The Pascal Programming Language http://pascal-central.com/ppl/chapter2.html

The Pascal Programming Language
Bill Catambay, Pascal Developer

Chapter 2

The Pascal Programming Language
by Bill Catambay

Return to Table of Contents

Il. The Pascal Architecture

Pascal is a strongly typed, block structured programming language. The "type" of a
Pascal variable consists of its semantic nature and its range of values, and can be
expressed by a type name, an explicit value range, or a combination thereof. The
range of values for a type is defined by the language itself for built-in types, or by
the programmer for programmer defined types. Programmer-defined types are
unique data types defined within the Pascal TYPE declaration section, and can consist
of enumerated types, arrays, records, pointers, sets, and more, as well as
combinations thereof. When variables are declared as one type, the compiler can
assume that the variable will be used as that type throughout the life of the variable
(whether it is global to the program, or local to a function or procedure). This
consistent usage of variables makes the code easier to maintain. The compiler
detects type inconsistency errors at compile time, catching many errors and reducing
the need to run the code through a debugger. Additionally, it allows an optimizer to
make assumptions during compilation, thereby providing more efficient executables.
As John Reagan, the architect of Compaq Pascal, writes, "it was easy to write Pascal
programs that would generate better code than their C equivalents" because the
compiler was able to optimize based on the strict typing.

Declaring variables in Pascal is straightforward. The Pascal VAR declaration section
gives the programmer the ability to declare strings, integers, real numbers and
booleans (to name a few built-in types), as well as to declare variables as records
or other programmer defined types. A variable defined as a RECORD allows a single
variable to track several data components (or fields).

Type
Employee type = (Hourly, Salary, SalaryExempt);
InputRec = RECORD
emp name: packed array[l..30] of char;
social: packed array[l..9] of char;
salary: real;
emp type: Employee type;
end;
Var

1of 6 11/9/07 11:42 AM

The Pascal Programming Language http://pascal-central.com/ppl/chapter2.html

20f6

index: integer;

ratio: real;

found: boolean;

inpf: file of InputRec;

Figure 1: Sample Code - Types and Records

Pascal also supports recursion, a powerful computing tool that allows a function or
procedure within a program to make calls to itself. This allows for elegant and
efficient coding solutions, eliminating the need for tedious loops. A good example of
recursion is the following Pascal solution to the classic Towers of Hanoi puzzle (see
Figure 2). The puzzle is to take a stack of disks in increasing sizes from top to
bottom, and move them from the first peg to the second peg, with the rule that a
disk must always be placed on a disk larger than itself, and only one disk can be
moved at a time.

Program TowersOfHanoi (input,output);

Var
disks: integer;

Procedure Hanoi(source, temp, destination: char; n: integer);

begin
if n > 0 then
begin
Hanoi(source, destination, temp, n - 1);
writeln('Move disk ',n:1,' from peg ',source,' to peg ',destination);
Hanoi (temp, source, destination, n - 1);
end;
end;

begin

write('Enter the number of disks: ');
readln(disks);

writeln('Solution:"');
Hanoi('A','B','C',disks);

end.

Figure 2: Sample Recursive Code 6 Towers of Hanoi Solution

The solution to the Towers of Hanoi puzzle involves moving all but one disk from
peg to peg, repeatedly, until the entire stack has moved from one peg to the other.
The elegance of recursion is that this solution is illustrated clearly, without mundane
loops and logic checks. The three steps of the solution are depicted by three lines of
code. The movement of a stack, regardless of size, is always done by a call to
Hanoi, thus ensuring that the rules are adhered to.

11/9/07 11:42 AM

The Pascal Programming Language http://pascal-central.com/ppl/chapter2.html

30f6

Pascal eliminates the need for clumsy "goto" statements by supporting
REPEAT/UNTIL, WHILE/DO, and FOR loops; by providing an intelligent CASE
statement; and by providing a means to consolidate common lines of code into
PROCEDUREs and FUNCTIONSs. Using the English words of BEGIN and END to delimit
blocks of code within a clause, enforcing strong typing, providing ordinal-based
arrays, and other useful linguistic features, Pascal facilitates the production of
correct, reliable, and maintainable code. Any language can be commented and
indented for better readability, but Pascal, by the nature of its syntax and
architecture, encourages structured programming practices and allows the
programmer to focus on developing solutions. It's important to emphasize this
element of Pascal. Even programmers with the most sophisticated and disciplined of
programming styles will find themselves in a time crunch. With deadlines quickly
approaching, it's likely that a programmer will focus more on achieving a result and
less on making the code understandable for future maintenance. The key to Pascal is
that a programmer tasked with maintaining Pascal code will be able to make the
same assumptions that the compiler makes about program flow and data usage.
This gives the maintenance programmer a fighting chance of figuring out the
behavior, purpose, and operating conditions of the code, even if itis poorly-written.

Block Structure

In An Introduction to Programming and Problem Solving with Pascal, the author
writes,

"A block is a sequence of declarations, a begin, a sequence of statements that
describes actions to be performed on the data structures described in the
declarations, and an end." A Pascal program consists of a PROGRAM heading, which
names the program, followed by a block. Within that main program block, there
exist subprograms, each of which have their own heading followed by a block.
Within each block, there can be inner blocks, and within each inner block there can
exist further inner blocks. In essence, a Pascal program is a hierarchical construction
of blocks ; hence, Pascal is a block-structured programming language.

All data values declared at the beginning of a block are accessible to the code within
the block, including inner blocks, but not to any others. The usefulness of a
block-structured language, therefore, is not only the modularization of the program,
but also the protection of data that is exclusive to one set of modules within a
program from compromise by other modules.

The flow of Pascal code often reads like plain English, with code indentation playing
a crucial role in visualizing conditional clauses. The BEGIN and END statements are
key elements of Pascal's architecture. These clause delimiters are often
misunderstood and misused, leading even the most avid Pascal programmers to
question their usefulness. Used properly, however, they are a vital to visualizing
code clauses within a program. Take, for example the Towers of Hanoi solution (see
Figure 3 below).

Program TowersOfHanoi (input,output);

Var

11/9/07 11:42 AM

The Pascal Programming Language http://pascal-central.com/ppl/chapter2.html

disks: integer;
Procedure Hanoi(source, temp, destination: char; n: integer);

begin
if n > 0 then
begin
Hanoi (source, destination, temp, n - 1);
writeln('Move disk ',n:1,' from peg ',source,' to peg ',destination);
Hanoi(temp, source, destination, n - 1);
end;
end;

begin

write('Enter the number of disks: ');
readln(disks);

writeln('Solution:"');
Hanoi('A','B','C',disks);

end.

Figure 3: Indentation Style & Block Structured Code

The BEGIN and END statements are colored in Figure 3 to illustrate a point. While
these words are not typically colored as such in an editor, when a programmer is
trained on these words, they are just as visually apparent. Further, when setting the
indentation of the clause to match the BEGIN and END statement, a virtual line of
sight is established. When clauses are imbedded within other clauses, sometimes
several layers deep, these lines of sight become very helpful in deciphering the
hierarchy of clauses and flow of execution. Less work is required to understand and
rediscover the flow of a program and the programmer can therefore focus on the
logic and algorithms.

In a small program with very few lines of code, this advantage is not quite as
apparent. The usefulness, however, increases exponentially as complexity and size
increase. For example, take an extensive program of several pages, with long
clauses that may pass through several page breaks (see Figure 4 below).

4 of 6 11/9/07 11:42 AM

The Pascal Programming Language http://pascal-central.com/ppl/chapter2.html

Figure 4: Indentation of Block Structured Code 6 At A Glance

The virtual lines of sight are illustrated in Figure 4 with blue lines, and the code
itself is purposely blurred to focus attention on the indentation. In a large program,
determining the program flow is required each time the programmer attacks the
code. The quicker that flow is apparent, the sooner the programmer can get to work
at updating the code.

Manageability

Programmers at the beginning of a project face creating a solution to a real world
problem using computer code. Over time, however, programmers face the ongoing
problem of maintaining and enhancing the computer code as the users needs change
and grow. Increasing the manageability of code, both for initial implementation and
for long term maintenance, decreases the amount of effort required to work the
problem.

Pascal increases manageability of code by enforcing strong typing, supporting block
structured programming, and providing a syntax which is easy to read. These
aspects of Pascal provide both immediate and long-term benefits to the
programmer. Strong typing removes much of the guess work from interpreting data
structures. Block structured programming breaks down a program into a hierarchy of
tasks. The decomposition of a programming problem into a hierarchy of tasks
enhances the manageability of the problem. Finally, the more visually apparent the
blocks are within a program, and the more the code reads like English, the easier it
is to interpret the program flow, thereby further increasing manageability.

These aspects of Pascal provide the programmer tools for long term manageability
in supporting legacy code as well. Each time a programmer attacks legacy code, the

Sof6 11/9/07 11:42 AM

The Pascal Programming Language http://pascal-central.com/ppl/chapter2.html

logic flow and data structures must be understood before any work can be done
efficiently. Guessing incorrectly at what the code or data structures were designed to
do can lead to costly bugs in the software. The sooner the programmer can
understand the code clearly and with confidence, the quicker the programmer can
get "into the groove" of debugging or enhancing the code. Each block, variable, and
line of code may represent only seconds of time saved using Pascal, but these
seconds add up. A penny saved may not seem like much, but a penny saved every
second, 60 hours a week, 50 weeks a year is over $100,000. Moreover, when it
takes a very long time to find the groove, the effort to understand the code
becomes so frustrating that it impedes creativity and productivity.

Return to Table of Contents Next Chapter

Copyright © 2001 Academic Press. All Rights Reserved.

60f 6 11/9/07 11:42 AM

