GraFORTH
LANGUAGE MANUAL

Notice

i k

Insoft and Paql Lutus reserve the right to make improvements in the
product described in this manual at any time and without notice.

Disclaimer of all Warranties And Liabilities

Insott Company and Paul Lutus make no warranties, either expressed or
implied, with respect to the software described in this manual, Its quality,
performance, merchantability or fitness for any particular purpose. This
software is licensed "as is”. The entire risk as to the quality and performance of
the software is with the buyer. Should the software prove defective following
its purchase, the buyer (and not INSOFT Company, or Paul Lutus, their retailers
or distributors) assumes the entire cost of all necessary servicing, repair or
correction and any incidental or consequential damages. In no event will
INSOFT Company, or Paul Lutus be liable for direct, indirect, incidental or
consequential damages resulting from any defect in the software even if they
have been advised of the possibility of such damages. Some states do not aliow
the exclusion or limitation of implied warranties or liabilities for incidental or
consequential damages, so the above limitation or exclusion may not apply

10 you

The word Apple and the Apple logo are registered trademarks of
Apple Computer.

Apple Computer, Inc. makes no warranties, either expressed or Implied,
regarding the enclosed computer software package, Its merchantability or its

fitness for any particular purpose.

DOS 3.3 Copyright 1979-1981 Appie Computer, Inc.

- © 1982 INSOFT" -
- © 1981 P. Lutus -

—
L 4
Py

¥ ¥

£

¥y

33

T
¥y

1)

prves @ Lidamocoet B 0

i Y

F¥
Ho@ B RERSTTR M e

S=C

3}
PRER h [
Ly}

H

Ei

&Y

F‘?
= § | [=

e b

TABLE OF CONTENTS Page

Disclaimer and Warranty

Table of Contents

PART I: Setting the CONTEXT for GraFORTH. . .
CHAPTER ONE: PREVIEW

Introduction to GraFORTH 1-2
Manual Overview 1-4
How to Use This Manual 1-6
Start-up Procedures 1-8
A PLAYful Preview 1-9

CHAPTER TWO: BACKGROUND

What You'll Need to Have 2
What You'll Need to Know 2
What You'll Need to Do 2-
What You'll Need to Be 2

PART Il: The CONTENT of GraFORTH. . .
CHAPTER THREE: STARTING GraFORTH -

Purpose and Overview

First Things First

More Words

Defining New Words

Looping Structure

The Return Stack

Comparing Numbers

Decision and Branching Structures
Program Structure and Other Miscellany
Conclusion

CHAPTER FOUR: TEXT MAGIC

Purpose and Overview

Strange and Wonderful Characters
The Text Editor

Program Compilation

Comments

Using the Editor with GraFORTH

o

v

WWWWwwwww
BRI == NN
Coumw=©H

LLLpa0N

pPBEAEBED
W

CHAPTER FIVE: DELVING DEEPER. . .

Purpose and Overview

Text Formatting

Data Storage and Retrieval

Strings

Words Manipulating Individual Characters
Using Numbers in Other Bases

Using DOS from GraFORTH

Program Control Words

Saving the GraFORTH System

Overlays

Moving Memory and Retrieving Word Addresses
Calling Machine Language Routines
Compiling Number Tables

Leaving GraFORTH (gently)

Conclusion

mmc‘nm

1

RO WIRNRN = O DN
R 2 OO~ W ©

CHAPTER SIX: TWO-DIMENSIONAL GRAPHICS

Purpose and Overview

Apple Graphics

GratORTH Graphics
Two-Dimensional Graphics Words
Turtlegraphics

CHAPTER SEVEN: CHARACTER GRAPHICS

Purpose and Overview

Special Output Characters
Changing Character Size and Color
Font Selection

The CHAREDITOR

Block Printing from GraFORTH
Setting the Block Size

Chapter Summary

Conclusion

6-

coom
NS R

(SN)

NPV EN RNV ENEN|
Lol LU weN

e

[os

[
g ot
B. 3
A
ol

B he

I

e “gi
-
B
PR]
-
E s
o
e B
RSN |
B3
-
1
EA
TN 3
P a
b 4
5 i
£
1
H (%
g- 3 -
e 5 “
‘; -t
!
1 “
! o

m m

<

33
EE

A

4

CHAPTER EIGHT: THREE-DIMENSIONAL
GRAPHICS

Purpose and Overview

3-D Graphics at a Glance

Image Parameters

The IMAGEDITOR
Three-Dimensional Display Methods
Profile

Playing Around

Conclusion

CHAPTER NINE: MUSIC

Introduction

VOICE

NOTE

Determining Durations and Pitch
Useful Music Words

Conclusion

CHAPTER TEN: FINAL WRAP

PART IV: APPENDICES. . .
A: GraFORTH][DICTIONARY Definitions

Alphabetical Listing
Listing by Functional Groupings

B: DATA: GraFORTH TECHNICAL DATA

Three-Dimensional Mathematical Method
Image Table Internal Format

Dictionary Structure

System Memory Map

Page Zero Memory Map

C: FILES: A LISTING OF DISKETTE FILES
D: ASCIl CODES

E: INDEX: GraFORTH System Manual

Y CPRNLAYS FY N
ENOOO

% & 0 ¢ 0 © O @

TR R, B S g R e T

©OEEO®
P WWNN
-

PR

g s

2 BTN T P AR A S

TV ST g

ot N v vne el e e o

By L s

1
- i .
e R S |
P
.;‘_‘L‘ .
. CHAPTER ONE: PREVIEW
g& d CHAPTER TABLE OF CONTENTS: Page
] ’
- Introduction to GraFORTH 7-2
— e
gj o A Family of Languages 1-2
— Features 1-2
- . Compariscn with Standard FORTH 1-3
y 5 Comparison with TransFORTH 1-4
; Program Editing and Storage 1-4
=
7o Manual Overview 1.4
4
b : N Structure 1-4
g y u} Review of Content 1-5
5
i
. n How to Use This Manual 1-6
¢ Differences of Style 1-6
d Tutorial Learning 1-6
: ' Reference Aids 1-7
7 . Multiple Tables of Contents 1-7
i The Word Library Definitions 1-7
g Index 17
- - .
B . e Conventions Used 1-7
f oo - Request for Feedback 1-8
P . S
-, tart-up Procedures 1-8
E Product Information Card and Replacement Policy 1-8
fm ~ Making and Using Backup Copies 1-9
- -
— A PLAYful Preview 1-9
L TR | ~
,)
b el An Introductory Tutorial 1-9
Running the PLAY Program 1-10
P
B
e PREVIEW 11
! sl

Introduction to GraFORTH

The Apple computer has some potentially powerful graphics
capabilities. One of the most impressive of these is the
presence of high-resolution color graphics. While there has been
a large number of programs written which use this capability,
sometimes in a most dramatic way, and there have been several
outstanding graphics utilities written to ease the task of adding
Apple Graphics to programs, until now, no computer lanquages have
been specifically created for the purpose of fully exploiting
these features. GrafFORTH is just such a language.

A Family of Languages

GraFORTH is the latest member of a powerful new "family of
lanquaqes" developed for Insoft by Paul Lutus. The first of
these related lanquages to be released was TransFORTH., While
TransFORTH and GraFORTH are related, each of these lanquages has
different functions and capabilities, and is designed to meet
different needs. They are related in the ways members of a
family are related - they have the same parentage, that of the
FORTH lanquaqe. In a moment, we'll take a look at that heritage,
and discuss the differences between GraFORTH and other FORTH
implementations. But first, let's look at the capabilities of
Graf ORTH you'll very soon be learning!

Features

GrafORTH provides many features not seen before on small
computers. The system can draw three-dimensional images, in
color, at rates that make animation possible. A sophisticated
music synthesizer, a part of the lanquage, allows the addition of
music das well as sound to GraFORTH programs. Text display may he
in any size, color, or typeface, and mixed with graphics imaqes
on any part of the screen. Personalized character fonts may be
created, and fonts full of different two-dimensional images may
be block printed to any screen location under full program
control. Clearly, this is a programming lanquage designed for
applications where fast, sophisticated araphics capability is
important, such as the development of games and entertainment
software.

PREVIEW 1 -7

ﬁ?
car B g

T K BF R

o

)

m

ey

e

S W e

|
:
:
-l......_“
Y Ty

Ty 'y & (51 £2, thi ¥y

£ER.

Comparison with Standard FORTH

The above features are embodied in a very fast, fully compiled
version of FORTH. Nearly all other Apple lanquages (hoth BASICs,
UCSD Apple Pascal, Apple FORTRAN, and most other FORTHs) are
interpreted while they are running. This is often done to
provide what is called 'code transportability', the ability to
take programs from one computer and run them on another with
either no or few modifications. Unfortunately, this drastically
reduces the speed of your programs. GraFORTH (and TransFORTH)
have been desiqgned for the computer you own, the Apple. They
have been specifically written to make maximum use of the
features built into your machine, and therefore no attempt has
heen made to credate transportable code. By compiling directly to
6502 machine lanquage, speed was greatly increased over nearly
every other lanquage - a must for smooth, fast, animation quality
graphics. FEven though GraFORTH is fully compiled for the purpose
of increased speed, commands may still be typed directly at the
keyboard, rather like an interpreted lanquaqge. As implemented,
then, GraFORTH has hoth the speed of a compiled lanquage and the
imnediate feedback of an interpreted lanquage, the best of both
worlds. Finally, GraFORTH, unlike standard implementations of
FORTH, uses standard Apple DOS commands and file structures, to
retain compatibility with the work you have already done with
your computer, and to reduce the time it will take to learn

GralF ORTH,

[f you are already familiar with another version of FORTH, you
will find many similarities and many differences between GraFORTH
and other FORTH versions, as GraFORTH is only loosely related to
these other lanquages. The general structure of the lanquaqe has
been retained (at least outwardly), but the implementation of
that structure is vastly different. These changes have been made
for very specific reasons. In short, the intended usane of
GrabORTH s very different from that for which FORTH was
oriqginally desiqned. GraFORTH is a computer graphics lanquage,
and this in and of itself brought about many changes. Further,
it was our intention to make GraFORTH as easy to learn and as
similar to existing Apple environments as possible. Therefore,
if you already know FORTH, we hope you will bear in mind that
this languaqge has been designed for those who do not share your
knowledqge of FORTH-1ike environments and who want a fast, easy to
Tearn qraphics lanaquaqge. For those of you who do not know FORTH,
dive in! You will find GraFORTH to be a powerful, vet intuitive
Tanquaqe. Yery soon you will be using your Apple to do things

you never thought were possihle before!

PREVIEW 1 -3

Comparison with TransFORTH

By way of contrast, while GraFORTH is a

wa f ow aphi

?Z?gg?gﬁzggsligguige, restricted to who]g nﬁ;E:l ??ﬁgzégi)

al at he purpose of graphics speed, T i

scientific and business orien hith’ ran§FORTH vl

;;;Ehpgg}c and a much nore exiggslqugsgiatlﬁg S]git1HQ-001ﬂt

ruwrf[GRAgH?gzo has qu—dnmensiona] 11ne-drawinqyan3m.

e éhdrdcte;_(capsblllt1es,_hqt no three-dimensional qraphi

o chare jraphics are 11m1ted to selection of pre-d ?' o
sets., Thus, TransFORTH has much more ca]cu]at?n;ned

ability, but less graphic i jus
SARNAY graphics, while just the opposite is true of

Program Editing and Storage

Programs, subroutine !

) S, or 'words', as tf i

o _subrou » ey are known

o {:t::];;jnfjn the language editor and stored in t;:tF??¥H,

et fj‘;! 1cat1on‘or use, Because these files are sta js

R ma;,bany eZ]tor of the user's choosing which cre;“t:r‘1
_ e used. Because pr¢ ’

e . t program seqments ma i

Pncou:gzédthsh?zgumu]at]on of proven proqgram modu]esyi:e saved

: ed, in turn encour S i

programming techniques. e e prectice of good

Manual Overview

Structure

The text portion of this al 1 i

! s manual 1s divid i
e ’ ‘ ed into 2 a1
»:ﬁgﬁ?:%t?ry 3r context-setting section (Chapterghgtznﬁdggs ;7
t -based content section of se - "
Loror even chapters to he
J)lLdzid:dszzg‘DUt to use the GraFORTH lanquaqe Syste;]??y?g
QFSFUR[H Word ion of aDPended reference material .inc1u1: o
'rruuého to[h Library Listings, Technical Nata ;ni Ind;]nq e
n u ese chapters, diac ’ ; : "
o : s grams are used to su
" poss:;$5t;at]0ns and the abundant use of headinzgogﬁ t?e o
e '_e(1 or you to sg1m the text, get a sense of thou : make

2r, find general topic areas in the body of £9xt aidSUhJeCt

; 2xt, never

lose your sense of e e e
k RA = where ou ar
soecific topics u‘ic\(]y. N €. he Index should hE]D you find

a

PREVIEW

o
» i
gj&‘“—m :

1.

4l

a4

5 SO 5

iT.

oy

e

Rl

fi'!

;{“

4
1
4
!
SO
T
i
n
& ~
A ::
g &
i
wd
a0
] “
R
4
=
EY N
‘e
4 -
i
i
e T
#3 o
- \
™
®
™
o “
3 -
-d
= TN
» -y
A
-Ey -
w R
‘.’ ki
ey L
5 N
 —
i
o
s
< A
" o g
¥ wd
3
el .

Li)

Review of Comtent

part 11, the contemt of the manual (that is, that material which
e itself) is presented in seven major chapter

is about the lanquag
divisions. Chaptemr 3 is primarily an introduction to the FORTH
lanquage aspects off GraFORTH, including an explanation of the

definition of wordis, stack operation, and control structures.
(In addition to besing a qood introduction to GraFORTH, much of
the material coverwed in this chapter pertains to other FORTHs as
well, making it am excellent FORTH overview.) Chapter 4 covers
text entry, special characters, and the supplied text editor. It
shows how to writer and modify GraFORTH programs Or "words" and
how to compile them into memory from the editor bhuffer or from
disk. Chapter 5 presents extended GraFORTH capabilities and
describes how it wmperates, how it relates to and uses the NOS 3.3
disk operating system, and how its data structures - variables
and strings - are created and used. Chapter 6 introduces
GraFORTH's two-dimensional graphics capabilities including
plotting and line drawing, color selection/filling, and the
TURTLEGRAPHICS comunands. Chapter 7 describes character graphics,
particularly a prwogram called CHAREDITOR, which allows the design
of new character ffonts and images that can be hlock printed to
the screen. Chapiter 8 reveals the GraFORTH 3-D graphics system,
including moving and manipulating objects in 3-D space. The
program IMAGEDITOIR, which allows the creation and modification of
3-D objects, and another, called PROFILE, which speeds up the
process for the marticular class of objects which rotate or
revolve around a central axis, are introduced. Another program,
named PLAY, winds up the discussion of 3-D graphics by allowing
you to “play" witth an object in space, as you will discover in a
short exercise at the end of this chapter. Chapter 9 describes
how to add music (as opposed to sounds) to your programs, and
Chapter 10 concludes Part IT with a discussion of marketing
coftware developed using GraFORTH. That's a lot of content,
which you surely must be eager to qet to, but first perhaps we
should talk aboutt the manual for a hit.

PREVIEW

I AN AL, AR AR Tt < N 2P

:
i

B

IR

How to Use This Manual

Differences of Style

It is important to realize that everyone uses manuals according
to his or her own individual learning styles and skill levels.
There are those of us who start from the beginning and carefully
read every word, and there are others who bound ahead looking ror
just enough information to “get on with it"., Still others like
to live on the edge, bhoot the disk first, and only use the manual
it they have to look something up later. Furthermore, even the
same reader will have differing moods and levels of interest, and
will use a technical manual in different ways at different times
according to his or her current understanding of the product.

Tutorial Learning

This manual is set up to be, first of all, a tutorial to quire
you gradually through the steps you need to take to learn the
GraFORTH Tanquage and beqin to put it to use. ‘'Tutorial
learning' has hecome the primary method of microcomputer
instruction. Actually, it's a bit of a misnomer. There is
really no tutor, unless a technical manual can be considered
such. For the most part, it will be just you and the manual and
whatever other resources you can pull together. Be advised,
however, that there are many differences between GraFORTH and
other FORTH implementations. Because of these differences (we
think of them as improvements), we advise you, even if you know
FURTH already, to read the manual carefully at the beginning.

Later, of course, you will be using the manual more 4as a
reference quide than as a tutorial, and will need to be able to
find specific items of information quickly. There is nothing
more frustrating than knowing that you saw something someplace,
bit can't quite remember where. We'll help vou find it, after
all, you may be living with this manual for a few weeks. In
either case, tutorial or reference, we have tried to accommuodat e
all styles of learning.

PREVIEW 1

34

4

3

TR TR IR T VTR VYT

7y

Reference Aids:

Multiple Tables of Contents

As mentioned above, there are various reference aids which should
allow you to find what you want quickly when using the manga1 as
4 reference quide. At the beqginning of the manual, there is a
comprehensive table of contents which presents the major topics
of the manual, with page numbers, in the order in which they
appear. FEach chapter has a similar, but more complete table of
contents for that chapter.

The Word Library Definitions List

Appendix A, in the back of the manual, contains an
alphabetically arranged list of annotated definitions of §1] the
GrafORTH words which come with the system. Because this‘1s an
important source of information about the lanquage to which you
will be referring frequently, we placed it first, and have also
included an additional cross listing of the words by subject
groupings.

Index

In Appendix E, at the end of the manual, there is a comprehensive
index which lists the major topics and terms of the manual once
daqain, but this time alphabetically.

Conventions Used

Several standard conventions are used to simplify the
descriptions. A1l commands which you are to type in are printed
in upper-case type. All ‘'system' responses are shown as they
appear on the screen. 'Control character' entries are denoted by
ConTRolL-X, where X would be replaced with the actual character
entered., Control character entries are made by holding down the
ConTRol. key while depressing the indicated key.

PREVIEW 1 -7

Request for Feedback

Let us know what you liked and didn't like about this manual. We
have tried to make it as complete and friendly as possible, but
we know that something, somewhere may be confusing. lLet us kow
if we omitted a useful tip, or explained something poorly. Also,
let us know what worked for you so we can continue to produce
high quality manuals for future products.

Start-up Procedures

Product Information Card and Replacement Policy

The warranty of this diskette is covered in general by the
statement at the bottom of the warranty and disclaimer page in
the front of the manual. Since its message is hidden in
legalese, let's just say that roughly what is meant is that we
did our best to ship the diskette in perfect condition, but we
have no control over what happens to it enroute to your disk
drive. If, for some reason, it will not 'boot' (come up on the
screen when the machine is turned on), then you should take or
send it back to the place where you purchased it. If they cannot
get it to boot, then we will replace it at no additional cost to
you, for a period of 30 days after you purchased it.

(Thereafter, a nominal replacement fee may be charged.) Once you
have a disk that boots and runs, then it is your responsibility
to protect it by using it only for the purpose of making
duplicate work disks and backups (see next section).

In the meantime, we would appreciate it if you would fill out the
Product Information Card. This card gives us valuable
information about our customers and helps us design our products
and product line to better serve you. If everyone who buys
GraFORTH turns out to be retired and living in Florida, then this
manual will have to be rewritten with a different set of jokes.
The card also allows us to keep you up to date. If we decide to
send out an updated GraFORTH diskette, then you would probdbly
want to know about that.

PREVIEW 1 -8

(&
i

1 |

-
i i
i

&;:ﬂ a3
| -
4 ¥ S
E,f“""’“ sl
2
L amas A sl

-0
".»! “

=

t a4 -
[E. . oA
b |
b | e
i -

]
|
. g
| -

!

PR |
£ 3
™
| -
i
b g 0"
' i

|

i
X -
|
i ol
L =
e, T
H -

.
Boos
| ™

!

o4
SR T
S ! "

{

¥

£
\g ‘“M“
once { e

i

RS |

i ,

%)

Making and Using Backup Copies

If you have not yet made a backup copy of the GraFORTH diskette,
then now is a qgood time to do so. Never use the original as a
work disk, not even for a few minutes., Particularly, never use
an original disk to try to solve a problem which blew up your
work disk. Make a new bhackup if you can, and use that to
experiment. Because GraFORTH is compatible with DOS 3.3, any
copy program you normally use to copy your l6-sector Apple NOS
disks will work to copy this diskette. The COPYA program which
came with your DOS 3.3 System Master diskette is a particularly
reliable one, and we recommend using it. [In fact, it is
recomnended that you have two backup copies so that if one goes
down, you won't have to open your lead-lined vault to get at the
original.

A PLAYful Review

An Introductory Tutorial

We suqyest that you study the Tahle of Contents and the Manual
Diagram for a few minutes to get an idea of where we are and
where we have to go, and then, bhecause we know you are itching to
get your hands back onto that machine and create a few
three-dimensional forms to rotate in free-floating and
free-wheeling space, we'll give you a preview of what's to come
in future chapters...

If you catalog your disk, you'll find the text file PLAY on it.
PLAY is a set of routines (or "words"), which when compiled and
run, allows you to pull up a three-dimensional form off the disk
(several are provided), and play with it in 3-D space. Later on,
we'll tell you how to use PLAY to understand better the 3-D
images you are creating. But for now, we are just going to have
some fun using PLAY. If you have not yet made a backup copy of
your disk, we'll just have to insist that you do so now. From
now on, when we speak of your GraFORTH diskette, we will actually
be referring to the copy you use as a work diskette.

PREVIEW 1 -9

Running the PLAY Program

\ 0 Yy (k and respond w h ar \ or N
3
T)y rufr PLAY boot ou S (0 to

the demonstration o io Whe he Read

2 ‘ est1 2 !

Cyne] Ne n the ' d Y" lJlOth comes on
’

REAN " PLAY " <return>

Be sure to type it exactly as i i
!) 3 you see it
SﬁztkfglgtAIn1”g~tp? quotation marks. Tﬁelzgl:d%gxnt?g Lo
gompife N in; rf ORTH system to read a file on ﬁhe disi P
]anqua&) ; 0 the wqrd library, that is, turn it int énd
e for the machine to use. When the "Ready" p?oﬁp?dLhine

e] S ype RUN dand a s o] 10 ruc 10NS W | e di l 34!
dppears, t p et st Splayec
.

Of the screen, Aas]US[,rdted d]d(]rdm below: Y

'pLAi;i.iD Irﬂf)ﬁe Manipulator o

{ ROTATION SCALE TRANSLA T
| HOT) AT
re3 456 748 QlON it

bx
X Y2 XYz XYz XY
i Pres
i ‘n:gvg?.;:w heys to select parameter,
F\ to set In motion
D ‘o freeze motion
to reset defoult

S or Fggss

- S 1o reset all pa

! ;TRL S :o pausehmspgu;ame”"s
o see !t i

; & s ese instructions

i
Imoge 1n CMJemory or on CDJisk? |]
|

i

;:id;gggig Rgl, SCALE, TRANS,'and POS refer to the four
5cdndé o Zhe ggy}gse to manipulate the image in space ROT
S Std”d; }ty to rotqtg the object around any éf thr
e onject~ sl or Fhe ability to change the scale or si .
) s stands for the ability to translate or mgléetgr
(&3

image in its 'space en C
s velope', and POS ili
move the position of the image on the Sztgggs for the bty to

PREVIEW

ex)

The characters, 123 456 789 :-, are pressed to activate any of
the above parameters along any of the axes, X, Y, and 7,
jndicated below them., The commands in the middle of the screen
start and stop the selected action, or reset the parameters to
their starting positions (called ‘defaults'). VYou are to press
just those keys which are hiqh-Wighted in inverse. 1f the action
ever qets too fast for you or you see something you'd like to
study, pressing ConTRoL-S will stop the action until you press
another key. Similarly, 'D' will reset the currently active
parameter 10 jts default position, CESC> will put you hack at the
hbeginning, and 'Q' will put you out in the cold at the "Ready"

prompt.

At the bottom of the screen, you are being asked to answer a
question as to where the image 1s which you would like
manipulated. The quickest way to understand the progran is to
dive in and try it, pressing the various keys along the way to
cee their effects. Rut first, we need an image to play with.

Unless you're way ahead of us, you do not have a 3.0 image in
memory vyet, SO celect 'D' to answer the question at the bottom of
the screen and to begin the image loading process. Next, hit
(return> to default the address to 2816 (more on that later), and
enter 'XYZ' as the imaqe filename. Again, hit (return>. Your
screen should now show a picture of a vertical line crossed by a
horizontal arrov. In a moment you'll see that these are really
thﬁgg_intersecting arrows. On the right side of the screen are
The movement commands, ROT, SCALE, TRANS, and P0S. [Ignore the
latter two for the purposes of this short trial run. Now the fun
hegins. Press 12", and then the right arrow key. Next press
11", then the right arrow key. Observe the numbers changing over
on the right. See if you can fiqure out what they do as you
select keys to press from the previous diagram. Try the left
arrow keys, and watch the action and the numbers change. You may
freeze the calection last changed with ‘g', and also by using the
arrow keys to get the parameters hack to zero.

At this point, you should have a screen which looks something
like the one on the next page.

PREVIEW o ¥

#
a

- ——
’ ey
!
“’-i)
2 3
ROT 2
15 = CHAPTER TWO: BACKGROUND
; o =iz
‘ scL 8
| it % CHAPTER TABLE OF CONTENTS: Page
N\, { o & &ng Y
, N s TRN T ,
v > g a What You'll Need to Have 2-2
i P\ 0 x
| B POS :5] Hardware Requirements 2-2
\I) 'oe . T Recommended Peripheral Options 2-2
Software Requirements 2-2

What You'll Need to Know

About Your Machine

About The DOS
Minor Modifications in DOS 3.3
Making Space on the Disk

Q

C1] xroT Value: 16 Inc: 1

'

Now press ‘D' to reset your current parameter to its default; get
r_.he idea? The more you press the arrow keys, the faster thp'
tmage will turn. If you are working on a color screen, you -wﬂ]
see that gach axis is a different color, which may help to keep ing Files

them straight. Remember, pressing <esc> will set all parameters ‘:: puetng B

Lo their starting (default) positions, which may be needed ifv ' - ey Other DOS Commands

they start getting out of hand. In particular, if SCALE, TRANS i Disk Care

i
1£)

i

v @ B B fovsas B Bese)
L4

&g

NRNONRNRRNNNN N
NNOOOPPLWW®W

and PUS get beyond a certain size, they will no lon i N About Programming i
:) , D ger fit on the . N
screen, and they will beqgin to "wrap around", appearing quite }t - : About Glap_hms
unexpectedly on the opposite side of the screen. It will look - About Music ‘
as]H' you have lines bouncing off the walls, but it is really 4
only wraparound. If you like that effect, then fine: but if . m ~ ’
Jjust keep the numbers smaller. ' not, ?: ; -y What You'll Need to Do 2-8
That's enough fun. We have to get back to work and learn the i Get an Overview 28
rest of what GraFORTH has to offer. We'll come back to PLAY in L T Run the Demos 28
Chapter 8, and learn what TRANS and POS actually do. But if you el Plunge In 28
Just can't c)lulte quit yet, we'll mention (while the boss is out is
ofr the room) that the way to bring up another 3-D ima 4
i ; Y : - ge to PLAY |
WIth is to type 'Q' and then RUN again, repeating all steps i What You'll Need to Be 2-9
except the one where you enter the filename (try HOUSE). N T |
‘*‘ -
n
- -
,:]‘n
b
c A
E N — =
I
] BACKGROUND 2-1
oo
e,
PREVIEW 1 - 12 ‘_}: " -.:
£
& W oo
e

What You’'ll Need to Have

Hardware Requirements

GraFORTH requires that you have the following minimum hardware
components: A

An Apple or Apple + computer with 48K RAM

One DOS 3.3 Apple disk drive with controller

A black and white (or green) video momitor, and/or
A color monitor or color TV with an RF modulator

Recommended Peripheral Options

In addition to the above (including the color display), it is
h!qh]y recommended that you have a 16K RAM or lanquage card, to
provide more available memory, and a second disk drjve. '

Software Requirements

GraFORTH s written in 6502 machine lanquage using the ALD SYSTEM
§55embler which was written by Paul Lutus and is also avéi]ahle'
from Insoft. All graphics are internal and are therefore
completely independent of either Apple BASIC (INTEGER or
APPLESOFT). GraFORTH boots from the ‘monitor', witﬁout a BASIC
"HELLU' program, 4as you will notice by the presence of the
asterisk prompt (rather than the BASIC prompt), during bootup
Th1s’makes the boot program independent of any resident 1dnqu;qp
mn EUM, avoiding the differences between Aup]é Il and Apple Ilo—
machines which are sometimes troublesome to software. It also
mvdﬂ), however, that it is not possible to .add your own special
HELLO program to the disk to have it do your favorite tricks on
Qgﬂ{up. But don't despair; we will show you later how to have
arabORTH automatically run any program you wish on bootup. -
Further, that program can be written directly in GraFORTH.

BACKGROUND

-

1B

2]

S B

L AN 3 2
wd § Biias @ BCEES B B

Fel F Eumsrs B Erosss B Bdd

if

Ew

g.

e

)

-y ? st
“J

.

wE B

PN
l -t
s PR
B
i .
3 e
B e
:
- i
F .
-
‘! e
i
i
':& —y
0., ad
% —
‘ﬁ
R -
"y

1

(&

L) whi ik, Ll

(¥

i

What You'll Need to Know

What You'll Need to Know about Your Machine

While it is intended that this manual serve as a tutorial in the
use of the GraFORTH language, it is not intended to cover
material already covered quite thoroughly and thouqhtfully in the
set of manuals distributed by the Apple Computer Company. If you
are a new user, unfamiliar witth how to use your Apple computer,
we suqgest that you take the (time to qo through the Apple
Reference Manual, which came with your machine. You will not
need to know everything in it to use your Apple successfully, but
the more you know, the easier it will be to understand operations
which miqght otherwise seem puzzling.

What You'll Need to Know about the DOS

With the exception of certain small changes (see below), GraFORTH
uses the standard Apple Disk (Operating System, Version 3.3, known
affectionately as DOS 3.3. Iif you are at all unfamiliar with how
to use your disk operating sysstem, we suggest you take the time
now to study the NOS Manual whhich came with your disk drive(s).
It will be time well spent.

Minor Modifications Im DOS 3.3

Minor modifications have bheen made in the disk operating system
to make it run smoothly with (GraFORTH. Most of these changes
will be 'user-transparent', oir not noticeable, and using DOS from
GraFORTH is the same as using) DOS from either of Apple's BASICs.
Roth create TEXT type data files, and GraFORTH even uses TEXT
files for savina program 'souirce code'. The DOS on the supplied
diskette has been modified, hiowever, to take advantaqge of an
existing languaqe card or RAMI card., If you have such a card, NOS
will be loaded automatically into the lanquage card, leaving much
more room (almost 10K) in maimn memory for program development.

To take advantage of this addlitional memory, two editors have
been provided on the disk; OBJ.EDITOR1 for systems without
language cards and OBJ.EDITOR2 for systems with lanquage cards.

Hote that GraFORTY requires tihe NOS it is supplied with, You can
not transfer GraFORTH to a dise with a different N0OS!
BACKGROUND 2 -3

e

s e e e e PR R

Making Space on the Disk

The GraFORTH diskette, as delivered, is nearly full. Not only
does the disk contain all the system files needed to use
GraFORTH, it also contains many demonstration files as well as
some specialty files. After you have copied the diskette and
exhausted your interest in the demos, you may want to trim your
work disk down a bit to make room for your own files. The
demonstration programs will probably be the first to go.
Appendix C lists the files on the disk, indicating those which
may be deleted without danger to the GraFORTH system by a ">*,
See the sections which follow for help on how to delete files
from your work disk.

Alternatively, you might want to leave your work disk intact and
set up another disk for program development. The GraFORTH systeu
would not need to be on such a disk; you could use, instead, a
standard DOS diskette. If so, you will need to copy the editor
file or files onto that disk as the GraFORTH word, EDIT, looks
for the editor program on the 'current drive'. If you are using
a lanquage card, copy OBJ.ENITOR2 onto your program development
disk, otherwise copy OBJ.EDITOR]1 onto that disk.

Deleting Files

Ihere are three simple ways to delete files from the disk. One
wdy is to hoot an Applesoft disk, then catalog the GraFORTH
diskette and delete the files you want to remove as you would on
a standard DOS disk. Alternatively, you could use your favorite
file utility, such as FID on your DOS 3.3 System Master Disk, or
else boot GrafFORTH and enter your DOS commands from the program
itself. If you are already in GraFORTH, the latter method is the
method of choice. To delete files directly from the program, you
will need to take the following steps:

BACKGROUND P

Wil sy
. --w.‘l
-
. g
ey
e
| — N‘M
£ -
.3
- =
i
[ou— }
..
A
~
-,
Sas A
-
-
s N
} _—
i N
4 T -
= P
LI
o
AT
B e
‘adih, y 1
i
Yo
Wines 1)
P i o
e g
A i N

1. Boot GraFORTH and you will see the prompt
Demonstration (Y/N)?
2. Answer 'N' and the "Ready" prompt will appear.
3. Respond with:
EDIT <returnd

The drive will whirl a bit, loading the editqr, and then the
editing title will appear along with a flashing cursor.

4. To enter a DOS command, type:

ConTRoL-D <return>
and the following prompt will appear:

fnter DOS Command :
5. Respond with:

CATALOG <return>

{or CATALOG,D1 <returnd for two drive systems)
and the catalog will be listed.
5. Select the files to be deleted and type:

NELETE filename <return>
The drive will run briefly, make its usual.scragchinq sounds and
the file's name will be deleted from the disk directory. You may
confirm that fact with another CATALOG command. Then repeat the
procedure to delete the other files you wish to remove frqm the
disk. To return to the editor, press the <rgturn> key tw1ge '
without entering any DOS commands, and you will see the blinking
cursor of the editor once again. To return back to GrafFORTH,

type 'BYE', then press <returnd. The GraFORTH header and the
"Ready" prompt should reappear. .

BACKGROUND 2 -5

Entering Other DOS Commands

The above steps represent the procedure to be followed to enter
any standard DOS 3.3 command from GraFORTH itself. Later on,
we'll describe another method which enables you to use DOS
commands from the "Ready" prompt directly without entering the
editor.,

What You'll Need to Know about Disk Care

We assume that by now you have made a copy of the original
diskette, have stored it in some safe place, have had some fun
with PLAY and are anxious to get down to "work". Bear with us
for one more cautionary remark (admittedly unnecessary for almost
all of you). In case you are not familiar with the care and
feeding of floppy diskettes, what we mean by "safe place" is that
the disk is stored vertically, is not bent or folded or exposed
to magnetic fields or to temperatures outside of the range 50 ty
125 deqrees F., and that the "naked" portion of the disk (as seen
through the small oval opening in the plastic covering) is not
exposed to dust, fingerprints, or cigarette ashes. We recomuend
that you always keep your disk in its protective sleeve and bux
whenever it is not actually in a disk drive. Never attempt to
write on it with a pencil or ball-point pen. If treated in this
way, your diskettes should give you years of devoted service, anug
perhaps even become collector's items of considerable value to
your yrandchildren (well, at least curiosities).

What You'll Need to Know about Programming

It is not necessary to know how to program to learn programming
in GraFORTH. It is our position that both TransFORTH and
GrafORTH are simple enough to learn that novices can take them on
as beqinning lanquages. We also believe that they are so
powerful that advanced programmers can use them in a full ranqe
of commercial applications. While it is not necessary to learn
programming prior to starting in on GraFORTH, if you aie alrea:y
familiar with BASIC or another high-level language, you will, ot
course, learn GraFORTH much faster. In particular, a familiarity
with Applesoft and/or Apple Pascal will speed the learning of ti.
control structures, data structures, and the file handling
portions of the lanquage. Familiarity with FORTH will give youu a
head start on the operation of the stacks, postfix notation, una
the word library.

BACKGROUND 2 - 6

What You'll Need to Know about Graphics

Here again, prior experience in graphics programming is helpful
to Tearn programming in GraFORTH, but it is not required.
Graphics is the heart of GraFORTH - all kinds of graphics -
standard two-dimensional graphics, TURTLEGRAPHICS, color
graphics, block printing of image fonts, three-dimensional
qraphics, all at speeds which will support animation, and set to
music if you like. If you do not intend to do a lot of graphics
programming with GraFORTH, then you may have the wrong language,
(Perhaps you really need TransFORTH...)

With GraFORTH, powerful graphics editors allow your images to be
created with considerable ease. A powerful command set allows
them to be put in motion. Routines can be set up as independent
words, then tested out and stored, to be used again and again.
But you do not need to know it all before you start. We'll take
you through it a step at a time.

However, if you are a beginner at graphics, you will learn faster
if you draw upon several sources at once and approach the subject
from all sides. The Applesoft Tutorial has a qood introduction to
Apple graphics, as does the Apple User's Guide by Lon Poole, et
al. The Apple Pascal Language Reference Manual has a good
chapter on TURTLEGRAPHICS, and if you really want to get into the
whole subject, try Graphic Software for Microcomputers by B. J.
Korites (Kern Publications, 1981).

What You'll Need to Know about Music

As mentioned ahove, one of the features of GraFORTH is a music
synthesizer which enables you to add music to the programs you
write in the lanquage. Operation is straightforward, and a note
table is provided to make use of the music synthesizer as simple
as possible. We think you will be amazed at the added dimension
it will give to your programs.

BACKGROUND 2 -7

What You'll Need to Do

Get an Overview

One of the most time-saving things you can do right now is to qet
an overview of the manual and the structure of GraFORTH. Time
spent on the demos, and studying the table of contents and
diagrams will give you a qeneral framework which then just needs
to be filled in with detail.

In between this chapter and Chapter 9 are the chapters which
explain in detail how to use GraFORTH. Chapter 3 gives an
introduction to the use of GraFORTH. It is something of a
mini-manual in itself, and even those of you who know FORTH may
find it a useful review of how GraFORTH differs from other FORTH
languages. The next six chapters build somewhat on one another
and should be taken in order, with the possible exception of
Chapter 9 on music, which could be read and used anytime after
Chapter 5.

Run the Demos

The set of demo programs on the diskette will give you a good
sense of what GraFORTH can do. To run a demo, just answer 'Y' to
the demo question which appears after bootup, and then simply
select from the menus which follow. Later we shall tell you how
to remove the demo question.

Plunge In

At this point, there is very little left to do but to load your
work copy of GraFORTH in the drive, boot it up, and plunge in.
Start at a place in the manual appropriate for your skills and
knowledqe, read that section, turn to the program, work the
examples, and then see if you can amaze yourself with a few
examples of your own. That's all there is to it. Remember, the
chapters, like the lanquage, tend to build sequentially, so it
may not be wise to skip around too much,

BACKGROUND 2 - 8

/
LI

m

41

Elél

=3

#

F
inl

i

£

iT
izl

5T,
(i

Y

L

¥

9y

Iy

§ s ¥ Een K

!

KL

¥

in
L

79

’ E%ﬁ%ﬁif ERgs

i)

Bl

——

What You'll Need to Be

i rless, and fun-loving. Willing to take risks, make
;?giégzzfyazgalearn from those mistakes. Willing to ask stupid
questions and make a fool of yourself to find out what you need
to know. Willing to let yourself enjoy life and‘turn work into
play. In short, just your average, run-of-the-mill, Apple owner.

BACKGROUND 2-9

W ieeindl,
o
1 -
i

| e

-

! .

Bl =

B g

-
h“ g

aal

i,
B 3

-
B 3
E]
| N
[|
-

o) ~

dme

-
| S .
. . -y

-
h’umq .
. ﬁ
‘Cl...,h_ ~
[ey

Ll
-

4 ot g
- :
for .
B

CHAPTER THREE: STARTING GraFORTH

Chapter Table of Contents:
Purpose and Overview
First Things First

The System

Words

The Data Stack
Numbers

Hands-On Experience

More Words

Stack Words
Arithmetic Words
Using Words
Printing Text

Defining New Words

Forgetting Words

Looping Structures

The Return Stack

Comparing Numbers

Decision and Branching Words

IF-THEN

IF-THEN-ELSE
BEGIN-UNTIL
BEGIN-WHILE-REPEAT
CASE:-THEN

Program Structure and Other Miscellany

Word Retferences

Speed and Flexibility vs. Error Checking
Words Which Look Forward

Text vs. Graphics

Memory Considerations

STARTING GraFORTH

Page

W W
NN

11

WWwWwwWww
PP WW

w

W oW PLL
- - RSN {0 LN | AN
NN w =

3-19
3-21
3-23
3-25

3-25
3-27
3-29
3-31
3-32

3-35

3-35
3-36
3-37
3-38
3-38

3-1

Purpose and Overview

As you'll soon see, GraFORTH is a complete, structured language,
with all of the interesting nuances of such a language. In this
chapter, we'll introduce GraFORTH as a lanquage. We'll discuss
the GraFORTH system, the word library (sometimes called the
dictionary), and the concept of 'words'. We'll show you how to
use the stack to do arithmetic using Reverse Polish Notation, and
then define your own words in terms of existing ones. We'll
discuss the looping and control features of GraFORTH, then tie up
the chapter with some rules of thumb for writing programs in
GraFORTH.

This chapter (as well as the others) contains numerous examples
to help you understand the GraFORTH system. We strongly
encourage you to try these examples on your computer. And as you
gain experience with the concepts, we encourage you to experiment
further, so that you become truly comfortable working with
GraFORTH.

First Things First

Insert your GraFORTH disk in the drive and boot it. After a few
seconds you'll see:

GrafFORTH J[(C) P. Lutus 1981
Demonstration (Y/N) ?

If you haven't yet seen the GraFORTH system demonstration, you
might want to do that now. The demonstration includes
explanations of what GraFORTH is and what it does. As we go on,
however, we'll ignore this question, assuming that you've either
already seen the demo or are no longer interested. Later, we'll
show you how to remove the demo question entirely... HNow let's
get into the lanquage. Type an 'N' to the demonstration prompt,
and you will see:

GraFORTH][(C) P. Lutus 1981

Ready

STARTING GraFORTH 3 -2

L AN M)) ﬁ,’ i’?‘ F!‘ 18 m ‘!
msz’ st § LB I T

M

ool B Boeomeas B BRTERS § EORS

¥y

Eﬁﬁﬁi{'

- ~“*
% -t
|3

=3

1L

i

i

14 L4,

o) e g

!@mlz
VTR Y|

/
KL

]

L

¥
i
Bl

The word "Ready" appears whenever the system is ready for your
input. (Makes sense...) If at any time you do not see the word
“Ready" when you think you're supposed to, then it may be time to
start wondering... With the word "Ready" beckoning you on, let's
back up for a few moments to discuss GraFORTH.

The System

The lanquage can be divided into two main parts. The first part
contains the compiler and low-level system routines. For most
applications, the internal workings of these routines can be
ignored. They usually do the things which need to be done
without a lot of fanfare. The second part of the system is the
'word library'. The word library is the "visible" part of the
GraFORTH system, and is the basis for writing programs.

Words

The word library is made up of a large number of GraFORTH
‘words'. You can see this list of words at any time by typing
the word “LIST". LIST is a GraFORTH word that lists all of the
GraFORIH words. (LIST will display 20 words at a time. To see
the entire list, press <return> at each pause. Press ConTRoL-C
if you want to stop the listing.)

Fach GraFORTH word accomplishes a particular task. For example,
the word "BELL" beeps the Apple speaker, the word "+" adds two
numbers together, and the word "DRAW" draws a three-dimensional
image on the screen. Nearly everything in GraFORTH is either a
word or a number. Words can be programs, subroutines, variables,
or strings. Programs are written, not by entering "program
lines", but by stringing words together.

The name of a word can be any string of ASCII characters that
does not include a space or carriage return. The space acts as a
divider between words, and a carriage return tells the system to
compile the entered line into machine language and, in most
cases, execute it. Since GraFORTH uses spaces to determine when
one word ends and another beqins, putting spaces between GraFORTH
words 1s very important.

STARTING GraFORTH 3 -3

The Data Stac:k

Words are executedd in the order they are entered. When the word
“+" is executed, iit wants to add two numbers together, right then
and there. This mmeans that hoth of the numbers to be added must
already be availabble for "+" when it is executed. Where do the
numbers wait beforre they are added? They are on the 'data

stack', placed theere by you before entering "+".

A1l numbers in GraaFORTH are routed through the data stack, which
we'll usually justt call the 'stack'. The stack is simply a stack
of numbers, one onn top of another, much like a deck of cards, or
a stack of dinner plates. When you enter a number, it is put on
the top of the staack, above any numbers which might already be
there. Some wordss place numbers on the stack. Some words remove
numbers from the sstack. Some words do both. The word "+" is an
example of this; iit removes two numbers from the stack, adds
them, and places tthe sum back on the stack. If the stack is
empty, and a word tries to remove a number from the stack, a
phenomenon called ‘'stack underflow' occurs. Stack underflow will
be discussed in grreater detail at the end of this chapter.

Numbers

GraFORTH is an intteger lanqguage. It uses numbers in the range
-32768 to +32767. You can enter numbers outside of this range,
but they will be ""folded" back into the range (e.q. the number
32769 will be storred as -32767). Certain operations, such as
division, will truuncate decimal numbers back into integers. For
example, 7/3=2.3333333, but GraFORTH will evaluate 7/3 as 2.

Hands-On Exmerience

Nearly every entryy in GrafFORTH is ended by pressing the <return>
key., For the exampples below, and throughout the rest of the
manual, press the «<return> key after every entry unless we tell
you otherwise.

STARTING GraFORTHH 3 -4

o B

rm
,m
i

ll;ﬂil

T,

i
/.
(£

¥ s ,m,m
i

“J

;m-mgm’m
YA VYRR 1T 77

mwn; [rone]
Y3

§

(¥

W mommwor T

o]

As you step through these examples, you may mistype something,
and find yourself in a situation you don't quite yet know how to
get out of. If you can't recover things properly, don't worry:
The power switch was put on the Apple for a good reason! Just
turn the power off and reboot again, then try to fiqure out

what went wrong. We'll help you along the way.

Enough theory. Let's try some examples. Type:
Ready 3 4 5

The numbers 3, 4, and 5 have been put onto the stack. If you
have any doubts, just type the word STACK.

Ready STACK

(3]
[4]
[5]
Ready

Typing STACK turns on the stack display, so you can see what
numbers are on the stack. The stack display stays on until you
type STACK again. This display is toqgled on or off whenever you
type STACK. You may want to try this a bit, but as we qo on,
have the stack display on. Now type:

Ready 6 7

The numbers 6 and 7 have been added to the top of the stack.
Notice that the stack display is “upside-down": What we've been
calling 'top of stack' is shown as being below the other numbers.
Here's why: stacks and 'top of stack' are both standard
computerese conventions, and we didn't want to break tradition by
calling it the "hottom of stack". Rut the GraFORTH stack can
hold up to 178 numbers while the Apple screen can only display 74
lines. With the stack display turned upside-down, then the 'top
of stack' (the most accessible numher) will always be the number
closest to the "Ready" prompt, instead of being scrolled off the
screen.

STARTING GraFORTH 3 -5

Now that we have some numbers on the stack, what cam"wﬁ do wjth
them? One thing we can do is print thgm. The word ". (pgr|9d)
removes a number from the stack and prints it. Type a period:

Ready .

The 7 was removed from the stack and printed. Now type "+":
Ready +

[3]
(4]
[11]
Ready

the word "+*
The numbers 5 and 6 were removed from the stack by s
added together, and the sum placed back on the stack. Now type
three periods, separated by spaces:

Ready . . .
1143

Ready

The 11, 4, and 3 were all printed, without any spaces between
them. We'll show you how to position the printing of both
numbers and text in a bit.

You now know how to put numbers on the stack, add thgm together,
and remove them by printing them. Since most word§ in GrdFQRTH‘
use the stack, it's important to know exactly what's happenTQq on
the stack when a word is executed. Let's 1ntroduce a notation
for the effect of a word on the stack. Ne'l] list the word,
tollowed by a “before and after" representation of the stack,
then a brief description of what the word does. The stqck. .
numbers are shown as letters, with a dash ;o the right indicating
top of stack. Remember, the top of stack is the dash on‘the _
right. An empty stack is indicated by three dashes. Using this
notation, here are the four GraFORTH words we've shown so far:

STARTING GraFORTH 3 -6

Eﬁra E‘ﬁ. ¥1r§ T r’]

3

T,

m

m m

Word Before After Description

LIST - - - - - - Lists the words in the GraFORTH
word library,

STACK - - - - - - Toggles the stack display on and
of f,

- n - - - - Prints n.

+ mn - p - Takes m and n of f the stack, adds

them and places their sum, p, back
on the stack (p=m+n).

Note that there may be other numbers on the stack below those

shown in the before and after diagrams, but these are not
affected by the word.

More Words

Stack Words

Here are some GraFORTH words which manipulate the numbers on the
stack:

DUP duplicates (makes a copy of) the top number on the stack.
SWAP swaps the position of the top two stack entries.
DROP removes the top number from the stack. The number is lost.

OVER makes a copy of the number immediately beneath top of
stack, placing the copy on the top of the stack.

PICK uses the top number on the stack to select a number from
within the stack, then the number is copied to top of stack.

For example, 1 PICK is equivalent to NUP, and 2 PICK is
equivalent to OVER.

STARTING GraFORTH

Here are the same words defined using the stack diagram: ;"ﬁ —
v-.._s
Word Before After Description
E*lic:i'dy 4 PICK (Copy the fourth position down stack.)
DUP n - nn - Duplicates n. [3]
[2]
SWAP mn - nm- Swaps mand n. E3}
1
DROP n - - - - Drops (forgets) n. .
eady DROP DROP . (Remove 3 and 1, then pri
. . s ri
OVER mn - mnm- Copies n to top of stack. :' : ‘: E] print the 2.)
_ 3
PICK ...mn - ...maq - Copies ith item to top of stack. [1]
E. ¢ Ready DROP DROP (Remove the remaining 3 and 1.)
Keeping an eye on these definitions, some more examples may be - Ready (The stack is now empty,)
helpful here: ! ‘
E -m.s You will probably want to experiment further with each of th
Re%dy 123 \gomtis W]’E? the stack display on. While their functi(;nsomay 3125
! e terribly exciting, you'll find they will be
e . on for placi ars very useful later
%i} t"" E p nq numbers where they need to be at the right time.
Ready SWAP (Exchange positions of the 2 and 3.) . .
[Arithmetic Words
(3) E..
E .Q.““ Y ' Hon
2] ou've seen how "+" works; on the next paqe i isti
Ready DUP (Make a copy of the2.) = GraFORTH arithmetic words. page Ts a Tisting of the
(1]
3 by :
Ez) .
2]
Ready DROP (Remove the copy Jjust made.) -
(1] b
3] B "
(2]
Ready OVER (Copy the second from top of stack.) B
(1] e
(3] 2
(2]
() TR
o
ol
Bo—g
"
STARTING GraFORTH 3 -8
pua STARTING GraFORTH 3.9

A
:
9}

Word Before After Description

+ mn - p - p=m+n

- mn - p - p=m-n

* mn - p - p=m*n

/ mn - p- p=m/n

MOD mn - r- remainder

CHS n - m - m=-n

ABS n - m - m=ABS (n)

SGN n - m - m=1 if n>0,
0 if n=0,
-1 if n<0

SIN n - m - -128<m<127

MIN mn - p - p=m if m<n,
n if ndm

MAX mn - p - p=m if mdn,
n if n>m

RND - - - n - -32768<n<32767

RNDB - - - n - 0<n<255

STARTING GraFORTH

(addition)
(subtraction)
(multiplication)
(division)
(modulo)

(change sign)
(absolute value)

(sign)
(sine)
(minimum)
(maximum)

(random number)

(random byte)

3 -10

m

iy,

T,

m fF BT

a4 22

Here are some examples olof the GraFORTH arithmetic words in
action:

Ready 23 5 /.

4

Ready 23 5 MO .
3

(23 divided bv 5 leaves ¢ 4, and a remainder of 3.)
Ready 6 CHS

[-6]
Ready ABS .
6

Ready 18 19 MN

(18]

Ready SGN .
1

Ready -7 SGN
-1

Ready RND .
-22317

RND leaves a ~andom numheber on the stack. (Of course, the number
displayed wil most likelely be different from the one shown
above.)

Using Word's

Now that we'vt introduceed a whole slurry of words, let's put them
to use.

For these examples, we'llll assume the stack is empty before
beginning. Tlere are a f few ways to empty the stack. With the
stack display on, you caran type either DROP or "." repeatedly
until the stak display s shows the stack is empty.

Another way tc clear everarything is to type the word ABORT. ABORT
restarts GraF(RTH, resetttting things back to their initial
conditions. MBORT can bebe handy when used from the keyboard, but
if executed from a runnining program, it stops the program
immediately. (There is aan exception to this which will be
discussed in (hapter 5.))

STARTING GralORTH 3 -11

As you've already seen, the way to add two numbers is to enter

the numbers first,, then type "+".

Ready 3 4 + .
7
Ready

i jon, wheere the numbers precede the operator, is ca!led
lzlif?gfazloReversse Polish Notation, and is used in all versions
of Forth, as well as in most Hew]ettTPacKard calcu]atqrs. Its
main advantage oveer "standard" notation 1s that complicated
expressions can bee evaluated without having to use parenthesesa
For example, if ycou wanted to add 3'and 5 together{ add 7_and
together, then mulltiply their sums 1n a language like Basic, you

would type:
X=(3+5)*(7+9)

Note that since Basic always multiplies before adding,

parentheses were ineeded to group the sums together. In GraFORTH,

you can solve thez problem this way:
Ready 3 5

[3]
(5]
Ready +

(8]
Ready 7 9

(8]
(7]
(9]
Ready +

(8]
r16]
Ready *

[128]
Ready .
128
Ready

This example was; “unfolded" so you can see exactly what is
happening on the: stack. Usually, the entire expression 1S
entered on one lline:

STARTING GraFORRTH 3 -

d Ul

H

T T

i
79

g.
-y
ay
¢
i
-
- .

Fr
i

f
ki

d4

= B Erenl nﬁ&iﬁ@r’ =T
VA

il

'vPT
!
(VY

a4

VY

i

f
-ij‘

mom
i
i

Ready 3 5+7 9 + *,
128
Ready

To find the cube of a number, you can type the number three times
and multiply:

Ready 3 3 3 * * ,
27

Another way is to type the number once and use DUP to duplicate
it:

Ready 3 DUP DUP * * |
27

DUP allows you to use any number without having to enter it

repeatedly. This will be very useful for general purpose
operations inside programs.

Printing Text

Printing text in GraFORTH is straightforward: type the word

PRINT, the word " (quote), the text to be printed, then another
quote:

Ready PRINT " SUPER ZAPPO SPACE GAME "
SUPER ZAPPO SPACE GAME
Ready

Since the quote is a GraFORTH word, the spaces between the quotes
and the text are required. Note that you can use quotes within

the quoted text, as long as it is not separated on both sides
with spaces:

Ready PRINT " THIS IS THE “BEST" GAME EVER! *
THIS IS THE "BEST" GAME EVER!
Ready

Since PRINT does not automatically print a space or a carriage
return at the end of the text, two other handy words to know are
SPCE and CR. SPCE prints a space, and CR issues a carriage
return, Notice the difference in the following three examples:

STARTING GraFORTH 3 -13

Ready PRINT " FIRE " PRINT " ONE "
FIREONE

Ready PRINT " FIRE " SPCE PRINT " TWO "
FIRE TWO

Ready PRINT " FIRE " CR PRINT " THREE "
FIRE
THREE

Printing text is not very useful if tihe system only prints the
text immediately then forgets it. Fortunately, GraFORTH can do

much more than that.

Defining New Words

The power of GralORTH as a lanquage lies in the ability to detine
new words in terms of old ones. In fact, writing "programs" in
iraFORTH is done by simply defining a series of new words which
accomplish the desired task. These new words are added to the
word library and can be seen by typing the word LIST. In this
way, the GraFORTH lanqguaqe itself (of which the word library is a
part) "expands" to become your program!

New words are created with 'colon definitions' (so named because
they begin with a colon). The form for a colon definition is:

{word name> <strinqg of defining words>

The colon tells the system to beqin a new word definition. The
name that immediately follows the colon will be the name of the
new word. The words that follow the mame make up the
"definition” of the word; they are the words to be executed
whenever the defined word is typed. These words behave just as
if they had been typed in directly at the keyboard. The
semicolon marks the end of the colon definition, and causes the

ward to be compiled into machine lanquage and added to the word
library.

As an example, let's define a word that adds two numbers then
prints their sum alonqg with a short message:

Keady SUM PRINT ™ THE SUM IS " + .

STARTING GraFORTH 3 - 14

Fr T
M_m-—m:m;msrztlmé%ﬂ'&%'m

¥

m

T I T m

(A B)

i
i

af
Lk

Yy

v i
Kkl

'

'y bkl

[3
-
V]

Yy Tkl @

f
&

Following the form for colon definittions SUM 1
s s the
new word, and namee of the

PRINT " THE SUM IS ™ + ,

is executed whenever the word SUM is entered The word PPRI
e . NT
causes the phrase "THE SUM IS" to be printed, ‘the + adds the top
two numbers on the stack, and the period print:s the sum. (Note
gna: there are %70 spaces bhetween the word IS and the quoote, Sso
at a space wi appear between the text and ithe :
let's try our new word: punbers) ow

Ready 25 31 SUM
THE SUM IS 56
Ready

Eédethe word library, and you'll see that the word SUM haas bheen
ded:

Ready LIST

SUM
CHS
SGN
CALL

A qice addition to this word would be to reprinit the numbears
being added. But before we commit ourrselves to a colon

definition, let's try it "Tive" whe) '
. e we can -
step at a time: ’ watch thingss one

Ready STACK
Ready 25 31

[25]
(31]

We nged to make copies of the two numbers: one set will hee
reprinted on the screen, and other set will be added togethher
(Remember that many GraFORTH words comsume numbeirs from thee ’
stqck, S0 we need to have the numbers ready to "‘feed" them!!) The
quickest way to copy a pair of numbers 1is by usimg OVER OVééR:

STARTING GraFORTH 3 15

Ready OVER

[25]
[31]
[25]
Ready OVER

Now let's reprint the first set of numbers along with some
informative text:

Ready PRINT * THE SUM OF " .

THE SUM OF 31

[25]

(31]

[25]

Ready PRINT ™ AND “ . PRINT " IS "
AND 25 IS

[29]

£31]

Now let's add the numbers...

Ready +
(56]

..and print the sum:

Ready
56

Now let's put it into a colon definition, with a diffgrent name.
Note that you can enter the definition over several lines (if you
like).

Ready : SUML

Ready OVER OVER PRINT " THE SUM OF " .

Ready PRINT " AND " .

Ready PRINT " IS " + . ;

STARTING GraFORTH 3 - 16

ot
._._..g
DA -
B =3
P —
i
.
Sy
B ==

3)

7Y

L)

V£

20 3 JE 1§)
il

3)

ik f

il

'
i
k.

i M T
s f Rt I E
59

 p EREE
Iy

v

After entering the definition, the word SUM1 is also on the word
library:

Ready LIST

SUM1
SUM
CHS
ABS

Ready 25 31 SUM1
THE SUM OF 31 AND 25 IS 56

SUML can now be called at any time, from either the keyboard or
another word definition, as easily as any of the original
GraFORTH words in the word library.

Note: As you write and enter colon definitions, be sure to enter
a semicolon to finish the definition! If you don't, GraFORTH
will assume that everything you type is part of a word to be
executed at a later time. If GraFORTH ever responds to words
Tike LIST with only a "Ready" prompt, you've probably left a
semicolon out of colon definition.

Forgetting Words

You can see that if we keep on defining new words, the word
library will continue to grow until we use up all of the memory
available., Sometimes words are no longer needed, or a word might
contain a mistake (???)., In either case, to delete one or more
words, the word FORGET is used. It takes the form:

Ready FORGET <wordname)

FORGET cannot selectively remove words from the middle of the
word library. [t only truncates off the top, deleting the
specified word and every word above it. In our example, to
delete both SUM and SUM1, type:

Ready FORGET SUM

STARTING GraFORTH 3 -17

Ready LIST

CHS
ABS
SGN

Notice that both SM and SUM1 were removed from the word library,
Had there been morewords above them, they would also have been
removed.

Note: You will not get an error message if you try to FORGET a
word that is not 1inthe word library. This makes implementing
program ‘overlays'easier. (Overlays will be discussed in
Chapter 5.) However, if you misspell the word you want to
forget, then no words will be deleted from the word library.
Thus, it's a good ilea to use LIST to verify that the right word
or words have bheendeleted.

STARTING GraFORTH 3 - 18

TN ey

‘{." ek

m

LA
ﬁm{b

'R
FIEE]

it

F[m

YR T

"

¥

Looping Structures

The GraFORTH DO - LOOP construct is available for repetitive
tasks where the number of repetitions is known ahead of time.
The form for a DO - LOOP is:

<ending value> <initial value> DO <words to be repeated> LOOP

The word DO removes two values from the stack. The top number is
used as an 'initial value' and the next number is used as an
‘ending value'. The words between DO and LOOP are executed, then
the initial value is incremented by one., If this incremented
value (which we'll call the 'loop value') is still less than the
ending value, the program loops back to execute the words between
DO and LOOP again. This cycle is repeated as long as the loop
value is less than the ending value.

If you are familiar with Applesoft Basic, you will notice that 0O
- LOOP is similiar to Applesoft's "FOR -- NEXT" Tlooping
structure.

It is often handy to retrieve the current loop value. Inside the
DO - LOOP, the word "I" retrieves the loop value and places it on
the stack. Here is an example:

Ready 5 0 DO PRINT " HERE [S NUMBER " [. CR LOOP
HERE IS NUMBER 0O
HERE IS NUMBER 1
HERE IS NUMBER 2
HERE 1S NUMBER 3
HERE 1S NUMBER 4

“5 0 DO" sets up the looping structure for 5 loops. Inside the
loop, the phrase “HERE IS NUMBER" is printed, then the Toop value
is retrieved by I, then printed with ".". CR causes the carriage
return to put each number on its own line, and LOOP marks the end
of the loop, causing the loop value to be incremented and
compared with the ending value. Note that the loop continues
only as long as the loop value is less than the ending value.
That's why the loop stops at 4, not 5 as in Applesoft.

STARTING GraFORTH 3 -19

The wqrds DO and LOOP work as a pair and must always he matched
up,‘e1ther on the same line together or entered in a colon
definition. Typing DO or LOOP alone can have nasty and
unpredictahle results.

To make a loop with an increment other than 1

» use +LOOP inst

qf LOOP. +LO0E removes a number from the staék to use as theead
increment. This number can be either positive or negative (for
loops that count backwards). Here is an example: '

Ready 10 0 DO 1 . CR 2 +L00OP
0

6
4
The 2 was used by +L0O0OP as the increment.

Ready 150 200 DO T . CR -10 +LOOP

200

190

180

170

160

Loops can be nested inside one another. The loop value f
cu:ren; innermost loop is always accessed by "I"p and theoqogge
value for the next outer level is accessed with Eh "

in this colon definition: ¢ ord W e
Ready : DUUBLELOOP

Ready 4 0 DO

Ready PRINT " OUTER LOOP: " I . CR

Ready 3000

Ready J . SPCE T . CR

Ready LOOP

Ready LOOP ;

STARTING GraFORTH 3 - 20

-
Hez, o
i
—..__q
% -
-’“"‘q‘
p_--..,

il

Ready DOUBLELOOP
QUTER LOCP: O
00

01

02

OQUTER LOOP: 1
10

11

12

OUTER LOOP: 2
20

21

2 2
QUTER LOOP: 3
30

w W
n —

The inner loop is cycled three times for each cycle of the outer
loop. Note that the outer loop value is referenced in the outer
Toop with "I", but is refferenced from the inner loop with "J".
Just remember that "I" allways references the loop value for the
current innermost loop.

If more than two nested Tloops are being used, the loop value of
the third loop out can be accessed from inside-the innermost loop
with the word "K'".

The Return Stack

DO - LOOPs make use of another stack in the GraFORTH system,
similar to the data stack, known as the 'return stack'. The
return stack can also hmld 128 numbers, though for most programs
it rarely contains more than a few. (Most versions of Forth,
because they are interpmeted, use the return stack for a variety
of purposes. Because GraFORTH is compiled directly into machine
lanquage, the Apple's pmrocessor itself takes care of these
things.)

When the word DO is encmuntered, the top two values on the data
stack are moved over to the return stack, with the loop value on
top and the ending value underneath. The word LOOP incraments
the loop value on the return stack. The word "I" places a copy
of the top return stack value and places it on the data stack.
When the loop is finally exited, the two return stack values are

removed.

STARTING GraFORTH 3 -21

There are a few words in GrafORTH that enabl
, : > e you to use the
return stack directly. The return stack can be a handy place

to

put numbers for a moment while playing games with other numbers

on the data stack.

variables for more permanent storage.) Care should be taken t

avoid disturbing the value and placement of existing return stack

entries when using DO - LOOPs.
sure, don't!)
return stack:

(In other words, if you're not
Here are the words that directly control the

PUSH moves the top data stack entry to the return stack.
PULL moves the top return stack entry back to the data stack

POP removes the top return stack entry. The number is lost

Suppose there are three number
s on the stack and
reverse the order of the bottom two. My ot o

(3]
(2]

(1)
Ready PUSH

£3]
Ready PULL

TV
il

2
3
1

Reédy

STARTING GraFORTH 3

(In Chapter 5 we'll show you how to declare

(0]

Here is one way to do it:

22

&nﬁm‘ p—

J—
é il

-
é |

[

Wbt

fo MS >
|

B o

[t g, :ﬂ
3]

- L

- - mm‘q
B 3
G

— i

. |

— —

1)

F¥

44

AN 1 T)

¥

Comparing Numbers

A number of GraFORTH words are devoted to comparing numbers.
These words are:

<> (not equal to)

= (equal to)

> (greater than)

< (less than)

>= (greater than or equal to)
<= (less than or equal to)

Each of these words removes two numbers from the stack, comparing
the second stack number down with the top stack number, and
returns on the stack either a 1 if the comparison is true, or 0
if the comparison is false. Here are a few examples:

Ready 5 5 = .
1

Ready 5 7
0

Ready -32 -6 <.
1

Ready 45 46 >= .,
0

A couple of other words related to the comparison words are AND
and OR. These words remove two numbers from the stack and
perform a logical operation between each of the 16 bits of the
numbers, returning another number to the stack.

AND performs a hitwise "AND" between the two stack values; OR
performs a bitwise "OR". Don't worry if you're unfamiliar with
the relationships hetween numbers and their bits. Usually the
importance of AND and OR is between two zero or nonzero numbers:

If both the top stack value and the second stack value are
nonzero (representing "true'), then the AND of the two numbers
will also be nonzero. If either or hoth numbers are zero, then

the AND will also be zero.

STARTING GraFORTH 3 -23

If either the top stack value or the second stack value are
nonzero, then the OR of the two numbers will be also nonzero.
Only when both numbers are zero will the OR operation be zero,

AND and OR are useful for combining the results of two or more
tests. The following example tests whether or not a given number
is greater than 5 and less than 10. We'll test with two numbers,
7 and 3:

Reqdy DUP 5 >

1]

Ready SWAP
t1]

(7]

Ready 10 <
rj

rj]

Ready AND
[1]

7 is greater than 5 and less than 10.

Ready 13
f13]
Ready DUP 5 >
[13]

{1]

Ready SWAP
r]

r13]
Ready 10 <
BN

roj

Ready AND
[nl

13 is not greater than 5 and less than 10.

STARTING GraFORTH 3 - 24

- -
, B

b
.‘v.k""ﬂ
N
=53
=3
~ =~ 3
S
=3

FF

"

FP

:
YRR T YRR ¥

£ =g
s .y

p 4
- L. N
. . ay
M -

Decision and Branching Words

An essential part of a computer language is the ability to test a
condition, then make a decision on the basis off the test.
GraFORTH has five different constructs that accomplish this.

Fach of the constructs comtains a word which removes a number
from the stack. In most cases, the "decision" 1is made on the
basis of whether the number is zero or nonzero. Any nonzero
number represents a condition being true, and @ zero represents
false. (Note that the above comparison words place a one on the
stack if the comparison is true, and zero if the comparison is
false.)

A simple flowchart is included with each of the following
constructs, showing the "flow" of the program. The arrows
indicate what is executed in what order. The lboxes represent a
group of words to be executed. The diamonds represent a test,
usually for a zero or nonzero number.

Note: F[ach of these constructs is made up of ftwo or more words.
Like DO - LOOP, these decision words work together, and cannot be
entered alone. They must be entered either on one line or from
within a colon definitiom,

IF - THEN

The simplest decision comstruct is IF - THEN, The form for IF -
THEN is:

{(stack test value> IF
<words to be executedd

THEN

The word IF removes a number from the stack. If the number is
not zero, then the words between IF and THEN are executed. I[f
the number is zero, then the words between IF and THEN are
skipped over. In either case, the program comtinues on after the
word THEN. The flowchart for IF - THEN follows on the next page:

STARTING GraFORTH 3 -25

=0 IF
0
words
THEN

4

Let's use IF and THEN in a couple of colon definitions:
Ready : TESTI

Ready PRINT " THE NUMBER IS "

Ready IF PRINT " NOT " THEN

Ready PRINT " ZERO. " ;

The first and third PRINT words are executed every time. The
word 1F removes a number from the stack (which we'll supply
betore we execute TEST1). If the number is nonzero, then

PRINT " NOT ", which is sandwiched between the IF and THEN, is
executed. If the number is zero, then it is not executed.

Ready 5 TESTI]
THE NUMBER IS NOT ZLRO

Ready 0 TESTI
THE NUMBER 1S ZERQ

[F - THEN constructs can be used with number comparison words.
Remember that these words return either one or zero, depending on
the success or failure of the comparison. Suppose that for sorme
application, you want to set a limit on the size of numbers. The
following word will let any number less than 25 pass through
“unharmed", but any number over 25 will be replaced with a ?25:

STARTING GraFORTH 3 - 26

Ready : UPPERLIMIT
Ready DUP

Ready 25 > IF
Ready DROP 25
Ready THEN ;

The word DUP makes a copy of the top stack value. The word ">"
compares the copy with the number 25, leaving a one on the stack
if the number is greater than 25, or a zero if it is not. The
word IF removes the one or zero from the stack to decide whether
or not to execute the following words. Remember that the
original number is still on the stack. If the comparison is
false, then the words between [F and THEN are not executed, and
the number is left intact. [If the comparison is true, then DROP
25 is executed, which removes the original number from the stack
and replaces it with 25.

Ready 16 UPPERLIMIT .
16

Ready 37 UPPERLIMIT .
25

Ready

IF - ELSE - THEN

Another version of the IF - THEN construct is IF - ELSE - THEN.
The form is:

(test stack value>
IF

<words executed if nonzero>
ELSE

words executed if zero>
THEN

As before, the word IF removes a number from the stack. However,
if the number is nonzero, then the words between IF and ELSE are
executed. [f the number is zero, then the words between ELSE and
THEN are executed. The proqram then continues after the word
THEN. The flowchart for IF - ELSE - THEN follows on the next
page.

STARTING GraFORTH 3 - 27

[@X0]
words
ELSE
words
45__________J THEN
Ready : TEST2 v

Ready DUP 100 > IF
Ready . PRINT " IS GREATER THAN 100 !

Ready ELSE
Ready . PRINT ™ IS LESS THAN OR EQUAL TO 100 "

Ready THEN ;

i ! duplicated the number before compgring.so.that we
ﬁgj;g’p:?n:eit ?ater, using one of the two periods 1n51d¢ the IE
_ FLSE - THEN. Also note that the contro!led words are indented.
This is certainly not a requirement, but it greatly improves Ehe
readahility of the word definition. (In the next chapter, we IL
show you how to use the text editor to save the text of the wor

definitions.)

Ready 106 TEST2
106 1S GREATER THAN 100

ready 54 TEST? ‘
54 1S LESS THAN OR EQUAL To 100
Ready

As with loops, IF - THEN constructs can he nested. This example
puts checks for both upper and lower limits on a number:

STARTING GraFORTH 3 - 28

24

¥

A

TY

momomom o

Ready : TWOLIMITS

Ready DUP 25 > IF‘

Ready PRINT " GREATER THAN 25 "
Ready DROP

Ready ELSE

Ready 10 < IF

Ready PRINT " LESS THAN 10 "
Ready ELSE

Ready PRINT " BETWEEN 10 AND 25 "
Ready THEN

Ready THEN ;

One IF - ELSE - THEN is placed between the ELSE and THEN of
another one. Note that before the first comparison, we DUPlicate
the number because we don't know yet whether or not it will be
needed for the second comparison. If the number is greater than
25, then it is not needed again, and is NDROPped.

Ready -62 TWOLIMITS
LESS THAN 10

Ready 19 TWOLIMITS
BETWEEN 10 AND 25

Ready 684 TWOLIMITS
GREATER THAN 25

BEGIN - UNTIL

Another construct that allows repeated execution is BEGIN -
UNTIL. The form is:

BEGIN
{words to be repeated>
{test stack value>
UNTIL

STARTING GraFORTH 3 - 29

The word REGIN marks the beginning of the construct. The words
between BEGIN and UNTIL are executed, then the word UNTIL removes
3 number from the stack. If the number is zero, then the program
branches back and the words between BEGIN and UNTIL are executed
again. This loop is repeated until the stack value is nonzero,
then the program continues past the UNTIL. This is the flowchart
for BEGIN - UNTIL:

< - BEGIN
words
r
RN
test >£_,,_,__,_J UNTIL
v
00

Ihe following example starts with a zero on the stack, then
prints the number, adds 1 to it, then loops back-until the number
equals 38:

Ready 0 BEGIN DUP . CR 1 + DUP 8 = UNTIL
0
!

3
4
L
5

b
/
(8]

Ready

The words "DUP . CR" print the number without losing it and
issue a cdrriage return; "1 +" increments the number; and

NP 8 =" determines if the number equals 8. Notice that this
loop leaves a copy of the number on the stack when it finishes.
Adding DROP to the end of the line takes care of this.

STARTING GraFORTH 3 - 30

E
b

iFOW

Y

43
£4

¥

§iJ

vy

i

v

%%

bk

BEGIN - WHILE - REPEAT

The BEGIN - WHILE - REPEAT construct is similar to BEGIN - UNTIL.
The fform is:

BEGIN

(words to be repeated>

{test stack value>
WHILE

(controlled words>
REPEAT

The word BEGIN again marks the beginning of the construct. The
words hetween BEGIN and WHILE are executed, then WHILE removes a
nunber from the stack. If this number is nonzero, then the
controlled words between WHILE and REPEAT are executed, then
execution jumps back again to the words after the BEGIN, If the
number is zern, then the program jumps directly past the word
REPEAT and continues on. The key to remembering this is that the
controlled words are REPEATed WHILE the stack value remains
nonzero. This is the flowchart for BEGIN - WHILE - REPEAT. Note
that the test is at the beginaing of the controlled part:

BEGIN
words
00
test/—— WHILE
=0
words
REPEAT

—

The following example 1is similar to the previous example for '
BEGIN - UNTIL. The number 1is tested first this time. While it
is mot equal to 8, it is printed and incremented, and the cycle

is repeated:

STARTING GraFORTH 3 - 31

Ready 0 BEGIN DUP 8 <> WHILLE DUP . CR 1 + REPEAT

es
i y word O CASE:
1
2
3
4 es
) y word 1
6
7
rs] e
-0 es m
Ready : y word 2
CASE: - THEN e v
ible | :
) : he made from a range of possi v .3
times a choice needs to is. The form g -
rsmzizf)ers. The CASE: construct allows you to do this. The % — N Sword n
e -~ & o THEN
W, T
¢stack value> % v
¥
CASE: W, T <
. ol The following example shows how CASE: works:
<word 0> o
word 1> ! Ready : X PRINT " THE NUMBER IS ZERO " H
<word 2> B, |
b : o Ready : Y PRINT " THE NUMBER [S ONE " ;
. Ready : Z PRINT " THE NUMBER IS TWO “
<word nd o,
fa T Ready : CASE.TEST
THEN oy ChsE
. nediy CASE:
The word CASE: removes a number from the stack and uses this b —
number to select and execute a single word from a list of WO;(}:EP} e - Ready X
A zero selects word 0, a one selects word 1, etc.. 12@ w<T):‘d :
marks the end of the CASEE: construct, and 1s required. ne , Ready v
flowchart for CASE: follmws on the next page: | . -~
Lol Ready 7
] Ready BELL
S
. Ready THEN
e) X, Y, and 7 are words we have defined and are called by the word
O CASE.TEST. The CASE: list in CASE.TEST contains four words, so
) v the construct uses the numbers 0 through 3. Zero selects X, 1
selects Y, 2 selects 7, and 3 selects RELL:
.
B (S
3 - 32 STARTING GraFORTH 3 - 33
STARTING GraFORTH

m

I

Ready 0 CASE.TEST
THE NUMBER IS ZERO

Ready 1 CASE.TEST
THE NUMBER IS ONE

Ready 2 CASE.TEST
THE NUMBER IS TWO

Ready 3 CASE.TEST
(The Apple speaker beeps.)

ing: mber which CASE: removes from the stack is too
?:;glng} ilf1£2§ Cﬁdn zero, something strange and probab]y
not-so-wonderful will happen. For example, the system may hdng
(In the above example, the only acceptahle numbers for o
E%é* TEST are 0, 1, 2, and 3.) The key to avoiding trouble is to
s;m;iy Hot let 6uméers out of the CASE: range go 1nto.the ﬁo¥q
CASE:. Tnere are a number of ways to do this, Here is one for

the ahove example:
Ready : SAFE.CASE
Ready DUP DUP 3 <= SWAP 0 >= AND
Ready 1F
Ready CASE.TEST
Ready ELSE
Rea:dly PRINT ™ THE NUMBER IS NOT BETWEEN O AND 4
Ready NROP
Ready THEN ;
S an 0 an.
heiore petsina it on to CASELTESTy 1f ??ais‘éuéso?QﬁZﬁiﬂ_,"d“j’

e i i d ¢ y he wordas “ﬂU Ditp 3 (=
nessage 1s printed. (ou may want)) rd P D :

\‘IL‘ AP :; >= F'\E“_)“ (J] ect ly g om the key oard to N how Yy WOI}\
IRTRAY U all I b ee the

together).

teady 2 SAFE,CASE
[t HUMBER 1S TwO

Heady 1 SAFE (CASE)
Ui NUMBER 1S NOT BETWEEN O AND 4

3 - 34
STARTING GraFORTH

n m

™

#
B, -
be

o ~
B |
=]
B~
[|
fo »
E-—
[~
|
[

EH :
E e ey

Ready -6 SAFE.CASE
THE NUMBER IS NOT BETWEEN O AND 4

Program Structure and
Other Miscellaneous Thoughts

Notice that in the last example for CASE: above, we began by
defining three short words: X, Y, and Z. Then we defined the
word CASE.TEST, which calls one of those three words. Finally we
defined SAFE.CASE, which calls CASE.TEST.

This “chain" of definitions is the way long programs in GraFORTH
are built up. The 'low-leve]' words, which usually do rather
menial tasks, are defined first. Then the next level of words,
which call the first set of words, are defined. This process
builds layer by Tayer until one last word is added to the top of
the word library, which "coordinates the show". The entire
program can be run by simply typing the name of this top word.

The beauty of this scheme is that each level of words can be
thoroughly tested and debugged before moving on to the next
higher level, This helps to prevent the all-too-familiar scene
of the programner helplessly wading through miles and miles of
computer print-out trying to find the elusive "bug" in a program,

Another advantage is that with separate word definitions, you can
have more than one “program" in memory at a time. Words can be
defined completely independent]y of each other, and used as
individual programs or routines,

evedWhich brings us bhack to same specific points on GraFORTH,

Word References

Words in GraFORTH can only be defined in terms of already
existing words, which reside in the GraFORTH word library at the
time. In fact, any reference to a word that is not currently in

the word library will produce an error message, and the unknown
word will be ignored:

Ready 5 0 nn 1 CR STRANGE LOOP

STARTING GraFORTH 3

STRANGE Not Found (Press Return)

1
2
3
4
Ready

Another source of trouble is defining a word with the same naue
as an already existing word. If this happens, the new word is
added to the word library, but a warning messaqge is printed:

Ready OVER PRINT ™ OQVER THE RIVER AND THRU THE WOODS "

3

OVER Not Unique (Return)

With two words with the same name in the word library, how does
the system choose between them? For our example, any words that
referenced OVER before the new definition was added will still
reference the earlier word. Any new references to OVER will
reference the new definition. That means that the original
definition is no longer accessible from the keyboard! In
qunerdal, defining words with existing word names is not a qood
1ded and should be avoided.

Programmers who like to dabble with recursion will be happy to
hear that GraFORTH words can call themselves. Word definitions
;Jn_a1ao be nested one definition inside another, allowing the
inside and outside words to call each other. These capabilities
are very useful in certain recursive applications, but should be
uv?idud)1f not needed. (Your programs can get hard for people to
follow!

Speed and Flexibility vs. Error Checking

Grat ORTH 15 a very fast lanquaqe. [t has to be to manipulate 3.0
tmages dat The speeds it does. 6GraFORTH is also very flexible,

As you'll see in Chapter 6, GrafORTH gives you direct control of
your Apple.

You nay be asking, "What's the catch?" The "catch" is that
GraFORTH has little built-in error checking. In terms of speed
it your progran works correctly, then repetitive error checkinq’
scheries can only slow your program down.,

STARTING GrabFORTH 3 - 36

P

R

BV

In terms of flexibility, if you're allowed to do nearly anything,
then there is nothing "to protect you from". GraFORTH follows
the Forth convention that if you want error checking, you'll
write it into your programs. 1f you don't need error checking,
you don't have to include it.

One example is 'stack underflow and overflow'. Stack underflow
is where a word tries to remove a number from the stack and the
stack is empty. [If this happens, GraFORTH will merely return the
number that was last on the stack. Stack overflow is caused by
trying to place more than 128 numbers on the stack. If this
happens, the extra numbers are ignored. If a stack underflow
occurs when the stack display is on, a long stream of stack
numbers may be displayed. If this happens, just type ABORT to
clear the stack. (The key to avoiding stack problems is to be
aware of what is happening on the stack at all times. Sometimes
"single-stepping" through a list of words with the stack display

on can help.)

Another example of error checking is with words that "expect" a
number in a given range. We've seen this already with the word
CASE:. Many words in GraFORTH use numbers in a specified range.
Some words don't mind the excess; they “fold" the number back
into an appropriate range and ignore the difference. Other words
(like CASE:) do not fold back, and must be given a valid number.
As we introduce words, we'll include any valid ranges.

Words Which Look Forward

Most words in GraFORTH look to the stack for any data or
information they might need. Some words, like PRINT or FORGET,
look forward down the input line for further data. You might be

tenupted to build a colon definition like the following:

Ready TESTWORD CR CR PRINT

Ready TESTWORD " HI THERE "
Don't try it! The word PRINT looks for the text to be printed as
it is compiled, not when it is executed. The above example will
ot work, and it may cause the system to qo off the deep end...
The other words (introduced in later chapters) which Took to the
input line for data work the same way, and should be used as
described.

STARTING GraFORTH 3 - 37

Text Vs. Graphics

Since the Apple graphics screen is used forthe normal GraFORTH
display, mixed text and graphics, changeabl character sets, and
lower case displays can all be used in GraPRTH. However, text
scrolling is not as fast as it would be on1 standard text
display. GraFORTH includes two words, GR ad TEXT, which enable
you to switch between the graphics display ind a text-only
display. The only advantage to using the txt display is for
faster scrolling, which can occasionally cae in handy when
editing files from the editor.

Memory Considerations

Because of the large number of features imfemented in GraFORTH,
snd the fact that both graphics screens arebeing used, free
memory for program development is somewhat limited. The presence
of a lanquage card or RAM card eases this imitation
considerably. The memory map in Appendix t shows the available
free memory with and without a language cad, and with or without
Lhe text editor in memory. Memory consideations when using the
text editor will be discussed in the next hapter.

The way to keep memory free is to always FRGET words that are no
longer needed. Loading one larqge program nto the word library
ahove another is a sure way to run out of emory. Be aware of
what is on the word library, and how much emory is being used.

There are two words to help you:

The word PRGTOP places the address of the op of the word library
on the stack. This can let you know how lrge things are
getting. This example was done with no aditional words on the
word library. (The addresses printed hereare for example
surposes only. The address numbers displaed may be slightly
difterent.)

Ready PRGTOP o

- 32256

STARTING GraFORTH 3 - 38

il
S,
ol

&

e

§ BT § BT

¥ VP TV

g
E

Fr

S

e
wivRg @ By

FFE

L2

Fr

m

STARTING GraFORTH

L3

F A

For people who "think" in hexadecim
K" i al, the word $LIST can
very useful. $LIST is identical to LIST, except that it a?lzo v
?ysplays the hexade;ima] addresses of each word in the word
ibrary, By comparing adjacent numbers, you can determine how
much memory each word takes. Here is a sample of a $LIST:

Ready $LIST

$8254 CHS
$8246 ABS
$8224 SGN
$81F4 CALL
$B1E9 PREA
$81DE YREG

Synce SLIST displays the address at which each word begins, th
first address.shown is the beginning of the top word, not Eh t
9f the word library at the end of the word. To dete;mine the wop
address of the top of the word library in hexadecimal, you csn

define a "dummy" word and then use SLIST. The top address will

be the top of the word library after the dummy word is deleted:

Ready : IT ("IT" does not execute anything.)

Ready $LIST

$826F 1T
$8254 CHS
$8246 ABS

Ready FORGET 11

$826E is the hex address of the top of the word library

3 -39

Conclusion

Let's take a break here, and digest some of this information.
This might be a good time to grab a pizza, take a nap or come out
of niding and visit someone who hasn't seen you in a few days!
Anyway, when you come back we'll move into the text aspects of
GraFORTH and introduce you to the supplied GraFORTH text editor.
(We'1l also show you some wonderful special characters to make
your Apple a little more friendly...)

STARTING GraFORTH 3 - 40

b

.

I8

Fr.

v T,

R

N

Y

22

mom

fes &4

7y

CHAPTER FOUR: TEXT MAGIC

Chapter Table of Contents:

Purpose and Overview

Strange and Wonderful Characters

Upper and Lower Case
Hidden Characters
Cursor Movement
Line Insertions

The Text Editor

Line Entries

List

Autonum

Delete

Erase

Automatic Insertions
Insert

Save

Get

DOS Commands
Printing Files

Memory Considerations
Leaving the Text Editor

Program Compilation

Comments

Using the Editor with GraFORTH

TEXT MAGIC

Page

. & ppeE A
RN NN () e e ¢ el e s LN No 2l @) N PLWHN N
WRNN==20

PEPPEEEEERDES

a
~
W

4-1

Purpose and Overview

In Chapter 3, we learned (among other things) how to define new
words in terms of existing ones. The words were added to the
dictionary and could be called at any time. However, there was
no way to save the text of the definition; to go back to the
string of words which defined it.

Fnter the GraFORTH text editor, a straightforward general purpose
line-oriented editor. Text can be created here, modified, saved
to disk, read back in, and more.

6raFORTH includes words to compile text into the system from the
editor or directly from the disk. If any defined words need to
he modified, they do not have to be completely re-entered. They
can be changed from the editor, then recompiled by the system.

In this chapter, we'll discuss how to use the text editor and how
1o compile GraFORTH programs from the editor or from disk. We'll
also give you some pointers to keep both system and editor memory
happy. But first, we should discuss some of the special
characters used in GraFORTH, both in and out of the editor, and
how they can help hoth your programming and your programs.

Strange and Wonderful Characters

Upper and Lower Case

1f you've looked at the GraFORTH demonstration, you've seen all
these lower case characters on your Apple screen, but until now,
we haven't told you how to enter lower case characters yourself.
There's really no magic, as we'll soon see!

TEXT MAGIC 4 - 2

i3

e

A4 A4 Fyom

FF

L

4

STE W BT
i !
PEl Ll

EL

Upper and lower case can be set in a number of ways, and each is
a two-key process.

While entering a line, type ConTRolL-0, then

"E": Subsequent entries will be in lower case unless ESC is
pressed in advance. If ESC is pressed first, the
following character will be in upper case.

“S": Entries will be shifted to upper case if your Apple][
has the one wire shift key modification. (A wire
running from the shift key to the game paddle AN3 input).

"Y' A1l entries will be in upper case.

"L": A1l entries will be in lower case.

“Hidden Characters’’

Although the Apple][keyboard won't accept all the ASCII
characters, GraFORTH will. Here are the keys to press to get the
"hidden characters":

ConTRoL-Shift-N gives a left bracket
ConTRolL-Shift-M gives an underline
ConTRoL-Shift-P gives a reverse slash
Shift-M gives a right bracket unless one of the lower
case shift options has been set.

Cursor Movement

As you may have discovered by now, the Apple arrow keys work as
they do in most Apple applications: the left arrow is a
"backspace" key that enahles you to back up on the line to
correct mistakes. The right arrow is a "retype" key. If you use
the right arrow key to move the cursor over text on the screen,
the text will be treated by GraFORTH as if it were being typed
again directly from the keyboard.

TEXT MAGIC 4 -3

The Apple ESCape -odes for moving the cursor also work from
GraFORTH. These :an be handy for making fast corrections from
the GraFORTH texteditor. If you're unfamiliar with the Apple
FSCape codes, we :uggest you consult one of the Apple manuals.
Most of the manuas discuss these codes.

Note: If any of -he lower case shift modes have been set, then
the ESCape key canot be used to move the cursor. To move the
cursor using ESCae, first set upper case only (ConTRolL-0, U)
shift mode.

Line Insertiors

Insertions can bemade into the middle of a line using ConTRolL-I.
Pressing ConTRoL- pushes any characters to the right of the
cursor one more sjace to the right.

To make an inserton using ConTRolL-I, first use the Apple ESCape
codes to move thecursor to the beginning of the line to he
chanqged. Use theretype key to move the cursor to the point of
insertion, then pess ConTRolL-I enough times to open up a space
in the line for iisertion. Now enter the additional text, then
use the retype ke to move the cursor to the end of the line, and
press <returnd,

Note: The ConTRol-1 feature works for editing only one
40-chdaracter lineat a time. Pressing ConTRoL-T too many times
can push text off the right end of the screen and into
“ever-Never Land. ..

The Text tditor

There dre actually two text editors on the GraFORTH system disk,
named OBJLEDITORTand OBJLENITOR?2., The first is used on systems
tnat do not have . lanquage card or RAM card and can edit about
2000 characters wthout chanqing the default settings. The
second 15 used wih systems that have lanqguaqe cards and can edit
dbout 11,500 charcters. Otherwise, the two editors are
1dentical.,

TeEXT MAGIC 4 - 4

i,

moom

il

O SR T I I

F7

be.
L

LA 1 4

Y

L.

0

£

'

B
i<
S
ny =
%f.j’
& .
-
- “
i
=3
o
<
[—
-
w oM
i
m,
W
]
& e]
1]
w4
5
., 3
R
p A
!
R, 9
pod
{
§
i
!\,‘::
|
b
. :
’ ~a
|
S
wd
g
%]

Note: GraFORTH and the GraFORTH editor both use standard DOS
text files for program storage. If you have a text editor that
you are accustomed to that also uses DOS text files, Yyou may use
it instead of the GraFORTH editor. Large programs will be more
manageahble in a text editor such as Apple Writer 2.0. Compiling
proqrams into the GraFORTH system from disk is the same ‘
regardless of what editor is used to create the file,

For the editor examples in this chapter, we will use English
sentences for text instead of GraFORTH programs. The editor
doesn't know the difference, and it makes things easier to read.
The editor is of course usually used for writing GraFORTH
programs. The GraFORTH word MEMRD, discussed in the next

section, allows text to be read and compiled directly from the
editor. ' _

To enter the editor from GraFORTH, type EDNIT,
editor will automatically be loaded.
see the GralFORTH editor header:

The appropriate
In a few seconds you should

GraFORTH][Editor (C) 1981 P. Lutus

The first command to know in the editor is “?", the question
mark . Entgrinq a question mark qives you the Editor Command
[ndex, a list of all the other editor commands:

?

Save
Get
Insert
Delete
Program
Memory
List
Write
Erase
Autonum
Bye
ConTRol.-N=N0S

WQ'll discuss each of these commands in turn, but first let's
find out how to enter text into the text editor.

TEXT MAGIC 4

Line Entries

Entries to the text editor are preceded by line numbers. These
line numbers have no meaning to GraFORTH, and are not retained in
the program file when it is saved to disk. They simply serve as
an index to the file while it is in memory. The editor line
numbers are in steps of 10, and whenever insertions or deletions
are made, the file is renumbered automatically, in steps of 10
again.

To enter a line, simply type a line number followed by the line.
Here are some example lines to enter:

10 My very first editor line!
20 Entering lines in the editor is
30 similar to entering lines in Basic.

LIST

fo see that these text lines have been stored, they can be listed
Ly typing "LIST" or simply the letter "L". (A1l of the editor
commands are single letters, and should be entered in upper
case.)

L

10 My very first editor line!

20 Entering lines in the editor is

30 similar to entering lines in Basic.

Done

(The "Done" messaqe is printed whenever an editor command is
successfully accomplished. We're not qoing to show it in all of
our exdmples, though.)

Inserting lines in the text editor is much the same as in Basic.
Stmply enter a line number between the line numbers you want the
text inserted into. Remenber that after the insertion is made,
however, the lines will be renumbered in steps of 1N. Let's
Insert a line between line 10 and line 20 by giving it a line
number of 15:

15 With some important exceptions,

TEXT MAGIC 4 - 6

¥y

U

FYFF R

'y

ikl kb iid

tei

Now let's list the file again to see that the line was inserted
and the following lines were renumbered:

L

10 My very first editor line!

200 With some important exceptions,

30 Entering lines in the editor is

34 similar to entering lines in Basic.

If the file being edited gets rather long, you don't have to list
the entire file every time. The listing automatically stops
ewery 16 lines. [f you press ConTRoL-C during the pause, the
listing will stop. If you press any other key, the listing will
continue.

You can also use "List" to list a single line or a range of
lines. Assuming a file contains at least 15 lines (numbered 10
to 150):

L 80 lists line 80 only.

L 80,150 lists lines 80 through 150,

. 80, lists from line 80 to the end of the file.

L ,80 lists from the beginning of the file to line 80,

AUTONUM

The editor also provides automatic line numbering. Going back to
our original example, list the file, then press "A“ for
"Autonum". The next line number, line 50, will appear for you.
Emter a couple of lines with Autonum on:

A

50 This is much nicer than having
60 to enter the line numbers myself,
70

To stop the Autonum feature, just press <return> at the beginning
of the line after the line number.

TEXT MAGIC 4 -7

To change a line already in the editor file, simply retype the
line number followed by the corrected line., The ESCape codes and
the right-arrow key can be used to retype a line that is on the
screen, and ConTRolL-I can be used to make insertions within the
line.

Simply entering a line number followed by <return> won't delete a
line, as 1s true for Basic. Instead this will create a blank
line, very useful in its own right for separating program
segments and word definitions. To make a blank line while the
Autonum feature is in use, enter a space, then press <return).

DELETE

The "D" ("Delete") command is used for deleting a line or range
of Tines. [Its format is identical to "List" (though its effects
are very different!):

0 80 deletes only line 80,
[} 80,150 deletes lines 80 through 150.
D 80, deletes from line 80 to the end of the file.

80 deletes from the beqinning of the file to line 80.

ERASE

To erase the file in memory, press "E" for "Erase".
will appear:

A prompt

trase (Y/N)
Tnis prompt prevents inadvertent file erasure. Enter "Y" and
press Return to erase the file.

Automatic Insertions

In a previous example, we used Autonum to add to the end of the
file. When used in the middle of a file, Autonum also
automatically inserts the text, making room for the text and
renumbering later lines. For these examples, let's start with a
new file. Erase the file in memory, then enter a couple of
lines:

10 The first line in the file...
20 The last line.

TEXT MAGIC 4 - 8

F@ " §FF FR FF ¥
28§ BELEcE § PREEE l EEEZEE :

)

A

FEETR

S

G v g

BB RE

o
ik

b
N
)
L2

/ }
‘iJ Ii’.J

L

We can start an insertion by entering the first line number of
the insertion ourselves:

15 must surely be followed by others.

Now, pressing "A" will cause automatic line numbering that starts
following the last entered line, line 15, and insert this text
into the file. Since line 15 is renumbered to become line 20,
the next line number, printed with the Autonum feature, is line
30:

A

30 Autonum does more than generate
40 Vine numbers. It also inserts
50 into the middle of a file,

60

Again, Autonum is turned off by pressing <returnd with no text.
Let's list the file now:

10 The first line in the file...

20 must surely be followed by others.
30 Autonum does more than generate
40 line numbers., [t also inserts

50 into the middle of a file.

60 The last line.

INSERT

The "I" ("INSERT") command can also be used to initjate
insertions into a file. Instead of typing the first inserted
line before using Autonum, INSERT is used to specify the starting
Tine number. Let's delete the lines we just entered, and
re-enter them, this time using INSERT,

D 20,50
Done
L

10 The first line in the file...
20 The last line.

TEXT MAGIC 4 -9

We want to insert between lines 10 and 20, so enter:
I 15

Autonum will use this line number as the point of insertion,
instead of the last accessed line.

A

20 must surely be followed by others.
30 Autonum does more than qenerate

40 line numbers. It also inserts

59 into the middle of a file.

60

List the file again, and you will see that these lines have been
re-inserted into the file.

SAVE
To save a file to disk, press "S". A prompt will appear:

(Filename)

fnter the file name you want the file to be saved under. If
desired, you can also specify a disk slot and drive number here,
separated by commas using the standard DOS format. Here are a
couple of examples:

(Filename) : TESTFILE
(Filename) : TESTFILE,S6,D1

If you want to save only a portion of the file to disk, enter a
slash after the filename, followed by the range of line numbers
to be saved:

(Filename) : TESTFILE/80,150 (Saves lines 80 to 150)

(Filename) : TESTFILE/,80 (Saves beginning to line 80)
(F1lename) : TESTFILE/BO, (Saves line 80 to end of the file)

TEXT MAGIC 4 - 10

Bz =
- ;é;uc....u:
E=

I8
v 8 EE § b | R

s
_w,
-y ~
o R

]
gl
R~

- &
. ~~
.
B -

;

Ku
Ql -,
oy TN

L~

.
Bl
|

-

&

3
Boeg
K. o2
[L

B
o
B

AN

GET

To get a file from disk and load it into the editor memory, press
“G*, A prompt will appear:

G
(Filename)

Enter the name of the file to be loaded and, if desired, the disk
slot and drive at which it is located, using the same format as
SAVE.

To get a file and insert it at a particular location in the
existing file, enter a slash after the filename, followed by the
destination line number in the current file. This example will
insert the file TESTFILE into the current editor file between
lines 110 and 120:

(Filename) : TESTFILE/115

Note: "GET" always inserts the file into the present memory
contents. The file contents are not erased by "GET". To erase
the present file and get a new one, "ERASE" the present file and
then "GET" a new one. Seems simple enough.

Note: Since "GET" and "SAVE" use slashes to specify certain
lines in a file, filenames that contain slashes cannot be used
with the text editor.

DOS Commands

To enter a DOS command directly from the editor, press ConTRol-D
and <return>. A prompt will appear:

Enter DOS Command :

From this prompt, you can enter any DOS command, to get a
catalog, delete files, lock files, etc. The prompt repeats after
each DOS command so that you can execute several commands without
having to press ConTRoL-D every time. To return to the editor
prompt (a flashing cursor with no prompt line), simply press
<return)> twice.

TEXT MAGIC 4 - 11

Printing Files

Fditor files can be printed directly from the editor. Type
ChoRoL-D and <return> to get the DOS prompt, then type "PR#1".
(1f your printer is in another slot, substitute that number.)

The printer will be activated, then press{Returnytwice to remove
the DOS prompt.

With the printer enabled, you can type "L" to list the file

to the printer, pressing <return> when the listing stops every 16
lines. A better way is to type "W" tor "Write"., This opt1od
wirites the editor file out without any pauses.

Since "PR#0" does not reconnect GraFORTH's special graphic
output, press Reset to turn the printer off and return to a
normal display. The next chapter includes a discussion on how to
access peripherals and return to GraFORTH in a normal manner.

Memory Considerations

As the GraFORTH word library grows, it can begin to use the same
memory that is used from the editor. If the word library is
larqge enough, adding words can erase a part of the editor file,
or even the editor program itself, Conversely, using the editor
can destroy the top of the word library, requiring the system to
he rehooted.

[n addition, the amount of usable editor file memory is
determined by the presence or absence of a language card. We
sugaest you study the memory map in Appendix D and become
qenerally familiar with areas of memory used by the GraFORTH
language, the editor program and the editor file in your system.

To tind the amount of free memory left in the editor file area,
press "M" for "Memory". You will see:

Free Memory

followed vy the number of bytes (or characters) of memory left,
You may want to adjust the amount of memory used by the text
editor, to avoid conflict with GraFORTH. To accomplish this, you

may position the file either up or down in memory. To do this,
ress "P'. A display will appear:

TEXT MAGIC 4 - 12

W FF IR KT FF FF

AD S A A

YT Y YRR VYR

FAi

Program Length
Position

Free Memory

Change Position (Y/N)

The length, position (starting address of the editor file area),
and memory labels will be followed by their present numeric
values. To change the editor file position, enter "Y" to this
option. You will be prompted:

Enter MNew Position

On a language card system, the file position can be moved
somewhat higher to make more room for the GraFORTH word library.
On a non-language card system, it's often best to use the editor
without regard to keeping the word library intact, save the
edited file to disk, and reboot GraFORTH from scratch. This
method will be outlined in the next section.

Leaving the Text Editor

To leave the text editor and return to GraFORTH, simply type "B"
for "Bye".

Program Compilation

GraFORTH normally accepts its input from the keyboard. Each line
is compiled immediately and acted upon if necessary.

GraFORTH can also read lines from the editor file or from a disk
file, treating the lines as if they were typed from the keyboard.
GraFORTH programs can be written in the editor and saved to disk,
then read and compiled into the system.

The word to read and compile text from the editor huffer is
MEMRD. MEMRD removes a number from the stack, interprets this
nunher as an address, and begins reading text from memory
starting at this address. It reads and compiles until it either
reads a zero byte (marking end-of-file) or encounters an error.
Control is then returned back to the keyboard.

The address of the editor file buffer is 34817, unless changed
with the Program Position option in the editor. To read the text
from the editor, type:

TEXT MAGIC 4 - 13

Ready 34817 MEMRD

To read and compile directly from a text file, the word READ is
used. The form for READ is:

READ " <filename> "

READ reads to the end of a file, or until an error is
encountered.

MEMRD and READ are usually used to compile word definitions into
the word library, but immediate-execution lines can also be
included.

Comments

Usually, the GraFORTH Editor is used for writing and editing
GraFORTH programs instead of the text used earlier in this
chapter. Comments in the source file of a GraFORTH program can
often be very helpful for understanding and keeping track of long
programs.

The GraFORTH word "(" is available for inserting comments into
program files. In compiling the program, when GrafFORTH sees a
“(" set off with a space on either side, it ignores the rest of
the text on the line until it sees a ")". Comments can be
inserted freely in the source file. Here is an example of such a
comment line:

10 [PARENTHESES AROUND A COMMENT)

Using the Editor with GraFORTH

When smaller programs are being developed, the editor and the
GraFORTH system can be used closely together., Load the editor
and enter the program, then return to GraFORTH and compile the
program with MEMRD, If the program has bugs or needs further
changes, simply return to the editor and make those changes.

When returning to GraFORTH, FORGET the original word definitions
before compiling the new ones, to prevent "Not Unique" errors
from occurring. (Unless you're testing a very short program, you
should also save the program to disk after each edit.)

TEXT MAGIC 4

Wwhen larger proqrams are being developed and GraFORTH/editor
memory conflicts are likely, it's best to separate editing and
compiling. Use the editor to write the program, then save the
program to disk. Then return to GraFORTH and compile the program
with READ or MEMRD., If the program needs to be changed, FORGET
the words before returnimg to the editor, so that editor usage
won't erase the top of the word library. From the editor, reload
the program from disk and continue editing.

Understanding and following the above guidelines will protect you
from memory conflicts, and will make programming in GraFORTH much
easier.

As you become more comfortable with programming in GraFORTH, you
will probably want to use the editor to list some of the program
files on the system diskette. We encourage you to do this. The
system files provide excellent programming examples in GraFORTH.

TEXT MAGIC 4 - 15

CHAPTER FIVE: DELVING DEEPER. . .

Chapter Table of Contents:

:_g Page
: Purpose and Overview 5-2
. .
- -2 Text Formatting 5.2
Py .
;;1 Data Storage and Retrieval 5-4
E‘“’ - o GraFORTH Memory Addresses 5-4
2 Storage and Retrieval Words 5-5
- i‘t Variables 5-7
~ o Strings 5.9
;u Defining Strings 5-10
t‘ :: — Using Strings 5-11
m"‘“ "~ String Conversion 5-14
B PAD: The System String 5-15
il Accessing Individual Characters in Strings 5-16
Ao -~ String Words on Disk 5-17
[Ty
' = Words Manipulating Individual Characters 519
d . .
B a. - Using Numbers in Other Bases 5-22
L~ .
% Using DOS From GraFORTH 5-23
E .3 Program Control Words 5-26
" - .
g Saving the GraFORTH S ystem 5-27
fau.. ; = Overlays 5-29
. Moving Memory and
. Retrieving Word Addresses 5-30
o ~ . . .
- Calling Machine Language Routines 531
E o Compiling Number Tables 532
- Leaving GraFORTH (gently) 5-32
B o Conclusion 5.32
-
Y
DELVING DEEPER 5-1

Purpose and Overview

Chapter 4 introduced GraFORTH as a langquage. In this chapter,
we'll round out the language and give you some of the background
you need before moving on to the graphics features ("What? You
mean this language has graphics too?!") in the next three

chapters.

We'll start off hy introducing the GraFORTH standard text
manipulation words (not to be confused with the fancy ones we'll
show you in Chapter 7). Then we'll discuss storing data in
memory, and the various words used to accomplish this. We'll
talk about the two other kinds of words in GraFORTH (variables,
and strings), and how they can be used to set aside memory for
data storage in very convenient ways. Following this will be a
discussion of the string operators huilt into the system and on a

disk file.

Next, we'll talk about using DOS from GraFORTH, and introduce
SAVEPRG, the word that makes your work permanent. We'll tie up
the loose ends with a numher of words which are extremely useful,
hut evade strict cateqorization.

Text Formatting Words

These are the words which are used to position text and_
chardacters on the screen, and clear the screen, or portions of
it. Edch of these words is straightforward.

Review

You have seen how to use PRINT, SPCE, and CR already in Chapter
3. For a quick review...

PRINT prints following quoted text starting at the current
cursor position.

CR issues a carriaqge return, moving the cursor to the
beginning of the next line.

SPCE prints a space.

DELVING DEEPER 5 -2

rr
Eoey b SR D ESE I B
L

U

b&i

$

Ff. Fr
/
9

= Emﬁmﬂgiiﬁﬁﬁﬁﬂ 4
(L

£

Moo
i

'
(L

m
?
i
L1

moom
o

New Text Positioning Words:

HTAB removes a number from the stack, interprets it as a
horizontal cursor position, and tabs to that cursor
position. The cursor remains in the same vertical
position.

VTAB removes a number from the stack, interprets it as a
vertical cursor position, and tabs to that cursor position.
The cursor remains in the same horizontal position.

The valid ranges for HTAB and VTAB depend on the current
character size (CHRSIZE), which will be discussed in Chapter 7.
For the normal character size we are using now, the range for
HTAB is 0 to 39, and the range for VTAB is 0 to 23.

WINDOW removes four numbers from the stack to establish a text
window. The text window is a rectangular area on the
screen designed to protect other parts of the screen from
being overwritten. All text scrolling will occur inside
the window, leaving the rest of the screen unaffected.
The form for WINDOW is:

<left> <width> <top> <bottom> WINDOW

Left, top and bottom are actual margins for the window. Width
specifies the right margin as the number of characters from the
left marqin. The bottom margin number should reference the line
immediately below the window. For example, a window 10
characters wide hy 5 lines high in the lower right corner of the
screen would be set hy:

Ready 30 10 19 24 WINDOW
(The left margin is at position 30, the window width is 10

characters, the top margin is at line 19, and the bottom marqin
is above line ?24.)

DELVING DEEPER 5-3

il
1

b

@ i I
o/ i

HOME erases the screen inside the text window. g
Positive GraFORTH
CLEQOP (CLear to End Of Page) erases the screen from the current . NDecimal Addresses Decimal Addresses
cursor position to the end of the text window. g*~
“ 0 0
CLEOL (CLear to End Of Line) erases from the current cursor 1 1
position to the end of the line. 2 2
ERASE erases the entire screen, reqgardless of the setting of the Lol -g . .
text window. ERASE is usually faster than HOME, “E,’g 32766 32766
- i 32767 32767
. @ 32768 -32768
W, - -
Data Storage and Retrieval % 3 32769 32167
G . S - . : E.,ﬁ ¢ *
iraFORTH has the capability of examining and changing the value P . .
stored in any location in memory. I[f desired, the actual decimal fe M ":f 65533 -3
memory address can be entered from the keyboard for storage or % 5534 -2
retrieval. We'll show you data access in this way first, and ﬁ-s o 65535 -1
then discuss an easier technique using named variables. W =
e ’;1 :... Notice that both address ranges continually increase, except that
W the GraFORTH addresses have a transition in the middle from
GraFORTH Memory Addresses . o positive to negative numbers. The memory map in Appendix D
oy :f-«~ - includes GraFORTH decimal addresses and hexadecimal addresses.
The Apple][contains 65536 addressable "locations". These B
locations are usually numbered from 0 to 65535. Most of them are
used for RAM memory, which can be either read from or written to. ¥ .
Fach memory location can store one 8-bit 'byte', representing a t N ;- :; Sl‘orage and Retrieval Word's
nunber from 0 to 255. Two locations, or two bytes, can store a ! -t
number from 0 to 65535, Since two bytes can only reference g To store a number directly into a desired memory location, simply
positive numbers in the range 0 to 65535 and people sometimes b .oy - place the number you want to store and the address where you want it
Tike to use neaative numbers, one 'bit' of the number is used to o, X stored on the stack. Then type "POKEW". The word "POKEW"
tell us the numbers sign, positive or negative., Therefore, s - stands for "poke-word" and removes two numbers from the stack,
GrakURTH uses a number range of -32768 to 32767. Since it is) g interpreting them as value and address, and stores the data value
desirable that zero in both systems be zero, a “wrap-around" b W = at the given location. Since GraFORTH numbers occupy two bytes
schicime 1s used: Addresses above 32767 are treated as negative B ¥ - (CO”"HOH].)(called a 'word', not to be confused with GraFORTH
numbers, and continue to increase until they again reach zero. i words), it actually uses the given location and the one
(This is identical to the system used by Apple's Integer Basic, - i immediately after it.
where 3 call to enter the system monitor must be done with a . g, T
neqgative number: CALL -151.) A diagram will best explain this: e ? =X This example stores the number 12345 at location 2816 (which
1 happens to be the beginning of a large free area of memory in
B GraFORTH):
B 3
- iy Ready 12345 2816
- [12345]
Ef“"~~~d [2816]
= Ready POKEW
~ Ready
T
DELVING DEEPER 5 -4 -1
DELVING DEEPER 5 -5

¥y

To recall a number from memory and place it on the stack, place
the address of the desired memory location on the stack and type
YpEEKW". The word "PEEKW" stands for "peek-word" and removes a
number from the stack, interprets it as an address, retrieves a
number from that address, and places the retrieved number on the
stack. The following example recalls the number we just stored
in memory:

Ready 2816

[2816]
Ready PEEKW

[12345]
Ready

To store a single-byte value to one memory location, the word
“POKE" is used instead of "POKEW". The form is the same. This
example stores the number 255 to location -28721:

Ready 255 -28721 POKE

The word "PEEK" is used to retrieve single bytes from memory.
The form for "PEEK" is the same as for "PEEKW". This example
reads a special Apple location that contains the current
horizontal cursor position:

Ready PRINT " Demonstrating PEEK " 36 PEEK
Nemonstrating PEEK

(18]
Ready

Printing the phrase "Demonstrating PEEK" moved the cursor out to

position 18. Reading location 36 retrieved this position as a
numbher,

DELVING DEEPER 5 -

FF. M

= Pl B) =

1
(L)

mom oo

™

m
i
amom @ poaoERsTEE B RS l momeTeR B OESRTF |

M m

I ,
V4 N ¥4

9

£

b4

iF § B Bk
vy

S L

£l

= ¥

L)

i

‘
1A
L 8

!

¥
-y

Lt

¥
L4,

To summarize, here is a table of the four storage and rerieval

After Description

GraFORTH allows you to set aside space for number storaq: through
VARIABLE creates a new word and paces it

on the GraFORTH word library.

words:

Word Before
POKEW mn -
PEEKW n -

POKE mn -
PEEK n -
Variables

the word "VARIABLE".
one is:

VARIABLE

{variable name>

Puts two byte m into locaton n
Reads two byte m from loc&ion n
Puts one byte m into locaton n

Reads one byte m from locaion n

VARIABLE has two forms; te first

The variable name is the name of the word created and plced on

the word lihrary.

Ready LIST

CHS
ABS
SGN

Ready VARIABLE TEMP

Ready LIST

TEMp
CHS
ABS
SGN

DELVING

NEEPER

For example:

#
i
¥
3
B

The new word TEMP consists of two parts: a two-byte space set
aside for storing a number, and a call to an internal GraFORTH
routine that either places the value of the variable on the stack
or stores the stack value into the variable.

To store the number 12345 in TEMP, type:

Ready 12345
[12345]

Ready -> TEMP
Ready

The GraFORTH word ™=>" is a special word that says “store into".
It is created by typing a minus sign '-' followed by a right
arrow '>'. This word sets an internal flag used by variables to
determine if a "store" or a "recall" operation is to take place.
When the “->" word is executed it sets this flag so the next
referenced variable will do a store, rather than a recalT.” Note
that the variabTe will cTear this fTag so no special operator is
needed when doing a recall.

Tnerefore, to recalll the value Just stored in the variable TEMP,
Just type its name:

Ready TEMP
[12345]

Whenever you need to recall the value of a variable, simply type
1ts name. To store a value into a variable, always type the
GraFORTH word ™-3>™ before typing the variable name,

Unless otherwise specified, when a variable is first created and
compiled using the word VARTABLE, the initial value of the
variahle is zero. To qive a variable a different initial value,
the other form of VIARIABLE is used, where the initial value is
entered on the line: with the declaration:

<initial value> VAIRIABLE <variable name)

DELVING DEEPER 5 -8

‘6‘ EL
=
!E: it

5 |

n

racg §

.

- ey
?? —
B

27 I
(L

(L

1

Ready 35 VARIABLE COUNT

COUNT will contain the value 35 until another value is stored
over it:

Ready COUNT .
35

Ready 87 -> COUNT

Ready COUNT .
87

We should bring up something important here. The word VARIABLE
(as well as STRING, which we'll discuss shortly) is a compiling
word, in that it produces new words itself. It is also a word
that looks forward down the input Tine for the word name. It

therefore must be used with more care than most GraFORTH words.

To be specific, a VARIABLE declaration cannot appear inside of a
colon definition. Tt must be alone on 1ts own Tine, not mixed
with other GraFORTH words. Any initial value provided when the
variable is declared is taken directly from the input Tine, not
from the stack. Since the initial value 1s not from the stack,
Tt can't be a computed number. For example, the following line
will not work:

Ready 25 7 * VARIABLE THING

Strings

Strings in GraFORTH are words with space set aside for storing
characters or text, rather than numbers, Strings are used
whenever input is requested from the keyboard, or text has to be
manipulated in any way. String words are created with the word
STRING, and a number of words devoted to manipulating strings and
character data are included in GraFORTH. Additional words, for
more complex string tasks, can be found on a disk file called
“STRING WORDS", and can be compiled into the word library at any
time,

DELVING DEEPER 5-9

Defining Strings

The word "STRING" is used to create words in the GraFORTH word
library that are used for string storage. The form for the word

STRING is:
¢string size> STRING {string name>

The string name is the name of the word to_be.added to the word
library. The string size is a number specifying the qumber of
hytes, or characters, the string will ho]d. Remember1nq how
precious computer memory is, the string size should be.Just larqe
enough to hold whatever string data is expected to go into thg
strinqg. On the other hand, sufficient room ﬂyﬁ}_he allotted in
the string for any value ever stored into it. If you attempt to
store too much text into a string, you will actually damaqge the
GraFORTH word library. This will force you to rehoot the entire
system from scratch! To increase speed? FORTH 1mp1emen§ations
(GraFORTH included) typically do very little error checking.

Therefore it is up to you to determine beforehand the size string
you will need.
Similar to variables, string declarations draw both their string

name and string size from the input line, and have the same
restrictions for use as variable declarations.

The following example creates a new word called TESTSTRING which
can store a string up to 45 characters long:

Ready 45 STRING TESTSTRING
Ready L1ST

TESTSTRING

CHS

ABS
SGN

5 -10

DELVING DEEPER

I3
i

(I

<

i

m

17

6raFORTH strings are indexed from 0 to the string size-1. When a
string word is executed, the word removes a number from the
stack, adds this number to the address of the beginning of the
string, then places this address on the stack. Note that strings
differ from variables in that a variable actually places its
value on the stack, while a string places the address of the
beginning of the string plus the specified index on the stack.
Getting the address instead of the value of the string may not
seem like much fun, but in a moment we'll show you some powerful
words to move string information around!

In the following example, entering "0 TESTSTRING" will place the
address of the beginning of the string on the stack. Entering "5
TESTSTRING" will place the address of character number 5 in
TESTSTRING on the stack. The last character position of
TESTSTRING is accessed with "44 TESTSTRING". Any portion of the
string can be accessed quickly in this way.

Ready 0 TESTSTRING .
-32241

Ready 5 TESTSTRING .
-32236

Ready 44 TESTSTRING .
-32197

Notice the addresses returned are negative. If you don't
understand why, be sure to turn back a few pages to the
discussion of GraFORTH memory addresses!

Note: The addresses we show are for example purposes. The
actual values may be slightly different.

Using Strings
In this section, we'll show you how to use those memory addresses
that strings leave on the stack. We'll ASSIGN text to a string,

and WRITE and READ lines of text to and from the Apple's screen
and keyboard.

DELVING DEEPER 5 - 11

To store text directly into a string (or anywhere in memory), the
word "ASSIGN" is used, with the form:

¢string address> ASSIGN " (quoted text>

ASSIGN removes a number from the stack, interprets it as a memory
address, then stores the text between the quotes into memory
starting at that address. Usually the address is supplied by
entering the name of a string before typing ASSIGN. Here is an
example:

Ready 0 TESTSTRING
[-32241]

Ready ASSIGN " SHE SELLS SEASHELLS "
Ready

The phrase "SHE SELLS SEASHELLS" has been stored into the string
TESTSTRING.

To write the contents of a string to the screen, the word
“WRITELN" is used. WRITELN removes a number from the stack,
interprets it as a memory address, then writes the text starting
at that address to the screen. The form of WRITELN is:

¢string address> WRITELN

The following example writes the contents of the string
TESTSTRING to the Apple screen:

Ready 0 TESTSTRING WRITELN
SHE SELLS SEASHELLS

Text can be read in from the keyboard and stored in a string (or
dnywhere in memory) using the word “READLN". READLN removes a
number from the stack, interprets it as a memory address, then
reads a line of text from the keyboard and stores the text in
memory starting at that address. Like WRITELN, the form of
READUN is:

¢string address> READLN

DELVING DEEPER 5 - 12

I¥

,j;;;::iil
L
-3

e

L

7
Lk

£

4 -mﬁmnrllannﬁn'k &WSEEWI£IEQSﬁSEIIIEﬁ§§!
7y

44

L&/

FF. 7

$

L&,

S
-— :$m“ﬂ

1 |
ke g
E"- l..._.:i
e -

‘ i

Here is an example:

Ready 0 TESTSTRING READLN
SEASHELLS
Ready

(You type this line)

The phrase “SEASHELLS" has been read into the string TESTSTRING.

Ready O TESTSTRING WRITELN
SEASHELLS

of courge,_assiqninq, reading and writing don't have to start at
the beginning of a string. Strings can be modified by reading
into the string, but starting in the middle of the string: "

Ready 3 TESTSTRING READLN
SHORE

Ready 0 TESTSTRING WRITELN
SEASHORE

The word "SHORE" was read into TESTSTRING, starting at character
number 3, over the top of "“SHELLS".)

Ready 2 TESTSTRING WRITELN
ASHORE

The string was printed starting with character number 2, leaving
only the "A" in "SEA".

When a strinq is stored in memory using ASSIGN or READLN, a
carriage return is placed after the last character, markimg the
end of the string, When WRITELN writes a string from memory, it
starts at the specified address and continues until it fimds
either a carriaqe return or a byte containing a zero. Either of
these mark the end of a string for WRITELN,

DELVING DEEPER 5 - 13

String Conversion

Sometimes a string will contain a numher stored as text. The
GrafORTH word "GETNUM" is used to read the number from the text,
placing the value on the stack. GETNUM removes a number from the
stack, again interpreting it as a memory address. It then reads
the text starting at that address and attempts to find a number,

which it places on the stack.

In the following example, the number 321 is first read into a
string as text, then converted to a stack value with GETNUM:

Ready 0 TESTSTRING READLN
321

Ready 0 TESTSTRING GETNUM
[321]

When using GETNUM, nonnumeric characters may follow the number
without interfering with the conversion, but the number must
begin as the first character of the string.

If GETNUM cannot find a number at the given string address, it
places a zero on the stack. To determine for certain whether or
not the string-to-number conversion was successful, the word
“YALID" is used. VALID leaves a number on the stack. If the
last GETNUM was successful, the number will be nonzero; if the
conversion failed, VALID will return zero:

Ready 0 TESTSTRING READLN
555

Ready 0 TESTSTRING GETNUM .
555

Ready VALID .

253

(VALID is nonzero since GETNUM was able to convert the number.)

Ready 0 TESTSTRING READLN
vyOU CALL THIS A NUMBER??
Ready 0 TESTSTRING GETNUM .
N

Ready VALID .

f)

(VALID is zero since GETNUM failed to find a number.)

DELVING DEEPER 5 - 14

|

P

1 FF

L4

N

rey

:s_ﬁ
by N
g
by
Eﬁ
S "I
i
.
R
4
- W@, TN
3
g
LI
E 3
PR
‘ o |
!

]
H
s

PAD: The System String

GraFORTH includes a predeclared temporar i

Yy string space of 124
gharactgrs called PAD. PAD is convenient for reading keyboard
input without having to define a string first,

Actua]lvt PAD 1s two things: a 124-byte free area of memory used
for storing string data, and a word in the GraFORTH word library
named PAD which places the address of this free area of memory on
528 stack. Note that the usual string indexing is not used with

Ready PAD
re12]

(812 is the address of the PAD string buffer,)

(812]
Ready READLN
Goin' back to my pad.

Ready PAD WRITELN
Goin' back to my pad.

To access the middle of the PAD buffer, simply add
the address: ' Y an orfset to

Ready PAD

[812]

Ready 6 +

[818]

Ready WRITELN
back to my pad.

Note: PAD js considered a temporary strinqg space because the
same space is used by the GraFORTH system when compiling words
onto the word Tibrary, overwriting the previous contents of PAD
Predeclared strings should be used for more permanent string .
storaqe.

DELVING DEEPER 5 - 15

Accessing Indiividual Characters in Strings
String Words on Disk

There is a file on the GraFORTH system diskette called "STRING
WORDS". This file contains additional words for manipulating
strings in more complicated ways. To make the string words
active, simply compile the file into memory by typing:

Since each characterr in a string occupies one memory location,

individual characteers in strings can be accessed using PEEK and
POKE. In this exampple, a line of text is placed in TESTSTRING

then the ASCII valuee of the first character is read onto the ’
stack:

Ready 0 TESTSTRING FASSIGN " String pickings " Ready READ " STRING WORDS "

Ready 0 TESTSTRING FPEE
caty PEEK Here are the words in the file "STRING WORDS":

[211]
; 3 END? is called by a few of the other words to determine if the
211 is the ASCII ng " " [=R
¢ vailue for the letter 's%. "0 TESTSTRING™ placed p— i ond of a string has been reached. It removes an address from the
the address of the {first character of the string on the stack, b, oy K ds th 1 f that add d ret 1 if th
then PEEK read the ivalue from this address. In the next example '“~':}‘m:3 stac e o the vale] ot address, anc.re urns @ 1 the
the "i" in "string"" is overwritten with the letter "o" by Storin’ i value is 0 or 141 (the ASCII value for a carriage return), or
ts ASCII value: : 9) returns 0 otherwise.
[
- LENGTH ren tring add from the stack and ret th
Ready N -, GTH removes a string address rom the stack and re urns the
eady 239 3 TESTSTRRING POKE f@ 3 Tength (number of characters) of that string:
Ready 0 . i)
S DIEEIELEINF VHRITELN e S Ready PAD ASSIGN * How long am 1?7 "
oy ~
?3 : Ready PAD LENGTH
u;} [14]
E_‘“ -,
- “ Remember that string indexing starts at 0 and ends at the string
b length-1, so the last character of the above string is character
) ’ﬁ number 13.
s m,
oy N LEFTS is similar to the Applesoft "LEFT$" function. The form
| for LEFTS is:
A 4 o
e uﬁmiss ¢source> <destination> <# of characters> LEFTS
mo
? LEFTS copies the given number of characters from the source
[& string to the destination string. In the following example, the
- w string TESTSTRING is read, then the first 5 characters of
% = TESTSTRING are assigned to PAD:
g
- Ready 0 TESTSTRING READLN
w M= g FL1ZABETH
"
g Ready N TESTSTRING PAD 5 LEFTS
L-““‘ L] T .
- ‘ﬁ Ready PAD WRITELN
ELIZA
-
e -y
) B -y
DELVING DEEPER 5 - 16 1 -
¥ DELVING DEEPER 5 - 17
p— L]
P soa ug Ty N
- % 3

RIGHTS is similar to Applesoft's "RIGHT$". The form is the same
s for LEFT$, however the given number of characters are copied
from the right end of the string. Continuing from the previous
example, 4 characters from the right end of TESTSTRING are now
assigned to PAD, overwriting its previous contents:

Ready O TESTSTRING PAD 4 RIGHTS

Ready PAD WRITELN
BETH

Notice that with GraFORTH's string indexing, the Applesoft
function "MID$" can be duplicated with LEFT$. This example reads

3 characters from TESTSTRING starting with the character number 1
(not 0):

Ready 1 TESTSTRING PAD 3 LEFTS

Ready PAD WRITELN
LIz

MOVELN simply copies a string from one location to another. The
TOFIN 1 S .

<{source> <destination> MOVELN
The following example copies the contents of TESTSTRING to PAD:
Ready O TESTSTRING PAD MOVELN

Ready PAD WRITELN

ELTZABETH

CONCAT concatenates two strings together. The form for CONCAT
152
{stringl> <string?2> CONCAT

CONCAT copies the contents of string?2 to the end of stringl. The
contents of string? are unchanged. In this example, strings are
read 1nto both PAD and TESTSTRING, then CONCAT is used to comhine
the strings in PAD:

DELVING DEEPER 5 -18

;‘ L]
s
e
»
|
-
Lol
L.
P
Basr i,
B
s g
RS
»
[
[

4
s B B

AT
i

54
ﬁ

Ready PAD READLN
GrafFORTH:

Ready 0 TESTSTRING READLN
The Apple Grapnics Lanquage

Ready PAD 0O TESTSTRING CONCAT

Ready PAD WRITELN
GraFORTH: The Apple Graphics Language

COMPARE makes an alphabetical comparison between two strings,
returning a value on the stack. The form for COMPARE is:

{stringl> <string2> COMPARE

If stringl is qreater than string? (in alphabetical order,
stringl comes after string2), COMPARE returns a 1. If stringl is
Tess than string?, COMPARE returns a -1. If the two strings are
equal, COMPARE returns a 0. Here is an example:

Ready PAD ASSIGN " LIST "

Ready 0 TESTSTRING ASSIGN " LOST *

Ready PAD 0 TESTSTRING COMPARE
(-1]

The word COMPARE returned a -1 on the stack because the contents
of PAD is "less than" the contents of TESTSTRING.

Words Manipulating Individual
Characters

GraFORTH also contains words that print individual characters to
the screen, and get individual characters from the keyhoard.
These wurd> interpret numbers as the ASCII values for characters.
(A table of ASCIT characters can be found in Appendix D.)

The GraFORTH word "PUTC" (PUT Character) prints a single
character to the screen. PUTC removes a number from the stack,
interprets it as the ASCII number for a character, and prints the
character at the current cursor position:

DELVING DEEPER 5-19

Ready 193 (193 is the ASCII value for the letter "A".))

[193]
" Rfeady PUTC
; A o Thus, to read the keyboard using GETKEY and CLRKEY, first execute
j CLRKEY to make the keyboard location less than 128, then use
, PUTC removed the 193 from the stack and printed the characteer GE{TE: “tf“AEE?IrEt:r”ei Valae ;5 152 gr.qreater.d Th;§T2E$heP
1 apn, W e the value for the key at is pressed. GE can
E he interspersed with other tasks so that other things can occur
i The GraFORTH word EEIC (GET Character) places a flashing curesor while simultaneously reading the keyhoazd. Here is a simple
: on the screen, waits for a character from the keyboard to bez example that uses GETKEY and CLRKEY to "grab a character":
| entered, then places its ASCIL value on the stack: GRAB . CHAR
3 H A3
| Ready GETC e
b alf
¥ - ;
; (Type the character “B".) ?;LREY buP
1 4
| oo "I
(GETC returns 194, the ASCIT value for the character "B".) EEZE?$.
To print a character read in with GETC, simply DUPlicate thee
value read, and write it to the screen with PUTC:
Ready GETC Nup PUTC
j (Type the character "Y".)
Y
4 [217]
3 (217 is the ASCII value for the character "Y) ' 2;
| By
To check if a key has been pressed without stopping to wait,, L “':5
“GETKEY" and "CLRKEY" are used. GETKEY and CLRKEY directlyy use %
& the Apple's special keybodrd memory location. N &g
) B
b ‘ - ~ ~ < b,
When a key is pressed, its Apple ASCIL value 1is stored in thhe ey g
Apple keyboard location. If a key has been pressed, the nuwmber ;ﬁ
in this location is always 128 or greater. GETKEY reads thiis - ﬁﬁ
: Yocation and places its value on the stack. Executing CLRKEEY - .
2 tarces the value in the keyboard location to less than 128. The Eﬁ iy
next keypress after CLRKEY is executed will aqain brinq the: value ‘i
to 128 or qredter., r ai
B em S
EEE
. -~
% [o
A B
H v ‘
. | Z—— -
DELVING DEEPER 55 - 20 §
.~ 4
o ;: DELVING DEEPER 5 - 21
e I

e

Using Numbers in Other Bases

GraFORTH can accept and display number in bases other than base
ten. Four words (HEX, BINARY, DECIMAL,and BASE) allow you to
select what base GrafORTH uses.

The word "HEX" causes GraFORTH to read and print numbers 1in
hexadecimal, base 16. In this example, a number is placed on the
stack, then base 16 is selected using HEX.

Ready 45
[45]

Ready HEX
[2p]

Similarly, the word "BINARY" selects base two:

Ready BINARY
r101101]

The GraFORTH word DECIMAL gets us back to familiar territory:

kReady DECIMAL .
45

The word “BASE" can be used to select any base. BASE acts as a
variable: the word "->" is used to assiqgn the hase. The
following selects base 8 (octal):

Ready 8 -> BASE

Note that since BASE is a variable, its current value can be read
and displayed. However, any base value displayed in its own base
is "10". For example, a 2 in base 2 is 10, and a 16 in
hexadecimal is also 10. Thus, to print the base, you rust place
its value on the stack, change BASE to some other base, then
print the stack value. In this short example, the base selected
above is displayed before and after changing back to decimal:

Ready BASE
r1o7

DELVING DEEPER 5 - 22

’fs

it

1

Yoo IR

FF

3

AN S AT 3 N 3 4

rn

A4

iy

H

Ready DECIMAL
(8]

Because hexadecimal and some other Ibase numbers use letters of
the alphabet as digits, possible coonflicts between numbers and
word names may occur. For example,, in hexadecimal, is "ACE" a
GraFORTH word name or a number? To> help prevent this, GraFORTH
allows dollar signs ("$") to precedde numbers:

Ready HEX

Ready $ACE
[ACE]

Note: All of the examples in this nmanual have assumed that base
ten is selected., In addition, some: of the programs on the
GraFORTH system disk have number fosrmatting that requires base
ten. You are free to use other basees, hut the results may be
quite unpredictable!

Using DOS From GraaFORTH

DOS Commands

Using the Apple Disk Operating Systeem from GraFORTH is much the
same as from Basic. NOS commands caan be called directly from
GraFORTH, either from the keyboard cor in a word definition. DOS
responds to a command that has been preceded by a carriage return
and a ConTRol.-D (ASCII number 132). (See the Apple DOS manual
for more information on disk access in general.) The form for a
DOS command from GraFORTH is:

CR 132 PUTC PRINT " <DOS command> "' CR

"CR" prints a carriage return and "1132 PUTC" prints a ConTRol-D.
The DOS command is printed next, andd the line is ended with
another carriage return. Here is anmn example that prints a
catalog:

Ready CR 132 PUTC PRINT " CATALOG " CR

DELVING DEEPER 5 - 23

Using Data Files

Text file access is also similar to Basic. The file is opened
using standard DOS commands, and data can be read from or written
to the file using READLN or WRITELN. File access can be
simplified hy defining file words ahead of time. For example, to
hegin reading frum a text file, you can use a word like
OPENL.READ. (The filename has been stored in PAD.):

: OPEN.READ
CR 132 PUTC PRINT ™ OPEN ™ PAD WRITELN CR
CR 132 PUTC PRINT " READ " PAD WRITELN CR ;

After executing this word, the file will be opened for reading,
and data can be read in using READLN. At the end of the text,
the file can be closed by simply using the GraFORTH word "CLOSE".
CLOSE closes any open file.

Since GraFORTH does not have a function similar to Applesoft's
“ON ERROR GOTO™, DOS errors, including End Of Data, will produce
an error message and stop the program. This means that either
the length of the file must be known ahead of time, or there must
he a special marker at the end of the file so that no more data
will be read by the program, The last character in the file must
also be a carriage return.

Here is a sample file that makes use of a special End Of File
marker. The marker used here is an asterisk on the last line:

This is my test file.

tach of these lines will be printed

Hy the program below,

The last line must be a special marker

to end the file. Here it is:
*

Let us say that we have saved this file with the name "TEST".

Here is a program that will read and print each line in the file,
and will stop when it encounters the end marker "*":

DELVING DEEPER 5 - 24

T

T

=
-
-~

: READER
PAD ASSIGN " TEST " (Place filename in PAD and call)
OPEN.READ (OPEN.READ from above to open file.)
BEGIN
PAD READLN (Read a line from file.)
PAD PEEK (Get first character from line.)
170 O
WHILE (WHILE this character is not "“*":)
PAD WRITELN (Write the line to the screen, and)
REPEAT (REPEAT back for the next line.)
CLOSE (Close the file.)

As the special GraFORTH DOS allots only one file buffer, only one
file can be open at a time. The NOS commands "“PR#n" and "IN#n"
(where n is a number from 1 to 7) can be used from GraFORTH to
route data to and from peripheral cards in the back of the Apple,
In this way, program text or data can be sent to a printer or
other peripheral. After using "PR#n" or "IN#n", either the
GrafFORTH word GR or TEXT can be typed to re-establish the
standard GraFORTH I/0. Do not attempt to use "PR#0" as it will
not leave GraFORTH intact.

The following word will print the text in the editor buffer to a
printer in slot 1. It reads the characters one at a time and
prints them out until it finds a zero byte, marking the end of
the editor file.

: PRINT.BUFFER
CR 132 PUTC PRINT " PR#1 " CR
34817
BEGIN
DUP PEEK DUP
n o
WHILE
purc
1 +
REPEAT
GR

DELVING DEEPER 5 -25

