Purpose and Overview

The graphics capabilities of GraFORTH can be divided into three
main groups:

Two-Dimensional Graphics (or “Graphics of the First.Kind")
includes commands that plot points,‘draw 11ngs, and fill
rectanqular areas on the screen, using a variety of colors and

options.

Character Graphics (or "Graphics of the Second Kind") includes
using and creating new character se@s, displaying text with
{ifferent sizes and colors, and defining comp!ete]y.new shapes
and pictures in terms of chdracter‘sets and.dlsplaylng these
shapes using a special block printing function.

Three-Dimensional Graphics (or “Granhﬁcs of the Third Kind")
includes creating and displaying three-dimensional color images
at high speed for animated effects.

This chapter will discuss two-dimensionql graphics. We'll start
by talking about what the Apple itself is capable of, and how
GraFORTH uses these capabilities. We'll show you how to plot
points and draw lines, and then undraw ;hem aqain, effectively
removing them from the screen. We'll discuss color and the
drawing modes (NRMODE and EXMODE) and how they affect the
drawing process. We'll also talk abgut us1nq'Turylegraph1cs,
whicnh is especially useful for creating certain kinds of
graphics displays.

TWO DIMENSIONAL GRAPHICS 6 -2

m
4

Esﬁggr‘fvll

LkJ

e —
o, é%“*::!
S

U

i
b*;i«;
'.':*E-««g
-~ jgg
S “‘"":S

]
[i
LS
i 25
.c::-- - :":

Apple Graphics

The Apple screen display, whether it be text or graphics, is
made out of the same units, called pixels. A pixel (abbreviated
form of ‘picture cell') is the smallest unit, or dot, which may
be turned on or off of the surface or the screen. There are
53,760 of these smallest units which make up the entire screen,
arranqed in a matrix 280 dots wide and 192 dots high.

The standard Apple text display divides the screen into 24
horizontal lines, each 8 dots high. Seven of these 8 vertical
dots are used to form the characters, while the eighth is used
to separate the lines from one another. Horizontally, the
screen is divided into 40 columns, each 7 dots wide. Five of
these 7 horizontal dots are used to form the character, while
one on each side of the character is used for spacing between
the characters. The ASCII values for the characters on the text
screen are stored in a 1024 byte memory area. The hardware
inside the Apple continuously reads the values from this area
and places the appropriate characters on the screen.

The Apple graphics display allows you to turn on or off all
53,760 dots on the screen individually. There are two 'graphics
pages' in memory reserved for this function, but because of the
higher resolution, each requires 8192 bytes to be set aside. It
is possible to alternate between the pages very rapidly for
animation effects (GraFORTH does this automatically for 3-N
displays), but the Apple display hardware cannot merge or blend
the information on the two pages. These two high resolution
pages are often called 'picture buffers'. Each dot on the
screen represents one bit from the picture buffer. Seven of the
8 bits in each byte are displayed on the screen, with the last
bit used in determining the colors of the other dots in that
byte.

TWO DIMENSIONAL GRAPHICS 6 - 3

GraFORTH Graphics

While it is possible to use the Apple text display from GiraFORTH
(with the word TEXT), the usual display is the qraphics display.
To specify points on the qraphics screen, GraFORTH uses
‘Cartesian coordinates'. This is a straightforward way to
select a point by naming the column and the row the point is in.
The horizontal position is the X coordinate and the vertical
position is the Y coordinate.

The ranqge of screen coordinates for GraFORTH graphics is:
X from O (screen left) to 255 (screen right)
Y from 0 (screen top) to 191 (screen bottom)

Thus, the upper-left corner of the screen can be represented
with X=0 and Y=0, or simply the X-Y pair (0,0).

Mote: The GraFORTH qraphics screen is 9 percent narrower than
the maximum possible (256 points wide rather than 280) for the
sake of operating speed. This is one factor that contributes to
GraFORTH's fast line drawing.

The standard Apple text display still uses all 280 dots across
the screen for 40 characters per line. The characters
themselves, instead of being placed on a text screen by the
Apple hardware, are "drawn" from the text page onto the graphics
picture buffer. The full character space, 7 dots by 8 dots, can
be used, and is used for lower case characters and special
character styles.

Two-Dimensional Graphics Words

PLOT, LINE and FILL

For these examples, we don't want text scrolling all over our
beautiful graphics, so let's establish a text window in the
hottom part of the screen. These examples will keep the
graphics above the text window and away from harm. To establish
the window, type:

Ready 0 40 18 24 WINDOW

TWO DIMENSIONAL GRAPHICS 6 - 4

Iy

bl

i

Ersern @ RETEE | B
{!

/

m
b
¥ 1

1%
BnEETR

M
Wb

B,
S
b,
bl s |
Ba L ™=
N
ke, =
. |
R T
- -~
b
e 3
R, -
e, *':S
.
b -
b, -
“ s
hu».iuu‘ﬁ
Q. ”::
| SO
S~

This sets a 40-column wide window fran line 18 to the bottom of
the screen. Now type:

Ready ERASE
Tnis clears the text that was still ibove the text window.

Let's begin at the beginning, with plotting points. The
GraFORTH word PLOT removes two numbers from the stack,
interprets them as X and Y coordinatas, and plots a point at
those coordinates on the screen. Th: form for FLOT is:

{X-coordinate> <Y-coordinate> PLOT

This example will plot a point in th upper left corner of the
screen:

Ready 0 0 PLOT
Here is another point, in the upper right portien of the screen:
Ready 200 25 PLOT

The word LINE, like PLOT, removes two numbers from the stack and
interprets them as X and Y coordinates. LINE then draws a
straight line from the last plotted point to the given
coordinates. To draw a line, we use the last print we plotted
as one of the endpoints. We simply give LINE tie coordinates of
the other endpoint:

Ready 50 100 LINE

This draws a diagonal line from the point (200,25) to (50,100).
We can draw another line, by using PLOT and LINI together again:

Ready 100 10 PLOT 100 140 LINE

This draws a vertical line through the other line and almost
into our text window.

Rectanqular areas can be filled in quickly with the word FILL.
FILL also removes X and Y coordinates from the stack. It treats
the last plotted point as one corner of the area, and the given
coordinates as the opposite corner. This example fills in a
rectangular area on the right side of the screen:

TWO DIMENSIONAL GRAPHICS 6 -5

Ready 120 125 PLOT
Ready 200 75 FILL

For both LINE and FILL, the "last plotted point" is always the
point last used by a plotting word, whether it was PLOT, LINE,
or TILL. Another word, POSN, removes X and Y coordinates from
the stack to act as a "last plotted point" without doing any
plottina. POSN can bhe used to determine the first endpoint of a
line or one corner of an area. This example uses POSN to set the
first endpoint of a line:

Ready 225 50 POSN

Ready 250 125 LINE

COLOR

Of course, GraFORTH can draw in colors, too! The color is set
with the word COLOR. COLOR reinoves a number from the stack and
uses it to select a color. The eight color numbers (0 through
7) are the same as those used by Applesoft Basic. Here is a
listing of the graphics calors:

Color Number Color

=

not used

Green (1
Violet (1
White (1
not used

Orange (2
Blue (2
white (2

(depends on monitor)

-~ O U S e N =

)
)
)
) (depends on monitor)
)
)

The orange and blue colors may appear different shades on
different color monitors. The colors can be divided into two
groups. The numbers in parentheses represent the "qroup number"
{either 1 or 2). Because of some Apple J[hardware constraints,
it may be desirable to use colors from the same group when
drawing lines or areas close together. We'll show you an
example of this in a bit. (The Apple][Reference Manual
contains more information on the internal details of these
constraints.)

If you don't mind a bit of typing, this example will display 6
diagonal lines in each of the visible colors:

TWO DIMENSIONAL GRAPHICS 6 - 6

"..:*é-g
t.-m gm‘g
T
. % -
ka3

§)
&:“g -
o3

FY

A4
]
W § ERTREERy ' BTN
f i
77

kil

Ready ERASE

Ready 1 COLOR O 0 PLOT 1100 100 LINE

Ready 2 COLOR 20 0 PLOTT 120 100 LINE

Ready 3 COLOR 40 0 PLOTT 140 100 LINE

Ready § COLOR 60 0 PLOTT 160 100 LINE

Ready 7 COLOR 100 0 PLODT 200 100 LINE

With your color monitorr properly adjusted, the colors of these
lines (from left to rigght) should bhe green, violet, white,
orange, blue, and anothaer brand of white. Note that the colored
lines are not broken att all, as they are with some graphics
displays (1ike Applesofft). GraFORTH draws all colored lines
without breaks.

Lines and points can bea drawn over FILLed areas, but the colors
will be affected:

Ready ERASE
Ready 5 COLOR
Ready 0 0 PLOT 100 100 fFILL

This draws an orange reectangle in the upper left portion of the
screen. Now let's draww a line of a different color through it:

Ready 6 COLOR

Ready 0 0 PLOT 100 100 [LINE

Note that 6 COLOR speciifies blue, but because of the orange
background, the line apppears white. Now let's try the same
example again, this timme using colors from different color
groups:

Ready ERASE 5 COLOR

Ready 0 0 PLOT 100 100 ' FILL

Ready 1 COLOR

Ready 0 0 PLOT 100 100) LINE

TWO DIMENSIONAL GRAPHHICS 6 - 7

LT T ST T AR

Whoops! You should see a series of small green rectanales along

the diaqonal. This is the result of the Apple][hardware
limitations. The solution to avoiding this trouble is to simply
use colors of the same qroup when lines or areds are
superimposed or placed close toqether,

UNPLOT, UNLINE, and EMPTY

So far we've been using the word ERASE to clear the graphics
from the screen. In GrafORTH, points, lines, and areas can be
selectively erased. Let's ERASE the entire screen now and set
the color hack to white, then plot a few points:

Ready ERASE 3 COLOR

Ready 50 25 PLOT

Ready 100 25 PLOT

Ready 150 25 PLOT

Points can be individually removed with the word UNPLOT. UNPLOT
has the same form as PLOT, however it erases the point at the
given coordinates. (If there is no onoint there to begin with,
nothing happens.) Let's use UNPLOT to erase two of the points
we have on the screen:

Ready 50 25 UNPLOT

Ready 100 25 UNPLOT

Similarly, lines can he erased with the word UNLINE. This
example draws two lines, then erases one of them:

Ready 0 0 PLOT 100 100 LINE
Ready 50 0 PLOT 150 100 LINE
Ready 0 0 UNPLOT 100 100 UNLINE

Rectanqular areas created with FILL can be erased with the word
EMPTY. Here we'll FILL two areas, and erase one:

TWO DIMENSIONAL GRAPHICS 6 - 8

Nia

»

di

j
&)

X e
e
by
-

.
L]
:: T
—
g‘g
8
By
L}
2]
"
g

‘m(_‘f:)
- F”m:!
@
t:v--ﬁm“

B P
.
[

ki

F¥
§

fr
o ;mﬂﬂwﬂw Inuuamnf mzﬁaﬁn; mrcrg B EAREES B
TTREETY

Py
ib

i
bil

j
lid

Ready 25 75 PLOT 100 125 FILL

Ready 175 25 PLOT 225 100 FILL

Ready 25 75 UNPLOT 100 125 EMPTY

Points, lines, and areas must be UNdrawn using the same color
they were drawn in. For example, all of the above objects were
drawn with 3 COLOR set. The same color was still in effect when
some of the objects were erased. let's change the color and try
erasing the remaining line and area:

Ready 1 COLOR

Ready 50 0 UNPLOT 150 100 UNLINE

Since 1 COLOR is set, the GraFORTH system assumes a green line
is to be erased, and leaves a string of violet dots behind.

Ready 2 COLOR
Ready 175 25 UNPLOT 225 100 EMPTY

With 2 COLOR set, GraFORTH tries to erase a violet colored area,
changing the white to green.

INVERSE and NORMAL

If you prefer to do graphics on a white background, you can do
this with the word INVERSE. INVERSE simply draws the
"complements' of the selected color: white becomes hlack, black
becomes white, green becomes violet, blue becomes orange, etc.
To show the effects of INVERSE, let's first erase the screen,
then enter INVERSE:

Ready ERASE

Ready INVERSE

Notice that the "Ready" on the last line is now displayed in
"inverse": black characters on a white background. Since only

the word "Ready" was printed after executing INVERSE, it is the
only thing displayed in inverse. Now type:

TWO DIMENSIONAL GRAPHICS 6

Ready HOME

Since HOME clears the text wwyindow, now everything inside the
text window is in inverse. INow type:

Ready ERASE

tRASE has "erased" the entirere screen to white., Let's draw the
51« colored lines again:

Ready 1 COLOR 0 0 PLOT 100 1100 LINE

Ready 2 COLOR 20 0 PLOT 120 100 LINE

Ready 3 COLOR 40 0 PLOT 140 100 LINE

Ready 5 COLOR 60 0 PLOT 160 100 LINE

Ready 6 COLOR 80 0 PLOT 187 100 LINE

Ready 7 COLOR 100 O PLOT 2000 100 LINE

Note that the colors of the 1lines have all changed. From left
to right, the colors dare nows violet, green, black, hlue, orange,
and another black.

We'll eventually want to retturn to a normal black-background
display. The word NORMAL caauses GraFORTH to use the normal
colors dagain, including goodd ol' black:

Ready NORMAL

Ready ERASE

ORMODE and EXMOIDE

firaFORTH has two different “!'drawing modes", called "ORMODE" and
"UXMODE". Amazingly enough,, these modes are set with the
GrafFORTH words ORMODE and EXXMODE. The 'default' mode (the mode
5rab0XTH uses when a mode iss not specified) is ORMODE. The
philosophy behind ORMODE is that the plotting words put dots of
the specified color on the sscreen reqardless of what is already
on the screen. With EXMODE lhowever, a drawing command will put
points on the screen only whhere points are not already plotted.
[f some points to be plottedd are already plotted, those points
will instead be turned off.

[WO DIMENSIONAL GRAPHICS 6 - 10

o

(o Ef‘ e
e %% ‘t!
| . ——y
. E:“~:=

1y

[
- g“::
B - —
e g o
]
]
i-w .}
. om oy
-
o
.
C -~
[e ey

A couple of examples will be helpful here. |lLet's first FILL an
area, then draw an overlapping line in ORMODE:

Ready 100 50 POSN 150 100 FILL
Ready 50 50 POSN 200 100 LINE

The line goes straight through the middle of the rectangle.
Watch what happens when we try to erase the Tline:

Ready 50 50 POSN 200 100 UNLINE

The line was erased, but it neatly chopped the rectangle in
half, too. Using EXMODE, anything that can the done can also be
undone. Let's do the same example again, thiis time in EXMODE:

Ready ERASE EXMODE
Ready 100 50 POSN 150 100 FILL
Ready 50 50 POSN 200 100 LINE

The line is white, except where it passes over the white
hackground of the rectangle. Here it is chamged to black. Now
to erase the line, we want to make the white sections black, and
the black trace through the rectangle white. And this is
exactly what happens with reqular plotting im EXMODE. We can
erase the line by telling GraFORTH to draw itt again:

Ready 50 50 POSN 200 100 LINE

The line is erased, and the rectangle is aqaiin intact. The key
to understanding EXMODE is that if something is drawn once, it
appears on the screen. If it is drawn again, it disappears,
leaving the screen as if the object had never been drawn.

EXMODE works equally well with colors. In this example, a green
line is drawn through the rectangle, the whitte rectangle is
erased, then the line is erased:

Ready 1 COLOR 50 50 POSN 200 100 LINE

Notice that the line is violet inside the rectangle.

Ready 3 COLOR 100 50 POSN 150 100 FILL

TWO DIMENSIONAL GRAPHICS 6 - 11

The line is now completely geen, as if the rectangle never
existed.

Ready 1 COLOR 50 50 POSN 200 100 LINE

EXMODE and ORMODE can be comined with INVERSE and NORMAL along
with the six colors to produe a wide variety of color and
pattern combinations, more than we could hope to fully exnlore
here. We suggest that you experiment further with these various
combinations, to see how the can work best for your
applications.

GPEEK

Your programs can determine whether or not a given point on the
screen has been plotted with the word GPEEK., GPEEK removes X
and Y coordinates from the ttack, looks to those coordinates on
the screen, and places a nor zero number stack if the point
there is "on" (not black) or a zero if the point is "off"
(black). The following example draws a line, then checks two
points, one on the line and one off:

Ready 3 COLOR 0 0 PLOT 100 :00 LINE

Ready 50 50 GPEEK .
?

Ready 200 10 GPEEK.
U

Turtlegraphics

Turtlegraphics is also available from GraFORTH. Turtlegraphics
1s a somewhat different way of specifying how to draw lines in
GraFORTH. Imagine a tiny trtle sitting on the middle of the
screen with ink on his tail. Wherever he moves he draws a line
hehind him. We can tell hin to turn to the left or the right,
and we can tell him to walk forward a given distance leaving a
straight line behind him. (For the mathematicians among us,
this way of drawing lines culd be considered as using "relative
polar coordinates".)

The Turtlegraphics words ir GraFORTH are found on the system
disk in a text file called "TURTLE". We can compile these words
into the dictionary by typing:

TWO0 DIMENSIONAL GRAPHICS 6 - 12

FRFFFFTY
- s x P W s ﬂ B

4

fF|

T

rr

23!

i § ey BB

oy s
ey

-
¥

uJ

)

]
§

'y

i

ry

H
(&4

;
79,

Ready READ " TURTLE “

We can see the words added to the dictionary by typing LIST. A
few of the words are used by the other words: TURTLE.X,
TURTLE.Y, and TURTLE.ANG are variahles, and TURTLE.WALK is
called by bo.n MOVE and MOVETO,

Let's "initialize" Turtlegraphics by typing:
Ready TURTLE

TuRrLE resets qraphics mode, erases the screen and sets a text
window glgnq the bottom four lines, then sets 3 COLOR (white)
and positions the turtle in the center of the screen, facing
toward the top.

MOVE

The yord MOVE moves the turtle in the direction it is pointing,
drawing a line. The form is:

<distance> MOVE

The distance is measured in pixels, or dots.
50 pixels, type:

To move the turtle

Ready 50 MOVE

TURNTO

The turtle can be turned to a certain angle with TURNTO.
has the form:

TURNTO

<angle> TURNTO

The angle given is in degrees, and increasing angles are in a
clockwise direction. Zero is straight up, 90 is to the right
180 is facing down, and 270 is to the left. Let's move the '
turtle in our example to face to the right (to 90 degrees), then
move it 75 pixels: ’

Ready 90 TURNTO

Ready 75 MOVE

TWO DIMENSIONAL GRAPHICS 6 - 13

TURN

Tne word TURN turns the turtle clockwise from its current
direction a given angle. The form is the same as for TURNTO,
but TURN is a relative turn from the turtle's current direction.
The following example now turns the turtle 45 more deqrees
clockwise, then moves the turtle 50 pixels:

Ready 45 TURN

Ready 50 MOVE

MOVETO

Lastly, MOVETO moves the turtle directly to a specified X,Y
position on the screen without drawing any line. The form for
MOVETO ds:

<X coordinate> <Y coordinate> MOVETO

MOVETO is similar- to POSN in that it simply establishes a new
point on the screen, but MOVETO also updates the turtle's
position for further Turtlegraphics commands. We can move the
turtle to the upper-left corner of the screen, turn it to face
to the lower-right, then move it back to the center, drawing a
Tine, with the following commands:

Yeady 0 0 MOVETO

Ready 127 TURNTO

Ready 160 MOVE

Examples

The advantage of Turtlegraphics is that shapes can be drawn in
different sizes and facing different directions with little
work. For example, to draw a square, you can type the
following:

Ready TURTLE
keady 50 MOVE 90 TURN 50 MOVE 90 TURN

Ready 50 MOVE 90 TURN 50 MOVE

TWO DIMENSIONAL GRAPHICS 6 - 14

e

¥

Fr
e RN é B i;@g

&

W Y
6]
ﬁ
L,
" B
4
&3y
—y
-
-
-y
ot
- 4“
-~
)
ey
Wk
K.,
-
e
1} ...4
wN

A faster way is to repeat the words in a loop:
Ready TURTLE
Ready 4 0 DO 50 MOVE 90 TURN LOOP

This line can be put into a word definition and used at any
time:

: SQUARE
4 0 N0
50 MOVE
90 TURN
LOOP

Now the square can be drawn starting at any point on the screen
and turned any direction:

Ready TURTLE

Ready 0 100 MOVETO SQUARE

Ready 55 100 MOVETO 30 TURNTO SQUARE

Ready 120 100 MOVETO 60 TURNTO SQUARE

Ready 190 100 MOVETO 90 TURNTO SQUARE

(Note: The GraFORTH word SIN is used to compute sines of angles
used in Turtlegraphics. If you have an applications program that
uses angles, the word SIN can be very helpful. SIN removes a
number from the stack and uses it to select and return a scaled

sine value. The table repeats for every 128 numbers, and
returned values range from -128 to 127.)

TWO DIMENSIONAL GRAPHICS 6 - 1%

CHAPTER SEVEN: CHARACTER GRAPHICS

Chapter Table of Contents: Page
Purpose and Overview 7-2
Special Output Characters 7-2
Changing Character Size and Color 7-3
e = _
gy Font Selection 7-5
ol ::S The CHAREDITOR 7-7
k' Selecting and Displaying the Character Set 7-7
e, L - Displaying a Block of Characters 7-8
P, Defining Your Own Shapes 7-10
;"’ = Saving a Character Set 7-11
&
Mow -
-, Block Printing from GraFORTH 7-12
&
b Setting the Block Size (BLKSIZE) 7-12
LI ﬂ
e Drawing the Block (PUTBLK) 7-13
ey & - Exclusive Or Mode (EXMODE) 7-14
o g
i Summary 7-15
e :
¢ - Conclusion 7-18
-
i
h’n “e B ~
e CHARACTER GRAPHICS 7-1
i
- 1
Bai oow N

Purpose and Overview

GraFORTH can do weird and wonderful things with the characters
displayed on the screen. Text can be reverse scrolled, down the
screen. Characters can be made much larager, and displayed in
color. Different character styles, or 'fonts' can be selected
and even created in GraFORTH., Entire images can be defined
within a character font and rapidly printed as a block of
“"characters" for animated displays.

In this chapter we'll show you how to make use of each of these

features and give you some suggestions for incorporating them
INto your own programs.

Special Output Characters

Besides the special input characters (ConTRolL-I, ConTRoL-0, etc.)
discussed in Chapter 4, GraFORTH also uses two special output
characters, ConTRolL-L, and ConTRoL-K. These characters are
usually printed from within a program, instead of entered at the
keyboard., (They can be typed from the keyboard, but GraFORTH
will try to read them as characters in a GraFORTH word.)

ConTRoL-L (Apple ASCII number 140) erases the screen inside the
text window. Printing a ConTRoL-L is equivalent to executing the
word HOME .

ConTRoL-K (Apple ASCIT number 139) causes a reverse line feed, so
that subsequent printing will be one line higher. If printing is
already on the top line of the text window (the vertical tab
equals the top window margin), then the display will scroll in
reverse, moving text down the screen.

CHARACTER GRAPHICS 7 -2

il

W

™ PZ’Y
Wb oW

7Yy

e
o
P -
ey -
e ke
-~
- m 3
-~
= =3
pmoN
b
i
52:» m TN
#
aﬁ.UHu . 53
<]
[

b v
o -
?s

‘;‘)
- W
Bt g
f -
-)
E - 3
i e

Changing Character Size and Color

GraFORTH has the unique ability to print characters in 8
different sizes using the word CHRSIZE. CHRSIZE removes a number
from the stack to select the character size. Valid numbers are
from 0 to 8. Character size 0 specifies the usual GraFORTH
character display. Character sizes 1 through 8 cause the
characters to be "drawn" onto the screen using GraFORTH's color
qraphics capabilities. Character size 1 is the same size as
character size 0, and the others are 2 through 8 times larger.

Let's introduce some of these features through examples. First,
we'll set everything back to normal by typing:

Ready ABORT

Now let's erase the normal sized characters from the screen and
select a larger character size:

Ready HOME 2 CHRSIZE

(Erasing the screen with HOME is a normal but not required step
in changing character size, If HOME is not used before changing
size, in some cases not all entered characters will be printed.)

The "Ready" prompt is now twice its normal size! You will notice
that the large character sizes take a longer time to print, and
that if allowed, scrolling is much slower than it is when using
the standard character size. Also, the screen is actually 9%
narrower than the standard size, since the graphics features are
used to print them,

The large characters can also be displayed in color! Type:

Ready HOME 1 COLOR

This will clear the screen, then make the text green. We cleared
the screen again because combining two colors of text on the

screen can have some unusual effects of its own. To see these
effects, type:

CHARACTER GRAPHICS 7 -3

Ready 2 COLOR

Now hit the <return> key a few times to cause the text to scroll.
The “Ready" prompt that was green gets overwritten with the
violet, but does not scroll. Only text of the current color and
of the current size will hehave as expected with text commands.

(bviously, when the characters are larqger, fewer characters can
he displayed on the screen. When you select a new character size
with CHRSIZE, GraFORTH automatically sets the text window size to
the correct limits, to keep the text on the screen. Below is a
Lanle relating character sizes to the number of characters thqt
can be displayed, and indicating whether or not colored text 15
pussible for that character size:

Size Columns Rows Color?

0 40 24 No

1 32 24 ves (with funny effects)
2 16 12 Yes (with better effects)
3 N - R Yes

4 8 6 Yes

o) 6 4 Yes

o) 5 4 Yes

] 4 3 Yes

3 4 3 Yes

You might want to try the following to see GraFORTH's larqest
character size in color. First type ABORT to get yourself back
to a predictable place, then type:

Ready HOME 8 CHRSIZE 6 COLOR

A mammoth oranqe “Ready" prompt will appear, spljt across twol
11nes. with a huge lumbering cursor! Allowing time for the text
to scroll, now enter:

Qeady INVERSE

After another scroll, the display changes to inverse. Obviously,
you wouldn't want to enter a long program this way! ‘Ldrge
cnardcter sizes work very well for program or game displays, but
weren't really intended to be used for input. The fastest way
out of our current situation (besides hitting <reset>) is to

type:

CHARACTER GRAPHICS 7 -4

.
.
e 2w
q
U
-
W A
—
“ »
e,
-,
B
ba.
B
e
&1}
L
!
A .
o
-

1
fo
@

|
e
Pl->A.*|
-

ol B DaweEeeTR B ERAE
i .

oW Ul

i

Vi)

Ready ABORT

After the text scrolls once more, the ABORT is executed, and
things are back to normal.

Font Selection

The character “style" used in a text display (the actual set of
shapes of the characters displayed) is called a character 'font',
or character set. The Apple][contains an uppercase-only
character set stored in its hardware. GraFORTH uses this when
TEXT mode is selected. However, GraFORTH's usual graphics
display instead uses a character set from memory. This character
set is stored in a binary file on the GraFORTH system diskette,
and is read into memory when GraFORTH is first booted.

The disk actually contains several character sets, and any of
them can be used for text display. The character set files on
disk are:

CHR.SYS
CHR.STOP
CHR.SLANT
CHR.GOTHIC
CHR.BYTE
CHR.STUFF
CHR MAXWELL

(The last two are special character sets used for ‘character
graphics', and do not work well for a text display. We'll show
you how to work with these in a bit...)

In memory, a character set occupies 768 bytes. There are 96
printable characters, and each character uses 8 bytes in the
character set. These 8-byte blocks are actually graphics
"pictures" of each character. When GraFORTH is booted, it loads
CHR.SYS into memory starting at location 2048. Whenever it
displays a character, it looks up the "“picture" of that character
from this area of memory, and places it on the screen.

Character sets elsewhere in memory can also be used for the
screen display. Let's load another character set from disk into
a free area of memory. The location 2816 is the beginning of a
large free area of memory. We'll use a standard DOS call to load
the file in:

CHARACTER GRAPHICS 7 -5

Ready CR 132 PUTC PRINT " BLOAD CHR.BYTF ,A2816 " CR

Tne disk whirs a bit, and the character set is loaded. To use
this character set for the display, the word CHRADR 1is used.
CHRADR stands for CHARacter ADdRess, and it is used to select the
memory location of the current character set. The form is:

¢sddress of character set> CHRADR

We loaded the character set into memory starting at location
s16, so this is the address we qive to CHRADR:

Ready 2816 CHRADR

AT printing will now use the new character set. The characters
that were already on the screen in the old character set,
however, are unchanged. Chdaracters from different character sets
can be displayed on the screen at the same time, However, if the
screen is scrolled, these characters will be reprinted a line
nigher, using the newest character set.

Tne ASCI] numbers for the printing characters range from 160 to
ses . To Aisplay all of the printing characters in the set at

once using PUTC, type:
Ready 256 160 D0 T PUTC LO0P

vou may want to load the other character sets into memory to sec
what they look like. You can load them into the same area of
memory and overwrite CHR.BYTE, or you can use another free area
At memory and select it with CHRADR. The memory map in Appendix
« <hows the free areas of memory. Therefore, it is possihble (and
casy!) to have several character sets in memory at once, quickly
changing from one to another. Care should be taken, however, to
Jvoid overwriting a portion of the GraFORTH system. Remember
tnat each character set occupies 768 bytes of memory.

eually, you will want to return to the system (CHR.SYS)

cnharacter set. The GrafFORTH word CHRSET returns the address of
this character set, 2048. Thus, to switch back to this display,

you can type:
Ready CHRSET CHRADR

(0f course if you want to, you can overwrite this area of memory
with another character set, too.)

CHARACTER GRAPHICS 7 -

B Wi
e
v
. L
NAA .
-
- g
e
s
Ly
@
| T
L. o
4
B Y
L
i
5
&
i
.o
[
{
—t
—
m' 1)
| .
b
["N
.
fa.
[y
B

YT

99

19

i e W Wi kb il

1

ki

The CHAREDITOR

On'tne GraFORTH system diskette is a file called CHAREDITOR.

This program enables you to read in character sets, examine and
modify character shapes, create large block images that are
storgd as a series of characters, and save the new character sets
to disk again.

QHAREDITURRis one Qf the larger programs, so it would be a good
idea to LIST the dictionary and FORGET any words you may have
added before loading in CHAREDITOR. To load the program in,
type: ‘

Ready READ " CHAREDITOR "
To run CHAREDITOR, type:
Ready HOME RUN

Notice that we cleared the screen before running th

CHAREDITOR does not automatically clear the scrgen.e ?g?gr??.so
that‘any graphics images on the screen can be retained and used
within the CHAREDITOR, allowing you to "pull" images and shapes
from other programs into your GraFORTH character sets.

You will see a list of commands to the right, the prompt

“Entgr command:" near the bottom of the screen, and a flashing
dot in the upper-left corner. This flashing dot is the “draw%nq
cursor” and will be used for creating your own character shapes;

Selecting and Displaying the Character Set

The character editor works with one character set at a time. To
get an understanding of things, let's start by looking at the
system character set that starts at location 2048. The editor
uses single-letter commands. To specify the address of the
desired character set, press "A" for Address. You will then see
the prompt:

CHARACTER GRAPHICS 7 -7

tnter Charset
Wwork Area Address : 2316

The input cursor is flashing over the "2816". This is the
detault address, the address used if you do not specify one. You
can keep this address simply by pressing <(returnd. However, we
want to enter the address of GraFORTH's standard character set.
Type "2048" over the top of the "“2816" and press <return>. Now
5048 is the address of the character set used by the character
adirtor.

Type "D for "Display characters”. You'll see a display across
the bottom of the screen of all the characters in the character
set, in inverse. To the left are the numbers 0, 32, and A4,
Ihese are index numbers. When manipulating character shapes in
GiraFORTH, character numbers in the range of 0 to 95 are used
ynsread of the ASCLI values (which range from 160 to 255 for
printing characters). The first row of characters are numbered 0
through 31, the second row 32 through 63, and the third row 64
through 95,

Displaying a Block of Characters

If we want, we can take a sequential string of characters and
display them in a rectanqular block on the screen. Let's display
the 6 chardcters "n" through "s" in a hlock that is 3 characters
Wide by 2 characters tall. To select a block of this size, press
" for "Blocksize. You will be prompted:

tnter Block Horizontal Size

Fnter a 3 and press <return>. You will see:

tnter Block Vertical Size :

inter a ?, press <return>, and you will get the reqular

“Cnter command:" prompt back. Also notice that 4 more dots have
appeared at the top of the screen, outlining our 3 by 2 character
Hlock.

Press "D" to bring the character set display back. Counting
scross the bottom row from the index number 64, you will find
that the character "n" is character number 78, To display the

hlock of 6 characters starting with "n", type "R" for "Read".

CHARACTER GRAPHICS 7 -8

PE

Fr

£

"

u
g
i
i
Y

§

Lk

6 W, WU Wi Wtk W W Wk

i)

You will see:

Enter character number
to be read :

We want character number 78, so type "78". The6 characters will
appear in the block surrounded by the 4 dots.

You can also display blocks starting on other naracters, or use
a different blocksize. When changing blocksizg you may want to
erase the block from the screen. To do this, imply type "E" for
“Erase", then answer "Erase (Y/N) :" with a "V.

We've heen looking at a hlock of standard charcters, to show you
how block printing is done. Now let's see someactual character
graphics. To protect our precious system charcter set, press
"A" and select an address of 2816 again, back nto open memory.
Type "G" for “Get". This option allows you toload a character
set in from disk. You will see:

Enter Load File Name :

Type “CHR.STUFF". This character set will loacinto memory
starting at the location 2816. Type "D" to diplay this
character set. FExcept for a few punctuation smbols, those don't
look much like characters! You can see piecesof the Insoft
loqo, parts of faces, and an assortment of lins which are
actually pieces of a helicopter used in the GrFORTH
demonstration program,

If you've changed the Blocksize, set it back t¢3 characters
horizontally by 2 characters vertically. Now ype "R" and read
character number 78. A smiling face will apper in the upper
left. By pressing "D" again, you can see thatthis face occupies
the same six characters that the characters "n'through "s"
occupied in the system character set. The othr three faces
begin at character numbers 84 and 90. Just prss "R" and enter
the character number to see them.

The Insoft logo uses a blocksize of 8 by 2 chaacters, and begins
at character number 16. The three helicoptersuse a blocksize of
5 by 3 characters and begin at character numbes 33, 48, and 63.
You will probably want to erase the block (witl"E") before
changing the blocksize, so that part of the prvious image won't
remain on the screen beside the new hlock.

CHARACTER GRAPHICS 7 -9

Defining Your Own Shapes

To create your own shapes with the character editor, first select
4 hlocksize for the image you want to draw. Erase the block if
necessary. Here's where the drawing cursor comes in. By
pressing the 1, J, K, and M keys, you can inove this cursor one
pixel up, left, right, or down within the block. If you want to
5lot g point at the position of the cursor, press "“P" for "Plot".
To draw a line from the last plotted point to the cursor, press
s« Notice that "P" and "L" are actually PLOT and LINE
commands, with the coordinates specified by the cursor. The
chiracter image is created by moving the cursor and drawing the
noints and lines that make up the image.

In addition, you can create character images in color. Press "C"
for "Color" and enter the number of the color you want to work
1n. (When colored character images are displayed in GraFORTH,
the colors may be different, depending on whether the image is
drawn heginning on an odd-numbered column or an even-numbered
column. This comes about as a result of the way the Apple]1[

qenerates high-resolution color.)

If you plot &4 point that you didn't want, you can erase it by
pressing "U",which UNPLOTs the point. Similarly, you can erase
tines by pressing "Z". If the drawing cursor moves too slowly,
you can increase its step size by pressing "X", then entering the
number of pixels you want the cursor to move whenever you press d
cursor-moving key (1, J, K, M). If your image isn't coming out
the wday you'd like....well, press "E' to erase it and try again!

fxperiment with these keys to get a feel for creating images.

A1 of the images in CHR.STUFF were created with the character
aditor. If you like, you can read an existing image from the

(haracter set and use the drawing keys to modify it.

Wnen you've created an image that you want to save, first
amultiply the block vertical size by the horizontal size, to
determine how many characters your image will occupy. Then press
“3" to see the current character set, and choose a range of

characters in the character set to write your image to. Press
“W" for "Write". You will be prompted:

fnter character number

to be written

CHARACTER GRAPHICS 7 - 10

L
e

&;
b

F! Fr, FFP FF

sl B Ee0TTE B S oOERE 8 OERS

iR B Bsen

e

FF

H

sEeR B RS

i

H

R

—

it 3 SO

e, W wi Wi Wl W

4}

Type the character number of the first character in the desired
range. Your image will be written into the character set
start!nq at that character. Press "D" again and vou will see
your image neatly dissected and placed in the character set.

Images from one character set can be copied to anothe i
CHAREDITOR “T" ("Transfer") option. You will be prom;tz:12grtge
“From" address, a "To" address, and a length. To copy an entire
character set from one address to another, simply enter the
address of the character set to be transferred, the address of
where it is to go, and enter 768 for the length. Remember that
character sets are 768 bytes long. ‘

Transferring only part of a character set is a little trickier
Remember that each character occupies 8 bytes. Compute the '
"From" and "To" addresses based on the character number and the
addresses of the character sets. The length is the number of
characters times 8.

Saving a Character Set

After a new character set has been created, you can save it to
disk to be used again later. To save a character set, press "S"
for "Save". You will see:

Enter Save File Name :

Type the filename you've selected for the character set. Be sure
that there are no files with that name on disk, unless you want
to overwrite that file. Note that all of the character sets on
the GraFORTH system disk begin with the prefix "CHR.". This is
not a requirement; the prefix simply acts as a reminder that the
file contains a character set.

When you want to leave the character editor, type "Q" for "Quit".
If you want to begin work with another program, it would probably
be hest to FORGET the character editor first, since it takes up a
Iot of room in the word library. The word "X" is the first word
in the character editor, so to delete the editor, type:

Ready FORGET X

CHARACTER GRAPHICS 7 - 11

Block Printing from GraFORTH

printing blocks of characters is done directly from GraFORTH much
the same way as in the character editor. A character set is
loaded into memory, an appropriate blocksize is selected, and a
sequential ranqge of characters is printed in the block at the
current horizontal and vertical position.

Let's display some of the same images we saw earlier in the
chardcter editor. First, load "CHR,STUFF" back into memory:

Ready CR 132 PUTC PRINT " BLOAD CHR.STUFF,A2816 " CR

You could now type "2816 CHRADR" to select the character set, but
remember that this character set doesn't have much in the way of
recognizable characters! It contains helicopter parts and other
things. GraFORTH can recognize the characters fine, but the
screen display is unusable. When we display a character image,
~e'11 jump into the character set, display the image, then jump
hack out.

BLKSIZE

Tne block size in GraFORTH is set with the word BLKSIZE. The
torm for BLKSIZE is:

chorizontal size> <vertical sized> BLKSIZE
As in the character editor, the horizontal and vertical size are
measured in characters, BLKSIZE remains set until changed. The

word ABORT does not reset BLKSIZE.

To prepare to see the smiling faces, set a blocksize of 3
characters wide by 2 characters tall:

“eady 3 2 BLKSIZE

CHARACTER GRAPHICS 7 - 12

kil

I

; 'B A
s%mi:s'w:n
kh

A

i]
ke

g8,

By il
bl
[
-
—
| -
| .
Fo
h; o
[
b &
)
[y . ag
-
O
e |
&S ~
n 29
~ i
£oL
o
“:55
o e
el e~ |
i
2
-
S] :

'
UJ

PUTBLK

The word that actually puts the bhlock of characters on the screen
is PUTBLK. PUTBLK removes a number frrom the stack and uses it as
the starting character numbher for the hlock to he displayed.
Character nunbers range from 0D to 95, as in the editor. The
number of characters to be printed is determined by BLKSIZE., The
position of the block on the screen iss set the same way text is
positioned, with HTAB and VTAB, or thee other text positioning
commnands.,

Let's block-print one of the faces in CHR.STYUFF., For this
example, type this entire line at oncee:

Ready HOME 2816 CHRADR 78 PUT3LK CHHRSET CHRADR 12 VTAB

YHOMEY clears the screen and positionss printing to the upper-left
corner, "2816 CHRADR" sets the charactter set address for
CHR,STURF, 78 PUTBLK" actually printss the imaqe, "CHRSET CHRADR™
resets the system character set, and 12 VTAB" gets the following
"Ready" prompt down out of the way, sco that it won't nverwrite
the block just printed.

A smiling face should have appeared irn the upper-left corner of
the screen.

To save on typing a bit, let's define: a couple of new words to
help us in and out of the special charracter set. We'll call
these words "IN" and "OUT":

Ready : IN 2816 CHRADR HOME

Ready : OUT CHRSET CHRADR 12 VTAB ;i

To display another face, we can simpliy type:

Ready IN 84 PUTBLK ouT

Unlike text printing, PUTBLK does not: update the horizontal
cursor position. Therefore, once a pirinting position has been
estahlished, several images can be dreawn sequentially in the same
space. The following example prints fthe three helicopter images
in the same space 100 times. Keep yoour eyes open; it's fast:

Ready 5 3 BLKSIZE

Ready IN 100 0 DO 33 PUTBLK 48 PUTBLKK 63 PUTBLK LOOP QUT

CHARACTER GRAPHICS 7 - 13

After chanqing the »locksize, the Insoft 1nogo (which starts at
character number 16) can he displayed centered on the screen:

Ready 8 2 BLKSIZE
Ready IN 5 VTAR 16 HTAB 16 PUTRLK OUT

We're being cautious about the display here because we're mixing
the printing of block images using one character set with reading
keyhoard input using another. Most finished programs will have
the chdanges planned out, so that the most effective mixing of
character images and text display can occur,

To erase a character image, the word UNBLK is used. UNBLK simply
erases a block in the current blocksize at the current printing
position. The following example erases the Insoft logo we placed
on the screen:

Ready 5 VTAB 16 HTAB UNBLK

The VTAB and HTAB determine the position of the block to he
erased. Since UNBLK doesn't print any characters, we don't need
tu specify a character set.

()f course, character images can also be made larger by using
CHRSTZE. This example displays the Insoft logo four times as
large:

Ready IN 3 CHRSIZE 1 COLOR 16 PUTBLK O CHRSIZE OUT

EXMODE Character Graphics

Character sizes 1 through 8 will be drawn in "EXMODE" if EXMODE
is set. This allows you to draw characters or character images
over other graphics, then erase them, leaving the original
graphics intact. However, EXMODE character graphics requires a
few special considerations.

As GrabORTH displays characters on the graphics screen, it stores
the ASCI! values for those characters in the text screen drea.

If 4 character about to be printed is already in place on the
screen, no high-resolution printing is done, since the character
is already present. This saves much time in printing and
scrolling.

CHARACTER GRAPHICS 7 - 14

L ot ——
- e
=5 o=

C @
P . .
B
a3

! st

a

#
m’fi L& ntuay
L

"
e g '“f;

"

o
= 4

. T
™
e &
gl S,

n
-

]
L
"N -
“) . -.»._ﬂ

o
X3
Cow M
-5 3
o
-

g
e " sy

#

L
|
~ a 3
.
Wy

N e

4
L ™ ~
. » |

-

y
e~
- N

However, when using EXMODE, you usually want to reprint the same
characters in the same location to cause them to disappear again,
Therefore, to unprint a line using EXMODE, you must first erase
the text screen (this is the actual Apple][text screen, not the
high resolution screen used hy GraFORTH) to force a reprinting.
To do this, you use the Apple][monitor's screen erase routine
("-936 CALL"), then print the same line in the same position.

The following word definition is an example of using EXMODE
character graphics. It draws a diagonal line, writes text over
the line, then erases the text, leaving the line intact. It
repeats this 4 times:

: EXMODE.DEMD)

ERASE
1 CHRSIZE (Set up EXMODE character graphics)
EXMODE
0 0 PLOT 100 100 LINE (Draw the line to be written over)
4 000 (Loop 4 times)
3000 0 DO LOOP (Delay loop, to slow it down)
5 VTAB
5 0 DO (Print the line 5 times)
PRINT " This line can be erased " CR
LOOP
-936 CALL (Erase the text screen)
LOOP
0 CHRSIZE ;
Summary
Output Characters

GraFORTH uses two special output characters: ConTRolL-L erases
the screen inside the text window, and ConTRolL-K causes a reverse
line feed, making the screen reverse scroll if the cursor is at
the top of the text window.

Character Sizes

The GraFORTH word CHRSIZE uses a number from the stack to select
a character size. Valid numbers are 0 through 8. Sizes 1

through 8 can be drawn in color using the word COLOR. Character
size 0 is the normal text display.
CHARACTER GRAPHICS 7 - 15

Font Selection
Various character fonts can be used by BLOADing them into free

memory and selecting that memory with CHRADR., GraFORTH's system
character set begins at location 2048. The word CHRSET returns

this address.

CHAREDITOR

The program CHAREDITOR is used to modify and save character
shapes and images. Here is the normal sequence of events in the
use of CHAREDITOR, with example entries:

1. Load and run the CHAREDITOR progran:

KReady KREAD " CHAREDITOR "

Ready HOME RUN

2, Select a chardacter set work address:

tnter Charset
Work Area Address : 2816

3. (optional) Load a character set:
fnter Load File Name : CHR.STUFF

4, Select a block size (single characters are always 1 by 1;
images may be larger):

fnter 8lock Horizontal Size : 3
Fater Block Vertical Size : 2

5. Uraw the imaqe or character using the described sketching
LeyS.,

n. Write your imaqge or character into the character set:
Enter Character Humber to be Written : 90
7. Save the modified character set to disk:

tnter Save File Name : CHR.TEST

CHARACTER GRAPHICS 7 - 16

FF

FFFF

Fr FFIF

FY

F¥y

7y

i

ol B BeatseE B Berws B

&
™
2

¢

77

TTRRYY

té!

Block Printing from GraFORTH

Displaying character graphics from GraFORTH usually involves the
following steps:

1. Load a character set into memory:

Ready CR 132 PUTC PRINT " BLOAD CHR.STUFF,A2816 " CR
2. Select the character set:

Ready 2816 CHRADR

3. Choose an appropriate blocksize:

Ready 3 2 BLKSIZE

4. (optional) Select a character size and color:
Ready 2 CHRSIZE 1 COLOR

5. Position the cursor and draw the block:

Ready 5 VTAB 2 HTAB 90 PUTBLK

Since PUTBLK does not advance the cursor, several blocks may be
drawn on top of one another without having to reposition the

cursor. The word UNBLK erases a block at the current position of
the given blocksize.

EXMODE Character Graphics

Character sizes 1 through 8 may be drawn using EXMODE. This way,
characters can be displayed over other graphics without erasing
them. However, to erase a line printed in EXMODE, the text
screen must first be erased with "-936 CALL" before the line is
reprinted.

CHARACTER GRAPHICS 7 - 17

Conclusion

This chapter introduced GraFORTH's character graphics
capabilities. So far we have covered the language features of
GraFORTH, its point and line graphics, and now the set of
graphics that manipulate characters and block images. Next
Jhapter, we'll introduce the most amazing aspect of GraFORTH, its
three dimensional color qraphics capability. So hold on to your
keyboard, here we go!

CHARACTER GRAPHICS 7 - 18

|
gy

TR R TR T T Y

t4l

CHAPTER EIGHT: 3-D GRAPHICS

Chapter Table of Contents:
Purpose and Overview
3-D Graphics at a Glance
3-D Image Format

Image Parameters

Rotation

Scaling

Three-Dimensional Perspective
Position

Translation

Object Color

The Image Editor

Address and Image Selection
Getting a Good View

Image File Entries

Creating New Images
Saving the Image File

Three-Dimensional Display Methods

Redrawing Without Change
Erasing Individual Objects
Overlapping Objects and UNDRAW
Other Effects

Profile

Setting Parameters

Entering DATA from Keyboard
Entering DATA from Disk
Memory Considerations

Playing Around
Conclusion
3-D GRAPHICS

Page

® © ® ®
o P NN

1

20 00 00 0
OOy O,

o

COCDCO@G) [« @

Purpose and Overview

Perhiaps the most exciting aspect of Gral ORTH is its high-speed
3.0 graphics capabilities. GrafORTH can manipulate up to 16
three-dimensional shapes simultaneously. In this chapter we'll
d1scuss how to use these features.

Jde 1) heqin with an overview of how 3-dimensional shapes dre
accessed and manipulated, and give you some introductory
coanples. We'll then explain the various 3-D parameters and
drscuss the image “format" in detail. We'll show you how to use
rhie IMAGEDITOR to credate your own 3-N images, then discuss 3-D
divolay methods., Lastly, we'll discuss two very useful programs
tor developing and manipulating your 3-0 image files.

3-D Graphics at a Glance

To display a 3-D object in GraFORTH, the "imaqge" information
describing the shape of the object is first loaded into a free
arca of memory, then commands are entered which tell the GraFORTH
syster where the imadge is in memory, and how the image is to be
Aisnlayed,

Gralib T ases an internal arrdy to store the current information
oot 4l of the 3-D objects beiny displayed. The array stores
: YLoations in memory of the actual images and the display
. oeters {position, rotation, size, etc.). A number (from 0 to
, used to refer to each ohject, and to select which object
1y ocarredatly being manipulated.
"o view a -0 1maqge, let's first make sure things are back to

Grsia
Keaty ABURT

and set a text window so that text doesn't scroll over our 3-D

Vind oSl

Keady 0 40 20 24 WINDOW ERASE

3-D GRAPHICS 8 - 2

FY PP TF FeY FP FFFF

n

L

o
Ei?
i3
-
B
i
1]
i
@
o
]
[
3
g
L)
]
i
i

| =

k4

77

ki

17

¥y

Y7

i

Now let's load an image from disk into a free area of memory.
The binary file “XYZ" on the GraFORTH disk contains an imaqe of
three arrows, each a different color, and each pointing a
different direction. This is the same object that was used in
the PLAY demonstration in Chapter 1.

Ready CR 132 PUTC PRINT " BLOAD XYzZ,A2816 " CR

Before we can view "XYZ", we have to initialize the internal 3-D
graphics array. Since we're starting from scratch, enter the
word OBJERASE. OBJERASE clears the array, and should be used
when beginning all 3-D programs.

Ready OBJERASE

Now we want to assign a number to the object we're about to view.
Remember that GraFORTH can handle up to 16 objects at a time.

The word OBJECT is used to specify which object to manipulate.
OBJECT removes a number from the stack, and uses this number to
celect the current object. Let's give the image "XYZ" the number
0 in the array:

Ready & 0BJECT

For our example, we will want the shape to be drawn automatically
after each entered command. To do this, the word AUTODRAW is
used. AUTODRAW removes a number from the stack. If this number
is 1, then the currently selected object will automatically be
drawn after each graphic command. If the number is 0, then
automatic drawing will not occur. (Entering the word DRAW will
draw the objects when AUTODRAW is not in effect.) Let's turn on
automatic drawing with AUTODRAW:

Ready 1 AUTODRAW

We've initialized the array, set object number &, and turned on
automatic drawing, hut we haven't specified where the current
object is in memory. The word OBJADR is used to specify this
address. We loaded the object into memory starting at 2816, so
this is the number we give to OBJADR:

Ready 2816 OBJADR

At this point (because AUTODRAW is turned on) the image will
appear on the screen. Right now it looks like a single arrow
with a line through it, but that's only because we're seeing it
head-on.

3-D GRAPHICS 8 - 3

irat ORTH has 12 separate words for controlling the position,
size, and orientation of 3-D objects. MWe'll introduce these
words properly in a hit, hut to give you a taste, let's rotate
the imaye a little for better viewing:

Yeady 11 YROT

Now it's beqginning to come into view, and you can see parts of
411 three drrows. Let's move it a little wmore:

Reaidy 16 XROT
and add a little perspective:

Ready A SCAL7Z

3-D Image Format

Just as two-dimensional graphics use Cartesian coordinates
faheled X and Y, three-dimensional graphics use a Cartesian
CSourdinate system with the three directions labeled X, Y, and Z.
The arrows in "XYZ" represent the three directions, or three
"axes'. X is a point along the horizontal, from left to right.
¥ 15 4 point on the vertical, from top to bottom. Z is a point
trom rear to forward, pointing at the viewer.

The points that make up a 3-D image are expressed as three
nawbers, one for each of the X, Y, and Z coordinates. The valid
range for each of these numbers is -128 to +127. Each arrow lies
Onoan axis, with two coordinates equal to zero, and the ends of
cach arrow redching from -128 to 127. At the center of the cube,
where all three arrows meet, the three coordinates are all equal
1 Loy,

3-D GRAPHICS 8 - 4

FEor FF.FFFF

44

m
R l Lo e

7y

g M-

7

™
i

(£4

¥

-~
]

4v/‘////ﬂ
—.128
i:jfg;/’/”
——
e V/ -
%\ \
\\ v
N\
= - NG
‘:\ — o
PENAY

The above diagram shows the limits for each of thme three
coordinates. Note that these limits define a “"cuwbe of space",
256 units along each side. All 3-D objects residle in this space.
When more than one object is being displayed, eacth object has its
own 3-D space, though these spaces may overlap or even coincide
on the screen.

Image Parameters

Once an image has bheen loaded into memory and sellected with
OBJECT and OBJADR, it can be rotated, positioned,, scaled, and
translated in a number of ways.

Rotation

An image can be rotated around any axis, using XROT, YROT, or
ZROT. XROT rotates the image around the X-axis, YROT around the
Y-axis, and ZROT around the Z-axis. Each of thesie words removes
a number from the stack and rotates the image to the selected
angle. Angles are specified in units between 0 tio 256 rather
than degrees. An entry of 0 to YROT (or for that: matter, XROT or
ZROT) rotates the image around to a normal positiion facing the
viewer. An entry of 64 rotates to 90 degrees, 128 rotates to 180
degrees, and so forth, until 256, which (like 360 degrees) is the
same as zero: a full revolution.

3-D GRAPHICS 8 -5

farlier, we used XROT and YROT to tip the image a bit so that we
sonld qet a better view. We can also use a loop and qquge'the
imaye to rotate d full circle. The folloy1nq word_def1n1t19n
executes YROT repeatedly, with an increasing rotation value:

YSPIN

260 0 DO
I YROT

4 +LO0OP

Ready YSPIN

Wnen YSPIN is finished, the object has a Y rotatioq of 0. To get

it hack to our previous view, we enter the appropriate value for

(0T aqain:
Qeady 14 YROT

xRUT and ZROT can, of course, bhe manipulated in identical ways.

Scaling

The image can be changed in width or height with the words SCALX
and SCALY. Both of these words remove a number from the stack to
Lelect the given X or Y scale. The valid ranqe 1S from :31 to
:%1. Numbers outside of this range will ﬁe.“fo1Qed bagk into
The range. When the 3.0 object array is initialized with A
NudERASE, SCALX and SCALY are set to 16. Try these examples with
RO DA

Ready 25 SCALX
Ready 8 SCALY
Ready 4 SCALX

1 1 "
Setting a scale of zero causes the object to have no "thickness
at all:

keady 0 SCALX
Negative scale numbers reverse the imaqe:

Ready -8 SCALX

3.0 GRAPHICS 8 -6

il

"

71
Lk

e
i e

B o#
r-._«u-—‘......nﬂ_
it

n

h
I

L ™
w

B

£
— R ity
ﬂ —d

i

- @
-
["]
Moo g T
L - oy
v Ry

%

"

s
B,
R

E

&
LW
.

— &
)]
By 4

i

— ¥
L
B A

o

i
h-» Y T
. g
; b
| .)l
B e 1
l o2
By -
B e
! il i

Q

-
'S L™
L. . T

i

Note: This reverse scaling is useful in unexpected ways. For
axample, if you are creating the image of a hird, you only need
one wing image. The other wing is simply the first with one
negative scale number to reverse the imaqe.

Here's a programming example of scaling:
Ready : SOUASH 12 -12 DO 1 SCALX LOOP
Ready SQUASH

Since for most qraphics applications you will want to change both
the X and Y scale to change the total size of the object, the
GraFORTH word SCALE is provided. SCALE has the same form as
SCALX and SCALY. It simply sets both SCALX and SCALY to the same
value:

Ready 5 SCALE

Ready 12 SCALE

Three-Dimensional Perspective

There is a fourth scaling word in GraFORTH, SCALZ. SCALZ doesn't
change the size of the object in the same way that the other
scaling words do; instead it changes the perspective of the
object. Entries for SCALZ are also in the range -31 to 31. The
default value for SCALZ is zero, which doesn't provide
perspective views. (The front of a cube, for example, will be
the same size as the back.) If you enter a nonzero number for
SCALZ, perspective will be provided. [f the entry is positive,
the front of the object will be larger than the hack. 1f the
entry is negative, "reverse perspective" occurs, a most unusual
phenomenon! You may wish to try the following examples:

Ready 20 SCALZ YSPIN
Ready -10 SCALZ YSPIN
Ready N SCALZ YSPIN

Note: When SCALZ is nonzero, images take ahout ?20% longer to
draw in exchange for the perspective features.

3-N GRAPHICS 8 -7

Also, SCALZ uses a fast algorithm that closely approximates true
perspective. However, if you are displaying an image that has
ends of lines meeting at the middle of a line, and you are using
large amounts of perspective, the image may begin to distort. If
this happens, break the image up into a series of shorter lines,
so that all endpoints meet other endpoints, rather than meeting a
line itself.

Position

Three-dimensional images can also be placed anywhere on the
screen with the words XPOS and YPOS. XPOS and YPOS remove a
number from the stack to determine the X or Y position on the
screen of the center of the 3-D cube. Especially if the scale is
large, to avoid screen wrap-around, ample room must be left on
either side for the edqes of the images. The valid entries for
XPOS are 0 to 255; valid entries to YPOS are 0 to 191. The
datault values are 128 for XPOS and 96 for YP0OS, which is the
center of the screen.

To move the image around, let's first make it a bit smaller, to
avoid wrap-around, then try a few different positions on the
screen:

Ready 5 SCALE

Ready 50 XPOS

Ready 40 YPOS
Ready 200 XPOS

We can cause the feared wrap-around by placing the object close
to one of the edges:

Ready 5 YPOS

Now let's move the image back to a more reasonable position:

Ready 96 YPOS

3-D GRAPHICS 8 - 8

Fr FE FF FE EF T

Y

i

¢

o B e § Boecr® § peveies B RORSNE B BOETCE B BDSRLD B OED

1
H

3
i

&

&

L)

crs i sahee

SR BB

¥

L

"

Ak

1y

tdi

¥y

Lk

i

ii BA bk

bii

Translation

Translation occurs when tthe object is moved, not on the flat
video screen, but within its own 3-dimensional space. In
GraFORTH, objects can be translated along the X, Y, or Z axis
with the words XTRAN, YTRRAN, and ZTRAN. When using translation,
you must keep the image iinside the confines of its "cubhe of
space". If you do not, tthen "3-D wrap-around" will occur,
because GrafORTH cannot rrepresent points outside of its cube of
3-D space.

already reaches to the edqes of its
We can translate it, but wrap-around

Qur current image, "XYZ"
space on all three axes.
will occur imnediately:
Ready 5 XTRAN
For some examples of trannslation, let's first load another 3-D
image, one that doesn't ffill its space. We'll load and set up
the image "HOUSE":
Ready ERASE
Ready CR 132 PUTC PRINT "" BLNAD HOUSE ,A3n00 " CR

i AuloDRAW
Ready 1 OBJECT 3000 OBJAADR
The image of a house shouuld appear. Let's get a better view:
Ready 20 XROT
Ready 10 YROT
Ready 8 SCALZ
Ready 10 SCALE
Now the house can be trannslated. It can be moved about a bit
before causing wrap-arounnd. (In the next section, you'll see how
to determine the true sizze of an object from the IMAGEDITOR.)
Ready -50 ZTRAN
Ready 50 ZTRAN

Ready -25 XTRAN

3-D GRAPHICS 8 -9

Just for fun, try using YSPIN with the house, now that it has
been translated away from the center of its space:

Qeady YSPIN

Object Color

You noticed that each of the three arrows in "XYZ" was a4
Mtferent color. lmages can be created with or without colors
specitied. If no color is specified, then the object's color can
Lo determined when it is drawn later, using 0OBJCOLOR. 0BJCOLOR
removes a number from the stack to select the color of the
current object. The usual GrafFORTH color numbers are used.

The house does not have a set color, so we can set its color with
OBJCOLOR:

Ready 1 0BJCOLOR

Ready 5 0BJCOLOR

Note that 3-D graphics, like two-dimensional and character
graphics, can be done in either INVERSE or NORMAL, and either
Cang or EXMODE, producina a wide variety of graphics effects.
We encourdye you to try some 3-D graphics commands with various
combinations of display modes.

At the end of this chapter is a discussion of the program PLAY,
which enables you to set all of these parameters (except for
UBJCOLOR) into motion. PLAY is very useful in gettinag an
iatuitive feel for exactly what each of these parameters does.

The Image Editor

Un the GraFORTH system disk is a file called IMAGEDITOR, which
contains a program enabling you to create your own 3-0 images.
To use the image editor, first delete any new words on the word
library to make room, then type:

Ready ABORT

Ready READ “ IMAGEDITOR "

3-D GRAPHICS 8 - 10

:
£

|
=]
i

3 § Broea § B
i

; }

EL

Y
¥

o ——
b
£
d
-
gr
o
.
&
— S e
-
p—
B ey
- -
——id

oy

e

B
e
.
[Y
5
3
Bow 3
m 8
=g
RS
Lk
- Y
i oy
(-
e

i
f

F F ERETR | BIESS
i‘d

LR
i

(NOTE: The image editor is a fairly 1large program. On
non-lanquaqge card systems, loading thee image editor will move the
top of the word library into the same 1 memory used by the text
editor program. 1f the editor is loadded into memory, it will
overwrite the top of the word library,, forcing you to reach for
the power switch, as the GraFORTH systtem will become inoperable.
After using the image editor, rememberr to FORGET the program
before using the text editor.) T

Now run the program:
Ready RUN

You will see a 1jst of commands to thee right and a prompt: "Enter
command:". The image editor works witth one 3-0) image at a time.

Address and Image Selectioon

As in the character editor, you must sselect a work area address
(or use the default address). To seleect an address, press "A"
for "Address". You will see the promppt:

Enter File Address

followed by the number "2816". (You sshould be getting pretty
familiar with that number!) If you waant to use another area of
memory, enter that address. For thiss example, just hit <return>
and the address 2816 will be selectedd. ’

If you are doing these examples sequerntially, the image 'xyz"
w!11 still be in memory at 2816. 1f yyou've turned the Apple off
since that time, you will need to loadd it again. Type "G" for

"Get" and enter the filename "XYZ". TThe file will be loaded into
memory .

Getting a Good View

If the jmdqe was already in memory, itit won't appear until you
rotate it or move it on the screen. Ilmages can be rotated,
positioned, and scaled from the image= editor.

To rotate the image, type "R". You wiwill see:

Rotate [X (num) to Z (num) J :

3-D GRAPHICS 8 - 11

For this command enter the letter of the axis you want to rotate
around followed by the anqgle you want to rotate. For this
sxample, type Y16 . The image will rotate around the Y-axis.
Type "R" again and enter X1A . Now you can see the arrows well,

Ty scale the object, type "S". You will see the prompt:

Scate U (num), or X,Y,7 (num)]

To scale X and Y simultaneously, simply enter a number. To scale
one of the coordinates, type X, Y, or Z, and then the scale
number. Since we're keeping the image in the corner of the
screen, it's best to keep the scale small, The scale is
1n1tially set to 8.

You will

To change the position of the object, type "P". see:

position [X (num) or Y (num)] :

Frter an X or a Y followed by the desired screen position. The
image has an initial screen position of X=64 and Y=48. : XD

You can choose a color for the image, if the color is not already
set in the image file. Press "C" for "Color" and enter the
desired color number. You can also choose between EXMODE and
ORMOUE views. Press "M" for “Mode", then enter "X" for EXMODE or
"G tor "ORMODE".

Image File Entries

Now type "L for "List" to see the numbers that make up the
Lmaqe. You can press <return> to see all of the entries or press
fonTRoL-C to stop. Remember that, as explained above, GraFORTH
uses Cartesian coordinates, a system of three numbers for each
Jetined point.

3-D GRAPHICS 8 - 12

I

%
;»m-A
i
B
£
e
o -
n
¢
B
W N
"
5
-
- R
e o
(T
s A
' "t
]
k. 3
e,
A;;:
i
o,
.o
o
=
ko
B
5
.
o
\
| l
[P
v
|
|
| N
[
13

-
!

YRR R TR T T R T TR Y 1 ¥

b4

fach entry in the IMAGEDITOR Tisting has the following
information:

1. Whether the point is to be (M) moved to without drawing, or
(D) drawn to from the previous line endinqg. (This means that
each imaqe file must begin with (M), not (D), since there are
no previous lines at that time.)

2. What color should be used for the line. The color numher (if
present) is directly under the letter “C" in the heading.
(If it is desired to use the word "OBJCOLOR" to specify
object color, then don't make any color entries within the
image file.)

3. The X, Y, and 7 coordinates of the point (each coordinate
lies within the range -128 to 127).

4, The address of the entry. Fach entry occupies four bytes.

The last six lines of the image file can also he seen by pressing

“E" for “"Enter”. We will use the "Enter" command in a moment to

create our own 3-D shape. For now, press (return> to leave the

"Enter" mode.

While using the imaqe editor, you may want more screen space for
text and less for image drawing, or vice versa. To accomplish
this you can use "W" to move the text window up or down, position
the image using "P", and scale the image using “S". The "List"
and "Enter" comnands will use as many lines as the text window
allows.

Sometimes, while adjusting the image position, the image will
“wrap around" on the graphics screen. If you want to clean up
the screen, type "W" and reenter 14 or some other window top
value. "W" clears the screen when it sets a new window.

Creating New Images

Now we will create our own image, a cube.
erase "XY/". Press "I", and you will see:

First, we need to

Erase File (Y/N)

Type a "Y' to erase the file. The image won't disappear right
away. (If the presence of the old image disturbs you, press "W
and enter 14 to cause the "Window" command to erase the screen.)

3-D GRAPHICS 8 - 13

“u that we will he able to see all sides of our object as it is
created, enter a Z scale of 8 for perspective (press "S", then
“28%). How press "E" again. Notice that no file entries are
listed, since we have erased them. You will see a prompt:

(MYove, (D)raw, (-) Delete, (CR) Quit :

since the first entry must be a move, type "M". You will be
prompted for a color. Let's not use a color, so that later we
can selact its color with OBJCOLOR. Just press (return>,

You will then be prompted for X, Y, and Z values in turn., Ue're
quing to start with the point at the lower left front corner of
the cube. X at the left is -127, so enter -127 and press
(returnd. Y at the bottom is 127. Enter 127 and press <returnd.
7 at the front is 127, so enter that and press <return>.

You still won't see anything drawn, bhecause we have only defined
4 single point, and points aren't plotted in GrafORTH 3-0
graphics, only lines. Now let's draw our first line. Type "D"
this time instead of "M". Now enter an X value of 127 (remember
the last entry was -127). We want the other two values to stay
the same. In this "Enter" mode, to keep a previous value, just
Jress <return>. The last value will be repeated. Press <returnd
tor both Y and Z. Now a line will appear from left to right
Cfrom X = =127 to X = 127).

Now repedt the entry procedure, pressing "D" each time and
chanying only one number per entry, pressing <return> for the
others:

! to =127
X to =127
anit 2 to 127 again.

These entries will draw a square at the bottom of the image
space. (If the view isn't very good, press <return> to leave
“Tnter" mode, change the rotation or the scaling, then press "E"
to return to “Enter" mode.)

Note: If at any time you make an incorrect entry, just finish
the entry, then press "-". "-" deletes the last entry in the
file.

Now if we change Y to -127 and repeat the entire procedure, we
will have most of the cube.

3-D GRAPHICS 8 - 14

ot E’ s
i e
e
)

¥

g
|

P =

i3
{

s B,
W— ~.:;
%
.
R
- -
-
[~ -y
M,
[™™ . .
b g
[S
oL~
=
R
o =

==
| 58 | e
=
koo
. -y
-
oy
W T
LA
“«. Y ey
|3 \ ey
{ E

|
B =~
- |

|

1

At this point three edges are still missing. Can you fiqure out
how to draw the missing edges?

The solution is to (M)ove to each of the following locations, and
(D)raw a vertical line (using Y) from bottom to top:

1. (M) X =127, Y =127, 1 = 127
2. (D) x (same) Y = =127, 7 (same)
3. (M) X (same), Y = 127, 7 = -127
4. (D) X (same), Y = =127, Z (same)
5. (M) X = =127, Y = 127, 1 (same)
6. (D) X (same), Y = =127, Z (same)

Saving the Image File

Now we can save our cube. Press <return> with no entry to leave
the "Enter" mode, then press "K" for "Keep". You will be
prompted:

Enter File Name to Keep
Enter a file name here. The GraFORTH system diskette already
contains a file named "CUBE". (It contains a cube identical to

the one we just made here.) If you're using another disk, vou
can use the filename "CUBE" or another filename.

Three-Dimensional Display Methods

From within a program, the word DRAW is usually used instead of
AUTODRAW to draw 3-D images. This way, several parameters can be
changed at once before the next image is drawn. When AUTODRAW is
off, executing DRAW causes the images to be drawn.

Aside from the mathematical methods (described in Appendix B),
GraFORTH has a rather complex display method for 3-D images. In
general, when a DRAW command is issued, the following events
occur:

3-D GRAPHICS 8 - 15

|. The drawing routines are directed at the graphics screen that
is not currently beinq displayed, so that the drawing won't
he seen.

2. The previous image on the invisible screen is "undrawn",
using information stored when it was drawn.

3. The new imaqe 1is drawn.
4. The display is switched to the freshly drawn screen.

This method quarantees high-quality animation imaqes, since the
entire process of drawing is concealed from the viewer.

You may wish to note that character graphics, discussed in the
last chapter, also draws to both screens, SO that character and

3-0 graphics can be freely intermixed.

Redrawing Without Change

For maximum speed, an object is only redrawn by DRAW if a new
command is issued to it. So in a program with several objects,
only those that have been referenced since the last DRAW will be
redrawn. Example:

0 OBJECT 16 XROT
3 OBJECT 24 YROT
”R/‘\\J

Only objects 0 and 3 will be redrawn when DRAW 1s executed.

If an object has been changed and then drawn, the images of the
object on the two qraphics screens will not be the same. If
other objects are then repeatedly changed and drawn, causing
frafFORTH to switch graphics screens, then the two unlike imaqges
of the object will be alternated, causing a back-and-forth type
ot residual motion.

Therefore, if several objects are being drawn independently, they
snould be referenced (using the word OBJECT), if not changed, to
cause the image to be redrawn. This way, the images on both
graphics screens will always be updated. For example,

1 OBJECT

causes a redraw of object 1 at the next draw comnand.

3-D GRAPHICS 8 - 16

B s
E-»“ 1“2
5 B
i
"“-—-lg
i S
—

.
=3
2
.

v =3
G
B o ™
. .
g
n 4
Looa
CoA
Loag
S
&
ML,
w9
o
i
L
L3
&
VoS
a % dna
Y3 3
i
.
.
R R~

Erasing Individual Objects

The GiraFORTH word OFF is used to “undraw" an object but not

redraw it. Most objects stay on the screen after the last image
entry to their tables. OFF selectively erases objects that are
no longer needed. Subsequent commands to an ohiject will redraw

it. Here is an example of OFF:

Ready 3 OBJECT OFF

Overlapping Objects and UNDRA w

In a case where there are several overlapping objects, or objects
are drawn over text, it is best to use "EXMODE", since this
causes drawing and undrawing to occur without destroying the
screen's oriqinal contents. Alternatively, if all the objects
are in continuous motion, it may be desirable to use the word

UNDRAW.

UNDRAW simply erases a hlock of character spaces specified hy
BLKSIZE, just as UNBLK does. However, UNDRAW also causes the
next DRAW command to not do an automatic line "undraw" before
drawing the next imaqe. This way, you can use UNDRAW to erase
the 3-D images yourself. Using UNDRAW is frequently faster than
the automatic line undraw that is carried out by DRAW.

For example, let us say we have an image in the center of the
screen (at X = 128, Y = 96) that extends 20 plotting points in
radius around this point. Remember that numbers entered to
BLKSIZE refer to characters, not points. Text characters of size
0 are 7 points wide and 8 points high. So an entry to BLKSIZE of
6 by 5 will cover an area 42 by 40 points, large enough for our
sample image. Remember that UNDRAW, 1ike UNBLK, is controlled by
VTAB and HTAB, Let's set the blocksize, then position and
execute an UNDRAW before the next DRAW:

Ready 6 5 BLKSIZE

Ready 18 VTAB 17 HTAB UNDRAW DRAW

3-D GRAPHICS 8 - 17

Remember also that UNNRAW, like PUTBLX and UNBLK, doesn't advance
HTABR across the screen as for printing. Once positioned, UNDRAU
can be used repeatedly over the same area.

Other Effects

If you wish to prevent undrawing of the imaqes (for special
effects), simply use UNDRAW, hut place the undraw hlock away from
the image. For speed, select a blocksize of 1 by 1 in this case.

It is also possible to prevent screen sequencing altogether,
using SEQUENCE, so that the process of drawing may be observed.
SEQUENCE removes a number from the stack. If this number is a 0,
screen sequencing is turned off. If the number is 1, screen
sequenzing is turned back on. This example will stop screen
sequencing:

Ready (0 SEQUENCE

Usually used with "0 SEQUENCE", the word "SCREEN" selects which
graphics screen to display. The screens are numbered N and 1.
This example displays screen number 1:

Ready 1 SCREEN

PROFILE

There is another program on the GraFORTH system disk used for
creating 3-0 images, called PROFILE. PROFILE acts as a sort of
araphics "lathe"™, creating images that are cylindrical in nature
trom a set of poaints defining the profile of the image. The file
"CHAL™ on disk contains the image of a chalice, and is an example
of the kinds of imaqes that can be created with PROFILE.

To run PROFILE, first make sure that there is room on the word
library by FORGETting any extra words, then type:

keady READ " PROFILE "

Ready RUN

3-D GRAPHICS 8 - 18

¢

B PresaeE B EESeR® @ SOTITOm B

i

¥

i
P

i

-y
8 coottdl]
)
g
LR
oy
e}
ey
g —
i
B il
" -
8
#
i
. "!
pe “
- |
|
-
|
R
-
- &, i
e
- T
]
s
N
ey
% an
¥
‘d.
g
- .
(R~
4

Setting Parameters

You will see the PROFILE heading and some instructions. We're
going to use PROFILE in this example to create a simple cone.
The first question asked is:

Enter number of polygon sides

This determines how smooth the cones circumference will be.

a perfect circle, you would ideally want to enter an infinite
number of sides. Unfortunately, your Apple does not contain an
infinite amount of memory! For this example, enter a 20.

For

The next prompt reads:

Enter Object File Address

with a qood ol' 2816 already selected for you. Images created
with PROFILE can easily use a lot of memory. Usually you will
want to use the area of memory beginning at 2816 or the space
above the word library. (To find this address, print the

value of PRGTOP after loading PROFILE, and add about 50 or 100 to

this address for extra space.) For this example, just press
<return> to keep the address 2816.

Entering Data from the Keyboard

Now you will see:
Data from [KJ]eyboard or [D]isk ?

You can either enter the profile coordinates directly from the

keyboard or use a text file that contains the coordinates. Here
we will enter the coordinates directly. Press "K" for
"Keyboard". You will see:

Enter X,Y pair (end = "E")

This is where you actually enter the coordinates. The Y
coordinate is the vertical position in the profile. The valid

range is -128 to 127. The X coordinate can actually be

considered a radius, since it determines the distance from the
edge to the center of the object. Its valid range is also -128
to 127, but negative entries are identical to positive ones, so

only numbers from 0 to 127 need be used.

3-D GRAPHICS 8 - 19

We're qoing to start our cone as a single point, and work down.
The top of the cone is at Y = -128, and the radius (X) is zero.
As we move down with increasing Y values, we'll also steadily
increase the radius. Make the following entries:

Enter X,Y pair (end = "E") : 0,-128
Enter X,Y pair (end = “E") : 32,-64
Fater X,Y pair (end = "E") : 64,0
Fnter X,Y pair (end = "C") : 96,64
Fnter X,Y pair (end = "E") @ 127,127
fnter X,Y pair (end = "E") @ L

The last entry must be "E". For a few seconds, the phrase:

Generating imaqe file (824 bytes)

will appear on the screen as PROFILE computes the points that
make up the cone, then the screen will be erased and the cone
will appedar. Notice that the cone has 20 vertical lines around
its circumference. This is because we selected 20 polygonal
sides. There are 4 circles around the cone and a point at the
top. These are because we made 5 profile entries. At the bottom
of the screen will be the message:

Enter object file name

This is so you can save the 3-D object to disk. If you want to
cave the cone to disk, enter a filename and press (return>. If
you don't want to save the image, just press (return> and the
program will end.

Entering Data from Disk

As discussed earlier, PROFILE can also read a list of coordinates
trom a disk file. The textfile "BIGCHAL" contains a list of
coordinates that describes the profile of a chalice. You may
wish Lo see this list at some point. When PROFILE is no longer
in memory, you can enter the text editor, get the file BIGCHAL,
and list it. You will see a list of numbers similar to the one
we entered to make the cone, but longer. Note that the last

3-D GRAPHICS 8 - 20

Ll I d
(L - ol
— g -
g el o,
h“‘md
S
g i
A
-
-
B O -
L‘"“‘“““":
§ st
ﬁ's
P .:;
-
S .3
—d
-,
S
(. —
- g
b, =
- i
- i,)
.
o .
W
o)~
[o ‘:j
[
b -
——
g
[R—
|
——
B, ! i
|
c;; nn \»_::
(. 1 -

entry in the file is "E", marking the end of the Tist.

For now though, let's run PROFILE aqain, this time using the
textfile BIGCHAL instead of keyboard entries. RUN the program,
select 8 polygon sides, the address 2816, then "D" to read data
from disk. You will then be prompted:

Enter Data File Name :

Enter the name "BIGCHAL". The disk will whir for a bit, then the
messaqe:

Generating image file (2724 bytes)

will appear. After a pause, the chalice will appear on the
screen. As before, you can either save the 3-D image to disk, or
press <return> to exit.

Memory Considerations

Secause PROFILE can generate very large imaqe files rapidly,
image size checking has been added to help prevent overwriting
jmportant parts of memory.

Usually you will use one of two areas of memory for the 3-D imaqe
file when using PROFILE: either the free space from locations
2816 to 5887, or the space above the top of the word library. If
you select an address between 2816 and 5887, PROFILE will prevent
the image from extending beyond location 5887.

If you select an address greater then 5887, then PROFILE assumes
the image is above the word library. It then checks for the
presence of a language card. If you are using a language card,
PROFILE will allow images to extend to location -16385,
immediately below the Apple][I/0 area. If you do not have a
language card, PROFILE prevents the image from extending beyond
location -26113, immediately below DOS.

[f the image is too large to fit in the provided space, the image
will not be created or drawn, and the following message will
appear:

Not enough room here.
(Requires nnnn hytes.)

with nnnn being the actual number of bytes the image requires.

3-D GRAPHICS 8 - 21

Motice that if the starting address you select is in a "safe"
area nf memory, then PROFILE will prevent the image from
clobbering important information. However, if you select an
address in the middle of something important, vou'll find
yourself having to rehoot the system from scratch....

PLAYing Around

The program PLAY was briefly introduced in Chapter 1. PLAY was
designed for you to “"play" with a 3-D image, manipulating its
rotation, scale, translation, and position parameters. Any or
i1l of these parameters can be set into motion, giving you a
rapid intuitive "feel" for what each of the parameters does. And
LAY 15 a lot of fun!

Note that PLAY, like IMAGEDITOR, uses the same memory as does the
text editor on non-lanquaqge cdard systems. Be sure to forget any
extra words in the word library (PLAY is rather a large program),
then type:

Ready READ " PLAY "
Ready RUN

The instructions are fairly self-explanatory. Once the imaqge is
loaded and you begin "playing", you can select a parameter with
one of the number keys. To set the parameter in motion, press
one of the arrow keys. The right arrow increases the parameter
value; the left arrow decreases it. By pressing several number
keys and arrow keys alternately, you can set a number of
parameters in motion at once.

If any one parameter gets out of hand, you can press "F" to
“freeze" its motion, leaving it at the current value. You can
also press "D", to bring it back to its "Default" value.

If you want to pause everything, just press ConTRoL-S. The
display will pause, and a flashing cursor will appear in the
upper-left corner. Just press any key to resume. If you

want to bring everything to a complete halt, press ESC. All
motion will stop and all parameters will be set back to their
default values. Finally, typing "?" will display the instruction
screen again, and "Q" will quit the program.

3-D GRAPHICS 8 - 22

e

mm
m?&mnﬁ
ik

t

bii

@

-
e

4
;15
N

BT
g e 3

v

B mwemog l P] ;& BT | B
] ¥
Lkl

Iy
Lk

k)

[F}

Iy

k)

i
T]

<l |
(S
o |
e,y
e S
e, ==
S
|
S
SO -
S
"""» el Y
L R~
Bt =~
[eq
l o~

Let's answer the start-up questions and get things moving:
The first prompt you will see is:
Image in [MJemory or on [DJisk?

[f you already have an image in memory, press "M"., If you want
to load an image from disk now, press "D". For this example,
press “D". Next is the now-famous address question:

Enter image address

anain with the number 2816 waiting for you. If you want to use
the address 2816, just press <return>; otherwise enter the
address you want. Press <return> for this example. [f you
selected to load an image from disk a moment aqo, you will then
see:

Enter image filename

Type the name of the file you want to load. Let's load the file

"HOUSE". Lastly:
Press Return to begin...

The screen will be erased and the image will appear. Along the
right side are the values for each of the parameters. When you
press a number key, the selected parameter will also be displayed
on the bottom line with its current value and increment.

Pressing the arrow keys will change the increment and set the
object in motion.

You'll also see a question mark in the lower right corner. This
is just to remind you that the instructions can be displayed at
any time by typing "?".

With PLAY, it's very easy to get some of the parameters out of
bounds, causing screen or "space" wrap-around. It doesn't hurt
anything, and it can sometimes produce rather amusing effects!

3-D GRAPHICS 8 - 23

Conclusion

We've now looked at all three kinds of qraphics: two-dimensional
qraphics, character graphics, and three-dimensional graphics.
Vith the information presented in these chapters, you can
1ncorporate a wide variety of animated color graphics effects
into your own programs, then use SAVEPRG to produce a system that
boots and runs them automatically!

The next chapter explains how you can create music and sound
ettects with GraFORTH, (We'll also mention another program you
may be interested in...) So without any further delay, on to
chapter 9!

3-D GRAPHICS 8 - 24

)

LT
E:.;;ull;qa
E

G,
S —

B st
B &
>3
[=
e .:;
-~ -
|
oy
- —
by ™
b ., =
Sy
-
e, 19
fﬁ‘i. -
=
bl em
[- iy
|
-
B S
T
M .y T
SR
R =
o oy

CHAPTER NINE: MUSIC WITH GRAFORTH
Chapter Table of Contents:
Introduction
VOICE
NOTE
Determining Duration and Pitch

Useful Music Word's

MUSIC WITH GRAFORTH

Page

9-2

9-2

9-3

9-3

94

9-1

Introduction

GraFORTH has a sophisticated music synthesizer that plays through
the Apple 1[built-in speaker. Notes may be played in nine
distinct voices (not simultaneously). These features allow you
to incorporate music or sound effects into your applications or
Galle proygrams.,

The two GraFORTH words that control the synthesizer are VOICE and
NOTE,

VOICE

The GraFORTH word VOICE selects one of 9 voices in which to play
notes. VOICE removes a number from the stack, and uses it to
celect a qiven voice. Here are the VOICE numbers and their
eani nqgs:

Number Voice

-6 to -1 Selects a constant 'duty cycle' for the note,
producing a note that is constant in volume. -1 = 50%
duty cycle, -2 = 25% duty cycle, -3 = 12.5% duty
cycle, etc. Smaller duty cycles decrease volume and
increase the amount of high-frequency energy in the

note.

0 Note begins at 50% duty cycle, then decreases to 0%.
The note seems to die away.

1 The note begins at 0%, increases to 50%, then
decreases again.

iy The note begins at 0%, then increases to 50%. The
note seems to increase in volume.

MUSIC WITH GRAFORTH 9 -2

. - AT V.
| S
B
r vl
s ——y
e m
. sy
P
oy
g
L
b -
o
| 8 oy
B,
Y. : i
| N
e, .
=
el e
Mows, oy
-
"N oy
9 e
il
| T]
- el
samlhy
e, =
(™™ ey

f

NOTE

The GraFORTH word NOTE actually causes a note to be played. NOTE
removes two numbers from the stack to select pitch and duration,
then plays the note. The form for NOTE is:

¢pitch> <duration> NOTE

The valid numbers for pitch and duration are in the range 2 to
265, Larger numbers for duration produce lTonger notes. Larger
numbers for pitch produce lower pitched notes.

Let's play a couple of notes.
selected is voice 0,
middle A:

The voice used if one has not been
This example plays an "A" two octaves below

Ready 124 255 NOTE
Let's try a different note:
Ready 62 128 NOTE

This plays a note an octave higher for half as long.
change the voice and play the same note:

Now let's

Ready -1 VOICE
Ready 62 128 NOTE

Notice the change in tone quality.
voices to hear their differences.

Experiment with the different

Determining Duration and Pitch

The duration of a note is directly related to the size of the
duration number. 255 can be considered a whole note, 128 a half
note, 64 a quarter note, and so forth. Of course, if you want to
play notes at a faster tempo, simply use smaller numbers.

MUSIC WITH GRAFORTH 9 -3

Here is a table relating notes to the pitch numbers which produce
them:

Mote _Octave 1 _Octave ? (Octave 3 __(Octave 4
h 244 124 62 31
A 234 117 58 29
] 221 110 55 27
r 209 104 52 26
] 197 94 4a 24
i 186 93 a6 23
UH 175 8/ 43 21
t 166 B3 4] 20
F 156 78 39 19
b 147 /3 36 18
O 139 69 34 17
Of 131 65 3?2 16

Useful Music Words

If you don't want to look up the pitches for each note, you can
use the following program to generate the table and store it in 4
string array called "PITCH". Each element of PITCH, instead of
containing & character, contains the pitch value for a note.

50 STRING PITCH

. COMPUTE.NOTES
24870
48 0 DO
DUP 100 / 1 PITCH POKE
DuP 18 / -
DUP 1655 / -
LOOP DROP

Ready COMPUTE .NOTES

Running COMPUTE.NOTES qenerates the table in PITCH. Now the
pitch values for the 48 notes (numbered 0 through 47) can be
found by reading the value from the proper element of PITCH. For
example, the pitch value for the note 3 in the table (a "C" from
the first octave) can be found in position number 3 in PITCH:

MUSIC WITH GRAFORTH 9 - 4

¥
.

o om as
8
| ﬁ“‘“;.a
4
i
-
Coas
% et
[
=3 —
@
B b e
e
g -
~ 1 _
e
— @
| SO ey
———
;
B o
- “%~~:5
i N
" ey
[y “"‘E ey
[. way
‘-u
" - g
o
v~ i
Cong
no 4

.
fn : g
I

§§
bt gy W
g ruy

i

b
MmN
s -

Ready 3 PITCH PEEK .
209

To play this note as a half note, you can enter:
Ready 3 PITCH PEEK 128 NOTE

You can also define a short word that retrieves the pitch value
for you:

Ready : GETPITCH PITCH PEEK . ;

Ready 3 GETPITCH
2ng

This word can be used with NOTE:
Ready 3 GETPITCH 128 NOTE

Since the notes are now numbered from 0 to 47, we can play all of
the notes in the scale by using a loop:

Ready 48 0 DO I GETPITCH 32 NOTE LOOP

With a little patience, we can put together a song! The
following word definition plays the first phrase from the "Happy
Birthday"” song:

: HAPPY.B
12 GETPITCH 50 NOTE
12 GETPITCH 50 NOTE
14 GETPITCH 100 NOTE
12 GETPITCH 100 NOTE
17 GETPITCH 100 NOTE
16 GETPITCH 200 NOTE ;

For longer tunes, repeating the words GETPITCH and NOTE will
waste a lot of space. We wanted to show here how simply the
tunes can be constructed. A much more efficient method is to
store the numbers in memory or on the stack, and read them and
play the notes from a loop.

MUSIC WITH GRAFORTH 9 - 5§

Postscripts

Note: The guality of the synthesizer is higher than can be
demonstrated with the Apple][built-in speaker. The use of a
larqge external speaker 1is recommended for serious music work.
See the Apple][Reference Manual or your local dealer for
connection information.

For two-part music applications, the Electric Duet, also written
by Paul Lutus, is available from Insoft. The Electric Duet plays
2 simultaneous notes through either the Apple speaker or an
external amplifier, and can be used to play music directly from
your GraFORTH programs. It contains a full feature music editor
with the ahility to transpose both note pitch and duration.

Music can be directed to either the internal speaker or the Apple
IT tape output jack. The suqqested price of the Electric Duet is
only $29.95. For more information, contact Insoft or your local
Apple dealer.

MUSIC WITH GRAFORTH 9 - 6

o~ & el
- =~
- L.
O
S i
o .
E -a&-m‘
il
rw‘-l‘-n'.‘
N et
| 3 oy
| qume L PR |
—
[Pt o
]
b, =
<=
e, el
l P
|
— |
k. —
S
[y ‘ M.‘l
- L
T
- .
b ™
(% o
R
Bue .
B e
e
M
TR
—~—
[T —]
s - ay

CHAPTER TEN: FINAL WRAP

We've made it! You have now been 1ntroduced to the GraFORTH
system, from language featumes to complex graphics. From here on
out, you will probably be using this manual more as a reference
quide than as a tutorial; ttherefore, we suggest you get
acquainted with the appendices. You will find the Word Library
listings invaluable, and the Index very helpful for finding those
definitions you've forgottem. The technical data section covers
very useful information we sugqgest you at least browse through,
and the GraFORTH diskette fiile listing and ASCII code tables are
excellent references when you need them.

Please note that if you are using or intend to use GraFORTH to
develop software for re-sale, we would like to talk with you.
Insoft represents fine software (such as this!) for Apple, IBM,
Atari, NEC and other popularmr microcomputers. Our royalty rates
are among the best in the imdustry, and our support team is
cecond to none. Let us show you why using our team of
professionals makes good semse!

If you decide to market sofitware on your own, please call us for
information on a license aqjreement to use GraFORTH., There is no
fee for this license, howeveier, we do have a few restrictions on
Tiow it is marketed (We'll :show you how to lock GraFORTH so that
only your program can be rumn.) Either way, please contact:

Michael Brown

Insoft

10175 SW Bambur Blvd. Suite 202B
Portland, Omegon, 97219

(503) 244-4181

You now have a graphics sysitem that is quite nearly limited only
by your imagination! We hope you enjoy learning and using
GraFORTH as much as we have enjoyed the opportunity to bring it
to you!

FINAL WRAP 10 - 1

i

e

S S S

fr,

.

L

ki

rr
Ll

i

L4

4
Lad

rF
led

APPENDIX A:
WORD LIBRARY LISTING

The following is a list of the words in the GraFORTH word
library. The 1list includes the word name, a "before and after"
stack picture, the page number in the text where the word is
first introduced, and a brief description of what the word does.

The stack picture shown represents relevant numbers on the top of
the stack as letters. The top of the stack is to the right, as

indicated by a dash. Three dashes represent an empty stack. How
words use the stack can usually be inferred simply from the stack

picture.

The word descriptions here are not meant to be comprehensive.
For more information on each word, we suqgest you refer back to

the text, using the page numbers provided.
GraFORTH WORD LIBRARY LISTING

Word Name Before After Page

o - - - - - - 3-13

A set of quotes surrounding text causes the text to be compiled
into the program. Used with PRINT, ASSIGN, and READ.

SLIST - - - - - - 5-30

Lists words in word library with hexadecimal addresses.

’ - - - a - 5-30

a = address of the word that follows ', and prevents that word's
execution.

- - - - - - 4-14
Indicates the beginning of a program comment, to be passed over
by the GraFORTH compiler.

APPENDIX A: WORD LIBRARY LISTING A-1

GraFORTH Word Library Listing

Word Name Before After Page
* mn - p - 3-10
p=w*n (mltiplication)

+ mn - p - 3-6
p = m+n (addition)

+LOOP n - - 3-20

Marks the end of a loop structure, using n as a loop value
increment.

g - - - - - - 5-32
Compiles a single byte within word definitions.

- mn - - 3-10
p =m -n (subtraction)

-> (not applicable) 5-8

Causes the next variable reference to store the top stack value
into the variable, rather than placing the variable value on the
stack.

. n - - - - 3-6
Prints n.

/ mn - p - 3-10
p =m /n (division)

: - - - - - - 3-14
Marks the beqinning of an executable word definition.

; - - - - - - 3-14
Marks the end of a word definition.

< nm- p - 3-23
p=11if n < m, otherwise p = 0.

(= nm- p - 3-23
p = 1 if n <= m, otherwise p = 0.

APPENDIX A: WORD LIBRARY LISTING A -

Ll w iy
- il
[
| "S-
o i
I
E RN |
it
B sy
—]
-)
B -
e |
P .
£ 3
< -
. |
o
.-
——
e, ey
fo | e
-
. -
[s
ke ey
w o
ba ey
b -
W T
- e
W B!

GraFORTH Word Library Listing

Word Name RBefore After Page
O nm- p - 3-23
p=11if n < m, otherwise p = 0.
= nm- p - 3-23
p=11if n = m, otherwise p = 0.
> nm- p - 3-23
p=1if n> m, otherwise p = 0.
>= nm- p - 3-23
p=1if n>= m, otherwise p = 0,
ABORT - - - - - - 7-3

Restarts GraF(ORTH from scratch. The screen is erased, character
size of 0, color of 3, all stack pointers initialized to 0.

ABS n - m - 3-10
m = absolute mumeric value of n.
AND nm- p - 3-23

p =1 if bothi n and m are nonzero, otherwise p = 0.

AREG (variable) 5-31
Value of AREG: is placed in processor A register before a CALL.
After CALL, ciontents of A register are loaded back into AREG.

ASSIGN a - - - - 5-12
Places following quoted text into memory starting at address a.
AUTODRAW n - - - - 8-3

If n is nonzerro, 3-D objects will automatically be drawn after
every graphic command. If n is zero, this feature is turned off.

AUTORUN n - - - - 5-26
If n is nonze:ro, the top word library word will automatically
execute at ewery return to the system. If n is zero, this
feature is tuirned off.

APPENDIX A: WORD LIBRARY LISTING A -3

GraFORTH Word Library Listing

Word Name Before After Page
BASE {variable) 5-22

Value determines what base numbers are accepted and displayed in.
BEGIN N - - - 3-29
Provides a program return point for the words REPEAT and UNTIL.
BELL - B 3.3

Beeps the Apple speaker.

BINARY - - I 5-22

Sets number input and output to base two.

BLKSIZE h v - - - - 7-12

Selects a blocksize of h characters horizontally by v vertically
for use by PUTBLK, UNBLK, and UNDRAW.

BYE - - - - - - 5-32
Ex1ts GraFORTH to Apple monitor.

CALL a - - - - 5-31
Loads processor registers from AREG, XREG, YREG, AND PREG, calls
machine lanquage routine at address a, then stores reqgister
values.,

CASE: n - .- - 3-32
Selects and executes nth following word from list of words
numbered starting from 0.

CHRADR a - - - - 7-6
Selects a as address of current character set.

CHRSET (variable) 7-6
Value 1s address of default character set (2048).
CHRSIZE n - - - - 7-3

Selects character size for subsequent character printing using
PRINT, WRITELN, PUTC, and PUTBLK.

APPENDIX A: WORD LIBRARY LISTING A -4

’!

[, —
|
i ey

| oy
=
e
e
e —=q
€3
—
EAL ol
.
' e
e :“
- an
- T
S
-
ke .
[-
B L
N .
B
S ~y
e
i~
.
| |
e P

GraFORTH Word Library Listing

Word Name Before After Paqe
CHS m - n - 3-10
n=-m (change sign)

CLEOL - - - - 5.4
Clears from the cursor position to the end of the current line.
CLEOP - - - - - 5.4
Clears from the cursor position to the end of the text window.
CLOSE - - - - - - 5-24
Causes DOS to close any open files.

CLRKEY - - - - - - 5-20

Clears the Apple][keyboard strobe so that a key can be read
with GETKEY.

COLOR n - - - - 6-6
Selects the color for line and large character drawing.
CR - - - - - - 3-13
Prints a carriage return (ASCII value 141).

DECIMAL - - - - - - 5-22
Sets number input and output to base ten,

DO mn - - - - 3-19

Initializes a loop, using n for an initial value and m as an
ending value.

DRAW .o 8-15
Causes all 3-D objects referenced since the last DRAW to be
drawn, using 3-D display methods.

DROP n - - - 3.7
Discards n from the stack.
DUP n - nn- 3-7

Makes a copy of n on the stack,

APPENDIX A: WORD LIBRARY LISTING A -

GraFORTH Word Library Listing

Word Name Before After Page

EDIT - - - - - - 4-?
Loads trom disk (if necessary) and runs the appropriate text
editor.,

ELSE .- - oo - 3.27
Separates the two controlled areas in an [F - ELSE - THEN
construct.

EMPTY Xy - - - - 6-8
Frases 4 rectanqular area from the last plotted point to (x,y).
ERASE - - - - - 5-4
Lrases both graphics screens.

EXMODE .- - - 6-10

Causts plotted points to turn on corresponding screen locations
that are off, and turn off locations that are on.

FILL Xy - R 6-4
Fills a4 rectanqular area from the last plotted point to (x,y).
FORGET S S 3.17

Truncates the GraFORTH library back to the word that follows
FORGET.

GETC - - - n - 5-20
tmte a single character from the keyboard, placing its ASCII
value on the stack.

GFTKEY - - - n - 5-20
Keads the keyboard without waiting, returning an ASCII value.
Values over 128 are valid. Should be followed by CLRKEY.

GETNUM a - n - 5-14

Cunverts text string at address a into a number. Unsuccessful
conversions return 0.

APPENDIX A: WORD LIBRARY LISTING A -

!;'! f
NN

A 4

¥

=
ih/

¥

\

¥
Py

VU

¥l
i

[Fi

E B3 i @g&gﬁﬁi s B NS
\al

£--3
P~
boow
ﬁv
s 3
_
-
E-- 3
be. =
b A
fme ——
i

T

Lkl

Fy
}
' k

GraFORTH Word Library Listing

Word Name Before After Paqe

GPEEK Xy - n - 6-12
Examines point at screen coordinates (x,y). n is nonzero if
point is turned on, or 0 if point is turned off.

GR - e e 3-38
Reestablishes normal GraFORTH input and output, and sets the
graphic display mode.

HEX - - - - - - 5-22
Sets number input and output to hase 16.
HOME - - 5.4

Erasss the screen inside the text window and sets HTAB and VTAB
to the upper left corner of the window.

HTAB h - - - - 5.3

Sets the column for subsequent printing.

1 - - - n - 3-19
Returns the current innermost loop value.

IF n - - - - 3-25

If nis nonzero, words between IF and THEN (or IF and ELSE) are
execited, otherwise execution continues after THEN (or between
ELSE and THEN).

INVERSE - - N, 6-9
Complements the color for all text and graphics displays
(including black-on-white text).

J - - - n - 3-20
Returns the loop value for the next outer loop.
K - - - n - 3-21
Returns the loop value for the third outer loop.
LINE Xy - - - - 6-4

Draws a line from the last plotted point to (x,y).

APPENDIX A: WORD LIBRARY LISTING A -

GraFORTH Word Library Listing GraFORTH Word Library Listing

Word Name Before After ' Page
R Word Name Before After Page
LIST - - - oo - 3.3
Lists the words in the GraFORTH word library. OBJERASE - - - 8-3
Initializes the 3-D image array. Should be used at the beginning
LOOP - - - - 3-19 of 3-D graphics programs.
Marks the end of a loop structure, incrementing the loop value
stif Yooping back to the word after DO if the loop value is less OFF - - - - - - 8-17
than the ending value. S Causes the next DRAW commamd to undraw the 3-D object.
[
MAX mon - p - 3-10 m OR mn - p - 3-23
n = the greater of m or n. %ﬁ p is bit-wise OR of m and m. (p is nonzero if either m or n is
o G ey nonzero, otherwise p = 0.)
MEMRD a - - - - 4-13 —
Reads and compiles text in memory starting at address a. ﬁ ORMODE - - - - - 6-10
s Causes points to be plotted regardless of what screen locations
MIN mn - p - 3-10 oy M oy are on or off.
-
p = the smaller of m or n. - fﬂ
& OVER mn - mnm- 3.7
MOD mn - p - 3-10 . ;é Copies m to top of stack.
. = remainder after dividing m by n. ey
[g m by b *‘:: - PAD o L -
MOVMEM abn- - - - 5-30 I Returns the address (812) of a 120-byte string space.
Moves 4 hlock of n bytes from address a to address b. .
b g PEEK a - n - 5-6
NORMAL - - - - - - 6-9 e " g Reads a single byte n from .address a.
Resets normal color (white-on-black text) display. %3
—~ PEEKW a - n - 5-6
NOTE pd- R 9-3 E o Reads number n from address: a.
Sounds a4 note of pitch p and duration d in the current voice. i} -
o PICK ..mn - ..mp - 3-7
OBJADR a - - - - 8-3 -~ & v Copies the nth stack item tio top of stack.
Selects a as address of currently selected 3-D object. ol Q™
PLOT Xy - P 6-4
OBJCOLOR n - - - - 8-10 Plots a point at (x,y).
Selects color of current 3-D object. b .
o | POKE na- - - - 5-6
OBJECT n - - - - 8-3 Stores single byte n at addiress a.
Selects which object subsequent 3-D commands will refer to.
POKEW na- - - - 5-5

Stores number n at address a.

i

lii

APPENDIX A: WORD LIBRARY LISTING A -8
APPENDIX A: WORD LIBRARY LISTING A-9

F
44

GraFORTH Word Library Listing

Word Name Before After o Paqge
POP - - - - - 3-22
fiscards top return stack value.

POSN Xy - - - - 6-6

tstablishes a position for a "last plotted point" without
plotting.

PREG (variable) 5-31
value of PREG is stored in processor status register hefore a

CALL. After CALL, value of status reqister is stored back into
PreG,

PRGTOP - - - a - 3-3
fleturns the address of the top of the word library.
PRINT - - - - - - 3-13
Prints following quoted text.

PULL - - - n - 3-22
Moves top return stack value to data stack.

PUSH n - - - - 3-22
Muves top data stack value to return stack.

PUTBLK n - - - - 7-13

Nraws a block of characters with present blocksize starting with
cnaracter number n at the current cursor position.

PUTC no- - - - 5-19
“rints character with ASCII value n at the current cursor
pusition.,

READ - - - - - - 4-14
Reads and compiles text from file with following quoted filename.
READLN a - - - - 5-17

Reads a line from keyboard into string starting at address a.

APPENDIX A: WORD LIBRARY LISTING A - 10

GraFORTH Word Library Listing

Word Name Refore After Page

REPEAT - - - - - - 3-31
Marks the end of the BEGIN - WHILE - REPEAT construct, causing
execution to jump back to words following BEGIN.

RND - - - n - 3-10
n is a random number.

RNDB -- - n - 3-10
n is a randomn number from 0 to 255.

RUN - - - - - - 5-26
Executes the top word on the word library.

SAVEPRG e 5.7
Saves current system to disk.

SCALE n - - - - ‘ 8-7
Sets the X and Y scales for the current 3-D object.
SCALX n - - - . 8-6
Sets the X scile (width) for the current 3-D object.
SCALY n - - - - 8-6

Sets the Y scile (height) for the current 3-D object.

SCALZ n - - - - B-o

Sets the Z scale (perspective) for the current 3-D object.
Faster drawing occurs with a SCALZ of 0.

SCREEN n - - - - 8-18
Selects display of the given graphics screen (0 or 1).
SEQUENCE n - - - - 8-18

If n = 1, automatic screen sequencing for 3-D drawing is enabled.
If n = 0, sequencing is enabled. (nefault=1)

SGN m - n - 3-10
n=1ifm>0, 0ifms= 0, -1if m< 0.

APPENDIX A: WORD LIBRARY LISTING A - 11

e .2
GraFORTH Word Library Listi B B
r . ..
d ord Library Listing a8 GraFORTH Word Library Listing
<Aty
Word Name Before After Page :;Q -
) Word Name Before After Page

SIN m - n - 3-10 =
n is 4 scaled sine value for m, in the range -128 to 127, % - VALID P n-- 5-14
repeating for every 128 numbers. ‘ & n is nonzero if last GETNUM produced a valid number, otherwise n

[TV = 0.
S/-)CE - - - - - - 3-13 " w—] e...a
Prints a space (ASCII value 160). % VARIABLE - - - - - - 5-7
= Declares a variable with following name. Any preceding number is
STACK - - - R 3.5 : % “3 used as the variable's initial value.
Toyqles the stack display on or off. —

! prey -~ VOICE n - - ‘ 9-2
STRING - .- - 5.9 o) Sets the voice for subsequent NOTE commands. Valid numbers are
Declares a string array with following name, settina aside number :‘__“ - -6 to 2.
ot characters specified before STRING. bl ”ﬂ

B VTAB n - - - - 53
SWAP mn - nm- 3-7 — i Sets the row for subsequent printing.
Swaps position of top two stack values. ™ R)

‘ B B o WHILE n - - - - 3-31
TEXT R . 3-38 i If n is nonzero, execution continues after WHILE, otherwise
Reestablishes normal GrafFORTH input and output, and sets text % execution jumps to words after REPEAT.

#1splay mode (no araphics). ko ™ ;
~ T WINDOW Lwth- === 5-3

THEN oo - - 3-25 ol Sets a text window with left margin L, width w, top margin t, and
Marks the end of an IF - THEN construct, where execution 'y in vany bottom marqgin b.
continues from. - E Ly

» WRITELN) - L T
UNBLK - - - - - - 7-14 ?! Writes text to screen from string at address a.
Frases a block with present blocksize at the current cursor 4 e
position. - e XPOS n - - - - 8-8
9’3 Sets X-position of current 3-D object to n.
UNDRAW - .- 8-17 A
Frases a4 block and prevents the next DRAW from performing an - il omn XREG (variable) 5-31
automatic line undraw. . | Value of XREG is placed into processor X register before a CALL.
' i After CALL, value of X register js stored back into XREG.
UNLINE Xy - - - - 6-8) i
Frases 4 line from the last plotted point to (x,y). -~ 3 XROT n - .- - 8-5
b ’ Sets rotation of current 3-D object around X-axis to n.
UNPLOT Ky o - 6-8 B
Erases a point at (x,y).) % XTRAN n - - - - 8-9
— B Translates current 3-D object along X-axis by n.
UNTIL n - - 3.29 G o
If n =0, execution jump back to words that follow BEGIN. ‘
D 5
[Eﬁ
APPENDIX A: WORD LIBRARY LISTING A - 12 s
L APPENDIX A: WORD LIBRARY LISTING A - 13
“"n N

GraFORTH Word Library Listing

Word Mame Before After Page
YPOS n - - - - 8-8

Sets Y-position of current 3-0 object to n.

YREG (variahle) 5-31
Value of YREG is placed into processor Y register before a CALL.
Atter CALL, value of Y register is stored back into YREG.

YROT n - - 8-5

Sets rotation of current 3-0D object around Y-axis by n.

YTRAN n - - - - 8-9
Translates current 3-D object alonag Y-axis by n.

ZROT n - - - - 8-5

Sets rotation of current 3-D object around Z-axis by n.

ZTRAN n - - - - 8-9
Transldates current 3-D object along Z-axis by by n.

APPENDIX A: WORD LIBRARY LISTING A - 14

[|

- ik
ki,

| DO |

bt -

A
i/

[“ e
==~
B E ;
= -3
s g
£-3
b
::?~§]
o i
_L-maumfﬂ

{
-
- 4§
r— ‘. -

ME 24
— &

(% -
- R it
¥
it
Ba. -
b —
- “; gy
g
1]
S,
oy
b
5
o
R |
-2 -y
X om

APPENDIX A: WORD LIBRARY

BY SUBJECT GROUP

Numeric Operator Words

CHS ARS
MIN MAX

= >

OR AND
DROP pOP
PULL PUSH
MOD /

SIN BASE
MOVMEM VALID

SGN RND
POKEW POKE

< >=
PEEKH PEEK

1 J

Dup OVER

* +
DECIMAL BINARY
GETNUM

RNDB
O

SWAP

PICK

HEX

Program Branching or Control Words

+L00P LOop

UNTIL BEGIN
BYE STACK
AUTORUN ABORT
: CASE:
PRGTOP SAVEPRG

Input/Output Operator Words

HOME CLEOP
CLRKEY PUTC

Text Display Function Words

VTAB HTAB
SPCE TEXT
! STRING

APPENDIX A: WORD LIBRARY LISTING

no REPEAT
IF THEN
FORGET ~ VARIABLE
READ MEMRD

(CLOSE

-

CLEOL GETC
$LIST

CHRADR CHRSET
WINDOW PRINT
PAD READLN

WHILE
ELSE
RUN

EDIT

GETKEY
LIST

CR
ASSIGN
WRITELN

A - 15

General Graphics Words

GR GPEEK ORMODE EXMODE ERASE
COLOR INVERSE NORMAL

Two-Dimensional Graphics Words

POSN PLOT UNPLOT LINE IUNLINE
FILL EMPTY

Character Graphics Words
PHTBLK CHRSTZE BLKSTZE UNBLK

Three-Dimensional Graphics Words

SCREEN DRAW
OKIECT OBJADR

SEQUENCE UNDRAW AUTODRAW
OBJERASE 0BJCOLOR SCALE

SCALX SCALY SCALZ XpPOS YPOS
X TRAN YTRAN ZTRAN XROT YROT
IRGT OFF

Miscellaneous Words

CALL PREG AREG XREG YREG
s ! NOTE VOICE BELL

APPENDIX A: WORD LIBRARY LISTING A - 16

IF

|

'
ErE B A b B

IF1
"
TRV VY

i

fox..
=

w.j

%
- i ;
B -
ol T |

gn

B

-

Lo

P

£
.
g “‘"; :-q

3
S

7
Ll
h; wh

Sy

BRRES

o w ol A

APPENDIX B: TECHNICAL DATA
Table of Contents

GraFORTH Memory Map

Page Zero Map
Image Data Map

Mathematical Method
Image Table Format

Word Library Structure and Compilation

TECHNICAL DATA

B-1

0 to 255

256 to 611
512 to 767
768 to 811
812 to 935
4936 to 975
976 to 1023

1024 to 2047

2048 to 2815
2816 to 5887

5888 to 6655

6h56 to 7679
7680 to 7935
793n to 8191

8162 to 16383

16384 to 24575

24576 to -32256

APPENDIX B:

GraFORTH Memory Map

$0000 to $0OFF

$0100
$0200
$0300
$032C
$03A8
$0300

$0400

$0800
$0B00O

$1700

$1A00
$1E00
$1F00
$2000
$4000

$6000

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

$O1FF
$02FF
$0328
$03A7
$03CF
$03FF

$07FF

$09FF
$16FF

$19FF

$1DFF
$1EFF
$1FFF
$3FFF
$5FFF

$8200

TECHNICAL DATA

6502 Page Zero.

listing below.

6502 Stack

See Page Zero

GraFORTH Line Input Buffer

3-D Matrix scratch-pad area

Compiler Stack, PAD String Area

Graphics Horizontal Color Buffer

DOS Link Area

Text Display Screen (used for

graphics also)

Primary character set storage area

»> User Free Space <<X

Image position and rotation data
(See the Image Data listing below.)

Graphics address lookup tables

Data stack

Return stack

Graphics screen 0

Graphics screen 1

GraFORTH System as delivered
(Address approximate)

[

iall e
i wh wh

¥
ok

[l
N

[

B
T
h o
N
.
- = -
% - -
- -
- oy
oy -
[‘uﬁ

a4

:
TTRR VR TR VI ¥

-30720 to -28673
-28972 to -26113
-26114 to -16385

-163R84 to -12289

-12288 to -1

-30720 to -18945
-18944 to -16385

-16384 to -12289

-12288 to -1

GraFORTH Memory Map

Without Language Card

$8800 to $8FFF Text editor file area (when used)

$9000 to $99FF Text editor program (when used)
$9A00 to $BFFF posS 3.3
$C000 to $CFFF Apple [hardware 1/0

$0000 to $FFFF Apple J[ROM area (Basic, Monitor)

With Language Card

$8800 to $BSFF Text editor file area (when used)

$8600 to $BFFF Text editor program (when used)
$C000 to $CFFF Apple][hardware 1/0

$D000 to $FFFF DOS 3.3 and Monitor

GraFORTH Page Zero Map

000-031 ($00-1F) not used _
032-079 ($20-4F) Apple][monitor use

080 ($50)
082 ($52)
084 ($54)

086 $56)

128-255

APPENDIX B:

(
096-127 ($60-7F) not used (some DOS uses)
(SBO-FF) used by GraFORTH

GraFORTH text pointer 1 (
GraFORTH text pointer 2 (
GraFORTH graphics pointer 1 (2 bytes
GraFORTH graphics pointer 2 (

TECHNICAL DATA B -

Useful locations in Page Zero:

123 ($80) last plotted X position
130 (582) Jast plotted Y position
156 (%9C) pointer to data stack

157 (%90) pointer to return stack
218-255 ($DA-FF) page zero matrix work area

Image Data Map

There are three data sets:

5888 $1700 undraw
6144 %1800 interim
6400 $1900 draw

Each'ddta set contains 16 data tables, one for each of the 16
possible objects. FEach data table is 16 bytes long:

function Relative Byte
Flag (draw, nodraw) 0

XROT 1

YROT 2

ZROT 3

X TRAN 4

YTRAN 5

LTRAN 6

XPOS 7

YPUS 8

SCALX 9

SCALY 10

SCALY 11
GBJCOLOR 12

lmage Address 13 and 14

Fach tqble begins at a multiple of 16. Therefore to find the object
color for object 3:

16 * 3 (object 3) + 12 (object color offset)
+ 6400 (data table base address) = 6460

APPENDIX B: TECHNICAL DATA B -4

LAY

PRy TF IF1

[F]

rr)

Three-Dimensional Mathematical
Method

The three-dimensional display meethod used in GraFORTH][uses a system
of matrices that are successivelly multiplied to provide the ultimate
position for each line in the diisplayed image.

In the following diagrams, (X) tthrough (Z) refer to rotation angles,
and X through Z refer to cartesiian scalar values.

Matrix 1:
Scale X 0 0
N Scale Y 0
] 0 Scale ZZ
Matrix 2:
1 0 0
0 COS(Xx) -SIN(X))
0 SIN(X) COS(X))
Matrix 3:

CoS(Y) 0 -SIN(Y))
0 1 0
SIN(Y) 0 coS(Y))

Matrix 4:
€0s(2) -SIN(Z) 0
SIN(Z) €0S(2) 0
0 0 1

APPENDIX B: TECHNICAL DATA\ B -5

This matrix transformation occurs once per image. Then the result

matrix 1s used to transform each line position using this last matrix:

X e XTRAN Y+YTRAN Z+/TRAN
0 0 0
{ 0 0

Atter this, if a nonzero value has been selected for SCALZ, a
perspective computation 1s made (in which case image drawing is about
20T stower). The plotting coordinates then are offset by the
dser-provided XPOS and YPOS values, and the line is drawn.

/mage Table Format

Tnere are four bytes for each line entry in the 3D data table. Three
of these bytes are one-byte signed numbers having a range of -128 to
L27, and one byte contains data ahout color and whether to position or
Graw o line:

For eadch entry,

e bonit 7 {haigh bit) is set if a line is to be drawn, clear

erwine. Bits 0-2 contain a color number 0-7 (if zero, na color
Chance s Use ot zero 1s recommended, this makes it possible to control
“aae color trom the program using OBJCOLOR.

'
th

Sytes Z-4 are X, Y, and 2 positions within the 3D space.

The end of the image table is indicated by having the data byte (1) be
equal to 255 ($FF).

APPENDIX B: TECHNICAL DATA

[SO
L y
— B N,
SR S~
b ot
e S 1.
»M*wn‘
- g
.‘ iRy
—
S
- st

B

4
.':: -ﬁ&s;”
oo

B
_ &
.
- 525

Bl

TR]

i1

TRV TIRT T ¥

Word Library Structure
and Compilation

Fach word entry in the library consists of three parrts:

1. A “pointer location" containing the address of thne next lower word
in the word library.

2. The word name (ASCII characters with high bit sett).
3. The executable machine language code for the wordd.

h
The hexadecimal numbers displayed by $LIST.arelthg aadgres;Ziegz gfethe
pointer locations. A number returned by tic (') is the a
executable portion of a word.

NDuring compilation, GraFORTH separates thz i?pgt];nniogyezggcszr;nto
i ; hrough the library’ .
dividual words, then searches F .
;Z; :ach word se;rch, GraFORTH first reads the]cu;reegt ;algef?zdPZGTO
i It then looks. her
o find the top of the word library. kS
;Zinter containing the address of the top yord withiin the wgrgers oo
library Beginning with this first word, it followss the p012 AN
word to.uord'down through the 1ibrary.h gtfeach Y?rigﬂeawgﬁgcis o
if this is the word being searcned tor. t
230238 ;ne search falls through to a rout1ng which caEtempgs tg"cggizit
the uard into a number. If this routine fails, the2 "Not Foun

is given.

Program lines are compiled directly into 6522]mgchiine 1?2gtﬁge]}2et?§
1 iamediately above the top of the wor ibrarry.

mem?:ﬁ«;ﬁ?ﬁflﬁ coﬁmand, and not part of a word defiinition, t?g ma?21ne

?gn uage code 1S executed, then prompt]y forgotten.. If tge ;gethe

par? of a word definition, the code 1is saved, not eexecuted, a

word library expands.

i i ds are made thhrough direct
-ution time, calls to other word .
ch::ﬁzulanquaqe jumps. This is a major factor in the speed of

GrafORTH.

- 17
APPERDIX B: TECHNICAL DATA B

2w

)

g Wi oW ow &2l

Appendix C: Disk File Directory

TYPIE FILENAME LENGTH REMOVE OKK?
B 0BJ.FORTH 36 NO

B 0BJ.EDITORI 11 YES, IF 664K
] 0BJ.EDITOR2 11 YES, IF 248K
T CHAREDITOR 21 NO

T [MAGEDITOR 24 NO

T PROFILE 15 NO

11 TURTLE 4 NO

T PLAY 22 NO

T STRING WORDS 4 NO

B CHR.SYS 5 NO

B CHR,STOP 5 YES

8 CHR.SLANT 5 YES

B CHR.BYTE 5 YES

B CHR.GOTHIC 5 YES

8 CHR.STUFF 5 YES

B CHR MAXWELL 5 YES

T QUERY 2 YES - DEMMO
T HEADER 12 YES - DEMMO
T MERY 8 YES - DEMMO
T GRAPHICS] 8 YES - DERMO
T GRAFPHICS?2 8 YES - DEMMO
T GRAPHICS3 10 YES - DEMMO
T TEXTDEMO 12 YES - DEIMO
T FORTHDESC 17 YES - DEIMO
T FLEDERMAUS 12 YES - DEIMO
T PLAND 11 YES - DEIMO
T CLOCK 5 YES

B TETRA 2 YES - 3D)
B8 XY/ 2 YES - 3D)
8 BAT 2 YES - 3D)
B CUBE 2 YES - 3D)

B HOUSE 2 YES - 3D)
B CHAL 10 YES - 3

T BIGCHAL 3 YES - PRGOFILE

.. Appendix D:

b woaeml
P .
ASCII Characters & Equivalent Numbers
- Set High Bit Clear
el i
NEC HEX DEC HEX CHAR
— 128 8() 0 00 ConTRol.-®
- =t 129 81 1 01 ConTRoL-A
130 R? ? 02 ConTRoL-B
. 131 a3 3 03 ConTRoL-C
. e 132 34 4 04 ConTRoL-D
' i 133 85 5 05 ConTRol-E
134 16 h 0h ConTRolL-F
- 135 87] 07 ConTRolL-G (Bell)
k. ma 136 88 8 08 ConTRoL-H (Left Arrow)
137 29 9 09 ConTRoL-1
138 8A 1n 0OA ConTRol.-J
o - 134 B 11 0B ConTRoL-K
- e 140 B8C 1?2 nc ConTRoL-L
141 an 13 oD ConTRoL-M (Return)
142 BE 14 NE ConTRol-N
A - 143 AF 15 0F ConTRoL-0
[tﬁ “"__“ 144 40 16 10 ConTRoL-P
| 145 91 17 11 ConTRoL-0
| 146 9? 18 12 ConTRoL-R
N 147 93 19 13 ConTRoL-S
- = 148 94 20 14 ConTRoL-T
i 149 95 21 15 ConTRoL-U (Right Arrow)
i 150 96 22 16 ConTRoL-V
e oy 151 97 23 17 ConTRoL-W
-, - 152 98 24 18 ConTRoL-X
15 99 25 19 ConTRol.-Y
~ & 15 9A 26 1A ConTRoL-7
Lo a 155 G 27 18 ESCape
Tom 156 4 28 1C Reverse Slash
157 b 29 1N]
-~ 198 9i; 30 1E Up Arrow
e BELE o 3 1F
160 I 32 20 SPACE
161 A 33 21 !
o W 162 A2 34 22 !
P — 3 163 A3 35 23 #
J 164 A4 36 24 $
y 165 A 3 25 %
s 166 Ao 38 26
Lo e a 6] A7 39 27 :
i 168 A 40 28 (
fa 169 AY 41 29)
APPENDIX D: ASCII CODE TABLE D -1

APPENDIX D: ASCII CHARACTERS AND EQUIVALENT NUMBERS u_.i“'..q
w | m
Set High Bit Clear
— _

DEC HEX DEC HEX CHAR -
170 AR P 2A *

171 Al 43 2 4 o

i 12 f\t: 44)(N :‘_“ i ‘:
E AD a5 1) .

174 Al a6 ’F .

1% Al 47 of - r
176 130 48 30 r/) ' Y ﬁ
177 31 49 31]

L L2 50 37 » I |

Ky B3 51 33 3 |
Rty 14 57 34 4 B
P31 h 53 35 5 g

ER B 54 36 6 — &

143 B7 55 37 7 - E
1 4a ng 56 3R 8 e
155 59 57 39 g)

4k HA 58 3A : — B
147 B8 59 38 : e
1 RR BC H0 3C < ﬁ -
1y B 3 3 . 2

30 Bt 62 3E > o d
41 RF 63 3F ? — e
1qy ch 64 an @ Mo
19 cl f5 A A By

Lo 2 66 42 B CE
195 €3 67 43 C T
1yn 3 68 aa n 4]

197 h £9 A% £ it

o Ch 70 46 F oy
194 ¢/ 7 a7 G - .
200 8 72 48 H

K Y 73 49 [

) CA 74 aA J -
03 CR 75 48 K -4
204 e 76 ac L

05, N 77 an M

206 CE 78 at N E
207 cF 79 aF 0
208 NO 80 50 p
209 Nl a1 51 :
210 02 82 52 8 3
211 n3 83 53 S
APPENDIX D: ASCII CODE TABLE D -2 E

APPENDIX D:

DEC

212
213
7214
215
216
217
218
219
220
221
222
223

set

High Bit
HEX DEC
N4 34
N5 85
NA R6
n7 87
ng 18
D9 19
DA 90
ng 91
ne G2
no 93
NE 94
NF 95
£0 96
£1 97
£2 9y
£3 99
£ 100
£5 N1
25 102
g7 103
£3 104
£9 105
EA 106
£8 107
£C 108
£0 109
bF 110
tF 111
P 112
cl 113
F2 114
[} 115
4 116
[117
b 118
£l 119
FA 120
] 171
FA 12?2

APPERDIX D:

ASCII CHARACTERS AND EQUIVALENT NUMBERS

Clear

ASCI1 CONDE TABLE

CHAR

N < = < =

Reverse Slash

]

Up Arrow

[}

L X =T hD O TR

T o S =

N< X £ < C v 0

3 Y1083ddy¥

sa|qelJep buiutyag 22-6 A¥YNIE
sbulJ3§ buluLyag £-¢ 1134
SpPJOM UOLSLIA(62-€ NI938
TYW1030 22-5 $3sPg
3¥oe31s eieq 22-G 3sve
aberJ01S ele(6-1 saitdo) dnyoeg
a g
£1-¢ ¥ 92-5 NRYOLOY e e T
£-v JUBWAAOK JOSJIN) LY J0731p3 ‘wnuoiny ves
£1-8 sabew] (-¢ butiead) £-8 MyyaoLny)
01-L sJajoedey) buLjead) 21-6 NOISSY
(-1 pasn SUOLIU3AUO) 6-t SpJOM D133WyILJY iz ~
€1-v fulL| Ldwo) 1€-6 BELKS - e
€z-¢ sJaquny buideduo) €-9 sotydedy 3jddy g
61-5 IUYdWOD £€2-¢ UNY o W
bl J031P3 *S3UBUIOD b-s 53553.pPPY - P
9-9 40102 01-€ sav B -
0¢-9 AINYTD €-L 1408v i
$2-§ 350710 - W
y-5 40312 "4 -
b5 703719 "
01-¢ SH) #
£-L JZISUHD - - ™ B e
9= JERYIN o) &
9-(YOYHHD P N g
L=t _ OLIOIYVHD P o i
61-G bugsy “sdJaidedey)d £2-¢ = fi; ——
1-0 1105V ‘s4@3100JRYD £7-¢ 4 — ™
G-/ s39§ Jajoedey) £2-¢ ‘
i-[zz;g Jajoedey) 1t —
-/ sotydedy JajoeJdey) _ B —
26-¢ EN A Yot ! o =
p-9 S9]1PULPJO0) URLSAIIE) 4-c ¢ ‘
e-y 1IV2 01-¢ - 1
A R
02-¢ 40071+ 4
9-¢ +
A8 01-¢ x - o~
37153209 v1-tv) T
butquiad A20(8 0€-§ ' '
abew] X201y vE=§ 15179 -
EVASR AL €l-t " peand IR ‘:;
— —
- m e
xapuy ;3 xipuaddy —
W -
e o o

b aaltl]
LS [
|
b g LIST 3-3 OVER 3-7
. e List, Editor 4-6 Overlays 5-29
D LOOP 3-19 Overview 1-4
G . Lowercase Entry 4-2
Defining Words 3-14 . E“n,;
Delete, Editor 4-7 22%& Editor 4-11 ' L e M P
ngeloping Software 10-1 GETKEY 2';8 PAD 5-15
glskcttei(;opy 1-9 GETNUM 5-14 o P Mathematical Method B-5 Page Zero Memory Map B-3
1splay Speed 3-38 - o comm B8 M 3-10 PEEK -
) GPEEK 6-12 = s Ax e
f)Of c) 3-19 GR 3-38 Memory Addresses 5-4 PEEKW 5-6
m; r‘?"““"”‘.js' Editor 4-11 Graphics Colors 6-6 Memory Considerations 3-38 Perspective 8-7
o iggxgltt:()1cat1on 5-23 Graphics Display 3-38 (™ a Memory, Editor 4-12 PICK 3-7
005 Modi ron 2-3 B e M Memory Map B-2 Pitch, Music 9-3
5 Modifications 2-3 H MEMRD 4-13 Pizza 3-40
ST ‘ B-15 MIN 3-10 PLAY 8-22
f\rasw'::g 3 gri Blocks /-8 Hardware Requirements 2-2 I Hon 3-10 pLOT 6-4
%M)p g 3-D Images 8-3 HEX 522 — e e MOVE 6-13 POKE 5-6
Sup 3‘; Hidden Characters 4-3 . MOVETO 6-14 POKEW 5-5
Duration, Music 9.3 HOME 5-4 ~ & Moving Memory 5-30 POP 3-22
' ’ . HTAB 5-3 M MOVELN 5-18 Position 8-8
E -, MOVMEM 5-30 POSN 6-6
/. J. K ? Music 9-2 Postfix Notation 3-12
, 2 . W e Music Words 9-4 PREG 5-31
[:_DU 4.2 I e m o PRGTOP 3-38
fditor, Character 7-7 it 3-19 g N PRINT 3-13
&.mtgr, Irpaqe 8-10 IMAGED I TOR 3-25 **? Printing Files 5-25
Hlt(t)r,i; TgXtt - Image Table Format g-éo ~ & b Nap 3-40 Printing Files, Editor 4-12
Flectric - - - L
e ue - Insertions 1.4 “o-m mm Nested Definitions 3-36 Sront e Text o
FMPTY ‘ Insertions, Editor 4-8 4 NORMAL 6-9 L -l
o 6-8 INVERSE P 4 NOTE 9.3 Program Compilation 4-13
;m’\gl.] 5-4 J 3‘2 - — Numbers 3.4 Program Control Words 5-26
i;rase, Ec}ltor A 4-8 K 3‘2(1) oo Ty Kumber Bases 522 Program Size 3-38
t»-'"dﬁ”‘q 3-D Objects 8-17 - e Number Tables 5_32 Program Structure 3-35
frror checking 3-36 k N“m r ; € 3_4 PULL 3-722
EXMGDE 6-10 L = 5 umeric Range - PUSH 3-22
Lanquage Card 2-3 e :‘ g PuTBLK -1
iac r - N PUTC 5-19
r Lea\n.ng Editor 4-13 Fi O
FILL - Leaving GraFORTH 5-32 . iy "l 0BJADR 8-3 R
Font Selection 7:5 tg;é% =17 "“:M:: o 0BJCOLOR 8-10
FORGET 317 LINE 2;7 CRIECT 2?0 READ 4-14
ﬁryﬂettinq Words 3-17 Line Entries, Editor 4-6 o e oy ?b,}ect totor R:Z READLE ol
fartn 1-3 Line Insertio 4 : e %, Objects REPEAT 3-31
" - B OBJERASE 8-3 Return Stack 3-21
B GFF 8-17 Reverse Scroll 7-2
— & R 3-23 RIGHTS 5-18
—— ws, DRMOOE 6-10 RND 3-10
©oBs ws Dytput Characters 1-2 RNDB 3-10
S y £ -
APPENDIX E
APPENDIX E £ 2 - o
- “““ -y
R |

Kotation 8-5 (j

RUN 5-26
UNBLK 7-14
f; UNDRAW 8-17
UNLINE 6-8
Save, Editor 4-10 UNPLOT 6-8
SAVEPRG 5-27 UNTIL 3-29
Saving Character Sets 7-11 Upper and Lower Case 4-2
Saving lmage Files 8-15
saving the System 5-27 b’
SCALE 8-7
Scaling 8-6 VALID 5-14
SCALY 8-6 VARIABLE 5-7
SCALY B-6 Variables 5-7
SCAL?Z B-6 VOICE 9-2
SCREEN 8-18 VTAB 5-3
SEOUENCE 8-1R
6N 3210 w
SIN 3-10
Software NDevelopment 10-1 WHILE 3-31
Spaces in Entries 3-3 WINDOW 5.3
SPCE 3-13 Word Addresses 5-30
speed 3-36 word References 3-35
sty - Words 3-3
Stack Words 3-7 WRITELN 5.17
start-up Procedures 1-8
Storage and Retrieval 5-5
STRING 5-9 X
Strings 5-9
Strina Words on Disk §-17 XPOS 8-8
SWAP 3-7 XREG 5-31
XROT 8-5
XTRAN 8-9
va
(ExT 3-38 Y
Text Display 3-38 »
Text Files 5-24 YPOS 8-8
Text Formatting Words 5-2 YREG 5-31
THEN 3-2% YROT 8-5
-0 Graphics 8-? YTRAN 8-9
TransFORTH 1-4
Translation 8-9 Z
THRN 6-14
TURNTO 6-13 ZROT H-5
lurtlegraphics 6-12 ZTRAN $-9

APPENDIX E E - 4

GRAFORTH MANUAL ERRATA

As with any manual as comprehensive as GraFORTH's, a
few "bugs" managed to creep past our editors.
Please make note of the following changes:

PAGE

3-23

3-31

4-12

8-17

CHANGE

The last paragraph is inaccurate. The
bitwise AND of some nonzero numbers
will produce a zero result. However,
the word AND is usually used with
number comparisons that yield a 1 or
0. If both the top stack value and
the second stack value are 1
(representing "true") then the AND of
the two numbers will also be 1. If
either or both numbers are zero, then
the AND will be zero.

The BEGIN...WHILE...REPEAT diagram has
the =0 and <0 reversed. The text for
this section is correct.

Tne fifth paragraph should refer to
Appendix B, not D.

The word OFF does not immediately
erase the currently selected object.
It causes the next DRAW command to
erase the object, without redrawing
it. Subsequent commands to the object
wll redraw it. The following example
erases a 3-D object:

Ready 3 OBJECT OFF DRAW

Program Control Words

RUN

The GraFORTH word RUN automatically executes the top word on the
dictionary. This can he a great convenience when loading and
running proqrams from disk., By using RUN, you don't have to
check what the top word on the dictionary is after compiling a
file in order to run it. In addition, if the top word has a name
something lice:

SUPER.ZAPPOLELECTRO.BLASTERS,APPLE.VIDED, GAME

using RUN can save a bit of typing, too....

AUTORUN

The word AUTORUN qoes a step heyond this. AUTORUN removes a
nunber from the stack., [f this number is nonzero, then GraFORTH
will dutomatically execute the top word on the dictionary every
time program control is returned to the GrafFORTH system level
(1.(3T whenever you expect to see a "Ready" prompt). DOS errors,
GraFORTH or machine langquage errors, executing the word ABORT, or
pressing the Reset key with the AUTORUN option on will all cause
the top dictionary word to be executed. Here is an example to
Jive you a feel for the way AUTORUN works:

Ready : TEST PRINT " AUTORUN IS ONPID M

We've added this word to the top of the dictionary so that
AUTORUM will have a very visible effect.

Ready 1 AUTORUN
AUTORUN IS ON!I

Ready 3 6
AUTORUN IS ON!I!
[3]

(5]

Ready SWAP
AUTORUN IS ONTI!
[5]

[3]

DELVING DEEPER 5 - 26

Realy ABORT
(The screen clears.)

GrafORTH][(C) 1981 P. Lutus
AJTERUN IS ONIH!
Reaty

Fortunately, the AUTORUN option can be turned off by typing:
Realy 0 AUTORUN

Reaty

If the top dictionary word runs a "clased" program which never
exiis to the system level, the AUTORUN option effectively makes
the GraFORTH lanquage itself inaccessible. Any errors or ABORTs
simply restart the program.

Saving the GraFORTH System

The GraFORTH lanquage is stored on the system disk as an
exetutable binary file with the name "0BJ.FORTH". As mentioned
in thapter 3, when the disk is booted, this file is automatically
loated and run.

The GraFORTH word SAVEPRG is used to create GraFORTH binary files
simlar to OBJ.FORTH., SAVEPRG saves the current GraFORTH system,
including any new words added to the dictionary, as a binary
file. Once created, this file can be BRUN at any time, bringing
the modified GraFORTH system back into memory.

SAVIPRG is a powerful tool. You can save "customized" systems,
with your favorite special-purpose words already in the
diczionary when the system is booted. You can also save finished
applications programs, in such a way that the program
autwmatically starts up when booted. This is ideal for games
applications, where the obvious presence of a "lanquage" is
neizher needed nor desirable.

To use SAVEPRG, first compile the words to produce the "finished"
system you want to save, then type SAVEPRG:

DELVING DEEPER 5 -27

Ready SAVEPRG
SAVE FILE NAME

This prompt asks for the filename you want the new system

saved as. The hrafORTH systen disk automatically BRUNs the file
YORJLFORTH™, so if you want this new system to bhoot
automatically, you should name your file "OBJ.FORTH" too. Your
file will then overwrite the supplied GraFORTH system. (Make
sure you're using a copy of the disk and not the original!) You
are then prompted:

AUTORUN (Y/N)

This prompt asks whether or not you want the saved system to boot
up with the AUTORUN option on. If you answer Yes to this
question, then the new system will automatically run the top word
on the dictionary, starting a proqrdm in motion. [If desired,
your program can later turn the AUTORUN option back off,
returning access of the GraFORTH languaqge to the user. If you
answer the AUTORUN question with MNo, the new system will display
the "Ready" prompt on boot-up, with immediate access to the
lanquage. :

After answering this question, this disk whirs for a bit, saving
the new system to disk.

As discussed in Chapter 2, a slightly modified version of
DOS is used with GraFORTH. Any system saved with SAVEPRG
requires this version of DOS to be in memory. New systems should
be saved to a copy of the GraFORTH disk, so that the special DOS
will pe present.

Note:

The GraFORTH system as supplied includes an additional word on
the top of the dictionary which asks the demonstration prompt on
boot-up. This word can be found in the disk file "QUERY". The
systen was saved with the AUTORUN option on, so that the demo
prompt would come up automatically. When you answer No to the
demo question, the word turns AUTORUN of f (freeing the system),
then FORGETs itself! This leaves the system in its "usual"
state.

The GraFORTH system can be saved to disk without the demo prompt
simply by using SAVEPRG with no additional words on the word
library. (This should only be done to a copy of your disk, 1in

cdase lightning decides to strike while the system is being
written to disk.) BRoot the disk, answer No to the demo question,

then type:

DELVING DEEPER 5-28

sl B FESEG

E
L]
#

kL

77

Ready SAVEPRG
SAVE FILE NAMIE :0BJ.FORTH
AUTORUN (Y/N)) N

Aftgr the disk stops whirring, turn your Apple off, then on
again., When the system boots, the demo prompt will be gone.

You can also put the demo prompt back into the system. Type:
Ready READ " QUERY "

Tpis adds the word that asks the demo question to the top of the
dictionary. Now type:

Ready SAVEPRG
SAVE FILE NAME :0BJ.FORTH
AUTORUN (Y/N)) :Y

The system wiill be saved with the demo prompt back in.

Overlays

GraFORTH programs can automatically load and run other GraFORTH
programs, andl even delete themselves to free up memory. Program
segments that. overwrite each other in this way are often called
"overlays". The GraFORTH demonstration programs use overlays
extensively. .

To execute am overlay, include a word in the first file that
reads the overrlay. Make the first line in the overlay FORGET the
words dlready in memory, and the last line in the overlay file
the word RUN., To be more specific:

When you needl an overlay, execute a READ <filename>, where
(filename> is the name of the overlay. This file will now be
read into memory, but since the first line of the overlay
contains a FORGET <wordname>, where wordname is the name of the
GraFORTH wordl you wish to forget back to (inclusive), the
original file (or portion thereof) will be removed. As reading
of the overlay continues, it will now fill memory previously
occupied by tthe original file.

DELVING DEEPER 5 - 29

We urge you to examine the demonstration file 1is§ings as an
exanple of overlays. Since the FNORGET at the beginning of each
file does not cause an error if the word being forgotten does not
exist, the demo files (or any overlay) can also be directly loaded

and run.

Moving Memory

MOVHMEM simply moves a hlock of memory from one location to
another. MOVMEM removes three numbers trom the stack. The form

tor MOVMEM is:
(sourced> <destination> <# of bytes> MOVMEM

The <sourced> number is the starting address of the data to be

The <destination> is the address of where the block is to

moved.
be moved to. <# of bytes> specifies how many bytes are to he
woved. For example, to move 256 bytes from address 2048 to

address 2816, enter:
Ready 2048 2816 256 MOVMEM

MOVMEM can be handy for relocating character sets and 3-D images
in memory, as will be discussed in Chapters 7 and 8.

Retrieving Word Addresses

The word ' (an apostrophe, also called a “tic") places on the
stack the address of the word that follows it, and prevents that
word from being executed, Here is an example:

Ready ERASE
[30749]

The tic placed the address of the word ERASE on the stack, and
prevented ERASE from being executed. Note that the tic is a word
that looks forward down the input line, and retrieves the address
when it is compiled, not every time it is executed.

The address returned by "tic" is always greater than the
hexadecimal address shown with $LIST. This is because the $LIST
address indicates the beginning of the word definition, and "tic"
returns the address of the executing portion of the word. See
Appendix B for more information on the word library structure,

DELVING DEEPER 5 - 30

YT BT IF

A

14

2 B EowearE B ROSCCR BB

B Eoaasig B BRSNS
i §
L

-
-
i
i)

o

-
-
i
»
T
-

Calling Machine Language Routines

Machine lanquage programs in memory can be called directly from
GraFORTH with the word CALL. CALL removes a number from the
stack, interprets it as a memory address, then calls the machine
lanquage routime at that address. (The routine should end with
an RTS (ReTurn from Subroutine) instruction to return to GraFORTH
properly.) Machine lanquage programs can be loaded from disk
using the DOS command “"BLOAD" into any free area of memory, then
CALLed from GraFORTH.

Before a machime language CALL is made, values can be placed in
the Apple processor's A, X, Y and P reqgisters using the GraFORTH
variables AREG, XREG, YREG and PREG. Before making the machine
lanquage CALL, simply place the desired values into AREG, XREG,
YREG and PREG as you would any other variable. When CALL is
executed, it loads the processor registers with the values from
these variables before doing the call. (Note the importance of
loading a proper value into PREG. If improper processor bits are
set, GraFORTH will not operate!) After the routine has executed,
the values of the registers are loaded back into the variables
and can be read from GraFORTH, again, just as any other variable.

Here is a nice example, which uses CALL to read the game paddles.
The Apple System monitor contains a routine at location -1250 for
reading the game paddles. It expects to see the number of the
game paddle (0 to 3) in the processor's X register. It returns a
number from 0 to 255 (based on the position of the paddle) in the
Y register. The following word reads the value of a qame paddle
by placing the top stack value in XREG, calling the paddle
routine, then placing the value of YREG on the stack:

¢ READ.PANDLE
-> XREG
-1250 CALL
YREG ;

(The Apple manwals warn that two consecutive readings of a game
paddle can produce incorrect results, and suggest a short wait
loop between readings.)

DELVING DEEPER 5 - 31

Compiling Number Tables

The word “," (comma) causes a number to be compiled as a hyte
directly into GraFORTH. Small assembly lanquage routines can be
compiled using commas, or number tables can he generated. Here
is an example of a word that contains a number table of the
visible high resolution colors. The numbers are stored as
individual bytes following the word name in memory:

S COLORLTABLE 1, 2 , 3,5, 6,

These numbers correspond to the colors green, violet, white,
orange, and blue. (Colors in GraFORTH will be discussed in
detail in the next chapter.) Each number can be accessed by
using the tic to retrieve the address of COLOR.TABLE, then adding
an offset (0 to 4) to pick out the appropriate number with PEEK.
Note that COLOR.TABLE is not an executable word!

The comma is the only GraFORTH word that assembles directly at
the byte level, and some precautions are required to use it
effectively. The comma should only be used within word
definitions. Also, for internal reasons, the first byte of an
assenbly of code or data may not be greater than 127 (hexadecimal
47t), nor can it be equal to 10 ($A). Here are the reasons: 10
is a special reserved compiler flag, and a number less than 128
must follow each GraFORTH word name to mark its end. (For more
information, see Appendix B for technical information on
GreFORTH's dictionary link structure.)

Leaving GraFORTH (gently)

The GraFORTH word "BYE" can be used to enter the Apple [system
monitor. The GraFORTH languaqe begins at hex location $6000. To
restart GraFORTH from the monitor, type "6000G".

Conclusion

That about wraps up the language features of GraFORTH. From here
on out we'll be talking about the many types of graphics
available with GraFORTH. (That is what you bought it for, isn't
it?) The next chapter will cover basic point and line drawing in
GraFORTH, as well as a discussion of the supplied TURTLEGRAPHICS.
We'll get into the various modes, color selections and...

Well, that's the topic of chapter 6!

DELVING DEEPER 5 - 32

e

/

1y

13

&3
- -

L
o
i
-
)
m
St

i W W

i1

CHAPTER SIX: TWO-DIMENSIONAL GRAPHICS

Chapter Table of Contents:

Purpose and Overview
Apple Graphics

GraFORTH Graphics

Two-Dimensional Graphics Words

PLOT, LINE and FILL

COLOR
UNPLOT, UNLINE and EMPTY
INVERSE and NORMAL
ORMODE and EXMODE
GPEEK

Turtlegraphics

MOVE
TURNTO
TURN
MOVETO
Examples

TWO-DIMENSIONAL GRAPHICS

Page

6-2

6-3

6-1

