The Pascal Programming Language http://pascal-central.com/ppl/chapter3.html

1 of 14

The Pascal Programming Language m
Bill Catambay, Pascal Developer

Chapter 3

The Pascal Programming Language
by Bill Catambay

Return to Table of Contents

Ill. Pascal Standards

Language standards were developed so that when code is written on one type of
computer, or with one vendor's compiler, the code can be ported to another
computer or compiler and still compile and run correctly. This is not a foolproof plan,
however, as there are many unique behaviors of different computers. A program
that invokes the unique behavior of a specific computer will have to be changed to
work on another. Further, most computer environments offer libraries for performing
commonly used functions. If the program makes several calls to the system
libraries, those calls will most likely need to be replaced when porting the code to
another computer, even if the compiler is fully compliant with its languages
standards.

Although standards do not resolve the above issues, they do provide a certain
amount of consistency within a language construct. The same code may not
function, or perhaps even compile, when ported directly to another computer or
compiler, but because the standards exist, a programmer familiar with that language
will have a basic understanding of what the code is doing. Given an understanding of
the libraries and unique properties of the computer to which the code is being
ported, the task of porting the code is easier than if there were no language
standards at all.

The first standard written for Pascal was developed in 1983, covering what is known
as unextended Pascal (ISO 7185). In 1990, the same year that the unextended
Pascal standard was updated, the Extended Pascal standard (ISO 10206) was
established. The unextended Pascal standard incorporated basic functionality of the
original Pascal, while the Extended Pascal standard was introduced to bring Pascal
more in line with modern programming needs, thus providing the programmer a
more powerful programming tool without sacrificing the elegance of Pascal.

To further meet the demands of the growing technology in computer programming,
certain Pascal compilers were established to support Object-Oriented Programming.
Although an official standard for Object Pascal has not been established at this
writing, in 1993, the Pascal Standards Committee published an "Object-Oriented
Extensions to Pascal" Technical Report which provides proposed standards. The
members of the committee that assembled this report came from a variety of
organizations - from Pace University and the US Air Force, to Apple Computer,

11/9/07 11:42 AM

The Pascal Programming Language http://pascal-central.com/ppl/chapter3.html

Microsoft, and Digital Equipment Corporation.

Finally, in 1995, John Reagan, a member of the ISO Pascal standards committee
and compiler architect for Digital Equipment Corporation (now Compaq), composed
a Pascal Standards FAQ. The FAQ addressed questions such as:

What are the different Pascal standards?

Who creates the standards?

What are the required interfaces to Extended Pascal?
What is the History of Pascal Standards?

All of the standards and reports mentioned above, including the Pascal Standards
FAQ, are available from the Pascal Central web site at http://pascal-central.com.

Direct links to specific documents are as follows:

e Unextended & Extended Pascal Standards:
http://pascal-central.com/standards.html

e Object Pascal Report: http://pascal-central.com/ooe-stds.html

e Pascal Standards FAQ: http://pascal-central.com/extpascal.html

Unextended Pascal

The unextended Pascal standard is incorporated in ISO 7185. The material covered in
the standard is too extensive to discuss here, but the following section provides a
summary of ISO 7185.

Unextended Pascal token symbols are reserved symbols used by the compiler for
performing operations and calculations (see Table I below).

(PLUS) Binary arithmetic addition; unary arithmetic identity;
+ set union.
(MINUS) Binary arithmetic subtraction; unary arithmetic

- negation; set difference.

(ASTERISK) Arithmetic multiplication; set intersection.
b 3

(SLASH) Floating point division.
/

(EQUAL) Equality test.

2of 14 11/9/07 11:42 AM

The Pascal Programming Language

3of 14

http://pascal-central.com/ppl/chapter3.html

(LESS THAN)

Less than test.

<

(GREATER THAN) Greater than test.
>

(LEFT BRACKET) Delimits sets and array indices.
[

(RIGHT BRACKET) Delimits sets and array indices.
]

(PERIOD) Used for selecting an individual field of a record
variable. Follows the final END of a program.

(COMMA) Separates arguments, variable declarations, and

, indices of multi-dimensional arrays.

(COLON) Separates a function declaration with the function
type. Separates variable declaration with the variable
type.

(SEMI-COLON) Separates Pascal statements.

’
(POINTER) Used to declare pointer types and variables; Used to
N access the contents of pointer typed variables/file
buffer variables.
(LEFT PARENTHESIS) |Group mathematical or boolean expression, or function
(and procedure arguments.
(RIGHT Group mathematical or boolean expression, or function
) |PARENTHESIS) and procedure arguments.
(LESS Non-equality test.
< >|[THAN/GREATER
THAN)
(LESS THAN/EQUAL) |Less than or equal to test; Subset of test.
<=

(GREATER Greater than or equal to test; Superset of test.

> =|[THAN/EQUAL)

(COLON/EQUAL) Variable assignment.

11/9/07 11:42 AM

The Pascal Programming Language http://pascal-central.com/ppl/chapter3.html

(PERIOD/PERIOD) Range delimiter.

Table I: Unextended Pascal Special Symbol Tokens

Additionally, the following tokens are Pascal comment delimiters. When placed
around text, they indicate text that is not meant for compilation.

{and }, (* and *)

Unextended Pascal token words are reserved words used by the compiler for
performing operations and calculations (see Table II below).

AND Boolean conjunction operator

ARRAY Array type

BEGIN Starts a compound statement

CASE Starts a CASE statement

CONST Declares a constant

DIV Integer division

DO Follows WHILE and FOR clause, preceding action to take

DOWNTO In a FOR loop, indicates that FOR variable is decremented at each
pass

ELSE If the boolean in the IF is false, the action following ELSE is executed

END Ends a compound statement, a case statement, or a record
declaration

FILE Declares a variable as a file

FOR Executes line(s) of code while FOR loop variable in within range

FUNCTION |Declares a Pascal function

GOTO Branches to a specified label

IF Examine a boolean condition and execute code if true
IN Boolean evaluated to true if value is in a specified set
LABEL Indicates code to branch to in a GOTO statement
MOD Modular integer evaluation

NIL Null value for a pointer

NOT Negates the value of a boolean expression

OF Used in CASE statement after case variable

OR Boolean disjunction operator

4 of 14 11/9/07 11:42 AM

The Pascal Programming Language

http://pascal-central.com/ppl/chapter3.html

PACKED Used with ARRAY, FILE, RECORD, and SET to pack data storage

PROCEDURE |Declares a Pascal procedure

PROGRAM |[Designates the program heading

RECORD Declares a record type

REPEAT Starts a REPEAT/UNTIL loop

SET Declares a set

THEN Follows the boolean expression after an IF statement

TO In a FOR loop, indicates that FOR variable is incremented at each
pass

TYPE Defines a variable type

UNTIL Ends a REPEAT/UNTIL loop

VAR Declares a program variable

WHILE Executes block of code until WHILE condition is false

WITH Specifies record variable to use for a block of code

Table II: Unextended Pascal Word Symbol Tokens

Unextended Pascal supports three categories of data types: simple, structured,

and pointer.

The simple data type consists of predefined, enumerated and subrange types.

The predefined simple types are:

INTEGER - integer value
REAL - real number value

CHAR -

single character

BOOLEAN - takes values true or false

In unextended Pascal, the enumerated type is defined to allow programmers to

establish

types based upon a unique and finite list of values. For example:

Type
ShirtColor = (green, yellow, blue, red, orange);
ShirtSize = (small, medium, large, xlarge);

Likewise, unextended Pascal supports sub-range types, such as 1..100, -10..+10,

and
'0'..'9".

The structured data type consists of array, file, record. and set types. All four can be
optionally declared as PACKED for cases where the programmer wants to minimize

5of 14 11/9/07 11:42 AM

The Pascal Programming Language http://pascal-central.com/ppl/chapter3.html

6 of 14

storage requirements albeit with the potential cost of greater access time to the
individual components.

An array in unextended Pascal consists of a fixed number of components (i.e., a
linear vector) which are all of the same type. An array's index type establishes the
number of components the array contains. Since any ordinal type can be used for
the index type, arrays indexed by character, enumerated, or subrange types can be
used for a more natural fit to the problem. Because a component type can be an
array type in itself, multidimensional arrays are possible. For multidimensional
arrays, a consolidated list of dimension indices can be used as an abbreviation
alternative. For example:

Type
ShirtStock = array[ShirtColor] of array[ShirtSize] of integer;
ShirtPrice = packed array[ShirtColor, ShirtSize] of real;

The file type consists of a linear sequence of components all of the same type. The

number of components is not fixed. Pascal predefines TEXT as a file type. The TEXT
file type consists of a sequence of characters subdivided into variable length lines. A
special end-of-line marker is used for line subdivision. Example file types are:

Type
Document = file of integer;
Data = packed file of real;

Unextended Pascal supports the RECORD type, which allows the programmer to
establish a type containing several components (or fields). In addition to being able
to declare fields of varying types, variant records can also be declared such that
different record layouts exist based upon the value for the variant field (see Figure 5
below).

Type
ShirtOrder = record
color: ShirtColor;
size: ShirtSize;
customer: string;
city: string;

case USCust: boolean of
true: (USState: packed array[l..2] of char);
false: (state: string;
country: string);
end;

Figure 5: Example of Variant Record
A set type consists of the powerset of the set of values of the set's base type. Every

value in the set's base type can be represented as an element in the set. Example
set types are:

Type
CharSet = set of char;
SizeSet = packed set of ShirtSize;

Unextended Pascal also supports pointer types, a method of referencing a variable

11/9/07 11:42 AM

The Pascal Programming Language http://pascal-central.com/ppl/chapter3.html

using its address. Pointers are often used for referencing record structures,
supporting linked lists, an array of data which is connected by means of pointers
rather than a sequential index (see Figure 6 below).

Type
Person = “Persondetails;
Persondetails = record

name: String;
firstname: String;
age: Integer;
married: boolean;
nextPerson: Person;
prevPerson: Person;
end;

Figure 6: Example of Linked List Record Structure
Refer to the ISO standard for a complete list of unextended Pascal predefined
functions, types, and other language constructs.

Extended Pascal

The Extended Pascal standard is incorporated in ISO 10206. The material covered in
this document is summarized below.

In addition to the token symbols reserved for unextended Pascal, Extended Pascal
supports three additional tokens (see Table III below).

(ASTERISK/ASTERISK) To the real power of
* %

(GREATER THAN/LESS THAN) [Set symmetric difference
><

(EQUAL/GREATER THAN) Renames identifiers on import and/or export
=>

Table III: Extended Pascal Special Symbol Tokens

In addition to the token words reserved for unextended Pascal, Extended Pascal
requires support for several new token words (see Table IV below).

AND_THEN |Boolean operator w/short circuiting

BINDABLE |Bindable to some entity external to the program

EXPORT Exporting to/from modules

7 of 14 11/9/07 11:42 AM

The Pascal Programming Language http://pascal-central.com/ppl/chapter3.html

IMPORT

Importing to/from modules

MODULE

Can be compiled, but not executed, by itself

ONLY

Selective import option

OR_ELSE

Boolean operator w/short circuiting

OTHERWISE |Default condition handler in CASE statement

POW

To the integer power of

PROTECTED |Protects exported variables from being altered by importors; Protects

function/procedure parameter from being altered by
function/procedure

QUALIFIED

Qualified import specification

RESTRICTED |Creation of opaque data types

VALUE

Specifies initial state for component

Table IV: Extended Pascal Word Symbol Tokens

The following, from ISO 10206, is a summary of features in Extended Pascal that
are not found in unextended Pascal.

1. Modularity and Separate Compilation

Modularity provides for separately-compilable program components,
while maintaining type security.

Each module exports one or more interfaces containing entities
(values, types, schemata, variables, procedures, and functions)
from that module, thereby controlling visibility into the module.
A variable may be protected on export, so that an importer may
use it but not alter its value. A type may be restricted, so that its
structure is not visible.

The form of a module clearly separates its interfaces from its
internal details.

Any block may import one or more interfaces. Each interface may
be used in whole or in part.

Entities may be accessed with or without interface-name
qualification.

e Entities may be renamed on export or import.

Initialization and finalization actions may be specified for each
module.

Modules provide a framework for implementation of libraries and
non-Pascal program components.

2. Schemata

A schema determines a collection of similar types. Types may be

8 of 14

11/9/07 11:42 AM

The Pascal Programming Language http://pascal-central.com/ppl/chapter3.html

9 of 14

selected statically or dynamically from schemata.

e Statically selected types are used as any other types are used.

e Dynamically selected types subsume all the functionality of, and
provide functional capability beyond, conformant arrays.

e The allocation procedure new may dynamically select the type
(and thus the size) of the allocated variable.

e A schematic formal-parameter adjusts to the bounds of its
actual-parameters.

e The declaration of a local variable may dynamically select the type
(and thus the size) of the variable.

e The with-statement is extended to work with schemata.

e Formal schema discriminants can be used as variant selectors.

3. String Capabilities

The comprehensive string facilities unify fixed-length strings and
character values with variable-length strings.

e All string and character values are compatible.

e The concatenation operator (+) combines all string and character
values.

e Variable-length strings have programmer-specified maximum
lengths.

e Strings may be compared using blank padding via the relational
operators or using no padding via the functions EQ, LT, GT, NE,
LE, and GE.

e The functions length, index, substr, and trim provide information
about, or manipulate, strings.

e The substring-variable notation makes accessible, as a variable, a
fixed-length portion of a string variable.

e The transfer procedures readstr and writestr process strings in the
same manner that read and write process textfiles.

e The procedure read has been extended to read strings from
textfiles.

4. Binding of Variables

A variable may optionally be declared to be bindable. Bindable variables
may be bound to external entities (file storage, real-time clock,
command lines, etc.). Only bindable variables may be so bound.

e The procedures bind and unbind, together with the related type
BindingType, provide capabilities for connection and disconnection
of bindable internal (file and non-file) variables to external
entities.

e The function binding returns current or default binding information.

11/9/07 11:42 AM

The Pascal Programming Language http://pascal-central.com/ppl/chapter3.html

5. Direct Access File Handling

The declaration of a direct-access file indicates an index by which
individual file elements may be accessed.

e The procedures SeekRead, SeekWrite, and SeekUpdate position
the file.

e The functions position, LastPosition, and empty report the current
position and size of the file.

e The update file mode and its associated procedure update provide
in-place modification.

6. File Extend Procedure
The procedure extend prepares an existing file for writing at its end.

7. Constant Expressions

A constant expression may occur in any context needing a constant
value.

8. Structured Value Constructors
An expression may represent the value of an array, record, or set in
terms of its components. This is particularly valuable for defining
structured constants.

9. Generalized Function Results
The result of a function may have any assignable type. A function result
variable may be specified, which is especially useful for functions
returning structures.

10. Initial Variable State

The initial state specifier of a type can specify the value with which
variables are to be created.

11. Relaxation of Ordering of Declarations
There may be any number of declaration parts (labels, constants, types,
variables, procedures, and functions) in any order. The prohibition of
forward references in declarations is retained.

12. Type Inquiry

A variable or parameter may be declared to have the type of another
parameter or another variable.

13. Implementation Characteristics

10 of 14 11/9/07 11:42 AM

The Pascal Programming Language

11 of 14

The constant maxchar is the largest value of type char. The constants

minreal, maxreal, and epsreal describe the range of magnitude and the

precision of real arithmetic.
14. Case-Statement and Variant Record Enhancements

Each case-constant-list may contain ranges of values. An otherwise
clause represents all values not listed in the case-constant-lists.

15. Set Extension

e An operator (><) computes the set symmetric difference.

e The function card yields the number of members in a set.

e A form of the for-statement iterates through the members of a
set.

16. Date and Time

The procedure GetTimeStamp and the functions date and time, together
with the related type TimeStamp, provide numeric representations of the

current date and time and convert the numeric representations to
strings.

17. Inverse Ord
A generalization of succ and pred provides an inverse ord capability.
18. Standard Numeric Input

The definition of acceptable character sequences read from a textfile
includes all standard numeric representations defined by ISO 6093.

19. Nondecimal Representation of Numbers

Integer numeric constants may be expressed using bases two through
thirty-six.

20. Underscore in Identifiers

The underscore character (_) may occur within identifiers and is
significant to their spelling.

21. Zero Field Widths

The total field width and fraction digits expressions in write parameters

may be zero.
22. Halt
The procedure halt causes termination of the program.

23. Complex Numbers

http://pascal-central.com/ppl/chapter3.html

11/9/07 11:42 AM

The Pascal Programming Language http://pascal-central.com/ppl/chapter3.html

12 of 14

e The simple-type complex allows complex numbers to be expressed
in either Cartesian or polar notation.

e The monadic operators + and - and dyadic operators +, , *, /, =,
<> operate on complex values.

e The functions cmplx, polar, re, im, and arg construct or provide
information about complex values.

e The functions abs, sqr, sqrt, exp, In, sin, cos, arctan operate on
complex values.

24, Short Circuit Boolean Evaluation
The operators and then and or else are logically equivalent to AND and
OR, except that evaluation order is defined as left-to-right, and the right
operand is not evaluated if the value of the expression can be
determined solely from the value of the left operand.

25. Protected Parameters.

A parameter of a procedure or a function can be protected from
modification within the procedure or function.

26. Exponentiation

The operators ** and pow provide exponentiation of integer, real, and
complex numbers to real and integer powers.

27. Subrange Bounds

A general expression can be used to specify the value of either bound in
a subrange.

28. Tag Fields of Dynamic Variables
Any tag field specified by a parameter to the procedure new is given the
specified value.
Additionally, Extended Pascal incorporates the following feature at level 1 of this
standard:

29. Conformant Arrays

Conformant arrays provide upward compatibility with level 1 of ISO
7185, Programming languages - PASCAL.

Object Pascal

There is no official Object Pascal standard, but a technical report was published in
1993 outlining the recommended standards for Object Pascal. A draft of this report is
available on the web at http://pascal-central.com/ooe-stds.html. As I am not an
avid user of Object-Oriented programming, only an outline of the draft report will be

11/9/07 11:42 AM

The Pascal Programming Language http://pascal-central.com/ppl/chapter3.html

included in this paper (Figure 7 below). Further information can be obtained at the
above web page.

I. Introduction
II. Scope
III. References
IV. Definitions
V. Definitional Conventions
VI. Compliance

VII. Object Extensions

1. Class Definition
Extension of the Type System, Restrictions on Class Definitions,
Contents and Syntax of Class Definitions
(Kinds, Inheritance, Fields, Methods, Constructors, Destructors)
Scope of Entities Defined in a Class, Class Definitions

2. Kinds of Classes
(Concrete, Abstract, Property, Type Model, Views)

3. Inheritance
(The Root Class, Multiple Inheritance, Name Conflicts, Overriding,
Abstract Methods, Constructors, and Destructors)

4. Syntax

5. Object Access
The Object Model, Implicit Parameter Self
Polymorphism during Construction and Destruction
Implicit References, Field References, Inherited, Reference Type
Coercion
Operations
(Compatibility, Methods Activation, Constructors & Destructors,
Assignment, Comparison, Parameter Passing, Membership)

6. Predefined Entities
Null, Copy, Root
(Create, Destroy, Clone, Equal)
TextWritable
(ReadObj and WriteObj)

7. Signatures

8. With Statement

9. Procedure, Function, Constructor, and Destructor Declarations

10. Changes to Export Clause

11. Visibility

12. Extended Pascal Features

13. Suggested Changes to Extended Pascal

Figure 7: Object Pascal Report Outline

Return to Table of Contents Next Chapter

13 of 14 11/9/07 11:42 AM

The Pascal Programming Language http://pascal-central.com/ppl/chapter3.html

Copyright © 2001 Academic Press. All Rights Reserved.

14 of 14 11/9/07 11:42 AM

