransFORTH
word ASSIGN> is used to store text into memory starting at a
given address. READLN reads a line of text from the keyboard
into memory, and WRITELN prints a line of text from memory.

GETNUM can be used to convert a number stored as text in a string
to an actual number. VALID is used to determine whether or not
the string-to-number conversion was successful.

PAD returns the address of the 144-byte system string space.
LENGTH determines the length of (number of bytes in) a string.
MOVELN copies a string from one location to another.

CONCAT concatenates two strings together.

COMPARE compares two strings by alphabetical order.

Individual characters can be PEEKed or POKEd into strings as
ASCII values.

PUTC removes a number from the stack and prints its ASCII

character. GETC reads the keyboard for a keypress, then returns
the ASCII value for the key pressed.

Problems

Note: Some of the problems in this section are somewhat more
difficult than the other problems in the manual. However, they
provide good examples of common programming applications.
Whether you "work on" these problems or not, we encourage you to
look over the solutions carefully.

(1)
Write a line of TransFORTH code that creates a variable named
ZEBRA with an initial value of -160.

(2)

Write a short word definition named INC that increments ZEBRA by
5 when executed.

DATA STRUCTURES 6 - 32

(3)
What is printed when the following example is executed?

43 VARIABLE X

QUIZ
X . SPCE SPCE
X 18 * X + DUP ., -> X CR
X 1006 / . ;

(4)

Write a routine called MINS5 that removes 5 numbers from the
stack, then prints the smallest value of the 5. (See MAX5 in the
text above.)

(5)

In the following array definition, how many dimensions does the
array THING have? How many elements in each dimension? How many
bytes per element? How many elements can the entire array store?
(Don't forget zero as a valid subscript.) 1Is PEEK, PEEKW, or
PEEKN the appropriate word for reading numbers from this array?

Ready 2 12 4 6 3 ARRAY THING

(6)

Write a word definition called PRINT.THING which prints the value
of every element in the ARRAY THING using nested loops. (Don't
worry about formatting; just print the values.)

(7)

Write a routine that reads a line of text from the keyboard,
attempts to convert the text into a numeric value, then prints
the value. Write the program so that it will duplicate the
example below:

Ready NUMBER
NUMBER, PLEASE? 22.7
YOUR NUMBER IS 22.7

Ready NUMBER

NUMBER, PLEASE? MICHIGAN
'MICHIGAN' IS NOT A VALID
TRANSFORTH NUMBER

DATA STRUCTURES 6 - 33

(8)

Write an "adding machine" program that keeps and displays a
running total, and allows you to add values to this total.
(Checking for invalid numbers is optional.) An entry of no
number (only return) ends the program:

Ready ADDER

TOTAL: &

ADD? 4

TOTAL: 4

ADD? 19

TOTAL: 23

ADD? 141.6

TOTAL: 124.6

ADD? (Press RETURN.)

Ready

(9)

Create a one-dimensional 8 element floating-point array named
NUMS, then write a routine called LOADNUMS for filling NUMS with
values from the keyboard. Check for invalid numbers.

Ready LOADNUMS
NUMBER #? 3.3
NUMBER 1? -1¢
NUMBER 2? FIVE
INVALID ENTRY
NUMBER 2? 5
NUMBER 3?2 53
NUMBER 4? 1.6E26
NUMBER 5?2 -4321
NUMBER 62 99.999
NUMBER 77?7 8.5

(19)
Write a word which finds the largest value stored in NUMS, then
prints the subscript humber for that element.

(11)

Write a word which searches for the first occurrence of a given
value in NUMS, then prints the subscript number for that element.
Have the word read the desired value from the stack.

DATA STRUCTURES 6 — 34

Solutions to Problems

(1)
Ready -108 VARIABLE ZEBRA

(2)
: INC
ZEBRA 5 + -> ZEBRA ;

(3)

Ready QUIZ
43 4343
43.43

(4)
VARIABLE X

: MINS

-> X

4 @ DO
DUP X <
IF -> X
ELSE DROP
THEN

LOOP

X . 3

(5)

THING is a three-dimensional 12 by 4 by 6 array. 1Including the
zero index, it actually stores 13 times 5 times 7 equals 455
elements. Each element is two bytes long, and PEEKW is the
appropriate word for reading numbers from THING.

(5)
: PRINT.THING
13 9 DO
5 @ DO
7 4 DO
K J I THING PEEK . SPCE
LOOP
LOOP
LOOP ;

DATA STRUCTURES 6 - 35

(7)

: NUMBER

PRINT " NUMBER PLEASE? "
PAD READLN PAD GETNUM

VALID IF

PRINT " YOUR NUMBER IS " .
ELSE

DROP

PRINT " ' ™ PAD WRITELN

PRINT " ' IS NOT A VALID " CR

PRINT " TRANSFORTH NUMBER "
THEN ;

(8)
VARIABLE TOTAL

: ADDER
g -> TOTAL (Start with zero total.)
BEGIN (Loop for repeated additions:
PRINT " TOTAL: " TOTAL . CR (Print total.)
PRINT " ADD? "

PAD READLN (Read value from keyboard as text.
PAD LENGTH (While length of line not zero)
WHILE { Something more than RETURN typed,

PAD GETNUM (Convert to a number)
TOTAL + -> TOTAL (and add into total.)
REPEAT ; (Loop back for more.)

(9)

With this particular solution, 'two colon definitions are used.
GRABNUM reads one line from the keyboard and checks for a valid
number. LOADNUMS calls GRABNUM 8 times to get the numbers, and

stores them into the array NUMS.

5 8 1 ARRAY NUMS

: GRABNUM
BEGIN
PRINT " NUMBER " I . (Print subscript)
PRINT " 2?2 "
PAD READLN PAD GETNUM (Get the number)
VALID NOT WHILE (If the GETNUM failed:)
DROP (Forget the (wrong) number returned)
PRINT " INVALID ENTRY " CR (Print the error)}
REPEAT ; (and try again)

DATA STRUCTURES 6 -

)
)

36

LOADNUMS : SEARCHNUM

8 @ DO (Loop for 8 elements:) -> KEY (Read the desired value from the stack.)
GRABNUM (Get the value) -1 -> INDEX (The index starts before element 8.)
I NUMS POKEN (and store it into NUMS.) BEGIN
LOOP ; INDEX 1 + -> INDEX (Increment the index)
INDEX NUMS PEEKN KEY = (Does the next element = the key?)
(10) INDEX 7 > OR (Or is index past end of array?)
The routine must keep track of both the maximum value and the UNTIL (End the loop for either one.)
element number of this value: KEY . (Print the key)
INDEX 8 = IF (If index past end of array:)
VARIABLE MAX PRINT " NOT FOUND IN NUMS " (then key was not found.)
VARIABLE INDEX ELSE (Otherwise:)
PRINT " AT ELEMENT " INDEX . (key was found.)
MAXNUM THEN ;
@ -> INDEX (Start by assuming first element)
@ NUMS PEEKN -> MAX (is the maximum.)
8 1 DO (Loop to read next 7 elements:)
I NUMS PEEKN MAX > (If current element is)
IF (greater than maximum:)
I -> INDEX (Save both element number)
I NUMS PEEKN -> MAX (and new maximum)
THEN
LOOP
PRINT " GREATEST VALUE IS " MAX . CR (Print maximum)
PRINT " STORED AT ELEMENT " INDEX . ; (and element number)
(11) .

This problem is one example of a common need: searching for an
item in an array. In a language like Applesoft Basic, a FOR-NEXT
loop would be used to scan through the array, with a jump out of
the loop when the proper element was found. This technique does
not work in TransFORTH, since a DO - LOOP cannot be "jumped” out
of at will.

When searching, there are two conditions that can end the loop:
finding the desired element, or reaching the end of the array.
The routine below uses a BEGIN - UNTIL loop that exits when
either of these conditions are met. Then the index number is
tested. If the index is past the last element, then the entire
array was read and the desired element was never found.

VARIABLE KEY
VARIABLE INDEX

DATA STRUCTURES 6 - 37 DATA STRUCTURES 6 - 38

CHAPTER SEVEN: MISCELLANEOUS WORDS

AND FUNCTIONS

CHAPTER TABLE OF CONTENTS:
Screen Display Words
Number Formatting

Program Control Words
ABORT

RUN
AUTORUN

Saving the TransFORTH System
Miscellaneous Words

Notes and Sound Effects

Moving Memory

Retrieving Word Addresses

Calling Machine Language Routines
Reading the Game Paddles and Buttons
Compiling Bytes into Memory

Leaving TransFORTH (gently)

Scientific Functions
Summary
Problems

Solutions to Problems

Page

Included in TransFORTH are a large number of assorted words for
controlling number formatting, positioning characters on the
screen, creating a "turnkey" system, and more. These words are
broken down below into the general categories of Screen Display
Words, Number Formatting Words, Program Control Words, and
Miscellaneous Words. In addition, a section at the end of this
chapter describes TransFORTH's scientific functions in greater
detail.

Screen Display Words

There are a number of TransFORTH words that either print
characters or control the format of what is printed on the
screen. Some of these words have already been introduced. For a
quick review:

. (a period) removes a number from the stack and prints it. One
of several number formats can be used; they are discussed below.

PRINT prints the quoted text that follows, starting at the
current cursor position.

CR issues a carriage return, moving the cursor to the beginning
of the next line.

SPCE prints a space.

WRITELN removes an address from the stack, and prints the string
at that address.

PUTC removes an ASCII value from the stack and prints the
equivalent ASCII character.

Here are the new words:

HTAB removes a number from the stack, interprets it as a
horizontal cursor position, and tabs to that cursor position.
The cursor remains in the same vertical position. The valid
range for HTAB is @ (left margin) to the window width. (See
WINDOW below.)

(Note: On the Apple //e 88-column display, 0 HTAB does not
always work correctly. This is due to a problem in Apple's
8@—-column firmware.)

VTAB removes a number from the stack, interprets it as a vertical

MISCELLANEOUS WORDS AND FUNCTIONS 7 -1

cursor position, and tabs to that cursor position. The cursor
remains in the same horizontal position. The valid range is @
(screen top) to 23 (screen bottom).

WINDOW removes four numbers from the stack to establish a text
window. The text window is a rectangular area on the screen
designed to protect other parts of the screen from being
overwritten. All text scrolling will occur inside the window,
leaving the rest of the screen unaffected. (If WINDOW is not
executed, then the text window is considered to be the entire
screen.) The form for WINDOW is:

<left> <width> <top> <bottom> WINDOW

<Left>, <top> and <bottom> are actual margins for the window.
<width> specifies how many characters wide the window is. The
bottom margin should reference the line immediately below the
window. For example, a window 10 characters wide by 5 lines high
in the lower right corner of a 4@-column screen would be set by:

Ready 30 19 19 24 WINDOW

(The left margin is at position 3¢, the window width is 1¢
characters, the top margin is at line 19, and the bottom margin
is above line 24.)

HOME erases the screen inside the text window. (HOME actually
prints a CTRL-L. The TransFORTH system then interprets this
character as an erase-window command. The end effect is the
same.)

INVERSE causes TransFORTH to print characters in inverse (i.e.
black on white).

NORMAL switches the character display back to normal (white on
black) .

HEXPRT removes a number from the stack and prints it as two
hexadecimal digits. Any integer between # and 255 can be
represented as two hex digits; a number out of this range is
first "folded" back (e.g. 256 becomes 88, 257 becomes 81, etc.).

Number Formatting

TransFORTH has four possible display formats for numbers, set
with the words FIX, SCI, ENG, and §.

MISCELLANEOUS WORDS AND FUNCTIONS 7 -2

FIX displays numbers in the usual floating-point format with the
decimal point fixed to the right of the "one's" place. If the
number is less than 1E~2 (.81) or greater than or equal to 1E9 (1
billion), then the number is instead displayed using scientific
notation. FIX is the default display mode, the one used by
TransFORTH until another is selected.

SCI displays numbers using scientific notation, with one digit,
followed by an optional decimal point and up to 8 more digits,
then a one or two digit exponent.

ENG (engineering notation) is similar to SCI, except that the
format is adjusted so that the exponent is always a multiple of
3. This allows for easy conversion to the metric prefixes used
in engineering or electronics applications. Here is a table of
metric prefixes:

tera- 1E12 trillions
giga- 1E9 billions
mega- 1E6 millions
kilo- 1E3 thousands

- 1 ones

milli- 1E-3 thousandths
micro- 1E-6 millionths
nano- 1E-9 billionths
pico- 1E-12 trillionths

For example, 12,345 (say a length in meters) would be displayed
with ENG as 12.345E3, and is the same as 12.345 kilometers.

$ selects TransFORTH's "dollar"™ notation that uses a
dollars—-and-cents format with aligned decimal points. Every
number printed uses exactly 18 characters: one to seven digits
with leading spaces, the decimal point, and two more digits.
When numbers are printed in columns using the dollar format, the
decimal points will line up. (Numbers less than .81 or greater
than 9999999.99 will not fit in this format and are displayed in
scientific notation.)

MISCELLANEOUS WORDS AND FUNCTIONS 7-3

Program Control Words

ABORT

Executing the word ABORT restarts the TransFORTH system, closing

any open files or I/0, clearing the stack, and resetting most of

the conditions currently set. If called from a running program,

ABORT stops the program immediately, returning to immediate mode.
(For the only exception, see AUTORUN below.) ABORT can often be

used as a "fast" way out of a program.

RUN

The TransFORTH word RUN automatically executes the top word on
the dictionary. This can be a great convenience when loading and
running programs from disk. By using RUN, you don't have to
check what the top word on the dictionary is after compiling a
file in order to run it. In addition, if the top word hWas a name
something like:

SOCIO.ECONOMIC.TREND.PATTERN,.FORECASTER.AND.BLACKJACK.PROGRAM,
using RUN can save a bit of typing, too....

(For users interested in convoluted programming practices, RUN
can accomplish something that no other TransFORTH word can: call
a word which hasn't been defined yet. RUN executes whatever word
is on the top of the word library at runtime, even when called
from a lower library word. Unless used carefully, this technique
can cause havoc with words calling other words, only to wind back
around on themselves. However, there is a program on the
TransFORTH disk which uses RUN to call the top library word, and
will be discussed later in the chapter.)

AUTORUN

The word AUTORUN goes a step beyond RUN. AUTORUN removes a
number from the stack. If this number is nonzero, then
TransFORTH will automatically execute the top word on the word
library every time control is returned to the TransFORTH system
level (i.e. whenever you expect to see a "Ready" prompt). DOS

MISCELLANEOUS WORDS AND FUNCTIONS 7 - 4

errors, TransFORTH or machine language errors, executing the word
ABORT, or pressing the Reset key with the AUTORUN option on all
will cause the top library word to be executed. Here is an
example to give you a feel for the way AUTORUN works:

Ready : TEST PRINT " AUTORUN IS ONiit " ;

This word is added to the top of the word library so that AUTORUN
will have a very visible effect.

Ready 1 AUTORUN
AUTORUN IS ON!!! { The word is automatically executed.)

Ready 3 5
AUTORUN IS ON!1!!
[3]

{51

Ready SWAP

AUTORUN IS ON!1!!

[51

[31

Ready ABORT

(The screen clears.)

AUTORUN IS ON!!!
Ready

Fortunately, the AUTORUN option can be turned off by typing:
Ready @ AUTORUN

Ready

If the top dictionary word runs a "closed" program which never
exits to the system level, the AUTORUN option effectively makes
the TransFORTH language itself inaccessible. Any errors or

ABORTs simply restart the program. If you don't mind rebooting,
enter the following lines:

MISCELLANEOUS WORDS AND FUNCTIONS 7 - 5

1 VARIABLE N

COUNT

BEGIN (Endless loop:)
N . CR { Print N, then)
N1+ ->N (Add 1 to N,)

@ UNTIL ;

Ready 1 AUTORUN

Vs WN =

COUNT begins counting, and with no way to turn the AUTORUN option
off, it can't be stopped. Reboot from scratch....

Saving the TransFORTH System

The TransFORTH language is stored on the system disk as an
executable binary file with the name "OBJ.FORTH". As mentioned
in Chapter One, when the disk is booted, this file is
automatically loaded and run.

The TransFORTH word SAVEPRG is used to create TransFORTH binary
files similar to OBJ.FORTH. SAVEPRG saves the complete current
TransFORTH system, including any new words added to the word
library, as a binary file. Once created, this file can be BRUN
at any time, bringing the modified TransFORTH system back into
memory.

SAVEPRG is a powerful tool. You can save "customized" systems,
with your favorite special-purpose words already in the word
library when the system is booted. You can also save finished
applications programs, in such a way that the program
automatically starts up when booted. This is ideal when the
obvious presence of a "language" is neither needed nor desirable.
In addition, the contents of variables and arrays remain intact
when a system is saved with SAVEPRG.

To use SAVEPRG, first compile the words to produce the "finished"
system you want to save, then type SAVEPRG:

MISCELLANEOUS WORDS AND FUNCTIONS 7 -6

Ready SAVEPRG
Enter Program Name:

This prompt asks for the filename you want the new system saved
as. The TransFORTH system disk automatically BRUNs the file
"0BJ.FORTH", so if you want this new system to boot
automatically, you should name your file "OBJ.FORTH" too. Your
file will then overwrite the supplied TransFORTH system on disk.
(Make sure you're using a copy of the disk and not the original!)
You are then prompted:

Autorun (Y/N) :

This prompt asks whether or not you want the saved system to boot
with the AUTORUN option on. If you answer Yes to this question,
then the new system will automatically run the top word on the
word library, starting a program in motion. If desired, your
program can later turn the AUTORUN option back off, returning
access of the TransFORTH language to the user. 1If you answer the
AUTORUN question with No, the new system will display the "Ready"
prompt on boot-up, with immediate access to the language.

After answering this question, the disk drive whirs for a bit,
saving this new system to disk.

The TransFORTH system as supplied includes an additional word on
the top of the word library which asks the demonstration prompt
on boot-up. The source text for this extra word can be found in
the disk file "QUERY". The system was saved with the AUTORUN
option on so that the demonstration prompt would come up
automatically. When you answer No to the demo question, the word
turns AUTORUN off (freeing the language), then FORGETs itself!
This leaves the system in its "usual" state.

The TransFORTH system can be saved to disk without the demo
prompt simply by using SAVEPRG with no additional words on the
word library. (This should be done to a copy of your disk, in
case lightning decides to strike while the system is being
written to disk.) Boot the disk, answer No to the demo question,
then type:

Ready SAVEPRG
Enter Program Name :0BJ.FORTH

Autorun (Y/N) :N

MISCELLANEOUS WORDS AND FUNCTIONS 7 -7

After the disk stops whirring, reboot the TransFORTH disk. When
the system boots, the demo prompt will be gone,

You can also put the demo prompt back into the system. Type:
Ready DISK> " QUERY " INPUT

This adds the word that asks the demo question to the top of the
word library. Now type:

Ready SAVEPRG

Enter Program Name :0BJ.FORTH

Autorun (Y/N) :Y

The system will be saved with the demo prompt back in.

(Note: The TransFORTH demo uses high-resolution graphics. When
compiled, the file QUERY turns off 8@-column card recognition so
that the saved TransFORTH system will not turn the 88-column card
on unless you answer "No" to the demonstration prompt. However,
after following the above example, if you're using an 88-column
card, TransFORTH no longer "knows" the card is there. If you
want to continue with the system without rebooting, you should
press Reset to turn the 8@-column card completely off. See also
the discussion on 8@-column cards in Appendix D.)

Miscellaneous Words

Notes and Sound Effects

The TransFORTH word NOTE plays a note of a given pitch and
duration through the Apple speaker. NOTE removes two numbers
from the stack. The form is:

<pitch> <duration> NOTE

Larger <pitch> values produce notes lower in pitch. Larger
<duration> values produce notes longer in duration. Both pitch
and duration values should be integers from 1 to 255. For
example, the following line will sound two notes, the second one
an octave higher than the first:

MISCELLANEOUS WORDS AND FUNCTIONS 7 -8

Ready 150 106 NOTE 75 160 NOTE

The word NOTE will play notes, but not rests. The following
word, REST, removes a duration value from the stack and simply
waits that amount of time. The duration is approximately
equivalent to a NOTE duration:

: REST
1.8 * g DO LOOP ;

Notes and rests can be combined to play short tunes, as in this
word definition:

SHAVE&HAIRCUT
194 129 NOTE
139 40 NOTE
147 4@ NOTE
139 40 NOTE
131 120 NOTE
139 120 NOTE
120 REST
114 68 NOTE
60 REST
194 68 NOTE ;

Song generating programs can be written using TransFORTH. Rather
than using repeated NOTE commands, reading pitch and duration
values from an array using a loop would be more efficient for
longer songs. Some sound effects are also possible. While
complicated sound effects are beyond the scope of this book, here
are a couple of program ideas to use as a starting point:

s ZIP
@ 75 DO

I 1 NOTE
-1 +LOOP ;

: OVERLAP
256 1 DO

I 2 NOTE

256 I - 3 NOTE
LOQP ;

MISCELLANEOUS WORDS AND FUNCTIONS 7 -9

Moving Memory

MOVMEM simply moves a block of memory from one location to
another. MOVMEM removes three numbers from the stack. The form
for MOVMEM is:

<source> <destination> <% of bytes> MOVMEM

The <source> number is the starting address of the data to be
moved. The <destination> is the address of where the block is to
be moved to. <# of bytes> specifies how many bytes are to be
moved. For example, to move 256 bytes from address 16384 to
address 16896, enter:

Ready 16384 16896 256 MOVMEM

Array or string data can be moved and rearranged with MOVMEM,
However, addresses and memory lengths should be chosen carefully.
MOVMEM will not prevent data from being accidentally written over
important system locations. Also, be careful when copying
overlapping areas of memory. (MOVMEM copies the bytes in
ascending order.)

Retrieving Word Addresses

The word ' (an apostrophe, also called a "tic") places on the
stack the address of the word that follows it, and prevents that
word from being executed. Here is an example:

Ready ' BELL
[12222]

The tic placed the address of the word BELL on the stack, and
prevented BELL from being executed. (The tic word retrieves the
address at runtime, not at compile time as the other "non-RPN"
words do. Tic cannot retrieve the addresses of the looping and
branching words or the compiling words such as VARIABLE or ":".)

The address returned by "tic" is always greater than the
hexadecimal address shown with $LIST. That is because the $LIST
address indicates the beginning of the word definition, and "tic"
returns the address of the executable portion of the word. See
Appendix C for more information on the word library structure.

MISCELLANEOUS WORDS AND FUNCTIONS 7 - 190

Calling Machine Language Routines

Machine language programs in memory can be called directly from
TransFORTH with the word CALL. CALL removes a number from the
stack, interprets it as a memory address, then calls the machine
language routine at that address. (The routine should end with
an RTS (ReTurn from Subroutine) instruction to return to
TransFORTH properly.) Machine language programs can be loaded
from disk into any free area of memory, then called from
TransFORTH. Accessing the disk through Apple DOS is discussed in
the next chapter.

Before a machine language CALL is made, values can be placed in
the Apple processor's A, X, Y, and P registers using the
TransFORTH variables AREG, XREG, YREG, and PREG. Before making
the machine language CALL, simply place the desired values into
AREG, XREG, YREG, and PREG as you would any other variable. When
CALL is executed, it loads the processor registers with the
values of these variables before doing the call. After the
routine has executed, the values of the registers are loaded back
into the variables and can be read from TransFORTH, just as any
other variable. Read on for an example of CALL....

Reading the Game Paddles and Buttons

Reading the values of the Apple game paddles provides an
excellent example of using CALL. The Apple System monitor
contains a routine at location 64286 for reading the game
paddles. It expects to see the number of the game paddle (@ to
3) in the processor's X register. It returns a number from 0 to
255 (based on the position of the paddle) in the Y register. The
following word reads the value of the game paddle by storing the
top stack value into XREG, calling the paddle routine, then
reading the value of YREG:

: READ.PADDLE
-> XREG

64286 CALL
YREG ;

(The Apple manuals warn that two consecutive readings of a game
paddle can produce incorrect results, and suggest a short wait
loop between readings.)

The two directions of a joystick are read by the Apple as two

MISCELLANEQUS WORDS AND FUNCTIONS 7 - 11

paddle values. The first joystick reads as paddles # and 1, and
the second joystick reads as paddles 2 and 3.

While we're on the subject of game paddles: To read the
pushbuttons with the paddles, all that is needed is a PEEK into
the proper memory location. The locations to PEEK are:

Button Location
1 49249
2 49259
3 49251

(The various Apple manuals number the three pushbuttons in
comflicting ways. Some manuals number the buttons 1, 2, and 3 as
shown above, while others use the numbers 0, 1, and 2.)

The value returned will be a number between # and 255. If the
number is 128 or greater, then the button is being pushed. If
the number is less than 128, the button is not being pushed.
Enter the following line, and hold down button 1 on the paddle or
joystick while pressing Return to execute the line:

Ready 49249 PEEK
[255]

Since the button is being pushed, the value returned is greater
than 127.

On an Apple //e, the Open Apple key corresponds to Button 1, and
the Closed Apple key corresponds to Button 2. You can find
whether or not the Apple keys are being pressed by PEEKing their
corresponding button locations.

Compiling Bytes into Memory

The word "," (comma) causes a number to be compiled as a byte
directly into TransFORTH. Numbers compiled as bytes can be used
in a variety of ways. Small assembly language routines can be
placed into executable TransFORTH words by translating the
machine language code into decimal numbers, then compiling the
numbers into TransFORTH with commas. Straightforward tables of
numbers can also be made, though these words cannot be
"executed".

Here is an example of a word that contains a number table of the
Apple's visible high-resolution colors. The numbers are stored
as individual bytes following the word name in memory:

MISCELLANEOUS WORDS AND FUNCTIONS 7 - 12

: COLOR.TABLE
1,2,3,5,6,7,:

These numbers correspond to the colors green, violet, white,
red/orange, blue, and another brand of white. (Graphics colors
will be discussed in greater detail in Chapter Nine.) Each
number can be accessed by using the tic to retrieve the address
of COLOR.TABLE, adding an offset (8 to 5), then picking out the
appropriate number with PEEK. The following word definition
retrieves and prints each of the color numbers in turn:

: SEE.COLORS

6 8 DO (Loop for 6 values:)
' COLOR,.TABLE (Get the address of COLOR.TABLE)
I + PEEK (Add offset and PEEK color value)
. SPCE (Print the value)

LOOP ;

Ready SEE.COLORS
123567

Once PEEKed and put on the stack, you can use the numbers with
any appropriate TransFORTH words.

Since the comma places bytes directly into the word library, a
few guidelines must be followed. A comma should only be used
with a number from @ to 255, and inside a word definition. 1If a
number is assembled with a comma as the first byte of a word
definition, the number must be less than 128 and not equal to 18.
(For the reasons why, see Appendix C for technical information on
TransFORTH's word library structure.)

Leaving TransFORTH (gently)

Executing the word BYE exits the TransFORTH system and enters the
Apple][system monitor, with DOS active. The Apple monitor can
be useful when interfacing TransFORTH with machine language
programs, etc.

The TransFORTH language begins at hex location $C88. To restart
TransFORTH from the monitor, type "C@@8G".

MISCELLANEOUS WORDS AND FUNCTIONS 7 - 13

Scientific Functions

TransFORTH's floating-point scientific functions were briefly
introduced in Chapter Two. In this section, we'll look at the
appropriate ranges for these functions, show how to graph them
using a program on disk, and provide word definitions for
functions that are not built into TransFORTH.

TransFORTH does not flag errors for number "wrap-around"; that
is, if a computation produces a number larger (or smaller) than
TransFORTH can handle, an incorrect answer will be returned, but
an error message will not be printed. For example, squaring the
number 5E28 should return 25E48, or 2.5E41, but TransFORTH can't
store a number this large:

Ready 5E28 DUP * .
2.15904213E~-36

This shouldn't cause any problems, since most practical
computations never approach TransFORTH's number limit.

The four trigonometric functions, SIN, COS, TAN, ATN, express
angles in radians rather than degrees. There are 57.29577951
degrees in one radian. The following word definitions can be
used to convert between degrees and radians:

: DEGRAD (Degrees to radians)
57.29577951 / ;

: RADDEG (Radians to degrees)
57.29577951 * ;

For example:

1
Ready 96 DEGRAD SIN .
1 (The sine of 90 degrees is 1.)

Ready 45 DEGRAD COS .
#.767166781 (The cosine of 45 degrees is 06.707...)

Ready 1 ATN
[£.785398163]

Ready RADDEG .
45 { The arctangent of 1 is 45 degrees,)

MISCELLANEOUS WORDS AND FUNCTIONS 7 - 14

Another approach is to simply define new trig functions that use
degrees directly:

: DEGSIN
DEGRAD SIN ; (Convert to radians, then find sine.)

Ready 90 DEGSIN .
1

Both square root and natural logarithm are mathematically
undefined for negative values. The TransFORTH SQRT function
produces erratic values for negative numbers; LOG returns a
mirror image of its positive side.

EXP is defined only for values between -88 and 88, since this
function increases rapidly to very large numbers. Beyond these
limits, incorrect values are returned, or an X/@ (division by
zZero) error may occur.

The RND function works very much like Applesoft's random number
function. RND removes one number from the stack and returns a
random number # <= n < 1. If the number on the stack is greater
than @, RND returns a random number. If the given number is less
than @, RND begins a new "pseudo-random sequence". Every
subsequent random number generated is based on this random
sequence, until you change it with another negative number. If
you use the same negative number, the same sequence of numbers
will be generated each time. If the number on the stack is @,
then RND returns the most recent random number again.

This pseudo-random sequence method gives you random, but
repeatable, numbers. If you need random numbers that don't
repeat, then PEEKW the two-byte number from location 78, NEGATE
it, and use this negative number with RND to start a new random
sequence. The Apple creates a new random number in locations 78
and 79 every time it waits for a keypress.

A program on the TransFORTH disk is designed to graph these
functions (or any function which uses one stack value and returns
one stack value). The program is stored in the textfile
"FUNCTION". To compile it into the word library, type:

Ready DISK> "™ FUNCTION " INPUT
To graph a function, you must first compile it onto the top of

the word library. FUNCTION uses the RUN command (described
earlier) to "call" the top library word and return a function

MISCELLANEOUS WORDS AND FUNCTIONS 7 - 15

value. If you want to graph a built-in TransFORTH function, add
a new word to the top of the library which calls it. For
example, to graph the SIN function, enter this word:

Ready : SIN1 SIN ;

Now type "FUNCTION", and the FUNCTION program will ask you for
the range to graph:

Ready FUNCTION
LOW X? -2
HIGH X? 2
LOW Y? -5
HIGH Y? 5

The program clears the screen, draws the X and Y axes, then plots
the function. To return to the text screen, press any key after
the graph is done. You can run FUNCTION again, entering new
values for the graph range. If either the X or Y axis falls off
screen, it is not drawn:

Ready FUNCTION

LOW X? -15
HIGH X? 15
LOW Y2 .1

HIGH Y? 1.1

To graph a new function, simply add a new word to the top of the
library to call that function, then run FUNCTION again.

A number of functions, while not built into TransFORTH, can be
easily added with colon definitions:

: LOG1# (Logarithm base 19)
LOG 1¢ LOG / ;

: LOGX (Logarithm base X:)
SWAP LOG SWAP LOG / ; (form is <number> <base> LOGX)

: SEC (Secant)
COS 1 SWAP / ;

: CSC (Cosecant)
SIN 1 SWAP / ;

: COT (Cotangent)
TAN 1 SWAP / ;

MISCELLANEOUS WORDS AND FUNCTIONS 7 - 16

: ARCSIN (Inverse sine)

DUP DUP * NEGATE 1 +
SORT / ATN ;

: ARCCOS (Inverse cosine)

ARCSINE NEGATE
1.5748 + ;

¢ ARCSEC (Inverse secant)

DUP DUP * 1 - ATN
SWAP SIGN 1 - 1.57@8 *
+

: ARCCSC (Inverse cosecant)
DUP DUP * 1 - SQRT 1 SWAP / ATN

SWAP SIGN 1 - 1.5708 *
+

: ARCCOT { Inverse cotangent)

ATN NEGATE 1.5708 + ;

: SINH (Hyperbolic
DUP EXP SWAP NEGATE EXP
-2/

: COSH (Hyperbolic
DUP EXP SWAP NEGATE EXP
+ 2/ ;

: TANH (Hyperbolic
DUP DUP EXP SWAP NEGATE
DUP PUSH + PULL NEGATE
SWAP / 2 * 1 + ;

: SECH (Hyperbolic
DUP EXP SWAP NEGATE EXP
+ 2 SWAP / ;

: CSCH (Hyperbolic
DUP EXP SWAP NEGATE EXP
- 2 SWAP / ;

: COTH (Hyperbolic
DUP DUP EXP SWAP NEGATE
DUP PUSH - PULL
SWAP / 2 * 1 + ;

MISCELLANEOUS WORDS AND

sine)

cosine)

tangent)
EXP

secant)

cosecant)

cotangent)
EXP

FUNCTIONS

7

17

ARGSINH (Inverse hyperbolic sine)
DUP DUP * 1 + SQRT
+ LOG ;

: ARGCOSH (Inverse hyperbolic cosine)
DUP DUP * 1 - SQRT
+ LOG ;

: ARGTANH (Inverse hyperbolic tangent)
DUP 1 SWAP -
SWAP 1 + LOG 2 / ;

: ARGSECH (Inverse hyperbolic secant)
DUP DUP * NEGATE 1 +
SQRT 1 + LOG SWAP / ;

: ARGCSCH (Inverse hyperbolic cosecant)
DUP DUP DUP * 1 + SQRT
SWAP SIGN * 1 + LOG SWAP / ;

: ARGCOTH (Inverse hyperbolic cotangent)

DUP 1 + SWAP 1 - /
LOG 2 / ;

Summary

This chapter introduced a number of useful general-purpose words.

Screen Display:

HTAB tabs to a given horizontal position.

VTAB tabs to a given vertical position.

WINDOW establishes a text window on the screen.

HOME erases the screen inside the text window.

INVERSE causes characters to be printed in inverse.
NORMAL returns character printing from inverse to normal.
HEXPRT prints a given number as two hexadecimal digits.

Number Formatting:

FIX sets the usual floating-point notation with fixed decimal
place.

SCI sets scientific notation.

ENG sets engineering notation.

$ sets a dollars-and-cents notation, with aligned decimal points.

MISCELLANEOQUS WORDS AND FUNCTIONS 7 - 18

Program Control Words:

ABORT stops a running program and resets the TransFORTH systenm,
including stacks.

RUN executes the top word on the word library.

AUTORUN turns the Autorun option on or off, which automatically
executes the top library word.

SAVEPRG saves the entire TransFORTH system to disk, with any
modifications and additions.

Miscellaneous Words:

NOTE plays a note of a given pitch and ddration.

MOVMEM moves a block of memory from one location to another.

' (tic) retrieves the address of the following TransFORTH word.
CALL calls a machine language routine.

AREG, XREG, YREG, and PREG are variables that are loaded into the
Apple's processor registers when CALL is executed.

, (comma) compiles a byte directly into a TransFORTH colon
definition.

BYE exits TransFORTH and enters the Apple system monitor.

Problems

(1)
The word HOME erases the screen only inside the current text
window. Consider the following word definition:

: TEST

HOME

23 VTAB 10 HTAB PRINT " HI THERE "
@ 40 12 28 WINDOW

HOME ;

Will the last HOME command erase the "HI THERE" from the screen?

The next three problems show numbers printed in each of the 4
TransFORTH display formats: FIX, SCI, ENG, and $. Match up the
printed number with the format used to print it.

(2)

a) 1.2345678E4
b) 12345.67
c) 12345.678
d) 12.345678E3

MISCELLANEOUS WORDS AND FUNCTIONS 7 - 19

(3)

a) 25.09
b) 25E@

c) 2.5El1

d) 25

(4)

a) 0.33

b) 2.33
¢c) 3.3E-1

d) 330E-3

(5)
After entering the following lines:

Ready : LOOPER BEGIN @ UNTIL ;

Ready 1 AUTORUN

How can you bring the "Ready" prompt back?

(6)

For the following two NOTE commands, which one plays the higher
pitched note (or are they the same pitch)? Are the durations
equal, or does one sound longer than another?

Ready 85 85 NOTE

Ready 85 178 NOTE

(7)

Consider the following lines, remembering that MOVMEM moves a
given number of bytes, and strings are stored one character per
byte.

Ready 1 50 1 ARRAY STR

Ready PAD ASSIGN> " SOUTH OF THE BORDER "

Ready # STR ASSIGN> " NORTH POLE "

Ready PAD @ STR 5 MOVMEM

Ready 2 STR WRITELN

What is printed when the last line is executed?

MISCELLANEOUS WORDS AND FUNCTIONS 7 - 28

Solutions to Problems

(1)

The "HI THERE" is not erased. The text window is above that

line.

(2)

a) SCI
b) $
c) FIX
d) ENG

(3)
a) $
b) ENG
c) sCI
d) FIX

(4)
a) FIX
b) $
c) sCI
d) ENG

(5)
Reboot.

(6)

Both notes are of equal pitch. The duration of the second note

is twice as long as the first.

(7)

"SOUTH POLE". The 5 characters "SOUTH" were copied from PAD to

STR.

MISCELLANEOUS WORDS AND FUNCTIONS

7 - 21

CHAPTER EIGHT: INPUT AND OUTPUT

CHAPTER TABLE OF CONTENTS:

The 1/0 System

Handling I/0

Related Input/Output Words
Restrictions on DISK /O
Number to String Conversion

Apple DOS Disk Access

Using Textfiles for Data Storage
Saving the Contents of Arrays
Overlays

Binary File Overlays
Summary
Problems

Solutions to Problems

Page
8-1
84
8-6
8-10
8-10
8-11
8-12
8-13

8-14
8-16

8-17

8-18
8-19

One of TransFORTH's greatest strengths is its Input/Output
operating system. Using TransFORTH I/O0 commands, you can print
to or read from Apple peripheral cards, areas of memory, custom
I/0 routines, or disk files. The operating system features are
used whenever any character is printed (output) or read (input),
and they are compatible with the Apple Disk Operating System.

This chapter will cover the Input/Output operating system, access
to Apple DOS, and overlays, which provide a method for running
programs that are larger than will fit in the Apple memory.

The I/O System

Normally, TransFORTH outputs characters to the Apple screen video
(or an 80-column card in slot 3 or the Apple //e auxiliary slot)
and reads input characters from the keyboard. By executing one
of the eight I/0 commands, either input or output can be changed.

OUTPUT commands tell TransFORTH where any characters it needs to
print should be sent. TransFORTH output is used with the words
PRINT, WRITELN, . (period), CR, SPCE, BELL, HEXPRT, HOME, and
PUTC, and TransFORTH system messages such as the "Ready" prompt
and stack display.. If the OUTPUT is changed, then any characters
printed will go to the output specified.

INPUT commands specify where TransFORTH should read characters
from. TransFORTH input is used with the words READLN and GETC,
and when the system reads lines to be compiled and executed. If
the INPUT is changed, then any characters read will come from the
new input rather than from the keyboard.

The various commands are:

<address> DEVICE INPUT
<address> DEVICE OUTPUT
<address> MEMORY INPUT
<address> MEMORY OUTPUT
DISK> "™ <filename> " INPUT
DISK> " <filename> " OUTPUT
<address> DISK INPUT
<address> DISK OUTPUT

We'll first describe each of the commands, then later show some
examples for using then with other I/0 words:

INPUT AND OUTPUT 8 -1

<address> DEVICE INPUT: This is used for reading characters from
a peripheral card in one of the Apple slots. The <address> on
the stack should be the address of the desired slot. To find the
address, use either this formula:

<address> = <slot> * 256 + 49152
or this word definition:

: SLOT
256 * 49152 + ;

For example, to tell TransFORTH to begin reading characters from
an RS-232 card in slot 2 (rather than from the keyboard), you can
enter either of the following lines:

Ready 49664 DEVICE INPUT
Ready 2 SLOT DEVICE INPUT

<address> DEVICE OUTPUT: This routes subsequent output
characters to an Apple peripheral card. <address> is the same as
for DEVICE INPUT. DEVICE OUTPUT can be used for sending text to
printers, modems, etc. For example, either of the following
lines will cause characters to be sent to a printer card in slot
1:

Ready 49498 DEVICE OUTPUT
Ready 1 SLOT DEVICE OUTPUT

(Note for machine language programmers: DEVICE INPUT and OUTPUT
can also be used for calling any custom I/0 routines stored in
free areas of memory. Simply substitute the decimal address of
the routine for the <address> above. The characters are passed
through the 6582 accumulator.)

<address> MEMORY INPUT: This command causes characters to be
read directly from memory. This memory can be a TransFORTH
string, text in free memory, or the text editor program buffer.
<address> is the starting address of the area of memory to be
used. For example, the following line will tell TransFORTH to
read characters from memory starting at address 32768:

Ready 32768 MEMORY INPUT

Recall that PROGRAM MEMORY INPUT is the command for reading and
compiling text stored in editor memory. Here is how it works:

INPUT AND OUTPUT 8 - 2

The word PROGRAM places the address of the editor program buffer
on the stack. MEMORY INPUT then specifies this area of memory as
a source of character input. TransFORTH continues to read lines
to be compiled, but now draws them from the editor memory. The
text from the editor is read just as if it were being entered
from the keyboard. When all of the editor lines have been read,
an End-0f-File condition occurs, and input returns to normal.

MEMORY INPUT can also be used for compiling code directly from
strings, creating some unusual programming possibilities., For
example, you can store the text of a TransFORTH command in a
string from a running program, then use MEMORY INPUT to actually
compile and execute that string later. -

<address> MEMORY OQUTPUT: This causes printed characters to be
stored directly into memory. As with MEMORY INPUT, the <address>
can be any legal Apple address, in a string, free memory, or even
the editor buffer.

DISK> " <filename> " INPUT: This command tells TransFORTH to
open the specified textfile on disk and read subsequent
characters from the textfile. Note that this is the command used
for reading and compiling programs on disk. The following line
will compile the disk file BASCON:

Ready DISK> " BASCON " INPUT

DISK> " <filename> " OUTPUT: This opens a textfile and causes
printed characters to be written into the textfile.

<address> DISK INPUT: This command also specifies a textfile on
disk as a source of characters. In this case, <address> should
be the address of a string that contains the name of the file.
Note that when using DISK> " <filename> " INPUT, the filename is
compiled with the command, and cannot be changed from a running
program. With <address> DISK INPUT, the string containing the
filename can be modified when the program is running. The
following example also reads the file BASCON from disk (The
array STR must be defined.):

Ready @ STR READLN
BASCON

Ready @ STR DISK INPUT
<address> DISK OUTPUT: This is similar to DISK> " <filename> "

OUTPUT in that it opens a textfile and causes printed characters
to be written into the file. It uses the same form as <address>

INPUT AND OUTPUT 8 - 3

DISK INPUT, where the filename is stored in a string and
<address> is the address of that string.

For all of the disk I/0 commands, any slot, drive, or volume
numbers needed can be included right with the filename in the
string or in quotes. Here are a couple of examples:

Ready DISK> "™ BASCON,D2 " INPUT

This reads the file BASCON from drive 2.
Ready # STR ASSIGN> " TEST,S5,D1 "
Ready @ STR DISK OUTPUT

This example will print characters to the textfile TEST at slot
5, drive 1.

The TransFORTH system includes a special textfile speedreader.
This speedreader is accessed whenever textfiles are used as a
source of input, both from TransFORTH and the TransFORTH text
editor, allowing programs and data to be loaded much more quickly
than is possible with Apple DOS. You'll notice a great
difference in speed between reading from and writing to the disk.

The speedreader also allows for file-to-file copying. Usually,
Apple DOS will not allow you to read from one textfile while
writing to another. The TransFORTH speedreader bypasses DOS so
that direct file read and write can take place simultaneously.
File copying is discussed in greater detail below.

Executing the TransFORTH word CLOSE will immediately return both
input and output to normal. In addition, if an End-Of-File
condition occurs while a line of text is being read, input and
output will return to normal. (See also "EOF" and "MOVFILE"
below.)

Handling 1/0

It is important to remember that the above TransFORTH I/O routing
commands do not cause any characters to be printed or read; they
only specify source and destination for characters that will be
printed or read by the system or a running program. For example,
when you type PROGRAM MEMORY INPUT, this tells TransFORTH to use
the editor program buffer as the source for reading characters.
The actual reading and compiling is then done by the TransFORTH
system, in the same way it usually reads and compiles from the

INPUT AND OUTPUT 8 - 4

keyboard.

If an INPUT command is instead followed by READLN's or GETC's,
then the characters read will come from that source of input.
Try the following example:

Enter the editor:
Ready EDIT
Erase any text in editor memory, then enter the following text:

19 8 # DO I . SPCE LOOP CR
2¢ PRINT " AN EDITOR EXAMPLE "

Exit the editor, then run this line from TransFORTH:

Ready PROGRAM MEMORY INPUT PAD READLN PAD WRITELN CR PAD READLN
PAD WRITELN CLOSE

The above example reads two text lines from the editor (since
PROGRAM MEMORY INPUT sets the editor buffer as the input source},
and prints them directly to the Apple screen (since the output is
normal):

8 8 DO I . SPCE LOOP CR
PRINT " AN EDITOR EXAMPLE "
Ready

If you type only PROGRAM MEMORY INPUT, then the TransFORTH system
itself will read the lines, and act on them accordingly:

Ready PROGRAM MEMORY INPUT
21234567
AN EDITOR EXAMPLE

Ready

Because of these capabilities, a small complication can sometimes
arise. Suppose you have a program (a series of word definitions)
in a file on disk, and you want the program to begin running
automatically when it is compiled. To do this, all you have to
do is place the word "RUN" as the last line of the file. When
this last line is read, the program will begin running.

Now suppose that 1) the RUN command isn't on the very last line,

but that a few blank lines follow the RUN at the end of the file,
and 2) when the program is run, it starts by asking for keyboard

INPUT AND OUTPUT 8 -5

input with READLN or GETC. The problem that arises is that the
disk file is still open when the RUN command is executed. This
means the READLN or GETC will read the remaining characters from
the disk file, not from the keyboard!

The solution is to substitute a "CLOSE RUN" for the RUN. The
word CLOSE will guarantee that input and output are returned to
normal after this line is read from the file. Any remaining
characters in the file will be ignored. Therefore, if you want a
program to begin running automatically when it is compiled, the
best method is to place the words "CLOSE RUN" as the last line of
the file.

Another related aspect is TransFORTH's ability to "link source
files", allowing several files to be compiled with one command.
If you want to compile file A, file B, and then file C, add this
command to the end of file A:

DISK> " B " INPUT

Then add the following command to the end of file B:

DISK> " C " INPUT

Then, to compile all three files, simply type from the keyboard:
DISK> " A " INPUT

File A will be compiled, then the last line of A will open and
begin compiling file B, Similarly, the last line of B will open
and compile file C.

Related Input/Output Words

EOF: Suppose you're writing a program that, among other things,
opens and reads characters from a disk file. If you try to read
more characters than the file contains, the file will close and
the program will start reading characters from the keyboard.
What is needed is a way to determine when the End-Of-File is
reached before too many characters are read.

The TransFORTH word EOF can be used to determine an End-0f-File
condition from any input or output, including a disk file. EOF
places a number on the stack. Usually this number is zero
(false). However, if an End-Of-File is reached, executing EOF
will return a nonzero value (true). EOF is then reset to zero
when another INPUT or OUTPUT or an ABORT is executed.

INPUT AND OUTPUT 8 - 6

The following word definition provides a simple example for using
EOF. The routine opens the disk file TURTLE as a source of
characters. It then uses a BEGIN - UNTIL loop to read characters
from the file (with GETC) and print them to the screen (with
PUTC) until EOF becomes true, when the end of the textfile is
reached. CLOSE then closes both input and output, returning them
to normal.

: READFILE
DISK> " TURTLE " INPUT
BEGIN
GETC PUTC
EOF
UNTIL
CLOSE ;

When READFILE is run, the text of the file TURTLE is printed to
the screen. On a 4@-column screen, the last character printed
will be an inverse "@". This is the ASCII character for the zero
End-0f-File marker in the file.

EOFCHR: Using the TransFORTH word EOFCHR, you can select a
different character or value (than zero) to be the End-Of-File
marker. EOFCHR removes a number from the stack. The number, an
ASCII value, is used as the new End-Of-File marker. If this
value is later input or output as a character, EOF will become
true.

For example, suppose you want to print the file TURTLE only to
the end of the first colon definition. You know that the text of
the colon definition ends with a semicolon. By setting the ASCII
value for a semicolon as the End-0f-File marker, EOF will become
true when the semicolon is read:

Ready 187 EOFCHR (187 is the ASCII value for a semicolon.)
Ready READFILE

As promised, the file is printed only as far as the first
semicolon. Entering:

Ready @ EOFCHR
makes the End-Of-File marker a zero again.

EOFCHR can also be used when working with strings. The end of a

INPUT AND OUTPUT 8 - 7

string is determined by either a zero or the EOFCHR value. For
example:

Ready PAD READLN
SAN FRANCISCO

Ready PAD LENGTH .
13 (PAD contains 13 characters.)

Ready 195 EOFCHR (This sets 195, the ASCII letter "C", as the
End-Of-File character.)

Ready PAD WRITELN
SAN FRAN (The "C" in "FRANCISCO" now marks the end of
the string.)

Ready PAD LENGTH .
8 (There are 8 characters in the string before
the "C".)

Ready @ EOFCHR

Executing ABORT or pressing Reset will automatically set EOFCHR
back to zero.

MOVFILE: Most of what the word definition READFILE (above)
accomplishes can be done with a single TransFORTH word, MOVFILE.
MOVFILE simply reads characters from the current input source and
prints then to the current output destination. When an
End-0Of-File is encountered, the reading and printing stops and
both input and output are closed. The following line:

Ready DISK> " TURTLE " INPUT MOVFILE

is equivalent to READFILE. The INPUT command sets the disk file
TURTLE as the source of characters. MOVFILE reads the characters
from TURTLE and prints them to the screen (the current output
destination). In this application, MOVFILE provides a quick and
easy way to see the contents of a file without using the text
editor.

INPUT AND OUTPUT 8 - 8

MOVFILE can be used for a wide variety of data copy and transfer
operations, including file-to-file copying. This example copies
the entire contents of the file BASCON into a new file named
TEMP. (Any previous contents of TEMP are overwritten.)

Ready DISK> " BASCON " INPUT DISK> " TEMP " OUTPUT MOVFILE

This line prints the text in the editor buffer to a printer
connected to slot 1:

Ready PROGRAM MEMORY INPUT 1 SLOT DEVICE OUTPUT MOVFILE

As you can see, many combinations of input and output are
possible with MOVFILE.

ECHO: When both input and output are changed, subsequent
characters are routed directly from the source and to the
destination, often bypassing the video screen completely. Using
the word ECHO, you can monitor the flow of text, by ECHOing it to

the video screen. ECHO removes a number from the stack.
Different numbers have different effects:

1 ECHO echoes input characters to the screen
2 ECHO echoes output characters to the screen
@ ECHO turns off screen echoing

For example, you can print text to the screen as it is compiled
from the editor buffer or a disk file onto the word library:

Ready 1 ECHO
Ready PROGRAM MEMORY INPUT

You can also see the characters copied from one textfile to
another by echoing output characters:

Ready 2 ECHO DISK> " BASCON " INPUT DISK> " TEMP " OUTPUT
MOVFILE @ ECHO

Because ECHO must accomodate a wide variety of input and output
combinations, including the oddities of Apple DOS, there are a
few restrictions: 1) If you turn on output echo when the screen
is already used for output, TransFORTH will send each character
to the screen twice. 2) If you echo input while DISK QUTPUT is
in effect, the echoed characters will be written to the textfile.
3) You should not turn output echo on or off after a textfile has
been opened with DISK OUTPUT. If you do, DOS will close the

INPUT AND OUTPUT 8 -9

file., 4) Lastly, some peripheral and printer cards read and
change the Apple's special video cursor locations, the same ones
that ECHO must use to print to the screen. If this happens, the
print-out and/or the video output will become garbled, and ECHO
cannot be used.

Restrictions on DISK 1/0

Because disk I/0 requires at least partial assistance from Apple
DOS, there are a few restrictions in printing characters to a
disk file using TransFORTH I1/0. First, output to a disk file
cannot be combined with keyboard input. TIf you try to use the
keyboard for input, then DOS will disconnect the output to the
file.

Secondly, if disk files are selected for both input and output,
the INPUT command must come before the output command:

Ready DISK> ™ BASCON " INPUT DISK> " TEMP " OUTPUT MOVFILE

Lastly, the words CLOSE, ECHO, and DISK INPUT and OUTPUT include
calls to DOS. These calls will sometimes print an extra carriage
return, which means the cursor will advance to the beginning of
the next line. If the cursor was on the bottom line of the
screen, the text will scroll. If you don't want this scrolling,
be sure to VTAB away from the bottom line before you call any of
these words.,

Number to String Conversion

Remember that GETNUM is used for converting strings to numbers.
MEMORY OUTPUT can be used to do the opposite: print a number into
a string. To do this, set the string as a MEMORY OUTPUT, print
the number to the string output with . (period), print a zero
end-of-string marker, then CLOSE the output. Here is an example
which prints the the square root of 2 into STR:

Ready @ STR MEMORY OUTPUT 2 SQRT . ¢ PUTC CLOSE

Ready @ STR WRITELN
1.41421357 (The number is stored as text in the string.)

INPUT AND OUTPUT i 8 - 19

Apple DOS Disk Access

Apple DOS commands can be directly executed from TransFORTH.
Remember that in Basic, DOS commands can be called in one of two
ways: directly from the keyboard, or printed from a program with
a CTRL-D. TransFORTH does not allow DOS commands to be typed
directly. However, you can execute DOS commands by using the
same general syntax as from a running Basic program: Print a
CTRL-D, then the DOS command. With TransFORTH, the form is:

CR 132 PUTC PRINT " <DOS command> " CR

The CR prints a carriage return, starting a new output line. 132
PUTC prints a CTRL-D (132 is the Apple ASCII value for a CTRL-D).
The DOS command is printed next, then another CR ends the line so
that the DOS command will be executed. For example, this line
will catalog the disk:

Ready CR 132 PUTC PRINT " CATALOG " CR

Any Apple DOS commands can be executed gracefully from
TransFORTH, except for the following commands which use or rely
on Basic:

LOAD
SAVE
RUN
FP
INT
INIT
CHAIN

In addition, TransFORTH keeps MAXFILES set at 1. Since
TransFORTH has its own textfile speedreader, changing MAXFILES is
usually not necessary. If you need to, you can set MAXFILES to a
larger number on 48K Apples if you are not using the text editor.
On 64K Apples, you can increase MAXFILES up to 2 only if you are
not using the graphics module GR.TEXT.64K or the auxiliary memory
features. (See the next two chapters for more information.)

PR#n and IN#n can be used for accessing peripheral cards in the
Apple slots. DEVICE INPUT and OUTPUT are already available for
these functions, however. If you use PR#n or IN#n, TransFORTH
will not "know" what its actual inputs or outputs are, and words
such as ECHO may not work correctly. There is one exception: If

INPUT AND OUTPUT 8 - 11

you want to print out a DOS catalog of the disk, you must use
PR#n to activate the printer, since DOS is doing the printing,
not TransFORTH.

Note: Since TransFORTH uses its own I/O routines, executing
"PR#8" will not return TransFORTH to a normal state. The word
TEXT will turn off any PR#n or IN#n access, while CLOSE will
close any TransFORTH input and output.

Using Textfiles for Data Storage

TransFORTH supports both sequential and random access data files.
Sequential files are best handled using the DISK INPUT and OUTPUT
commands. The following word definitions demonstrate the use of
sequential data files. The word FILL.SEQUENTIAL fills a
sequential file with 500 lines (or "fields™) of text.
GET.SEQUENTIAL accesses a given field by reading through all of
the fields preceding it. The desired field number should be
waiting on the stack:

: FILL.SEQUENTIAL
DISK> " SEQUENTIAL " OUTPUT (Open file for output.)

508 @ DO (Loop for 580 times:)
PRINT " FIELD: "I .CR (Write field into file.)

LOOP

CLOSE ; (Close the file.)

: GET.SEQUENTIAL

DISK> " SEQUENTIAL " INPUT (Open file for input.)

1 + ¢ DO (Loop for specified number of times + 1 to)
PAD READLN (read fields from file.)

LOOP (Last field read is desired field.)

CLOSE ; ({ Close the file.)

Ready FILL,RANDOM (The disk whirs as the file is filled.)
Ready 35 GET.SEQUENTIAL (Field 35 is read into PAD.)

Ready PAD WRITELN
FIELD: 35

Since TransFORTH's disk commands do not allow you to specify
record and length parameters, random access files are best
handled through explicit DOS commands. (The format and control
of random access files are more completely described in the Apple
Disk Operating System manual.)

INPUT AND OUTPUT 8 - 12

In the following example, FILL.RANDOM fills a random file with
508 records, and GET.RANDOM accesses a given record in the file
(with the record number on the stack). Even though the syntax
differs, notice that TransFORTH uses the same DOS commands for
accessing random files that Basic does:

: FILL.RANDOM
CR 132 PUTC

PRINT " OPEN RANDOM,L15 " CR (Open the file.)

5¢8 0 DO (Loop for 50@ records:)
CR 132 PUTC
PRINT " WRITE RANDOM,R " I . CR (Set record number.)
PRINT " RECORD: " I . CR (Print text into record.)

LOOP .

CR 132 PUTC PRINT " CLOSE " CR ; (Close the file.)

: GET.RANDOM)
CR 132 PUTC PRINT " OPEN RANDOM,L15 " (Open the file.)

CR 132 PUTC
PRINT " READ RANDOM,R " . (Point to record, number from stack.)

CR PAD READLN (Read the record into PAD.)
CR 132 PUTC PRINT " CLOSE " CR ; (Close the file.)
Ready FILL.RANDOM (The disk whirs, filling the file.)
Ready 256 GET.RANDOM (Record 256 is read from the file

into PAD.)

Ready PAD WRITELN
RECORD: 256

Saving the Contents of Arrays

With a basic understanding of how much memory is used by arrays,
you can save the entire contents of an array to disk as a binary
file. The data can later be loaded from disk back into the
array. This is very handy if you want to work with large sets of
data.

In TransFORTH, an array is simply a block of memory that is
segmented into many elements. The array data is saved by
BSAVEing the block of memory which the array uses. Two values
must be found: the starting address and the length of the array.
The starting address is simply the address of the first element
of the array. The length can be found as follows:

INPUT AND OUTPUT 8 - 13

length = total number of elements * number of bytes per element

When determining number of elements, remember to include the zero
elements. For example, the length of the following array: -

Ready 5 8 9 2 ARRAY FROG

can be found by:

length = (8 + 1) * (9 + 1) * 5 =9 * 19 * 5 = 450 bytes
The starting address (for our example) is:

Ready # @ ARRAY FROG .
12219

With this information, the array data can be saved to disk with a
BSAVE:

Ready CR 132 PUTC PRINT " BSAVE FROGDATA,A12219,L459 " CR

If the array remains in the same place in memory, the data can be
brought back at a later time with a simple BLOAD:

Ready CR 132 PUTC PRINT " BLOAD FROGDATA "™ CR

If the array has been recompiled into a different area of memory,
the new starting address must be found:

Ready # # FROG .
12280

Ready CR 132 PUTC PRINT " BLOAD FROGDATA,A12288 " CR

Overlays

Sometimes a program may grow so large that it cannot fit in the
Apple memory. If the program can be broken into two or more
smaller sections, where one only one section needs to be in
memory at any given time, then overlays can be used.

The word "overlay" refers to a portion of a program that
overlays, or overwrites, another portion which is not currently
needed. For example, suppose you are writing a large program
that (1) stores and (2) retrieves financial information from a

INPUT AND OUTPUT 8 - 14

file. You never need to do the store and retrieve operations at
the same time, and can divide the program into two parts.
However, each part relies on the same low-level common variables
and routines when accessing the disk.

Using overlays, the common routines stay in memory at all times.
The store part of the program is loaded and used as needed. When
it is time to switch to retrieve operations, the retrieve part is
then loaded over the top of the store part, overlaying and
overwriting it. The retrieve operations can then be done.

Implementing overlays in TransFORTH requires a good working
knowledge of how TransFORTH programs are read, compiled, and run.
If you understand what is happening and why, then overlays are
fairly easy to create. The process can be broken into a few

steps:

Compile the common variables and routines onto the word library
first, then compile the first part of the program to be run.

Run this section.

When it is time to switch to the next part, a word definition in
memory should be called to: 1) FORGET the words from the first
part (removing it from the system), and 2) begin compiling the
second part in from disk.

When the new file has finished compiling, the second part will be
in memory, ready to be run. To execute it, one of two techniques
can be used: 1) Include the immediate commands CLOSE RUN as the

last line in the second part's source file. This will force the

file closed and begin running the newly compiled code. 2) Have

the TransFORTH system in AUTORUN mode before compiling the second
part. This will guarantee that the new code will begin executing
immediately.

Here is a short example of an overlay. Enter the editor, type in
the following lines, and save the text with the filename "PART1":

: COMMON

PRINT " THE COMMON ROUTINE IS IN MEMORY " ;
: PART1

PRINT " THIS IS PART 1 " CR

COMMON CR

PRINT " NOW GOING TO PART 2... "
FORGET PART1
DISK> " PART2 " INPUT ;

INPUT AND OUTPUT 8 - 15

Now clear the editor buffer and enter these lines, saving them to
disk as "PART2":

: PART2
PRINT " THIS IS PART 2 " CR
COMMON CR

PRINT " ALL DONE NOW. " ;

CLOSE RUN

Now return to TransFORTH, compile "PART1" from disk, and run it:
Ready DISK> " PART1 " INPUT

Ready RUN

THIS IS PART 1 .

THE COMMON ROUTINE IS IN MEMORY

NOW GOING TO PART 2 (PART1 FORGETs itself and calls PART2.)
THIS IS PART 2

THE COMMON ROUTINE IS IN MEMORY

ALL DONE NOW.

Note: If a word (or group of words) on the word library is
forgotten from a program, it can still be called while the
program is running. However, the next line of code compiled by
the system will overwrite it.

To complicate the issue further, an alternative to putting the
FORGET line in the first part is to place it as the first line of
the second file, outside of a word definition. When this second
file is compiled, the first task executed will be to FORGET the
first part.

Binary File Overlays

There is another, completely different, way to implement
overlays, with its own advantages and disadvantages. For this
method, compile the low-level words and one part of the program
onto the word library, then call SAVEPRG to save the entire
system as an executable binary program. The AUTORUN option
should be set so that this part of the program will begin running
immediately when BRUN.

Repeat this for each "overlay" part, compiling the common code

and one overlay, then saving each new system with SAVEPRG. This
will produce several executable binary files, one for each part.

INPUT AND OUTPUT 8 - 16

Then to switch from one part to another, each part can simply
make a DOS call to BRUN the next part. The new part, being
another TransFORTH system, will completely overwrite the first.

The advantage to this approach is that your finished program disk
has more privacy and security, since you don't have to include
source files on the disk.

The disadvantages are 1) binary files sometimes take up more
space on disk (especially if large arrays are declared, which
also increases loading time), and 2) passing information from one
part to another is much more difficult. Any data stored in
variables or arrays will be lost as the new system is brought
into memory. The best solution is to copy all important data
into some free area of memory immediately before BRUNning the
second part. Then have the second part read the data back into
its variables before continuing.

Summary

TransFORTH includes a versatile Input/Output operating system for
routing characters in various ways. You can specify either
character INPUT or OUTPUT or both. Input and output can be a
peripheral card DEVICE, an area of MEMORY, or a textfile on DISK.
With various combinations, the I/0 system can be used to read and
compile textfiles, print to a printer, write data into memory,
communicate with devices through serial cards, etc. The
input/output commands do not cause characters to be printed or
read; they only specify sources and destinations for characters
that are printed or read by the system or a running program.

A textfile speedreader in TransFORTH allows files to be read much
faster than is normally possible with Apple DOS. The speedreader
also allows one textfile to be read while another is written, for
file-to-file copying, etc.

The word CLOSE closes any open disk file and returns all
TransFORTH I/0 to normal. EOF becomes nonzero when an
End-0f-File condition occurs. EOFCHR allows you to specify an
ASCII value other than zero as the End-Of-File CHaRacter. (Both
the I/0 system and the string manipulation words recognize
EOFCHR.) ECHO causes input or output characters to be echoed to
the screen. MOVFILE simply copies characters from input to
output until an End-Of-File condition occurs.

A number can be written into a string by specifying the string as

INPUT AND OUTPUT 8 - 17

OUTPUT, then printing the number and a zero End-0f-String marker,

then CLOSEing output. This feature is similar to Applesoft's
STR$ function.

DOS commands can be called directly by printing a carriage
return, a CTRL-D, the DOS command, and another carriage return.
However, the I/0 system duplicates the functions of the DOS
commands PR#n, IN#n, OPEN, READ, and WRITE. When manipulating
data in textfiles, sequential files are best handled with the
TransFORTH I/0 system, random access files with explicit DOS
commands.

Array data can be saved to disk by determining the start and
length of the block of array memory, then BSAVEing this block.
The data can be reloaded later with BLOAD.

Overlays are used when a program is too large to fit in memory,
but can be segmented into smaller parts. Textfile overlays
involve running the first part of the program, FORGETting the
words in memory, compiling the next part into the word library,
and continuing execution., Binary file overlays are done by
saving each part with SAVEPRG as an executable program, then
using BRUN to switch from one part to another.

Problems

(1)
Write a TransFORTH line to print the phrase "HI, THERE" to your
printer.

(2)
Print the contents of the file "BASCON" to the screen.

(3)
Print the contents of "BASCON" to the printer.

(4)
Print only the first line of the file "BASCON" to the printer.

(5)
Copy the contents of "BASCON" into a new file called "BASCON1".

(6)
Compile BASCON into memory, with the proper command set to see
the characters on the screen as they are read and compiled.

INPUT AND OUTPUT 8 - 18

(7)
The word PI places the value of pi on the stack. Write the value
of pi into a string as ASCII characters, then print the string.

(8)
Delete the new file "BASCON1" from disk using a DOS command from

TransFORTH.

Solutions to Problems
(1)

Assuming the printer is in slot 1:
Ready 49498 DEVICE OUTPUT PRINT " HI, THERE " CLOSE
or if the word SLOT is in the word library:

Ready 1 SLOT DEVICE OUTPUT PRINT " HI, THERE " CLOSE

(2)
Ready DISK> " BASCON " INPUT MOVFILE

(3)
Ready DISK> " BASCON " INPUT 49408 DEVICE OUTPUT MOVFILE

(4)
Ready DISK> " BASCON " INPUT 49408 DEVICE OUTPUT PAD READLN PAD
WRITELN CLOSE

(5)
Ready DISK> " BASCON " INPUT DISK> " BASCON1 " OUTPUT MOVFILE

(6)
Ready 1 ECHO DISK> " BASCON " INPUT

(7)
Ready 1 58 1 ARRAY STR

Ready @ STR MEMORY OUTPUT PI . @ PUTC CLOSE

Ready @ STR WRITELN
3.14159266

(8)
Ready CR 132 PUTC PRINT " DELETE BASCON1 " CR

INPUT AND OUTPUT 8 - 19

CHAPTER NINE: GRAPHICS
CHAPTER TABLE OF CONTENTS:

High Resolution Graphics

In and Out of Graphics
Combined Text and Graphics
Graphics Drawing Commands
Color

ORMODE and EXMODE
Scaling Functions and Graphs
Character Sets

Turtlegraphics

PENUP
PENDOWN
MOVE
TURNTO
TURN
MOVETO
Examples

Larger Graphics Programs
Screen “Dumps” and Saves

Low Resolution Graphics

LGR

LGRF

LCOLOR

LPLOT

LHLINE

LVLINE

LSCRN

Leaving Low Resolution Graphics
An Example

Summary
Problems

Solutions to Problems

9-16

9-17

9-17
9-18
9-18
9-18
9-19
9-19
9-20
9-20
9-20

9-21

9-22
9-23

TransFORTH includes a variety of graphics features, including low

and high resolution graphics, Turtlegraphics, and text printing
on the graphics screen. Some of the commands can be found in the

TransFORTH word library; others are included in source files on
the TransFORTH system disk. Several graphics demonstration
programs are also included on the disk.

This chapter describes in detail all of the TransFORTH graphics
commands. However, it assumes that you're at least a little
familiar with Apple graphics from either Applesoft or Pascal.
For more detailed information, see the Apple manuals.

Note: The graphics features will not work if an 88-column card
is active. You may need to remove the card while using the
graphics features. (Alternatively, you can use a special routine
which causes TransFORTH to ignore the 88-column card. See
Appendix D for more information.)

High Resolution Graphics

In the Apple memory are two 8192-byte screen areas which can be
used for storing and displaying high-resolution images. Each
screen can hold up to 53,768 dots, or "pixels", arranged in a
grid 280 pixels wide by 192 tall.

TransFORTH can display graphics on the second of the two graphics
screens. (The TransFORTH language itself overlaps the first
screen area.) The graphics words use a display area
approximately 9% narrower than usual: 256 pixels horizontally
rather than 288. (The missing 9% is from the right side of the
screen.) This reduction in size significantly increases the
speed of TransFORTH graphics.

In and Out of Graphics

There are two separate but similar ways of using high-resolution
(or "hi-res") graphics. Both of these can be used for drawing
points, lines, and rectangular areas on the graphics screen. The
first uses only built-in TransFORTH commands, and cannot combine
text with the graphics. The second makes use of a "graphics
module™ from the disk, and allows you to print text anywhere on
the graphics screen, as well as draw points, lines, and areas.

To enter the high-resolution graphics-only mode, type the
TransFORTH word GR. GR erases the second graphics screen, then

GRAPHICS 9 -1

switches to display this screen on the Apple video display. If
you type GR from immediate mode, the screen will go blank, since
there is nothing drawn on the graphics screen yet:

Ready GR

On the now-invisible text screen, a "Ready" prompt is still
waiting your command. To return to text mode, type TEXT. (You
will have to type it "blind".) The text screen will reappear,
showing the commands you've typed:

Ready GR

Ready TEXT

Combined Text and Graphics

For many graphics applications, switching between text and
graphics modes works fine., However, in most cases, and to better
show you here how the graphics routines work, it is much more
convenient to be able to display text and graphics at the same
time. The TransFORTH system disk contains two machine language
routines designed to accomplish just that, by "drawing" the text
characters onto the graphics screen. Once the appropriate
routine is active, all screen printing will automatically go to
the graphics screen. Both upper and lower case characters are
supported.

The two modules are stored as binary files on the disk. One is
designed for 48K Apples, the other for 64K systems. The methods
for loading and running each are different, but similar:

The name of the graphics module used with 48K systems is
"GR.TEXT.48K". To bring the module into memory, enter the
following:

Ready CR 132 PUTC PRINT " BLOAD GR.TEXT.48K " CR

The disk will whir as the module is loaded. To turn the
text-and-graphics on at any time, type:

Ready 37888 CALL

The name of the graphics module used with 64K (or larger) systems
is "GR.TEXT.64K". To bring this module into memory, enter:

Ready CR 132 PUTC PRINT " BLOAD GR.TEXT.64K " CR

GRAPHICS 9 -2

The disk will whir as the module is loaded. To turn the
text-and-graphics on at any time, type:

Ready 47616 CALL

The appropriate graphics module can also be loaded and run with
one command by substituting "BRUN" for the "BLOAD" in the line(s)
above. Once in memory, it can later be CALLed without being

reloaded every time.

Calling the module puts TransFORTH into graphics mode, and
directs character input and output to its own special routines.
Whenever a character is printed, it is then routed to the
character graphics routines to be drawn on the screen.

You should now see the word "Ready" displayed (in graphics) on
the Apple high-resolution screen. The cursor is a steady white
block, rather than blinking or flashing, since the graphics
screen cannot display flashing characters. Type LIST. The usual
list of TransFORTH words is displayed, though the characters on
the graphics screen scroll much more slowly than characters in
text mode. (Any graphics images in the text window will also
scroll. This can be used for some interesting effects.) All of
the usual TransFORTH screen display words (HTAB, VTAB, WINDOW,
etc.) can be used in the text-—and-graphics mode.

When you want to return to the normal text display, type TEXT.
TEXT switches the special character I/0O back to normal in
addition to returning to text mode.

Note: GR can be used when in either hi-res mode to erase the
entire graphics screen. As in text mode, the word HOME erases
only inside the text window.

Another Note: The graphics module uses the same area of memory
as the text editor. Because of this overlap, you must return to
text mode before calling the editor. The TransFORTH system will
recognize that the editor has been overwritten and will reload it
from disk. If you want to return to mixed text-and-graphics
after editing, you will have to load the graphics module into
memory again.

Graphics Drawing Commands

To specify points on the graphics screen, TransFORTH uses
"cartesian coordinates". This is a common method which selects a

GRAPHICS 9 - 3

point by naming the column and the row the point is in. The
horizontal position is the X coordinate and the vertical position
is the Y coordinate.

The range of screen coordinates for TransFORTH graphics is:

X from @ (screen left) to 255 (screen right)

Y from @ (screen top) to 191 (screen bottom)

Thus, the upper left corner of the screen can be represented with
X=@ and Y=0, or simply the X,Y pair (¢,0).

The text character display from the graphics module still uses
all 280 dots across the screen for 40 characters per line.

For these examples, a text window is used to keep text from
scrolling all over the beautiful graphics. The examples that
follow will keep the graphics above the text window and away from
harm. To enter text-and-graphics mode and establish a window, do
the appropriate graphics CALL (see above), then type:

Ready 0 40 18 24 WINDOW

This sets a 40-column wide window from line 18 to the bottom of
the screen. Now type:

Ready GR

This clears the screen.

The three main drawing words are PLOT, LINE, and FILL. The
TransFORTH word PLOT removes two numbers from the stack,
interprets them as X and Y coordinates, and plots a point at
those coordinates on the screen. The form for PLOT is:

<X-coordinate> <Y-coordinate> PLOT

This example will plot a point in the upper left corner of the
screen:

Ready 4 @ PLOT
Here is another point, near the upper right corner of the screen:
Ready 200 25 PLOT

The word LINE, like PLOT, removes two numbers from the stack and

GRAPHICS 9 - 4

interprets them as X and Y coordinates. LINE then draws a
straight line from the last plotted point to the given
coordinates. To draw a line, you simply use the last point
plotted as one of the endpoints, then give LINE the coordinates
of the other endpoint:

Ready 50 100 LINE

This draws a diagonal line from the point (200,25) to (50,188).
You can draw another line by starting at the endpoint of the last
line:

Ready 5@ 10 LINE
This draws a vertical line up from the end of the first line.

TransFORTH can also fill in rectangular areas with the word FILL.
FILL removes X and Y coordinates from the stack. It treats the
last plotted point as one corner of an area, and the given
coordinates as the opposite corner. This example fills in a
rectangular area on the right side of the screen:

Ready 120 125 PLOT
Ready 288 75 FILL

For both LINE and FILL, the "last plotted point" is always the
point last used by a plotted word, whether it was PLOT, LINE, or

FILL.

Color

Of course, TransFORTH can draw in colors, too! The color is set
with the word COLOR. COLOR removes a number from the stack and
uses it to select a color. The eight color numbers (8 through 7)
are the same as those used by Applesoft Basic. Here is a listing
of the graphics colors:

Color Number Color

[/] Black (1)

1 Green (1)

2 Violet (1)

3 White (1)

4 Black (2) .

5 Orange (2) (depends on monitor)
6 Blue (2) (depends on monitor)
7 White (2)

GRAPHICS 9 -5

White dots are always plotted two pixels wide to appear as a true
white on color monitors. The orange and blue colors may appear
different shades on different monitors. The colors can be
divided into two groups. The numbers in parentheses represent
the "group number" (either 1 or 2). Because of some Apple
hardware constraints, it may be desirable to use colors from the
same group when drawing lines or areas close together. We'll
show you an example of this in a bit. (The Apple][and //e
Reference Manuals contain more information on the strange
internal details of these constraints.)

If you don't mind a bit of typing, this example will display 6
diagonal lines in each of the visible colors:

Ready GR

Ready 1 COLOR @ ¢ PLOT 1¢@ 160 LINE

Ready 2 COLOR 20 ¢ PLOT 12¢ 166 LINE

Ready 3 COLOR 40 @ PLOT 14¢ 1090 LINE

Ready 5 COLOR 60 ¢ PLOT 1604 100 LINE

Ready 6 COLOR 8¢ ¢ PLOT 180 180 LINE

Ready 7 COLOR 169 @ PLOT 28@¢ 100 LINE

With your color monitor properly adjusted, the colors of these
lines (from left to right) should be green, violet, white,
orange, blue, and another brand of white.

Lines and points can be drawn over FILLed areas, but the colors
will be affected:

Ready GR
Ready 5 COLOR
Ready @ @ PLOT 1¢¢ 140 FILL

This draws an orange rectangle in the upper left portion of the
screen. To draw a line of a different color through it, type:

Ready 6 COLOR

Ready # ¢ PLOT 154 156 LINE

GRAPHICS 9 - 6

Note that 6 COLOR specifies blue, but the line appears white when
drawn over the orange background. Now try the same example
again, this time using colors from different color groups:

Ready GR 5 COLOR

Ready ¢ @ PLOT 100 168 FILL
Ready 1 COLOR

Ready ¢ @ PLOT 158 150 LINE

Whoops! You should see a series of small green rectangles along
the diagonal. This is the result of the Apple hardware
limitations. The solution to avoid this trouble is to simply use
colors of the same group when lines or areas are superimposed or
placed close together.

wWhile the two whites and the four colors place dots on the
screen, the two blacks erase dots. Here are a couple of
examples:

Ready GR 3 COLOR # ¢ PLOT 1090 100 FILL
Ready ¢ COLOR ¢ ¢ PLOT 166 190 LINE
Ready 1 COLOR 24@¢ 28 PLOT 120 120 LINE

Ready @ COLOR 24¢ 2¢ PLOT 126 128 LINE

ORMODE and EXMODE

TransFORTH has two different "drawing modes", called "ormode" and
"exmode". Amazingly enough, these modes are set with the
TransFORTH words ORMODE and EXMODE. The "default" mode (the mode
TransFORTH uses when one is not specified) is ORMODE. The
philosophy behind ORMODE is that the plotting words put dots of
the specified color on the screen regardless of what is already
on the screen. With EXMODE, however, a drawing command will put
points on the screen only where points are not already plotted.
If some points to be plotted are already plotted, those points
will instead be turned off.

GRAPHICS 9 - 7

A couple of examples will be helpful here. First FILL an area,
then draw an overlapping line in ORMODE:

Ready GR 3 COLOR 109 5¢ PLOT 15¢ 108 FILL
Ready 50 58 PLOT 200 186 LINE

The line goes straight through the middle of the rectangle. In
ORMODE, the way to erase a line is to draw a black line over it:

Ready ©# COLOR 58 58 PLOT 20¢ 144 LINE

The line was erased, but it neatly chopped the rectangle in half,
too. Using EXMODE, anything that can be done can also be undone.
Try the same example again, this time in EXMODE:

Ready GR EXMODE
Ready 3 COLOR 109 58 PLOT 150 109 FILL
Ready 50 50 PLOT 204 106 LINE

The line is white, except where it passes over the white
background of the rectangle. Here it is changed to black. Now
to erase the line, you want to make white sections black, and the
black trace through the rectangle white. And this is exactly
what happens with any plotting in EXMODE. You can erase the line
by telling TransFORTH to draw it again:

Ready 56 50 PLOT 208 106 LINE

The line is erased, and the rectangle is again intact. The key
to understanding EXMODE is that if something is drawn once, it
appears on the screen. If it is drawn again, it disappears,
leaving the screen as if the object had never been drawn.

Scaling Functions and Graphs

The difficulty in plotting functions is usually in scaling the
points so that the graph fills the Apple screen. Here is an
example that should give you an idea how to deal with plotting
and scaling in general.

Two cycles of a sine wave range from X=8 to X=4*pi (about 12.57)

and ¥Y=-1 to Y=1. This can't be plotted without at least some
scaling, because TransFORTH can't plot negative numbers.

GRAPHICS 9 - 8

Here is a word that plots a sine curve that fills the screen:

: SINE.CURVE

GR @ 96 PLOT Set graphics & plot first point.)

(
256 1 DO (Loop for 255 more points.)
I 255 / PI * 4 * (Scale the X-coordinate to the sine.)
SIN (Find the sine.)
-95 * 95 + (Scale the result back to the screen.)
I SWAP LINE (Draw the line from the last point.)
LOOP
GETC DROP TEXT ; (Wwait for a keypress, then end.)

The first scaling (divide by 255 and multiply by 4*pi) brings the
X=0 to X=255 down to X=0 to X=4*pi to be used by the sine
function. The second scaling (multiply by -95 and add 96 to
center it) brings the result of ¥Y=-1 to ¥Y=1 back to the screen
range of Y=1 to Y=191. The negative number (-95) is used to turn
the points "upside-down", since TransFORTH's Y-coordinate (like
Basic's) increases downward, not up.

By running SINCE.CURVE, you can see how the graph is scaled to
£i11 the screen. The program FUNCTION, introduced in Chapter
Seven, is designed to scale any range onto the screen. You may
wish to adapt it to your own needs.

Character Sets

As discussed earlier, when the graphics module is in use, text
characters are literally "drawn" on the graphics screen. The
shapes of these characters, however, are not fixed. A portion of
the graphics module contains the "table" of character shapes used
in drawing the characters. This table is called a "character
set" or "font".

There are five different character sets stored as binary files on
the TransFORTH system disk:

CHR.SYS
CHR.STOP
CHR.SLANT
CHR.GOTHIC
CHR.BYTE

Each character set uses a different "style". You can load a
character set into memory so that it overwrites the set built
into the graphics module. Then the new character set (and style)
will be used when characters are printed on the hi-res screen.

GRAPHICS 9 -9

Like the graphics modules, the character sets are loaded into
different areas of memory, depending on how much memory is
available. (The graphics module should already be in memory.)

To load a character set into an Apple][48K system, type:
Ready CR 132 PUTC PRINT " BLOAD <filename>,A38656 " CR

where <filename> is the name of one of the character sets listed
above. To load a character set into a 64K Apple, type:

Ready CR 132 PUTC PRINT " BLOAD <filename>,A48384 " CR

As soon as the new character set is loaded, any character
printing on the high resolution screen (including scrolling) will
use that character set. With the graphics module active, try
loading a few of the character sets into memory to see what they
look like. (The CHR.SYS "system" character set is the same one
that is built into the graphics module, and its character shapes
look like the standard Apple text characters.) Call the graphics
module, then BLOAD the file CHR.SLANT, using either the 48K or
64K format, whichever is appropriate. Try CHR.BYTE, then
CHR.SYS.

(Note: The TransFORTH character sets use the same format as
GraFORTH character sets. If you have GraFORTH, you can create
new character sets to be used with TransFORTH. Many of the Apple
DOS Toolkit character sets are also compatible, and can be used
with TransFORTH.)

Turtlegraphics

Turtlegraphics is also available from TransFORTH. Turtlegraphics
is a somewhat different way of specifying how to draw lines.
Imagine a tiny turtle sitting on the middle of the screen with a
pen tied to his tail. Wherever he moves he draws a line behind
him. You can tell him to turn to the left or the right, to walk
forward a given distance leaving a straight line behind him, or
lift the pen so that a line will not be drawn as he moves. (For
the mathematicians among us, this way of drawing lines could be
considered as using "relative polar coordinates".)

GRAPHICS 9 - 18

The Turtlegraphics words in TransFORTH are found on the system
disk in a textfile called "TURTLE". These words can be compiled
into the word library by typing:

Ready DISK> " TURTLE " INPUT

You can see the words added to the word library by typing LIST.
A few of the words added to the TURTLE file are not used
directly, but are called by other words.

Turtlegraphics can be "initialized" in one of two ways. Typing
TURTLE sets Turtlegraphics in graphics-only mode,.wpile
TURTLE.TEXT calls the graphics module. More specifically:

TURTLE.TEXT first determines if the appropriate graphics module

is loaded. If not, it loads it automatically. TURTLE.TEXT then
CALLs the module, sets a text window along the bottom 4 lines of
the screen, and calls TURTLE.

TURTLE clears the graphics screen, then positions the turtle in
the center of the screen, facing up, with the pen down.

To initialize Turtlegraphics with a text-and-graphics display,
type:

Ready TURTLE.TEXT

Once text-and-graphics Turtlegraphics is ini;ialized with
TURTLE.TEXT, the turtle can later be reset with either

TURTLE.TEXT or TURTLE. (TURTLE does not turn off the mixed
text-and-graphics.)

PENUP

The word PENUP "lifts" the turtle's pen so that the turtle can be
moved without drawing a line on the screen. The pen stays up
until a PENDOWN command is given or the turtle is reset with
either TURTLE or TURTLE.TEXT.

PENDOWN

PENDOWN "lowers" the turtle's pen. A line will be drawn whenever
the turtle is moved with the pen down. PENDOWN stays in effect
until a PENUP command is given.

GRAPHICS 9 - 11

MOVE

The word MOVE moves the turtle a given number of pixels in the
direction it is pointing. If the pen is down, a line will be
drawn. If the pen is up, a line will not be drawn. The form is:
<distance> MOVE

The distance is measured in pixels, or dots. To move the turtle
5¢ pixels, type:

Ready 5@ MOVE

TURNTO

The turtle can be turned to a certain angle with TURNTO. TURNTO
has the form:

<angle> TURNTO

The angle given is in degrees, and increasing angles are in a
clockwise direction. Zero is straight up, 90 is to the right,
189 is facing down, and 278 is to the left. This example turns

the turtle to face to the right (to 96 degrees), then moves it 75
pixels:

Ready 9@ TURNTO

Ready 75 MOVE

TURN

The word TURN turns the turtle clockwise from its current
direction a given angle. The form is the same as for TURNTO, but
TURN is a relative turn from the turtle's current direction. The
following example now turns the turtle 45 more degrees clockwise,
then moves the turtle 58 pixels:

Ready 45 TURN

Ready 50 MOVE

GRAPHICS 9 - 12

MOVETO

Lastly, MOVETO moves the turtle directly to a specified (X,Y)
position on the screen. 1If the turtle's pen is down when the
MOVETO command is given, a line will be drawn. If the pen is up,
no line will be drawn, but the turtle's position will be updated.
The form for MOVETO is:

<X-coordinate> <Y¥-coordinate> MOVETO

You can move the turtle to the upper-left corner of the screen,
then have the turtle draw a line back to the center, with the
following commands:

Ready PENUP

Ready @ @ MOVETO

Ready PENDOWN

Ready 128 96 MOVETO

At any time, you can also find the current position and angle of
the turtle through three variables:

TURTLE.X contains the current X coordinate of the turtle.
TURTLE.Y contains the current Y coordinate of the turtle.
TURTLE.ANG contains the angle the turtle is pointing, in degrees.

For example, you can find which direction the turtle is pointing
by retrieving the value of TURTLE.ANG:

Ready TURTLE.ANG .
135

The turtle is still turned 135 degrees from straight up.

GRAPHICS 9 - 13

Examples
The advantage of Turtlegraphics is that shapes can be drawn in
different sizes and facing different directions with little work.
For example, to draw a square, you can type the following:
Ready TURTLE.TEXT
Ready 54 MOVE 94 TURN 5@ MOVE 9¢ TURN
Ready 50 MOVE 90 TURN 5@ MOVE
A faster way is to repeat the words in a loop:
Ready TURTLE
Ready 4 @ DO 58 MOVE 9@ TURN LOOP
This line can be put into a word definition and used at any time:
SQUARE
4 ¢ DO
50 MOVE
98¢ TURN
Loop ;

Now the square can be drawn starting at any point on the screen
and turned any direction:

Ready TURTLE

Ready PENUP ¢ 10¢ MOVETO PENDOWN SQUARE

Ready PENUP 55 10¢ MOVETO 38 TURNTO PENDOWN SQUARE
Ready PENUP 129 109 MOVETO 6@ TURNTO PENDOWN SQUARE
Ready PENUP 190 14¢ MOVETO 98 TURNTO PENDOWN SQUARE

The following example makes a very nice circular pattern using
SQUARE:

Ready TURTLE

Ready 36 2 DO SQUARE 16 TURN LOOP

GRAPHICS 9 - 14

This next definition can draw squares of varying sizes. The
"size number" (the length of one side in pixels) should be
waiting on the stack:

: SQUARE1l
4 ¢ DO
DUP MOVE
9@ TURN
LOOP
DROP ;
Ready TURTLE
Ready 18 SQUARE1l
Ready 45 TURN 2@ SQUARE1

Ready GR 65 1 DO I SQUARE1l 14 TURN LOOP

Larger Graphics Programs

The second graphics screen uses Apple addresses 16384 to 24575
(hex $4000¢ to $SFFF). Unfortunately, if the word library becomes
large enough, it can grow directly through this memory area. If
you're using high-resolution graphics, program bytes will begin
to appear on the hi-res screen as dots, and the next screen erase
will destroy the top of the word library.

If you find that a TransFORTH graphics program is growing through
address $400¢ (if the value of HERE is close to or above 24575),
you can adjust:the program to hop around the graphics screen
area. This is done by declaring a large array in the appropriate
place to surround the graphics screen memory. Calling the hi-res
graphics words will then change screen bytes that are inside the
array, but not affect the rest of the program. Here is the
technique:

1. Compile your program onto the word library, then SLIST the
library to see what words use what portions of memory. Find the
word which has an address less than but closest to $460¢. (Also
note about how far from $4000 it is.)

GRAPHICS 9 - 15

2. FORGET the program, then enter the editor and load the source
file for the program. Locate the word found above. Immediately
before this word, insert a line to declare an ARRAY that is at
least 8192 bytes long. Here is an example declaration:

1 8250 1 ARRAY GRAPHICS.SPACE

3. Save the new source file back to disk, then compile it onto
the word library again.

4. SLIST the new program. Make certain that the address of the
new array is less than $4008, and the address of the next higher
word is greater than $600@¢. If this next address is still less
than $60006, repeat step 2, increasing the size of the array.

Screen “Dumps” and Saves

If you want, you can save pictures on the hi-res screen to disk
as binary files. These files can later be reloaded to put the
picture back on the screen.

To create a graphics file on disk, first draw the picture you
want to save using TransFORTH's graphics commands. Then execute
the following command:

CR 132 PUTC PRINT " BSAVE <filename>,Al6384,L8192 " CR

where <filename> is the name you want the picture saved as. The
disk will whir as the screen area is saved. Note: If you type
the command in immediate mode while using mixed
text-and-graphics, the characters typed will be saved with the
screen. It's usually better to put the command in a word
definition to be called without affecting the graphics screen.

To load the picture back into the hi-res screen memory, type:
CR 132 PUTC PRINT " BLOAD <filename> " CR

Many printers include the capability to do a high-resolution
"screen dump", printing the contents of the screen on paper.
Different printers use different techniques to accomplish this.
You should carefully read your printer manual to determine
exactly what it "wants" in order to do the dump.

Some printers require you to initialize them with "PR#n", then
print a few special characters. For example, the Grappler

GRAPHICS 9 - 16

interface card uses a CTRL-I followed by the letters "G2". This
can be done directly from TransFORTH, as in this example word
definition:

: DUMP1

CR 132 PUTC PRINT " PR#1 " CR (Or use "494068 DEVICE OUTPUT")
137 PUTC (Prints CTRL-I)
PRINT " G2 " CR (Prints "G2" and a carriage return)
TEXT ; (Turns the printer off after the screen dump)

Other printers require a special routine to be loaded from disk.
If this routine uses the same memory that TransFORTH uses, then
the printer dump cannot be called directly from TransFORTH. (As
usual, see the memory map in Appendix B.) If this is the case,
simply save the screen image to disk as a binary file. From
Basic, you should then be able to follow the instructions that
came with the printer to load the file into memory and do the
screen dump.

Low Resolution Graphics

Low resolution ("lo-res") graphics capabilities are added to the
TransFORTH system by compiling the textfile "LO.RES" from disk:

Ready DISK> " LO.RES " INPUT

Low resolution graphics allow for 4@ points horizontally by 48
vertically, for a total of 192¢ points. Each point can be one of
16 possible colors. Four lines of text can also be added to the
bottom of the display.

Here are the words included in the "LO.RES" file:

LGR

The word LGR (which stands for "Lo-res GRaphics") initializes
lo-res graphics mode with a 4-line text window at the bottom of
the screen:

Ready LGR

GRAPHICS 9 - 17

LGRF

LGRF (which stands for Lo-res GRaphics, Full screen) also
initializes the entire screen to low resolution graphics, but
without the 4 text lines. LGRF can be used when text is not
needed.

LCOLOR

The color of lo-res points is set with the word LCOLOR. The form
is:

<color #> LCOLOR

<color #> should be a number from @ to 15. The Apple lo-res
colors are:

@ Black 8 Brown

1 Magenta 9 Orange

2 Dark Blue 10 Grey 2

3 Purple 11 Pink

4 Dark Green 12 Light Green
5 Grey 1 13 Yellow

6 Medium Blue 14 Aquamarine
7 Light Blue 15 White

The following line sets the low resolution graphics color to
medium blue:

Ready 6 LCOLOR

Note: Calling either LGR or LGRF always sets the color to black.
A color must be set with LCOLOR before plotting any points.

LPLOT

A single point is plotted with the word LPLOT. The form for
LPLOT is:

<X-coordinate> <Y-coordinate> LPLOT

GRAPHICS 9 - 18

The range of low-resolution coordinates is:

X from @ (screen left) to 39 (screen right)

Y from # (screen top) to either 4@ (for LGR) or 48 (for LGRF).
Here are a couple of examples:

Ready 28 12 LPLOT

Ready 18 12 LPLOT

LHLINE

LHLINE is used to draw a horizontal line in the current color.
The form is:

<left> <right> <Y> LHLINE

<left> and <right> are the X-coordinates for the left and right
endpoints of the line. <Y> is the Y-coordinate the line lies on.
This example draws a pink horizontal line centered slightly below
the middle of the screen. (The line runs from X=9 to X=29 with
Y=30.)

Ready 11 LCOLOR

Ready 9 29 38 LHLINE

LVLINE

The word LVLINE is used to draw a vertical line in the current
color. The form for LVLINE is similar to LHLINE:

<top> <bottom> <X> LVLINE

<top> and <bottom> are the Y-coordinates for the top and bottom
endpoints of the line. <X> is the X-coordinate for the line.

The following example draws a line down the center of the screen:
Ready 8 LCOLOR

Ready 5 28 19 LVLINE

If you've been following all of these examples, you should now
have a simple silly-looking face drawn on the screen!

GRAPHICS 9 - 19

LSCRN

You can determine the current color of any point on the low
resolution screen with LSCRN. The form is:

<X-coordinate> <Y-coordinate> LSCRN

LSCRN removes the X and Y coordinates from the stack, looks at
the given point, and returns on the stack the color number for
that point. For example, this line reads the color of the top of
the nose on the silly face:

Ready 19 5 LSCRN
[8]

Leaving Low Resolution Graphics

To exit the lo-res graphics mode and return to the text screen,
type:

Ready TEXT HOME
An Example

Low resolution graphics, by its very nature, does not have enough
resolution for many tasks such as plotting function curves, etc.
However, lo-res graphics is faster and has a much wider range of
colors that hi-res. The following example program creates a
rapidly changing colorful display. It simply draws random
horizontal and vertical lines in random colors (except black).
(The file "LO.RES" must be compiled before this can be run.)

RANDOM (Select a random integer less than the number)
1 RND * INT ; (given on stack.)

: GETKEY (Read ASCII value of key last pressed.)
49162 PEEK ;

GRAPHICS 9 - 20

: WILD

LGRF (Set full-screen lo-res)
BEGIN (Start loop:)
15 RANDOM 1 + LCOLOR (Random color)
39 RANDOM 39 RANDOM 47 RANDOM LHLINE (Random horiz. line)
15 RANDOM 1 + COLOR (Random color)
47 RANDOM 47 RANDOM 29 RANDOM LVLINE (Random vert. line)
GETKEY 160 = (Has space bar been pressed?)
UNTIL
TEXT HOME ; (Return to text mode)

To run the program, simply type:
Ready WILD

The screen goes "wild".... Press the space bar to exit.

Summary

TransFORTH displays high-resolution graphics on the Apple's
second hi-res screen. An 88-column card may have to be removed
or disabled for graphics to work. Two hi-res "modes" are
available.

The graphics-only mode is entered with the TransFORTH word GR.

Graphics with text printing on the graphics screen is made
available by loading and compiling one of the two graphics
modules on disk. 48K Apple](['s use the "GR.TEXT.48K" module
called at location 37888; 64K systems use "GR.TEXT.64K" called at
location 47616. These routines route TransFORTH's I/0 to "draw"
output characters on the screen. TEXT is used with either
graphics mode to return to a normal text screen.

The word PLOT plots a point on the hi-res screen. LINE draws a
line from the last plotted point. FILL fills a rectangular area
using the given coordinates and the last plotted point as
opposite corners of the area. The range of coordinates for these
words is X = § to 255 and Y = @ to 191.

COLOR sets the plotting color for these words. The eight
standard hi-res colors are used. If either "black" is used,
points are erased rather than plotted. In ORMODE, points are
plotted regardless of what is currently on the screen. 1In
EXMODE, if a point is plotted over a pixel that is already on,
that pixel is instead turned off. Drawing a line a second time

GRAPHICS 9 - 21

in EXMODE erases the line.

There are several character sets on the TransFORTH disk, each
with a different character "style". When using the graphics
module, loading one of these over the original character set will
change the style of the characters printed.

Turtlegraphics is included in TransFORTH, which uses an imaginary
turtle on the screen for drawing lines in different directions
and lengths. TURTLE initializes Turtlegraphics in graphics-only
mode. TURTLE.TEXT also loads the appropriate graphics module (if
necessary), then calls it. The words used to manipulate the
turtle are PENUP, PENDOWN, MOVE, MOVETO, TURN, and TURNTO. The
turtle's current position and angle are stored in TURTLE.X,
TURTLE.Y, and TURTLE.ANG.

If a graphics program grows large enough to overlap the graphics
screen memory, a dummy array must be declared in the appropriate
place to surround the screen memory, protecting the rest of the

program from harm.

High resolution screen images can be sent to a printer that has
screen-dump capabilities, but the methods depend on what printer
is used. The screen can always be saved to disk with a simple
BSAVE. The instructions with the printer should then explain how
to load and print this picture file from Basic.

Low resolution graphics are available by compiling the textfile
"LO.RES". LGR initializes lo-res graphics with a 4-line text
window; LOGRF initializes full screen graphics. The lo-res
plotting words are LCOLOR, LPLOT, LHLINE, LVLINE, and LSCRN.
TEXT HOME returns TransFORTH to text mode.

Problems

Note: As usual, there is more than one possible solution to each
of these problems. Because of the visual aspect involved, feel
free to experiment with TransFORTH to find the answers. Then
compare your answers with the solutions below.

(1)

Write a colon definition that draws a triangle on the
high-resolution screen (any triangle!).

GRAPHICS 9 - 22

(2)

After executing this word
: WHAT'S.LEFT?

GR EXMODE

g ¢ PLOT 100 10@ LINE

@ @ PLOT 99 99 LINE ;

What lines or points will be left on the screen?

(3)

Write a word definition to print the phrase "MIXED TEXT AND
GRAPHICS" on the hi-res screen, and surround it with a
rectangular border.

(4)
Write a word definition that will draw an equilateral triangle
using Turtlegraphics.

(5)

Using low-resolution graphics, plot 16 vertical bars side by
side, each bar in a different color. Start with black at the
left and go through the colors to white on the right,

Solutions to Problems
(1)

Here 1s one triangle:

TRIANGLE
GR 1¢¢ 0 PLOT 209 108 LINE
@ 104 LINE 108 @ LINE ;

(2)

Because EXMODE is set, drawing the second line erases most of the
first line. Only a single point at (160,100) remains on the
screen.

(3)

: PHRASE

11 VTAB 9 HTAB

PRINT " MIXED TEXT AND GRAPHICS "

20 VTAB

55 112 PLOT 231 112 LINE 231 88 LINE
55 88 LINE 55 112 LINE ;

GRAPHICS 9 - 23

(4)

: TRIANGLE1

50 MOVE 120 TURN
50 MOVE 120 TURN
58 MOVE ;

or

: TRIANGLE2
3 @ DO
5¢ MOVE
128 TURN
LOOP ;

(Notice that in TRIANGLE2, the turtle is turned three times for a

a total of 360 degrees (a full circle).

Any regular polygons

drawn this way (including SQUARE in the text above) will divide

the 360 degrees by the number of sides in the polygon.)

(5)
: COLOR.BARS
LGR
16 @ DO
I LCOLOR
@ 38 I LVLINE
LOOP ;

GRAPHICS

9 - 24

CHAPTER TEN; APPLE |/e AUXILIARY MEMORY

CHAPTER TABLE OF CONTENTS:

Installing the Auxiliary Memory Features
Understanding Auxiliary Memory

Using Auxiliary Memory

Single Address Words
Arrays in Auxiliary Memory
Double Address Words
Character Input and Output

Saving High-Resolution Pictures
in Auxiliary Memory

Summary

Page
10-1
10-1

10-2
10-3
10-4
10-6
10-7

10-8

10-9

If you have an Apple //e with an extended 8#-column text card,
you can use the auxiliary memory on this card with TransFORTH.
TransFORTH fully supports the use of the card for up to 46
Kilobytes of extra data storage. You can store individual
numbers, strings, arrays, or even entire textfiles in the
auxiliary memory. For rapid graphics effects, you can also save
up to five high-resolution pictures on the card, then display any
of them on the screen with a single command.

TransFORTH's auxiliary memory commands are not difficult to use,
but they do require a little forethought. When storing or
retrieving information, you will often be dealing directly with
memory addresses on the card. This means you need to allot
enough memory for everything you want to store, and choose your
addresses accordingly. In addition, auxiliary memory can provide
you with an unsurpassed opportunity for crashing the systenm,
since a free area in auxiliary memory may correspond to a part of
your valuable program in main memory. (Discovering that the
monthly payroll program has just been overwritten with a high-res
picture of Mickey Mouse can ruin anybody's day....) Plan ahead,
keep back-ups, and you'll find that the extra memory can be
extremely helpful.

Installing the Auxiliary Memory
Features

First make certain that the extended 86-column text card is
installed in your Apple //e. The TransFORTH language already
includes part of the necessary software for using the memory on
the card. To bring in the remainder and to activate the
auxiliary memory features, simply compile the file "AUXILIARY":

Ready DISK> " AUXILIARY " INPUT

This loads a special machine language module, and adds six words
to the word library. These words are AUX, SETAUX, SETMAIN,
FIRST, SECOND, and AUXMEM. TransFORTH is now ready to use
auxiliary memory. (Once the file is compiled, the features
remain active until you reboot your Apple.)

Understanding Auxiliary Memory

Before using auxiliary memory from TransFORTH, it's necessary to
have a basic understanding of how auxiliary memory "relates" to
main memory and to the Apple processor. The Apple //e Reference

APPLE //e AUXILIARY MEMORY 19 - 1

Manual and Extended 89-Column Text Card Manual provide much more
complete information, but here are the basics: As discussed in
Chapter Six, the Apple processor is only "aware" of 64K (65,536)
different locations. Each location has a fixed address, a number
from @ to 65,535, This means that even with 128K of memory
installed in your computer, the processor can only see 64K of it
at any one time. On the Apple //e, the 128K is divided into two
64K blocks, main memory and auxiliary memory. Main memory is
built into the Apple; auxiliary memory is provided on the
extended text card.)

The Apple //e uses special software switches to "map in" either
main memory or auxiliary memory. Whatever memory is mapped in is
the memory that the processor "sees". The processor then uses
the same 65,536 addresses when accessing either memory. The only
difference as far as the processor is concerned is the setting of
the software switches. The Apple can also select a few
combinations of main and auxiliary, so that some addresses access
main memory, and others access auxiliary.

TransFORTH handles all of the complicated switching between main
and auxiliary memory. The only things you need to be concerned
about are:

1) What is the address?
2) 1Is it in main or auxiliary memory?

The addresses in auxiliary memory that you can use are 2848
through 49151, for a total of 47,184 (46K) locations. Trying to
access addresses outside of this range in auxiliary memory may
have unpleasant (that's the nice word) results. The memory map
in Appendix B shows how all of memory is used.

Using Auxiliary Memory

The TransFORTH auxiliary memory words can be divided into three
groups:

1) AUX, SETAUX, and SETMAIN affect the TransFORTH
"single-address" words: PEEK, PEEKW, PEEKN, POKE, POKEW, POKEN,
MARRAY, ERASE, READLN, WRITELN, ASSIGN>, LENGTH, and GETNUM.

2) FIRST and SECOND affect the TransFORTH "double-address"
words: MOVMEM, CONCAT, COMPARE, and MOVELN.

3) AUXMEM affects the TransFORTH I/O words INPUT and OUTPUT.

APPLE //e AUXILIARY MEMORY 19 - 2

Single-Address Words

The "single-address" words listed above all remove one address
from the stack, then store to or retrieve from that address. The
words AUX, SETAUX, and SETMAIN allow you to select whether you
want that address to be in main memory or auxiliary memory.

The single-address words, of course, usually access main memory.
To make one of the words access auxiliary memory instead, simply
precede it with the word AUX. For example,

Ready 8409 PEEK

reads a value from location 8¢8¢ in main memory, while

Ready 80@0 AUX PEEK

reads a value from location 888 in auxiliary memory. The next
PEEK (unless you precede it with another AUX) will then access
main memory again. All of the single-address words work the same
way. Here are a few more examples:

Ready 1555 8000 POKEW

(The number 1555 is poked into location 8888 in main memory.)
Ready 1212 8¢@9@d AUX POKEW

(1212 is poked into location 8888 in auxiliary memory.)

Ready 800¢ PEEKW . { The value in main memory is read back.)
1555

Ready 8000 AUX PEEKW . (The value in auxiliary memory is read.)
1212

Ready 84@¢ AUX ASSIGN> " I'M IN AUXILIARY MEMORY! "

(A string is assigned directly into address 846¢ in auxiliary
memory.)

Ready 8400 ASSIGN> " I'M IN MAIN MEMORY. "

(Another string is assigned to the same address in main memory.)

APPLE //e AUXILIARY MEMORY 19 - 3

Ready 8400 AUX WRITELN
I'M IN AUXILIARY MEMORY!

Ready 8468 WRITELN
I'M IN MAIN MEMORY.

Whenever the word AUX is executed, it sets a flag that indicates
that the next single-address word that is executed will use
auxiliary memory. Every single-address word checks the flag for
itself, then clears the flag.

I1f most of the data you're manipulating is in auxiliary memory,
then including AUX in front of every single-address word can
become tedious. That's why SETAUX and SETMAIN are available,
SETAUX forces all subsequent single-address words to use
auxiliary memory. SETAUX stays in effect until SETMAIN is
called. SETMAIN tells all single-address words to return to
using main memory. (ABORT or pressing Reset also turn off
SETAUX, returning access to main memory.)

Ready SETAUX
(All single-address words will now use auxiliary memory.)

Ready 8000 PEEKW .
1212

Ready 8480 WRITELN
I'M IN AUXILIARY MEMORY!

Ready SETMAIN
(Single address words are returned to main memory.)

Ready 8400 WRITELN
I'M IN MAIN MEMORY.

Arrays in Auxiliary Memory

By using MARRAY, you can create an array in auxiliary memory.
Remember that when an array is first declared, its contents are
first cleared to zeros. If auxiliary mode is set ahead of time
(with either AUX or SETAUX), then the array area cleared will be
in auxiliary memory. Auxiliary mode must be set before beginning
the MARRAY declaration. Here is an example:

APPLE //e AUXILIARY MEMORY 19 - 4

Ready AUX
Ready 1 268 1 16384 MARRAY BEST

This declared a one-dimensional 2@@-element array named BEST
starting at location 16384 in auxiliary memory, clearing the
array to zeros. This next example is not correct, since the AUX
appears in the middle of the definition:

Ready 1 260 1 16384 AUX MARRAY BOZO

Important: Even when a memory array is declared with auxiliary
memory set, the array doesn't "know" that it uses auxiliary
memory. That information is not stored with the array. Calling
the array name (with subscripts) returns the address of an
element in the array as before. Once on the stack, that address
is simply a number, and there's no way to determine from that
number whether the next single-address word should use main or
auxiliary memory. This means that you must still set auxiliary
mode whenever you want to access or ERASE the array. Here are a
few examples, using the array BEST as defined above:

Ready @ BEST
[16384]

(Retrieve the address of the first element in BEST.)

Ready AUX (Set auxiliary mode.)
[16384]

Ready ASSIGN> " THE BEST AUXILIARY ARRAY AROUND.., "
(Assign a string into BEST.)

Ready # BEST AUX WRITELN (Print the string in BEST.)
THE BEST AUXILIARY ARRAY AROUND...

Ready AUX @ BEST LENGTH
[34]

(You can put the AUX before the array name if you like.)

Ready AUX ERASE BEST

APPLE //e AUXILIARY MEMORY 16 - 5

Double Address Words

The TransFORTH words MOVMEM, CONCAT, COMPARE, and MOVELN are
"double-address" words. Each of them removes two addresses from
the stack to work with two different areas of memory
simultaneously. MOVMEM moves a block of memory from one address
to another, CONCAT concatenates two strings, COMPARE compares two
strings, and MOVELN moves a string from one address to another.
Obviously, AUX and SETAUX will not work with these words if one
address is in main memory and the other is in auxiliary.
Instead, the words FIRST and SECOND are used. FIRST refers to
the first address used by these words, and SECOND refers to the
second.

The format for both FIRST and SECOND is:

<number> FIRST
<number> SECOND

The word FIRST removes one number from the stack. If the number
is #, then whenever a double-—address word is called, the first
address will access data in main memory. If the number is 1,
then the first address will access data in auxiliary memory.

The word SECOND works much the same way, but applies toward the
second address used by a double-address word. If the number
SECOND removes is @, then the second address will reference main
memory. If the number is 1, then the second address will
reference auxiliary memory.

When the auxiliary memory features are loaded, both FIRST and
SECOND are set to zero, to access main memory. If you execute an
ABORT or press Reset, FIRST and SECOND will be reset to zero.

A few examples should help clarify this. The following line:
Ready 24576 32768 256 MOVMEM

moves a block of 256 bytes from address 24576 to 32768. If you
want to move the bytes from 24576 in auxiliary memory to 32768 in
main memory, just set the FIRST address for auxiliary and the
SECOND address for main:

Ready 1 FIRST @ SECOND

Ready 24576 32768 256 MOVMEM

APPLE //e AUXILIARY MEMORY 19 - 6

To move memory from auxiliary to auxiliary, simply set both FIRST
and SECOND to 1:)

Ready 1 SECOND
(1 FIRST was already set in the above example.)
Ready 24576 32768 256 MOVMEM

If you want things to operate normally again, be sure to set
FIRST and SECOND back to main memory!

Ready @ FIRST @ SECOND
Character Input and Output

With the word AUXMEM, you can use auxiliary memory as a source of
character INPUT or OUTPUT, in the same way that the word MEMORY
lets you use main memory for character I/0. Auxiliary memory,
with 46K available, can store much larger files than any free
area in main memory. The forms for AUXMEM are:

<address> AUXMEM INPUT
<address> AUXMEM OUTPUT

Once set, all character I/0 will use the auxiliary memory for
INPUT or OUTPUT until an End-Of-File condition occurs or a CLOSE
is executed. (See Chapter Eight for more general information on

1/0.)

As an example, you can specify a textfile as a source of input,
an address in auxiliary memory as a destination, and move the
entire texfile into auxiliary memory with one line of code!
Ready DISK> " BASCON " INPUT 2¢48 AUXMEM OUTPUT MOVFILE

The disk whirs as the file is transferred. Now that the file is
in auxiliary memory, you can compile it onto the word library,
read the text one line at a time from a program, make changes,

etc., all much faster in memory than on disk. To compile the
file in auxiliary memory, simply type:

Ready 2048 AUXMEM INPUT

Now type LIST. The BASCON words have been added to the top of

APPLE //e AUXILIARY MEMORY 19 - 7

the library. If you want to print the file directly to the
screen, enter:

Ready 2048 AUXMEM INPUT MOVFILE

Auxiliary memory can be used much like a RAM-based "disk".
Suppose you've written a program that accesses several textfiles,
and the disk access is slowing things down. If you know about
how many bytes long each file is, you can read all of your files
into auxiliary memory when the program begins, each file starting
at a different address. As the program runs, working directly
with the files in memory removes the need for the slower disk
access. When the program is finished, simply write the files
back to disk if necessary.

Note: As shown above, the word AUXMEM allows you to move
textfiles to and from auxiliary memory. However, Apple DOS
cannot access this memory directly. This means you cannot
readily BLOAD or BSAVE data to and from auxiliary memory. The
best way to get around this is to use MOVMEM to transfer the data
between auxiliary and main memory, and do the disk access from
main memory.

Saving High-Resolution Pictures in
Auxiliary Memory

Below are two colon definitions that allow you to save up to 5
high-res screen images into auxiliary memory, then transfer them
back to the display screen. Loading an image from auxiliary
memory is much faster than BLOADing from disk, and can be used
for interesting graphics effects.

The word definitions SAVE.PICTURE and GET.PICTURE each remove a
number (1 through 5) to select which save area is to be used.
For example:

Ready 2 SAVE.PICTURE

saves the contents of the TransFORTH high-res screen to the
second buffer in auxiliary memory.

Ready 5 GET.PICTURE

gets the contents of the fifth buffer and moves it to the display
screen.

APPLE //e AUXILIARY MEMORY 19 - 8

: SAVE.PICTURE

@ FIRST 1 SECOND

16384 SWAP 8192 * 8192 MOVMEM
SECOND ;

: GET.PICTURE

1 FIRST @ SECOND

8192 * 16384 8192 MOVMEM
¢ FIRST ;

Summary

If you have an Apple //e with an extended 8@-column text card
installed, you can access up to 46K of auxiliary memory. The
auxiliary features are provided by compiling the textfile
"AUXILIARY". All of the TransFORTH words which access Apple main
memory by address can also access auxiliary memory. The
allowable auxiliary address range is 2048 to 49151.

The TransFORTH "single-address" words all remove one address from
the stack to select a location in memory. If a single-address
word is prefaced with AUX, then the one access will be to
auxiliary memory. SETAUX causes all single-address words to
refer to auxiliary memory, until cancelled by SETMAIN, ABORT, or
pressing Reset.

MARRAYs can be declared in auxiliary memory for versatile data
storage. However, an array doesn't "know" that whether it uses
main or auxiliary memory. Each access to the array must be done
with auxiliary mode set.

The TransFORTH "double-address" words remove two addresses from
the stack. Whether each address refers to auxiliary or main
memory is determined by the words FIRST and SECOND. FIRST and
SECOND remove a number from the stack. If the number is @, then
the first/second address of all double-address words will refer
to main memory. If the number is 1, then the first/second
address will refer to auxiliary memory.

Auxiliary memory can be used for character I/0 by using either
<address> AUXMEM INPUT or <address> AUXMEM OUTPUT. If the
approximate lengths of the files are known, then several
textfiles can be stored in auxiliary memory simultaneously,
reducing the need for frequent disk access.

APPLE //e AUXILIARY MEMORY 19 - 9

APPENDIX A: TransFORTH WORD LIBRARY
LISTING

TransFORTH Word Library Listing

The following is a list of the words in the TransFORTH word
library. The list includes the word name, a "before and after"
picture of the stack, the page number in the text where the word
is first introduced, and a brief description of what the word
does.

The stack picture shown represents relevant numbers on the top of
the stack indicated by letters. The top of the stack is to the
right. A dash represents an empty stack. How the words use the
stack can often be inferred simply from the stack picture.

The word descriptions here are concise and a bit more technical.
For more information on each word, we suggest you refer back to
the text, using the page numbers provided and the index in the
back of this manual.

Word Before After Page

" - - 2-15
A set of quotes surrounding text causes the text to be compiled
into the program. Used only with PRINT, ASSIGN>, and DISK>.

$ - - 7-2

Sets dollar display format, which causes numbers to be printed as
14 characters, with leading spaces, aligned decimal points, and
two digits to the right of the decimal. Numbers greater than
9999999.99 and less than #.01 are displayed in scientific
notation.

SLIST - - 3-12

Lists words in the word library with hexadecimal addresses. At
each pause, press CTRL-C to stop the listing, or any other key to
continue. If the S$SLIST is being written to disk (with DISK
OUTPUT), the listing will not pause.

, a 7-18
a = address of the word that follow the ' (tic). It also
prevents that word's execution. Will not work correctly with

compiling words like FORGET, VARIABLE, etc.

WORD LIBRARY LISTING A -1

Word Before After Page

(- - 5-11

Indicates the beginning of a program comment, which is passed
over by the TransFORTH compiler. A right-parenthesis ")" set
apart by one or more spaces marks the end of the comment. A
comment can extend over several lines.

* m n P 2-7
p=m*n (multiplication)

+ m n P 2-5
p=m+n (addition)

+LOOP n - 4-2

Marks the end of a DO ~ LOOP structure, using n as a loop value
increment. After adding n, if the loop value is equal to or
beyond the ending value, the loop ends. Otherwise, execution
loops back to the corresponding DO.

» - - 7-12
Compiles a single byte directly into the code of a word
definition. The comma should follow a number from # to 255

inside a colon definition.

- m n P 2-13
p =m-n (subtraction)

> - - 6-2

(Store-arrow) causes the next variable reference to store the top
stack value into the variable, rather than placing the variable
value on the stack.

. n - 2-5
(Period) prints n to the output, using the current number display
format.

/ m n - 2-13
p=m/ n (division)

- - 3-2
Marks the beginning of an executable (colon) word definition.
The name that follows is the name of the new word. The next
words define the new word, and a semicolon ends the colon
definition.

; - - 3-2
Marks the end of a colon definition.

WORD LIBRARY LISTING A -2

Word Before After Page

< m n P 4-5

p=11if m < n, otherwise p = @. (Less than)

<= m n P 4-5

pPp=11i1if m <= n, otherwise p = #. (Less than or equal to)
<> m n P 4-5

p=11if m <> n, otherwise p = 8. (Not equal to)

= mn P 4-5

Pp=11if m = n, otherwise p = 0. (Equal to)

> mn P 4-5

p=11if m > n, otherwise p = @#. (Greater than)

>= m n P 4-5

p=11if m >= n, otherwise p = @. (Greater than or equal to)
ABORT (not applicable) 7-4

Restarts TransFORTH. Program is stopped, screen erased, text
window reset, all I/0 returned to normal, any open textfiles
closed, MAXFILES reset to 1, TransFORTH header printed {(unless in
AUTORUN mode), set ORMODE, hi-res color white 3, clear
store—-arrow and EOF, zero EOFCHR, reset stacks.

ABS m n 2-13

n = absolute value of m.

AND m n p 4-6

p =1 if both m and n are nonzero, otherwise p = 2.
AREG (variable) 7-11

Value of AREG (8§ to 255) is placed into processor Accumulator
before a CALL. After CALL, contents of Accumulator are loaded
back into AREG.

ARRAY - - 6-8

Declares an array with following name. Numbers before "ARRAY"
are (in reverse order) number of dimensions, number of elements
along each dimension, and number of bytes per element. Array is
added to word library with all elements cleared to zero.
Declaring an array also destroys contents of PAD.

WORD LIBRARY LISTING A -3

Word Before After Page

ASSIGN> a - 6-17

Places following quoted text into memory starting at address a.
AIN m n 2-14

n = arctangent of m (n in radians).

BEGIN - - 4-13

Marks the beginning of a BEGIN - WHILE - REPEAT or BEGIN - UNTIL
construct, where progam execution can loop back to.

BELL - - 4-17
Prints a CTRL-G, which will beep the Apple speaker if normal
output is active.

BYE (not applicable) 7-13
Exits TransFORTH to the Apple system monitor. (TransFORTH can be
reentered by typing C@@G from the monitor.)

CALL a - 7-11

Loads processor registers (values between 8 and 255) from
variables AREG, XREG, YREG, and PREG, calls machine language
routine at address a, then on return stores register values back
into variables.

CASE: n - 4-15

Selects and executes the nth word from the following list of
words, numbered starting from 8. THEN closes off the list of
CASE: words and marks the point where execution continues. TIf n
is greater than the number of CASE: words or less than @, the
system may hang.

CLOSE - - 8-4
Closes any open textfile, resets MAXFILES 1, and returns
TransFORTH I/0 to normal.

COLOR n - 9-5
Selects the color for high-resolution graphics. Valid range is @
to 7.

COMPARE ab n 6-25
Alphabetically compares strings at addresses a and b, n = 1 if
string a > string b, n = g if string a = string b, n = -1 if

string a < string b. (Zero or EOFCHR mark the end of either
string.)

WORD LIBRARY LISTING A - 4

Word Before After Page

CONCAT ab - 6-24

Concatenates string at address b to the end of string at address
a. String b is unchanged. (LENGTH is called to find end of
string a; MOVELN is called to copy string b to string a.)

coSs m n 2-13
n = cosine of m (m in radians).
CR - - 2-15

Prints a carriage return (ASCII value 141, or CTRL-M) to the
current output.

DEVICE - 2 8-1
Places a 2 on stack to designate a device (peripheral card or
subroutine) for subsequent INPUT or OUTPUT.

DISK - 1 8-1
Places a 1 on stack to designate a textfile on disk for
subsequent INPUT or OUTPUT.

DISK> - a2 8-1

Compiles following quoted text (hopefully a filename) into
memory, places address a of filename on stack, followed by a 2 to
designate a textfile on disk for subsequent INPUT or OUTPUT.

DO m n - 4-1

Initializes a DO - LOOP, using n for an initial loop value and m
as an ending value, pushing them onto return stack. At
corresponding LOOP or +LOOP, if incremented loop value is not
equal to or beyond ending value, execution loops back to DO.

DROP n - 2-9

Discards n from the stack.

DUP n n n 2-10

Makes a copy of n on the stack.

ECHO n - 8-9

If n = 1, echo input characters to the screen. If n = 2, echo
output characters. If n = 6, no screen echo.

EDIT (not applicable) 5-3

Loads from disk (if necessary) and runs the appropriate text
editor (OBJ.EDITOR1l for 48K Apple]1('s, OBJ.EDITOR2 for Apple
//e's or 64K Apple]1('s).

WORD LIBRARY LISTING A -5

Word Before After Page

ELSE - - 4-10

Separates the two controlled areas in an IF - ELSE - THEN
construct. If stack value removed by IF is nonzero, words
between IF and ELSE are executed; if number is zero, words
between ELSE and THEN are executed.

ENG - - 7-2

Sets engineering display format, causing numbers to be printed as
one to three digits, optional decimal and more digits, with an
exponent that is a multiple of 3.

EOF - n 8-6

n =1 if an End-0f-File condition occurs, then is reset to when
INPUT or OUTPUT are called again or if ABORT is executed or
system restarted.

EOFCHR n - 8-7

n specifies value of ASCII character to use to flag End-0f-File.
All I/0 and string operations use this character to detect
End~0f-File or End-0f-String.

ERASE - - 6-11
Erases (clears to zero) contents of array. Array name follows.
Use ERASE only with arrays.

EXMODE - - 9-7

Sets high-resolution graphics EXclusive-or Mode, causing
subsequent plotted points to turn on corresponding screen pixels
that are off, and turn off pixels that are on.

EXP m n 2-14

n =e¢ "~ m, where e = 2.71828182. (natural exponent) If m < -88
or m > 88, result is out of range and n will be indeterminate or
a divide-by-~-zero error may occur.

FILL Xy - 9-5

In hi-res graphics, fills a rectangular area with diagonal
corners on the last plotted point and (x,y). x can range from @
to 255, y from # to 191.

FIX - - 7-
Sets "fixed decimal" floating-point display format, causing

numbers to be printed without an exponent. Numbers greater than
999,999,999 or less than #.01 are printed in scientific notation.

WORD LIBRARY LISTING A -6

Word Before After Page
FORGET - - 3-9

Removes following word and all words in the TransFORTH word
library above it.

FRAC m n 2-14
n = fractional portion of m (portion to the right of the decimal
point}).

GETC - n 6-27
Gets a single character from the current input, placing its ASCII
value n on the stack. (Sets EOF if character read is EOFCHR.)

GETNUM a n 6-19

Converts text string at address a into number n. Nonnumeric
characters may follow the number, but the number must begin as
the first character of the string. Unsuccessful conversions
return #. (Ignores EOFCHR when reading string.)

GR - - 9-1
Clears the high-resolution screen (screen 2) to black and
displays this screen on Apple video.

HERE - a 3-12
Returns the address of the top of the TransFORTH word library.
(See Appendix C for more information.)

HEXPRT n - 7-2
Prints n (2 to 255) as a pair of hexadecimal digits (@8 to FF).
HOME - - 7-2

Prints a CTRL-L. If normal output is active, this erases the
text screen inside the text window and moves the cursor to the
upper left corner of the window.

HTAB h - 7-1

Sets the text column for subsequent printing. HTAB is relative
to the left margin of the text window. Valid range is @ to 39
(for 40-column screen) or 79 (for 88-column card), less if a text
window is set.

/ - n 4-1

Returns the top return stack value, which is the loop value for
the current innermost loop if no PUSHes, PULLs, or POPs have been
done inside the loop.

WORD LIBRARY LISTING A -7

Word Before After Page

IF n i 4-8

Marks the beginning of an IF - THEN or IF - ELSE - THEN
construct. If n is nonzero, words between IF and THEN (or IF and
ELSE) are executed, otherwise execution continues after THEN (or
between ELSE and THEN).

INPUT an - 8-1
Removes "I/0 designator" n (for DEVICE, MEMORY, or DISK) and
address a from stack to select a source for character input. (If

n = @, input is returned to normal and n is the only number
removed from stack.)

INT m n 2-14

n = integer portion of m (truncated toward zero).

INVERSE - - 7-2

Causes text characters printed to the Apple screen to be in
inverse (black-on-white).

J - n 4-3
Returns the third return stack value, usually the loop value for
the next outer loop.

K - n 4-3
Returns the fifth return stack value, usually the loop value for
the third outer loop.

LENGTH a n 6-23
Returns the number of characters in string at address a (not
including the End-0f-String marker: either zero or EOFCHR).

LINE Xy - 9-4
In hi-res graphics, draws a line from the last plotted point to
(X ¥). X ranges from @ to 255, y from @ to 191.

LIST - - 2-2

Lists the words in the TransFORTH word library. At each pause,
press CTRL-C to stop the listing, or any other key to continue.
If the LIST is being written to disk (with DISK OUTPUT), the
listing will not pause.

LOG m n 2-14

n = natural logarithm of m. (Logarithms of negative numbers are
mathematically undefined. If m is negative, n = logarithm of the
absolute value of m.)

WORD LIBRARY LISTING A -8

Word Before After Page
LOOP - - 4-1

Marks the end of a DO - LOOP structure, incrementing the loop
value., If the loop value is less than the ending value,
execution loops back to the words after the corresponding DO.

MARRAY - - 6-12

Declares an array with the array data in a specified free area of
memory. The form is similar to ARRAY, but the desired array
address should be the last number before MARRAY on the line.

MEMORY - 3 8-1
Places a 3 on stack to designate Apple memory for subsequent
input or output.

MOD m n P 2-13
p = remainder after dividing m by n. (modulo)
MOVELN a b 6-24

Copies a line of text from address a to address b. (Stops at
zero, EOFCHR, or carriage return; writes zero to end string.)

MOVFILE - - 8-8
Copies characters from input to output until End-0f-File (zero at
end of textfile, or EOFCHR).

MOVMEM abn - 7-19

Moves a block of n bytes from address a to address b.
NEGATE m n 2-13
n=-m,

NORMAL - - 7-2

Resets character printing on the Apple screen to normal
white-on-black.

NOT m n 4-6
n =@ if m is nonzero, n =1 if m is zero.
NOTE p d - 7-8

Sounds a note of pitch p and duration d through the Apple
speaker. Valid range for both p and d is 1 to 255. Greater
pitch numbers produce lower pitches. Greater duration numbers
play longer notes.

WORD LIBRARY LISTING A -9

Word Before _After Page

OR m n p 4-6

p = 1 if either m or n are nonzero. p = @ if both m and n are
Zero.

ORMODE - - 9-7

Sets hi-res graphics OR drawing mode, causing points to be
plotted regardless of what screen pixels are currently on or off.

OouTPUT an - 8-1

Removes "I/0 designator" n (for DEVICE, DISK, or MEMORY) and
address a from stack to select destination for character output.
(If n = @, output is returned to normal, and n is the only number
removed from stack.)

OVER m n mnm 2-19

Copies m (second stack value) to top of stack.

PAD - 832 6-22

Returns the address (832) of the 144-byte "PAD" string space.
PEEK a n 6-5

Reads single byte integer value n from address a.

PEEKN a n 6-5

Reads floating-point value n from the 5 bytes starting at address
a.

PEEKW a n 6-5

Reads integer value n from the 2 bytes starting at address a.

Pl - 3.14159266 2-14
Returns value of pi (3.14159266).

PICK ..kmn ..kmp 2-11
Copies the nth item (p) to top of stack.
PLOT Xy - 9-4

In hi-res graphics, plots a point with coordinates (x,y). x can
range from @ to 255, y from # to 191.

POKE na - 6~5
Stores single byte integer value n into address a.
POKEN n a - 6-5

Stores floating-point value n into 5 bytes starting at address a.

WORD LIBRARY LISTING A - 19

Word Before After Page
POKEW n a - 6-5
Stores integer value n into 2 bytes starting at address a.
POP - - 4-4

Discards top return stack value,

PREG (variable) 7-11

Value of PREG is stored into processor status register before a
CALL. After CALL, value of status register is stored back into
PREG. (If improper status bits are still set on return from
CALL, the system may not work properly.)

PRINT - - 2-15
Prints following quoted text to the current output.
PROGRAM - a 5-18

Returns current address of editor program buffer. (If editor has
not been loaded, PROGRAM returns default buffer address of
24577.)

PULL - n 4-4
Moves top return stack value n to data stack.
PUSH n - 4-4
Moves top data stack value n to return stack.
PUTC n - 6-27

Prints character with ASCII value n to current output. (Sets EOF
if character printed is EOFCHR.)

READLN a - 6-18

Reads a line from current input into string starting at address
a. (String ends when input character is zero, carriage return,
or EOFCHR. Zero is written to mark end of string.)

REPEAT - - 4-14

Marks the end of the BEGIN - WHILE - REPEAT construct, causing
execution to jump back to the words following the corresponding
BEGIN.

RND m n 2-14

n is a random number: # <= n < 1., If m is positive, new random
number. If m = @, repeat last random number. If m is negative,
begin new pseudorandom sequence.

WORD LIBRARY LISTING A - 11

Word Before After Page

ROLD jkmn kmn}j 2-11
Rolls stack down, moving top three values down one position and
moving 4th value to top of stack.

ROLU jkmn njkm 2-12
Rolls stack up, moving top stack value to 4th position, and
moving next three values up one position.

RUN - - 7-4
Executes the top word on the word library.
SAVEPRG - - 7-6

Saves the current TransFORTH system, along with any changes and
additions to the word library, to disk as an executable binary
file.

SCi - - 7-2
Sets scientific notation display format, where numbers are
printed as a single digit followed by an optional decimal point
and up to 8 more digits, then an exponent.

SIGN m n 2-13
n=141ifm>¢, @ ifm=206, -11if m < B.

SIN m n 2-13

n = sine of m. (m in radians)

SPCE - - 2-15
Prints a space (ASCII 168) to the current output.
SQRT m n 2-13

n = square root of m. (n is indeterminate if m < @.)
STACK - - 2-4
Toggles the stack display on or off.

SWAP m n nm 2-1¢
Swaps the position of the top two stack values.
TAN m n 2-13

n = tangent of m. (m in radians)

TEXT - - 9-2

Resets TransFORTH's internal video and keyboard routines, and
displays the normal text screen on the Apple video display. TEXT
is used to turn off any of the graphics modes, or a PR#n or INin.

WORD LIBRARY LISTING A - 12

Word Before After Page

THEN - - 4-8
Marks the end of an IF - THEN, IF - ELSE - THEN, or CASE: - THEN
construct, as the point where execution continues from.

UNTIL n - 4-13
Marks the end of a BEGIN - UNTIL construct. If n = @, execution
jumps back to the words that follow BEGIN.

VALID - n 6-20
n is nonzero if last GETNUM produced a valid number, otherwise n
= @#. (The TransFORTH system also sets VALID when reading and
compiling numbers, and clears it at a "Not Found" error.)

VARIABLE - - 6-1

Declares a variable with following name, creating a new
TransFORTH word. Any preceding number is used as the variable's
initial value.

VTAB n - 7-1

Sets the text row for subsequent printing to the screen. The row
is relative to the top of the screen (not the text window), and
the valid range is from @ to 23.

WHILE n - 4-14
Marks the decision point for a BEGIN - WHILE - REPEAT construct.

If n is nonzero, execution continues after WHILE, otherwise
execution jumps to word after corresponding REPEAT.

WINDOW Lwtb - 7-2
Sets a text window with left margin L, width w, top margin t, and
bottom margin b. b actually indicates one line below text
window. Cursor jumps to top line of new window.

WRITELN a - 6-17

Writes text from string at address a to current output. (End of
string is marked by zero, EOFCHR, or carriage return.)

XOR m n p 4-6
p =1 if zero/nonzero statuses of m and n are different, @ if
they are the same.

XREG " (variable) 7-11

Value of XREG is placed into processor X register before a CALL.
After CALL, value of X register is stored back into XREG.

WORD LIBRARY LISTING A - 13

Word Before After Page

YREG (variable) 7-11
Value of YREG is placed into processor Y register before a CALL.
After CALL, value of Y register is stored back into YREG.

A m n p 2-13
p=anm n. (m to the nth power)

WORD LIBRARY LISTING A - 14

APPENDIX B: TransFORTH SYSTEM MEMORY

MAP

CHAPTER TABLE OF CONTENTS:

Memory Map
48K Apples
64K Apples

Apple //e (in addition to above)
Apple // e Auxiliary Memory

TransFORTH Page Zero Map

Useful Locations in Page Zero

_TransFORTH System Memory Map

g to 255
listing below.

256 to 511
512 to 719

728 to 751
Table

752 to 767
Buffer)

768 to 831
832 to 975
976 to 1023
1624 to 2847
2048 to 23083
2304 to 2559
2568 to 2815

2816 to 3871
Buffer

3672 to 12671
(approximate)

12672 and up

16384 to 24575
(Screen 2)

$0000

$8100
$0200

$82D0

$O2F0

$0300
$0340
$83D8
$0400
$0800
$0909
$0AQ0

$0BOY

$aCeo

$3180

$4000

TransFORTH MEMORY MAP

to

to

to

to

to

to

to

to

to

to

to

to

to

to

SOOFF

SO1FF
$@2CF

S@2EF

$S@P2FF

$@33F
$@3CF
$@3FF
$@7FF
$0900
$OAR0
$@AFF

$@BFF

$317F

and up

to

SSFFF

6502 Page Zero. See Page Zero

6502 Stack
Line Input Buffer

Textfile Speedreader (RWTS IOB)

TransFORTH (Temporary Number

TransFORTH Compiler Stack
PAD String Area

Apple DOS Link Area

Text Display Screen

Data Stack

Return Stack

Speedreader Data Buffer

Speedreader Track/Sector List

TransFORTH][B as supplied

Free Memory for program or data

Hi-Res Graphics Screen Memory

48K Apples

24576
used)

36864

37888
(when

38656
used)

39424
49152
53248

63488

to 36863

to 39247

to 38423
used)

to 38423

to 49151
to 53247
to 63487

to 65535

64K Apples

24576
used)

46592

47616
(when

48384
used)

49152

53248

to 46591

to 48975

to 49151
used)

to 49151

to 53247

to 53887

(See below)

53888

63488

to 63487

to 65535

$6000

$9008

$9490

$9700

$9AQ0
$CRO0
$Dooo

SF8@e

$6000

$B60D

$SBAGY

$SBD@Q

$COQ0

$SDOAo

$D289

$F800

TransFORTH MEMORY MAP

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

$8FFF

$994F

$99FF

$99FF

$SBFFF
SCFFF
SF7FF

SFFFF

$BSFF

SBF4F

$BFFF

$BFFF

SCFFF

$D27F

SF7FF

SFFFF

Text Editor File Buffer (when

Text Editor Program (when used)

GR.TEXT.48K with character set

Graphics character set (when

DOS 3.3
Apple][hardware I/0
Apple][Basic ROM

Apple][System Monitor ROM

Text Editor File Buffer (when

Text Editor Program (when used)

GR.TEXT.LC with character set

Graphics character set (when

Apple II hardware I/0

Used by TransFORTH in Apple //e

DOS 3.3

Apple][System Monitor ROM

Apple lle (in addition to above)

53248 to 53759
used)

SDAPY to $DIFF Auxiliary memory module (when

53760 to 53887 3$D20@ to $D27F Monitor "patch" for graphics
The auxiliary memory module is the set of routines used for
accessing auxiliary memory. It is loaded automatically when the
file " AUXILIARY" is compiled. This area cannot be overwritten

once the auxiliary memory features are added.

The monitor patch is loaded into Apple //e computers whenever the
GR.TEXT.64K graphics module is run. Once loaded, this area may
not be overwritten unless TransFORTH is rebooted. Appendix C
contains more information on this patch.

Apple lle Auxiliary Memory

g to 511 $000@ to $PLFF Cannot be used with auxiliary
words

512 to 1823 $0200 to S$@3FF Free for auxiliary use

1924 to 2047 $0400 to $@7FF 80-column display area

2048 to 49151 $8880 to SBFFF Free for auxiliary use

53248 to 65535 SD@PP to SFFFF Cannot be used with auxiliary

words

TransFORTH Page Zero Map

2 to 31 $08% to $1F Used by TransFORTH

32 to 79 $20 to $4F Apple 1[Monitor use

80 to 183 $58 to $B7 Not used (some DOS uses)

184 to 255 $B8 to $FF Used by TransFORTH

TransFORTH MEMORY MAP B - 3

Useful Locations in Page Zero

(The values at these locations can be found by PEEKing the
decimal address.)

26 $1A wvariable store-arrow flag

32 $20 monitor text window left margin

33 $21 monitor text window width

34 $22 monitor text window top margin

35 $23 monitor text window bottom margin

36 $24 monitor cursor horizontal position (46-column)
37 $25 monitor cursor vertical position (48-column)
50 $32 monitor inverse/normal text flag

54 $36 monitor character output vector (two bytes)
56 $38 monitor character input vector (two bytes)
188 $BC hi-res last plotted X position

189 $BD hi-res last plotted Y position

196 $C4 hi-res current color

205 SCD memory output vector (two bytes)

21 $D2 auxiliary memory FIRST value

211 $D3 auxiliary memory SECOND value

222 S$DE memory input vector (two bytes)

237 $ED data stack pointer

238 $EE return stack pointer

242 $F2 auxiliary memory flag

The data stack pointer contains a @ for an empty stack, and is
incremented by 5 for each number on the stack. The return stack
pointer contains a 255 for an empty stack, and is decremented by
5 for each number on the return stack.

The memory input and output vectors point to the address of the
next character to read or write.

The auxiliary memory flag (used only on an Apple //e with an
extended 88-column text card) contains $08 when main memory is
accessed, $80 when AUX is set, and $40 when SETAUX is set.

The monitor cursor position values may not be valid when
displaying 88 columns. If you're using an Apple //e 88-column
text card, the correct horizontal cursor position is stored in
location 1403 ($578) and the vertical position is stored in
location 1531 ($5FB).

TransFORTH MEMORY MAP B -

APPENDIX C: TransFORTH “TECHNICALITIES”

CHAPTER TABLE OF CONTENTS:

Errors and Error Handling

Error Trapping)
Word Library Structure and Compilation
Memory Usage

Floating Point Format)
Monitor Patch for Apple // e Graphics
Magic Tricks with Memory Cards
Recursion

O T
= &
[

0000000
DN HWN

TransFORTH Technicalities

Errors and Error Handling

TransFORTH, like most versions of Forth but unlike many other
high-level languages, does not check for valid number ranges as
words are executed. For example, arrays subscripts are not
checked against the size of the array. Numbers used to select a
word with CASE: are not checked against the number of words in
the CASE: list. If range checking is needed, it can be written
into the program.

TransFORTH does print error messages for a variety of other
errors. "R Error" means Runtime error; "C Error”™ means Compiling
error. Here is a list of error messages:

STKU data STacK Underflow
STKO data STacK Overflow
RETU RETurn stack Underflow
RETO RETurn stack Overflow
PRGO PRoGram Overflow - The program being compiled is too large
to fit in available memory. .
UNEQ UNEQual word balance - This occurs if part of any of the
following groups of words are left incomplete (e.g. semicolon
without colon, IF without THEN, etc.):

IF - THEN

IF - ELSE - THEN

BEGIN - UNTIL

BEGIN - WHILE - REPEAT

DO - LOOP
DO - +LOOP
CASE: -~ THEN

i
DOS Disk Operating System error. The appropriate error message
is included.
X/9 Division by zero.
LABL LABelL missing - A word name was needed but not provided.

"¢wordname)> Not Found" means that a word that does not exist was
called or referenced.

TECHNICALITIES c -1

"<wordname> Not Unique"” means that a new word was defined that
has the same name as an existing word. (The new word is compiled
anyway. The error is only a warning message.)

Error Trapping

In many cases, you can trap errors yourself, and take appropriate
action based on the error. This is most useful for trapping DOS
errors (e.g. FILE NOT FOUND because the user inserted the wrong
disk.) The technique is a little tricky, and has to be designed
into the program at its top level.

Whenever an error occurs, TransFORTH stores an error number into
locatiqn 3879 ($C97). After the error, you can PEEK this
location to read the error number. Here are the numbers and the
errors they stand for:

@ Stack overflow

4 Stack Underflow

8 Return stack underflow
12 Return stack overflow
16 Program overflow

20 Unequal word balance
24 DOS error

28 Divide by zero

32 Label missing

("Not Found" and "Not Unique" errors are not flagged.)

If a DOS error occurred, a 24 is stored into location 3879 and
another number representing the DOS error is stored into location
3988 ($C@8):

2 or Range error

Write protected disk
End of data

File not found
Volume mismatch

I/0 error

Disk full

19 File locked

11 Syntax error

12 No buffers available
13 File type mismatch

WHOJAU W

Remember that if AUTORUN is set, TransFORTH will automatically
execute the top word on the word library whenever a TransFORTH

TECHNICALITIES c -2

error occurs, a machine lanquage BRK instruction is encountered,
or the user presses Reset. Suppose your program runs with
AUTORUN set., Begin by POKEing a 255 (which is not a valid error

. number) into location 3879. If the top library word begins
running later, an error may have just occurred. Have the top
word PEEK the value back from location 3879. If it is now a
valid error number, then an error just occurred. You can use the
error number to decide what action to take, if any. You should
also reset location 3079 back to 255 to trap possible future
errors.

If you want, you can also suppress TransFORTH's usual error
messages so that only your error routines are used. The value in
location 3878 ($C@6) is usually an even number. To suppress
TransFORTH's error messages, add 1 to this value to make it an
odd number:

Ready 3078 PEEK 1 + 3078 POKE

If you want to return error handling to normal, subtract 1 to
make the number even again. (Do not change this number in any
other way. Other bits are used by TransFORTH for internal
flags.)

Word Library Structure and Compilation
Each word in the word library consists of three parts:

1. A two-byte "pointer location" containing the address of the
next lower word in the word library.

2. The word name (ASCII characters with high bit set).

3. The executable machine language code for the word. The first
byte of this part should be less than 128 (high bit clear), or it
will be interpreted as another character in the word name. This
byte should also not equal 18 (hex $6A), as this is used as a
special compile-time flag.

The hexadecimal numbers displayed by SLIST are the addresses of
the pointer locations. A number returned by tic (') is the
address of the executeblz portion of the word.

Program lines entered are compiled directly into A582 machine
language in the memory immediately above the current top of the
word library. If the line is an "immediate" command, and not
part of a word definition, the machine language code is executed,

TECHNICALITIES c -3

then promptly forgotten. (The next line compiled will overwrite
it.) If the line is part of a word definition, the code produced
is saved, not executed, and the word library "boundary" expands.

During compilation, TransFORTH separates the input line by spaces
into individual word names, then searches through the library for
each word. For each word search, TransFORTH first reads the
current value of HERE to find the top of the word library. At
the top of the library is a two-byte pointer containing the
starting address of the top word in the library. Beginning with
this first word, the system follows the pointers from word to
word down through the library. At each word, the word name and
the input word are compared to see if this is the word being
searched for.

If the word name is found, the first byte of executable code is
examined. If this byte is a 18 (hex $@A), then the following
compiler code is executed immediately (during compilation). If
the byte is not a 14, TransFORTH places a 3-byte JSR
(Jump-to-SubRoutine) instruction to this word into the code being
compiled at the top of the word library. At runtime, the JSR
will call this word.

If the word name is not found, the word library search falls
through to a routine which attempts to convert the word into a
number. If this routine fails, the "Not Found" error is
displayed.

Since programs are compiled into machine language, TransFORTH
does not use an "address interpreter", unlike most other versions
of Forth. To begin execution, TransFORTH simply calls the

machine code. An RTS (ReTurn-from-Subroutine) instruction placed
at the end of the code returns execution to the system level,

Memory Usage

All TransFORTH words use:

2 bytes for the library link pointer
1 byte for each character in the word name

In addition, colon definitions use:
3 bytes (usually) for each word called

8 bytes for each number compiled
1 byte {(an RTS instruction) to mark the end of the word

TECHNICALITIES c -4

Variables use:

3 bytes for the variable handler call
5 bytes for the variable wvalue

Numbers in the code use:

3 bytes for number handler call
5 bytes for the number value

Each arréy contains a 3-byte handler call followed by a table of
2-byte numbers defining the array:

Number of dimensions

Size of first dimension

Size of second dimension

etc.

Length of each element (in bytes)
Pointer to beginning of array data

The number of bytes the array data itself uses can be found by
multiplying the sizes of each dimension (plus 1 to include zero
elements) together, then multiplying by the number of bytes per
element. With MARRAYs, the array data is located in a free area
of memory. With ARRAYs, the array data immediately follows the
above table.

Floating-Point Format

All numbers on the stack and in variables are stored using a
5-byte floating-point format, with a 4-byte mantissa and a l-byte
binary exponent. Relative bytes 8 to 3 make up the mantissa,
with the less significant bytes first. Since the high-order bit
of any nonzero binary number is always a 1, this bit is stripped
off the mantissa. Bit 7 of relative byte 3 is instead used as
the sign bit. Relative byte 4 is the two's-complement signed
exponent, but its sign bit is reversed (l=positive, fi=negative).

Monitor Patch for Apple lle Graphics

When the GR.TEXT.64K graphics module is run on Apple //e
computers, a patch is made into the Apple system monitor in
bank-switched RAM. The patch area resides at $D208 to $D27F,
below DOS. The patch remains active until the Apple is rebooted,
and this area of memory may not be overwritten.

TECHNICALITIES cC -5

The Apple //e includes routines which happen to switch from video
display page 2 to page 1 momentarily whenever certain monitor
calls are made, including scrolling and clear-to-end-of-line.
Unfortunately, this produced a visible and annoying flicker on
the screen when using TransFORTH's mixed graphics and text. The
monitor patch added to the graphics module eliminates most of
this flicker.

(GR.TEXT.64K checks several nearby bytes before making the patch.
I1f Apple ever changes their //e monitor ROM, these bytes will be
invalid and the patch will not be made.)

Magic Tricks With Memory Cards

On 64K Apples, TransFORTH uses only bank 2 of the upper 16K
memory area. For programmers who are familiar with accessing the
bank-switch locations, the 4K area $D@#0 to $DFFF in bank 1 is
free for storing MARRAYs or other data. Apple][users who have
32K (or larger) memory cards may also want to access the extra
memory these cards provide. The bank-switching addresses are
described in your memory card manual and the Apple //e Reference
Manual. You can throw the memory switches by PEEKing the
appropriate addresses.

Using these high memory areas are complicated by the fact that
DOS also resides in high memory and controls all normal character
I/0. This means DOS must always be hanked in (and the other
memory banked out) whenever any character is input or output, and
whenever a TransFORTH disk command is run. To be safe, you
should bank DOS out only long enough to store or retrieve a data
item, then bank DOS back in immediately.

There is another approach you can use if you don't want to bank
DOS in and out. Rather than booting the TransFORTH disk (with
its special 64K DOS), simply boot a normal 48K DOS disk, type
MAXFILES 1, then BRUN the OBJ.FORTH file to start up TransFORTH.
With DOS sitting in its usual 48X memory space, TransFORTH will
think it is running on a 48K Apple, and the entire memory card
space will be free for use. (Be sure to copy the Apple monitor
over to the banked memory if you plan to keep this memory
active.)

Recursion

Recursion was discussed briefly in Chapter Three, mainly in
describing where it is less than appropriate. However, recursion

TECHNICALITIES cC -6

can be put to good use in pattern matching, back-tracking
problems, etc. TransFORTH does not have "local" variables as in
Pascal, but if need be, parameters can be pushed onto the stack
explicitly before a recursive call, or copied from variables onto
the stack.

Detailed recursive programming is beyond the scope of this
manual, but the following example should provide a "taste" of how
to use recursion:

The factorial of a number n is the product of all of the whole
numbers up to n. Factorials can be defined using a recursive
definition:

Factorial (1) =1
If n > 1, Factorial (n) = n * Factorial (n - 1)

The following TransFORTH word uses this definition to compute
factorials. The number n should be waiting on the stack when
this is run:

: FACT
DUP (Copy n for following test)
1 > IF (Ifn>1l:)

DUP ({ Keep n and)}

1 - FACT (Find factorial of n - 1)

* (Multiply them together)
THEN ;

Note that if n = 1, none of the word between IF and THEN are
executed, and the DUP at the top of the definition simply passes
the 1 through as the result:

Ready 1 FACT .
1

Ready 4 FACT .
24

While factorials provide an excellent example of recursion,-
"iteration" is more efficient than recursion for finding
factorials. The following definition, FACT1l, places a 1 on the
stack, then multiplies it by each whole number in a loop. The
number left is the product of all the whole numbers up to n:

TECHNICALITIES c -7

: FACT1
1 (Place 1 on stack as "starting"™ product)
SWAP 1 + 1 DO (Loop from 1 up to (and including) n)

I * (Multiply current product by loop value)
LOOP ;

The textfile "HILBERT" on the TransFORTH system disk is a
graphics program that plots "Hilbert curves". The program uses
two recursive word definitions, one nested inside the other, that
call each other. HILBERT provides a good example of more
complicated recursive programming. "GROWTREE" is another program
that uses nested word definitions for recursion.

TECHNICALITIES c -8

APPENDIX D: TransFORTH FILES

TransFORTH Files

There are a number of demonstration and utility programs stored
in textfiles on the TransFORTH system disk. To compile one of
these files, simply type:

Ready DISK> " <filename> " INPUT

substituting the name of the textfile for <filename>. Most
programs can then be started by typing "RUN". Some of the
graphics programs use identical word names, so it's usually a
good idea to FORGET the words from one program before compiling
the next, to prevent "Not Unique" errors from occurring.
(Remember that NOTE is the top TransFORTH system word.
FORGETting the word above NOTE will "clean" all additional words
from the word library.)

Here is a list of the demonstration and utility files:

"LISSAJOUS" is a short graphics routine that draws the Lissajous
pattern that is also shown at the beginning of the demonstration
program. When the program has finished drawing the pattern,
press any key to return to the text screen.

"HILBERT" draws graphics patterns known as "Hilbert space
curves", using Turtlegraphics along with some rather
sophisticated recursive techniques.

"GROWTREE" draws a different recursive graphics pattern that
looks like branches growing from a "two-ended" tree.

"FILE.DEMO" is a program demonstrating the use of random access
and sequential data files. Some of the routines this program
uses are nearly identical to the word definitions that were shown
as examples in Chapter Eight.

The program first asks whether you want to read a random access
or sequential file. It then asks if you want to re-stuff the
data file. 1If this is the first time you've run the progranm,
type "Y". The data file will be created and filled with record
numbers. Then enter the number of the record you wish to read
back. (Notice that records in random files can be accessed more
quickly than those in sequential files.) When prompted, press
Return to repeat, or type "Q" to quit.

TransFORTH FILES D -1

"PRIMES" is the prime number benchmark program discussed in
Chapter One. Running the top word PRIMES will generate 1899
prime numbers in 94 seconds. After PRIMES has been run, you can
see the list of primes generated by typing "SEE.PRIMES".

"FACTOR" is a short word definition for factoring positive
numbers. FACTOR removes a number from the stack, then prints
that number's factors. If the number is prime, nothing is
printed.

<
"BASCON" allows you to convert a number from any base (from 2 to
about 36) to base 2, 8, 18, and 16. Letters of the alphabet are
used for digits greater than 9, just as in usual computerese
hexadecimal notation. The program displays appropriate
instructions.

"BUBBLE" is a program that can sort up to 280 strings into
alphabetical order. (Each string must be less than 40 characters
long.) To begin, the strings should be stored in a sequential
textfile named "TEST". The word STUFF reads the strings from the
file into the program's array. Typing SORT then sorts the array
into alphabetical order. You can also type SHOW to print the
strings on the screen, or WRITE to write the strings back to the
file "TEST". With just a few modifications, this program can be
used with different filenames and different string sizes.

"DEMO" is the source text of the TransFORTH demonstration
program. This file is compiled and run when you select to see
the demo. The listing also provides an excellent example in
writing larger programs in TransFORTH. You can compile the file
onto the word library and run it, or print the listing to a
printer. (Note that the program is broken into several segments,
each segment usually one "screen" of information. The top word,
RUNDEMO, sets the appropriate display mode and calls each segment
in turn.)

The “UTILITIES” File

The textfile "UTILITIES" contains a number of useful word
definitions that act alone, rather than as part of a larger
"program". You may want to use some of these definitions in your
programs. You can either compile the entire "UTILITIES" file and
call the words you need, or copy the desired words directly into
your program.

GR.MOD (which stands for GRaphics.MODule) can be used from your
TransFORTH program to activate the mixed text and graphics

TransFORTH FILES D -2

feature at any time. It first checks what size Apple is being
used (48 or 64K), then determines whether or not the appropriate
graphics-and-text module for the system has been loaded. If it
has, the word simply calls the module to turn on the mixed text
and graphics. 1If not, it loads it from disk and runs it.

LOAD.CHRSET is used to load another character set into memory for
use with mixed text and graphics. First store the character
set's filename into PAD, then call LOAD.CHRSET. It will
automatically load the character set into the appropriate memory
area. Any character printing on the graphics screen will then
use the new character set.

SEE.STACK displays the contents of the data and return stacks,
just Iike the usual TransFORTH stack display. However, SEE.STACK
can be called from within running programs, inside DO - LOOPs,
etc. This word can often be a great help in debugging more
complicated programs.

DATA.ITEMS determines how many numbers are currently on the data
stack, then places this value on the stack.

RETURN.ITEMS determines how many numbers are currently on the
return stack, then places this value on the data stack.

RETURN.PICK behaves like the TransFORTH word PICK, except that it
picks numbers from the return stack. It removes a number n from
the data stack, finds the nth value on the return stack, and
copies this value to the data stack. 1 RETURN.PICK is equivalent
to the word I, 3 RETURN.PICK to J, and 5 RETURN.PICK to K. If
four or more DO - LOOPs are nested, the fourth loop value out can
be retrieved with 7 RETURN.PICK.

REPLICATE can be used to fill an array with any numeric or string
value. You can also use a DO - LOOP to store the value into each
element of the array, but REPLICATE will fill the array much more
quickly. REPLICATE uses this form:

<1lst element address> <} of elements> <element size> REPLICATE

First store the desired value into the first element of the
array, then place on the stack 1) the address of the first
element, 2) the total number of elements, and 3) the number of
bytes per element. Then call REPLICATE. Every element of the
array will be filled with the value of the first element.

TransFORTH FILES D -3

GETKEY reads the Apple keyboard directly, without waiting or
displaying a flashing cursor. GETKEY is described in Chapter
Six.

CLRKEY clears the Apple keyboard to accept another keypress with
GETKEY. It is also described in Chapter Six.

EMIT removes an ASCII value from the stack, and prints the
equivalent character directly to the Apple screen, even if a
DEVICE or MEMORY OUTPUT has been selected. This can be useful ~
for displaying screen messages without having to first CLOSE an
open output. (EMIT will not work correctly with DISK OUTPUT, or
when a peripheral card that affects Apple monitor locations is
being used for output.)

LEFTS works much like Applesoft's "LEFTS$" command. It removes
three numbers from the stack:

<source addr>. <destination addr> <number of characters> LEFTS

then copies the given number of characters from the source
address to the destination address. (It ends the destination
string by writing a zero End-0f-String marker.)

RIGHTS is like Applesoft's "RIGHTS$" command. The form is the
same as for LEFT$, but it checks the length of the source string
then copies the characters from the right end of the string.
(Note: RIGHTS calls LEFTS$, so LEFTS$ must also be compiled.)

READ.PADDLE is the same definition for reading the game paddle
that is described in Chapter Seven.

READ.BUTTON is the same definition for reading the status of the
paddle buttons that is described in Chapter Seven.

SLOT converts an Apple slot number to a TransFORTH address, which
can then be used with DEVICE INPUT or OUTPUT. SLOT is discussed
in Chapter Eight.

DOS prompts you to enter a DOS command, then executes the
command. Adding the word DOS permanently to the word library can
save you the time and bother of having to type the CR 132 PUTC
PRINT etc. sequence every time you want to catalog the disk or
delete a file.

P is simply an abbreviation word for PROGRAM MEMORY INPUT, and is
also a handy permanent addition to the word library.

TransFORTH FILES D - 4

D (for Disk) prompts you for a filename, then reads and compiles

that file with DISK INPUT.

NO.80COL actually modifies the TransFORTH system so that it will
no longer recognize the presence of an 8f-column card. This is
useful when you want to create or run graphics programs and don't
want to remove the card. You can create a version of TransFORTH
that never checks for the 88-column card. Simply run NO.8@COL,
then immediately call SAVEPRG to save this non-8@-column system
to disk.

Note: If the 8#-column card is active when you run NO.80COL (as
it probably will be), then the next time TransFORTH resets its
video (with TEXT, ABORT, or pressing Reset), characters will
begin printing to the invisible 48-column screen rather than the
8@-column card. The system will appear to hang. There are two
solutions: Either 1) type whatever character sequence the card
requires to turn itself off before TransFORTH resets I/0, or 2)
simply press Reset. The system will then recover properly in
4f-column mode.

XES.SZCOL modifies the TransFORTH system to restore 88-column
card recognition again. The card will take over the display the
next time video is reset.

The next two words can be used with Apple][or Apple][Plus
computers that have had lower case display added. Since
TransFORTH normally converts Apple]1{ 48-column text to upper
case only, these lower case capabilities are wasted unless a
change is made to the TransFORTH system.

NO.CASECONVERT modifies TransFORTH so that it does not
automatically convert 4@-column text to upper case. This
modified system can then be saved permanently with SAVEPRG.

YES.CASECONVERT changes TransFORTH back to normal.

TransFORTH FILES D -5

APPENDIX E: DIFFERENCES BETWEEN
TransFORTH][AND TransFORTH][B

Differences Between TransFORTH
and
TransFORTH
B

When a variable is called, it no longer returns the address of
the variable. Now, if the word "->" precedes the variable
reference, the top stack value is removed and stored into the
variable. If the variable is referenced without the "->", then
the value of the variable is placed on the stack.

Ready 5 -> X (5 is stored into variable X.)
Ready X . (The value of X is retrieved.)

5

Since variables now return values directly, the words CONSTANT
and ? have been removed.

The store and retrieve words have new names.

0ld name New name
B! POKE

w! POKEW

! POKEN

B@ PEEK

wa PEEKW

e PEEKN

applesoft Basic is no longer needed for high-resolution graphics.
The following graphics words have been added:

GR
TEXT
PLOT
LINE
FILL
COLOR
ORMODE
EXMODE

All white dots are plotted two pixels wide to form true white on
the Apple high-resolution screen. The point (8,8) is now in the
upper left corner of the screen, like Applesoft but unlike the
0ld TransFORTH. (You can write word definitions to turn it

DIFFERENCES E-1

reverse it if you like. Subtract the Y-coordinate from 191.)

To print text on the graphics screen, the graphics modules
GR.TEXT.48K and GR.TEXT.64K are used. (The appropriate module
can be used with Turtlegraphics, but is not loaded automatically
by the Turtlegraphics package.) Several character sets are
included on the TransFORTH disk.

Other words added are:
INVERSE
NORMAL

AUTORUN
PREG

SAVEPRG now uses a single "Autorun" flag for creating turnkey
programs. This flag can also be turned on and off from a running
program with the word AUTORUN.

The word BYE now exits to the monitor, rather than Basic.

AREG, XREG, YREG, and PREG are now variables. Their values can
be set before a CALL like a normal variable. (PREG keeps the

processor status register.)

More 8@-column display cards are recognized, including the Videx
Videoterm.

DEVICE I/0 will now work correctly with any standard Apple
peripheral card.

TransFORTH will print both upper and lower case to 8@-column
displays and the Apple //e 40-column screen, and will convert to
upper case for Apple 1['s.

Automatic 8@-column card recognition can be turned off for
graphics programs, using a word in the "UTILITIES" file on disk.

DISK OUTPUT can now be ECHOed to the screen correctly.

If a DOS error occurs, TransFORTH will now print what kind of DOS
error it was.

3 SQRT used to return a very small number. It now returns zero.

Negative numbers to odd powers now correctly return negative
numbers.

DIFFERENCES E - 2

The rolling directions for ROLU and ROLD have been reversed, to
"
reflect the usual concepts about "top of stack™.

Errors no longer clear the 88-column screen. Excth in a couple
of unavoidable cases, error messages are always written to the
screen rather than the current output.

Comments can extend over several lines with only one pair of
opening and closing parentheses.

If the text editor has not been loaded, PROGRAM will return the
usual default editor buffer address. It used to return ¢ unless
the editor was loaded.

If a file is being compiled in Autorun @ode, nothing will be
executed until the entire file is.read in. (It used to
incorrectly execute each word as it was compiled.)

Negative numbers can be poked as single or double bytes into
memory with POKE or POKEW. (Before, the absolute value of the
number was poked.) However, PEEK and P?EKW always return a
positive number. If a negative number 1is pokeq,.then peeked
back, TransFORTH returns the corresponding positive ?two's
complement” number. For PEEK, this eguals the negative number +
256; for PEEKW, this equals the negative number + 65536.

Negative numbers can also now be used as memory addresses (e.g.
-151 CALL).

All forward references have been removeq from the built-in
TransFORTH word library. If any built-in words at the top of the
library are not needed, they can be safely removed with FORGET.

A small bug when COMPAREing 2 identical strings when EOFCHR is
nonzero has been fixed.

With an Apple //e with the extended 8@0-column text card,
TransFORTH can use up to 46K of auxiliary memory f9r.data)
storage. The auxiliary features are added by compiling the file
"AUXILIARY".

The TransFORTH text editor has a new command, Write, yhich works
like List, but does not pause every 16 lines. The erFe command
is convenient when printing out text files from the editor.

If the editor program position is set to overwrite all of

TransFORTH, the editor will not automatically reload TransFORTH
from disk at the end of the edit.

DIFFERENCES E - 3

The text editor used to occasionally hang up when its buffer
memory was completely filled with text. It now works correctly.

Lowercase letters can be used for all text editor commands now
including Autonumbering. ' APPENDIX F: TABLE OF ASCIl CHARACTERS
Indented lines in the text editor (with spaclKYLLP]Z

ginning
of a line) are now spaced correctly.

DIFFERENCES

Set High Bit Clear

Table of ASCII Characters bEC HEx DEC HEX cHAR

167 A7 39 2; }
Hi i 168 A8 40 2
Set High Bit Clear 169 A9 41 29 l
170 AA 42 2A
DEC HEX DEC HEX CHAR 171 AB 13 B +
128 80) 00 ConTRoL-@ 172 AC 44 %g 4
129 81 1 21 ConTRoL-A 173 AD 45 -

139 82 2 02 ConTRoL-B 174 AE 46 o ;
131 83 3 93 ConTRoL-C 175 AF 47 P g
132 84 4 B4 ConTRoL-D 176 BY 48 31 1
133 85 5 a5 ConTRoL-E 177 Bl 49 3 5
134 86 6 56 ConTRoL~F - 178 B2 50 32 2
135 87 7 87 ConTRoL-G (Bell) 179 B3 5% " X
135 88 8 98 ConTRoL-H (Left Arrow) 189 B4 5 35 c
137 89 9 29 ConTRoL-1I 181 B5 53 3 2
138 8A 10 2a ConTRoL~J (Down Arrow) 182 B6 54 3 2
139 8B 11 a8 ConTRoL-K (Up Arrow) 183 87 55 38 s
140 8C 12 1 ConTRoL-L 184 B8 56 38 8
141 8D 13 aD ConTRoL~-M (Return) 185 B9 57 3A ’
142 8E 14 1) ConTRoL-N 186 BA 58 i :
143 8F 15 aF ConTRoL-0 187 8B 59 . :
144 90 16 19 ConTRoL-P 188 BC 60 gD <
145 91 17 11 ConTRoL-Q 189 BD 61 » N
146 92 18 12 ConTRoL-R 190 BE 62 % >
147 93 19 13 ConTRoL-$ 191 BF 63 :
148 94 20 14 ConTROL-T 192 ce 64 2§ e
149 95 21 15 ConTRoL-U (Right Arrow) 193 Cl 65 2 o
150 96 22 16 ConTRoL-V 194 c2 66 5
161 97 23 17 ConTRoL-W 195 c3 67 32 ¢
152 98 24 18 ConTRoL-X 196 ca 68 i D
153 99 25 19 ConTRoL-Y 197 c5 69 4 E
154 oA 26 1A ConTRoL-Z 198 c6 70 16 H
155 98 27 1B ESCape 199 c7 71 4 ¢
156 9C 28 1C ConTRoL-\ 200 c8 72 18 ;
157 9D 29 1D ConTRoL-] 201 c9 73 49 !
158 9E kY 1E ConTRoL-" 202 ca 74 o J
159 9F 31 1F ConTRoL- 203 CB 75 i K

160 AQ 32 20 SPACE — 204 cc 76
161 Al 33 21 1 265 cD 77 4D M
162 a2 34 22 " 206 CE 78 4E N
163 a3 35 23 4 207 CF 79 4F 0
164 a4 36 24 $ 208 DO 80 50 P
165 a5 37 25 % 209 D1 81 51]
52 R

166 A6 38 26 & 210 D2 82

ASCII CHARACTERS F -1 ASCII CHARACTERS

DEC

211
212
213
214
215

217
218
219
229
221
222
223
224
225
226
227
228
229
2309
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

Set

High Bit Clear
HEX DEC
D3 83
D4 84
D5 85
D6 86
D7 87
D8 88
D9 89
DA 99
DB 91
DC 92
DD 93
DE 94
DF 95
EQ 96
El 97
E2 98
E3 99
E4 109
E5 101
E6 182
E7 193
E8 104
E9 125
EA 106
EB 107
EC 198
ED 129
EE 119
EF 111
Fo 112
F1 113
F2 114
F3 115
F4 116
F5 117
Fé 118
F7 119
F8 129
F9 121
FA 122
FB 123
FC 124
FD 125
FE 126

ASCII CHARACTERS

O
=
™
el

I~ SN X ESCHW

o N X ECE DR QTOITIRFOTAOMDAQTY 4

DEC

255

Set

HE

FF

High Bit

Clear

X

ASCII CHARACTERS

DEC

127

HEX

7F

CHAR

DELETE

TransFORTH Index

APPENDIX G: INDEX s, 51, 617, A

$ 7-2, 7-3, 2-9, A-1

SLIST 3-12, 9-15, 9-16, A-l
' 7-10, A-1

(5-11, A-2

) 5-11

* 2-7, 2-11, 2-13, A-2

+ 2-5, 2-11, 2-13, A-2

+

LOOP 4-2, A-2
’ 2-9, 7-12, 7-13, A-2
. 2-13, A-2
-> 6-2 to 6-4, A-2
. 2-5 to 2-6, 2-11, 7-1, 8-1,
A-2
/ 2-13, A-2
48K Apples 1-8, 3-12, 5-2
64K Apples 1-8, 3-12, 5-2
88-column cards 2-1 to 2-2, 5-3,
7-8, 10-1, 1¢-2, D-5
: 3-1, A-2
: 3-1, A-2
< 4-5, A-3
<= 4-5, A-3
<> 4-5, A-3
= 4-5, A-3
> 4-5, A-3
>= 4-5, A-3
jQ 5-3
ABORT 7-4, A-3
ABS 2-13, A-3
accessing array elements 6-8 to
6-19
accessing arrays from loops 6-13
to 6-15
accessing individual characters
6-26, 6-27
AND 4-6, 4-7, A-3

Apple /// 1-8
Apple keys 7-12

AREG 7-11, A-3
ARRAY 6-8, 6-17, 6-21, 9-16, A-3
array error checking 6-11

INDEX G -1

arrays 6-7 to 6-16, 8-13, 8-14,
9-16, D-3

arrays in auxiliary memory 1¢9-4,
10-5

arrays of strings 6-21, 6-22
array sizes 6-12

ASSIGN> 6-17, 10-2, A-4

ATN 2-14, 7-14, A-4

automatic insertions, editor

5-6, 5-7

Autonum, editor 5-5

AUTORUN 7-4 to 7-7, A-4

AUX 1¢-2 to 10¢-5

auxiliary memory 18-1 to 10-9,
B-3

AUXMEM 19-2, 10-7, 10-8

back-ups 1-12

BEGIN - UNTIL 4-13, 4-14, 4-19,
4-2¢, A-4, A-13

BEGIN - WHILE - REPEAT 4-14,
4-15, 4-19, A-4, A-11, A-13

BELL 4-17, 8-1, A-4

binary file overlays 8-16, 8-17
branching 4-8 to 4-20

buttons 7-12, D-4

BYE 7-13, A-4

C Error 3-8

CALL 7-11, A-4

calling machine language routines
7-11

Cartesian coordinates 9-3, 9-4
CASE: - THEN 4-15 to 4-18, A-4,
A-13

character input and output 6-27
to 6-29

characters 6-26 to 6-29
character sets 9-9, 9-10, B-2
clearing arrays 6-11

CLOSE 8-4, 8-15, 8-16, A-4
CLRKEY 6-29, D-4

COLOR 9-5 to 9-7, A-4

colors 7-12, 7-13, 9-5 to 9-7
combined graphics and text 9-2,
9-3

combining text and numerical data
6-29 to 6-31

INDEX G - 2

comments 5-11
COMPARE 6-25, 19-2, A-4
comparing numbers 4-5, 4-6

comparisons with other languages
1-2 to 1-5

compile 1-5, 3-1, 3-8, 5-19
compiling bytes into memory
7-12, 7-13

CONCAT 6-24, 10-2, A-5
ConTRoL-C 2-2

ConTRoL-L 7-2

copies 1-12

cos 2-13, 7-14, A-5

CR 2-15, 2-16, 7-1, 8-1, A-5
cursor movement 5-1

data stack 2-4 to 2-8, B-1, D-3
decision and branching words 4-8
to 4-20

defining new words 3-1 to 3-9
Delete, editor 5-6

demonstration program 1-13, 2-1,
7-7, 7-8

DEVICE 8-1, 8-2, 8-9, A-5

DISK 8-1 to 8-4, A-5

DISK> 5-11, 8-1 to 8-4, 8-6 to
8-1¢, A-5

po ~ LOOP 4-1, A-5, A-9

DOS 3.3 1-8, 1-9, 8-4, B-2

DOS commands 5-9, 8-11 to 8-14,
9-2, 9-19, 9-16

double address words 1¢9-6, 18-7
DROP 2-9, 2-11, A-5

dummy words 3-13

DUP 2-19, 2-11, A-S

E 2-9, 7-3

ECHO 8-9, 8-18, A-5

EDIT 5-2, 5-3, 8-5, A-5
editor 5-1, B-2

ELSE 4-10 to 4-12, A-6
endless loops 4-19, 4-20
end-of-string marker 6-19
ENG 7-2, 7-3, A-6

EOF 8-6, 8-7, A-6

EOFCHR 8-7, 8-8, A-6
ERASE 4-11, 10-2, A-6
Erase, editor 5-6

INDEX G -3

errors 1-6, 2-14, 2-15, 6-11,

7-14,

C~1 to C-3

ESCape codes 5-1
EXMODE 9-7, 9-8, A-5

EXP

2-14, 7-15, A-4

F'
feedback 1-11

FILL

9-5 to 9-8, A-6

FIRST 19-2, 19-6, 106-7, 18-9

FIX

7-2, 7-3, A-6

floating-point format C-5

fonts

9-9, 9-10

FORGET 3-9, 3-14, 5-2, 5-13,

5-14,

Forth

FRAC

A-7
1-4
2-14, a-7

frisbee 1-12
functions 2-13, 2-14, 7-14 to

7-18,

game
Get,
GETC

9-8, 9-9

paddles 7-11, 7-12, D-4
editor 5-8, 5-9
5-28, 8-1, A-7

GETKEY 5-29, 9-20, 9-21, D-4
GETNUM 6-19 to 6-21, 1@-2, A-7

Gosub

Goto
GR

3-3, 4-19
4-19
9-1 to 9-3, 9-6 to 9-8, A-7

GraFORTH 1-3
graphs 9-8, 9-9
graphics 7-8, 7-12, 7-13, 9-1 to

9-21,
graph
9-5

handl

D-2, D-3
ics drawing commands 9-3 to

ing 1/0 8-4 to 8-6

hardware 1-7

HERE

3-12, A-7

HEXPRT 7-2, 8-1, A-7

high-
9-19,
HOME
HTAB

I

IF -
A-6,
IF -

INDEX

resolution graphics 9-1 to
10-8, 16-9, B-1

7-2, 8-1, 9-20, A-7

7-1, A-7

4-1, 4-4, A-7

ELSE - THEN 4-19 to 4-12,
A-8, A-13

THEN 4-8 to 4-10, A-8, A-13

(3]
1
>

immediate mode 3-1

INPUT 5-19, 5-11, 8-1 to 8-14,
1¢-2, 16-7, 16-8, A-8
input/output commands 8-1 to
8-1¢, 18-7, 10-8

Insert, editor 5-7, 5-8

INT 2-14, A-8

INVERSE 7-2, A-8

J 4-3, A-8

joystick 7-11, 7-12

K 4-3, A-3

kayboard input 6-28, 6-29, D-4
LABL error c-1

larger graphics programs 9-15,
9-16

LCOLOR 9-18, 9-19, 9-21
leaving the text editor 5-19
leaving TransFORTH 7-13

LEFTS 6-26

LENGTH 6-23, 6-24, 18-2, A-8
LGR 9-17

LGRF 9-18, 9-21

LHLINE 9-19, 9-21

LINE 9-4 to 9-8, A-8

Line entries, editor 5-4

LIST 2-2, 2-11, A-8

List, editor 5-4, 5-5

LOG 2-14, 7-15, A-8

LOOP 4-1, A-9

lower case 2-2

low resolution graphics 9-17 to
9-21

LPLOT 9-18, 9-19

LSCRN 9-20

LVLINE 9-19, 9-21

machine language routines 7-11
MARRAY 6-12, 1l@-2, A-9
MAXFILES 8-11

MEMORY 5-1¢, 8-1 to 8-5, 8-9,
8-108, A-9

memory arrays 6-12

memory cards Cc-6

memory usage 3-12, Cc-4, C-5
memory usage, editor 5-16 to
INDEX G -

5-18

miscellaneous words 7-8 to 7-13
MOD 2-13, A-9

monitor patch B-3, C-5, C-6
MOVE 9-12, 9-14, 9-15

MOVELN 6-24, 16-2, A-9

MOVETO 9-13, 9-14

MOVFILE 8-8, 8-9, A-9

moving memory 7-19

MOVMEM 7-19, 186-2, A-9

NEGATE 2-13, A-9

nested loops 4-2, 4-3

NORMAL 7-2, A-9

NOT 4-6, 4-7, A-9

notes and sound effects 7-8, 7-9
NOTE 7-8, 7-9, A-9

Not Found error 3-11, C-1

Not Unique error 3-11, C-2
number format and storage 6-5
numbers 2-8, 2-9

number to string conversion 8-1¢
OBJ.EDITOR1 or 2 5-2

OBJ.FORTH 2-2

OR 4-6, A-10

ORMODE 9-7, 9-8, A-1¢

OUTPUT 8-1 to 8-1¢, 10¢-2, 10-7,
A-10

OVER 2-16, 2-11, 3-6, A-10
overflow 2-14

overlays 8-14 to 8-17

PAD 6-22, 6-23, A-19, B-1
paddles 7-11, 7-12, bD-4
parentheses 2-6, 5-11

PEEK 6-5 to 6-7, 6-108, 6-26,
19-2, A-18

PEEKN 6-5 to 6-7, 6-16, 1¢-2,
A-10

PEEKW 6-5 to 6-7, 6-10, 1¢-2,
A-19

PENUP 9-11, 9-13, 9-14

PENDOWN 9-11, 9-13, 9-14

PI 2-14, A-10

PICK 2-11, 2-12, A-1¢

pixels 9-1

PLOT 9-4 to 9-8, A-10

INDEX G - 6

POKE 6-5 to 6-7, 6-18, 6-27,
10-2, A-10

POKEN 6-5 to 6-7, 6-19¢, 108-2,
A-10

POKEW 6-5 to 6-7, 6-9, 10-2,
A-11

POP 4-4, 4-5, A-11

Postfix 2-6

PREG 7-11, A-11

PRGO error 3-13, C-1

PRINT 2-15, 7-1, 8-1, A-11
printing files 5-9, 5-10

PROGRAM MEMORY INPUT 5-14, 5-12,
8-2, 8-3, Aa-8, A-9, A-11l

program compilation 5-190

program control words 7-4 to 7-6
program execution 2-3 to 2-4
Program position, editor 5-17
programs 3-19

program structure 4-18, 4-19
PULL 4-4, 4-5, A-11

PUSH 4-4, 4-5, A-11

PUTC 6-27, 7-1, 8-1, A-11

R Error 2-15

RAM cards 1-8, C-5

READLN 6-18 to 6-21, 8-1, 16-2,
A-11

Ready prompt 2-1

recursion 3-11, 4-19, C-6 to C-8
registration card 1-12

REPEAT 4-14, 4-15, 4-19, A-11
restrictions on disk 1I/0 8-10
RETO error Cc-1

RETU error c-1

retrieving word addresses 7-19
return stack 4-4, B-1, D-3
Reverse Polish Notation 2-6
RIGHTS 6-26

RND 2-14, 7-15, A-11

ROLD 2-11, 2-12, A-12

ROLU 2-12, A-12

RPN 2-6

RUN 7-4, A-12

Save, editor 5-8

SAVEPRG 7-6 to 7-8, A-12
Saving the TransFORTH system 7-6

INDEX G - 7

to 7-8

scaling functions and graphs A-13
9-8, 9-9 tic 7-10
SCI 7-2, 7-3, A-12 top of stack 2-5
scientific functions 2-13, 2-14, TransFORTH][1-3
7-14 to 7-18 TransFORTH][B 1-3
screen dumps 9-16, 9-17 TURN 9-12, 9-14, 9-15
SECOND 1¢-2, 18-6, 18-7, 10-9 TURNTO 9-12, 9-14
SETAUX 16-2, 18-4 TURTLE 9-11, 9-14, 9-15
SETMAIN 16-2, 19-4 TURTLE.ANG 9-13
SIGN 2-13, A-12 TURTLE.TEXT 9-11, 9-14
SIN 2-13, 7-14, A-12 TURTLE. X 9-13
single-address words 19-3, 10-4 TURTLE.Y 9-13
SLOT 8-2 Turtlegraphics 9-19 to 9-15
SPCE 2-15, 2-16, 7-1, 8-1, A-12 -
speed of execution 1-5 underflow 2-15
speedreader 8-4, 8-11, B-1 UNEQ error 3-8, C-1
SQRT 2-13, 3-3 to 3-5, 7-15, UNTIL 4-13, 4-14, 4-19, 4-20,
A-12 A-13
STACK 2-4, A-12 upper case 2-2
stack display 2-4, 4-4, 4-5
stack overflow 2-14 VALID 6-20, A-13
stack underflow 2-15 VARIABLE 5-1 to 6-3, A-13
stacks 2-4 to 2-8, B-1, D-3 variables 6-1 to 6-5
STKO error 2-14, C-1 VTAB 7-1, 7-2, A-13
STKU error 2-15, C-~1
storage and retrieval words 6-5 WHILE 4-14, 4-15, 4-19, A-13
to 6-7 - WINDOW 7-2, A-13
string arrays 6-21, 6-22 word definitions 3-1, 3-2
string manipulation words 6-23 word library 2-2, C-3, C-4
to 6-26 word references 3-11
strings 6-17 to 6-27, D-4 words 2-2 to 2-4
string to number conversion WRITELN 6-17 to 6-19, 7-1, 8-1,
6-19, 6-20 16-2, A-13
subroutines 3-1@
Swap 2-19, 2-11, A-12 X/® error c-1
system requirements 1-7 XOR 4-6, A-13
system string PAD 6-22, 6-23, XREG 7-11, A-13
B-1
YREG 7-11, A-14
TAN 2-13, 7-14, A-12 A
TEXT 9-2, 9-3, 9-20, A-12 - 2-13, 3-4, A-14
text editor 5-1 .
textfiles 5-2, 5-8 to 5-11, 8-3,
8-4 to 8-13
textfile speedreader 8-4, 8-11,
B-1
THEN 4-8 to 4-12, 4-15 to 4-18,
INDEX G - 8

INDEX G -

