
Why Pascal? http://www.threedee.com/jcm/psystem/whypascal.html

1 of 16 11/9/07 10:57 AM

THE UCSD P-System MUSEUM
IN THE WEST WING OF THE JEFFERSON COMPUTER MUSEUM

Why Pascal is Not My Favorite Programming Language

Brian W. Kernighan
AT&T Bell Laboratories

Murray Hill, New Jersey 07974
April 2, 1981

Abstract

The programming language Pascal has become the dominant language of instruction in
computer science education. It has also strongly influenced languages developed
subsequently, in particular Ada.

Pascal was originally intended primarily as a teaching language, but it has been more and
more often recommended as a language for serious programming as well, for example, for
system programming tasks and even operating systems.

Pascal, at least in its standard form, is just plain not suitable for serious programming. This
paper discusses my personal discovery of some of the reasons why.

1. Genesis

This paper has its origins in two events - a spate of papers that compare C and Pascal(1, 2, 3, 4) and a
personal attempt to rewrite 'Software Tools'(5) in Pascal.

Comparing C and Pascal is rather like comparing a Learjet to a Piper Cub - one is meant for getting
something done while the other is meant for learning - so such comparisons tend to be somewhat
farfetched. But the revision of Software Tools seems a more relevant comparison. The programs therein
were originally written in Ratfor, a "structured" dialect of Fortran implemented by a preprocessor. Since
Ratfor is really Fortran in disguise, it has few of the assets that Pascal brings - data types more suited to
character processing, data structuring capabilities for better defining the organization of one's data, and
strong typing to enforce telling the truth about the data.

It turned out to be harder than I had expected to rewrite the programs in Pascal. This paper is an attempt
to distill out of the experience some lessons about Pascal's suitability for programming (as distinguished
from learning about programming). It is not a comparison of Pascal with C or Ratfor.

The programs were first written in that dialect of Pascal supported by the Pascal interpreter pi provided
by the University of California at Berkeley. The language is close to the nominal standard of Jensen and
Wirth,(6) with good diagnostics and careful run-time checking. Since then, the programs have also been
run, unchanged except for new libraries of primitives, on four other systems: an interpreter from the
Free University of Amsterdam (hereinafter referred to as VU, for Vrije Universiteit), a VAX version of
the Berkeley system (a true compiler), a compiler purveyed by Whitesmiths, Ltd., and UCSD Pascal on
a Z80. All but the last of these Pascal systems are written in C.

Pascal is a much-discussed language. A recent bibliography(7) lists 175 items under the heading of

Why Pascal? http://www.threedee.com/jcm/psystem/whypascal.html

2 of 16 11/9/07 10:57 AM

"discussion, analysis and debate." The most often cited papers (well worth reading) are a strong critique
by Habermann(8) and an equally strong rejoinder by Lecarme and Desjardins.(9) The paper by Boom
and DeJong(10) is also good reading. Wirth's own assessment of Pascal is found in [11]. I have no
desire or ability to summarize the literature; this paper represents my personal observations and most of
it necessarily duplicates points made by others. I have tried to organize the rest of the material around the
issues of

types and scope
control flow
environment
cosmetics

and within each area more or less in decreasing order of significance.

To state my conclusions at the outset: Pascal may be an admirable language for teaching beginners how
to program; I have no first-hand experience with that. It was a considerable achievement for 1968. It has
certainly influenced the design of recent languages, of which Ada is likely to be the most important. But
in its standard form (both current and proposed), Pascal is not adequate for writing real programs. It is
suitable only for small, self-contained programs that have only trivial interactions with their environment
and that make no use of any software written by anyone else.

2. Types and Scopes

Pascal is (almost) a strongly typed language. Roughly speaking, that means that each object in a
program has a well-defined type which implicitly defines the legal values of and operations on the
object. The language guarantees that it will prohibit illegal values and operations, by some mixture of
compile- and run-time checking. Of course compilers may not actually do all the checking implied in the
language definition. Furthermore, strong typing is not to be confused with dimensional analysis. If one
defines types 'apple' and 'orange' with

 type
 apple = integer;
 orange = integer;

then any arbitrary arithmetic expression involving apples and oranges is perfectly legal.

Strong typing shows up in a variety of ways. For instance, arguments to functions and procedures are
checked for proper type matching. Gone is the Fortran freedom to pass a floating point number into a
subroutine that expects an integer; this I deem a desirable attribute of Pascal, since it warns of a
construction that will certainly cause an error.

Integer variables may be declared to have an associated range of legal values, and the compiler and
run-time support ensure that one does not put large integers into variables that only hold small ones.
This too seems like a service, although of course run-time checking does exact a penalty.

Let us move on to some problems of type and scope.

2.1. The size of an array is part of its type

If one declares

 var arr10 : array [1..10] of integer;

Why Pascal? http://www.threedee.com/jcm/psystem/whypascal.html

3 of 16 11/9/07 10:57 AM

 arr20 : array [1..20] of integer;

then arr10 and arr20 are arrays of 10 and 20 integers respectively. Suppose we want to write a
procedure 'sort' to sort an integer array. Because arr10 and arr20 have different types, it is not
possible to write a single procedure that will sort them both.

The place where this affects Software Tools particularly, and I think programs in general, is that it
makes it difficult indeed to create a library of routines for doing common, general-purpose operations
like sorting.

The particular data type most often affected is 'array of char', for in Pascal a string is an array of
characters. Consider writing a function 'index(s,c)' that will return the position in the string s where
the character c first occurs, or zero if it does not. The problem is how to handle the string argument of
'index'. The calls 'index('hello',c)' and 'index('goodbye',c)' cannot both be legal, since the
strings have different lengths. (I pass over the question of how the end of a constant string like 'hello'
can be detected, because it can't.)

The next try is

 var temp : array [1..10] of char;
 temp := 'hello';

 n := index(temp,c);

but the assignment to 'temp' is illegal because 'hello' and 'temp' are of different lengths.

The only escape from this infinite regress is to define a family of routines with a member for each
possible string size, or to make all strings (including constant strings like 'define') of the same
length.

The latter approach is the lesser of two great evils. In 'Tools', a type called 'string' is declared as

 type string = array [1..MAXSTR] of char;

where the constant 'MAXSTR' is "big enough," and all strings in all programs are exactly this size. This
is far from ideal, although it made it possible to get the programs running. It does not solve the problem
of creating true libraries of useful routines.

There are some situations where it is simply not acceptable to use the fixed-size array representation. For
example, the 'Tools' program to sort lines of text operates by filling up memory with as many lines as
will fit; its running time depends strongly on how full the memory can be packed. Thus for 'sort',
another representation is used, a long array of characters and a set of indices into this array:

 type charbuf = array [1..MAXBUF] of char;
 charindex = array [1..MAXINDEX] of 0..MAXBUF;

But the procedures and functions written to process the fixed-length representation cannot be used with
the variable-length form; an entirely new set of routines is needed to copy and compare strings in this
representation. In Fortran or C the same functions could be used for both.

As suggested above, a constant string is written as

Why Pascal? http://www.threedee.com/jcm/psystem/whypascal.html

4 of 16 11/9/07 10:57 AM

 'this is a string'

and has the type 'packed array [1..n] of char'. where is the length. Thus each string literal of
different length has a different type.The only way to write a routine that will print a message and clean
up is to pad all messages out to the same maximum length:

 error('short message ');
 error('this is a somewhat longer message');

Many commercial Pascal compilers provide a 'string' data type that explicitly avoids the problem;
'string's are all taken to be the same type regardless of size. This solves the problem for this single
data type, but no other. It also fails to solve secondary problems like computing the length of a constant
string; another built-in function is the usual solution.

Pascal enthusiasts often claim that to cope with the array-size problem one merely has to copy some
library routine and fill in the parameters for the program at hand, but the defense sounds weak at
best:(12)

"Since the bounds of an array are part of its type (or, more exactly, of the type of its
indexes), it is impossible to define a procedure or function which applies to arrays with
differing bounds. Although this restriction may appear to be a severe one, the experiences
we have had with Pascal tend to show that it tends to occur very infrequently. [...]
However, the need to bind the size of parametric arrays is a serious defect in connection
with the use of program libraries."

This botch is the biggest single problem with Pascal. I believe that if it could be fixed, the language
would be an order of magnitude more usable. The proposed ISO standard for Pascal(13) provides such
a fix ("conformant array schemas"), but the acceptance of this part of the standard is apparently still in
doubt.

2.2. There are no static variables and no initialization

A 'static' variable (often called an 'own' variable in Algol-speaking countries) is one that is private
to some routine and retains its value from one call of the routine to the next. De facto, Fortran variables
are internal static, except for COMMON; in C there is a 'static' declaration that can be applied to local
variables. (Strictly speaking, in Fortran 77 one must use SAVE to force the static attribute.)

Pascal has no such storage class. This means that if a Pascal function or procedure intends to remember
a value from one call to another, the variable used must be external to the function or procedure.Thus it
must be visible to other procedures, and its name must be unique in the larger scope. A simple example
of the problem is a random number generator: the value used to compute the current output must be
saved to compute the next one, so it must be stored in a variable whose lifetime includes all calls of the
random number generator. In practice, this is typically the outermost block of the program. Thus the
declaration of such a variable is far removed from the place where it is actually used.

One example comes from the text formatter described in Chapter 7 of 'Tools'. The variable 'dir'
controls the direction from which excess blanks are inserted during line justification, to obtain left and
right alternately. In Pascal, the code looks like this:

 program formatter (...);

Why Pascal? http://www.threedee.com/jcm/psystem/whypascal.html

5 of 16 11/9/07 10:57 AM

 var
 dir : 0..1; { direction to add extra spaces }
 .
 .
 .
 procedure justify (...);
 begin
 dir := 1 - dir; { opposite direction from last time }
 ...
 end;

 ...

 begin { main routine of formatter }
 dir := 0;
 ...
 end;

The declaration, initialization and use of the variable 'dir' are scattered all over the program, literally
hundreds of lines apart. In C or Fortran, 'dir' can be made private to the only routine that needs to
know about it:

 ...
 main()
 {
 ...
 }

 ...

 justify()
 {
 static int dir = 0;

 dir = 1 - dir;
 ...
 }

There are of course many other examples of the same problem on a larger scale; functions for buffered
I/O, storage management, and symbol tables all spring to mind.

There are at least two related problems. Pascal provides no way to initialize variables statically (i.e., at
compile time); there is nothing analogous to Fortran's DATA statement or initializers like

 int dir = 0;

in C. This means that a Pascal program must contain explicit assignment statements to initialize variables
(like the

 dir := 0;

Why Pascal? http://www.threedee.com/jcm/psystem/whypascal.html

6 of 16 11/9/07 10:57 AM

above). This code makes the program source text bigger, and the program itself bigger at run time.

Furthermore, the lack of initializers exacerbates the problem of too- large scope caused by the lack of a
static storage class. The time to initialize things is at the beginning, so either the main routine itself
begins with a lot of initialization code, or it calls one or more routines to do the initializations. In either
case, variables to be initialized must be visible, which means in effect at the highest level of the
hierarchy. The result is that any variable that is to be initialized has global scope.

The third difficulty is that there is no way for two routines to share a variable unless it is declared at or
above their least common ancestor. Fortran COMMON and C's external static storage class both provide a
way for two routines to cooperate privately, without sharing information with their ancestors.

The new standard does not offer static variables, initialization or non-hierarchical communication.

2.3. Related program components must be kept separate

Since the original Pascal was implemented with a one-pass compiler, the language believes strongly in
declaration before use. In particular, procedures and functions must be declared (body and all) before
they are used. The result is that a typical Pascal program reads from the bottom up - all the procedures
and functions are displayed before any of the code that calls them, at all levels. This is essentially
opposite to the order in which the functions are designed and used.

To some extent this can be mitigated by a mechanism like the #include facility of C and Ratfor: source
files can be included where needed without cluttering up the program. #include is not part of standard
Pascal, although the UCB, VU and Whitesmiths compilers all provide it.

There is also a 'forward' declaration in Pascal that permits separating the declaration of the function or
procedure header from the body; it is intended for defining mutually recursive procedures. When the
body is declared later on, the header on that declaration may contain only the function name, and must
not repeat the information from the first instance.

A related problem is that Pascal has a strict order in which it is willing to accept declarations. Each
procedure or function consists of

 label label declarations, if any
 const constant declarations, if any
 type type declarations, if any
 var variable declarations, if any

 procedure and function declarations, if any
 begin
 body of function or procedure
 end

This means that all declarations of one kind (types, for instance) must be grouped together for the
convenience of the compiler, even when the programmer would like to keep together things that are
logically related so as to understand the program better. Since a program has to be presented to the
compiler all at once, it is rarely possible to keep the declaration, initialization and use of types and
variables close together. Even some of the most dedicated Pascal supporters agree:(14)

"The inability to make such groupings in structuring large programs is one of Pascal's
most frustrating limitations."

Why Pascal? http://www.threedee.com/jcm/psystem/whypascal.html

7 of 16 11/9/07 10:57 AM

A file inclusion facility helps only a little here.

The new standard does not relax the requirements on the order of declarations.

2.4. There is no separate compilation

The "official" Pascal language does not provide separate compilation, and so each implementation
decides on its own what to do. Some (the Berkeley interpreter, for instance) disallow it entirely; this is
closest to the spirit of the language and matches the letter exactly. Many others provide a declaration that
specifies that the body of a function is externally defined. In any case, all such mechanisms are
non-standard, and thus done differently by different systems.

Theoretically, there is no need for separate compilation - if one's compiler is very fast (and if the source
for all routines is always available and if one's compiler has a file inclusion facility so that multiple
copies of source are not needed), recompiling everything is equivalent. In practice, of course, compilers
are never fast enough and source is often hidden and file inclusion is not part of the language, so
changes are time-consuming.

Some systems permit separate compilation but do not validate consistency of types across the boundary.
This creates a giant hole in the strong typing. (Most other languages do no cross-compilation checking
either, so Pascal is not inferior in this respect.) I have seen at least one paper (mercifully unpublished)
that on page n castigates C for failing to check types across separate compilation boundaries while
suggesting on page n+1 that the way to cope with Pascal is to compile procedures separately to avoid
type checking.

The new standard does not offer separate compilation.

2.5. Some miscellaneous problems of type and scope

Most of the following points are minor irritations, but I have to stick them in somewhere.

It is not legal to name a non-basic type as the literal formal parameter of a procedure; the following is not
allowed:

procedure add10 (var a : array [1..10] of integer); Rather, one must invent a type name,
make a type declaration, and declare the formal parameter to be an instance of that type:

 type a10 = array [1..10] of integer;
 ...
 procedure add10 (var a : a10);

Naturally the type declaration is physically separated from the procedure that uses it. The discipline of
inventing type names is helpful for types that are used often, but it is a distraction for things used only
once.

It is nice to have the declaration 'var' for formal parameters of functions and procedures; the procedure
clearly states that it intends to modify the argument. But the calling program has no way to declare that a
variable is to be modified - the information is only in one place, while two places would be better. (Half
a loaf is better than none, though - Fortran tells the user nothing about who will do what to variables.)

It is also a minor bother that arrays are passed by value by default - the net effect is that every array
parameter is declared 'var' by the programmer more or less without thinking. If the 'var' declaration
is inadvertently omitted, the resulting bug is subtle.

Why Pascal? http://www.threedee.com/jcm/psystem/whypascal.html

8 of 16 11/9/07 10:57 AM

Pascal's 'set' construct seems like a good idea, providing notational convenience and some free type
checking. For example, a set of tests like

 if (c = blank) or (c = tab) or (c = newline) then ...

can be written rather more clearly and perhaps more efficiently as

 if c in [blank, tab, newline] then ...

But in practice, set types are not useful for much more than this, because the size of a set is strongly
implementation dependent (probably because it was so in the original CDC implementation: 59 bits).
For example, it is natural to attempt to write the function 'isalphanum(c)' ("is c alphanumeric?") as

 { isalphanum(c) -- true if c is letter or digit }
 function isalphanum (c : char) : boolean;
 begin
 isalphanum := c in ['a'..'z', 'A'..'Z', '0'..'9']
 end;

But in many implementations of Pascal (including the original) this code fails because sets are just too
small. Accordingly, sets are generally best left unused if one intends to write portable programs. (This
specific routine also runs an order of magnitude slower with sets than with a range test or array
reference.)

2.6. There is no escape

There is no way to override the type mechanism when necessary, nothing analogous to the "cast"
mechanism in C. This means that it is not possible to write programs like storage allocators or I/O
systems in Pascal, because there is no way to talk about the type of object that they return, and no way
to force such objects into an arbitrary type for another use. (Strictly speaking, there is a large hole in the
type-checking near variant records, through which some otherwise illegal type mismatches can be
obtained.)

3. Control Flow

The control flow deficiencies of Pascal are minor but numerous - the death of a thousand cuts, rather
than a single blow to a vital spot.

There is no guaranteed order of evaluation of the logical operators 'and' and 'or' - nothing like && and ||
in C. This failing, which is shared with most other languages, hurts most often in loop control:

 while (i <= XMAX) and x[i]> 0) do ...

is extremely unwise Pascal usage, since there is no way to ensure that i is tested before x[i] is.

By the way, the parentheses in this code are mandatory - the language has only four levels of operator
precedence, with relationals at the bottom.

There is no 'break' statement for exiting loops. This is consistent with the one entry-one exit
philosophy espoused by proponents of structured programming, but it does lead to nasty

Why Pascal? http://www.threedee.com/jcm/psystem/whypascal.html

9 of 16 11/9/07 10:57 AM

circumlocutions or duplicated code, particularly when coupled with the inability to control the order in
which logical expressions are evaluated. Consider this common situation, expressed in C or Ratfor:

 while (getnext(...)) {
 if (something)
 break
 rest of loop
 }

With no 'break' statement, the first attempt in Pascal is

 done := false;
 while (not done) and (getnext(...)) do
 if something then
 done := true
 else begin
 rest of loop
 end

But this doesn't work, because there is no way to force the "not done" to be evaluated before the next
call of 'getnext'. This leads, after several false starts, to

 done := false;
 while not done do begin
 done := getnext(...);
 if something then
 done := true
 else if not done then begin
 rest of loop
 end
 end

Of course recidivists can use a 'goto' and a label (numeric only and it has to be declared) to exit a loop.
Otherwise, early exits are a pain, almost always requiring the invention of a boolean variable and a
certain amount of cunning. Compare finding the last non-blank in an array in Ratfor:

 for (i = max; i > 0; i = i - 1)
 if (arr(i) != ' ')
 break

with Pascal:

 done := false;
 i := max;
 while (i > 0) and (not done) do
 if arr[i] = ' ' then
 i := i - 1
 else

Why Pascal? http://www.threedee.com/jcm/psystem/whypascal.html

10 of 16 11/9/07 10:57 AM

 done := true;

The index of a 'for' loop is undefined outside the loop, so it is not possible to figure out whether one
went to the end or not. The increment of a 'for' loop can only be +1 or -1, a minor restriction.

There is no 'return' statement, again for one in-one out reasons. A function value is returned by
setting the value of a pseudo-variable (as in Fortran), then falling off the end of the function. This
sometimes leads to contortions to make sure that all paths actually get to the end of the function with the
proper value. There is also no standard way to terminate execution except by reaching the end of the
outermost block, although many implementations provide a 'halt' that causes immediate termination.

The 'case' statement is better designed than in C, except that there is no 'default' clause and the
behavior is undefined if the input expression does not match any of the cases. This crucial omission
renders the 'case' construct almost worthless. In over 6000 lines of Pascal in 'Software Tools in
Pascal', I used it only four times, although if there had been a 'default', a 'case' would have served in
at least a dozen places.

The new standard offers no relief on any of these points.

4. The Environment

The Pascal run-time environment is relatively sparse, and there is no extension mechanism except
perhaps source-level libraries in the "official" language.

Pascal's built-in I/O has a deservedly bad reputation. It believes strongly in record-oriented input and
output. It also has a look-ahead convention that is hard to implement properly in an interactive
environment. Basically, the problem is that the I/O system believes that it must read one record ahead of
the record that is being processed. In an interactive system, this means that when a program is started, its
first operation is to try to read the terminal for the first line of input, before any of the program itself has
been executed. But in the program

 write('Please enter your name: ');
 read(name);
 ...

read-ahead causes the program to hang, waiting for input before printing the prompt that asks for it.

It is possible to escape most of the evil effects of this I/O design by very careful implementation, but not
all Pascal systems do so, and in any case it is relatively costly.

The I/O design reflects the original operating system upon which Pascal was designed; even Wirth
acknowledges that bias, though not its defects.(15) It is assumed that text files consist of records, that is,
lines of text. When the last character of a line is read, the built-in function 'eoln' becomes true; at that
point, one must call 'readln' to initiate reading a new line and reset 'eoln'. Similarly, when the last
character of the file is read, the built-in 'eof' becomes true. In both cases, 'eoln' and 'eof' must be
tested before each 'read' rather than after.

Given this, considerable pains must be taken to simulate sensible input. This implementation of 'getc'
works for Berkeley and VU I/O systems, but may not necessarily work for anything else:

 { getc -- read character from standard input }

Why Pascal? http://www.threedee.com/jcm/psystem/whypascal.html

11 of 16 11/9/07 10:57 AM

 function getc (var c : character) : character;
 var
 ch : char;
 begin
 if eof then
 c := ENDFILE
 else if eoln then begin
 readln;
 c := NEWLINE
 end

 else begin
 read(ch);
 c := ord(ch)
 end;
 getc := c
 end;

The type 'character' is not the same as 'char', since ENDFILE and perhaps NEWLINE are not legal
values for a 'char' variable.

There is no notion at all of access to a file system except for predefined files named by (in effect) logical
unit number in the 'program' statement that begins each program. This apparently reflects the CDC
batch system in which Pascal was originally developed. A file variable

 var fv : file of type

is a very special kind of object - it cannot be assigned to, nor used except by calls to built-in procedures
like 'eof', 'eoln', 'read', 'write', 'reset' and 'rewrite'. ('reset' rewinds a file and makes it
ready for re- reading; 'rewrite' makes a file ready for writing.)

Most implementations of Pascal provide an escape hatch to allow access to files by name from the
outside environment, but not conveniently and not standardly. For example, many systems permit a
filename argument in calls to 'reset' and 'rewrite':

 reset(fv, filename);

But 'reset' and 'rewrite' are procedures, not functions - there is no status return and no way to
regain control if for some reason the attempted access fails. (UCSD provides a compile-time flag that
disables the normal abort.) And since fv's cannot appear in expressions like

 reset(fv, filename);
 if fv = failure then ...

there is no escape in that direction either. This straitjacket makes it essentially impossible to write
programs that recover from mis-spelled file names, etc. I never solved it adequately in the 'Tools'
revision.

There is no notion of access to command-line arguments, again probably reflecting Pascal's
batch-processing origins. Local routines may allow it by adding non-standard procedures to the
environment.

Why Pascal? http://www.threedee.com/jcm/psystem/whypascal.html

12 of 16 11/9/07 10:57 AM

Since it is not possible to write a general-purpose storage allocator in Pascal (there being no way to talk
about the types that such a function would return), the language has a built-in procedure called 'new'
that allocates space from a heap. Only defined types may be allocated, so it is not possible to allocate, for
example, arrays of arbitrary size to hold character strings. The pointers returned by 'new' may be
passed around but not manipulated: there is no pointer arithmetic. There is no way to regain control if
storage runs out.

The new standard offers no change in any of these areas.

5. Cosmetic Issues

Most of these issues are irksome to an experienced programmer, and some are probably a nuisance even
to beginners. All can be lived with.

Pascal, in common with most other Algol-inspired languages, uses the semicolon as a statement
separator rather than a terminator (as it is in PL/I and C). As a result one must have a reasonably
sophisticated notion of what a statement is to put semicolons in properly. Perhaps more important, if one
is serious about using them in the proper places, a fair amount of nuisance editing is needed. Consider
the first cut at a program:

 if a then
 b;
 c;

But if something must be inserted before b, it no longer needs a semicolon, because it now precedes an
'end':

 if a then begin
 b0;
 b
 end;
 c;

Now if we add an 'else', we must remove the semicolon on the 'end':

 if a then begin
 b0;
 b
 end
 else
 d;
 c;

And so on and so on, with semicolons rippling up and down the program as it evolves.

One generally accepted experimental result in programmer psychology is that semicolon as separator is
about ten times more prone to error than semicolon as terminator.(16) (In Ada, (17) the most significant
language based on Pascal, semicolon is a terminator.) Fortunately, in Pascal one can almost always close
one's eyes and get away with a semicolon as a terminator. The exceptions are in places like declarations,

Why Pascal? http://www.threedee.com/jcm/psystem/whypascal.html

13 of 16 11/9/07 10:57 AM

where the separator vs. terminator problem doesn't seem as serious anyway, and just before 'else',
which is easy to remember.

C and Ratfor programmers find 'begin' and 'end' bulky compared to { and } .

A function name by itself is a call of that function; there is no way to distinguish such a function call
from a simple variable except by knowing the names of the functions. Pascal uses the Fortran trick of
having the function name act like a variable within the function, except that where in Fortran the function
name really is a variable, and can appear in expressions, in Pascal, its appearance in an expression is a
recursive invocation: if f is a zero-argument function, 'f:=f+1' is a recursive call of f.

There is a paucity of operators (probably related to the paucity of precedence levels). In particular, there
are no bit-manipulation operators (AND, OR, XOR, etc.). I simply gave up trying to write the following
trivial encryption program in Pascal:

 i := 1;
 while getc(c) ENDFILE do begin
 putc(xor(c, key[i]));
 i := i mod keylen + 1
 end

because I couldn't write a sensible 'xor' function. The set types help a bit here (so to speak), but not
enough; people who claim that Pascal is a system programming language have generally overlooked this
point. For example, [18, p. 685]

"Pascal is at the present time [1977] the best language in the public domain for purposes
of system programming and software implementation."

seems a bit naive.

There is no null string, perhaps because Pascal uses the doubled quote notation to indicate a quote
embedded in a string:

 'This is a '' character'

There is no way to put non-graphic symbols into strings. In fact, non-graphic characters are unpersons
in a stronger sense, since they are not mentioned in any part of the standard language. Concepts like
newlines, tabs, and so on are handled on each system in an 'ad hoc' manner, usually by knowing
something about the character set (e.g., ASCII newline has decimal value 10).

There is no macro processor. The 'const' mechanism for defining manifest constants takes care of
about 95 percent of the uses of simple #define statements in C, but more involved ones are hopeless. It
is certainly possible to put a macro preprocessor on a Pascal compiler. This allowed me to simulate a
sensible 'error' procedure as

 #define error(s)begin writeln(s); halt end

('halt' in turn might be defined as a branch to the end of the outermost block.) Then calls like

Why Pascal? http://www.threedee.com/jcm/psystem/whypascal.html

14 of 16 11/9/07 10:57 AM

 error('little string');
 error('much bigger string');

work since 'writeln' (as part of the standard Pascal environment) can handle strings of any size. It is
unfortunate that there is no way to make this convenience available to routines in general.

The language prohibits expressions in declarations, so it is not possible to write things like

 const SIZE = 10;
 type arr = array [1..SIZE+1] of integer;

or even simpler ones like

 const SIZE = 10;
 SIZE1 = SIZE + 1;

6. Perspective

The effort to rewrite the programs in 'Software Tools' started in March, 1980, and, in fits and starts,
lasted until January, 1981. The final product(19) was published in June, 1981. During that time I
gradually adapted to most of the superficial problems with Pascal (cosmetics, the inadequacies of control
flow), and developed imperfect solutions to the significant ones (array sizes, run-time environment).

The programs in the book are meant to be complete, well-engineered programs that do non-trivial tasks.
But they do not have to be efficient, nor are their interactions with the operating system very
complicated, so I was able to get by with some pretty kludgy solutions, ones that simply wouldn't work
for real programs.

There is no significant way in which I found Pascal superior to C, but there are several places where it is
a clear improvement over Ratfor. Most obvious by far is recursion: several programs are much cleaner
when written recursively, notably the pattern-search, quicksort, and expression evaluation.

Enumeration data types are a good idea.They simultaneously delimit the range of legal values and
document them. Records help to group related variables. I found relatively little use for pointers.

Boolean variables are nicer than integers for Boolean conditions; the original Ratfor programs contained
some unnatural constructions because Fortran's logical variables are badly designed.

Occasionally Pascal's type checking would warn of a slip of the hand in writing a program; the run-time
checking of values also indicated errors from time to time, particularly subscript range violations.

Turning to the negative side, recompiling a large program from scratch to change a single line of source
is extremely tiresome; separate compilation, with or without type checking, is mandatory for large
programs.

I derived little benefit from the fact that characters are part of Pascal and not part of Fortran, because the
Pascal treatment of strings and non- graphics is so inadequate. In both languages, it is appallingly
clumsy to initialize literal strings for tables of keywords, error messages, and the like.

Why Pascal? http://www.threedee.com/jcm/psystem/whypascal.html

15 of 16 11/9/07 10:57 AM

The finished programs are in general about the same number of source lines as their Ratfor equivalents.
At first this surprised me, since my preconception was that Pascal is a wordier and less expressive
language. The real reason seems to be that Pascal permits arbitrary expressions in places like loop limits
and subscripts where Fortran (that is, portable Fortran 66) does not, so some useless assignments can
be eliminated; furthermore, the Ratfor programs declare functions while Pascal ones do not.

To close, let me summarize the main points in the case against Pascal.

1. Since the size of an array is part of its type, it is not possible to write general-purpose routines, that is,
to deal with arrays of different sizes. In particular, string handling is very difficult.

2. The lack of static variables, initialization and a way to communicate non-hierarchically combine to
destroy the "locality" of a program - variables require much more scope than they ought to.

3. The one-pass nature of the language forces procedures and functions to be presented in an unnatural
order; the enforced separation of various declarations scatters program components that logically belong
together.

4. The lack of separate compilation impedes the development of large programs and makes the use of
libraries impossible.

5. The order of logical expression evaluation cannot be controlled, which leads to convoluted code and
extraneous variables.

6. The 'case' statement is emasculated because there is no default clause.

7. The standard I/O is defective. There is no sensible provision for dealing with files or program
arguments as part of the standard language, and no extension mechanism.

8. The language lacks most of the tools needed for assembling large programs, most notably file
inclusion.

9. There is no escape. This last point is perhaps the most important. The language is inadequate but
circumscribed, because there is no way to escape its limitations. There are no casts to disable the
type-checking when necessary. There is no way to replace the defective run-time environment with a
sensible one, unless one controls the compiler that defines the "standard procedures." The language is
closed. People who use Pascal for serious programming fall into a fatal trap. Because the language is so
impotent, it must be extended. But each group extends Pascal in its own direction, to make it look like
whatever language they really want. Extensions for separate compilation, Fortran-like COMMON,
string data types, internal static variables, initialization, octal numbers, bit operators, etc., all add to the
utility of the language for one group, but destroy its portability to others. I feel that it is a mistake to use
Pascal for anything much beyond its original target. In its pure form, Pascal is a toy language, suitable
for teaching but not for real programming.

Acknowledgments

I am grateful to Al Aho, Al Feuer, Narain Gehani, Bob Martin, Doug McIlroy, Rob Pike, Dennis
Ritchie, Chris Van Wyk and Charles Wetherell for helpful criticisms of earlier versions of this paper.

 1. Feuer, A. R. and N. H. Gehani, "A Comparison of the Programming
 Languages C and Pascal - Part I: Language Concepts," Bell Labs
 internal memorandum (September 1979).
 2. N. H. Gehani and A. R. Feuer, "A Comparison of the Programming

Why Pascal? http://www.threedee.com/jcm/psystem/whypascal.html

16 of 16 11/9/07 10:57 AM

 Languages C and Pascal - Part II: Program Properties and Programming
 Domains," Bell Labs internal memorandum (February 1980).
 3. P. Mateti, "Pascal versus C: A Subjective Comparison," Language
 Design and Programming Methodology Symposium, Springer-Verlag, Sydney,
 Australia (September 1979).
 4. A. Springer, "A Comparison of Language C and Pascal," IBM Technical
 Report G320-2128, Cambridge Scientific Center (August 1979).
 5. B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley,
 Reading, Mass. (1976).
 6. K. Jensen, Pascal User Manual and Report, Springer-Verlag (1978). (2nd
 edition.)
 7. David V. Moffat, "A Categorized Pascal Bibliography," SIGPLAN Notices
 15(10), pp. 63-75 (October 1980).
 8. A. N. Habermann, "Critical Comments on the Programming Language
 Pascal," Acta Informatica 3, pp. 47-57 (1973).
 9. O.Lecarme and P. Desjardins, "More Comments on the Programming
 Language Pascal," Acta Informatica 4, pp. 231-243 (1975).
 10. H. J. Boom and E. DeJong, "A Critical Comparison of Several
 Programming Language Implementations," Software Practice and
 Experience 10(6), pp. 435-473 (June 1980).
 11. N. Wirth, "An Assessment of the Programming Language Pascal," IEEE
 Transactions on Software Engineering SE-1(2), pp. 192-198 (June, 1975).
 12. O. Lecarme and P. Desjardins, ibid, p. 239.
 13. A. M. Addyman, "A Draft Proposal for Pascal," SIGPLAN Notices 15(4),
 pp. 1-66 (April 1980).
 14. J. Welsh, W. J. Sneeringer, and C. A. R. Hoare, "Ambiguities and
 Insecurities in Pascal," Software Practice and Experience 7, pp. 685-
 696 (1977).
 15. N. Wirth, ibid., p. 196.
 16. J. D. Gannon and J. J. Horning, "Language Design for Programming
 Reliability," IEEE Trans. Software Engineering SE-1(2), pp. 179-191
 (June 1975).
 17. J. D. Ichbiah, et al, "Rationale for the Design of the Ada Programming
 Language," SIGPLAN Notices 14(6) (June 1979).
 18. J. Welsh, W. J. Sneeringer, and C. A. R. Hoare, ibid.
 19. B. W. Kernighan and P. J. Plauger, Software Tools in Pascal, Addison-
 Wesley (1981).

Send e-mail to jfoust@threedee.com for more information.

Copyright 2005 John Foust, All Rights Reserved: :
THIS PAGE MAY NOT BE USED OR PUBLISHED IN ANY FORM (WRITTEN, CD-ROM, ETC.) WITHOUT
EXPRESS WRITTEN (HARDCOPY) PERMISSION FROM JOHN FOUST.

