y |
r

- Apple I
~ Reference
- Manual

January 1978

Reference Manual * >

e

APPLE @I

Reference Manual
j’"f?{,- — T T
January 1978

AFFLE Compuloy ng
1U2E0 Bandiiy. B
Caparting, DA
FLTRRR|

APPLE I Reference Manual
TABLE OF CONTENTS

A. GETTING STARTED WITH YOUR

APPLE Il ..ot inieniaenannns 1
1, UnpaeKing s v ivaansswnmsm sma wsan o 1
2. Warranty Registration Card 1
3. Check for Shipping Damage 2
4. POWEBTUP uviasmvani smimeem iaedemn s 2
5. APPLE Il Speaks Several Languages. 3
6. APPLE IntegerBASIC 3
7. Running Your First
and Second Programs 3
8. Running 16K Startrek 3
9. Loading a Program Tape 4
10. Breakout and Color Demos Tapes .. 6
11. Breakout and Color
Demos Program Listings 12
12. How to Play Startrek 14
13. Loading HIRES Demo Tape 15
B. APPLE Il INTEGER BASIC........... 17
1. BASIC Commands . vss e vm s 18
2. BASIC Operators ..: cussaisseassis 19
3. BASIC Functionsccunnn. 22
4. BASIC Statements 23
5. Special Control and Editing 28
6. Table A — Graphics Colors 29
7. Special Controls and Features... .. 30
8. BASIC Error Messages............. 32
9. Simplified Memory Map 33
10. Data Read/Save Subroutines 34
11. Simple Tone Subroutines 43
12. High Resolution Graphics

Subroutines and Listings 46

13. Additional BASIC Program
EXamples ...cvvviaie s saeee

a. Rod's Color Pattern (4K).......
PORGHAKY .cvomomi svamoms wis s
Color Sketch (4K)
Mastermind (8K)
Biorhythm (4K).
Dragon Maze (4K)

C:. APPLE [l FIRMWARE.cccsseessss
1. System Monitor Commands
2. Control and Editing Characters....
3. Special Controls and Features.....
4

. Annotated Monitor and
Dis-assembler Listing

5. Binary Floating Point Package.....
6. Sweet 16 Interpreter Listing
7.65020pCodescoovvuunnnn

~9% 00y

D. APPLE Il HARDWARE

1. Getting Started with Your
APPLE I BOArd ..o« comnsasvmsms sie

APPLE Il Switching Power Supply .
Interfacing with the Home TV
Simple Serial Output..............

Interfacing the APPLE —
Signals, Loading, Pin
CONNOCHONS - ..n svvve v swmnte it

6. Memory —
Options, Expansion, Map,
AAAFESS o:vri s v v sy wnmere i

7. System TiMING «..x s isvinsiswinias
8. Sohamaties.. «couwwewassios wewsees

A

GETTING STARTED WITH YOUR APPLE II

Unpacking

Don't throw away the packing material. Save it for the unlikely
event that you may need to return your Apple II for warrantee repair
If you bought an Apple II Board only, see hardware section in this
manual on how to get started. You should have received the followin

1. Apple II system including mother printed circuit board
with specified amount of RAM memory and 8K of ROM memory,
switching power supply, keyboard, and case assembly.

2. Accessories Box including the following:

This manual including warranty card.

Pair of Game Paddles

A.C. Power Cord

Cassette tape with "Breakout"on one side

and "Color Demos" on the other side.
Cassette recorder interface cable (miniature
phone jack type)

o0 oo
- . - -

1]

3. If you purchased a 16K or larger system, your accessory
box should also contain:
a. 16K Startrek game cassette with High Resolution
Graphics Demo ("HIRES") on the flipside.
b. Applesoft Floating Point Basic Language Cassette
with an example program on the other side.
c. Applesoft reference manual

4, In addition other items such as a vinyl carrying case
or hobby board peripherial may have been included if
specifically ordered as "extras".

Notify your dealer or Apple Computer, Inc. immediately if you are
missing any items.

Warranty Registration Card

Fil1l this card out immediately and completely and mail to Apple in
order to register for one year warranty and to be placed on
owners club mailing list. Your Apple II's serial number is located
on the bottom near the rear edge. You model number is:

A2SOOMMX
MM is the amount of memory you purchased. For Example:

A2500098X
is an 8K Byte Apple II system.

Check for Damage

Inspect the outside case of your Apple for shipping damage. Gently
1ift up on the top rear of the 1id of the case to release the 1id
snaps and remove the 1id. Inspect the inside. Nothing should be
loose and rattling around. Gently press down on each integrated
circuit to make sure that each is still firmly seated in its
socket. Plug in your game paddles into the Apple II board at the
socket marked "GAME I/0" at location J14. See hardware section of
this manual for additional detail. The white dot on the connector
should be face forward. Be careful as this connector is fragile.
Replace the 1id and press on the back top of it to re-snap it into
place.

Power Up

First, make sure that the power ON/OFF switch on the rear power
supply panel on your Apple II is in the "OFF" position. Connect
the A.C. power cord to the Apple and to a 3 wire 120 volt A.C.
outlet. Make sure that you connect the third wire to ground if
you have only a two conductor house wiring system. This ground
is for your safety if there is an internal failure in the Apple
power supply, minimizes the chance of static damage to the Apple,
and minimizes RFI problems.

Connect a cable from the video output jack on the back of the Apple
to a TV set with a direct video input jack. This type of set is
commonly called a "Monitor". If your set does not have a direct
video input, it is possible to modify your existing set. Write for
Apple's Application note on this. Optionally you may connect the
Apple to the antenna terminals of your TV if you use a modulator.
See additional details in the hardware section of this manual under
"Interfacing with the Home TV".

Now turn on the power switch on the back of the Apple. The indicator
light (it's not a switch) on the keyboard should now be ON. If

not, check A.C. connections. Press and release the "Reset" button

on the keyboard. The following should happen: the Apple's internal
speaker should beep, an asterisk ("*") prompt character should appear
at the Tower left hand corner of your TV, and a flashing white square

should appear just to the right of the asterisk. The rest of the
TV screen will be made up of radom text characters (typically question marks),

If the Apple beeps and garbage appears but you cannot see an "*" and the
cursor, the horizontal or vertical height settings on the TV need to be
adjusted. Now depress and release the "ESC" key, then hold down the
"SHIFT" key while depressing and releasing the P key. This should

clear your TV screen to all black. Now depress and release the "RESET"
key again. The "*" prompt character and the cursor should return to

the lower left of your TV screen.

Apple Speaks Several Languages

The prompt character indicates which language your Apple is curren
in. The current prompt character, an asterisk ("*"), indicates tha
you are in the "Monitor" language, a powerful machine level langua
for advanced programmers. Details of this language are in the
"Firmware" section of this manual.

Apple Integer BASIC

Apple also contains a high level English oriented language called
Integer BASIC, permanently in its ROM memory. To switch to this
language hold down the "CTRL" key while depressing and releasing t
"B" key. This is called a control-B function and is similiar to
the use of the shift key in that it indicates a different function
to the Apple. Control key functions are not displayed on your

TV screen but the Apple still gets the message. Now depress and
release the "RETURN" key to tell Apple that you have finished typi
a line on the keyboard. A right facing arrow (">") called a caret
will now appear as the prompt character to indicate that Apple is
now in its Interger BASIC language mode.

Running Your First and Second Program

Read through the next three sections that include:

1. Loading a BASIC program Tape
2. Breakout Game Tape
3. Color Demo Tape

Then load and run each program tape. Additional information on
Apple II's interger BASIC is in the next section of this manual.

Running 16K Startrek

If you have 16K Bytes or larger memory in your Apple, you will als
receive a "STARTREK" game tape. Load this program just as you did
the previous two, but before you "RUN" it, type in "HIMEM: 16384"
to set exactly where in memory this program is to run.

LOADING A PROGRAM TAPE

INTRODUCTION

This section describes a procedure for loading BASIC programs
successfully into the Apple II. The process of loading a program is divided
into three section; System Checkout, Loading a Tape and What to do when
you have Loading Problems. They are discussed below.

When loading a tape, the Apple II needs a signal of about 2 1/2 to 5
volts peak-to-peak. Commonly, this signal is obtained from the "Monitor"
or "earphone" output jack on the tape recorder. Inside most tape recorders,
this signal is derived from the tape recorder's speaker. One can take
advantage of this fact when setting the volume levels. Using an Apple
Computer pre-recorded tape, and with all cables disconnected, play the tape
and adjust the volume to a Toud but un-distorted level. You will find that
this volume setting will be quite close to the optimum setting.

Some tape recorders (mostly those intended for use with hi-fi sets)
do not have an "earphone" or high-level "monitor" output. These machines
have outputs labeled "1ine output" for connection to the power amplifier.
The signal levels at these outputs are too low for the Apple II in most cases.

Cassette tape recorders in the $4Q - $5Q range generally have ALC
(Automatic Level Control) for recording from the microphone input. This feature
is useful since the user doesn't have to set any volume controls to obtain
a good recording. If you are using a recorder which must be adjusted, it
will have a level meter or a little light to warn of excessive recording levels.
Set the recording level to just below the level meter's maximum, or to just a
dim indication on the level lamp. Listen to the recorded tape after you've
saved a program to ensure that the recording is "loud and clear".

Apple Computer has found that an occasional tape recorder will not function
properly when both Input and Output cables are plugged in at the same time.
This problem has been traced to a ground loop in the tape recorder itself which
prevents making a good recording when saving a program. The easiest solution
is to unplug the "monitor" output when recording. This ground loop does not
influence the system when loading a pre-recorded tape.

Tape recorder head alignment is the most common source of tape recorder
problems. If the playback head is skewed, then high frequency information
on pre-recorded tapes is lost and all sorts of errors will result. To confirm
that head alignment is the problem, write a short program in BASIC. >10 END
is sufficient. Then save this program. And then rewind and load the program.
If you can accomplish this easily but cannot load pre-recorded tapes, then
head alignment problems are indicated.

Apple Computer pre-recorded tapes are made on the highest quality professional
duplicating machines, and these tapes may be used by the service technician to
align the tape recorder's heads. The frequency response of the tape recorder
should be fairly good; the 6 KHz tone should be not more than 3 db down from
a 1 KHz tone, and a 9 KHz tone should be no more than 9 db down. Note that
recordings you have made yourself with mis-aligned heads may not not play
properly with the heads properly aligned. If you made a recording with a
skewed record head, then the tiny magnetic fields on the tape will be skewed as
well, thus playing back properly only when the skew on the tape exactly matches
the skew of the tape recorder's heads. If you have saved valuable programs with
a skewed tape recorder, then borrow another tape recorder, load the programs with
the old tape recorder into the Apple, then save them on the borrowed machine.
Then have your tape recorder properly aligned.

Listening to the tape can help solve other problems as well. Flaws in the
tape, excessive speed variations, and distortion can be detected this way.
Saving a program several times in a row is good insurance against tape flaws.
One thing to listen for is a good clean tone lasting for at least 3 1/2 seconds
is needed by the computer to "set up" for proper loading. The Apple puts out
this tone for anout 10 seconds when saving a program, so you normally have
6 1/2 seconds of leeway. If the playback volume is too high, you may pick up tape
noise before getting to the set-up tone. Try a lower playback volume.

SYSTEM CHECKOUT

A quick check of the Apple II computer system will help you spot any
problems that might be due to improperly placed or missing connections between
the Apple 11, the cassette interface, the Video display, and the game
paddles. This checkout procedure takes just a few seconds to perform and
is a good way of insuring that everything is properly connected before the
power is turned on.

After the Apple II system has been powered up and the video display
presents a random matrix of question marks or other text characters the

POWER TO APPLE - check that the AC power cord is plugged
into an appropriate wall socket, which includes a "true"
ground and is connected to the Apple II.

CASSETTE INTERFACE - check that at least one cassette
cable double ended with miniature phone tip jacks is
connected between the Apple II cassette Input port and
the tape recorder's MONITOR plug socket.

VIDEO DISPLAY INTERFACE -

a) for a video monitor - check that a cable connects
the monitor to the Apple's video output port.
b) for a standard television - check that an adapter

(RF modulator) is plugged into the Apple II (either
in the video output (K 14) or the video auxillary
socket (J148), and that a cable runs between the
television and the Adapter's output socket.

GAME PADDLE INTERFACE - if paddles are to be used, check
that they are connected into the Game 1/0 connector (J14)
on the right-hand side of the Apple II mainboard.

POWER ON - flip on the power switch in back of the Apple II,

the "power" indicator on the keyboard will light. Also
make sure the video monitor (or TV set) is turned on.

following procedure can be followed to load a BASIC program tape:

1.

Hit the RESET key.

An asterick, "*" should appear on the lefthand side

of the screen below the random text pattern. A flashing
white cursor will appear to the right of the asterick.

Hold down the CTRL key, depress and release the B key,
then depress the "RETURN" key and release the "CTRL" key.
A right facing arrow should appear on the lefthand side
of the screen with a flashing cursor next to it. If it
doesn't, repeat steps 1 and 2.

Type in the word "LOAD" on the keyboard. You should see
the word in between the right facing arrow and the
flashing cursor. Do not depress the "RETURN" key yet.

Insert the program cassette into the tape recorder and

rewind its

If not already set, adjust the Volume control to 5@-70%
maximum. If present, adjust the Tone control to 80-100%
maximum.

6. Start the tape recorder in "PLAY" mode and now depress
the "RETURN" key on the Apple II.

7. The cursor will disappear and Apple II will beep in a
few seconds when it finds the beginning of the program.
If an error message is flashed on the screen, proceed
through the steps listed in the Tape Problem section

of this paper.

8. A second beep will sound and the flashing cursor will
reappear after the program has been successfully loaded
into the computer.

9. Stop the tape recorder. You may want to rewind the program
tape at this time.

10. Type in the word "RUN" and depress the "RETURN" key.

The steps in loading a program have been completed and if everying has
gone satisfactorily the program will be operating now.

LOADING PROBLEMS

Occasionally, while attempting to load a BASIC program Apple II
beeps and a memory full error is written on the screen. At this time
you might wonder what is wrong with the computer, with the program tape,
or with the cassette recorder. Stop. This is the time when you need
to take a moment and checkout the system rather than haphazardly attempt-
ing to resolve the loading problem. Thoughtful action taken here will
speed in a program's entry. If you were able to successfully turn on the
computer, reset it, and place it into BASIC then the Apple II is probably
operating correctly. Before describing a procedure for resolving this
loading problem, a discussion of what a memory full error is in order.

The memory full error displayed upon loading a program indicates that
not enough (RAM) memory workspace is available to contain the incoming data.
How does the computer know this? Information contained in the beginning of
the program tape declares the record length of the program. The computer
reads this data first and checks it with the amount of free memory. If
adequate workspace is available program loading continues. If not, the
computer beeps to indicate a problem, displays a memory full error statement,
stops the loading procedure, and returns command of the system to the key-
board. Several reasons emerge as the cause of this problem.

Memory Size too Small

Attempting to load a 16K program into a 4K Apple II will generate this
kind of error message. It is called loading too large of a program. The
solution is straight forward: only load appropriately sized programs into
suitably sized systems.

Another possible reason for an error message is that the memory pointers
which indicate the bounds of available memory have been preset to a smaller
capacity. This could have happened through previous usage of the "HIMEN:"
and "LOMEN :" statements. The solution is to reset the pointers by gC (CTRL B)
command. Hold the CTRL key down, depress and release the B key, then depress
the RETURN key and release the CTRL key. This will reset the system to max-

imum capacitv.

Cassette Recorder Inadjustment

If the Volume and Tone controls on the cassette recorder are not
properly set a memory full error can occur. The solution is to adjust
the Volume to 5@-7@% maximum and the Tone (if it exists) to 80-100%
max imum.*

A second common recorder problem is skewed head azimuth. When
the tape head is not exactly perpendicular to the edges of the magnetic
tape some of the high frequency data on tape can be skipped. This causes
missing bits in the data sent to the computer. Since the first data read
is record length an error here could cause a memory full error to be
generated because the length of the record is inaccurate. The solution:
adjust tape head azimuth. It is recommended that a competent technician
at a local stereo shop perform this operation.
Often times new cassette recorders will not need this adjustment.

*Apple Computer Inc. has tested many types of cassette recorders and so far
the Panasonic RQ-3@9 DS (less than $49.P@) has an excellent track record
for program loading.

Tape Problems
A memory full error can result from unintentional noise existing in

a program tape. This can be the result of a program tape starting on its
header which sometimes causes a glitch going from a nonmagnetic to magnetic
recording surface and is interpreted by the computer as the record length.
Or, the program tape can be defective due to false erasure, imperfections

in the tape, or physical damage. The solution is to take a moment and

listen to the tape. If any imperfections are heard then replacement of the
tape is called for. Listening to the tape assures that you know what a
"good" program tape sounds like. If you have any questions about this please
contact your local dealer or Apple for assistance.

If noise or a glitch is heard at the beginning of a tape advance the
tape to the start of the program and re-Load the tape.

Dealing with the Loading Problem

With the understanding of what a memory full error is an efficient way
of dealing with program tape loading problems is to perform the following
procedure:

1. Check the program tape for its memory requirements.
Be sure that you have a large enough system.

2. Before loading a program reset the memory pointers
with the B. (control B) command.

3. In special cases have the tape head azimuth
checked and adjusted.

4. Check the program tape by listening to it.
a) Replace it if it is defective, or
b) start it at the beginning of the program.
5. Then re-LOAD the program tape into the Apple II.
In most cases if the preceeding is followed a good tape Toad will result.

UNSOLVED PROBLEMS

If you are having any unsolved loading problems, contact your
nearest local dealer or Apple Computer Inc.

BREAKOUT GAME TAPE

PROGRAM DESCRIPTION

Breakout is a color graphics game for the Apple II computer. The object of
the game is to "knock-out'all 16 colored bricks from the playing field by
hitting them with the bouncing ball. You direct the ball by hitting it with
a paddle on the left side of the screen. You control the paddle with one of
the Apple's Game Paddle controllers. But watch out: you can only miss the
ball five times:

There are eight columns of bricks. As you penetrate through the wall the
point value of the bricks increases. A perfect game is 720 points; after
five balls have been played the computer will display your score and a
rating such as "Very Good". "Terrible!", etc. After ten hits of the ball,
its speed with double, making the game more difficult. If you break through
to the back wall, the ball will rebound back and forth, racking up points.

Breakout is a challenging game that tests your concentration, dexterity,
and skill.

REQUIREMENTS

This program will fit into a 4K or greater system.
BASIC is the programming language used.

PLAYING BREAKOUT

1. Load Breakout game following instructions in the "Loading
a BASIC Program from Tape" section of this manual.

2o Enter your name and depress RETURN key.

3 If you want standard BREAKOUT colors type in Y or Yes

and hit RETURN. The game will then begin.

4. If the answer to the previous questions was N or No
then the available colors will be displayed. The
player will be asked to choose colors, represented by a
number from @ to 15, for background, even bricks, odd
bricks, paddle and ball colors. After these have been
chosen the game will begin.

10

5. At the end of the game you will be asked if they
want to play again. A Y or Yes response will start
another game. A N or No will exit from the program.

NOTE: A game paddle (156k ohm potentiometer) must be connected
to PDOL (@) of the Game I/0 connector for this game.

COLOR DEMO TAPE

PROGRAM DESCRIPTION

COLOR DEMO demonstrates some of the Apple II video graphics
capabilities. In it are ten examples: Lines, Cross, Weaving,
Tunnel, Circle, Spiral, Tones, Spring, Hyperbola, and Color Bars.
These examples produce various combinations of visual patterns
in fifteen colors on a monitor or television screen. For example,
Spiral combines colorgraphics with tones to produce some amusing
patterns. Tones illustrates various sounds that you can produce
with the two inch Apple speaker. These examples also demonstrate
how the paddle inputs (PDL(X)) can be used to control the audio
and visual displays. Ideas from this program can be incorporated
into other programs with a little modification.

REQUIREMENTS

4K or greater Apple II system, color monitor or television,
and paddles are needed to use this program. BASIC is the pro-
gramming language used.

1l

BREAKOUT GAME
PRCGRAM LISTING

LISTING

224

PROG

-
L T T RN L]
I I bt oo
o I T ey Do R L] 4] (%) [T ey
i L R [N o S) 4t i i i
R e e e i i A e e pcs
xem ey e i 1 1 L] i L Pl it b e
i ot W T SR (]] = il 1
e mﬁ‘m = had e Ll r} B O W T ¥ { £ o
L I T LM i g B = R s [- -
) M wi. had leed bad fad b g [¥ B e o %) [e A
o R Bbd Ead had Rl R =] ant tad
b R TR R = S Y - A R = T et = = B L - Toad Lid
D T o I L | [l =] L i S T e B L e Lt (5 TR)
e ' i ' |] e B - R LEY gZ o Pl A - [t '
LA e ey W s e (o Ly e b toad i
[SR e o SN v S ¢ SR v S N 1] LI e e Lt e Ll e e o
@ [B e EE W * PL I CI L Lad o
B T I s N v B Y] LI T - W # w“ L0 v b oy
i1 o EA RS 1= RN SN R] o ke et o - - " el o] oy
TR LY ma eee s e ed e Pl - ¥ e B+ " ERE T v - e g b e
G ot 1 I] ' ! P e e S b e Bt B = U Ll ATAZ o
= W CE s e st cww ot L e A W | b P T e e Lad e
L i b e e e o - Y R Lk e o
SEL Gt S med dwl D Gel e = L= B i Ed L ® Ll £ L g e
(= i STk Wn;.._ {ad no.eﬁ f..n e M..M i % @ . i : T 1
o, i P ool hod irmi e Froamn e g e . oo | and L)
;E a6 me b e 8L B0 o o i3 e bEn. g e o e s s e
En] i e e il B o OHE
R~ T wm Al . s . L T e A A T fr (re [el
e - el B i CE B Ve G e B s [tad pos
) L (e i T I T =~ e i]
L] = L] G o o Y e ey T
e e e P S S s e ey s
w
) o
fac - o .
P wed Tad o
[) : b
i x...-m [B ~ R e
ok A e 0 ' T
- umE oE e G~
L R = S = TR |
T T PR) S Lo]
P wm et e Lol T
o Mwﬂ. e ;.or.. ol e] .ﬁ (]
i 4] -n * l
.ﬁ.m_ bodd e BT L
n it) I -
- I [L = o) T
e | i [)
e Vhoo Fad 023 L] oy
b T SO oy ey
L= . |t L Q=) Ea
e v b i} theicy
b ol))
e e b et e
D e bt
- e L] ertin Sigals
Py et e Ve IR ol i
= 1 Do Foad toed
T Ghe = et R = i
e fewimn e R . B
g [~ W e o
e T e T o R
il 1 e
R (Tl e
aomn
i]
L e (R
[Fovmm
D Ll s p Ly
[- N - e] e el Ao Banod
.] [Ladd LS L] v] AV)
== .u;m A v”mﬂ ...zi vl Ty (e L]
et e K o i o & i g
FEeLE 2E il 2
o s e poa i —
b M vty oy, LY S e
e x hda me it e o :
] RS o E .]
TR N (1] W e o g oty From
i wor K el ol e n Lad Lo
s dm B 4w Ae EERE pad baol i el
S al RS Fee WD e e e = o
iy T e) - o
[R ¥ 1] [[— (it R Bk A
L B - [I T #” T iy
e Ll e L bt o
e il - o] Sl el
et R W e L W Lad At prard b
b Pl - bl T e
W S - et % et e ¢ b
ol ool 5 e o T i [G
o o : 22 ; s 2 =
o] i Rl e e S o -0 e ko
L] Vdui b b SO} b g fow ol sned
v S 1] [T R | Lo SR ot S SR o R W ek "
L5 R &< - B = <R e) R st G PN B ol b ey
L [l 1
e reh o]

12

COLOR DEMO PROGRAM

PRCGRAM LISTING

18 DIN C{4): POKE 2,173 POKE
3,48: POKE 4,192: POKE 5,185
+ FOKE 6,8: POKE 7,32 POKE
B,168: POKE 5,252: POKE 18,
165 POKE 11,1 POKE 12,288

26 POKE 13,4: POKE 14,198 PORE
15,24: POKE 16,248: FORE I7
.5t POKE 18,198: POKE 15,1:
POKE 28,76: POKE 21,20 POKE
g2,%: POKE 23,%

36 TEXT & CALL -936: VIRB 4: TAB
8: PRINT "4K COLOR DEMOS™: PRINT
+ PRINT *{ LIRES®: PRINT "2 CROS
5*: PRINT "3 VERVING'

46 FRINT "4 TURNEL": PRINT "3 CIRCL
E*: PRINT "6 SFIRAL #&": PRINT
*7 TOHES #+ *: PRINT "3 SPRING'

58 PRINT *3 HYPERBOLA®: PRIWT
1% COLOR BARS: PRINT : PRIKT
s+ NEEDS PDL(B) CONNECTED®
: PRINT

£8 PRIKT "HIT RNY KEY FOR HEw DENO®
:Z=B: PRIRT & IRPUT "VHICH DEND
$ ", 0: GR ¢ IF 108 AKD 1441
THEN GOTO [88+1: GOTO 38

78 INPUT *WAICH DEMD WOULD YOU LIKE
" I GR o IF 1 AHD <28 THEM
GOTG 188«1: GOTO 38

188 [=1+1 HOD 79:J=14(1339)8(79
-1-1): GOSUB 28e8: (0SUB 14BB8
: GOTO 128

288 1=1+1 WOD 39:J=I: GOSUB 2068
+J=39-1: GOSUB 2edy: GLOSUB
16688: GOTO 268

LISTING

388 J=JtliJ=] MOD 22+1: FOR I=l
10 1295: COLOR=I WOD J+7: PLOT
(eel) MDD 37,(3%1) HOD 35: HEXT
I GOSUB 16@8d: GOTU 368
438 FOR I=1 10 4:C(1)= RHD (18}
¢ HEAT |
418 FOR 1=3 10 { STEP -Lal(I+l)
=C{1d REXT L:CCL)= RED (16
o FOR I1=0 7O 3: FOR J=L TO
4
425 COLOR=CCT nal=Dade 144 12K=38-
L: HUIK K,L AT K3 YLIN K,L AT
Ls HLIN K,L AT Ls VLIN K,L AT
£ NEXT J,1: GOSUB legdd: GOTO
419
88 Z=2i G070 68
o688 COLOR= RND (1g): FOR I=8 TO
18 STEP 2:J=3%-1: -HLIN 1,J AT
I+ GOSUB &40: YLIK 1,J AT J:
GOSUR 648
618 HLIN 142,7 AT J: GOSUB 648:
YLIN I+2,J AT I+2: GOSUE 646
: HERT 1
628 COLOR= RHD (16): FOR I=18 TO
B STEP -2:J=39-1: WLIN I#2,
1 AT 142: GOSUB 648 HLIN I+
¢, BT J: GOSUB 648
638 YLIN I,J AT J: GOSUB 648: HLIN
1,0 AT I: GOSUB 648: KERT It
G05UB 19060: GOTO 6@8
648 K=[+7:L=KskaeKa6470:L=20707
/Ls(PDL (8)/18): POKE 8,K:
POKE 1,L MOD 256: POKE 24,
L/256+1: CALL 2: RETURK

13

788 1= RHD (30)#3:J=1%1#3+1426+
78:Kk=32767/J(POL (B)/18):
POKE @,1: POKE 1,K MO0 256
+ POKE 24,(K2255)+1: CALL 2

: GOSUB 1886G: GOTO 7ed

868 X=3:A=1680:P=R:L=20:¥=4:7=
tJ=1: COLCR=6: HLIN 8,39 AT
4: COLOR=9: GOSUB 888: COLOR=
i2: WLIN 5,K-2 AT &

818 N=2+A-P-f/¥: COLOR=8: GOSUB
886: WLIN 3,39 AT RiX=k+l: IF
(39 THEN 828:%=3: YLIN 3,33
AT 12 VLIN 5,33 AT 2

828 P=A:A=M:7=R/188: COLOR=12: GOSUR
B8d: COLOR=9: WLIN 5,M-2 AT
Xt COLOR=13: PLOT X-2,M: FOR
1=8 T0 J: NEXT I: GOSUB 16688
: GOTO 818

868 N=L-Y:Li=N-1:L2=Me¢l: VLIN LI,
L2 AT %-1: VLIN L1,L2 AT 2

YLIN L1,L2 AT Z+l: RETURN

999 1=1+1 H0D 15: FOR V=0 T0 39
¢ FOR %<8 T0 39: COLOR=1+(ABS
(28-K)-2)% ABS (28-1)-2)/25
¢ PLOT %,¥: HEXT %,9: GOSUB
18468: GOTO 968

1880 CALL -936

1818 J=14] NOD 32: (OLOR=1/E: WLIN
8,39 AT 34J: VTA 21+(1/2) KD
25 THB 3403 IF J KOD & THEN
PRINT J/2;: GOSUB 16908: GAT
101

2668 0OLR= RND (1633 HLIH 8,39 T
J: COLOR= RND (16): YLIN @,
39 AT J: RETURN

16888 IF PEEK (-16384)(128 THEW RETURN

+ POKE -16368,8: POP : GOTO
30

Rt Rt B bt Bkt e Sl AFFLE 11 STAKTREN VEKSION e b L et S S

bl B | .
THIS IS A SHORT DESCKIPTION UF HOM TO PLAY STARTREK ON THE
APFLE COHFUTER.

THE UNIVERSE 1S HADE UF OF &4 QUADKANTS IN AN B EY B MATRIX.

THE QUADRANT IN WHICH YOU *THE ENTERFRISE * ARE: IS IN WHITEs

AND A BLOW UFP OF THAT QUADLRANT 1S FOUND' IN THE LOWER LEFT

CORNER . YOUR SFACE SHIF STATUS 1S FOUND IN A TAKELE 10

THE RIGHT SIDE OF THE QUADRANT BLOW UF.

THIS IS A SEARCH AND DESTROY HMISSION. THE ORJECT 1S TO LONG-KANGE

SENSE FOR INFORMATION AS TO WHERE KLINGONS (K) AREs MOVE TO THAT QUADKANT.
AND DESTKROY.

NUMEERS DISPLAYED FOR EACH QUALKANT DENDTE:
¢ OF STARS IN THE ONES FLACE

¢ OF BASES IN THE TENS FLACE
. ¢ OF KLINGONS IN THE HUNDREDS FLACE
AT ANY TIME DURING THE GAME:, FOR INSTANCE BEFORE ONE TOTALLY
RUNS OUT OF ENERGY: OK NEEDS TO REGENERATE ALL SYSTEMS» ONE MOVES TO A
QUADRANT WHICH INCLUDES A BASEs 10ONS NEXT 10O THAT BASE (H) AT WHICH TIHE
THE BASE SELF-DESTRUCTS ANDN THE ENTERFRISE (E) HAS ALL SYSTEMS °GOD°®

AGAIN.

TO FLAY?
1. THE COMMANDS CAN BE OHTAINED BY TYPING A *0* (ZERD) AND RETURN.
THEY ARE:

1. FROPULSION 2. REGENERATE

3. LONG KANGE SENSORS 4. FHASERS

S. PHOTON TORFEDOES &, GALAXY RECORD

7. COMFUTER 8. FKUEE

9. SHIELD ENERGY 10.ARAGE REFORT

11.L0AD PHOTON TOKFEDOES
2. THE COMANDS ARE IHVOKED BY TYPING THE NUMBER REFERING TO THEM

FOLLOWED BY A *RETURN®.

f. IF RESFONSE IS 1 THE COMFUTER WILL ASK WARF OR 10N AND
EXFECTS *W* IF ONE WANTS TO TREAVEL 1IN THE GALAXY
HETWEEN QUADRANTS AND AN *1* IF ONE WANTS ONLY
INTERNAL OUADKRANT TRAVEL .
DUSATION Ok WARF FACTUR 1S THE MNUMBER OF SFACES OK
QUADKANTS THE ENTERFKISE WILL HMOVE.
COURSE 1S COMFASS READING IN DEGREES FOR THE DESI-
RED' DESTINATION.

F. A 2 REGENERATES THE ENERGY AT THE EXFENSE OF Tlnk.

C. A 3 GIVES THE CONTENTS OF THE IMHEDIATE ADJACENT QUADRANTS.
THE GALAXY 1S5 WRAF-AROUND 1IN ALL DIRECTIONS.

U. 4 FIRES FHASERS AT THE EXFENSE OF AVAILAEBLE ENERGY.

E. S5 INITIATES A SET OF QUESTIONS FOR TORFEDO FIKING.
THEY CAN BE FIRED AUTOMATICALLY IF THEY HAVE
BEEN LOCKRED ON TARGEY WHILE IN THE COMFUTER
HMODEs, OR MAY BE FIRED MANUALLY IF THE TRAGECTORY ANGLE
IS KNOWN.
F. 6» 8 AND 10 ALL GIVE INFORMATION AROUT THE STATUS OF THE SHIF
AND ITS ENVIRONMENT.
G. 9 SETS THE SHIELD ENERGY/AVAILABLE ENERGY RATIO.
H. 11 ASKS FOR INFORMATION ON LOAD'ING AND UNLOADRING OF
PHOTON TOKPELOES AT THE ESPENSE OF AVAILABLE ENERGY.
THE ANSWER SHOULD BE A SIGNED NUMBER. FOR EXAHFLE

+5 OR -2.
1. 7 ENTERS A CONPUTER WHICH WILL RESFOND TO THE FOLLOWING
INSTRUCTIONS:
1. COMFUTE COURSE 2. LOCK FHASERS
3. LOCKN PHDTON TORFPEDOES
4. LOCK COURSE 5. COHPUTE TREJECTORY
6. STATUS 7. RETURN TO COMAND MODE

IN THE FIRST FIVE ONE WILL HAVE TO GIVE COORDINATES.
COORDINATES ARE GIVEN IN MATHHMATICAL NOTATION WITH
THE EXCEPTION THAT THE *Y* VALUE 1S GIVEN FIRST.

AN EXAMPLE WOULD BE *YsX*

COURSE OR TRAJECTORY:

0
L]

I

L]

[

270-====~ —————— T ——————— 90

]

1

L}

L]
180

cumemamams=u=.= THIS EXPLANATION WAS WRITTEN EY ELWOOD =.-.=,=s=.=.=.=.=
NOT RESPONSIBLE FOR
ERRORS

14

PROCEDURE
|

LOADING THE HI-RES DEMO TAPE

Power up system - turn the AC power switch in the back
of the Apple II on. You should see a random matrix of
question marks and other text characters. If you don't,
consult the operator's manual for system checkout pro-
cedures.

Hit the RESET key. On the left hand side of the screen
you should see an asterisk and a flashing cursor next to

it below the text matrix.

Insert the HI-RES demo tape into the cassette and rewind
it. Check Volume (5¢-79%) and Tone (8p-100%) settings.

Type in "CP@.FFFR" on the Apple II keyboard. This is the
address range of the high resolution machine language sub-
program. It extends from $CPP to $FFF. The R tells the
computer to read in the data. Do not depress the "RETURN"
key yet.

Start the tape recorder in playback mode and depress the
"RETURN" key. The flashing cursor disappears.

A beep will sound after the program has been read in.
STOP the tape recorder. Do not rewind the program tape yet.

Hold down the "CTRL" key, depress and release the B key,
then depress the "RETURN" key and release the "CTRL" key.
You should see a right facing arrow and a flashing cursor.
The B¢ command places the Apple into BASIC initializing
the memory pointers.

Type in "LOAD", restart the tape recorder in playback mode
and hit the "RETURN" key. The flashing cursor disappears.

This begins the loading of the BASIC subprogram of the
HI-RES demo tape.

A beep will sound to indicate the program is being loaded.

15

10.

2

12.

A second beep will sound, and the right facing arrow
will reappear with the flashing cursor. STOP the
tape recorder. Rewind the tape.

Type in "HIMEM:8192" and hit the "RETURN" key. This
sets up memory for high resolution graphics.

Type in "RUN" and hit the "RETURN" key. The screen

should clear and momentarily a HI-RES demo menu table
should appear. The loading sequence is now completed.

SUMMARY OF HI-RES DEMO TAPE LOADING

1. RESET

2. Type in CPQ.FFFR

3. Start tape recorder, hit RETURN

4, Asterick or flashing cursor reappear

B¢ (CTRL B) into BASIC

5. Type in "LOAD", hit RETURN

6. BASIC prompt (7) and flashing cursor
reappear. Type in "HIMEN:8192", hit
RETURN

7. Type in "RUN", hit RETURN

8. STOP tape recorder, rewind tape.

16

APPLE |l INTEGER BASIC

— ek ek b
W = Oo 0

P S G e RO

BASIC Commands

BASIC Operators

BASIC Functions

BASIC Statements

Special Control and Editing
Table A — Graphics Colors
Special Controls and Features
BASIC Error Messages
Simplified Memory Map

Data Read/Save Subroutines

. Simple Tone Subroutines

High Resolution Graphics
Additional BASIC Program Examples

BASIC COMMANDS

Commands are executed immediately; they do not require line numbers.Most Statements
(see Basic Statements Section) may also be used as commands. Remember to press
Return key after each command so that Apple knows that you have finished that

line. Multiple commands (as opposed to statements) on same line separated by

a" : " are NOT allowed.

COMMAND NAME

AUTO nwm Sets automatic 1ine numbering mode. Starts at line
number nwn and increments line numbers by 10. To
exit AUTO mode, type a control X*, then type the
letters "MAN" and press the return key.

AUTO nwnl, num2 Same as above execpt increments 1ine numbers by
number »nwumé.

CLR Clears current BASIC variables; undimensions arrays.
Program is unchanged.

CON Continues program execution after a stop from a
control C*. Does not change variables.

DEL numi Deletes line number nuwml.

DEL nuwml, num2 Deletes program from line numberrnwnl through line
number num?.

DSP var Sets debug mode that will display variable var every-

- time that it is changed along with the Tine number
that caused the change. (NOTE: RUN command clears
DSP mode so that DSP command is effective only if
program is continued by a CON or GOTO command.)

HIMEM: eapr Sets highest memory location for use by BASIC at
location specified by expressionexpin decimal.
HIMEM: may not be increased without destroying program.
HIMEM: s automatically set at maximum RAM memory when

BASIC is entered by a control B*.

GOTO expr Causes immediate jump to line number specified by
expression expr.

Sets mixed color graphics display mode. Clears screen

to black. Resets scrolling window. Displays 40x40
squares in 15 colors on top of screen and 4 lines of text
at bottom.

|G‘J
)

Lists entire program on screen.

r_
——
w
b

nwnl Lists program line number nuwml.

|
——
w
—

numl, num2 Lists program line numberwm! through line number
nwne.

—
—
wv
—

18

LOAD expr.
LOMEM: expr
MAN

NEW

NO DSP var
NO TRACE
RUN

RUN expr
SAVE

TEXT

TRACE

Reads (Loads) a BASIC program from cassette tape.

Start tape recorder before hitting return key. Two
beeps and a "> " indicate a good load. "ERR" or "MEM"
FULL ERR" message indicates a bad tape or poor recorde
performance.

Similar to HIMEM: except sets lowest memory location
available to BASIC. Automatically set at 2¢48 when
BASIC is entered with a control B*. Moving LOMEM:;
destroys current variable values.

Clears AUTO line numbering mode to all manual line
numbering after a control C* or control X*.

Clears (Scratches) current BASIC program.
Clears DSP mode for variable var.
Clears TRACE mode.

Clears variables to zero, undimensions all arrays and
executes program starting at lowest statement line
number.

Clears variables and executes program starting at line
number specified by expression expr.

Stores (saves) a BASIC program on a cassette tape.
Start tape recorder in record mode prior to hitting
return key.

Sets all text mode. Screen is formated to display
alpha-numeric characters on 24 Tines of 40 characters
each. TEXT resets scrolling window to maximum.

Sets debug mode that displays line number of each
statement as it is executed.

Control characters such as control X or control C are
typed by holding down the CTRL key while typing the
specified letter. This is similiar to how one holds
down the shift key to type capital letters. Control
characters are NOT displayed on the screen but are
accepted by the computer. For example, type several
control G's. We will also use a superscript C to indica
a control character as in XC.

19

BASIC Operators

Symbol

Sample Statement

Prefix Operators

£} 10 X= 4*%(5 + X)
+ 20 X= 1+4*5
- 30 ALPHA =
-(BETA +2)
NOT 49 IF A NOT B THEN
200
Arithmetic Operators
4 60 Y = X43
* 70 LET DOTS=A*B*N2
/ 80 PRINT GAMMA/S
MOD 90 X = 12 MOD 7
100 X = X MOD(Y+2)
+ 1MpP=L+G

120 KY4 = H-D

130 HEIGHT=15

140 LET SIZE=7*5

150 A(8) = 2

155 ALPHA$ = "PLEASE"

20

Explanation

Expressions within parenthesis ()
are always evaluated first.

Optional; +1 times following expression.
Negation of following expression.
Logical Negation of following expression;

@ if expression is true (non-zero), 1
if expression is false (zero).

Exponentiate as in X3.

shifted letter N.

NOTE: + is

Multiplication. NOTE: Implied multi-
plication such as (2 + 3)(4) is not
allowed thus N2 in example is a variable
not N * 2.

Divide

Modulo: Remainder after division of
first expression by second expression.

Add

Substract

Assignment operator; assigns a value to
a variable. LET is optional

Relational and Logical Operators

The numeric values used in logical evaluation are "true" if non-zero,
"false" if zero.

Symbol

or < >

AND

OR

Sample Statement

160 IF D=E
THEN 500

170 IF A$(1,1)=
"Y' THEN 500

180 IF ALPHA #X*Y
THEN 509

190 IF A$ # "NO“
THEN 500

200 IF ASB
THEN GO TO 50

210 IF A+1<B-5
THEN 100

22 IF A>=B
THEN 100

230 IF At1<=B-6
THEN 200

240 IF A>B AND
C<D THEN 20d

250 IF ALPHA OR

BETA+1 THEN 200

21

Explanation

Expression "equals" expression.

String variable "equals' string variabl
Expression "does not equal" expression

String variable "does not equal" stri
variable. NOTE: If strings are not
the same length, they are considered
un-equal. < > not allowed with strin

Expression "is greater than" expressi
Expression "is less than" expression.

Expression "is greater than or equal
expression.

Expression "is less than or equal to"
expression.

Expression 1 "and" expression 2 must
both be "true" for statements to be t

If either expression 1 or expression 2
is "true", statement is "true".

BASIC FUNCTIONS

Functions return a numeric result. They may be used as expressions or as part
of expressions. PRINT is used for examples only, other statements may

be used. Expressions followina function name must be enclosed between two
parenthesis sians.

FUNCTION NAME

ABS (expr) 3p@ PRINT ABS(X) Gives absolute value of the expressionexpr.

ASC (strg) 310/ PRINT ASC("BACK") Gives decimal ASCII value of designated
320 PRINT ASC(BS) string variable str¢. If more than one
330 PRINT ASC(B$(4,4)) character is in designated string or
335 PRINT ASC(B$(Y)) sub-string, it gives decimal ASCII
value of first character.

LEN (8trd) 340 PRINT LEN(BS) Gives current length of designated
string variable stré;i.e., number of
characters.

ppL (expr) 35@ PRINT PDL(X) Gives number between @ and 255 corres-

ponding to paddle position on game paddle
number designated by expression expr and must
be leqal paddle (@,1,2,0r 3) or else 255 is
returned.

PEEK (expr) 36@ PRINT PEEK(X) Gives the decimal value of number stored
of decimal memory location specified by
expression expr. For MEMORY locations
above 32676, use negative number; i.e.,
HEX location FFF@ is -16

RND (expr) 37@ PRINT RND(X) Gives random number between ¢ and
(expression expr -1) if expression expr
is positive; if minus, it gives random
number between @ and (expression expr +1).

SCRN(expri, 380 PRINT SCRN (X1,Y1) Gives color (number between @ and 15) of
expra) screen at horizontal location designated

by expression exprl and vertical
location designated by expression expr?
Range of expression expr! is § to 39. Range
of expression expr2 is @ to 39 if in standard
mixed colorgraphics display mode as set by
GR command or P to 47 if in all color mode
set by POKE -163p4 ,p: POKE - 16302,0.

SGN (expr) 39D PRINT SGN(X) Gives sian (not sine) of expression expr _
i.e., -1 if expressionexpr is negative, zero if
zero and +1 ifexpr is positive.

22

BASIC STATEMENTS

Each BASIC statement must have a line number between @ and 32767. Variable
names must start with an alpha character and may be any number of alpha-

numeric characters up to 192. Variable names may not contain buried any
of the following words: AND, AT, MOD, OR, STEP,
not begin with the letters END, LET, or REM.

with a § (dollar sign).

if separated by

by RUN or GOTO commands.

NAME

CALL expr

COLOR= expr

DIM varl (eaprl)
strd (expr?2)
var2 (expr3)

DSPvar

19 CALL-936

39 COLOR=12

Multiple statements may appear under the same line nu
a : (colon) as long as the total number of characters in the 1i
(including spaces) is less than approximately 150 characters

Most statements may also be used as commands.

50 DIM A(2p),8(19)

6@ DIM BS(39)
790 DIM C (2)
I1leqal:

80 DIM A(3p)

Leqal :
85 DIM C(1999)

Leaal:
a0 DSP AX: DSP L

[11eqal:

199 DSP AX,B

102 DSP ABS

104 DSP A(5)
Legal:

105 A=A(5): DSP A

23

or THEN. Variable names may
String variables names must end

BASIC statements are executed

Causes execution of a machine level
language subroutine at decimal memory
location specified by expression expr
Locations above 32767 are specified usi
negative numbers; i.e., location in
example 10 is hexidecimal number $FC53

In standard resolution color (GR)
graphics mode, this command sets screen
TV color to value in expression expr
in the range @ to 15 as described in
Table A. Actually expressionezpr may
in the range @ to 255 without error mes
since it is implemented as if it were
expressionexpr MOD 16.

The DIM statement causes APPLE II to
reserve memory for the specified variab
For number arrays APPLE reserves
approximately 2 times exprbytes of memo

limited by available memory. For strin

arrays -sﬁré-(expw must be in the range
1 to 255. Last defined variable may be
redimensioned at any time; thus, example
in line is illegal but 85 is allowed.

Sets debug mode that DSP variable var
time it changes and the Tine number whe
change occured.

NAME
END

FOR =

exp2l TOeaxpr?
STEPexpr3

GOSUZ eapr

GOTO expr

HLIN expri,
expr2ATexprd

Note:

EXAMPLE

119 END

119 FOR L=p to 39
129 FOR X=Y1 TO Y3
13p FOR I=39 TO 1

150 GOSUB 129 *J2

149 GOSUB 509

169 GOTO 209

179 GOTO ALPHA+1#9

189 GR
199 GR: POKE -163p2,9

2Pp HLIN P,39 AT 29
219 HLIN Z,7+6 AT I

DESCRIPTION

Stops program execution. Sends carriage
return and "> " BASIC prompt) to screen.

Begins FOR...NEXT loop, initializes

variable var to value of expression exprl

then increments it by amount in expression
expr 3each time the corresponding "NEXT"
statement is encountered, until value of
expression expr 2is reached. If STEP expr3

is omitted, a STEP of +1 is assumed. Negative
numbers are allowed.

Causes branch to BASIC subroutine starting
at legal line number specified by expression
expr Subroutines may be nested up to

16 levels.

Causes immediate jump to legal line
number specified by expression expr.

Sets mixed standard resolution color
graphics mode. Initializes COLOR =
(Black) for top 4Px4P of screen and sets
scrolling window to lines 21 through 24
by 49 characters for four Tines of text
at bottom of screen. Example 190 sets
all color mode (4Px48 field) with no text
at bottom of screen.

In standard resolution color graphics mode.
this command draws a horizontal Tine of a
predefined color (set by COLOR=) starting

at horizontal position defined by expression
exprl and ending at position exprg at
vertical position defined by expression

exprd .exprl andexpr2 must be in the range
of @ to 39 and expr; < = expr2 . exprd

be in the range of @ to 39 (or @ to 47 if not
in mixed mode).

HLIN @, 19 AT @ is a horizontal line at the top of the screen
extending from left corner to center of screen and HLIN 20,39 AT
39 is a horizontal line at the bottom of the screen extending from

center to right corner.

24

[F expression 22@ IF A>B THEN
THEN statement PRINT A
239 IF X=P THEN C=1
240 1F A#19 THEN
GOSUB 209
250 IF A$(1,1)# "y"
THEN 109
IT1legal:

26@ IF L>5 THEN 5@:

ELSE 60
Legal:
270 IF L>5 THEN 50
GO TO 69

289 INPUT X,Y,Z(3)
299 INPUT "AMT",
DLLR

INPUT vari,
var2, strd

399 INPUT "Y or N?",

IN# expr 310 IN# 6
320 IN# Y+2
330 IN# O
LET 349 LET X=5
LIST »numi, 35@ IF X >6 THEN
num LIST 5
NEXT par7, 36@ NEXT I
var2 379 NEXT J,K
NO DSP var 38@ NO DSP I
NO TRACE 3990 NO TRACE

AS

25

If cxpression is true (non-zero) then
execute statement; if false do not
execute statement, 1f statement

is an expression, then a GOTO expr

type of statement is assumed to be implied.
The "ELSE" in example 260 is illegal but
may be implemented as shown in example 270.

Enters data into memory from I1/0

device. If number input is expected,
APPLE wil output "?"; if string inout is
expected no "?" will be outputed. Multiple
numeric inputs to same statement may be
separated by a comma or a carriage return.
String inputs must be separated by a
carriage return only. One pair of " " may
be used immediately after INPUT to output
prompting text enclosed within the quotation
marks to the screen.

Transfers source of data for subsequent
INPUT statements to peripheral 1/0 slot
(1-7) as specified as by expression expr.
Slot @ is not addressable from BASIC.
IN#@ (Example 33@) is used to return data
source from peripherial 1/0 to keyboard
connector.
Assignment operator. "LET" is optional
Causes program from line number nuwnl

through 1ine number num? to be displayed
on screen.

Increments corresponding "FOR" variable

and loops back to statement following
"FOR" until variable exceeds limit.

Turns-off DSP debug mode for variable

Turns-off TRACE debug mode

P D e o g et e S i e ST e Ml et P L L

PLOT. exprl, expré

POKE expri, expr?

POP

PRINT waril, var, strd

REN

RETURN

4pp PLOT 15, 25
499 PLT XV,YV

420 POKE 2@, 49
430 POKE 7*256,
XMOD255

449 POP

45 PRINT L1

460 PRINT L1, X2
47 PRINT "AMT=";DX
489 PRINT A$;BS$;
49@ PRINT

492 PRINT "HELLO"
494 PRINT 2+3

00 R4]

510 REM REMARK

52@ RETURN.
53p IFX= 5 THEN
RETURN

In standard resolution color

graphics, this command plots a small
square of a predefined color (set

by COLOR=) at horizontal location
specified by expression expri in
range § to 39 and vertical location
specified by expressionexpr2 in range
P to 39 (or @ to 47 if in all graphics
mode) NOTE: PLOT @ @ is upper left
and PLOT 39, 39 (or PLOT 39, 47) is
lower right corner.

Stores decimal number defined by
expression expr2 1in range of P

255 at decimal memory location
specified by expression exprI
Locations above 32767 are specified
by negative numbers.

"pOPS" nested GOSUB return stack
address by one.

Qutputs data specified by variahle
var or string variable str$ starting
at current cursor location. If there
is not trailing "," or ";" (Ex 45@)

a carriage return will be generated.

Commas (Ex. 46@) outputs data in 5
left justified columns. Semi-colon
(Ex. 47@) inhibits print of any spaces.

Text imbedded in " " will be printed
and may appear multiple times.

ke I, rsfers autput o 110
510t e ined by expression expr PRY
0 15 video output not 1/0 slot f.

o action. A1l characters after REN
ave treated 48 4 vamark Until teminated

by a carriage return,

Causes branch to statement fallowing
last GOSUB; i.e., RETURN ends a
subroutine. Do not confuse "RETURN"

statement with Return key on keyboard.

TAB expr

TRACE

VLIN expril, expr?
AT expr3

VTAB expr

530 TAB 24

540 TAB I+24

550 IF A#B THEN
TAB 29

550 TEXT
560 TEXT: CALL-936

570 TRACE
580 IFN > 32909
THEN TRACE

599 VLIN @, 39AT1S5
609 VLIN Z,Z+6ATY

619 VTAB 18
620 VTAB Z+2

Moves cursor to absolute horizontal
position specified by expression |
expr in the range of 1 to 4@. Position
is left to right

Sets all text mode. Resets

scrolling window to 24 lines by 4§
characters. Example 56@ also clears
screen and homes cursor to upper left
corner

Sets debug mode that displays each
line number as it is executed.

Similar to HLIN except draws vertical
Tine starting at expr? and ending at
expr?2 at horizontal position exprai.

Similar to TAB. Moves cursor to
absolute vertical position specified
by expressionexpr in the range 1 to
24, VTAB 1 is top line on screen;
VTAB24 is bottom.

SPECIAL CONTROL AND EDITING CHARACTERS

"Control" characters are indicated by a super-scripted "C" such as 6%, They
are obtained by holding down the CTRL key while typing thg specigied letter.
Control characters are NOT displayed on the TV screen. B~ and C~ must be
followed by a carriage return. Screen editing characters are indicated by a
sub-scripted "E" such as Dp. They are obtained by pressing and releasing the
ESC key then typing specified Tetter. Edit characters send information only
to display screen and does not send data to memory. For example, UC moves to
cursor to right and copies text while Ap moves cursor to right but does not
copy text.

CHARACTER DESCRIPTION OF ACTION

RESET key Immediately interrupts any program execution and resets
computer. Also sets all text mode with scrolling window
at maximum. Control is transfered to System Monitor and
Apple prompts with a "*" (asterisk) and a bell. Hitting
RESET key does NOT destroy existing BASIC or machine
language program.

control B If in System Monitor (as indicated by a "*")}, a control
B and a carriage return will transfer control to BASIC,
scratching (killing) any existing BASIC program and set
HIMEM: to maximum installed user memory and LOMEM:
to 2048.

Control € If in BASIC, halts program and displays 1ine number
where stop occurred*. Program may be continued with a
CON command. If in System Monitor, (as indicated by "*"},
control C and a carraige return will enter BASIC without
killing current program.

Control G Sounds bell (beeps speaker)
Control H Backspaces cursor and deletes any overwritten characters
from computer but not from screen. Apply supplied

keyboards have special key "<«" on right side of keyboard
that provides this functions without using control button.

Control J [ssues Tine feed only

Control V Compliment to HC. Forward spaces cursor and copies over

written characters. Apple keyboards have " key on
right side which also performs this function.

Control X Immediately deletes current line.

* If BASIC program is expecting keyboard input, you will have
to hit carriage return key after typing control C.

28

CHARACTER DESCRIPTION OF ACTION

A .Move cursor to right

BE Move cursor to left

CE Move cursor down

DE Move cursor up

EE Clear text from cursor to end of line

FE Clear text from cursor to end of page

@E Home cursor to top of page, clear text to end

of page.

Special Controls and Features

Hex

BASIC Example

Display Mode Controls

CA50
CA51
CO52
CA53
CA54

CA55

CP56
CA57

TEXT

19 POKE -16304.p
20 POKE -16303.¢
30 POKE -16302,p
40 POKE -16301,9
50 POKE -16300.,9

60 POKE -16299,9

70 POKE -16298,p
80 POKE -16297,9

Mode Controls

po2P

P021

pp22

PP23

pp24

P25

PP32

FC58
FC42

99 POKE 32,L1

100 POKE 33,WI
119 POKE 34,TI
12p POKE 35,B1

130 CH=PEEK(36)
149 POKE 36,CH
150 TAB(CH+1)

160 CV=PEEK(37)
170 POKE 37,CV

189 VTAB(CV+1)

190 POKE 50,127
20@ POKE 5@, 255

219 CALL -936
220 CALL -958

30

Description

Set color graphics mode

Set text mode

Clear mixed graphics

Set mixed graphics (4 lines text)

Clear display Page 2 (BASIC commands
use Page 1 only)

Set display to Page 2 (alternate)

Clear HIRES graphics mode

Set HIRES graphics mode

Set left side of scrolling window
to location specified by L1 in
range of @ to 39.

Set window width to amount specified
by W1. LI1+W1<49. W1>pP

Set window top to 1ine specified
by T1 in range of @ to 23

Set window bottom to 1line specified
by B1 in the range of @ to 23. BI1>TI

Read/set cusor horizontal position

in the range of @ to 39. If using
TAB, you must add "1" to cusor positior
read value; Ex. 140 and 150 perform
identical function.

Similar to above. Read/set cusor

vertical position in the range f to
23.

Set inverse flag if 127 (Ex. 199)
Set normal flag if 255(Ex. 209@)

(@g) Home cusor, clear screen

(Fg) Clear from cusor to end of page

Hex BASIC Example Description

FCIC 239 CALL -868 (Eg) Clear from cusor to end of line
FC66 249 CALL -922 (3%) Line feed.
FC79 25@ CALL -912 Scroll up text one line

Miscellaneous

Cp3p 360 X=PEEK(-16336) Toggle speaker
365 POKE -16336,0

Cpop 370 X=PEEK(-16384) Read keyboard; if X>127 then key was
pressed.

Co1g 380 POKE -16368,0 Clear keyboard strobe - always after
reading keyboard.

Cp61 390 X=PEEK(16287) Read PDL(@) push button switch. If
X>127 then switch is "on".

Cp62 4p@ X=PEEK(-16286) Read PDL{1) push button switch.

CP63 41@ X=PEEK(-16285) Read PDL(2) push button switch.

CP58 42@ POKE -16296,0 Clear Game 1/0 AN@ output

Cp59 43p POKE -16295,8 Set Game I/0 AN output '

CA5A 449 POKE -16294,9 Clear Game I/0 AN1 output

"C@58B 450 POKE -16293,p Set Game I/0 AM1 output

casC 46p POKE -16292,P Clear Game I/0 ANZ2 output

C@sD 470 POKE -16291,0 Set Game I/0 AN2 output

CASE 430 POKE -16290,0 Clear Game I/0 AN3 output

CPA5F 499 POKE -16289,0 Set Game I/0 AN3 output

31

Fedede

Fedek

*hk

sedede

Hkk

*kk

dedeke

* k%

*odek

k%

Tdkedk

sede ke

APPLE II BASIC ERRQR MESSAGES

SYNTAX ERR
> 32767 ERR

> 255 ERR

BAD BRANCH ERR

BAD RETURN ERR

BAD NEXT ERR

16 GOSUBS ERR

16 FORS ERR

NO END ERR
MEM FULL ERR

TOO LONG ERR

DIM ERR

*** RANGE ERR

**k STR OVFL ERR

**% STRING ERR

RETYPE LINE

Results from a syntactic or typing error.

A value entered or calculated was less than
-32767 or greater than 32767,

A value restricted to the range @ to 255 was
outside that range.

Results from an attempt to branch to a non-
existant 1ine number.

Results from an attempt to execute more RETURNs
than previously executed GOSUBs.

Results from an attempt to execute a NEXT state-
ment for which there was not a corresponding
FOR statement.

Results from more than 16 nested GOSUBs.
Results from more than 16 nested FOR loops.
The last statement executed was not an END.

The memory needed for the program has exceeded
the memory size allotted.

Results from more than 12 nested parentheses or
more than 128 characters in input Tine.

Results from an attempt to DIMension a string
array which has been previously dimensioned.

An array was larger than the DIMensioned
value or smaller than 1 or HLIN,VLIN,
PLOT, TAB, or VTAB arquments are out of
range.

The number of characters assigned to a string
exceeded the DIMensioned value for that string.

Results from an attempt to execute an illegal
string operation.

Results from illegal data being typed in response
to an INPUT statement.
that the illegal item be retyped.

32

This message also requests

Simplified Memory Map

EEFE e - 64K :::;;;; Monitor and BASIC Routines in ROM
EQQQ |=~=m=m=== 56K Future enhancement or user supplied
; PROMS
DPPP | --======-~ 52K
Peripheral I1/0
COPD | ---------- 48K>
XX je==mm—e=-- XX — — — o User specified RAM memory size
(HIMEM:)
\\\\i:::>’ User Workspace

(LOMEM:) '
7FF frss 2K 7 Screen Memory
400 t--=-==m==- 1K

P ’ ::::::::=n Internal Workspace

33

READ/SAVE DATA SUBROUTINE

INTRODUCTION

Valuable data can be generated on the Apple II computer and sometimes
it is useful to have a software routine that will allow making a permanent
record of this information. This paper discusses a simple subroutine that
serves this purpose.

Before discussing the Read/Save routines a rudimentary knowledge of
how varijables are mapped into memory is needed.

Numeric variables are mapped into memory with four attributes. Appearing
in order sequentually are the Variable Name, the Display Byte, the Next Variable
Address, and the Data of the Variable. Diagramatically this is represented as:

YN DSP NVA DATA(Q) DATA(1) ..., DATA(N)

1 h] hz hn+'[

VARIABLE NAME - up to 100 characters
represented in memory as ASCII equi-
valents with the high order bit set.

DSP (DISPLAY) BYTE - set to @1 when
DSP set in BASIC initiates a process
that displays this variable with the

line number every time it is changed
within a program,
NVA (NEXT VARIABLE ADDRESS) - two

bytes (first low order, the second
high order) indicating the memory
location of the next variable.

DATA - hexadecimal equivalent of
numeric information, represented

in pafrs of bytes, low order byte
first.

34

String variables are formatted a bit differently than numeric ones.
These variables have one extra attribute - a string terminator which desig-
nates the end of a string. A string variable is formatted as follows:

N DSP NVA DATA(Q) DATA(1). ... DATA(n) ST
1 h1 h2 byt

VARIABLE NAME - up to 1P@ characters
represented in memory as ASCII equi-
valents with the high order bit set.

DSP (DISPLAY) BYTE - set to P1 when
DSP set in BASIC, initiates a process
that displays this variable with the
Tine number every time it is changed
within a program.

NVA (NEXT VARIABLE ADDRESS) - two
bytes (first low order, the second
high order) indicating the memory
location of the next variable.

DATA - ASCII equivalents with high
order bit set.

STRING TERMINATOR (ST) - none high

order bit set character indicating

END of string.

There are two parts of any BASIC program represented in memory. One is

the location of the variables used for the program, and the other is the actual
BASIC program statements. As it turns out, the mapping of these within memory
is a straightforward process. Program statements are placed into memory starting
at the top of RAM memory* unless manually shifted by the "HIMEM:" command, and
are pushed down as each new (numerically larger) line numbered statement is
entered into the system. Figure la illustrates this process diagramatically.
Variables on the other hand are mapped into memory starting at the lowest position
of RAM memory - hex $8@@ (2@48) unless manually shifted by the "LOMEM :" command.
They are laid down from there (see Figure 1b) and continue until all the variables
have been mapped into memory or until they collide with the program statements.
In the event of the latter case a memory full error will be generated

*Top of RAM memory is a function of the amount of memory.
16384 will be the value of "HIMEM:" for a 16K system.

35

The computer keeps track of the amount of memory used for the variable
table and program statements. By placing the end memory location of each into
$CC-CD(2p4-2@5) and $CA-CB(2P3-2@4), respectively. These are the BASIC
memory program pointers and their values can be found by using the statements
in Figure 2. CM defined in Figure 1 as the location of the end of the variable
tape is equal to the number resulting from statement a of Figure 2. PP, the
program pointer, is equal to the value resulting from statement 2b. These
statements (Figure 2) can then be used on any Apple II computer to find the
1limits of the program and variable table.

FINDING THE VARIABLE TABLE FROM BASIC _

First, power up the Apple 1I, reset it, and use the CTRL B (control B)
command to place the system into BASIC initializing the memory pointers. Using
the statements from Figure 2 it is found that for a 16K Apple II CM is equal to
2948 and PP is equal to 16384. These also happen to be the values of LOMEN and
HIMEN: But this is expected because upon using the B¢ command both memory
pointers are initialized indicating no program statements and no variables.

To illustrate what a variable table looks 1ike in Apple II memory suppose
we want to assign the numeric variable A ($C1 is the ASCII equivalent of a with
the high order bit set) the value of -1 (FF FF in hex) and then examine the
memory contents. The steps in this process are outlined in example I. Variable A
is defined as equal to -1 (step 1). Then for convenience another variable - B -
is defined as equal to @ (step 2). Now that the variable table has been defined
use of statement 2a indicates that CM is equal to 2060 (step 3). LOMEN has not
been readjusted so it is equal to 2@48. Therefore the variable table resides in
memory from 2048 ($809 hex) to 2p6Q ($8pC). Depressing the "RESET" key places
the Apple II into the monitor mode (step 4).

We are now ready to examine the memory contents of the variable table.
Since the variable table resides from $8@@ hex to $88C hex typing in "8@@.8pC"
and then depressing the "RETURN" key (step 5) will list the memory contents of
this range. Figure 3 lists the contents with each memory location labelled.
Examining these contents we see that C1 is equal to the variable name and is the
memory equivalent of "A" and that FF FF is the equivalent of -1. From this, since
the variable name is at the beginning of the table and the data is at the end, the
variable table representation of A extends from $80@ to $805. We have then found

36

the memory range of where the variable A is mapped into memory. The reason for
this will become clear in the next section.

READ/SAVE ROUTINE

The READ/SAVE subroutine has three parts. The first section (lines §-10)
defines variable A and transfers control to the main program. Lines 20 through
26 represents the Write data to tape routine and lines 3p-38 represent the Read
~ data from tape subroutine. Both READ and SAVE routines are executable by the

BASIC "GOSUB X" (where X is 2@ for write and 3@ is for read) command. And as

listed these routines can be directly incorporated into almost any BASIC program
for read and saving a variable table. The limitation of these routines is that
the whole part of a variable table is processed so it is necessary to maintain
exactly the dimension statements for the variables used.

The variables used in this subroutine are defined as follows:

A= record length, must be the first variable defined

CM= the value obtained from statement a of figure 2

LM= is equal to the value of ."LOMEM:"

Nominally 2048

SAVING A DATA TABLE

The first step in a hard copy routine is to place the desired data onto
tape. This is accomplished by determining the length of the variable table and
setting A equal to it. Next within the main program when it is time to write the .
data a GOSUB2@ statement will execute the write to tape process. Record length,
variable A, is written to tape first (line 22) followed by the desired data
(Tine 24). When this process is completed control is returned to the main program.

READING A DATA TABLE

The second step is to read the data from tape. When it is time a GOSUB3@
statement will initiate the read process. First, the record length is read in
and checked to see if enough memory is available (line 32-34). If exactly the
same dimension statements are used it is almost guaranteed that there will be
enough memory available. After this the variable table is read in (1ine 34) and
control is then returned to the main program (line 36). If not enough memory
is available then an error is generated and control is returned to the main pro-
gram (1ine 38)

37

il i B S

EXAMPLE OF READ/SAVE USAGE
The Read/Save routines may be incorporated directly into a main program,

To illustrate this a test program is listed in example 2. This program dimensions
a variable array of twenty by one, fills the array with numbers, writes the data
table to tape, and then reads the data from tape listing the data on the video
display. To get a feeling for how to use these routines enter this program and
explore how the Read/Save routines work.

CONCLUSION
Reading and Saving data in the format of a variable table is a relatively

straight forward process with the Read/Save subroutine 1listed in figure 4. This
routine will increase the flexibility of the Apple II by providing a permanent
record of the data generated within a program. This program can be reprocessed.
The Read/Save routines are a valuable addition to any data processing program.

38

Unused
Vaf‘] Vaf‘z ------- Varn METI';W P] Pz P3 . Pn_z Pn_'l Pn]
A "”’//,,'7

TLOMEN: CM End of PP beginning HIMEM

$800 Variable of Max System

Table Program Size
v\/\.———-‘/
b a
Variable Data BASIC Program
Figure 1

a) PRINT PEEK(204) + PEEK(2@5)*256 =

b) PRINT PEEK(202) + PEEK(2@3)*256

Figure 2

gpp 8@1 8p2 8p3 8@4 8PS 806
cl ¢@ 96 @8 FF FF (€2
L H L H
VAR DSP NVA DATA VAR
NAM NAM
. 1
" Figure 3

$80P.80C rewritten with labelling

39

PP

CM

897 8p@8 899 B8PA 8@B 8AC
po QE ﬂﬁ pp 00 0P

DSP

NVA

|

DATA

.

READ/SAVE PROGRAM

g

10

20

22

24

26

30

32

34

36

A=p

GOTO 190

PRINT "REWIND TAPE THEN
START TAPE RECORDER":
INPUT "THEN HIT RETURN",

B$

A=CM-LM: POKE 6§,4:
POXE 61,8: POKE 62,5:
POKE 63,8: CALL -397

POKE 6@,LM MOD 256:
POKE 61, LM/256:
POKE 62, CM MOD 256:
POKE 63, CM/256:
CALL -3@7

PRINT "DATA TABLE SAVED":
RETURN

PRINT "REWIND THE TAPE
THEN START TAPE RECORDER":
INPUT "AND HIT RETURN",

B$

POKE 60,4: POKE 61,8:
POKE 62,5: POKE 63,8:
CALL -259

IF A< THEN 38: P=LM+A:
IF P>HM THEN 38: CM=P:
POKE 6@, LM MOD 256:

POKE 61, LM/256: POKE 62,

CM MOD 256: POKE 63, CM/256:

CALL -259

PRINT "DATA READ IN":
RETURN

PRINT "#**T00 MUCH DATA
BASE***": RETURN

FIGURE 4b

COMMENTS

This must be the first statement in the
program. It is initially @, but if data
is to be saved, "it will equal the length
of the data base.

This statement moves command to the main
program.

Lines 20-26 are the write .data to tape
subroutine.

Writing data table to tape

Returning control to main program.

Lines 30-38 are the READ data from tape
subroutine.

Checking the record length (A) for memory
requirements if everything is satisfactory
the data is READ in.

Returning control to main program.

NOTE: CM, LM and A must be defined within the main program.

40

1 >A=1 Define variable A=-1, then hit RETURN
b

2 >B=0 Define variable B=@, then hit RETURN

>
3 >PRINT PEEK (204) + PEEK Use statement 2a to find the end of
(205) * 256 the VARIABLE TABLE
computer responds with=
2060
4 > Hit the RESET key, Apple moves into
* Monitor mode.
5 *8p@.80C Type in VARIABLE TABLE RANGE and HIT

the RETURN KEY.
Computer responds with:

pepp- C1 PP 86 P8 FF FF C2 09
@s@gs pC @8 PP PP PP

Example 1

41

Sisr
8 A=%
i8 G070 188

LE REH URITE DATA TO TAPE ROUTIHE

22 A=CH-LR: POKE 58,4 POKE 61
(B¢ POKE &2,3: POKE 63,8: CRLL
-387

24 POKE 58,1K NOD 236: POKE: 6!
(LR 256: POEE 62,CR HOD 236
: POKE 83,CH/256: CRLL -367

2 RETURN

38 EE® EEAD DATA SUBROUTIHE

32 POKC 68,4 POKE &1,8: PORE
62,5 PORE 63,8 CALL -253

34 IF RB THEW 38:P=LRsH: IF P3

HE THEH 38:0R=P: POKE 68,04 NGD

256: POKE 61,LH/256: POKE 62
,Uf HOD 256: POKE 63,CH/256
: CALL -259

36 RETUR

38 PRINT “+4¢ 0O HUCH DATA BASE ++

#: Elb
168 DIB R¥CLS,R(28)
185 FOR =1 70 2@:E{D)=Iz REXT

T
i

183 LH=084B:CH=01B5: R=50: RA=163E3

Example 2

118 PRIKT "20 HOMBERS REWERATED®

128 PRINT "NOW §E ARE GOING 70 SAYE
THE BATA": FRINT "4HEN YOU BRE R
ERDY START THE RECORLER N RELIR
POHQUE®: InPUT *BKD HIT RETURWY
R

138 CRLL -33h: PEIRT "NOU URITIHG D8
TH 10 TRFE”, GESLR 28

135 PRIKT °HOH THE DATA IS SR¥EDS

14% FRINT "HO® SE ARE GOIAG 70 CLERR
THE X(28) TABLE AN RERD THE 08
TA FROE THPE"
158 FOR I=1 TO 2@:3(15=8: PRINT
FROTEatE fECDh HEXT I

168 PRINT "RO¥ START THPE RECORDERT
 IHPUT "RHD THEW HIT RETURK®
Sfid

165 PRIRT "R *,A
{78 GOSUB 38
168 PRIRT "Rl THE URTR REAR 17

198 FOR I=1 10 26: PRINT ™(73ls
U= AT RENT I

195 PRINT "THIS IS THE ERD™

céd Eb

42

A SIMPLE TONE SUBROUTINE

INTRODUCTION

Computers can perform marvelous feats of mathematical computation
at well beyond the speed capable of most human minds. They are fast,
cold and accurate; man on the other hand is slower, has emotion, and makes
errors. These differences create problems when the two interact with one
another. So to reduce this problem humanizing of the computer is needed.
Humanizing means incorporating within the computer procedures that aid in
a program's usage. One such technique is the addition of a tone subroutine.
This paper discusses the incorporation and usage of a tone subroutine within
the Apple II computer.

Tone Generation

To generate tones in a computer three things are needed: a speaker,
a circuit to drive the speaker, and a means of triggering the circuit. As it
happens the Apple II computer was designed with a two-inch speaker and an
efficient speaker driving circuit. Control of the speaker is accomplished
through software. -

Toggling the speaker is a simple process, a mere PEEK - 16336 ($CP30)
in BASIC statement will perform this operation. This does not, however,
produce tones, it only emits clicks. Generation of tones is the goal, so
describing frequency and duration is needed. This is accomplished by toggling
the speaker at regular intervals for a fixed period of time. Figure 1 lists
a machine language routine that satisfies these requirements.

Machine Language Program

This machine language program resides in page @ of memory from $02 (2)
to $14 (20). ¢80 (PP) is used to store the relative period (P) between
toggling of the speaker and $81 (1) is used as the memory location for the
value of relative duration (D). Both P and D can range in value from $pp (9)
to $FF (255). After the values for frequency and duration are placed into
memory a CALL2 statement from BASIC will activate this routine. The speaker
is toggled with the machine language statement residing at $02 and then a

43

delay in time equal to the value in $@0 occurs. This process is repeated until
the tone has lasted a relative period of time equal to the duration (value in $@1)
and then this program is exited (statement $14).

Basic Program

The purpose of the machine language routine is to generate tones controllable
from BASIC as the program dictates. Figure 2 lists the appropriate statement that
will deposit the machine language routine into memory. They are in the form of
a subroutine and can be activated by a GOSUB 320P@ statement. It is only necessary
to use this statement once at the beginning of a program. After that the machine
language program will remain in memory unless a later part of the main program
modifies the first 2@ locations of page @.

After the GOSUB 32p@0 has placed the machine language program into memory
it may be activated by the statement in Figure 3. This statement is also in the
form of a GOSUB because it can be used repetitively in a program. Once the fre-
quency and duration have been defined by setting P and D equal to a value between
@ and 255 a GOSUB 25 statement is used to initiate the generation of a tone. The
values of P and D are placed into $0@ and $P1 and the CALL2 command activates the
machine language program that toggles the speaker. After the tone has ended
control is returned to the main program.

The statements in Figures 2 and 3 can be directly incorporated into BASIC
programs to provide for the generation of tones. Once added to a program an
infinite variety of tone combinations can be produced. For example, tones can
be used to prompt, indicate an error in entering or answering questions, and
supplement video displays on the Apple II computer system.

Since the computer operates at a faster rate than man does, prompting can
be used to indicate when the computer expects data to be entered. Tones can be
generated at just about any time for any reason in a program. The programmer's
imagination can guide the placement of these tones.

CONCLUSION
The incorporation of tones through the routines discussed in this paper

will aid in the humanizing of software used in the Apple computer. These routines
can also help in transforming a dull program into a Tively one. They are relatively
easy to use and are a valuable addition to any program.

44

@eaE- FF 297

gagi- FF 7772

gaaz- ARC 38 Cé LDRA $Ca3a
gaas- a8 DEY

E8s- DB g4 BNE FoBac
aaag- Cé a1 DEC $81
HO8AR- FBa @& BE® FaE14
BHECc- CH DEX

a8ah- La F& ENE ¥a8Es
oaeF - He a4 LD= $o0a
6811~ 4C 82 @u JMFP $@a60c
Ba14- &8 RTS

FIGURE 1. Machine Language Program
adapted from a program by P. Lutas.

32688 POKE 2,173: POKE 3,48: POKE
4,1%2: POKE 5,136: POKE 6,288
: POKE 7,4: POKE 8,133: POKE
9,1z POKE 18,248

32845 POKE 11,8: POKE 12,282: POKE
13,288: POKE 14,246: POKE 15
,166: POKE i6,8: POKE 17,76
¢ POKE 18,2: POKE 19,8: POKE
28,3 RETURH

FIGURE 2. BASIC "POKES"

25 POKE 8,P: POKE 1,D: ZALL 2:
RETURN

FIGURE 3. GOSUB

45

High-Resolution Operating Subroutines

These subroutines were created to make programming for
| High-Resolution Graphics easier, for both BASIC and machine:
language programs. These subroutin?s occupy 757 bytes of memory
' and are available on either cassette tape or Read-Only Memory

i (ROM). This note describes use and care of these subroutines.

There are seven subroutines in this package. With these,
én programmer can iqitillize High-Resolution mode, clear the screen,
?plot a point, draw a line, or draw and animate a predefined shape.
ion the screen., There are also some other general-purpose

T

subroutines to shorten and simplify programnming,

-

i BASIC programs=saan access these subroutines by use of the

ECALL statement, and can pass information by using the POXE state-
;nent. There are special entry points for most of the subroutines
éthat will perform the same functions as the original subroutines
-1thout modifying any BASIC pointers or registers. For machine

anguage programming, a JSR to the appropriate subroutine address

111 perform the same function as a BASIC CALL,

In the following subroutine descriptions, all addresses
iven will be in decimal, The hexadecimal substitutes will
e preceded by a dollar sign ($). Allrentry points given are
:or the cassette tape subroutines, which .l1oad into aﬂdresses
%}ﬂ to FFF (hex). Equivalent addresses for the ROM subroutines
will be in italic type face.

« 486

High—nesolution Operating Subroutines

INIT Initializes High-Resolution Graphics mode,

From BASIC: CALL 3972 (or CALL -12288)

From machine language: JSR $CP@ (or JSR $DJFF)

This subroutine sets High-Resolution Graphics mode with a
28p x 167 matrix of dots in the top portion of the screen and
four lines of text in the bottom portion of the screen. INIT

also clears the screen,

CLEAR Clears the screen.

From BASIC: CALL 3886 (or CALL -12274)

From machine language: JSR $CPE (or JSR $DJJE)

This subroutine clears the High-Resdlution screen without

resetting the High-Resdlution Graphics mode.

PLOT Plots a2 point on the screen.

From BASIC: CALL 3788 (or CALL -1158#8)

From machine language: JSR $C7C (or JSR $Df7C)

This subroutine plots a single point on the screen. The
X and Y coodinates of the point are passed in locations 895,
881, and 882 from BASIC, or in the A, X, and Y registers from

machine language. The Y (vertical) coordinate can be from §

S— 47

High-Resloution Operating Subroutines

PLOT (continued)

(top of screen) to 159 (bottom of screen) and is passed in

location 882 or the A-register; but the X (horizontal) coordinate
can range from f (left side of screen) to 279 (right side of screen)
and must be split between locations 8¢# (X MOD 256) and 8f1
(X/256).0r, from machine language, between registers X (X LO)

and Y (X HI). The color of the point to be plotted must be set

in location 812 ($32C). Four colors are possible: P is BLACK,

. 85 ($55) is GREEN, 17§ ($AA) is VIOLET, and 255 ($FF) is WHITE.

. POSN° Positions a point on the screen.

From BASIC: CALL 3761 (or CALL -11599]

From machine language: JSR $C26 (or JSR $Dg28)

This subroutine does all calculations for a PLOT, but does

Zmot plot a point (it leaves the screen unchanged). This is useful
:ﬁhan used in conjumction with LINE or SHAPE (described later).
10 use this subroutine, set up the X and Y coordinates just the =

Lta-o as for PLOT. The color in location 812 ($32€) is ignored.

Draw a line‘on the screen.

48

ngh-nesolution Operating Routines

LINE Draws a line on the screen,
From BASIC: CALL 3786 (or CALL -11574)
From machine language: JSR $C95 (or JSR §bgas)

This subroutine draws a line from the last point PLOTted
or POSN'ed to the point specified. One endpoint is the last point
PLOTted or POSN'ed; the other endpoint is passed in the same Ramner
as for a PLOT or POSN. The color of the line is set in location
812 ($32C). After the line is drawn, the new endpoint becomes the

base endpoint for the next line drawn.

SHAPE Draws a predefined shape on the screen.
From BASIC: CALL 38p5 (or CALL -1155§)
From machine Janguage: JSR $DBC (or JSE §piBcC)

This subroutine draws a predefined shape on the screen at
the point previously PLOTted or POSN'ed. The shape is defined
by a table.of veciors in memory. (How to create a vector inblo
will be described 1ater). The starting address of this table
should be passed in locations 804 and 805 from BASIC .or in“the
Y and X registers from machine language., The color of the shape i

should be passed in location 28 ($10C). |

There are two special variables that are used only with shnpcsf

the scaling factor and the rotation factor. The scaling factor

determines the relative size of- the shape., A scaling factor of

49

High—Resolution Qperating_ﬁubroutines

SHAPE (continued)

1 will cause the shape to be drawn true size, while a scaling
factor of 2 will draw the shape double size, etc. The scaling
factor is passed in locationpﬁﬂélfrom BASIC or $32F from machine
language. The rotation fact;i specifies one of 64 possible angles
of rotation for the shape. A rotation factor of § will cause the
shape to be drawn right-side up, where a rotation factor if 16
will draw the shape rotated 90o clockwise, etec, The rotation

factor is passed in location'hﬂ7 foom BASIC of in the A-register

from machine language,

The table of vectors which defines the shape to be drawn is
a series of bytes stored in memory. Each byte is divided into
three sections, and each section specifies whether or not to plot
a point and also a direction to move (up, down, left, or right).
The SHAPE subroutine steps through the vector table byte by byte,
and then through each byte section by section. When it reaches
a pp byte, it is finished.

The three sections are arranged in a byte like this:
op= & Move T

T i & S '4 '3 2} v 'O o
0 0 "0 @ %
)9 \¥ " d e v ¥
et N 13 W +
Lechan 3 Scchww T Qe etiow |

Esch bit pair DD specifies a direction to move, and the two bits
P specify whether or not to plot a point before moving. Notice
that the last section (most significant bits) does not have a P

field, so it can only be a move without plotting. The SHAPE

50

High-nesolution Operating Subroutines

SHAPE (continued)

subroutine processes the sections from right to left (least
significant bit to most significant bit). IF THE REMAINING SECTIONS
OF THE BYTE ARE ZERO, THEN THEY ARE IGNORED. Thus, the byte

cannot end with sections of §§ (move up without plotting).

Here is an example of how to create a vector table:

Suppose we want to draw a shape like this: o e

L4 @
. »
e @ 9

First, draw it on graph paper, one dot per square, Then decide
where to start drawing the shape. Let's start this one in the center

Next, we must draw a path through each point in the shape, using

only 90° angles on the turnsz L"':ﬁﬂ
o " J_t 1
ety

Next, re-draw the shape as a series of vectors, each one moving

one place up, down, left, or right, and diﬁyinguish the vectors that

. Zletey
plot a point before moving:)
j v
o vl
\ o

Now "unwrap" those vectors and write 'them in a straight 1line.

¢4,e-é-fr/r'r¢.—=>~7->-9¢$¢¢4-<+

How draw a table like the one in Figure 1. For each vector in ‘the
line, figure the bit code and place it in the next available section
in the table, If it will not fit or is a @@ at.the end of a byte,

then skip that section and go on to the next. When you have finishel
o1

High-Resolution Operating Subroutines

SHAPE (continued)

coding all vectors, check your work to make sure it is accurate,
Then make another table (as in figure 2) and re-copy the coded
vectors from the first table. Then decode the vector information
into a series of hexadecimal bytes, using the hexidecimal code
table in figure 3. This series of hexidecimal bytes is your shape
definition table, which you can now put into the Apple II's memory

and use to draw that shape on the screen.

LIEENPT T 5 e VLU

vecteoers

Shqpe

cooes _

Q=0~ Q—O-

8G8-=- VO~
CSeeg —=—o-
L eTSY Tﬁ&@
m
(— W
| i
3 "
<[>y ~aTToay
N3 e Tor0Y
o T

-90o0—-—00~-0

OllOI-l-..l.ll-l..D

©-00~00~00

QA== QQQ~ =00

s o
0 ©

tT‘m.s vector cannot be

ve ()

o Plo‘l- vectrar
OoOr a Mgpgve

s

Fl‘j‘-’,:

OQwpdmgnuwmrdrhherdTouuowlk

OO o)

0~ O..lOl;OllD..\OI\OI-O-I
00-=00==0q-=00~-~
0pg0~-~""=00 g0 0~ u-
OOOOOOOO‘-\..I!-.\.\-I.I

~&¢L\‘4-\ Coét)

!_'l ex
& Trply;
dcnctes ead
ol vector table

NiseaQndur g

BM=00—-—=00—0
€CL="0000===—0| «
B~-p0o0~-po—-00
.I_O.I.I-I_..IOI-OOO
c0®OIoooooo
?OOOOQbMOO

F]ljdf{.

=N Y A v

53

.......

e T |

winok

ATLAl
SUARNLATH

[

ROD'S COLOR PATTERN

PROGRAM DESCRIPTION

ROD'S COLOR PATTERN is a simple but eloquent program. It generates a
continuous flow of colored mosaic-like patterns in a 49 high by 40 wide’
block matrix. Many of the patterns generated by this program are pleasing
to the eye and will dazzle the mind for minutes at a time.

REQUIREMENTS
4K or greater Apple II system with a color video display.
BASIC 1is the programming language used.

PROGRAM LISTING

55

PONG

PROGRAM LISTING:

"
-y

4

et

56

COLOR SKETCH

PROGRAM DESCRIPTION

Color Sketch is a little program that transforms the Apple II into an
artist's easel, the screen into a sketch pad. The user as an artist

has a 4@ high by 4@ wide (1608 blocks) sketching pad to fill with a
rainbow of fifteen colors. Placement of colors is determined by
controlling paddle inputs; one for the horizontal and the other for

the vertical. Colors are selected by depressing a letter from A through
P on the keyboard.

An enormous number of distinct pictures can be drawn on the sketch pad
and this program will provide many hours of visual entertainment.

REQUIREMENTS
This program will fit into a 4K system in the BASIC mode.

57

SKETCH

COLOR

PROGRAM LISTING

58

MASTERMIND PROGRAM

PROGRAM DESCRIPTION

MASTERMIND is a game of strategy that matches your wits against Apple's.

The object of the game is to choose correctly which 5 colored bars have

been secretly chosen by the computer. Eight different colors are possible
for each bar - Red (R), Yellow (Y), Violet (V), Orange (0), White (W), and
Black (B). A color may be used more than once. Guesses for a turn ére

made by selecting a color for each of the five hidden bars. After hitting
the RETURN key Apple will indicate the correctness of the turn. Each white
square to the right of your turn indicates a correctly colored and positioned
bar. Each grey square acknowledges a correctly colored but improperly posi-
tioned bar. No squares indicate you're way off.

Test your skill and challenge the Apple II to a game of MASTERMIND.

REQUIREMENTS
8K or greater Apple II computer system.
BASIC is the programming language.

59

MASTERMIND

PROGRAM LISTING

60

BIORHYTHM PROGRAM

PROGRAM DESCRIPTION
This program plots three Biorhythm functions: Physical (P), Emotional (E),
and Mental (M) or intellectual. A1l three functions are plotted in the

color graphics display mode.

Biorhythm theory states that aspects of the mind run in cycles. A brief
description of .the three cycles follows:

Physical

The Physical Biorhythm takes 23 days to complete and is an indirect indicator
of the physical state of the individual. It covers physical well-being, basic
bodily functions, strength, coordination, and resistance to disease.

Emotional
The Emotional Biorhythm takes 28 days to complete. It indirectly indicates

the level of sensitivity, mental health, mood, and creativity.

Mental
The mental cycle takes 33 days to complete and indirectly indicates the level

of alertness, logic and analytic functions of the individual, and mental recep-
tivity.

Biorhythms

Biorhythms are thought to affect behavior. When they cross a "baseline" the
functions change phase - become unstable - and this causes Critical Days. These
days are, according to the theory, our weakest and most vulnerable times. Acci-
dents, catching colds, and bodily harm may occur on physically critical days.
Depression, quarrels, and frustration are most likely on emotionally critical
days. Finally, slowness of the mind, resistance to new situations and unclear
thinking are 1ikely on mentally critical days.

REQUIREMENTS
This program fits into a 4K or greater system.
BASIC is the programming language used.

61

BIORHYTHM

PROGRAM LISTING

62

DRAGON MAZE PROGRAM

PROGRAM DESCRIPTION
DRAGON MAZE is a game that will test your skill and memory. A maze is

constructed on the video screen. You watch carefully as it is completed.
After it is finished the maze is hidden as if the 1lights were turned out.
The object of the game is to get out of the maze before the dragon eats
you. A reddish-brown square indicates your position and a purple square
represents the dragon's?' You move by hitting a letter on the keyboard;

U for up, D for down, R for right, and L for left. As you advance soO
does the dragon. The scent of humans drives the dragon crazy; when he is
enraged he breaks through walls to get at you. DRAGON MAZE is not a game
for the weak at heart. Try it if you dare to attempt out-smarting the

dragon.

REQUIREMENTS
8K or greater Apple II computer system.
BASIC is the programming language.

* Color tints may vary depending upon video monitor or television adjustments.

63

DRAGON MAZE

PROGRAM LISTING

"

64

DRAGON MAZE cont.

T
i

@3-
®

finad
12h
ey

»% THEM 78l
5Y-13; Hap

{51-1}
{SE{3%

#
it

65

DRAGON MAZE cont.

66

N Ok~ N =

APPLE Il FIRMWARE

System Monitor Commands

Control and Editing Characters

Special Controls and Features

Annotated Monitor and Dis-assembler Listing
Binary Floating Point Package

Sweet 16 Interpreter Listing

6502 Op Codes

67

System Monitor Commands

Apple 1I contains a powerful machine level monitor for use by the advanced
programmer. To enter the monitor either press RESET button on keyboard or
CALL-151 (Hex FF65) from Basic. Apple II will respond with an "*" (asterisk)
prompt character on the TV display. This action will not kill current BASIC
program which may be re-entered by a C¢ (control C). NOTE: "adrs" is a
four digit hexidecimal number and "data" is a two digit hexidecimal number.
Remember to press "return" button at the end of each Tline.

Command Format Example Description

Examine Memory

adrs *C@F2 Examines (displays) single memory
location of (adrs)

adrs1.adrs?2 *1024.1048 Examines (displays) range of memory
from (adrs1) thru (adrs2)

(return) * (return) Examines (displays) next 8 memory
locations.

.adrs? *, 4096 Examines (displays) memory from current

location through location (adrs2)

Change Memory

adrs:data *A256:EF 20 43 Deposits data into memor i
: starting at
data data location (adrs). Y ;
:dgta data *:Fg A2 12 Deposits data into hemory starting
ata after (adrs) Tlast used for deposits.

Move Memory

adrsl<adrs?2. *100<B@1@.B41gM Copy the data now in the memor
y range
adrs3M. from (adrs2) to (adrs3) into memory
locations starting at (adrsl).

Verify Memory

adrsl<adrs2. *10P<BP19.B41QV Verify that block of data in memory
adrs3V range from (adrs2) to (adrs3) exactly
matches data block starting at memory
_ Tocation (adrs1) and displays
differences if any.

68

Command Format

Example

Cassette I/0

adrsl.adrs2R

adrs1.adrs2W

Display

Dis-assembler

adrsL

Mini-assembler

(Turn-on)

$(monitor
command)

adrs: (6502
MNEMONIC
instruction)

*300.4FFR

*800. 9FFW

*]

*N

*C8dgL

*

*F666G

- $C8aaL

'CO1Q:STA 23FF

Description

Reads cassette data into specified

memory (adrs) range. Record length
must be same as memory range or an

error will occur.

Writes onto cassette data from speci-
fied memory (adrs) range.

Set inverse yideo mode. (Black character
on white Bacﬁaroungg €

Set normal video mode. (White characters
on black background)

Decodes 2@ instructions starting at
memory (adrs) into 6502 assembly
nmenonic code.

Decodes next 20 instructions starting
at current memory address.

Turns-on mini-assembler. Prompt
character is now a "!" (exclamation
point).

Executes any monitor command from mini-
assembler then returns control to mini-
assembler. Note that many monitor
commands change current memory address
reference so that it is good practice
to retype desired address reference
upon return to mini-assembler.

Assembles a mnemonic 6502 instruction
into machine codes. If error, machine
will refuse instruction, sound bell,
and reprint line with up arrow under

error.

Command Format

Example

(space) (6502 ! STA PIFF
mnemonic
instruction)

(TURN-OFF) ! (Reset Button)

Monitor Program Execution and Debugging

adrsG *300G
adrsT *800T
adrsS *C@5(S
(Control E) *EC
(Control Y) *yC

Description

Assembles instruction into next
available memory location. (Note
space between "!" and instruction)

Exits mini-assembler and returns
to system monitor.

Runs machine level program starting
at memory (adrs).

Traces a program starting at memory
location (adrs) and continues trace
until hitting a breakpoint. Break
occurs on instruction @¢ (BRK), and
returns control to system monitor.

Opens 65@2 status registers (see note 1)

Single steps through program beginning
at memory location (adrsg. Type a
letter S for each additional step

that you want displayed. Opens 6502
status registers (see Note 1).

Displays 6582 status registers and
opens them for modification (see Note 1)

Executes user specified machine
language subroutine starting at
memory location (3F8).

Note 1:
6502 status registers are open if they are last line displayed on screen.
To change them type ":" then "data" for each register.
Example: A=3C X=FF Y=00 P=32 S =F2
*: FF Changes A register only
*:FF @6 33 Changes A, X, and Y registers

To change S register, you must first retype data for A, X, Y and P.

Hexidecimal Arithmetic

datal+dataZ2 *78+34

datal-data2 *AE-34

70

Performs hexidecimal sum of datal
plus data2.

Performs hexidecimal difference of
datal minus dataZ2.

Command Format Example

Set Input/Output Ports

(X) (Control P) *5pC

(X) (Control K) *kC

Note 2:

Description

Sets printer output to I/0 slot
number (X). (see Note 2 below)

Sets keyboard input to I/0 slot
number (X). (see Note 2 below)

Only slots 1 through 7 are addressable in this mode. Address @ (Ex: gprC
or gKC) resets ports to internal video display and keyboard. These commands
will not work unless Apple II interfaces are plugged into specificed 1/0

siot.

Multiple Commands

*100L 400G AFFT

*LLLL

71

Multiple monitor commands may be
given on same line if separated by
a "space".

Single Tetter commands may be
repeated without spaces.

SPECIAL CONTROL AND EDITING CHARACTERS

"Control" characters are indicated by a super-scripted "C" such as ol They
are obtained by holding down the CTRL key while typing thg specigied Tetter.
Control characters are NOT displaved on the TV screen. B~ and C” must be
followed by a carriage return. Screen editing characters are indicated by a
sub-scripted "E" such as Dg. They are obtained by pressing and releasing the
ESC key then typing specified letter. Edit characters send information only
to display screen and does not send data to memory. For example, UC moves to
cursor to right and copies text while Ap moves cursor to right but does not
copy text.

CHARACTER DESCRIPTION OF ACTION

RESET key Immediately interrupts any program execution and resets
computer. Also sets all text mode with scrolling window
at maximum. Control is transfered to System Monitor and
Apple prompts with a "*" (asterisk) and a bell. Hitting
RESET key does NOT destroy existing BASIC or machine
language program.

Control B If in System Monitor (as indicated by a "*") . a control
B and a carriage return will transfer control to BASIC,
scratching (killing) any existing BASIC program and set
HIMEM: to maximum installed user memory and LOMEM:
to 2048.

Control C If in BASIC, halts program and displays line number
where stop occurred*. Program may be continued with a
CON command. If in System Monitor, (as indicated by W)
control C and a carraige return will enter BASIC without
killing current program.

Control G Sounds bell (beeps speaker)
Control H Backspaces cursor and deletes any overwritten characters
from computer but not from screen. Apply supplied

keyboards have special key "+" on right side of keyboard
that provides this functions without using control button.

Control J Issues 1ine feed only ,

Control V Compliment to Hc. Forward spaces cursor and copies over
written characters. Apple keyboards have "+" key on
right side which also performs this function.

Control X Immediately deletes current line.

* If BASIC program is expecting keyboard input, you will have
to hit carriage return key after typing control C.

72

SPECIAL CONTROL AND EDITING CHARACTERS

(continued)

CHARACTER DESCRIPTION OF ACTION

AE Move cursor to right

BE Move cursor to left

CE Move cursor down

DE Move cursor up

EE Clear text from cursor to end of line

FE Clear text from cursor to end of page

@E Home cursor to top of page, clear text to end

of page.

73

Special Controls and Features

Hex

BASIC Example

Display Mode Controls

CP50
Cp51
CP52
CP53
Cp54

CP55

CP56
Cp57

TEXT

20 POKE -16303,9
30 POKE -16392,9
49 POKE -16301.9

60 POKE -16299,p

70 POKE -16298,p
80 POKE -16297,0

Mode Controls

pp2p

p@21

pp22

pp23

po24

pp25

pp32

FC58
FC42

99 POKE 32,L1

199 POKE 33,W1
119 POKE 34,T1
129 POKE 35,B1

13p CH=PEEK(36)
14p POKE 36,CH
150 TAB(CH+1)

169 CV=PEEK(37)
179 POKE 37,CV
180 VTAB(CV+1)

199 POKE 5@,127
2pp POKE 50,255

219 CALL -936
22p CALL -958

Description

Set color graphics mode

Set text mode

Clear mixed graphics

Set mixed graphics (4 lines text)

Clear display Page 2 (BASIC commands
use Page 1 only)

Set display to Page 2 (alternate)

Clear HIRES graphics mode

Set HIRES graphics mode

Set left side of scrolling window
to location specified by L1 in
range of P to 39.

Set window width to amount specified
by Wl. L1+W1<4p. W1>P

Set window top to 1line specified
by T1 in range of @ to 23

Set window bottom to 1ine specified
by B1 in the range of § to 23. BI>TI]

Read/set cusor horizontal position

in the range of @ to 39. If using

TAB, you must add "1" to cusor position
read value; Ex. 140 and 150 perform
identical function.

Similar to above. Read/set cusor
vertical position in the range @ to
23.

Set: inverse flag if 127 (Ex. 199)
Set normal flag if 255(Ex. 209)

(@g) Home cusor, clear screen

(Fg) Clear from cusor to end of page

74 "

Hex BASIC Example Description

FCIC 23p CALL -868 (Eg) Clear from cusor to end Qf}?
FC66 249 CALL -922 (JC) Line feed :
FC70 250 CALL -912 Scroll up text one line
Miscellaneous
Co3pP 360 X=PEEK(-16336) Toggle speaker
365 POKE -16336,p
Coop 370 X=PEEK(-16384 Read keyboard; if X>127 then key
pressed. :
Co1P 380 POKE -16368,0 Clear keyboard strobe - always aftn.
reading keyboard. ;
Cp61l 390 X=PEEK(16287) Read PDL(@) push button switch. Ifi
X>127 then switch is "on". 3
CP62 40P X=PEEK(-16286) Read PDL(1) push button switch.
CP63 419 X=PEEK(-16285 Read PDL(2) push button switch.
CA58 429 POKE -16296,0 Clear Game I/0 ANP output
CP59 43P POKE -16295,9 Set Game I/0 AN@ output
CA5A 449 POKE -16294,9 Clear Game I/0 AN1 output
CA5B 450 POKE -16293,9 Set Game I/0- ANT output
CA5C 469 POKE -16292,p Clear Game I/0 AN2 output
CP5D 479 POKE -16291,9 Set Game I/0 AN2 output
CA5E 489 POKE -16290,0 Clear Game I/0 AN3 output
CO5F 499 POKE -16289,0 Set Game I/0 AN3 output

75

P R e33R R R R 2R

* *
* APPLE 1II *
* SYSTEM MONITOR *
& *
* COPYRIGHT 1977 BY *
* APPLE COMPUTER, INC. *
% *
* ALL, RIGHTS RESERVED *
#* *
* S. WOZNIAK *
* A, BAUM *
* *
e T T LR st tA s RS2 s 2 2 8 8 &/
TITLE “APPLE
LOCO gpz S0O
LOC1 Epz $01
WNDLFT EPz S$20
WNDWDTH EPZ s21
WNDTOP EPZ S22
WNERTM EEZ S23
CH Lpz $24
CcV EPZ S$25
GBASL EPZ §26
GBASH EPZ $27
BRASL EPZ S2¢
BASH EPZ $29
BASZ2L EP7Z S2A
BAS2H EPZ S2B
H2 gEpz §2C
LMNEM EpzZ S2C
RTNL EP7 S2C
V2 EPZ $2D
RHANEM EPZ S2D
RTNH EPZ S2D
MASK EPZ §2F
CHKSUM EPZ S2FE
FORMAT EPZ §$2E
LASTIN EPZ $2F
LENGTH EPZ S2F¢
SIGN EPZ S2F
COLOR EPZ $30
AODE EPZ S31
INVFLG EPZ $32
PROMPT EPZ S$33
YSAV EPZ $34
YSAV1 EPZ $35
CSWL EPZ $36
CSWH EPZ $37
KSWL EPZ $36
KSWH EPZ $39
PCL EPZ $3A
PCH EPZ S3R
XQT Epz $3C
AlL EP7 S3C
a]1H EPZ S3p
AZL EP?7 S3F
A2H FPZ S3r
A3L Fvrz SA40
A3H FP2 $41
A4L FPZ Sd42
Ad4H FLPZ S413
ASL EPZ S44
ASH EP2 S45
76

I1 SYSTEM

MONTTUR

F800:
F801:
F802:
F805:
F806:
F808:
F80A:
F380C:
FB8OE:
F810:
F8l12:
F8l4:
F816:
Fglg:
F819:
F81C:
FBlE:
F820:
F821:
F824:
F826:
F828:
F829:
F82C:
F820D:
FB2F:
F831:
F832:
F834:
F836:
£F838:

F83A:
Fs3C:
FEAE:
FB40:
F843:
F6544:
Fedb:
F847:
FB48:
F349:
F848:
£84D:
FB4F :
F850:
F852:
F&54:
F856:

4A
08
20
28
A9
90

69

85
Bl
45
25
L |
91
60
20
C4
BO
c8
20
90
69
48
20
68
L3

60
AQ
Lo
AQ

84

AQ
A9
85
20
88
10
6y
4t
4A
29
09
85
63
29
90
69

85

47 Fb

OF
02

EO

-~

LG

26
30
2B
26
26

00 F8

2C
11

OE F&
Fo
01

2D
F5

2F
02
27
2D

27
g0
30
28 F¢

Fo

03
04

i B

-

18
02
)
26

ACC
XPEG
YREG
STATUS
SPNT
RNDL
FNDH
ACL
ACH
XINDL
X'TeIDH
AUXT.
AUXHE
PICHK
In
USHADE
MM T
IFNLUC
ICADR
LEATR

KBLSTRPR
TAPEOUT

SPnR

TXTCLR
TZTSET
MIXCLR
MIXSET
LOWSCR

HISCR
LORES
HIRES

TAPEIN
PADNLY
PTRIG

BAGIC
BASICZ

PLOT

RTMASY
PLCT1

HLINE
HLINE]

VLINEZ
VLINE

RTS1
CLPSCEHR

CLRTOP
CLEBSC2
*

CLRSC3

GBASCALC

GBCALC

EEZ
EPZ
EPZ
EP2Z
8 A
Ee7
FEe7
EPZ
FE?
EPZ
hPZ
EE7Z
eey
EP?Z
EQU
QU
EOU
EQU
ECH)
EQL
B
ECU
EQU
EQU
EGU
EQU
ECU
EQU
cOU
EOU
EQU
BECU
EQU
EoU
FQuU
EoU
ORG
LSR
PHP
JSR
PLP
LDA
BCC
ADC
STA
LDA
EOP
AND
EOR
STA
RTS
JSR
CPY
BCS
INY
J5R
8CC
ADC
PHA
JSR
PLA
Cmp
PCC
RTS
LDY
PNE
LDY
3TY
FOP
LDY
LDA
STA
JSR
DEY
“FL
RIS
PHA
[LOR
AND
OPA
STA
PLA
AND
ECT
ADC
STA

S45
Sdo
S47
SA4H
$49
S4F
S4F
S84
€51
8§52
$53
$54
S5§
S95
SC200
SO3FE
SO3FR
SC3FFE
SCCO0
SCO00
SCO10C
SC020
SC030
SCOS50
SCO051
SC052
$C053
3C054
SCO55
SCO56
SC057
SC060
SC064
SCO070
SE00O
SF003
SF8N0
A

ROM START ANDRESS

Y~-COORD/2
SAVE LS8 IN CARRY

GBASCALC CALC BASE ADR IN GBASL,H

#SOF
RTMASK
#SEOQ
MASK

RESTORE LSBR FROM CARRY
MASK SOF IF EVEN

MASK SFO IF ODD

(GRASL) ,Y DATA

COLOR
MASK

(GRASL) , Y
(GBASL) , Y

PLOT

H2
RTS1

PLOT1
HLIMNEL
#5001

PLOT

V2
VLINEZ

#S2F
CLRSC2
#$27
V2

XUR COLOF

AND MASK
XOR DATA
TO DATA

PLOT SNUARE
DONE?
YES, RETURN
NO, INCR INDEX (X-COORD)
PLOT NEXT SOUARE
ALWAYS TAKEN
NEXT Y=-COORD
SLVE ON S5TACK
PLOT SQUARE

DONE?

NO, LOOP.
MAX Y, FULL SCRN CLR
ALWAYS TAKEN
MAX Y, TOP SCRWN CLR
5 TORF AS ROTTCY COCRD

VLINE CALLS

$827
£S0
COLOR
VLINE

CLR2C3

A
#S03
#5004

#5118
C2RCALC
#STF
GRASL

77

RIGRTCST X=-COORD (COLUMN)
TOP CUGOFRD FOR VLINE CALLS
CI.FAR COLOR (BLACK)

CRAYW VLINE

NEXT LEFTMOST X=-COORD
LOOP UNTIL DONE,

FOR InPUOT ON0ONEFGH

CEJERATE GRASH=00CCO1FG

AND SPASL=HOEDFU00

FB58:
F859:
F8hA:
F85C:
F85E3
F85F:
FE6]:
F862:
F864:
FB66:
FB6E:
F869:
F86A:
F86B:
F86C:
FB6E:
F870:
F871:
F872:
FB873:
FB76:
Fg78:
F879:
Fe78:
FB7C:
F37D:
FETE:
FB7F:
Ffgel:
FaB2Z:
Fs84:
rFe8o6:
FB89:
FEEC:
F8BE
F88F:
FEYG:
Fri92:

E'"'(',‘Jl

2 e

F595:
CEBY 7
F8Y9:
£863:
FuaC:
F890:
f8A0:
FRA3:
FEAS:
FRAT
FB8AY:
F3AA:
FBAD:
F3AF ¢

FBEl:
Fob3:
F834:
F8B6:
r837:
F8BE:
FE8BA:
F8BC:
F8BE ¢
F8BF:
F8C1l:
FBC2:
F8C3:
F8C5:
F8C6:
F8C8:
F8C9:
FE8CA:
F8CC:
FB8CD:
F8DO0:
F8D3:
F8D4:
F8D6:
F8D9:
FB8DB:
F8DE:
FBEO:
FBE]l:

FBE3:
FBES:

0A
03
05
85
60
AS
13
69
29
85
A
0a
0A
0A
05
85
60
4
08
20
Bl
28
90
43
4n
4A
4
29
60
Ak
A4
20
20
Al
as
43
30
61

o
EU
29
4
AR
BC
20
DO

AQ
A9
AR
BD
85
29

85
93
29
AR
98
Al
EO
FO
427
90
42
4A
09
88
DO
C8
88
DO
60
FF
20
48

Bl

20
A2

20
C4

c8

90

A2
Co

26
26

30

03
OF
30

30
30

-
4

20

04

3A
3B
96

a8
3A

03

00

oF

03
8A
08

08

20

FA

E2

EF
82

3A

DA
01
4A

2F

Fl

03
04

F &

R
Fo

EG
Fo

9

FF¥
F8

FD

F9

MXTCOL

SETCOL

SCFEN

SCRN2

RTMORYZ

IMN5DS51

GELEw T

MNNDX1

MNNDX 2

MNNDX3

INSTDSP

PRNTOP

PRNTBL

ASL
AST,
(ORA
STA
RTS
[LDA
CLC
ARC
AN
oTA
AST,
ASL
ASL
ASL
ORA
STA
RTS
LSR
PHP
JSR
LDA
PLFP
RCC
LSR
LS®
LER
LER
AND
RTS
LDX
LDY
JSP
JS R
LCA
TAY
LER
BOC
ROP
2CS
cMF
FREO
AN
LsSw
TAX
LDA
ISR
ANE
LY
LDA
I'AX
LA
STA
ANE

STA
TYA
AND
TAX
TYA
LDY
CPX
BREQ
LSR
BCC
LSR
LSk
ORA
DEY
BNE
INY
DEY
ANE
RTS
DFR
JSR
PHA
LDA
JSR
LDX
JSR

CPY
INY
BCC
LDX
CPY

A

A
GRAST
CRASL
COLOR INCPEIENT COLOR R2Y 3
348G 3
=807 SETS COLOR=17*A MOUOD lé
COLOR
A POTH YHALFR PYTRS OF COLOP EQUAL
A
A
A
COIOR
COLOR
A RRAD SCREEN Y-COORD/2
SAVE LSB (CAFRRY)
GEASCALC CALC BASF ADDRESS
(GEASL) ,Y GEIT RYTE
RESTORE LSF FPROM CARRY
RYIMSK 2 IF EVEN, USE LO H
A
4
A SHIFT HIGHY SALF RPYTE DOWN
A
ESQOF MBSX 4-RITS
PCL PrRINT P?L,ﬂ
pPCW
PRYX?Z
PHALMK FOLLOWED 3Y A RLANK
(FCL,7) CET QF COnn
A FYRY/0ND TEST
IEVIEN
Y 21T 1 TreEsT
ONEN & A¥XYNX11 IVVALID GF
£ Sny
nER OeCODE S»& INVALID
#SE TASK RITS
A LSRR INTO CARFY FOR I./P 'TEST
FeTl, N OET FORSMA'YY [NRETX RYTE
SCRNZ P/L H=0Y0r'e ON CARRY
GRTe I
€80 SURSTITUTE SH0O FOR INVALID OPS
$¥S0 IFT PRINT FQOP¥AT INDEX TO 0
FIT2,X% INDIOY INTC PRINT FORMAT TARLE
FORMA'T SAVE FOR ADR FIELD FORMATTING
¥SQ3 IASK FOR 2=BIT LENCGTH
(P=1 RYTE, 1=2 8YTE, 2=3 ZBYTE)
LENGTH
CPCOLE
$+SHBE MASX FOPRP 1XXX1010 TEST
SAVFE IT _
OPCODE TC A AGAIN
#5503
#S8A
MNMDX 3
A
MNMDIX3 FORM INDEX INTO MNEMONIC TABLE
A
A 1) 1XXX1010=>00101XXX
#5520 2) XXXYYY01=>00111XXX
3) XXXYYY1O0=>00110XXX
MNNDX2 4) XXXYY100=>00100XXX
5) XXXXX000=>000XXXXX
MNNDX1
SFF,SFF,SFF
INSDS1 GEN FMT, LEN BYTES
SAVE MNEMONIC TABLE INDEX
(PCL),Y
PRBYTF
#501 PRINT 2 BLANKS
PRBL2
LENGTH PRINT INST (1-3 BYTES)
IN A 12 CHR FIELD
PRNTOP
#503 CHAR COUNT FOR MNEMONIC PRINT
#5504

78

FBE7: 90 F2 BCC PRNTEL

FBE9: 68 PLA RECOVER MNEMONIC INDEX

FBEA: A8 TAY

FS8EB: B9 CO F9 LDA MNEML,Y

FB8EE: 85 2C STA LMNEM FETCH 3-CHAR MNEMONIC

F8BFO: B9 00 FA LDA MNEMR,Y (PACKED IN 2-BYTES)

F8F3: 85 2D STA RMNEMN

F8F5: A9 00 PRMN1 LDA #S$S00

FBF7: A0 05 LDY #S505

F8F9: 06 2D PRMN 2 ASL RMNEM SHIFT S5 BITS OF

F8FB: 26 2C ROL LMNEM CHARACTER INTO A

F8FD: 2A ROL A (CLEARS CARRY)

FBFE: 88 DEY

F8FF: DO F8 BNE PRMN2

F901l: 69 BF ADC #SBF ADD "?2“ OFFSET

F903: 20 ED FD JSR COUT OQUTPUT A CHAR OF MNEM

F906: CA DEX

F907: DO EC BNE PRMN1

F909: 20 48 F9 JSR PRBLNK QUTPUT 3 BLANKS

F90C: A4 2F LDY LENGTH

F90E: A2 06 LDX #5506 CNT FOR 6 FORMAT BITS

F910: EO 03 PRADR1 CPX #S03

F912: FO 1C BEQ PRADRS IF X=3 THEN ADDR.

F914: 06 2E PRADR2 ASL FORMAT

F916: 90 OE BCC PRADR3

F918: BD B3 F9 LDA CHAR1-1,X

F91B: 20 ED FD JSR COUT

F91lE: BD B9 F9 LDA CHAR2-1,X

F¥921: FO 03 BEQ PRADR3

F923: 20 ED FD JSR COUT

F926: CA PRADR3 DEX

F927: DO E7 BRNE PRADRI

F929: 60 RTS

F92A: 88 PRADRY4 DEY

F92B: 30 E7 BMI PRADRZ2

F92D: 20 CA FD JSK PRRYTE

F930: A5 2 PRADRS LDA FORMAT

F932: C9 E& CMP #SES HANDLE REL ADR MODE

F934: Bl 3A LDA (PCL),Y SPECIAL (PRINT TARGET,

F936: 90 F2 BCC PRADRA4 NOT OFFSET)

F938: 20 56 F9 RELADR JSR PCADJ3

F93B: AA TAX PCL,PCH+OFFSET+]1 T0 A,Y

F93C: EB8 INX

F93D: DO 01 BNE PRNTYX +1 TO ¥Y,X

F93F: C8 INY

F940: 98 PRNTYX TYA

F941: 20 DA FD PRNTAX JSR PRBYTE OUTFUT TARGET ADR

F944: B8A PRNTX TXA OF BRANCH AND RETURN

F945: 4C DA FD JMP PRBYTE

F948: A2 03 PRBLNK LDX %503 BLANK COUNT

F94A: A9 AOQ PRBL?2 LDA #SA0Q LOAD A SPACE

F94C: 20 ED FD PRBL3 JSR COUT JUTPUT A BLANK

F94F: CA DEX

F950: DO F8 BNE PRBL2 LOOP UNTIL COUNT=0

F952: 60 RTS

F953: 38 PCADJ SEC 0=1-3YTE,1=2-BYTE,

F954: A5 2F PCADJ2 LDA LENGTH 2=3-BYTE

F956: A4 3B PCADJ3 LDY PCH

F958: AA TAX TEST DISPLACEMENT SIGN

£F959: 10 01 BEL PCADJA4 (FOR REL BRANCH)

F95B: 88 DEY EXTEND NEG BRY DECR PCH

F95C: 65 3A PCADJ4 ADC PCL

F95E: 90 0l BCC RTS2 PCL+LENGTH(OR DISPL)+1 TO A

F960: C8 INY CARRY INTO Y (PCH)

F961: 60 RTS2 RTS
* FMT1 BYTES: XXXXXXY0 INSTRS
* IF Y=0 THEN LEFT HALF BYTE
* IF Y=1 THEN RIGHT HALF BYTE
* (X=INDEX)

F962: 04 20 54

F965: 30 OD FMT1 DFB S04,$20,$54,$830,S$0D

F967: 80 04 90

F96A: 03 22 DFB $80,$04,590,503,822

F96C: 54 33 0D

F96F: 80 04 DFB §$54,$33,$00,880,504

F971: 90 04 20

F974: 54 33 DFE S$90,504,$20,5$54,$33

F976: 0D 80 04

F979: 90 04 DFR SOD,S80,$"4,890,504

F97B: 20 54 3B

F97E: 0D 80 DFR $20,$54,5$38,$0D,580

F980: 04 90 00

F983: 22 44 DFB S04,$90,500,522,544

F985: 33 0D C8

F988: 44 00 DFB §33,$0D,S$C8,$44,500

79

F98A: 11 22 44

F98D: 33 0D DFB $11,522,544,$33,S0D
F98F: C8 44 A9
F992: 01 22 DFB SC8,544,5A9,501,$22
F994: 44 33 0D
F997: 80 04 DFB $44,$33,$0D,580,504
F999: 90 01 22
F99C: 44 33 DFB $90,$01,$22,544,8$33
F99E: OD 80 04
F9Al: 90 DFB $0D,$80,504,$90
F9A2: 26 31 87
F9A5: 9A DFB $26,531,387,$9A ZZXXXY0l INSTR'S
F9A6: 00 FMT2 DFB $00 ERR
F9A7: 21 DFB $21 IMM
F9A8: 81 DFR $81 Z-PAGE
F9A9: 82 DFR $82 ABS
F9AA: 00 DFB $00 IMPLIED
F9AB: 00 DFB $00 ACCUMULATOR
F9AC: 59 DFB $59 (ZPAG, X)
F9AD: 4D DFB $4D (2PAG) , Y
F9AE: 91 DFE $91 IPAG, X
F9AF: 92 DFB $92 aBS, X
F9BO: BE DFR $86 ABS,Y -
F9Bl: 4A DFB $4A (ABS)
F9B2: 85 DFR $85 IPAG,Y
F9B3: 9D DFB $9D RELATIVE
F9B4: AC A9 AC
A3 A8 A4

CHARY ASC ",), A (S
F9BA: D9 00 D8
F9BD: A4 A4 00 CHAR2 DFB $D9,500,$D8,5A4,SA4,S00

*CHAR2: "Y¥",0,"XS$S",0

* MNEML IS OF FORM:

* (A) XXXXX000

* (B) XXXYY100

* (C) 1XXX1010

® (D) XXXYYY1O0

* (E) X¥XYYYO01l

* (X=INDEX)
F9CO0: 1C B8A 1C
F9C3: 23 5D 8B MNEML DFB $1C,S8A,$1C,$23,$5D,$88
F9C6: 1B Al 9D
F9C9: 8A 1D 23 DFE S1B,SAl,S9D,S83,$1D,$23
F9CC: 9D 8B 1D
FOCF: Al 00 29 DFB $9D,$88,$1D,$A1,$00,$29
F9D2: 19 AE 69
F9D5: A8 19 23 DFB $19,SAE,S69,SA8,519,523
F9D8: 24 53 1B
F9DB: 23 24 53 DFB $24,$53,518,$23,$24,553
F9DE: 19 Al DFE $19,SAl (A) FORMAT ABOVE
F9EO: 00 1A 5B
F9E3: 5B A5 69 - DFE $00,%1A,$5B,$5B, 545,569
FOE6: 24 24 DFE $24,524 (B) FORMAT
FOE8: AE AE A8
F9EB: AD 29 00 DFE SAE,S$AE,SAR,SAD,$29,$00
F9EE: 7C 00 DFE $7C,S00 (C) FORMAT
F9FO: 15 9C 6D
F9F3: 9C A5 69 DFR $15,59C,$6D,$9C,$A5,$69
F9F6: 29 53 DFE $29,553 (D) FORMAT
FOF8: 84 13 34
F9FB: 11 A5 69 DFB $84,$13,$34,$11,$A5,569
F9FE: 23 A0 DFB $23,$A0 (E) FORMAT
FAOO: D8 62 5A
FAO3: 48 26 62 MNEMR DFB $D8,$62,$5A,$48,$26,$62
FAO6: 94 88 54
FAD9: 44 C8 54 DFP $94,588,554,$44,$C8,$54
FAOC: 68 44 E8
FAOF: 94 00 B4 DF® $68,544,SEE,$94,$00,584
FAl2: 08 84 74
FAl5: B4 28 6E DFB $08,$84,$74,$B4,$28,$6E
FAl18: 74 F4 CC
FAlB: 4A 72 F2 DFB S$74,$F4,$CC,$44,$72,$F2
FAlE: A4 8A DFBE S$A4,$8A (A) FORMAT
FA20: 00 AA A2
FA23: A2 74 7 DFE $00,SAA,$A2,SA2,$74,574
FA26: 74 72 DFR $74,$72 (B) FORMAT
FA28: 44 68 B2
FA2B: 32 B2 00 DFB $44,568,$82,5$32,$82,500
FA2E: 22 00 DFR $22,500 (C) FORMAT
FA30: 1A 1A 26
FA33: 26 72 72 DFE S1A,S1A,326,$26,$72,$72
FA36: 88 C8 DFB $86,$C8 (D) FORMAT
FA38: C4 CA 26
FA3B: 48 44 44 DFE SC4,SCA,S26,54E,$44,544
FA3E: A2 C8 DFB SA2,$C8 (E) FORMAT

80

FA40: FF FF FF DFR S$FF,SFF,SFF

FA43: 20 DO F8 STEP JSR INSTDSP DISASSEMBLE ONE INST
FA46: 68 PLA AT (PCL,B)

FA47: 85 2C STA RTNL ADJUST TO USER

FA49: 68 PLA STACK. SAVE

FA4A: 85 2D STA RTNH RTN ADR.

FA4C: A2 08 LDX ¥S08

FA4E: BD 10 FB XCINIT LDA INITSL-1,X INIT XEQ AREA

FAS51: 95 3C STA XQT,X

FA53: CA DEX

FA54: DO F8 RNE XOINIT

FA56: Al 3A LbA (BCL,X) USER OPCODE BYTE

FAS8: FO 42 BEQ XBRK SPECIAL IF BRFAK

FASA: A4 2F LDY LENGTH LEN FROM DISASSEMBLY
FA5G: C9 20 CMP 4520

FASE: F0 59 REC XJSR HANDLE JSR, PTS, JMP,
FA60: C9 60 CMP #5560 JMP (), RTI SPECIAL
FA62: FO 45 BEQ XRTS

FA64: C9 4C CMP #354C

FA66: F0 5C BEQ AJMP

FA68: C9 6C CMP #56C

FAG6A: FO 59 BEQ XJMFAT

FA6C: C9 40 CMP 4S5S40

FA6E: FO 35 3EQ XRTI

FA70: 29 1F AND #SI1F

FA72: 49 14 EOR 4S14

FA74: C9 04 CMP #S04 COPY USER INST TO XEO AREA
FA76: FO 02 BEQ XQ2 WITH TRA1lLING NOPS
FA78: Bl 3A X01 LDA (PCL),Y CHANGE REL BRANCH
FA7A: 99 3C 00 XQ2 STA XQTNZ,Y DISP TO 4 FOR

FATD: 88 DEY JMP TO BRANCH OR
FA7E: 10 F8 BPL XQl NBRANCH FROM XEQ.
FA80: 20 3F FF . JSR RESTORE RESTORE USER REG CONTENTS.
FAB83: 4C 3C 00 JMP XQTNZ XEQ USER OP FROM RAM
FAB6: 85 45 IRQ STA ACC (RETURN TO NBRANCH)
FA88: 68 PLA

FAB9: 48 PHA **TRQ HANDLER

FA8SA: 0A ASL A

FA8B: OA ASL A

FABC: 0A ASL A

FA8D: 30 03 BMI BREAK TEST FOR BREAK

FABF: 6C FE 03 JMP (IROLOC) USER ROUTINE VECTOR IN RAM
FA92: 28 BREAK PLP

FA93: 20 4C FF JSR SAV1 SAVE REG'S ON BREAK
FA96: 68 PLA INCLUDING PC

FA97: 85 3A STA PCL

FA99: 68 PLA

FA9A: 85 3B STA PCH

FA9C: 20 82 F8 XBRK JSR IMSDS1 PRINT USER PC.

FA9F: 20 DA FA JSR RGDSP1 AND REG'S

FAA2: 4C 65 FF JMP MON GO TO MONITOR

FAAS: 18 XRTI CLC

FAA6: 68 PLA SIMULATE RTI BY EXPECTING
FAA7: 85 48 3TA STATUS STATUS FROM STACK, THEN RTS
FAA9: 68 XRTS PLA RTS SIMULATION

FAAA: 85 3A sTA PCL EXTRACT PC FROM STACK
FAAC: 68 PLA AND UPDATE PC BY 1 (LEN=0)
FAAD: 85 3B PCINC2 3TA PCH

FAAF: A5 2F PCINC3 LDA LENGTH UPDATE PC BY LEN
FABl: 20 56 F9 JSR PCADJ3

FAB4: 84 3B STY PCH

FAB6: 18 CLC

FAB7: 90 14 BCC NEWPCL

FABY9: 18 XJSR CLC

FABA: 20 54 F9 JSR PCADJ2 UPDATE PC AND PUSH
FABD: AA TAX ONTO STACK FOR

FABE: 98 TYA JSR SIMULATE

FABF: 48 PHA

FACO: 8A TXA

FACl: 48 PHA

FAC2: AQ 02 LDY #$02

FAC4: 18 XJIMP CLC

FACS5: Bl 3A XJIMPAT LDA (PCL),Y

FAC7: AA TAX LOAD PC FOR J¥MP,

FAC8: 88 DEY (J¥P) SIMULATE.

FAC9: Bl 3A LDA (PCL),Y

FACB: 86 3B STX PCH

FACD: 85 3A NEWPCL STA PCL

FACF: BO F3 BCS XJ¥P

FADl: AS 2D RTNJ P LDA RTNH

FAD3: 48 PHA

FAD4: A5 2C LDA RTNL

FAD6: 48 PHA

FAD?7: 20 8E FD REGDSP JSR CROUT DISPLAY USER REG
FADA: A9 45 RGDSP1 LDA #ACC CONTENTS WITH

FADC: B5 40 STA A3L LABELS

81 81

FADE: A9 00 LDA #ACC/256

FAEO: 85 41 STA A3H

FAE2: A2 FB LDX #SFB

FAE4: A9 AOQ RDSP1 LDA #SA0

FAE6: 20 ED FD JSR COUT

FAE9: BD lE FA LDA RTBL-$FB,X

FAEC: 20 ED FD JSR COUT

FAEF: A9 BD LDA #$BD

FAFl: 20 ED FD JSR CouT

FAF4: BS5 4A LDA ACC+5,X

FAF6: 20 DA FD JSR PRBYTE

FAF9: E8 INX

FAFA: 30 EB8 BMI RDSPI

FAFC: 60 RTS

FAFD: 18 BRANCH CLC BRANCH TAKEN,
FAFE: A0 01 LDY #$01 ADD LEN+2 TO PC
FBOO: Bl 3A LDA (PCL),Y

FB02: 20 56 F9 JSR PCADJ3

FB0S5: 85 3A STA PCL

FBO7: 98 k TYA

FB08: 38 SEC

FB09: BO A2 BCS PCINC2

FBOB: 20 4A FF NRRNCH JSR SAVE NORMAL RETURN AFTER
FBOE: 38 SEC XEQ USER OF

FBOF: B0 9E RCS PCINC3 GC UPDATE PC
FB1l: EA INITBL NOP

FBl12: EA NOP DUMMY FILL FOR
FB13: 4C 0B FB JMP MRRNCH XEQ AREA

FBl6: 4C FD FA JMP BRANCH

FB19: Cl1 RTBL DFR $C1

FBlA: D8 DFB $DB

FB1B: D9 DFE SD9

FB1C: DO DFR $DO

FB1D: D3 DFB $D3

FBlE: AD 70 CO PREAD LDA PTPIG TRIGGER PADDLES
FB21: AOQ0 00 LDY #S00 INIT COUNT

FB23: EA NOP COMPENSATE FOR 1ST COUNT
FB24: EA NOP

FB25: BD 64 CO PREAD2 LDA PADDLO,X COUNT Y-REG EVERY
FB28: 10 04 RPL RTS2D 12 USEC

FB2A: C8 INY

FB2B: DO F8 BNE PREAD2 EXIT AT 255 MAX
FB2D: 88 DEY

FB2E: 60 RTS2D RTS

FB2F: A9 00 INIT LDA #$00 CLR STATUS FOR DERUG
FB31l: 85 48 STA STATUS SOFTWARE

FB33: AD 56 CO LDA LORES

FB36: AD 54 CO LDA LOWSCR INIT VIDEO #ODE
FB39: AD 51 CO SETTXT LDA TXTSET SET FOR TEXT MODE
FB3C: A9 00 LDA #S00 FULL SCREEN WINDOW
FB3E: FO OB BEQ SETWND

FB40: AD 50 CO SETGR LDA TXTCLR SET FOR GRAPHICS MODE
FB43: AD 53 CO LDA MIXSET LOWER 4 LINES AS
FB46: 20 36 F8 J3R CLPTOP TEXT WINDOW
FB49: A9 14 LDA #5114

FB4B: 85 22 SETWND STA WNDTOP SET FOR 40 COL WINDOW
FB4D: A9 00 LDA #S00 TOP IN A-REG,
FB4F: 85 20 STA WNDLFT BTTM AT LINE 24
FB51: A9 28 LDA #S828

FB53: 85 21 STA WNDWDTH

FB55: A9 18 LDA #S16

FB57: 85 23 STA “NDBTH VTAR TO ROW 23
FB59: A9 17 LDA #$17

FBS5B: 85 25 TABV STA CV VTABS TO ROW IN A=-REG
FBS5D: 4C 22 FC JUP VTAPR

FB60: 20 A4 FR MULPM JSR MD1 ARS VAL OF AC AUX
FB63: AQ 10 MUL LDY #$10 INDEX FOR 16 BITS
FB65: A5 50 MUL2 LDA ACL ACX = AUX + XYTND
FB67: 4A LSR A TO AC, XTND
FB68: 90 0C BCC MUL4 IF NO CAPRRY,
FB6A: 18 CLC HO PARTIAL PROD.
FB6B: A2 FE LDX #SFE

FB6D: B85 54 MOL3 LA XTWDL+2,X ADD MPLCND (AUX)
FB6F: 75 56 ADC AUXL+2,X TO PARTIAL PROD
FB71: 95 54 STA XTWDL+2,X {XTND) .
FB73: E8 INX .

FB74: DO F7 BNF “MUL3

FB76: A2 03 MUL4 LECX #S03

FBR78: 76 MULS OFB #$76

FB79: 50 DFR S50

FR7A: CA DEX

FR7B: 10 FBE 3PL MULS

FB7D: 88 DEY

FB7E: DO ES5 BNE MUL2

FBB0: 60 RTS

82

FR81:
FB84:
FBEG6:
FB88:
FB8A:
FB8C:
FBBE:
FBBF:
FB91:
FB93:
FB94:
FB896:
FB98:
FB9A:
FRaC:
FB9E:
FBAO:
FBAl:

FBA3:
FBA4:
FBAG:
FBAS:
FBAA:
FBAD:
FBAF :
FB31l:
FBB3:
FBB4:
FBBS:
FBB7:
FBB9:
FBBA:
FBBC:
FBBE :
FBCO:
FBCl:
FBC?2:
FBRC3:
FBCS:
FBC7:
FBC9:
FBCA:
F8CC:
FBCE:
FBDO:

FBD2:

FBD3:
FBDA4:
FBD6:
FBDS8:
FBD9:
FBDB:
FBDD:
FBDF:
FREZ2:
FRE4:
FBEG:
FBE9:
FBEC:
FBED:
FBEF:
FBFO:
FBF 23
FBF4:
FBF6:
FB8F8:
FBFA:
FBFC 2
FBFD:
FBFF:
FCO1l:
FCO2:

FCO4:
FCO06:
FCO8:
FCOA:
FCOC:
FCOE:
FC10:
FCl2:
FCl4:
FClo:
FC18:
FClA:
FC1lC:

20
AQ
06
26
26
26
38
A5
ES
AA
AS
ES
90
86
85
E6
B8
Do

60
AD
84
A2
20
A2
BS
10
38
98
F5
95
98
Fb
85
E6
60
48
4A
29
09
85
68
29
S0
69
85
0A
oA
05
BS
60
c9
DO
A9
20
AQ
A9
20
AD
88
DO
60
A4

91
E6
AS
c5
BO
60
g
BO
A8
10

c3
FO
C9
FO
co
DO
Cé
10
AS
85
Cé
AS
C5

A4
10
50
51
52
53

52
54

53
55
06
52

<
50

E3

00
2F
54
AF
50
01
0D

00
00

01

01l
2F

03

04
29

18
02
7F

28

28
28

87
12
40
Ag
Cco
0C
Al
30

Fh

24
28
24
24

21
66

AQ
EE

EC
80
5A
8A
SA
88
c9
24
ES
% |
24
24
22
25

FB

EE

FC

£C
COo

DIVPA
LIV
DIV2

DIV3

MD1

MD2

MD3

MDRTS
BASCALC

3ISCLC2

BELL1

BELLZ2

RTSZP
SYTOADV

ADVANCE

PTS3
VIDOUT

UP

JSR
LLY
ASL
ROL
RGL
ROL
SEC
LDA
SEC
TAX
LCA
SBC
RCC
g
STA
INC
OFRY
ENE
RTS
LDY
STY
LDX
JSR
LDX
LDA
BRPL
SEC
TYA
SBC
STA
TYA
SBC
STA
INC
RTS
PHA
LSR
AND
ORA
STA
PLA
AND
BCC
ADC
STA
ASL
ASL
ORA
STA
RTS
CHmp
3NE
LDA
J5R
LDY
LDA
JSR
LDA
DEY
5NE
RTS
LDY
STA
18C
LDA
CMP
BCS
RTS
CMP
BRCS
TAY
3PL
CMP
BEOD
CMP
BELD
CMP
RNE
DEC
BPL
LDA
STA
DEC
LDA
CMP

vl
$#£10
CL
ACH
XTNDL
XTNDH

XTNDOL
AUXL

X110H
AUX1!
DIV3
XTNDL
XTHNDH
ACL

DIVZ

#S00
SIGN
#$AUXL
MD2
#ACL
LOC1,X
MDRTS

LOCO,X
LOCO,X

LOC1,X

LOC1,X
SIGHN

A
#S03

#5504
BASH

$518
BSCLC?2
#$STF
BASL

A

A

BASL
BASL

$S87
RTS 2B
£ES40
WAIT
#sSCQC
150C
WAIT
SPKR

PELL2

ci

(EASL) ,Y

CH
cH
WNDWDTH
CR

#SA0
STOADV

STOADV
¥S8D
CR
#SBA
LF
£S886
BELL1
CH
RTS3
ANDWYDTH
LR

CH
“NDTOP
LV

83

arS VAL OF AC, AUX.
INDEYX FOR 16 BITS

YTHO/AUX
o0 AC.

MOZ2 TO XTND.

’RS VAL OF AC, AUX
WITH RESULT SIGWN
IN LSB OF SIGN.

X SPECIFIES AC OR AUX

COMPL SPECIFIED REG
IF NEG.

CALC BASE ADR IN BASL,H
FOR GIVEN LINE NO.
0<=LINE NO.<=$17

ARG=000ABCDE, GENERATE
BASH=MP00001CD

AND
PASL=EABARQOOO

BFLL CHAR? (CNTRL-G)
NG, RETURN
CELAY .01 SECONDS

TGGGLE SPEAKER AT
1 ¥8Z FOQR .1 BEC.

CURSER #H INDEX TO Y=-RESG
STOR CHAR IN LINE
INCREMENT CURSER H INDEX
(MOVE RIGHT)
BEYOND WINDOW WIDTH?
YES P TO HNFXT LINE
nNO,RETURN
CONTROL CHAPR?
NC,0UTPUT IT.
INVERSE VIDEQ?
YES, OUTPUT IT.
CR?
YES.
LINE FEED?
IF SO, DO IT.

BACK SPACE? (CNTRL=-H)
MO, CHECK FOR RELL.
DECREMENT CURSER H INDEX
IF POS, 0OX. ELSE MOVE (P

SEFT CH TO WNDWDTH=-1

(RIGHTMOST SCREEN POS)
CURSER V INDEX

FClE:
FC20:
FC22:
FC24:
FC27:
FC29:
FC2B:
FC2C:
FC2E:
FC30:
FC32:
FC34:
FC36:
FC38:
FC3A:
FC3C:
FC3E:
FCA40:
FC42:
FC44:
FC46:
FC47:
FC4A:
FC4D:
FCAF:
FC50:
FC52:
FC54:
FC56:
FC58:
FC5a:
FC5C:
FCSE:
FC60:
FC62:
FCb4:
FC66:
FC68:
FC6A:
FC6C:
FC6E:

FC70:
FC72:
FC73:
FC76:
FC78:
FC7A:
FC7C:
FC7E:
FC80:
FC81:
FC82:
FC84:
FC86:
FC88:
FC89:
FC8C:
FCBE:
FC90:
FC91:
FC93:
FC95:
FC97:
FC9A:
FC9C:
FC9E:
FCAOQ:
FCA2:
FCA3:
FCAS:
FCA7:
FCASB:
FCAQ:
FCAA:
FCAC:
FCAE:
FCAF:
FCB1:
FCB3:
FCB4:
FCB6:
FCB8:
FCBA:
FCBC:
FCBE:

BO
Cé
A5
20
65
85
60
49
FO
69
90
Fo
69
90
FO
69
90
DO
A4

as

20
20
Al
68
69
C5
90
BO
A5
85
AQ
84
FO
a9
85
E6
A5
C5
90
Co
AS
48
20
A5
85
A5
85
A4
88
68
69
C5
BO
48
20
81
91
88
10
30
AQ
20
BO
A4
A9
91
c8
Cc4
90
60
38
44
E9
Do
68
E9
DO
60
Eb
DO
E6
AS
C5
AS

0B
25
25
Cl
20
28

Cco
28
FD
co
DA
FD
2C
DE
FD
5C
E9
24
25

24
9E
00

00
23
FO
CA
22
25
0C
24
E4
00
24
25
25
23
B6
25
22

24
28
2A
29
2B
21

01
23
0D

24
28
2A

F9
E1l
00
9E
86
24
AQ
28

21
F9

01
FC

01
Fé

42
02
43
3C
3E
3D

FB

FC
FC

FC

FC

FC

VTAE
VTARBZ

RTS4
ESC1

CLKREOP

CLEOP]

JOME

CR

LF

SCROLL

SCRL1

SCRL2

SCRL3

CLRECL
CLEOLZ2
CLEOL2

NATT
WAIT2
WAIT3

NXTA4

NXTAL

BCS
DEC
LDA
JSR
ADC
STA
PTS
EOR
PFO
ADC
BCC

RTS4

Cv

cv
PASCALC
ANDLFET
BASL

#SC0O
HOME
#SFD
ADVANCF
BS
#SFD
LF

upP
#SFD
CLREOL
RTS4
CH

cv

VTABZ
CLEOL7
#$00

#500
ANDBTH
CLEOP1
VTAR
HROTOP

cv
INOPTH
VTarg
cv
WNDTOP

VTARZ
BASL
BAS2L
BASH
BAS2H
WNDWDTH

#5001
WNDRTH
SCRL3

VTABZ
(RASL) ,Y
(RAS2L) ,Y

SCRL2
SCRL1
4500
CLEOL?Z
vrans

CH

#SA0
(RASL) , Y

WNDIDTH
CLEOL2

#s01
WATIT3

#S01
WAIT2

A4L
NXTA]L
A4H
AlL
A2L
A1H

IF TOP LINE THEN PETURN
DFCR CURSER V-INDEX

GET CURSER V=-INDEX
CENERATE BASE ADDR

ADD WINDOW LEFT INDEX
TO RASL

ESC?

IF SO, DO HOME AND CLEAR

ESC-A OR B CHECK
A, ADVANCE
B, RACKSPACE

ESC-C OR D CHECK
C,DOWN
B, GO pp

ESC-E Of F CHECK
F, CLFAR TO END OF LINE
NOT £, RETURN

CURSOR # TO Y INDEX

CURSOR V TO A-REGISTER

SAVE CURRENT LINE ON STK

CALC RASE ADDRFSS

CLFAR TO EOL, SET CARRY

CLEAR F™" M H INDEX=0 FOR REST

INCREMENT CURRENT LINE

(CARRY IS SET)

DONE TO ROTTOM OF “INDOW?
NC, KFEP CLFAPING LINES
YES, TAR TO CURRENT LINE

INIT CURSOR V
AND H-INDICES

THEW CLEAR TO END OF PAGE

CURSOR TO LEFT OF INDFX
(PET CURSOF H=0)
INCR CURSOP V(DCWN 1 LINE)

OFF SCREFN?

NO, SET BASE ADDR
DECR CURSOR V(BACK TO BOTTOM LINR)
START AT TOP OF SCRL WNDW

GENERATE BASE ADDRESS
COPY BASL,H
TO BAS2L,H

INIT Y TO RIGHTMOST INDEX
OF SCROLLING WINDOW

INCR LINE NUMRER

DONE?
YES, FINISH

FORM BASL,H (BASE ADDR)
MOVE A CHR UP ON LINE

MEXT CHAR OF LINE
NEXT LINE

CLEAPR BOTTOM LINE
GET RASE ADDR FOR BROTTOM LINE

CARRY IS SET
CURSOR 4 INDEX

STORE RLANKS FROM 'HERE'
TO END CF LINES (WNDWDTH)

1.0204 USEC .
(13+2712*A+512*%A*n)

INCR 2-FYTE A4
AND Al

INCP 2-BYTF Al.

AND COVMPARE TO A2

FCCO:
FCC2:
FCCA4:
FCC6:
FCC8:
FCC9:
FCCh:
FCCE:
FCDO:
FCD2:
FCD4:
FCD6:
FCD9:
FCDA:
FCDB:
FCDC:
FCDE:
FCEO:
FCE2:
FCE3:
FCES:
FCEB8:
FCEA:
FCEB:
FCEC:
FCEE:
FCEF:
FCF2:
FCF3:
FCF4:
FCF6:
FCF7:
FCES:
FCFA:
FCFD:
FCFE:
FDO1:
FDO3:
FDO5:
FDO7:
FDO9:
FDOB:
FDOC:
FDOE:
FD10:
FD11:
FD13:
FD15:
FD17:
FD18:
FD1R:
FD1D:
FD1F:
FD21:
FD24:
FD26:
FD28:
FD2B:
FD2E:
FD2F:
FD32:
FD35:
FD38:
FD3A:
FD3C:
FD3D:
FD3F:
FD40:
FD42:
FD44:
FD47:
FD4A:
FD4B:
FD4D:
FD50:
FD52:
FD54:
FD56:
FD58:
FD5A:
FDSC:
FD5F:
FD60:
FD62:
FD64:

ES
E6
DO
E6
60
AO
20
DO
69
BO
A0
20
c8
cs
88
DO
90
A0
88
DO
AC
a0
ca
60
A2
48
20
68
2a
AD
CA
DO
60
20
88
AD
45
10
45
es
co
60
A4
B1
48
29
09
91
68
6C
E6
DO
L6
2C
16
91
AD
2
60
20
20
20
c9
FO
60
A5
48
a9
85
BD
20
68
85
BD
c9
FO
c9
FO
E0
90
20
E8
DO
A9
20

3F
3C
02
3p

43
LB
F9
FE
F5
21
DB

FD
05
32

FD
20
2C

08

Fa

3A
F5
FD

60
2F
F8
2F
2F
80

24
28

3F
40
28

38
4E
02

00
F5
28
00
10

ocC
2C
ocC
98
F3

32

FF
32
00
ED

32
00
88
1D
98
0A
F8
03
3A

13
DC
ED

FC

FC

Co .

FC

FC

Cco

00

co

co

co

FD
FC
£D

02
FD

02

FF

FD

BRTS4%
H¥EADK

WRBIT

ZEPDLY

ONELLY

WRTAPE

RDBYTE
RDBYT2

RD2BIT
RDPIT

RDKEY

KEYIN

KFEYINZ

EREC

BPDCHAR

NOTCR

NOTCR1

CANCEL

38C
e
B8NE
INC
RTS
Loy
JSR
NP
ADC
acs
LDY
JSR
vy
INY
DEY
BNE
RCC
LDY
DEY
BNE
LDY
LDY
DEX
RTS
LDX
PHA
JSP
PLA
ROL
LDY
DEX
BNE

PLA
STA
LDA
CMP
BEC
CcMpP
BEQ
CPX
BCC
JSR
INX
BNE
LDA
JSR

A2h

ALL (CARPY SET IF >=)
RT34R

AlhH

540 VRITE A%256 'LOWNG 1°
ZERDLY HALF CYCLES

HEADFP (650 USEC EACH)
LSFF

AEADR THEN A 'SPORT 0!
4€21 (400 USEC)

ZERDLY WRITE TWO HALF CYCLES
OF 250 USEC ('0")
OR 500 USEC ('0')

ZERDLY

WRTAPE Y IS COUNT FOR

#5832 TIMING LOOP

ONEDLY

TAPEQUT

#s2c

$508 8 BITS TO READ
READ TWO TRANSITIONS

RO2RIT (FIND EDGE)

A NEXT RIT

£53A COUNT FOR SAMPLES

RDBYT2

RD2I'T
DECR Y UNTIL

TAPEIN TAPE TRANSITION

LASTIN

RDBIT

LASTIN

LASTIN

§S80 SET CARRY ON Y-REG.

cH

(PASL),Y SET SCREEN TO FLASH

453p

§$40

(EASL) ,Y

(KSWL) GO TO USER KEY-IN

ENDL

KEYIN2 INCR RND NUMBER

RNDH

KRD KEY DOWW?

KEYIil LCOP

(3ASL) ,Y REPLACE FLASHING SCRREN

) CET KEYCODE

KPDSTRR CLR KFY STRORE

PDKEY GET ¥FYCODE

E5C1 HANDLE ESC FPUNC.

ROKEY READ KFY

$597 RSC?

©3C YES, DON'T RETURN

INVFLG

#SFF

INVFLG ECHO USER LINE

IN, X NON INVERSE

couT

INVFLG

IN, X

4S88 CHECK FOR EDIT KEYS

BCKSPC B8S, CTRL-X.

§soe

CANCEL

$SF8 MARGIN?

NOTCR1

RELL YES, SOUND PELL
ANVANCE INPUT INDEX

NXTCHAR

$SDC BACKSLASH AFTER CANCELLED LINE

couT

85

FD67:
FD6A:
FD6C:
FD6F:
FD71:
FD72:
FD74:
FD75:
FD78:
FD7A:
FD7C:
FD7E:
FD80:
FD82:
FD84:
FD87:
FD89:
FD8B:
FD8E:
FD90:
FD92:
FD94:
FD96:
FD99:
FDIC:
FDSE:
FDAO:
FDA3:
FDAS:
FDA7:
FDAY:
FDAR:
FDAD:
FDAF:
FDB1:
FDB3:
FDB6:
FDBS8:
FD8B:
FDBD:
FDCO:
FDC3:
FDC5:
FDC6:
FDC7:
FDCY:
FDCA:
FDCB:
FDCD:
FDCF:
FDD1:
FDD3:
FDD4:
FDD6:
FDD9:
FDDA:
FDCB:
FDDC:
FDDD:
FDDE:
FDDF:
FDE2:
FDE3:
FDES:
FDE7:
FDE9:
FDEB:
FDED:
FDFO:
FDF2:
FDF4:
FDF6:
FDF8:
FDF9:
FDFC:
FDFD:
FDFF:
FEOQO:
FEQ2:
FEO4:
FEO05:
FEOQ7:
FEO09:
FEOB:
FEOD:

20
aS
20
A2
8A
FO
CA
20
Cc9
no
Bl
c9
90
29
9D
Cc9
DO
20
a9
DO
Ad
a6
20
20
AQ
A9
AC
AS
09
85
A5
85
A5
29
DO
20
A9
20
Bl
20
20
90
60
4A
90
4a
4A
A5
90
49
65
48
A%
20
68
48
4A
4a
4A
4A
20
68
29
09
c9
90
69
6C
Cc9
90
25
84
48
20
68
a4
60
Ccé
FO
CA
DO
Cc9
DO
85
AS

8E
33
ED
01

F3

35
95
02
28
EC
02
DF
00
8D
B2
9C

5B
3D
3C
8E
40
00
AD
ED

07

s
3D
3F
3C
07
03
92
AQ
ED
3C
DA
BA
E8

EA

E5

oF
BO
BA
02
06
36
a0
02
32
35

FD

35

34
9F

lé
BA
BB
31
3E

FD

FD

02

FC

FD
F9

FD

FD
FD

FD

£C

FE

FD

00

FB

CETULNZ
GETLN

BCKSPC

NXTCJIAFR

CAPTST

ADDINP

CROUT

PRA1

PFYX2

XAMB

; MOCRCHK

XAM
DATAOUT

RTSAC
XAMPH

ADD

PRBYTE

PRHEX

PRHEXZ

couT

couTl

CouTZ

BL1

BLANK

STOR

JSR
LDA
JSR
LDX
TXA
BEQ
DEX
JSR
CMP
BHE
LDA
cup
BCC
AND
STA
Cmp
BNE
J3R
LDA
BNE
LDY
LDX
JSR
JSR
LDY
LDA
JuP
LDA
CRA
STA
LDA
&TA
LDA
AND
RNL
JSR
LCA
IS8R
LDA
J8R
JSR
BCC
RTS
LSR
3CC
LSR
LSR
L.DA
BCC
EOR
ADC
PHA
LDA
JS5R
PLA
PHA
LSR
LSR
LSP
LSR
JSK
PLA
AND
ORA
CMP
BCC
ADC
JMP
cMp
BCC
AND
STY
PHA
JSR
PLA
LDY
RIS
DEC
BEQ
DEX
BNE
CMP
BNE
STA
LDA

CROUT
PROMPT
couT
4501

GETLNZ
PDCHAR

#PICK
CAPTST

(BASL) ,Y

#SEO
ADDINP
£SDF
In,X
4S80
NOTCR
CLPEOL
#S8D
cour
AlH
ALlL
CROUT
PRITYX
£500
£$AND
couT
AlL
ESOT
A2L
AlH
A2H
alL
4807
DATAOUT
PRA1
#5320
cour
(A1L) ,Y
PREYTE
HXTAL
MOCRCHK

A
XaM
A

A
a2L
ADD
4SFF
AlL

#S3D
COUT

A
A
A
A
PRHEXZ

#SOF
#sSB0
#SBA
CcouT
$506
(CS¥'L)
#SA0
CouTZ
INVFLG
YSAV]

vIDOUT
YSAV1

YSAV
XAM8

SETMDZ
#SBA
XAMPM
MODE
A2L

86

OUTPUT CR

OUTPUT PROMPT CHAR
INIT (NPUT INDEX
WILL RACKSPACE TO 0

USFE SCREEN CHAR
FOR CTRL-U

ADD TO INPUT BUF
CLR TO FOL IF CR

PRINT CR,Al IN HEX

PRIUT '~'

SET TO FINISH AT
MOD e=7

OUTPUT BLANK
OuUTPUT BYTE IN HEX

CHECK IF TIME TO,

PRINT ADDR .

DETERMINE IF MON
MODE IS XAM
anD, OR SUB

sy2: FORM 2'S COMPLEMENT

PRINT '=', THFN RESULT

PRINT BYTE AS 2 HEX
PIGITS, DESTROYS A-REG

PRINT HEX DIG IN A-REG
LSB'S

VECTOR TO USER OUTPUT ROUTINE

DON'T OUTPUT CTRL'S INVERSE
MASK WITH INVERSE FLAG
SAV Y-REG
SAV A-FEG
OUTPUT A-REG AS ASCII
RESTORE A-REG
AND Y-REG
THEN RETURN

RLANK TO MON
AFTER BLANK
DATA STORE MODE?
NO, XAM, ADD OR SUB

KEEP IN STORE MODE

FEOF:
FEl1ll:
FE13:
FE15:
FE17:
FE18:
FE1lA:
FE1D:
FE1lF:
FE20:
FE22:
FE24:
FE26:
FE28:
FE29:
FE28:
FE2C:
FE2E:
FE30:
FE33:
FE35:
FE36:
FE38:
FE3A:
FE3C:
FE3F:
FE41:
FE44:
FE46:
FE49:
FE4B:
FE4E:
FES0:
FES3:
FE55:
FES8:
FES5B:
FEBD:
FESE:
FE61:
FE63:
FE64:
FE67:
FE6GA:
FE6C:
FEGE:
FEG6F:
FE70:
FETZ;
FE74:
FE75:
FE76:
FE78:
FETA:
FE7C:
FL7D:
FE7F:
FE80:
FE82:
FE84:
FEB86:
FE88:
FEB89:
FE8B:
FE8D:
FE8F:
FE9]:
FE93:
FE95:
FE97:
FE99:
FE9B:
FE9D:
FE9F:
FEAl:
FEA3:
FEAS:
FEA7:
FEA9:
FEAB:
FEAD:
FEAE:
FEAF:
FEBO:
FEBR3

09
A0
FO
A9
94
95
60
EA
EA
4C
4C

40
40
02
41
RTSS
34 SETMOLE

31 SETMDZ

01 LT

3E LT2
42
44

F7
3C MOVE

R4 FC

3C VFY

92 FD
DA FD
ED FD
ED FD

DA FD

VFYJK

LIST

LIsT2
DO F8
53 F9
3A
38

01

Al1PC
3C AlPCLYE
3A

F9

A]1PCRTS
3F SETINV
02
FF SETNORM
32 SETIFLG

00 SETKA3D
3E INPORT
36 INPRT
1B

08

00 SETVID
3E OUTPCRT
36 OUTPRT
FO

3E IOPRT
oF

06

co

00

02

FD IOPRT1
00 IOPRT2
01

00 EO XPBASIC
03 EU BASCONT

(A3L),Y STORE AS LOW BYTE AS (A3)
A3L
RTSS

a3

INCR A3, RETURN

SAVE COWNVERTED f:*', '+',

AS MODE,

Y3AV
IN-1,Y Yt W0
4ODF

4501

A2L,X
A4L,X
ASL,X

COPY A2 (2 BYTES) TO
A4 AND AS
LT2

MOVE (Al TO A2) TO
(r4)

(ALL),Y
(AdL),Y
NXTA4
MOVE

VERIFY WITH

(Ad)

(A LD, Y (Al TO A2)

(AdL),Y
VFYCK
PRAL
(alL) ,Y
FRAYTE
BSAQG
cour
#3A8
couT
(A4L),Y
PREYTE
4Sn9
cour
NXTA4
JrY

'"VE Al (2 BYTES) TO
PC IF GPEC'D AND
NISSEMRLE 20 INSTRS

Al1PC
#514

INSTDSP
PCALCJ
PCL

PCH

ADJUST PC EACH INSTR

4501 NEXT OF 20 INSTRS

LIST?2

IF USFR SFEC'D ADR
A1PCRTS COorY FRPOY Al TO PC
AlL,X
PCL, X

AIPCLE
SET FOR INVERSE VID

VIA COUTI
SET FOR NORMAL VID

$S3F
SETIFLG
#SFF
INVFLG

SIMULATE PORT #0 INPUT
SPECIFIED (KEYIN ROUTINE)

#S00
A2L
¥KSWL
$KEYIWN
IOPRT
#$00
A2L
#CSWL
#COUT1
A2L
#30F
IOPRT1
$ICADR/256
#500
ICPRT2
#COUTL1/25¢6
LOCO, X
L.OC1, X

SIVULATE PORT #0 OUTPUT
SPECIFIED (COUT1 ROUTINEF)

SET PAM IN/OUT VECTORS

T0C 2ASIC WITH 3CRATCH

CONTINUE BRASIC

RASIC
BASIC2

87

FEBG6:
FEB9:
FEBC:
FEBF:
FEC2:
FEC4:
FEC7:
FECA:
FECD:
FECF:
FED2:
FED4:
FEDG6:
FEDS8:
FED9:
FEDB:
FEDE
FEE1l:
FEE3:
FEE4:
FEEG:
FEES:
FEEB:
FEED:
FEEF:
FEFO:
FEF3:
FEES:
FEF6:
FEF9:
FEFA:
FEFB:
FEFD:
FFO0O:
w3 FF02:
FFO5:
FFO7:
FFOA:
FFOC:
FFOF:
FF1l1l:
FFl4:
FFl6:
FF19:
FF1B:
FF1D:
FF1F:
FF22:
FF24:
FF26:
FF29:
FF2B:
FF2D:
FF2F:
FF32:
FF34:
FF37:
FF3A:
PF3C:
FF3F:
FF41:
FF42:
FF44:
FF46:
FF48:
FF49:
FF4A:
FF4C:
FF4E:
FESD:
FF51:
FF52:
FF54:
FF55:
FF57:
FF58:
FF59:
FF5C:
FESF:
FFo2:
FF65:
FF66:
FF69:
FF6B:
FF6D:

75
3F
3A
D7
34

43
F8
49
c9
27
00
3C

3C
ED
BA
1D

EE

ED
40
10

D6
FA

00

6C
FA
16
Cc9
2E
FA
24
FD
FS
FD
3B
EC
3C
2E
2E
3A
35
FO
EC
2E
0D
C5
ED
D2
ED
ED
87
ED
48

45
46
47

45

46
47

48

49

34
2F
93
89

3A
AA
33
67

FE
FC

FE

FE

FC

FC

FC

FC

FC

FD
FD

FD

FE
FB
FE
FE

FF

FD

GO

RTGZ
TPACE
STEPZ

USSPk
WRITE

4R1

WRBYTE
WRRBYT2

CRMON

READ

RD2

RD3

PRERR

RELL

RESTORE

RESTR1

SAVE
sSavl

FESET

MOW

MONZ

JSR
JSP
JMP
Jve
DEC
JSR
JIup
NP
LDA
JSR
LDY
LDX
EOP
PHA
LDA
ise
JSR
LDY
PLA
Yol
LDY
J3n
3Er
LDX
ASL
JSR
BNE
RTS
JSR
PLA
PLA
BNE
JSR
LDA
JSR
STA
JSE
LDY
JSR
BCS
JSR
LOY
JSR
STA
EOR
STA
JSR
LPY
BCC
J3R
cMP
2EO
LDA
J3R
LD
ISR
JSR
LDA
JAP
DA
PlIA
LbA
LDX
LDY
PLP
RTS
STA
STX
STY
pHP
PLA
STA
TSX
STY
cLn
PIS
I3R
JSR
JSR
JSR
CLD
Jsr
LDA
STA
Jsw

alpc
RESTOPE
{PCL)
RECNSP
YSAV
A1PC
STEP
USEADR
4S40
HEADR
#5827
“S00
(A1L,X)

(A1L, %)
ARRYTE
NXTAL
£81D

Wil
$$22
WRAYTE
PLLL
#5510

A
WRBIT
WRAYT?2

3L1

MONZ
RDZBIT
4516
HEADRR
CHKSUM
RC2BIT
#524
RDBIT
RD2
RORIT
#8383
RDBYTE
(A1L,X)
CHLSUM
CHKSUM™
NXTA1
835
RD3
ROIYTE
CHKSUM
2nLL
#$CS
cour
$SP2
cour
couT
#S57
couT
STATUS

ACC
XREG
YREG

ACC
XREG
YRFC

STATUS

SPNT

SETHNORM
INIT
SETVID
SETKRBD

BELL
#SAA
PROMPT
GETLNZ

88

ADR TO PC IF SPEC'D
RESTORE META PREGS
CO TG USER SUBR

TC REG NISPLAY

ADR TO PC IF SPEC'D
TAKE ONE STEP
TO OSR SUBRR AT USRADR

#RITE 10-SFC HEADER

HANDLE CR AS PLANK
THEN POP STACK
AND RTN TO MON

FIND TAPEIN EDGE

PRI AY 3.5 SECONDS
INIT CHXKSUM=SFF
fING TAPEIN EDGE
LOOK FOR SYNC 2IT
(SHORT 0)
LOOP UNTIL FOUND
SKIP SECOND SYNC H-CYCLE
INDEX FOR 0/1 TEST
READ A BYTE
STORE AT (Al)
UPDATE RUNNING CHKSUM
INCR Al, COMPARE TG A2
COMPENSATE 0/1 INDEX
LOOP URTIL DONE
RFAD CHXSUM 3YTE
GOOD, SOUND 3ELL AND RETURN

PRINT "ERR", THLN BELL

OUTPUT RELL AND RETUBRN

RESTORE 6502 PEG CONTENTS
USEn 2y DERUG SOFTWAPE

SAVE 652 REG COMTENTS

'SP SCREEN 1ODE
AND INIT KBD/SCREEN
AS I/0 DEV'S
MUST SET HEX MODE!
t*' PROMPT FOR MON

READ A LINE

FF70: 20 C7 FF JSR Z40DE CLEAR MON MODE, SCAN IDX

FF73: 20 A7 FF NXTITH JSF GETNUM GET ITEM, NON-HEX
FF76: 84 34 STY Ysav CHAR IN A-REG
FF78: A0 17 LDY 4817 X-REG=0 IF NO HEX INPUT
FF7A: 88 CHRSKCH DFY

FF7B: 30 E8 EYMI MOW NOT FOUND, GO TO MON
FF7D: D9 CC FF CMF CHRTEL,Y FIND CMND CHAR IN TEL
FF80: DO F8 3NE CHRSPCH

FF82: 20 BE FF JSR TOSUS FOUND, CALL CORRESPONDING
FF85: a4 34 LDY YSAV SUPROUTINE

FF87: 4C 73 FF J4P JXTITM

FF8A: A2 03 DIG LDX #4503

FF8C: 0A ASL A

FF8D: OA ASL A GOT HEX NIC,

FF8E: 0A ASL A SHIPT INTD A2
FF8F: 0A ASL A

FF90: OA NXTBIT ASL A

FF91: 26 3E ROL A2L

FF93: 26 3F ROL A2H

FF95: CA DEX LEAVE %=S$FFf IF DIG
FF96: 10 F8 8PL NXTRIT

FF98: A5 31 NXTEAS LDA MODE

FF9a: DO 06 RNE NXTES2 IF ODF IS 73RO
FF9C: BS 3F LDA A2H,X THEN COPY A2 TO
FF9E: 95 3D STa alp,X Al ANE A3

FFAO: 95 41 STA A3H,X

FFA2: E8 NKTRE2 INX

FFA3: FO F3 EREQ AXTAAS

FFAS: DO U6 INE NATCHR

FFA7: A2 00 GE LUy DX 450C CLEAP A2

FFA9: 86 3E SIX AZL

FFAB: $6 3F STZ A2

FFAD: B9 00 02 NXTCHP LDA IW,Y GET CHAR

FF30: C8 1LY

FFEl: 49 30 FCR 4830

FFB3: C9 0A CME 450A

FFR5: 90 D3 ace IG IF HEX DIG, THEN
FFB7: €9 88 ADC ESHE

FFB9: C9 FA CMP #5FA

FFB3: BO CD 5CE DIC

FFBD: 60 TS

FFEE: A9 FE TOgUs LUA &CC/256 DBUSH dIGH=-0FRRER
FFCO: 48 PHA SURP ADR 07 §0K
FFCl: B9 E3 FF¥ LLA SURTEL,Y PUSY LOS ORDER
FFC4: 48 PHA SUb.. ADR ON STK
FFC5: A5 31 LOA MODE

FFC7: A0 00 ZMUNE LRY #snn CLP “ODF, CLU 40DF
FFC9: 44 31 SIY MODE TO A=REG

FrCB: 60 KTS 20 TO SURR VIA RTS
FFCC: BC CHRTAL DFP 8a¢ F("CTRL=C")

FFCD: R2 DFR $R2 F("CTRL-Y")

FFCE: BE DEB 53 F("CTRL~F")

FFCF: ED DFR $&D F(r")

FEDO: EF NFR SEF F("V")

FFDl: C4 PFE SC4 F("CTRL-K")

FFD2: EC DER SFC F("5")

FFD3: A9 DFE 5AY F{"CTPL=P")

FFC4: BB OFL Sag F(“CTRL=-0")

FFD5: A6 DFE 5A6 F(v=")

FFD6: A4 DEE SA4 F(m4m)

FFD7: Ub PEE S0 F("M") (F=EX-OP S20+$89)
FFD&: 95 DE2 $95 F (<)

FFD9: 07 nER $07 F("N")

FFDA: 02 DFF $02 F("I")

FFDB: 05 DEE $05 gL

FFDC: FO DE? SFO FU ")

FFDD: 00 OF% $00 F("G")

FFDE: EB DFR SFB F("R")

FFDF: 93 PFR $93 F(":)

FFEOQ: A7 DFE $A7 ()

FFEl: C6 DFE SCE F("CR")

FFE2: 99 OFR §99 F (BLANK)

FFE3: B2 SURTEL DFR ¥BASCONT-1

FFE4: C9 DFY% #USK-1

FFES: BE DFe #REGZ-1

FFE6: C1 DEB 4TRACE-1

FFE7: 35 DF3 #VPy-1

FFE8: 8C DFR #INPRT-1

FFE9: C3 DFB #STEPZ-1

FFFA: 96 DF? #0U1TPRT-1

FFER: AF DFE ¢XPASIC-1

FFEC: 17 DFB #SETMODE-1

FFED: 17 DFE #5ETMODE-1

FFEE: 2B DFR MOVE-1

FFEF: 1F PF3 #LT-1

89

FFFO:
FFF1¢
FFF2:
FFE3:
FFF4:
FFF5:
FFFE:
FF¥7:
FFFE8:
PFFIz
FFFA:
FFFB:
FEFCs
FreD:
FIPFE:
FEEF:

83

£
5D
cc
5
FC
17
17
F>
03
FR
03
59
FF
606
£

DFB
DER
DFB
DFB
DFB
DFE
DFB
DFB
DFR
DFR
DFB
DFR
DFB
DFB
DFR
DEFR
EQU

$SETIRORM-1
$SETINV-1

¥LIST-1

$IRITE-1

#60-1

ERFAD-]

#5ETMODE-1
#SFTMODE=-1

#CRMON=-1

¢BLANK~1

FNMI NMI VECTOR
£NMI/256

$RESET RESET VECTOR
#RESET/256

FIRC IR0 Vi(TOR
4IRQ/256

$3C

90

F500¢:
F502:
FS503:
F505:
F507:
F509:
F50B:
F50C:
F50D:
F50E:
F50F:
F511:
F513:
F515:
F516:

£Y
4a
DO
A4
AB
DO
88
ca
B8A
18
ES
85
10
ce
98

14
3F
3t
01

3A
3E
01

AhARAARARAKREA IR AN TR kA hk

* Ok H A ko Rk R % % *

*

*
* APPLE-II
* MINI=ASSEMBLER
*
* COPYRIGHT 1977 PY
* APPLE COMPUTFR INC.
*
* ALL RIGHTS RESEFVED
*
* S. WOZNIAK
* A, BAUM
*
AhkkhAkARARK AR R A A A AR AKX AR AN
TITLE “APPLE-II
FORMAT EPZ S2F
LENGIH FPZ S2F
MODE EPZ S31
FROVPT EPZ £33
YSAY EPZ $34
T EPZ $35%
PCL £P7 S3A
pCH EPZ S3°
Al EPZ $3°
32L TPZ $3F
A2E ERPZ S3F
A4L BEg S$42
A4 Epz $43
Fwy £PZ S44
I EQU 5200
INSDSZ EOU SF&ER
INGID3E EOU SFEDO
PRAL2 BaU SF94A
PCARJ EQU SF953
CHAR] ENU $FSa4
CHAFE2 BOU SF9sA
N ENU SFYCO
MNE AP ECU $FAQ0
CUrRSUP &QU SECIA
CETLNZ SFDGY
CoyT SEDED
BL1 SFEQD
AlpPCLP SFET6
FELL SFF3A
GRE' TN SFFAT
TOSU? SFFRF
%.-0NE 3FECT
CHPTSL SFFCC
SE500
REL L5901
LY
LFR3
N2
A2L
REL2
REL2
PCL
A2L
PEL3
REL3
91

MINI-ASSEMZLERY

I B4 COumPATIELE
SJITd RELATIVE TODE?

N

Cr

nogNLE DRFCRE T AT

FORM ADDR-PC-2

F517:
F519:
F51B:
F51D:
F520:
F522:
F523:
F525:
F528:
F528:
FS52E:
F531:
F533:
F535:
F538:
F53B:
F53D:
F540:
F542:
F544:
F545:
F547:
F54A:
F54C:
FS54E:
F550:
P552:
F554:
F556:
F559:
F55C:
FS55E:
F561:
F562:
F565:
F567:
F569:
F56C:
FS56E:
F570:
F572:
F574:
F576:
F578:
F57A:
F57C:
F57E:
F580:
F582:
F584:
F586:
F588:
F589:
F58A:
F58D:
F58F:
F592:
F595:
F597:
F599:
F59C:
F59F:
F5A2:
F5A4:
F5A6:
FSA7:
F5A9:
F5AB:
F5AC:
F5AF:
FSB1:
F5B3:
FS5B4:
F5B6:
F5B9:
F5BB:
F5BD:
F5CO:
F5C1:
F5C3:
F5C5:
F5C74
F5C8:
F5C9:
F5CB:

ES
DO
A4
B9
91
838
10
20
20
20
20
84
85
4C

A4
20
84
AQ
88
30
D9
Do
co
DO
A5
AQ
Cé
20
4C
A5
20
AA
BD
C5
DO
BD
C5
DO
A5
a4

FO
Ccs
FO
Cé
Do
E6
Cé
FO
A4
98
AA
20
A9
20
20
A9
85
20
20
AD
Cc9
FO
Cc8
Cc9
FO
88
20
c9
DO
8A
FO
20
A9
85
20
0A
E9
c9
90
0a
0Aa
A2
0A

38
6B
2F
3D
3Aa

F8
1A
1A
DO
53

3A
95
BE
34
A7
34
17

4B
ccC
F8
15
E8
31
00
34
00
95
3D
8E

00
42
13
co
43

44
2E
9D
88
2E
9F
3D
DC
44
35
D6
34

4A
DE
ED
3A
Al
33
67
Cc7
00
A0
13

00

FC

FC
F8

F9

F5

FF

FF

FF

FE

F8

FA

F9

F9
FD
FF

FD
FF

02

FF

FE

Fé6

ERR3
FINDOP
FNDOP2

FAKEMON3

FAKEMON

FAKEMON2

TRYNEXT

NREL

NEXTOP

ERR
ERR2

RESETZ
NXTLINE

ERR4

SPACE

NXTMN
NXTM

NXTM2

ecH
ERR
LENGTH
AlH,Y
(PCL) , Y

FNDOP2
CURSUP
CURSUP
INSTDSP
PCADJ
PCH

PCL
NXTLINE
TOSUB
YSAV
GETNUM
YSAV
$517

RESETZ
CHRTBL,Y
FAKEMON2
4515
FAKEMON3
MODE

#50

YSAV

BL1
NXTLINE
AlH
INSDS2

MNEMR , X
A4L
NEXTOP
MNEML , X
A4H
NEXTOP
FMT
FORMAT

#5$9D
REL

FORMAT
FINDOP
AlH
TRYNEXT
FMT

L
TRYNEXT
YSAV

PRBL2
#$DE
CcouT
BELL
#SA1
PROMPT
GETLNZ
ZMODE
IN
#5A0
SPACE

#3$n4
FAKEMON

GETNUM
#593
IRR2

ERR2
AlPCLF
483
AlH
GETNSP
A

#SPE
$5C2
ERR2

o

92

ERROR IF >1-BYTE BRANCH

MOVE INST TO (PC)

RESTORE CURSOR
TYPE FORMATTED LINE

UPDATE PC

GET NEXT LINE

GO TO DELIM HANDLER
RESTORE Y-INDEX

READ PARAM

SAVE Y-INDEYX

INIT DELIMITER INDEX
CHECK NEXT DELIM

ERR IF UNRECOGNIZED DELIM
COMPARF WITH DELIM TABLE
NO MATCH

MATCH, IS IT CR?

NO, HANDLE IT IN MONITOR

HANDLE CR OUTSIDE MONITOR

GET TRIAL OPCODE
GET FMT+LENGTH FOR OPCODE

GET LOWER MNEMONIC BYTE
MATCH?

NO, TRY NEXT OPCODE

GET UPPER MNEMONIC BYTE

MATCH?
NO, TRY NEXT OPCODE.

GET TRIAL FORMAT
TRIAL FORMAT RELATIVE?
YES.

SAME FORMAT?

YES.
NO, TRY NEXT OPCODE

NO MORE, TRY WITH LEN=2
WAS L=2 ALREADY?

NO.
YES, UNRECOGNIZED INST.

PRINT ~ UNDER LAST READ
CHAR TO INDICATE ERROR

POSITION.

Vg
INITIALIZE PROMPT

GET LINE.
INIT SCREEN STUFF

GET CHAR

ASCII BLANK?
YES

ASCII 'S$* IN COL 1?
YES, SIMULATE MONITOR
NO, BACKUP A CHAR

GET A NUMRER

':!' TERMINATOR?

NO, ERR.

NO ADR PRECEDING COLON.
MOVE ADR TO PCL, PCH.
COUNT OF CHARS IN MNEMONIC

CET FIRST MNEM CHAR,
SUERTRACT OFFSET

LEGAL CHAR?

NO.,'

COMPRESS-LEFT JUSTIFY

DO 5 TRIPLT WORD SHIFTS

F5CC:
F5CE:
F5DO0:
F5D1:
F5D3:
F5D5:
F5D7:
F5D9:
F5DB:
FS5DE:
FSEO:
F5E3:
FS5ES:
FS5E8:
FBEE:
FBELy
FSFO:
F5F2:
F5F4:
F5F6:
F5F8:
FSF9:
F5FA:
F5FC:
FoFE:
F600:
F603:
F605:
F607:
F608:
F60A:
F60C:
F60D:
F60F:
F6l0:
F6l2:
F614:
F615:
F6l6:
F6l8:
F61A:
F61C:
F61E:
F620:
F622:
F624:
F626:
F629:
F62B:
F62D:
F62F:
F631:
F634:
F637:
F638:
F63A:
F63C:

F666:

26
26
cA
10
c6
FO
10
A2
20
84
DD
Do
20
DD
FO
BD

C9
FO
a4
18
8R
26
EQ
DO
20
A5
FO
E#
86
A2
88
86
CA
10
A5
0a
0A
05
c9
BO
Ab
FO
09
85
84
B9
c9
FO
C9
DO
4C
B9
Cc8
c9
FO
60

4C

42
43

F8
3D
F4
E4
05
34
34
34
13
34
DA
oD
BA

.
A4

03
34

44
03
0D
A7
3F

01

35
03

3D

Cc9
44

35
20
06
35
02

80
44

34
o0}

04
8D
80
5C
00

a0
F8

92

Fé

F9

Fé6
F9

F9

02

F5
02

F5

Fopm1
FORM?2

FORM3
FORM4
FORAS

FORM b

FORAT

FOR4S

FORM9
GFTNSP

MINASH

ROL
ROL
DEX
SPL
DEC
BEQD
BPL
LDX
JSR
STY
cMp
RNE
JSR
cme
BEN
LDA
B
Citp
BEOQ
LYy
CLC
CEY
ROL
Ce¥
BNE
JSE
LDA
BEQ
INX
STX
LnX
DEY
STX
DEX
3PL
LDA
ASL
ASL
ORA
CMP
RCS
LDX
BEQ
ORA
STA
STY
Lpa
cmp
BEQ
CUP
BNE
JMP
LDA
INY
CMP
BEOQ
RTS
ORG
JMP

AdL
A4y

NXTM2
AlH
NXTM2
NXTMN
#55
GETNSP
YSAV
CHAR], X
FORM3
GETNSP
CHAR2,X
TORMS
CiAR2, X
ORI 4
#S5A4
FopMa
YSAV

FaT
#53
FORMT
GEPNUY
A28
FORi6

L
£33

AlH

FORM2
FRT
A

A
L

$520
FORMB
L

FORMS
#$80
FMT
Yysav
IN,Y
#$83
FORM9
#3580
ERF4
TRYNEXT
IN,Y

#SA0
GETNSP

$F666
RESETZ

g3

DONE WITH 3 CHARS?
YES, RUT DO 1 MORE SHIFT
NO

5 CHARS IN ADDR MODE

GPT FIRST CHAR OF ADDR

FIRST CHAR MATCH PATTERN?
NO

YES, GET SECOND CHAR
MATCHES SECOND HALF?

YES

NO, IS SECOND HALF ZERQ?
YES,

NG, SFCOMD HALF CPTIONAL?
YES.

CLEAR RIT~-NO MATCH
RACK UP 1 CHAR

FORM FORMAT BYTE

TIME TO CHECK FOR ADDR.
VO

YES

HICH-ORDER BYTE ZERO
NO, INCR FOR 2-BYTE
STORE LENGTH

RELOAD FORMAT INDEX
PACKUP A CHAR

SAVE INDEX

DONE WITH FORMAT CHECK?
NO.,

Y¥S, PUT LENGTH

IN LOW BITS

ADD '$' IF NONZERO LENGTH
AND DON'T ALREADY HAVE IT

GET NEXT NONBLANK

‘' START OF COMMENT?
YES

CARRIAGE RETURN?

NO, ERR,

GET NEXT NON BLANK CHAR

L2 2RSS 2222 RS RS R]

* *
* APPLE-I1 FLOATING *
x POINT ROUTINES *
* *
* COPYRIGHT 1977 BY *
* APPLE COMPUTER INC. *
* *
* ALL RIGHTS RESERVED *
* *
* S. WOZNIAK *
* *

AAKRRNR AN R R Rk R kAR R AR
TITLE “FLOATIRG PCINT ROUTINES*"

SIGN EFZ SF3

X2 EPZ SF4

M2 8Pz SF5

X1 FPZ SF8

M1 EPZ §F9

E EPZ SFC

GVLOC EQU S3F5

ORG $F425

F425: 18 ADD CLC CLEAR CARRY.
F426: A2 02 IDX #£2 INDFX FOR 3-RYTF ADD.
F428: B5 F9 ADD1 LDA M1,X
F42A: 75 F5 ADC M2,X ADE A SYTE OF MANT2 TO MANTIL.
F42C: 95 F9 STA M1,X
F42E: CA DFY IANDEY TO NEXT MORE SIGNIF. BYIE.
F42F: 10 ©7 BPL ADNDI] LOOP UNTIL DONE,
F431: 60 RTS RETURL
F432: 06 F3 MD1 ASL SIGN CLEAR LSE OF SIGN.
F434: 20 37 F4 JSR ARS.AE AR5 VAL OF M1, THEN SWAP WITH M2
F437: 24 F9 ABRSHAP 211 o+l MANT1 NEGATIVE?
F439: 10 05 GReL AR3SwWAPL NO, SUAP ¢iITH MANT2 AND RETURN,
F438: 20 A4 F4 JSE FCGCoPL YES, COMPLEMENT IT.
F43E: E6 F3 INC SIGHN 14C» SICN, COMPLEMENTING LSRR,
F440: 38 ADSyAPL SEC SET CARPRY FOR RETURN TO MUL/DIV.
F441: A2 04 SYIAP LDX 4c4 INCEX FOR 4=-RYTE SWAP.
F443: 94 FB SYAP] 3TY £-1,X
F445: RS F7 LDA X1-1,X SWAP A RYTE COF EXP/MANT1 WITH
F447: 84 F3 LY X2-1,X EXP/MANT2 AND LEAVE A COPY OF
F449: 94 F7 STY ¥1-1,% MANT1 IN E (3 3YTES). FE+3 USED
F448: 95 F3 STA X2-1,X
F44D: CA DE¥ ADVANCE INMDEX TO NZXT BYTE.
F44E: DO F3 RYF SyAPL LOOP UNTIL NONE.
F450: oV RTS PETUPR!H
F451: A9 g% FLUAT LDA #SFE INIT CXPl TO 14,
F453: 85 F& STA X1 TARN NORMALIZE TO FLOAT.
F455: A5 FS RIGHLD] Lna Ml FIGCH=-ORDER MANT1 BYTE.
F457: CY CO Cep #SCO UPPER TWO EFITS UNEQCUAL?
£459: 30 0C 3MI RYS1 YES, RETURN #ITH MANT1 NORMALIZED
F453: C6 F8 DEC X1 CECREMENT ©TXP1.
F45D: U6 FB ASL 1'142
F45F: 26 F RCI. ™1+41 SHIFT MAMTY (3 RYTES) LEFT.
F46l: 26 F9 RCL M1
F463: AS F8 NORf4 LnNA X1 EXP1 ZERG?
F465: DO EE BNE WORM1 NO, COWTINUZ NORMALIZING.
F467: 60 RTS1 PTS RETURN.
F468: 20 A4 F4 FSUR JSR FCOI"PL CMPL MANT1,CLEARS CARRY UNLESS 0
F46B: 20 7B F4 SWEALGN JSR ALGNSWP RIGHT SHIFT MANTL OR SWAP WITH
F46E: AS F4 FACD LDA X2
F470: C5 F8 cyvp X7 COMPARE FXPl WITH EXP2.
F472: DO F7 BNE SWPALGN IF #,SWAP ADDENDS OR ALIGHN MANTS.
F474: 20 25 F4 JSR ANDD ADC ALIGWUED MANTISSAS.
F477: 50 EA ADDEND 3VC NOR™ NO OVERFLOW, NURMALIZE RESULT.
F479: 70 05 BVS RTLOG OV: SHIFT M1 RIGHT, CARRY INTO SIGN

94

F47B:

F47D:
F47F:
F480:
F482:
F484:
F486:
F488:
F483:
F48B:
F48C:
FA48F:
F491:
F494:
F495:
F498:
F49A:
F49D:
F49E:
F4AQ:
F4A2:
F4R4:
F4a5:
F4A7:
F4a9:
F4aB:
F4AD:
F4AE:
F4B0:
F4B2:
F4B5:
F4R7:
F4RA:
F4RB:
F4BD:
F43F:
F4Cl:
F4C2:
F4C3:
FA4C5:
F4C7:
F4C8:
F4CA:
F4CC:
F4CD:
FACF:
F4D1:
F4D3:
F4D5:
F4D7:
F4D9:
F4DB:
F4DD:
F4DE:
F4EOQ:
F4E2:
F4E4:
F4E6:
F4EB:
F4EA:
F4EC:
F4ED:
F4EE:
F4FO0:
F4F2:
F4F4:
F4F6:
F4F7:
F4F9:

F63D:
F640:
F642:
F644:
F646:
F648:
F64A:
F64C:
F64E:
F650:
F652:
F654:
F656:
£F657:
F659:
F658:
F65D:

C4
F9

F8
75

FA
FF

F8
FB
FA
F9
E7
Fb6
F5
1C

DA
BE
FB
FA
F9
0D
04

00
F9
FA

Fé
Fq
F4

F4

F4

03

3

ALGNSAP
*

RTAP
RTLOC

RILOGL
ROP1

FMUL

UL 1

MUIL2
MRDEND
NOPYX
FCOmPI,

CO4PL1

FDIV

DIV1

DIV2

DIV3

DIV4

MD2

OVCHK
OVFL
FIX1
FIX

FIXRTS
UNDFL

BCC SwAP
FLSE SHIFT
LDA w1
ASL A
INC X1
EEC OVFL
LDX 3SFA
ROR E+3,X
INZA
3NE ROR1
ETS
JSR MD1
ADC X1
JSKk ~D2
CLC
JSR® RTLOG1
3CC ULz
J3r ADD
CEY
2pl, wMyLl
LGSR 3ICN
PCC JUR»
SEC
L2X 483
LDA #S0
SBC X1,X
STA X1,X
DEX
BNE COmMPLI1
BEQ ADDEND
J3r wDpl1
SRC X1
JSR wD2
SEC
LD¥ #S2
LbDA M2,X
sSBC E,X
PHA
DEX
BPL DNIV2
LDX #SFD
PLA
BCC DIV4
STA M2+3,X
INX
RNE DIV3
ROL M1+42
ROL M1+l
ROL M1
ASL M2+42
ROL M2+1
ROL M2
BCS OVFL
DEY
BNE DIV1
REQ MDFND
STX M1+2
STX M1+1
STX ml
8CS OVCHK
B3MI MD3
PLA
PLA
RCC WORMX
EOR 4S80
STA X1
LY #S17
PTS
3Pl D3
JMP OVLOC
ORC SFo3D
JSR RTAR
LDA X1
2PL UMDFL
CHP #SKE
24 FIX1
BI'T M}
PPL FIXPIS
LDA M1+2
PEDY FIXRIS
INC #1+1
BNE FIXRIS
INC M1
PRS
LCA #S(
sTA w1
STA 11+1
ETS

95

SWAP IF CARRY CLEAR,

RIGHT ARITH.

SICN OF MANT1 INTO CARRY FOR
RIGHT ARITH SHIFT.

INCR X1 TO ADJUST FOR RIGHT SHIFT
EXP1 OUT OF RANGE.

INDEX FOR 6:PYTE RIGHT SHIFT.

MEXT BYTE OF SHIFT.

LOOP UNTIL DONF.

RETURN,

ABS VAL OF MANT1, MANTZ2.

ADC FXP1 TO EXP2 FOR PRODUCT EXP
CHECK PROD. EXP AND PREP. FOR MUL
CLEAR CAREY FOR FIRST BIT.

01l AND E RIGHT (PROD AND MPLIEP)
IF CARRY CLEAPR, SKIP PARTIAL PROD
ADC JULTIPLICAND TO PRODUCT.
NEXT ™O0L ITERATION,

LOOP UNTIL DONE.

TEST SICN LSS.

IF EVEN,NORMALIZE PROD,ELSE COMP
SCT CARRY FOR SUBTRACT.

INDEX FOR 3-RYTE SURTRACT.

CLEAP A,

SUBTRACT PYTE OF EXP1.

RESTORF 1IT.

HEXT 40RE SIGNIFICANT RYTE.

LOOP UNTIL DONE.

NORMALIZE (OR SHIFT RT IF OVFL).
TAKE ABS VAL OF MANT1, MANT2,
SURTRACT EXP1 FROM EXP2.

SAVE AS OQUOTIENT EXP.

StT CARRY FOR SUBTRACT.

INDEX FOR 3-PYTE SUBTRACTION.

SURTRACT A BYTE OF E FROM MANT2.
SAVE ON STACK.

NEXT HWORF SIGNIFICANT BYTE.

LOOP OUNTIIL DONE.

INCEX FOR 3-BRYTE CONDITIONAL MOVE
PULL BYTF OF DIFFERENCE OFF STACK
IF M2<E THEN DON'T RESTORE M2,

NEXT LESS SIGNIFICANT RYTE.
LOOP UNTIL DONE,

ROLL OQUOTIENT LEFT,CARRY INTO LSB

SHIFT DIVIDEND LEFT.

OVFL IS DUE TO UNNORMED DIVISOR
NEXT DIVIDE ITERATION.

LOOP UNTIL DONE 23 ITERATIONS.
NORM. QUOTIENT AND CORRECT SIGN.

CLEAR MANT1 (3 BYTES) FOR MUL/DIV.

IF CALC. SET CARRY,CHECK FOR OVFL
IF NEG THEN NO UNDERFLOW.
POP OWNE RETURW LEVEL.

CLFAR X1 AND RETURN,

COMPLEMENT SIGN BIT OF EXPONEWNT.
STORFE IT.

COUNT 24 ¥UL/23 DRIV ITERATIONS
RETUPRN.,

IF POSITIVE EXF THEN NO OVFL.

F689:
F68C:
F68D:
F68F:
F690:
F692:
F695:
F698:
F69A:
F69C:
F69E:
F6AO:
F6Al:
F6A3:
F6AS5:
F6AT:
F6ASB:
F6A9:
F6AA:
F6AC:
FbAE:
F6B0:
F6Bl:
F6B2:
F6B3:
F6B4:
F6B7:
F6BEg:
FoR9:
Fé6BP:
Fo3D:
FOEF:
FeC 22
FO6C3:
F6C5:
F6Co:
F6CT
F6Ct:
F6C9:
F6CC:
F6CF:

20
68
85
68
85
20
4C
E6
DO
E6
A9
48
AQ
Rl
29
0Aa
AA
4A
51
Fo
56
43
4A
4A
A3
B9
48
60
E6
Do
E6
10
43
A5
44
60
68
68
20
6C
Bl

4A FF

1F
98, F6
92 F6
1E
62

1F

el
I

GO
1E
oF

1E
OR
1D

Fl Fo

1E

1F
Fd4 To

1D

3F FF
1£ 00
1F

hkhkkhhkkkh kA kA AR AR hd X

APPLE-II PSEFUCO
MACHINE INTERPRETER

COPYRIGHT 1977
APPLE COMPUTER INC

ALL RIGHTS RESERVED

* % * % % * ¥ * ¥ %

&, WOZNIAK

* % ¥ ¥ F B X * A ¥ W%

*
AhhkhkkhkhhkAh XA ARk kA kk

TITLE “SWEET16 INTERPRETER"
ROL EPZ $0
ROH EPZ Sl
Rl4d LPZ S1D
R15I EPZ S1E
R15H EPZ ' 1F
S16PAG EOU SF7
SAVE LOU SFFéA
RESTORE EQU SFF3F
ORG SFE9
Su16 J5K SAVE DROSERVE 6502 REG CONTENTS
PLA
STA RISL INIT S9EET16 PC
PLA FROM RETURN
sTa plse ADDPRESS
swlez JSP St116C INTERPRET AND EXECUTFE
Jvp 51169 OWE 5WEET16 INSTR.
SW16C InC FI5L
ANE 516D INCP SFLT16 PC FOR FETCH
INC R15Y
Sw16D LDA ¥S16PAG
PHA PUSH O STACK FOK PRTS
LDY #$0
LDA (R15L),Y FETCH INSTR
AND ESF ¥ASK RFG SPECIFICATION
ASL A COURLE FOR 2~RYTE REGISTERS
TAX TO X-REG FOR IMDEYING
SR A
EOR (R15L),Y HOW HAVE OPCODE
2E(Q TORR IF 25RO THEN NON-REG OP
STX K144 INDICATE'PRIOP RESULT PEG'
L3R A
LSR A OPCOCE*2 TCQ LSP'S
LSF A
ray TO Y-REC FOR INDEXING
LDA CPTSL-2,Y LOW-0PDFE ADR RYTE
Bh3 ONTC STACK
PTS GOTO REG=0P POUTINE
TCAR INC R1S0
Nt O 2 InCR PC
NG »]5h
ICak2 LoA arpPeT,, X LOW=0ORDFR ADFR LCYTE
YR ONTQ STACK FOR KON=-RFG QP
LDA =12% 'PRIOR RESULT PEG' INDEX
T PREPAPE CARRY FOR RC, BNC.
) GOTO WNON-REG OP ROUTINE
RIpZ ELA LOP RETURN ADDPRESS
tLA
JSR RFESTORE, RESTURF 6502 REG COWTENTS
Jvp (RP15L) PRTURN TC 6502 CODE VIA PC
SETZ LDA (R15L),Y HIGH-ORDER BYTE OF CONSTAIT

96

95
88
31
95
98
38
65
35
90
E6
60
02
F9
04
90
0D
9E
25
AF
16
B2
47
B9
51
co
2F
C9
58
D2
85
DD
6E
05
33
E8
70
93
1g
i |

65
E7
E7
4

10
BS

85
B5
85
60
AS
95
AS
95
60
A5
81
AQ
84
Fé
DO
Fé
60
al
85
AQ
84
FO
a0
FO
20
Al
A8
20
al
85
84
a0
84
60
20
Al
85
4C
20

01

1E
00

1E
1E
02
1F

CA
00

00
01

00
00

01
01

00
00
00
1D
00
02
01

00
00

00
01
ED
00
06
66
00

66
00
00
01
00
1D

26
00
01
1F

-

F7

SET2
OPTBL
RRTRL

ST

STAT
STATZ

STAT3
INR
INR2
LDAT

POP

POPD

POP2

POP3

LDDAT

STDAT

STA
DEY
LDA
STA
TYA
SEC
ADC
STA
BCC
INC
RTS
RDFE
DFE
DFRY
DFY
DFP
DFB
DER
NFg
DFP
DFB
DFR
DFPR
DFR2
DFB
DFC
DFRBR
DFR
DFE
DFB
DFB
DFB
DFe
DFE
DF8
DFB
DFR
DFB
DFB8
DFB
DFB
OFB
DFP
8PL

LDA
EQU
STA
LDA
STA
RTS
LDA
STA
LDA
STA
RTS
LDA
STA
LDY
STY
INC
3NE
INC
RTS

LDA
STA
LDY
STY
BEN
LDY
BEQ
JSR

LCA

TAY
JSR

LDA

STA

STY

LDy

STY

RTS
JSR

LDA
STA
JMP
JSR

ROH, X

(R15L) ,Y LOW-ORDER PYTE OF CONSTANT

ROL,X

#15L
R1S5T,
SET2
R154

SET=1
RIN=1
LD-1
cr=1
sT-1
BMC=-1
[NDAT=1
5C-1
STAT=1
p-1
LDDAT-1
8M=-1
STDAT-1
Rz-1
POP=-1
aANZ-1
3TPAT-1
BM1=-1
ADD~-1
auml-1
s5U3-1
RK=1
POPD-1
RS-1
CPR-1
35-1
INR=1
NUL~-1
DCR-1
NUL-1
NUL-1
NUL~-1
SETZ
ROL,X
*-1
ROL
ROH, X
ROH

ROL
ROL,X
ROH
ROH,X

ROL
(ROL, X)
#S50
R14H
ROL, X
INR?2
ROH, X

(ROL, X)
RUOL
$#$0
ROH
STAT3

450
POP2

DCR
(ROL,X)

DCp
(ROL,X)
ROL
RO
#$0
R14H

LDAT
(ROL, X)
RO
INR
STAT

97

Y-REG CONTAINS'1

annp 2 TO PC

(1X)
(0)
(2X)
(1)
(37%)
(2)
(4x)
(3)
(5X)
(4)
(6X)
(5)
(7X)
(6)
(8X)
(7}
(9x)
(8)
(AX)
(9)
(BX)
()
(CX)
(8)
(DX}
(C)
(EX)
(D)
(FX)
(E)
(UNUSED)
(F)
ALWAYS TAKEN

MOVE RX TO RO

MOVE RO TO RX

STORE BYTE INDIRECT
INDICATE RO IS RESULT REG

INCR RX

LOAD INDIRFCT (RX)
10 RO

ZERO HIGH-ORDER RO RBYTE
ALWAYS TAKEN

HIGH ORDER BYTE = 0
ALWAYS TAKEN

DECR RX

POP HICH=-ORDER BYTE @RX
SAVE IN Y-REG

DECE RX

LOW~ORDER BYTFE

TO RO

INDICATE RO AS LAST RSLT REG

LOW-ORDER BYTE TO RO, INCR RX
HIGH-ORPER BYTE TO RO

INCR RX
STORE IWDIRFCT LOW-ORDER

F75
F75
F759
F75C:
Fi5F:
F761:
F763:
F766:
F768:
F76A:
F76C:
F76E:
F76F:
F771:
F772:
F774:
"F776:
F779:
F77B:
F77D:
F780:
F781:
F783:
F785:
F786:
F788:
F78A:
F78C:
F78E:
F790:
F792:
F794:
F796:
F799:
F798:
F79E:
F79F:
F7al:
F7A3:
F7A5:
F7A6:
F7A8:
F7AA:
F7AB:
F7AD:
F7AF:
F7BO:
F7B2:
F7B3:
F784:
F7B5:
F7B7:
F7B9:
F7BA:
FlBBzs
F7BC:
F7BE:
F7CO0:
F7Cl:
F7C2:
F7C3:
F7C5:
F7C7:
F7C9:
F7CA:
F7C8:
F7CC:
F7CE:
F7D0:
F7D2:
F7D3:
F7D4:
F7D5:
F7D7:
F7D9:
F7DB:
F7DD:
F7DE:
FIDF:
F7E0:
F7E2:
F7E4:
F7E6:
F7E8:
F7E9:

~J

s e e

AS
81
4C
20
A5
81
4C
B5
DO
D6
D6
60
AQ
38
A5
F5
99
AS
F5
99
98
69
85
60
AS
75
85
AS
75
AQ
FO
A5
20
AS
20
18
BO
Bl
10
88
65
85
98
65
85
60
B0
60
0A
AA
BS
10
60
0Aa
Al
B5
30
60
0A
AA
B5
15
FO
60
0A
AR
B5

15

Do

60
0A
AA
B5
35
49
Fo

60
oa
AA
BS
35
49
Do
60
A2

61l
00
1F
66

00
43
00
02
01
00

00

00
00

00
0l

01
0l

00
1D

00
00
00
01
01
00

E9
1E
19
1F
19

0E
1E
01

1E
1E

1F
1F

EC

01

01
El

00
01
n8

oo

01
CF

00
01
FF

[oF }

00
01
FF
B9

18

00

00

F7?

STPAT

oce

NCR2

501
CPR

5082

ADD

BS

B8R
ane
BR1

BR2

aNC2
BC

3

R7

£

BM1

BNM1

NUL
RS

RON
(ROL,X)
17
NCE
ROL
(POL, X}
POP3
ROL, X
DCR2
ROH, X
ROL, X

#s0

KOL
ROL, X
ROL,Y
ROH
RO, X
POH,Y

$#50
R14H

ROL
ROL, ¥
ROL
ROH
ROf , X
#50
SUB2
R15L
STAT2
R15H
STAT2

BiC2
(E151),Y
RR2

R15L
R1SL

R15H
R15H

B0, X
rR]

A
ROL, X
ROH, X
3E1

A
ROLL, %

ROH, X
BR1

RYTF AND INCR RX, THEN
STORFE HIGH-ORDER RBYTE.
INCR RYX AMD PETURN

DECR FX

STORE RO LOV RBYTE @ARX
1MCICATE RO AS LAST RSLT REG

NECR »X

TESULT TO RO
NOTE Y-REG = 13*2 FOR CPR

RO-RX TO RY

LAST RESULT REG*2
CARRY TO LSB

RO+RX TO RO

RO FOR RESULT

FINISH ADD

NOTE X-REG IS 12*2!

PUSH LOW PC RYTE VIA R12
PUSH HIGH-ORDER PC BYTE
NO CAPRY TEST
DISPLACEMENT BYTE

ADD TO PC

LOUELE RESULT-PEG INDEX
TO X-REG FOR INDEXING
TEST fFOR PLOUS

BRANCH IF SO

DOUALF RESULT-FEC INDEX

TEST rFOR MINJS

DOURLE RESULT-REG INDEX
TEST FOR ZERO

(BOTH PYTES)

RRANCH IF SO

DOURALE RPSULT-REC TNDEX
TEST FOR NONZERO

(BOTH BYTES)

BRANCH IF SO

DOUBLE RESULT-REG INDEX

CHECK BOTH BYTES
FOR $FF (MINUS 1)

BRANCH IF SO

DOUBLE RESULT-REG INDEX

CHECK BPOTH BYTES FOR NO S$FF
RRANCH IF NOT MINUS 1

12*2 FOR R12 AS STK POINTER

20
Al
85
20
Al
85
60
4C

66 F7
00
1F
66 F7
00
1E

C7 Fé

RTN

JSR
Lpa
STA
JSR
LDA
STa
RTS
Jup

DCR DECR STACK POINTER
(ROL,X) POP HIGH RETURN ADR TO PC
R15HK

DCR SAME FOR LOW-ORDER BYTE
(ROL, X)

R15L

RTNZ

99

6502 MICROPROCESSOR INSTRUCTIONS

ADC

AND
ASL

BCC
BCS
BEQ
BIT

BMI

BNE
BPL
BRK
BVC
BvVS

CcLC
CLD
CcLi
CLV
cMmpP
CPX
CPY
DEC
DEX
DEY

EOR

INC
INX
INY

JMP
JSR

Add Memory to Accumulator with
Carry

“AND" Memory with Accumulator
Shift Left One Bit (Memory or
Accumulator)

Branch on Carry Clear
Branch on Carry Set
Branch on Result Zero
Test Bits in Memory with
Accumulator

Branch on Result Minus
Branch on Result not Zero
Branch on Result Plus
Force Break

Branch on Overflow Clear
Branch on Overflow Set

Clear Carry Flag

Clear Decimal Mode

Clear Interrupt Disable Bit

Clear Overflow Flag

Compare Memory and Accumulator
Compare Memory and Index X
Compare Memory and Index Y
Decrement Memory by One
Decrement Index X by One
Decrement Index Y by One

“Exclusive-Or" Memory with
Accumulator

increment Memory by One
Increment Index X by One
increment Index Y by One
Jump to New Location

Jump to New Location Saving
Return Address

100

LDA
LDX
LDY
LSR

NOP
ORA
PHA
PHP
PLA
PLP

ROL

ROR

RTI
RTS

SBC

SEC
SED
SEI

STA
STX
STY

TAX
TAY
TSX
TXA
TXS
TYA

Load Accumulator with Memory
Load Index X with Memory
Load index Y with Memory
Shift Right one Bit (Memory or
Accumutator)

No Operation
“DR" Memory with Accumulator

Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack
Pull Processor Status from Stack

Rotate One Bit Left (Memory or
Accumulator)

Rotate One Bit Right (Memory or
Accumuiator)

Return from interrupt

Return from Subroutine

Subtract Memory from Accumulator
with Borrow

Set Carry Flag

Set Decima! Mode

Set Interrupt Disable Status

Store Accumulator in Memory
Store Index X in Memory

Store index Y in Memory

Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer index X to Stack Pointer
Transfer index Y to Accumulator

THE FOLLOWING NOTATION
APPLIES TO THIS SUMMARY:

A Accumuiator FIGURE 1. ASL-SHIFT LEFT ONE BIT OPERATION
XY Index Registers
5 CH T TR
Cc Borrow
P Processor Status Register
s Stack; Pointer FIGURE 2. ROTATE ONE BIT LEFT (MEMORY
v Change OR ACCUMULATOR)
— No Change
* Aad MOR A
b Telele]2 [[]o
i Subtract
¥ Logical Exclusive Or
4 Transfer From Stack
+ Transfer To Stack FIGURE 3.
- Transfer To
- Transfer To
i mor el e =]
PC Program Counter
PCH Program Counter High
PCL Program Counter Low NOTE 1: BIT — TEST BITS
OPER Operand
Immediate Addressing Mode Bit 6 and 7 are transferred to the status register. if the
result of A A M is zero then Z=1, otherwise Z=0.

7 0

[A] ACCUMULATOR

7 0

(Y | INDEX REGISTER Y

7 0

[X | INDEX REGISTER X
15 7 0
[PCH | PCL] PROGRAM COUNTER

7 0

[o] s] sTack POINTER

(VB

CARRY
ZERO

PROCESSOR STATUS REGISTER, “P"

INTERRUPT DISABLE
DECIMAL MOCE

OVERFLOW
NEGATIVE

101

BREAK COMMAND

1 SUIHDS 7Q DINSPW 8 VLB PUBLALOD NHG ¥ 2 FION

B AV O WS LY 5315001 SAINS 31 0) PO1sHIUEL 18 £ PUT 5 DB | 30N

uo Aq
——— AN 1) A3Q payduy A—L—A A X3pu1 Juawaiag
Al
3uo Aq
e (AN 3 va X30 paduy X=—1i—X X X3pul Juawaideg
X30
€ 30 X'12dg 930 X'anjosqy
€ 30 ladg 230 aniosqy
F4 9g X'19dg 730 | x'abed ciaz auo Aq
e AN Z a9 13dg 930 abey 0197 N—1—N Alowaw Jwawdidag
J3a
€ 20 jdo AdD alnjosqy
2 o) 19dg Ad) abeq 0137 A Xaput
———AAA b4 0 Jadow AdD aeipaww)| W— A pue Ajowaw asedwon
Add
€ 33 18d0 xd9 ainjosqy
e 3 Jadg Xd9 abed 0197 X xaput
—e e AAA Z 03 1ador XdD B)BIpIWW] W—X pue Arowaw asedwo?)
Xd)
4 1a A'liedg) dWa A'(10311pu))
4 12 (x'13d0) dWD (x"va1puy)
€ 60 A'Jad0 dW) A‘anjosqy
£ aa X'18d0 diND X'anjosqy
£ ad 1300 dWD anjosqy
4 sd X'iadg JWO | X ‘abed osez
2 [+5) 1340 49 aleq 0137 lojenwinaoe
———AAA 2 69 12doK dWD ajeipawuy N—Y pue Asowaw aredwo)
dW3l
lllll 0 Il 8g A9 paydw A=0 Geyy mojaao Jeay)
A1)
s 8 8s (k] patidwi =0
[L4)
———=0- L 8a a1 patjduy a=-a 3pow [EWNIBP Je3))
a1l
PP L 8i M9 panduwj =0 Geyy Asiea se3()
310
|||||| Z 0L Jadg SAg JAllRI3Y | L=A UO yduelg 135 MOJJI3A0 UO Youeig
SAd
AQIJZN |[sefg epo] 11504 poy uopdposag
‘foy smuig . d. | ON d0 alenfuny Bussaippy uojiesadg wey
XN Ajquiassy

R T 4 [13d0 JAg aAnRej3Y | 0=A U0 Youesg | Jesja MO|IAD UO Youelg
JAS
tdd2-0d
wniau)

. 3 00 48 padwy padiog ¥ealg 32104
Ng
|||||| 2 oL 1ado 1dg aAnelay | g=N vo youeig snjd ynsas uo yaueig
148
|||||| 2 00 sedg ING AANBI3Y | 0=Z U0 youeig | 013z JOU }IRSHI UO YIuRIg
) INg
111111 2z 0 1300 1N aAIBI9Y | =N U0 Youelg SNUIW J{NS3) U0 Youeig
Ing
3 ’ € x ladg L8 anjosqy A= Jo1e[nWINI%E Yyum
N-—= N | 2 | 4z 19d0 L 4ig abed 0137 ‘N~ LN 'WVY Kiowaw uy suq 159
118
|||||| z 04 J3dQ D3g aAnelay | 1=Z vo youeig 0J3Z }|Nsa) U0 yaueig
038
llllll F4 0g 19dp So8 aAlRI3Y | L=9 uo youeig 195 A11Bd U0 Youeig
$8
|||||| b4 06 13dg 998 aAlleaY | =9 uo youeig 1832 Aured uo yaueig
08

€ 31 X'13d0 gV X'anjosqy

€ 0 Jadg SV Anjosqy

[X'18d0 1SV | x'abeg 0197
2 90 Jadg SV abed ola7 {101einWN3oY Jo Alowap)
——=/ANN 1 vo ¥V ISV | Joiginwnady | (1 3064 sag) Hq 3uo 3| YIS
sy

4 18 A'(13d0) ONV A(1aspu))

4 12 | (x'iedg) aNV (X'30821pu))

€ 6€ A'J200 ONY A'aposqy

€ ae X'1edQ QONY X'anjosqy

€ a ladg ONV Anjosqy

4 St X'13d0 QNv | X'abed 03z
2 62 13dQ0 QNVY abieg 0137 lo0je|nwnase
e AA 2 62 1ado# QNY ajelpaww Y- ANVY yum Alowaw gNY.,
Ny

Z 93 A'l1adg) oav A'(19311puy)

2 19 | (xadg) oav | (x123npur)

£ 6 A'Jadg 0qv A'ainjosqy

£ a X'iedo oav X'anjosqy

£ a9 13do oav ANjosqy

2 6L X'isdg 0Qv | Xx'abed 0137
b4 g9 13dg Jqv abed 0Jaz K110 yum 10iRINWNIIE
P—=PAAN 4 69 JadQ# Qv AeIpAWW| | Y- J-N-Y 0} Asowaw ppy
a0y

AGIIZN |smhg | apo) wJioy poy uopdpaseg
‘Ooy smmig 4. | ON d0 alienbue) Buissaippy uojjesadg swey
X3 hiquassy

S3Ad0D NOILONYLSNI

102

£ Ell X"19d0 HoH X'ainjosqy
€ 39 12dg Hou aanjosqy
'4 9 X'1300 WOY | x'abeq 0137 k
2 99 Jadg Hou aleg 0137 {s01ejnwnd2e 1o Aiowaw)
——=AAA L Ve Vv HOY | Joieinwnady | (€ ainBiy 2ag) 1By 31q auo aeloy
404
€ E) X'13dQ 104 X'anjosqy
€ x 13dg 104 Anjosqy
4 9%€ X'1ad0 104 | x'albeg 0s37
2 92 13d0 04 aleg 0137 (201ejnwnaoe 1o Aiowaw)
— AN 1 V2 v 104 { J01einwnasy | (Z ainBiy 8ag) 43| 11q auo Jejoy
04
HIBIS WO}
¥orlg wouy 1 82 4 paiduy td SMels J0ssa204d {jngd
did
YIS Woij
sy A o I 89 vid paidwy Vv lojejnuwinaoe |ingd
Vid
»IBjS Uo
llllll 1 80 dHd pandwi b d snjejs 105$320.d ysng
did
yaeys uo
|||||| L] ey VHd patduy by 10jEINWNDOE sy
Vid
2 | A'ad0) wyo | A'(108mpuy)
4 10 (x'13d0) VHO (X'199J1puj)
£ 6L A'Jed0 vH0 A'aInjosqy
€ a X'13d0 w40 X'31mosqy
€ ao 1840 vHO anjosqy
4 Sl x'18d0 wu0o | Xxabeqd 0187
F4 ~1) JEL) abeg 0197 JOJEINWNIIE
——pn oz 60 1adg# vHO JjeIpawu) V=HAY Y Alowaw 40,
vH0
‘‘‘‘‘‘ L v3 dON panduw) uonesadg oN uoneiado oN
dON
€ 3 X'13dg 4S1 X ainjosqy
€ I 13d0 ¥S1 ajnjosqy
Z 95 X'1edQ ¥S1 | X'ebed oiaz
2 [:74 12d0 ¥S1 abey 013z (Joyejnwndae Jo Asowauw)
—==/N0 I v ¥ US1 | Joiejnwnady | (1 3nbi4 3ag) Hg 8u0 Jybu ys
HS1
AOIJZN |sahg| 8pod uio4 oy uodiazag
‘Ooy sinis .d.. | ON 40 abenBuny Buissaippy voyjesedg swey
X3 Alquassy

€ 28 X'18d0 AG1 X'anjosqy
€ v 1do AQY aAnjosqy
4 e X'1adg AQ1 | X'oled 0197
2 " 1dg AQ1 abeg 0197 A1owaw yum
—Anr L 2| oY 1adow AQT aepaunyj AN A X3put peOY
AM
€| 38 A9 XQ1 | A'9INj0SGY '
€ v Jado X1 ainjosqy
4 98 AJadp Xa1 | A'abed 0197
4 9V J3d0 X0 abeg 0197 Klowaw yym
iy AA 4 v 18dok X017 Aelpauiuy XN X xapui peo
Xa1
2 18 | Aedg) val | A'oelpu)
2 | v | (xiedo) vay | (X03npul)
€ | 68 Atedg va1 [A'@Injosqy
£ a8 X'13d0 vQ@1 X'anjosqy
€ av 1do Vo1 anjosqy
4 S8 X'5edg vQ1 | x'abed oia7
4 [19dg v abey 0137 Klowaw yim
AN] v Jdor van aepaww) VN 101B{NWNIJE PRO]
LI
HOd= (¢+2d)
10d=— (1+9d) ssaippe uina; Buiaes
|||||| € (14 Jadg ysr anjosqy ‘§2+0d u01E30] M3u 0} dwnp
ysr
€ 29 {19dQ) diNr 19011pu| | HOd = (2+3d)
|||||| £ W 1340 JNr Anosqy | 19d-= (1+23d) uo1}830| Mau 0} dwnp
dif
A A B - ANI panduw) A== + A| auo Aq A xapu Juawauj
ANI
A 3 83 XNI paydw) X=— 1 + X | 3uo Aq X xapu! Wawasu
XNI
€ 34 X'19dQ NI X'2njosqy
€ 33 13dg NI ajnjosqy
2 94 x'18dQ INI | Xx'abeq 0137 auo Aq
————AN k4 93 13dQ INI abed 6137 N-—L1l+W Alowaty juawsasdu|
i NI
4 1S A'13dg) y03 A (10aspu))
4 44 (x'13dg} 403 | (X'122utpul)
' € 65 A13dg H03 | A'@ainjosqy
i £ as X'43d0 y03 | x'aNnjosey
] £ ay 13d0 403 ajn|osqy
: A Ss x'Jad0 403 | Xx'abed 097 !
k4 Sy 13dg 403 abeg 0197 | 10]1RINWNIJE Ylim
——— AN 2 &b 13004 403 aepaww| | v—NAY AJOWwaw JQ-aAISniax3,,
_ 403
' AQIJZN |swmAg; spog ut04 apoy i uopidjsasag
‘Oay smeig 4. | ON d0 sBenfuey Suissasppy : uapeiedp wey
X3IH Ajqwassy i

S3A0I NOILONYLSNI

103

X xapw 0}

j01g|nwndde o)

S % VAL pajdw) VA A Xapui Jojsuesy
VAL
sauod yoes
|||||| L | v sx1 payduwy §=X 01 X Xapw! Jajsues|
SX1
. - 101E[NWNJJE 0)
——=AM L | Ve vxi panduw) v=-X X X3pur Jajsues]
X1

AGIJZN [smAg| apeg spoy vopdyiaseg

‘Boy smng 4. | oN d0 Oujssaippy vojjesadg suey
X3H Ajquiassy

S3A0D NOILONYLSNI

—— AN L v§ XS1 pandwy X g J9)u10d RIS JajSuel}
XS1
A Xapui 0}
——AP i Y AVL panduy A=V 101B|NWNIIR 19jSuLL)
AVl
X Xapu| o}
o AN 1 vy Xvi paiduy X ¥ 1018|NWNIJE J3jSues)
XVl
£] 1340 ALS anjosqy
4 ¥6 X'18dQ A)S | X'abed 01a7
|||||| 2 (2] 1300 ALS abeq 0137 W= A | Asowaw u) A xaput 21015
ALS
€| 3 J1edg X1 3njosqy
2 96 Aadg x1S | A'ebeg osaz
llllll F 98 13090 XIS abed 0137 W= X | Aowaw w X xapui 31015
X8
z 16 A'(sadQ) V1S A'(12anpuy
4 i8 (x'3dD) viS | (X'I9upuy
€ | 66 A'sedo VIS | A'ainjosqy
€| 06 X'18d0 VIS X'anjosqy
€ as 4do V]S qnjosqy
2 6 X'iadQ v1S | xabed oia7 Alowaw u)
|||||| FA G8 13d0 vis abey o197 N-—V JojeinWNgae 21015
V1S
snjels
—— L | 8 138 panduwy -1 a|qesip 1dnuaul 195
138
—l——— 8 LE] as paijduy a=-1 apow [ewidap 13g
a3s
il I e 73s panduy =1 Beyy A1ea jag
HEL)
4 14| A'sadg) 0gS | A'(10smpup)
[13 (x'JedQ) 08S (x"10311puy)
€ 64 A1edo 0gS A‘aInjosqy
£ | G X'iedp 08S | xanjosqy
€ a3 13dp 08S aAnjosqy
[4 S4 X'1edg 08S | x'abed o197
b S3 1dy 288 abey o013z M0110q ylim Jojejnwingoe
Ao AAA 2 63 Jado# D8S ABPAWW] | Y=—D-N-V woyj Alowaws JaeAiQng
J8s
|||||| 1 Sid patidw) |9d=— L +0d '$3d SUNNOIQNS WOk} unjay
S14
AJelS Woi4 1 oy 114 payduwi 13dtd 1dnLAW wouy uniay
114
AOIJZN |suAg| speg iy apoy uojidjiasag
‘Bay snit1g .d..| ON d0 afenbun) Burssaippy uogeredp swey
X3IH Alquassy

104

dON — dd
X ‘9injosqy — ONI — 34
X ‘@injosqy — 08S — a4

dON — Od
dON — 84
dON — v4
A ‘@injosqy — 288 — 64
a3s —sd
dON — /4

X ‘abed 0197 — ONI — 94
X ‘abed 0507 — 088 — 54

dON — ¥4
dON — €4
dON — 24
A ‘30asipupy — 08S — L4
038 — 04
dON — 43

@injosqy — ONI — 33
anjosay — 0@s — a3
aInjosqy — Xd2 — 93

dON — g3

dON — v3

swIpaww| — 0gs — 63
XNI — 83

dON — /3

abeq 0197 — ONI — 93
abed Q137 — 08S — 53
abed 0197 — XdD — ¥3
dON — €3

dON — 23

iX ‘J234pu); — 088 — 13
sjeipaww) — Xd2 — 03
dON — 10

X 'anjosqy — 930 — 3a
X 3njosqy — dJWO— aa
- dON— 20

dON — 8a

dON— vQ
A ‘ainjosay — dND — 64
Q10 —ea
dON — L0

X ‘abeq o1az — D30 — 9Q
X ‘abed 0197 — dND — SQ

dON — 0
dON —¢q
dON — 2Q
A ‘(o8apu — dND — 1A
3N8 — 04
dON — 40

ainjosay — 030 — 30
anosay — JWO— a2
#Injosqy — AdD— 00

dON— 80

X3Q—vO

epawwl — dWND — 60
ANl — 80

dON — 40

abed 097 — 030 — 90
abeq 0497 — dWD — SO
abed 0197 — AdD — #O
dON — €2

dON — 20

(X "19941puUj} — dND — 1D
aeipawwl — AdD — 0D
dON — 18

A ‘@njosay — xQ1— 38
X ‘#Injosay — vQ1— a9
X ‘@Injosay — AQ1— 08

dON — 88
XSl —va
A 'AInjosqy — va1 — 68
A0 — 88
dON — /8

A ‘abed o187 — xQ1 — 98
X ‘abed 0137 — vQ1 — 58
X ‘abeq 013z — AQ7 — v@

dON — €8
dON — 28
A ‘Goaupuy) — vg — 18
$08 — 08
dON — 4V

ainjosqy — x@1 — 3v
ainjosqy — Qv
anjosay — AQ1— OV

dON — 8V
XVL— VY
ajepawwl| — vgl — 6v
AVL — 8V
dON — LV

abeg 0187 — xQ1 — 9v

abed 0132 — val — SV

abed 0187 — AQY — vV

dON — €V

apawwl — xa1 — 2v

(X ‘1981pu — y¥al — LV
alIpaWW| — AQT — OV

dON — 46
dON — 36
X '8yosqy — vLS — a6
dON — 06
dON — 86
SX1 — V6
A '@INjosqQy — v1S — 66
VAL — 86
dON — /6

A ‘abed 0187 — x1S — 96
X ‘abed 0187 — ¥1S — 66
X '96Bg 0137 — ALS — v6

dON —E6
dON — 26
A 'a28ipun — YIS — L6
208 — 06
dON — 48

ainjosqy — x1S — 38
anjosqy — v1S — a8

S3A00 NOILVH3dO X3H

ANtosqy — ALS — 08

dON — 88
vXxi —ve
dON — 68
A3Q — 88
dON — 8

abeq 0197 — X1S — 98
abed 0197 — VLS — S8
abed 0187 — ALS— ¥8

dON — €8
dON — 28
(X Wanpu|) — VLS — I8
dON — 08
dON — 44

dON X 'ainjosqy — 4od — 32
dON X ‘ainjosqy — Oav — a¢

dON — 0L

dON — 8.

dON — Vi

A ‘aInjosqy — OQV — 64
138 — 8L

dON — 4L

X ‘abeq 0187 — YOHY — 9L
X ‘abeq 0487 — OQV — SL

dON — ¥L
dON — €L
dON — 2L
A 'G2a1ipul) — OQV — LL
SA8 —OL
dON — 49

anosqy — 4oy — 39
anjosqy — Oav — a9
1931pul — dNIF — 09
dON — 89

i0jeINWNIdY — HOH — V9
aepaww) — J3Av — 69
vid — 89

4dON — 49

abey 0187 — HOH — 99
abed 0,87 — OQV — 69

dON — v9
dON — €9
dON — 29
(X ‘19251pup — OAY — 19
Siy — 08
dON — 4§

X ‘ainosqy — UST — 3§

X ‘einjosqy — ¥O3 — QS

dON — O§

dON — 8%

dON — V§

A ‘ainjosqy — HO3 — 6S
110 —8s

dON — LS

X ‘abed 0187 — WS — 95
X ‘abed 0192 — HO3 — SS

dON — ¥§
dON — €S
dON —2S
A ‘Goespu) HO3 — IS
oAE — 0S8
dON — 4¥

ainjosqy — HS1 ~— 3p
enjosqy — HO3 — Ay
anjosqy — JdiNiF — OF
dON — 8¢

10IBINWNIdY — HSY — V¥
ejelpaww| — HOI — 6¥
VHd — 8¥

dON — ¥

abed 0197 — WS — 9¥
abeg 0107 — HO3 — S¥

dON — ¥

dON —E¥

dON — 2P

(X ‘1081pul) — HO3 — L¥
_ b —or

dON — 3¢

X ‘@injosqy — 104 — 3¢
X ‘einjosqy — ANV — A€

dON — O¢
dON — 8¢
dON — vE
A ‘ainjosay — ANV — 6€
038 — 8¢
dON — LE

X ‘abed 0,97 — 10H — 9¢
X ‘abed 0182 — NV — GE

dON — ¥€
dON — €€
dON —¢€
A ‘a28iipul) — ONVY — IE
Ing — 0e
dON — 42

anjosqy — 10d — 3T
ejnjosqy — ANV — Q2
enosqy — 118 — 02
dON — &2

J018INWN2JY — 10H — V2
oeipaww] — ANV — 62
dld — 82

dON — 22

8Bey 0567 — 10U — 92
eBeg 0107 — ANV — S2
oBudq 0107 — 1198 — ¥2

dON — €2
dON — 22
(X ‘1o841pul) — ANV — 12
HSr — 02
dON — dI

X ‘ainjosqy — ISV — 3t
X ‘eInjosqy — vHO — At

dON — O}
dON — 81
dON — Vi
A ‘9INjosSqy — YHO — 61
070 — 8l
dON — 41

X ‘abud 0187 — ISV — 9}
X 'afed 0,02 — YHO — Si

dON — 7L
dON — €l
dON — 2t
A ‘@0enpu)) — yHO — I
48 — 0L
dON — 40

enjosqy — 1sv — 30
anjosqy — v4O — Qo
dON — 20

dON — 80

101BjNWNJOY — ISV — VO
ajelipaww| — vHO — 60
dHd — 80

dON — L0

abed 0187 — ISY — 90
abed 0187 — YHO — SO

dON — »0
dON — €0
dON — 20
(X W8Jipyl; — YHO — |0
»Ha — 00

105

g & OO0 =2

APPLE Il HARDWARE

Getting Started with Your APPLE Il Board
APPLE Il Switching Power Supply
Interfacing with the Home TV

Simple Serial Output

Interfacing the APPLE —
Signals, Loading, Pin Connections

Memory —
Options, Expansnon Map, Address

System Timing
Schematics

106

GETTING STARTED WITH YNUR APPLE II BOARD @

INTRODUCTION 5

ITEMS YOU WILL NEED:

Your APPLE II board comes completely assembled and thoroughly tested.
You should have received the following:

a. 1 ea. APPLE II P.C. Board complete with
specified RAM memory.

b. 1 ea. d.c. power connector with cable.
c. 1 ea. 2" speaker with cable.
d. 1 ea. Preliminary Manual

e. 1ea. Demonstration cassette tapes. (For 4K: 1 cassette (2 programs);
16K or greater: 3 cassettes. ‘
f. 2 ea. 16 pin headers plugged into locations A7
and J14.

In addition you will need:

g. A color TV set (or B & W) equipped with a direct
video input connector for best performance or a com-
mercially available RF modulator such as a "Pixi-verter"
Higher channel (7-13) modulators generally provide
?ettir system performance than lower channel modulators
2-6).

tm

h. The following nower supplies (NOTE: current ratings
do not include any capacity for peripheral boards.):

1. +12 Volts with the following current capacity!
a. For 4K or 16K systems - 35@QmA.
b. For 8K, 20K or 32K - 55¢mA.
c. For 12K, 24K, 36K or 48K - 850mA.

2. +5 Volts at 1.6 amps

3. -5 Volts at 1¢mA.

4. OPTIONAL: If -12 Volts is reauired by your keyboard.
(If using an APPLE II supplied keyboard, you will
need -12V at 50mA.)

107

e

An audio cassette recorder such as a Panasonic model
RQ-309 DS which is used to load and save programs.

An ASCII encoded keyboard equipped with a "reset"
switch.

Cable for the following:
1. Keyboard to APPLE IT P.C.B.
2. Video out 75 ohm cable to TV or modulator

3. Cassette to APPLE II P.C.B. (1 or 2)

Ontionally you may desire:

I

m

Game paddles or pots with cables to APPLE II Game I/0
connector. (Several demo programs use PDL(0) and
"Pong" also uses PDL(1).

Case to hold all the above

Final Assembly Steps

1.

Using detailed information on pin functions in hardware
section of manual, connect power supplies to d.c. cable
assembly. Use both ground wires to miminize resistance.
With cable assembly disconnected from APPLE II mother
board, turn on power supplies and verify voltages cn
connector pins. Improper supply connections such as re-
verse polarity can severely damage your APPLE II.

Connect keyboard to APPLE II by unplugging leader in
location A7 and wiring keyboard cable to it, then plug
back into APPLE II P.C.B.

Plug in speaker cable.

Optionally connect one or two game paddles using leader
supplied in socket located at J14.

Connect video cable.

Connect cable from cassette monitor output to APPLE II
cassette input.

Check to see that APPLE II board is not contacting any
conducting surface.

With power supplies turned off, plug in power connector
to mother board then recheck all cableing.

108

POUER UP

k-

Turn power on. If power supplies overload, jmmediately turn off
and recheck power cable wiring. Verify operating supply voltages
are within +3% of nominal value.

You should now have random video display. If not check video
level pot on mother board, full clockwise is maximum video out-
put. Also check video cables for opens and shorts. Check
modulator if you are usina one.

Press reset button. Speaker should beep and a "*" prompt
character with a blinking cursor should appear in lower
left on screen.

Press "esc" button, release and type a "@" (shift-P) to
clear screen.. You may now try "Monitor" commands if you
wish. See details in "Monitor" software section.

RUNNING BASIC

1.

Turn power on; press reset button; type "control B" and press
return button. A ">" prompt character should appear on screen

indicating that you are now in BASIC.

Load one of the supplied demonstration cassettes into recorder.
Set recorder level to approximately 5 and start recorder. Type
"LOAD" and return. First beep indicates that APPLE II has found
beginning of program; second indicates end of program followed
by ">" character on screen. If error occurs on loading, try a
different demo tape or try changing cassette volume level.

Type RUN and carriage return to execute demonstration program.
Listings of these are included in the last section of this

manual.

109

THE APPLE II SWITCHING POWER SUPPLY

Switching power supplies generally have both advantages and peculiarities
not generally found in conventional power supplies. The Apple II user
is urged to review this section.

Your Apple II is equipped with an AC line
voltage filter and a three wire AC line cord.
It is important to make sure that the third
wir2a is returned to earth ground. Use a con-
tinuity checker or ohmmeter to ensure that
the third wire is actually returned to earth.
Continuity should be checked for between the
power supply case and an available water pipe
for example. The line filter, which is of a
type approved by domestic (U.L. CSA) and
international (VDE) agencies must be returned
to earth to function properly and to avoid
potential shock hazards.

The APPLE II power supply is of the "flyback" switching type. In
this system, the AC line is rectified directly, “chopped up" by a high
frequency oscillator and coupled through a small transformer to the
diodes, filters, etc., and results in four low voltage DC supplies to
run APPLE II. The transformer isolates the DC supplies from the 1ine
and is provided with several shields to prevent "hash" from being
coupled into the Togic or peripherals. In the "flyback" system, the
energy transferred through from the AC line side to DC supply side is
stored in the transformer's inductance on one-half of the operating
cycle, then transferred to the output filter capacitors on the second
half of the operating cycle. Similar systems are used in TV sets to
provide horizontal deflection and the high voltages to run the CRT.

Regulation of the DC voltages is accomplished by controlling the
frequency at which the converter operates; the greater the output power
needed, the lower the frequency of the converter. If the converter is
overloaded, the operating frequency will drop into the audible range
with squeels and squawks warning the user that something is wrong.

A11 DC outputs are regulated at the same time and one of the four
outputs (the +5 volt supply) is compared to a reference voltage with
the difference error fed to a feedback Toop to assist the oscillator
in running at the needed frequency. Since all DC outputs are regulated
together, their voltages will reflect to some extent unequal loadings.

110

For example; if the +5 supply is loaded very heavily, then all
other supply voltages will increase in voltage slightly; conversely,
very light loading on the +5 supply and heavy loading on the +12
supply will cause both it and the others to sag Tightly. If precision
reference voltages are needed for peripheral applications, they should
be provided for in the peripheral design.

In general, the APPLE II design is conservative with respect to
component ratings and operating termperatures. An over-voltage crowbar
shutdown system and an auxilliary control feedback Toop are provided
to ensure that even very unlikely failure modes will not cause damage to
the APPLE II computer system. The over-voltage protection references to
the DC output voltages only. The AC line voltage input must be within
the specified limits, i.e., 107V to 132V.

Under no circumstances, should more
than 140 VAC be applied to the input
of the power supply. Permanent damage
will result.

Since the output voltages are controlled by changing the operating
frequency of the converter, and since that frequency has an upper limit
determined by the switching speed of power transistors, there then must
be a minimum Toad on the supply; the Apple II board with minimum memory
(4K) is well above that minimum load. However, with the board discon-
nected, there is no load on the supply, and the internal over-voltage
protection circuitry causes the supply to turn off. A 9 watt load
distributed roughly 50-50 between the +5 and +12 supply is the nominal
minimum load.

Nominal Toad current ratios are: The +12V supply load is % that of the +5V.
The - 5V supply load is 1/1p that of the +5V.
The -12V supply load is 1/19 that of the +5V.

The supply voltages are +5.9 + .15 volts, +11.8 + p.5 volts, -12.p + 1V,
-5.2 + 0.5 volts. The tolerances are greatly reduced when the loads are

close to nominal.

The Apple II power supply will power the Apple II board and all present
and forthcoming plug-in cards, we recommend the use of low power TTL, CMOS,
etc. so that the total power drawn is within the thermal 1imits of the entire
system. In particular, the user should keep the total power drawn by any
one card to less than 1.5 watts, and the total current drawn by all the cards
together within the following limits:

+ 12V - use no more than 250 mA
+ 5V - use no more than 500 mA
- 5V - use no more than 200 mA

- 12V - use no more than 200 mA

The power supply is allowed to run indefinetly under short circuit
or open circuit conditions.

CAUTION: There are dangerous high
voltages inside the power supply
case. Much of the internal circuitry
is NOT isolated from the power Tine,
and special equipment is needed for
service. NO REPAIR BY THE USER IS
ALLOWED.

NOTES ON INTERFACING WITH THE HOME TV

Accessories are available to aid the user in connecting the Apple II
system to a home color TV with a minimum of trouble. These units are called
"RF Modulators" and they generate a radio frequency signal corresponding to
the carrier of one or two of the lower VHF television bands; 61.25 MHz
(channel 3) or 67.25 MHz (channel 4). This RF signal is then modulated with
the composite video signal generated by the Apple II.

Users report success with the following RF modulators:

the "PixieVerter" (a kit) g
ATV Research

13th and Broadway

Dakota City, Nebraska 68731

the "TV-1" (a kit)
UHF Associates

6037 Haviland Ave.
Whittier, CA 90601

the "Supo-r-Mod" by (assembled & fested)
M&R Enterprises '

P.0. Box 1011

Sunnyvale, CA 94088

the RF Modulator (a P.C. board)
Electronics Systems

P.0. Box 212°

Burlingame, CA 94010

Most of the above are available through local computer stores.

The Apple II owner who wishes to use one of these RF Modulators should
read the following notes carefully.

A11 these modulators have a free running transistor oscillator. The
M&R Enterprises unit is pre-tuned to Channel 4. The PixieVerter and the
TV-1 have tuning by means of a jumper on the P.C. board and a small trimmer
capacitor. All these units have a residual FM which may cause trouble if
the TV set in use has a IF pass band with excessive ripple. The unit from
M&R has the Teast residual FM.

A1l the units except the M&R unit are kits to be built and tuned by
the sustomer. A1l the kits are incomplete to some extent. The unit from
Electrounics Systems is just a printed circuit board with assembly instructions.
The kits from UHF Associjates and ATV do not have an RF cable or a shielded
box or a balun transformer, or an antenna switch. The M&R unit is complete.

Some cautions are in order. The Apple II, by virtue of its color qraphics
capability, operates the TV set in a linear mode rather than the 16@% contrast
mode satisfactory for displaying text. For this reason, radio frequency inter-
ference (RFI) generated by a computer (or peripherals) will beat with the

. 112 i

carrier of the RF modulator to produce faint spurious background patterns
(called "worms") This RFI “trash" must be of quite a low level if worms
are to be prevented. In fact, these spurious beats must be 4@ to 5@db
below the signal level to reduce worms to an acceptable level. When it is
remembered that only 2 to 6 mV (across 3ppe] is presented to the VHF input
of the TV set, then stray RFI getting into the TV must be less than 50uV

to obtain a clean picture. Therefore we recommend that a good, co-ax

cable be used to carry the signal from any modulator to the TV set, such

as RG/59u (with copper shield), Belden #8241 or an equivalent miniature
type such as Belden #8218. We also recommend that the RF modulator be
enclosed in a tight metal box (an unpainted die cast aluminum box such as
Pomona #2428). Even with these precautions, some trouble may be encounterec
with worms, and can be greatly helped by threading the coax cable conn-
ecting the modulator to the TV set repeatedly through a Ferrite toroid core.
Apple Computer supplies these cores in a kit, along with a 4 circuit
connector/cable assembly to match the auxilliary video connector found on
the Apple II board. This kit has order number A2Mp1PX. The M&R "Sup-r-Mod'
is supplied with a coax cable and toroids.

Any computer containing fast switching logic and high frequency clocks
will radiate some radio frequency energy. Apple II is equipped with a
good line filter and many other precautions have been taken to minimize
radiated energy. The user is urged not to connect "antennas" to this
computer; wires strung about carrying clocks and/data will act as antennas,
and subsequent radiated energy may prove to be a nuisance.

Another caution concerns possible Tong term effects on the TV picture
tube. Most home TV sets have "Brightness" and "Contrast" controls with a
very wide range of adjustment. When an un-changing picture is displayed
with high brightness for a long period ,a faint discoloration of the
TV CRT may occur as an inverse pattern observable with the TV set
turried off. This condition may be avoided by keeping the "Brightness"
turned down slightly and "Contrast" moderate.

11

A SIMPLE SERIAL OUTPUT

The Apple II is equipped with a 16 pin DIP socket most frequently
used to connect potentiometers, switches, etc. to the computer for
paddle control and other game applications. This socket, Tocated at
J-14, has outputs available as well. With an appropriate machine
language program, these output lines may be used to serialize data in
a format suitable for a teletype. A suitable interface circuit must
be built since the outputs are merely LSTTL and won't run a teletype
without help. Several interface circuits are discussed below and the
user may pick the one best suited to his needs.

The ASR - 33 Teletype

The ASR - 33 Teletype of recent vintage has a transistor circuit
to drive its solenoids. This circuit is quite easy to interface to,
since it is provided with its own power supply. (Figure la) It can
be set up for a 20mA current loop and interfaced as follows (whether
or not the teletype is strapped for full duplex or half duplex oper-
ation):

a) The yellow wire and purple wire should both go to
terminal 9 of Terminal Strip X. If the purple wire
is going to terminal 8, then remove it and relocate
it at terminal 9. This is necessary to change from
the 60mA current Toop to the 20mA current loop.

b) Above Terminal Strip X is a connector socket identi-
fied as "2". Pin 8 is the input line + or high; Pin
7 is the input Tline - or low. This connector mates
with a Molex receptacle model 1375 #(3-09-2151 or
#03-09-2153. Recommended terminals are Molex #@2-(9-
2136. An alternate connection method is via spade lugs
to Terminal Strip X, terminal 7 (the + input 1ine) and
6 (the - input line).

c) The following circuit can be built on a 16 pin DIP
component carrier and then plugged into the Apple's
16 pin socket found at J-14: ?The junction of the
3.3k resistor and the transistor base lead is float-
ing). Pins 16 and 9 are used as tie points as they
are unconnected on the Apple board. (Figure la).

114

The "RS - 232 Interface"

For this interface to be legitimate, it is necessary to twice invert
the signal appearing at J-14 pin 15 and have it swing more than 5 volts
both above and below ground. The following circuit does that but requires
that both +12 and -12 supplies be used. (Figure 2) Snipping off pins
on the DIP-component carrier will allow the spare terminals to be used for
tie points. The output ground connects to pin 7 of the DB-25 connector.
The signal output connects to pin 3 of the DB-25 connector. The "protective"
ground wire normally found on pin 1 of the DB-25 connector may be connected
to the Apple's base plate if desired. Placing a #4 lug under one of the
four power supply mounting screws is perhaps the simplest method. The +12
volt supply is easily found on the auxiliary Video connector (see Figure S-11
or Figure 7 of the manual). The -12 volt supply may be found at pin 33 of
the peripheral connectors (see Figure 4) or at the power supply connector
(see Figure 5 of the manual).

A Serial Out Machine Center Language Program

Once the appropriate circuit has been selected and constructed a machine
language program is needed to drive the circuit. Figure 3 lists such a tele-
type output machine language routine. It can be used in conjunction with an
Integer BASIC program that doesn't require page $30@ hex of memory. This
program resides in memory from $37¢ to $3E9. Columns three and four of the
Tisting show the op-code used. To enter this program into the Apple II the
following procedure is followed:

Entering Machine Language Program

1. Power up Apple II

2. Depress and release the "RESET" key. An asterick
and flashing cursor should appear on the left hand
side of the screen below the random text matrix.

3. Now type in the data from columns one, two and three
for each line from $37@ to @3E9. For example, type in
"37¢: A9 82" and then depress and release the "RETURN"
key. Then repeat this procedure for the data at $372
and on until you complete entering the program.

Executing this Program
1. From BASIC a CALL 88p ($378) will start the execution of

this program. It will use the teletype or suitable 8¢
column printer as the primary output device.

115

2. PR#P will inactivate the printer transfering control
back to the Video monitor as the primary output device.

3. In Monitor mode $37@G activates the printer and hitting
the "RESET" key exits the program.

Saving the Machine Language Program

After the machine language program has been entered and checked for
accuracy it should, for convenience, be saved on tape - that is unless
you prefer to enter it by keyboard every time you want to use it.

The way it is saved is as follows:

1. Insert a blank program cassette into the tape
recorder and rewind it.

2. Hit the "RESET" key. The system should move
into Monitor mode. An asterick "*" and flash-
ing cursor should appear on the left-hand side
of the screen.

3. Type in "370.03E9W 370.M3E9W".

4. Start the tape recorder in record mode and depress
the "RETURN" key.

5. When the program has been written to tape, the asterick
and flashing cursor will reappear.

The Program

After entering, checking and saving the program perform the following
procedure to get a feeling of how the program is used:
1. BC (control B) into BASIC

2. Turn the teletype (printer on)

3. Type in the following

10 CALL 889

15 PRINT "ABCD...XYZ(@1123456789"
20 PR#P

25 END

4. Type in RUN and hit the "RETURN" key. The
text in Tine 15 should be printed on the
teletype and control is returned to the key-
board and Video monitor.

116

Line 1@ activates the teletype machine routine and all "PRINT" state-
ments following it will be printed to the teletype until a PR#p statement is
encountered. Then the text in Tine 15 will appear on the teletype's output.
Line 2@ deactivates the printer and the program ends on line 25.

Conclusion

With the circuits and machine language program described in this paper
the user may develop a relatively simple serial output interface to an ASR-3!
or RS-232 compatible printers. This circuit can be activated through BASIC
or monitor modes. And is a valuable addition to any users program library.

117

+5v

2N3906 (OR EQUIV)

1500
+

OUTPUT TO TELETYPE

-4 RESISTORS ARE 1/8 WATT CARBON

(a) (b)
FIGURE 1 ASR-33

+12 (JUMPERED TO +12 SUPPLY)

2N3906

4700

2N3904 OUTPUT (+)

OUTPUT (=)

PIN IS5
J-i4

J-i4
—12 (JUMPERED TO -i2 SUPPLY)

FIGURE 2 RS-232

118

TELETYPE DRIVEXR HUU!ILINLD

1 TITLE °*TELETYPZ DRIVER ROJTINES®

2 ok K ok ok ek ok ok K ROk K Kk %k ok ok K Kk

3 * *

4 * TTYDRIVZR: *

5 * TELETYPEZ QUTPJT *

6 * ROUTINE FOR 72 *

7 * COLYJMN PRINT WITH =«

8 * 8ASIC LIST *

9 * *

10 * COPYRIGHT 1977 BY: *

11 * APPLE COMPUTER INC. *

12 * 11718777 *

13 * *

14 * R. WIGGINTON *

15 * S. WOZNIAK *

16 * *

17 s 3 ok ok 3k o ok 3 ok 3 ok 3k ok o ok ok ok o ok K ok K K % K

18 WNDWDTH EQU 321 3F0R APPLE-I1

19 CH EQU 324 3sCURSOR HORIZ.

20 CsSwL EQU 336 3CHAR. 0UJUT SYWITCH

21 YSAVE EQY 3778

22 COLCNT EQU 37F8 sCOLUMN COUNT LOC.

23 MARK EQU $C058

24 SPACE EQJ $C059

25 WAIT EQJ 3FCAS8

26 ORG %370
#x*WARNING: OPERAND OVERFLOW IN LINzZ 27
0370: A9 82 27 TTINIT: LDA #TTOUT
0372: 85 36 28 STA CSWL JPOINT TO TTY ROUTINES
0374: A9 03 29 LDA #TTOUT/256 sHIGH BYTE
0376: 85 37 30 STA CSWL+!1
0378: A9 48 31 LDA #72 3SET WINDOYW WIDTH
037A: 85 21 32 STA YWNDWDTH ;TO NUMBER COLUMNS ONY
037C: A5 24 33 LDA CH
037E: 8D F8 07 34 STA COLCNT JWHERE WE ARE NOW.
0381: 60 35 RTS
0382: 48 35 TTOUT: PHA 3 SAVE TWICE
0383: 48 37 PHA 3JON STACK.
0384: AD F8 07 38 TTOUT2: LDA COLCNT ;CHZCKX FOR A TA3.
0387: C5 24 39 CMP CH
0389: 68 40 PLA 3JRESTORE QUTPIJT CHAR.,
038A: BO 03 41 3CS TESTCTRL 3IF C SET, NO TA3
038C: 48 42 PHA
038D: A9 AO 43 LDA #3A0 sPRINT A SPACE.
038F: 2C CO 03 44 TESTCTRL: 3IT RTSI sTRICK TO DETERMINZ
03%92: FO 03 45 BEQ PRNTIT s1F CONTROL CHAR.
0394: EE F8 07 46 INC COLCNT JIF NOT, ADD ONE TO CH
0397: 20 Cl1 03 47 PRNTIT: JSR DOCHAR 3JPRINT THE CHAR ON TTY
039A: 68 48 PLA JRESTORE CHAR
0398B: 48 49 PHA ;AND PUT BACK ON STACK
039C: 90 Eb6 50 3CC TTOUT2 ;DD MORE SPACES FOR Ta
O039E: 49 0D 51 EOR #30D JCHECK FOR CAR RET.
03A0: 0A 52 ASL A SELIM PARITY
03Al: DO 0D 53 BNE FINISH 31F NOT CRrR, DONE.

FIGURE 3a

119

TELETYPE DRIVER ROYTINES :
e

3:42 PeMe, 1171871977 PAGZ: 2
03a3: 8D F8 07 54 STA COLCNT 3CLEAR COLUMN COUNT
03a6: A9 8A 55 LDA #38A ;NOW DO LINE FEED
03A8: 20 Cl 03 56 JSR DOCHAR
03AB: A9 58 57 LDA #5583
03AD: 20 A8 FC 58 JS® WAIT $200MSEC DEZLAY FOR L1IB
03B0: AD F8 07 59 FINISH: LDA COLCNT 3CHECK IF IN MARGIN
03B3: FO 08 60 BEQ SETCH 3FOR CR, RESET CH
0385: ES 21 61 SBC WNDWDTH $1F SO, CARRY SZT.
03B7: E9 F7 62 SBC #5F7
0389: 90 04 63 3CC RETURN
0383: 69 IF 64 ADC #S1F 3ADJUST CH
038D: 85 24 65 SETCH: STA CH
038F: 68 66 RETURN: PLA
03C0: 60 67 RTSI:]TS SRETURN TO CALLER

68 x HERE 1S THE TELETYPE PRINT A CHARACTER ROUTINZ:
03Cl: 8C 78 07 69 DOCHAR: STY YSAvz
03C4: 08 70 PHP s SAVE STATUS.
03C5: A0 0B 71 LDY #3083 11 3ITS ¢l START, 3 B
03C7: 18 72 cLC 33EGIN WITH SPACE (STR
03C8: 48 73 TTOUT3: PHA $SAVE A REG AND SIT FOI
03C9: BO 05 74 3CS MARXOUT
03C3: AD 59 CO 75 LDA SPACZE $SEND A SPACE
03CE: 90 03 76 3CC TTOUT4
03D0: AD 58 CO 77 MARKOUT: LDA MARK 3SEND A MARK
03D3: A9 D7 78 TTOUTA4: LDA #3D7 ;DELAY 9.091 MSIC FOR
03DS5: 48 79 DLYl: PHA ;110 BAUD
03D6: A9 20 80 LDA #320
03D8: 4A g1 DLY2: LSRR A
03D9: 90 FD 32 8CC DLY?2
03D3: 68 83 pLA
03DC: E9 0! 84 S3C #301
03DE: DO F5 85 3NE DLY!
03E0: 68 86 PLA
03E1: 6A 37 R0} A 3NEXT BIT ¢STOP BITS R
03E2: - 88 88 DEY LOOP 1l BITS.
03E3: DO E3 89 BNE TTOUT3
03ES: AC 78 07 90 LDY YSAVE $RESTORE Y-REG.
03E8: 28 91 PLP 3RESTORE STATUS
03E9: 60 92 RTS 3RETAN

*kkkkkkkSUCCESSFUL ASSZMBLY: NO ERRORS

FIGURE 3b

120

CROSS-REFERNCE: TELETYPE DRIVER ROUTINES

CH 0024 0033 0039 0065
COLCNT 07r8 0034 0038 0046 0054 0059
CSWL 0036 0028 0030
DLY1 03D5 0085
DLY2 03D8 0082
DOCHAR 03C1 0047 0056
FINISH 0330 0053
MARK €058 0077
MARKOQUT 03DO0 0074
PRNTIT 0397 0045
RETURN 03BF 0063
RTS1 03CO 0044
SETCH 038D 0060
SPACE €059 0075
TESTCTRL 038F 0041
TTINIT 0370
TTOUT 0382 0027 0029
TTOUT2 0384 0050
TTOUT3 03C8 0089
TTOUT4 03D3 0076
VAIT FCAS8 0058
WNDWDTH 0021 0032 0061
YSAVE 0778 0069 0090
ILE$

FIGURE 3c

121

INTERFACING THE APPLE

This section defines the connections by which external devices are
attached to the APPLE II board. Included are pin diagrams, signal
descriptions, loading constraints and other useful information.

TABLE OF CONTENTS

1. CONNECTOR LOCATION DIAGRAM

2. CASSETTE DATA JACKS (2 EACH)

3. GAME I/0 CONNECTOR

4. KEYBOARD CONNECTOR

5, PERIPHERAL CONNECTORS (8 EACH)
6. POWER CONNECTOR

7. SPEAKER CONNECTOR

8. VIDEO OUTPUT JACK

9. AUXILIARY VIDEQ OUTPUT CONNECTOR

122

1ew

igure 1A APPLE II Board-Complete V

F

o

- g

2

T

‘:=:..')

AL RE]

7 VTIPS VAR

P g M RTUGgy bCTRTe Yy g

m L

T:F

Ty

[4 -q-

MEMORY

| R, m, : .ny.r L =S

AR 5 s 8 BES =

12 13 114

11

ot PrEREENRNASACARERRNNEDER

pregeeid

123

Figure 1B Connector Location Detail

POWER
CONNECTOR

KEYBOARD
CONNECTOR

APPLE Il PC BOARD
TOP VIEW CASSETTE DATA IN

CASSETTE DATA OUT
_umm__uw_/mm>_.m ﬁ’

W N VIDEO OUTPUT
0 1 2 3 4 5 6 7
o o o o o o o o :
K12 K13 K14
AUXILIARY
[==—"1<——VIDEO QUTPUT
J14B CONNECTOR
o
<
(o]
o
g
o J
O
i GAME 170
S CONNECTOR
S
< o o o o o o o) o -
3] J14
+ J2 J4 J5 J6 Js Jo Ji J12 o
|
_, “
le ,
E SPEAKER
CONNECTOR
A7 B14A
o
O S
> T
- O
A v m
20O
3 huwup
4 5 6 7 8 9 10 1__12_ 13 14 ok

Front Edge of PC Board
CONNECTOR LOCATIONS

124

CASSETTE JACKS

A convenient means for interfacing an inexpensive audio cassette
tape recorder to the APPLE II is provided by these two standard
(3.5mm) miniature phone jacks located at the back of the APPLE II
board.

CASSETTE DATA IN JACK: Designed for connection to the "EARPHONE"
or "MONITOR" output found on most audio cassette tape recorders.
ViN=1Vpp (nominal), ZIN=12K Ohms. ~ Located at K12 as illustrated in
Figure 1.

CASSETTE DATA QUT JACK: Designed for connection to the "MIC" or
"MICROPHONE" input found on most audio cassette tape recorders.
=25 mV into 10¢ Ohms, ZOUT=1QQ Ohms. Located at K13 as illustrated

Vv
iRUFigure 1.

GAME I/0 CONNECTOR

The Game I/0 Connector provides a means for connecting paddle controis,
lights and switches to the APPLE II for use in controlling video games,
etc. It is a 16 pin IC socket located at J14 and is illustrated in

Figure 1 and 2.

Figure 2 GAME I/0 CONNECTOR

TOP V|
(Front EJ%e g?NPC Board

+5V 1 |°® 16 N.C.

SwWo 2 15 ANO

SW1 3 14 AN1

Sw2 4 13 AN2

C040STB 5 72 AN3
PDLO 6 11 PDL3
PDL2 7 10 PDLA1

GND 8 9 NC.

LOCATION J14

125

SIGNAL DESCRIPTIONS FOR GAME 1/0

ANG-AN3:

CQ4Q STB:

GND:
ﬂg:

PDLP-PDL3:

SW@-SW2:

+5V:

8 addresses (C@58-CQ5F) are assigned to selectively
“SET" or "CLEAR" these four "ANNUNCIATOR" outputs.
Envisioned to control indicator lights, each is a
74LSxx series TTL output and must be buffered if used

to drive lamps.

A utility strobe output. Will go low during P, of a
read or write cycle to addresses CQ4Q-CQ4aF. This is

a 74LSxx series TTL output.

System circuit ground. 0 Volt 1ine from power supply.

No connection.

paddle control innuts. Requires a p-150K ohm variable
resistance and +5Y for each paddle. Internal 100 ohm
resistors are provided in series with external pot to
prevent excess current if pot goes completely to zero

ohms.
Switch inputs. Testable by reading from addresses

C@61-CP63 (or CO69-CP6B). These are uncommitted
74LSxx series inputs.

Positive 5-Volt supply. To avoid burning out the connector
pin, current drain MUST be Tess than T00mA.

KEYBOARD CONNECTOR

This connector provides the means for connecting as ASCII-keyboard
to the APPLF II board. It is a 16 pin IC socket located at A7 and is

illustrated in Figures 1 and 3.

Figure 3 KEYBOARD CONNECTOR

TOP VIEW
(Front Edge of PC Board)
+5vV 1 |® 16 N.C.
STROBE 2 15 —12V
RESET 3 14 N.C.
N.C. 4 13 B2
B6 5 12 B1
B5 6 11 B4
B? 7 10 B3
GND 8 9 NC.
LOCATION A7

126

SIGNAL DESCRIPTION FOR KEYBOARD INTERFACE

B1-B7: 7 bit ASCII data from keyboard, positive logic (h1gh level=
"1"), TTL Togic Tevels expected.

GND: System circuit ground. @ Volt Tine from power supply.
NC: No connection.
RESET: System reset input. Requires switch closure to ground.

STROBE: Strobe output from keyboard. The APPLE II recognizes the
positive going edge of the incoming strobe.

+5V: Positive 5-Volt supply. To avoid burning out the connector
pin, current drain MUST be less than 19@mA.

-12V: Negative 12-Volt supply. Keyboard should draw less than
50mA.

PERIPHERAL CONNECTORS

The eight Peripheral Connectors mounted near the back edge of the
APPLE II board provide a convenient means of connecting expansion
hardware and peripheral devices to the APPLE II I/0 Bus. These are
Winchester #2HW25CP-111 (or equivalent) 5@ pin card edge connectors
with pins on .10" centers. Location and pin outs are illustrated in
Figures 1 and 4.

SIGNAL DESCRIPTION FOR PERIPHERAL 1/0

AB-A15: 16 bit system address bus. Addresses are set up by the

6502 within 300nS after the beginning of @,. These lines
will drive up to a total of 16 standard TTL loads.

DEVICE SELECT: Sixteen addresses are set aside for each peripheral
connector. A read or write to such an address will
send pin 41 on the selected connector low during Qz
(509nS). Each will drive 4 standard TTL loads.

Dg-D7: 8 bit system data bus. During a write cycle data is
set up by the 6502 less than 3PPnS after the beginning
of @,. During a read cycle the 6502 expects data to
be rgady no less than 1pPnS before the end of ﬂz
These lines will drive up to a total of 8 total
power schottky TTL loads.

Tow

127

O

DMA IN:

DMA OUT:

jep]
=
o

by
=
-

|

INT IN:

INT OUT:

I/0 SELECT:

[/0 STROBE:

IRQ:

Direct Memory Access control output. This line has a
3K Ohm pullup to +5V and should be driven with an

open collector output.

Direct Memory Access daisy chain input from higher
priority peripheral devices. Will present no more
than 4 standard TTL loads to the driving device.

Direct Memory Access daisy chain output to Tower
priority peripheral devices. This line will drive
4 standard TTL Toads.
System circuit ground. @ Volt line from power supply.
Inhibit Line. When a device pulls this Tine low, all
ROM's on board are disabled (Mex addressed D@P@ through
FFFF). This line has a 3K Ohm pullup to +5V and

should be driven with an open collector output.

Interrupt daisy chain input from higher priority peri-
pheral devices. Will present no more than 4 standard
TTL loads to the driving device.

Interrupt daisy chain output to lower priority peri-
pheral devices. This line will drive 4 standard TTL

Toads.

256 addresses are set aside for each peripheral connector
(see address map in "MEMORY" section). A read or write
of such an address will send pin 1 on the selected
connector Tow during §, (50PnS). This Tine will drive

4 standard TTL loads.

Pin 20 on all peripheral connectors will go Tow during
g, of a read or write to any address C8@@-CFFF. This
1?ne will drive a total of 4 standard TTL loads.

Interrupt request line to the 65¢2. This line has a
3K Ohm pullup to +5V and should be driven with an open
collector output. It is active low.

No connection.

Non Maskable Interrupt request line to the 6502. This
Tine has a 3K Ohm pullup to +5V and should be driven with
an open collector output. It is active low.

A 1MHz (nonsymmetrical) general purpose timing signal.
drive up to a total of 16 standard TTL loads.

Wil

”Reqdy“ line to the 65@2. This 1ine should change only
during P., and when low will halt the microprocessor at
the next READ cycle. This 1ine has a 3K Ohm pullup to

+5V and should be driven with an open collector output.

Re§et Tine from "RESET" key on keyboard. Active low.
drive 2 MOS loads per Peripheral Connector.

Will

128

+12V:

+5V:
-5V:
-12v:

READ/WRITE line from 6502. When high indicates that a read
cycle is in progress, and when Tow that a write cycle is

in progress. This Tine will drive up to a total of 16
standard TTL loads.

The function of this line will be described in a later
document.

Microprocessor phase f clock. Will drive up to a total of
16 standard TTL loads.

Phase 1 clock, complement of ﬂo. Will drive up to a total
of 16 standard TTL loads.

Seven MHz high frequency clock. Will drive up to a total
of 16 standard TTL loads.

Positive 12-Volt supply.
Possitive 5-Volt supply
Negative 5-Volt supply.

Negative 12-Volt supply.

POWER CONNECTOR

The four voltages required by the APPLE IT are supp]ied vi@ thjs
AMP #9-35028-1?6 pin connector. See location and pin out in Figures

1 and 5.

PIN DESCRIPTION

(2 pins) system circuit ground. f Volt line from power
supply.

Positive 12-Volt line from power supply.
Positive 5-Volt line from power supply.
Negative 5-Volt line from power supply.

Negative 5-Volt line from power supply.

129

Figure 4 PERIPHERAL CONNECTORS
(EIGHT OF EACH)

TOP VIEW
PINOUT (Back Edge of PC Board)

5

Cummm—

GND 26 | Fa| 25 +sv
DMAIN 27 |7]| 24 DMAOUT
INTIN 28 |CJ (3|23 INTOUT

NMi 29 (] [22 DMA

1RQ 30| 43|27 mRDY

RES 37 |CJ [3]| 20 170 STROBE

INH 32 |C3 3] 19 NC.
-12v 33 |cd 3| 18 R/W

-5V 34 |3 33| 17 A1s

NC. 35|C3 [l 16 A14

7™M 36 (33| 15 A13

Q3 37|l 14 A12
®1 38 ||| 13 At1
USER1 39 |3I3| 12 A10
®0 40 |CIV3| 11 A9
DEVICE SELECT 47 |3 B3] 10 A8
D7 42| 33l 9 A7
D6 43| |8 A6
D5 44iC3 37 A5
D4 45| [l6 A4
D3 46| 3|5 A3
D2 47| |4 A2
D1 48 |C3]| 3 At
DO 49| 4|2 A0
+12V 50 | _J:] 1 /0 SELECT
N4

(Toward Front Edge of PC Board)
LOCATIONS J2 TO J12

Figure 5 POWER CONNECTOR

TOP VIEW
PINOUT (Toward Right Side of PC Board)
. —
5 6
(BLUE/WHITE WIRE) —12V @ © -5V (BLUE WIRE)
3 4
(ORANGE WIRE) +5V @ © H +12V (ORANGE/WHITE WIRE)
12
(BLACK WIRE) GND ® © GND (BLACK WIRE)
L
LOCATION K1

130

SPEAKER CONNECTOR

This is a MOLEX KK 190 series connector with two .25" square pins on
.19" centers. See location and pin out in Figures 1 and 6.

SIGNAL DESCRIPTION FOR SPEAKER

+5V: System +5 Volts
SPKR: Output line to speaker. Will deliver about .5 watt into
8 Ohms.
Figure 6
SPEAKER CONNECTOR
« PINOUT
5 5 5
[«P]
g Eid
[T
(4]
+ O
[adionl
(o]
|]
wa L—s

Right Edge of PC Board

LOCATION B14A

VIDEQ QUTPUT JACK

This standard RCA phono jack located at the back edge of the APPLE II
P.C. board will supply NTSC compatible, EIA standard, positive composite
video to an external video monitor.

A video level control near the connector allows the output level to be
adjusted from @ to 1 Volt (peak) into an external 75 OHM load.

Additional tint (hue) range is provided by an adjustable trimmer capacitor.

See locations illustrated in Figure 1.

121

AUXILIARY VIDEO OUTPUT CONNECTOR

This is a MOLEX KK 10@ series connector with four .25" square pins
on .1p" centers. It provides composite video and two power supply
voltages. Video out on this connector is not adjustable by the on
board 200 Ohm trim pot. See Figures 1 and 7.

SIGNAL DESCRIPTION

GND: System circuit ground. @ Volt Tine from power supply.

VIDEQ: NTSC compatible positive composite VIDEO. DC coupled
emitter follower output (not short circuit protected).
SYNC TIP is @ Volts, black level is about .75 Volts, and
white level is about 2.9 Volts into 479 Ohms. OQutput level
is non-adjustable.

+12V: +12 Volt 1ine from power supply.

-5V: -5 Volt line from power supply.

Figure 7 AUXILIARY VIDEO OUTPUT CONNECTOR

PINOUT
+12V
-5V
VIDEO
GND

o|o][o]]a]

Back Edge of PC Board

£ L

Right Edge of PC Board

LOCATION J14B

132

INSTALLING YOUR OWN RAM

THE POSSIBILITIES

The APPLE II computer is designed to use dynamic RAM chips organized
as 4096 x 1 bit, or 16384 x 1 bit called "4K" and "16K" RAMs
respectively. These must be used in sets of 8 to match the system
data bus (which is 8 bits wide) and are organized into rows of 8.
Thus, each row may contain either 4096 (4K) or 16384 (16K) locations
of Random Access Memory depending upon whether 4K or 16K chips are
used. If all three rows on the APPLE II board are filled with 4K
RAM chips, then 12288 (12K) memory locations will be available for
storing programs or data, and if all three rows contain 16K RAM
chips then 49152 (commonly called 48K) locations of RAM memory will
exist on board!

RESTRICTIONS

It is quite possible to have the three rows of RAM sockets filled with
any combination of 4K RAMs, 16K RAMs or empty as long as certain rules
are followed:

1. A1l sockets in a row must have the same type (4K or 16K)
RAMs .

2. There MUST be RAM assigned to the zero block of addresses.

ASSIGNING RAM

The APPLE II has 48K addresses available for assignment of RAM memory.
Since RAM can be installed in increments as small as 4K, a means of
selecting which address range each row of memory chips will respond
to has been provided by the inclusion of three MEMORY SELECT sockets

on board.

Figure 8
MEMORY SELECT SOCKETS
TOP VIEW

PINOUT

(0000-0FFF) 4K “0” BLOCK 7 [14 RAMROW C

(1000-1FFF) 4K “1” BLOCK 2 73 RAMROW D

(2000-2FFF) 4K “2” BLOCK 3 12 RAMROWE

(3000-3FFF) 4K “3” BLOCK 4 11 N.C.
(4000-4FFF) 4K “4" BLOCK 5 10 16K "0" BLOCK (0000-3FFF)
(5000-5FFF) 4K “5” BLOCK 6 9 16K “4” BLOCK (4000-7FFF)
©000-£FFF) 4K “§” BLOCK 7 8 16K “8" BLOCK (8000-BFFF)

LOCATIONS D1, E1, F1

133

MEMORY

TABLE OF CONTENTS

1. INTRODUCTION

2. INSTALLING YOUR OWN RAM

3. MEMORY SELECT SOCKETS

4. MEMORY MAP BY 4K BLOCKS

5. DETAILED MAP OF ASSIGNED ADDRESSES
INTRODUCTION

APPLE II is supplied completely tested with the specified amount of
RAM memory and correct memory select jumpers. There are five different
sets of standard memory jumper blocks:

4K 4K 4K BASIC
4K 4K 4K HIRES
16K 4K 4K

16K 16K 4K

16K 16K 16K

Ot Wwn —~

A set of three each of one of the above is supplied with the board.
Type 1 is supplied with 4K or 8K systems. Both type 1 and 2 are
supplied with 12K systems. Type 1 is a contiguous memory range for
maximum BASIC program size. Type 2 is non-contiguous and allows 8K
dedicated to HIRES screen memory with approximately 2K of user BASIC
space. Type 3 is supplied with 16K, 20K and 24K systems. Type 4
with 30K and 36K systems and type 5 with 48K systems.

Additional memory may easily be added just by plugging into sockets
along with correct memory jumper blocks.

The 6502 microprocessor generates a 16 bit address, which allows

65536 (commonly called 65K) different memory locations to be specified.
For convenience we represent each 16 bit (binary) address as a 4-digit
hexadecimal number. llexadecimal notation (hex) is explained in the
Monitor section of this manual.

In the APPLE II, certain address ranges have been assigned to RAM
memory, ROM memory, the 1/0 bus, and hardware functions. The memory
and address maps give the details.

134

MEMORY SELECT SOCKETS

The location and pin out for memory select sockets are illustrated
in Figures 1 and 8.

HOW TO USE

There are three MEMORY SELECT sockets, located at D1, E1 and F1
respectively. RAM memory is assigned to various address ranges by
inserting jumper wires as described below. A1l three MEMORY SELECT
sockets MUST be jumpered identically! The easiest way to do this
is to use Apple supplied memory blocks.

Let us Teamby example:

If you have plugged 16K RAMs into row "C" (the sockets located at
C3-C1P on the board), and you want them to occupy the first 16K of
addresses starting at @9@P, jumper pin 14 to pin 10 on all three
MEMORY SELECT sockets (thereby assigning row "C" to the P@pP-3FFF
range of memory).

If in addition you have inserted 4K RAMs into rows "D" and "E", and

you want them each to occupy the first 4K addresses starting at 4009
and 5PPP respectively, jumper pin 13 to pin 5 (thereby assigning row
"D" to the 4PPP-4FFF range of memory), and jumper pin 12 to pin 6
(thereby assigning row "E" to the 5@PP-5FFF range of memory). Remember
to jumper all three MEMORY SELECT sockets the same.

Now you have a large contiguous range of addresses filled with RAM
memory. This is the 24K addresses from PPpP-5FFF.

By following the above examples you should be able to assign each
row of RAM to any address range allowed on the MEMORY SELECT sockets.
Remember that to do this properly you must know three things:

1. Which rows have RAM installed?

2. Which address ranges do you want them to
occupy?

3. Jumper all three MEMORY SELECT sockets the
same.

If you are not sure think carefully, essentially all the necessary
information is given above.

135

Memory Address Allocations in 4K Bytes
0000 text and color graphics 8000
display pages, 8502 stack,
pointers, etc.
1000 8000
2000 high res graphicse display A000
primary page
"
3000 " Boon
L1}
"
"
€000 addresses dedicated to
4000 high res. graphics display
secondary pPage htrdwuﬁe functions
"
"
1"
5000 it D000 ROM lOﬁket DO: spare
"
" ROM socket D8: spare
n % "
8000 E000 ROM loﬁket EQ: BASIC
ROM socket E8: BASIC
"
=500 F000 ROM socket FO: BASIC
utility
ROM socket F8: monitor
Memory Map Pages @ to BFF
HEX USED
ADDRESS(ES) | BY USED FOR COMMENTS
PAGE ZERO
0000-001F UTILITY register area for "sweet 16"
16 bit firmware processor.
0020-004D MONITOR
004E-004F MONITOR | holds a 16 bit pumber that
is randomized with each key
entry.
0050-0055 UTILITY integer multiply and divide
work space.
0055-00FF BASIC
OOFO- OOFF UTILITY floating point work space.
PAGE ONE
0100-01FF 6502 subroutine return stack.
PAGE TWO
0200-02FF character input buffer.
PAGE THREE '
03F8 MONITOR Yr (control Y) will cause
a®JSR to this location.
03FB NMI's are vectored to this
location.
O3FE-O03FF IRQ's are vectored to the
address pointed to by these
locations.
0400-07FF DISPLAY text or color graphics
primary page.
0800-0OBFF DISPLAY text or color graphics BASIC initializes
secondary page. LOMEM to location
0800.

136

I/0 and ROM Address Detail

HEX

ADDRESS ASSIGNED FUNCTION COMMENTS

CooX Keyboard input. Keyboard strobe appears in bit
7. ASCII data from keyboard }
appears in the 7 lower bits. §

C01X Clear keyboard strobe.

Cco02X Toggle cassette output.

C03X Toggle speaker output.

Co4Xx "C040 STB" Output strobe to Game I/0
connector.

C050 Set graphics mode

gobl " text H

C052 Set bottom 4 lines graphics

C053 " " t Tt text

C054 Display primary page

C055 " secondary page

C056 Set high res. graphics

C057 " color Bl

C058 Clear "ANO" Annunciator 0 output to
Game I/0 connector.

C059 Set "

CO5A Clear '"AN1" Annunciator 1 output to
Game I/0 connector.

CO5B Set H

CosC Clear '"AN2" Annunciator 2 output to
Game I/O connector.

C0O5D Set & '

COSE Clear "AN3" Annunciator 3 output to
Game I/0 connector.

COSF Set "

137

HEX

ADDRESS ‘ASSIGNED FUNCTION COMMENTS

C060/8 Cassette input State of '"Cassette Data In"
appears in bit 7.

input on

co61/9 "SW1" State of Switch 1 A\ Game
I1/0 connector appears in bit 7.

C062/A "Swa" State of Switch 2 input on
Game I/0 connector appears
in bit 7.

Co63/B "Sw3" State of Switch 3 input on
Game I/0O connector appears
in bit 7.

coe4/C Paddle O timer output State of timer output for
Paddle O appears in bit 7.

C065/D " 1 " " State of timer output for
Paddle 1 appears in bit 7.

C066/E " 2 " " State of timer output for
Paddle 2 appears in bit 7.

CO067/F m g M w State of timer output for
Paddle 3 appears in bit 7.

Co7X "PDL STB" Triggers paddle timers
during ¢2.

C0o8X DEVICE SELECT O Pin 41 on the selected
Peripheral Connector goes

C09X " 1 low during ¢2.

COAX " 2

COBX " 3

COCX " 4

CODX " 5

COEX " 6

COFX " 7

C10X " 8 Expansion connectors,

C11iXx " 9 "

C12X " A "

138

HEX

ADDRESS ASSIGNED FUNCTION COMMENTS
Cl3X DEVICE SELECT B "
C14X " C "
C15X " D "
CleX t E "
C17X " F "
C1XX 1/0 SELECT 1 Pin 1 on the selected
Peripheral Connector goes
C2XX " 2 low during ¢2.
C3XX e 3 NOTES:
1. Peripheral Connectop
C4XX " 4 0 does not get this
signal.
LS ! > 2. T/0 SELECT 1 uses the
s
C7XX " 7
C8XX " 8, I/O STROBE | Expansion connectors.
C9xXX K 9 n
CAXX " A n
CBXX " B "
CCXX " C u
CDXX " D "
CEXX u E u
CFXX " F "
DO0OO-D7FF | ROM socket DO Spare.
D80O-DFFF " " D8 Spare.
EOOO-E7FF " " EO BASIC.
E800-EFFF " " E8 BASIC.
FOOO-F7FF " " FO 1K of BASIC, 1K of utility.
F800-FFFF " " F8 Monitor.

139

SYSTEM TIMING

SIGNAL DESCRIPTIONS

14M: Master oscillator output, 14.318 MHz +/- 35 ppm. A1l other
timing signals are derived from this one.

M: Intermediate timing signal, 7.159 MHz.

COLOR REF: Color reference frequency used by video circuitry, 3.530 MHz.

Do: Phase ¢ clock to microprocessor, 1.¢23 MHz nominal.

P:: Microprocessor phase 1 clock, complement of @,, 1.023 ‘iz
nominal.

P Same as @,. Included here because the 6502 hardware and

programming manuals use the designation @, instead of .

03: A general purpose timing signal which occurs at the same
rate as the microprocessor clocks but is nonsymmetrical.

MICROPROCESSOR OPERATIONS

ADDRESS: The address from the microprocessor changes during 0,,
and is stable about 300nS after the start of @,.

DATA WRITE: During a write cycle, data from the microprocessor
appears on the data bus during @,, and is stable about
300nS after the start of @,.

DATA READ: During a read cycle, the microprocessor will expect

data to appear on the data bus no less than 100nS prior
to the end of #,.

SYSTEM TIMING DIAGRAM

TIMING CIRCUITRY

BLOCK DIAGRAM TIMING RELATIONSHIPS
MASTER
mne [[T LU UL UL LML
CIRCUITRY

—coworprery | | | L[L LI LT L T
—C0> | | l |

—<e>] |] L
vz] [1 [

—@ L L

140

REFERENCE SYNC — SYNC OUT BUS —] VIDEO
OSSILLATOR COUNTER | —— GENERATOR 13" COMPOSITE VIDEO OUT
AN s
SYSTEM — — —
TIMING HPE —
» AUXILIARY VIDEO OUT
X FIG. S4 —
FIG. -3 [G S+
TIMING BUS — —~ TIMING BUS
B [T T11
(<~ DATABUS —
g T ITT 11 1Y
| s ADDRESS BUS —~
&)
e | =M
Al P =
BUS iy O
DRIVERS ~—AHnE 8K-12K 3| 2] 18 POWER IN
e —J] ROM ol 5] |o +
A MEMORY 2l 15| [2 TO ALL SECTIONS | * f2¥
— | BASIC o] |al | -5V
- SVSTEM eI GND
— ADDRESS BUS —1 5Y. Sl e
0 [MONITOR 5 §
DATA OUT =—
T p FIG. S-5
2
o It
<
s
g[[4
4K/ 16K J 8 DECODED
o | RAM — PERIPHERAL
35 SELECT g PERIPHERAL CONNECTORS
@ —] 110 — &%
R — . S
1= =
) [FIG. 56) S =
RAM t FiG. S-9
1 l ROW T
SELECT " ! o
=] |8 2
o |19 @ @
x 3 18| |2 :
. <
L5 MEMORY =l o a % 3
— <l |2 i
— — w 2
FIG. S-2 L__ o c g L l
e a
g o 13] |2
@ FIG. S-8 2 |5
? g = !
= RAM
s e)
= ADDRESS ON-BOARD
@ al | Here of |} — 4% GAME I/0
> \
g @ RAM = \ 4 _CASSETTE IN
w —
RESS |— X, =]
° A A —— o=/ % ¥ CASSETTE OUT
< —
- | 1 4 KEYBOARD
\ — -— ADDRESS DECODE —
FIG. S-7 FIG. 5-10 $ SPEAKER
L J
L ~— DATA OUT J
_ -— DMA BUS

FIGURE S-1 APPLE Il SYSTEM DIAGRAM

141

SYSTEM
ADDRESS
BUS

FROM PERIPHERAL 1/Q's

)

+5V

8

8797
. {PINS 1 & 15 TRISTATE)
11 412 9
2 ¢ >
ADO e A0

el

A10

A1l

A12

A13

Al4

A15

R/W

SEE FIG S-9
22

| 0

| @1

S0 Vss Vss

Vce _—

) v CRG) a0
|, Pl FROM
NMI NMI) 29 PERIPHERAL I/O's
] RAO1 SEE FIG. S-9
3.3K
roy |2 l = —(RDY) 21
% 3.3K FROM KEYBOARD AN
RES ———<BES) I PERIPHERAL 110’
I—w\,—-> SEE FIG. S-9 & S-11

MPU
6502

TRISTATE
SYSTEM
DATA
BUS

;

28

AVAILABLE ON
> 50 PIN PERIPHERAL
1/0 CONNECTOR

SYSTEM TIMING
FIG. $-3

NOT AVAILABLE ON
50 PIN PERIPHERAL
170 CONNECTOR

FIGURE S-2 MPU AND SYSTEM BUS

142

e

~

(PINS 1 & 15 TRISTATE)

(9]

e

OLOR REF

ONINIL INILSAS ANV HOLVTTIOSO FONIY343H €-S 3HNDId

ZHN BLEYL

AS+

ZHA vi

I of

4

O'N = 5 =
:w 8) mn_n .H.
20 OND OGN v3
7 ea b= s K 0s |
434 HO100 m. 10} 5 B dii mm.mmw_ vmn. =
mmalAl.leo = ° ” 19 A
% U—zn 1) 51| © ca 4 6 nNou> . 2]
98SvL ¢t g 1a
UN € ¢l T giiem 9] s
7|0 ETTD—(];
or {0 » " —co 18 g z
0Q
”O MU) ¥61Lan 2 zig 1
1
L :

G 140S AS+

GND 10 29A
3d do
€0 A
e} r
S61SYL

e0 0d

2d
w & 4
00 £d

—

(1 74Y]

T 98SY.

wNQ

(zrt)
4 02SL

€
= | G)

3dH

¥-S OId T
INNOD ONAS
WOH

143

CLOCK IN
FROM

SOFT5 +5V
A
Tre SYNC OUT
V
A B a0 £ D14-14) HO
191 cer 13 5
. . D14 Q1 | 14-13) H1
1
] a2 F2 D14-12) H2
410 a3 P2 D14-11) H3
5| 74LS161
P2
g P3
- 2 9
cL PE jo—
TC GND
15_]_8
SOFTS5 +5V -
Trs 10 |7
1{ VccCET CEP | 9
CLR pe [
5 12 —
P2 D13 Q2 {D13-12) HPE
2 P srs ™ i D13-14) H4
ey ar = D13-13) H5
= as - D13-11) VA
2 CL P3 s
TC GND
15f
+5V =
Tm 10 |7
Voo CET C
3 ook CET CEF, L1 D12-14) VB
e 1o o1 F2 Di12.13) VC
51 p3 a2 12 D12-12) VO
SOFT 5 4 74LS181 -
—cr a3 D12-11) V1
4
P1
L] g
cL PE b
TC GND
Bl
-5V =
Trs 10 |7
3) Vcc CET CEP | 9
PO PE fo—1
1py D11 1C E—Q'DOT"
51, Qo i (Bi1-14) V2
SOFT5 74L.5161 13
L] cir ar D11-13) V3
_L—spa a2 2 D11-12) V4
bl < 7 as Hl—ne

SYSTEM {LDPS)

TIME
FiG. 8-3

GND

IR

144

FIGURE S-4 SYNC COUNTER

N
-

9

Q

i

-
-

i

w
-

?

©
-

?

~N
=

9
988

©
-~

0

=3
-

cld WOHd

..._v _lulglmhom,mm dIHD
ci) i1e| oe

©
-

of

bac
~N

088

aNo €SO 180
2s0
LQ
oy
9q 6v
8y
sa
v
va oV
8 xMe
gg WOH SV
a91£6 Y
2a v
1a v
v
oa
ov
UO>
»NH

AS+

Nv13a LNONId WOY

¢l

NEE
tovd

~

N M e W ©

AVHHY AHOW3IW NOY-

AHOW3N NOH S-S 3HNODIH
e 9 L - . 6S 'Oid
aNo 3 £V v 17 XN O/i I43d
0z o-—>—(S1-2t4) 2IH 0L
8E1SI0L zid
2z 74 174 sz 9z 1z o |
€1 2l 1 01 6 ’ 9_‘
ASH
.. .
1zjoe) icjoz] wejoel 1ejoey 1zjoz| izf oe m
)
oallsalioa]]ea] foa]]e :
:
1
' 2-S '9i4 338
o) D D po s 0 H
oflo 0 o] ol]lo —SN8 W31SAS
2|12 2 g g]]z !
m
]
pdf|ed| fea] Jod] |s4]]ea i
m
]
H
1]
H

145

123713S WVH 91 /Xy 9-S IHNO

o &>

SVD ot g J L
8 aND e3 .
7 7 s x>
¥ o] IS17 «—< 0¢ > or
6 ezl + (€1av) st
0 ¥ i Z = @1} eg ’ A v
o m_w,ﬂ“‘vﬁ, @ esistwL ¢ B ———— mww.m ="
85 014 | 3 MOY Wvd (21-1d 7] % e = = =
S¥9 ¢ a mod wve (Bt ———— E] 5 e 1) m._- EH
o mod wvd (ri-td ——— ¥ - i aNo 3 _
AS+ It
:—.o.z - N P2 e PO E p— { 9-€1D) 18H
SO Mv/9V W9t ._u M LS2SWL
AR 8 St a4
" ano a3 o e
e3
. v) 5 i Joz e | £1-21d) oA
9 S v -
- o ﬂ wop S |7 9118) SaHIH
onid | 8 ’ v 9_
AT s eeiswe _ ASt
O Sevy |7 v
g5 o [3 mod wvd (2L-13 = 5 . Ve ¢d 8 m_ 2_ :_
SO < amod wvd (E1-13 = 13 - . = ST [aND 3 a0l
ast
9 mod vl (Pl 3)———; N ol o
LE) -~
l'on : 1 e0 au
73S 30HNOS WvH T
0S o sid s Vi
g aND Q3 B3 0z s |
1 6
8 z 1 o1 15252
v 57 70 o0l
6
|| o a pz
018 OI4 0 ond |§ 2 £ zi _
19313 or| MNP 5 e g ORIST az
24 a9
30HNOS V1Va O/1 WL | 35 Sy L € Z 80S1w2
Qauvog-NO 6 4 € 2= 9 aa i
m_gwmomok G @ ia | 9 v _H_l_ ez
s < —
SS vy G a v : " oo Y IZ A
- i " 2— .24—
ON AG AS+

Si-€1d) a8M

+5V
0 GD——
14 |2 |16
0 1V
“D" SOURCES ARE Ho (D733 al g8 = Y
FROM SYNC COUNT 5
FIG. 54 2-—"_ 138 — W
H1 (D14 13— 2] 120 2zl (137 A2
13
ol 74LS153
10a
7 (ADS y——— 51 1a Py L E13-9) A5
10 10b
11
AD62 Ea Eb GND
+5V ?1 215.8
s
e vee :
H3 a1 N 0 GD——— 4
3 Ei4 14 {2 |16
LY GIEED) ¥ A2 0 S0 st vee
SCREEN Ll IV =3 H2 (D14-12D)—— i2a
ADDRESS | V3 o, 74288 2 By
FROM ‘ 12 E12 7
SYNC 2l S0 120 Za A1
COUNT | va (D11:12) 11 5 .——»—73 13b
FIG. 54 B4 , (ADS) o] 74aLs153
5c11 15 B3 =4 10a
- 6
KHS | >0 2] 44 5 a Zb A4
SOFT 5<—2] 51 el ne v2 @TD—H 1o
GND - 11 11b
11
] L= Ea Eb GND
-+ 1 Q15 |8
D -
+5V
o GD——
14 |2 Ivs
S0 St Vece
+5V Vo (D12-12 12a
3
16 9 B2 E4q ,
, vee vi (D12:11 @b za H—ET17) A0
HIRES s 13
FIG. 8-11 3 ci12* 10 -—-’— ‘3b74LS153
FIG. S 7418257 9
v @D e @D B ED
FIG. S4 5 7 10 J
o6 2b >—{ 100
ci 1
13 .—b—— o
PAGE 2 12 2} 10a m Ea Eb GND
FIG. 5-10 74LS04 E GND 1 Q15 |8

(176)

15_|-8

«SEE FIG. S-6 FOR OTHER HALF OF C12

FIGURE S-7 RAM ADDRESS MUX

147

TO

RAM
ADDRESS
LINES

FIG. §-8

FROM 4K/16K SELECT

FIG. S-6
——
r N\
ROWC ROWC ROWD ROWD ROWE ROWE
CAS Cs/re CAS Cs/ré CAS CS/As
(F1-14) (Ei1-14) Fr-3) (E113) E-12) (E1-12)
~ 15 13 15 13 15 13
2 2 2
49 {DAD—] €3 pup D3 am E3 pam 11 P
14 14 14 BS
15 13 15 13 {15 13] as 2 =T 3
(DA . 2 2
o @D—4
C4 pam D4 gam E4 gam 1 »
14 14 14 Q4 DL1
2 [15 731 5 [75 TJL 2]15 73[74L.S174 :
7 CA—=H ¢5 _,\, D5 E5 cam o, a1
14 14 14 1
. 115 13[s |15 13 s 15 13[oz K D3
o @Dt
A (DA3) - : D6 nan . E6 mam ol .
4 CLOCK LATCHED
DM;: [15 73[[15 13 [[15 13[] 9 RAM
e @ 2 2 2 DATA
LD C7 pam D7 Ram E7 pam 1] o out
14 14 14
l15 13[[15 73l l15 ’3L B8 as F2 DiL4
C8 Ram 08 gam E8 pam k1 I
14 14 14 12
[[e il | o ==
. , 15 13 .) 15 : 74L.S174
o) C9 Ram D9 Ram E9 pam s o [DL6
14 14 14 o1
115 13[|15 13] [75 131 . T
2 2 2
U CL C10 pam D10 gam E10 pam § g
14 14 14 02 CLOCK
/ 9
RAM i
n ~ . TO ALL RAS
| Gn—m—m4 RAMS RAM PINOUT DETAIL
5 - A1 11
: E12-7
' FROM A2 12
RAM ED— - ~sveves oo e
pRESS EL - o FROM s;/srsrsg-i ol cAS H2-~ DECODED BY ROW
FIG. S-7 DATABYS 3] 0w 00 - TO LATCHES
_ (EiR = p a3 Hi oecopepBYROW
+12V i 5 4K/ 16K 12
9 ——1 A5 A2 —
73V —1 aa RAM A P
GND 16
7 10
L . — A3 AQ pP—
-5V 8 9
i m 13 AANLE +12V «— Voo Vee p—> +5V
8 ﬂ@ 7 RIW
: AAS 4
-——r—

FIGURE S-8 4K TO 48K RAM MEMORY WITH DATA LATCH

21907 TOHLINOD ANV LNONId HOLJINNOD O/1 TVIH3HdIYId 6-S IHNDI

u

ad
<z
u=
oO
=&

i
933080

-

g

e

8av

=]
-~

Q

-3
~

1z

:

1NO ASIVQ
1dNYY3iNI J €2

LNO ASWA VWD) 7

AS+ <=1

2]
P
N
4a

<o
<o)
3R wum_ommﬂmo
=—< 00) ZHWI
=< u3sn
——C L) ZHA
——<€0) 7Hne
< NL) ZHNL
= ON
.ﬂv)m‘

G AYA B
z<HND
<&
%

NI ASivd
LdNYHILNI

M3IA dOL

Nv.L13a HOLD3INNOD O/I

3SN OL MOH NO 310N ‘ddV 33S

VN0
\'
QO 1 H3ISN>
ME «—0Lav)
1o0vy
{6Qv)
AS+ € gav
- S-S Old
= S1-214) 3a003Aa WOH
8 9 € z ! s W v Aw WOHA
OND €3 £eY cv 34 c3 13 . 01-S OI4
0z - -
S— o o ——(5L2IH) S€14 0L
F19VN3 O/1 204
~ 91
74 74 £z zz 1z _
(1]} 1 2l] vi AG+
SRR (PO SRR (I (U [N S (A ————
NIVHD ASIVQ
1dNUHALNI . . ; g ;
!
]
1 82 82 82 82 82
m €z €z €z €z €z .
m l 9 g b € 2z L 2-S 914 33S
! on on o on o/l o/ o/l SN8 WILSAS
]
m ‘Oa.RI Va4 V34 V34 lZ ic 2
>
P lae] e}) ee| o] lor | T se| e
H
NIVHD >m__<o 7% IQ Iy 1 i TS TS T3
YWQa
| NN S| (R N S, N [———— e bl e
_ P2 6 0] I 2l €l 43 Aﬁ Sl
— ﬂN 9z 174 174 — €7 t74 ¥4 eNk
g]OND 378¥N3 A3d]
8ELSIVL ¢H
7 for——riOD
20A (34 ev eV €3
9t 1 z € u_
20V
AS + —(9av)
{sav)
< yav

149

sne

vivd
W3LSAS
3ivisidl

0/1 aHv0g-NO 01-S IHNDI4

<3m FUIY: T h?«wa: T] ; %
Hovi 23 UIA D)
uINVIdS 10 o 02{03H>—
v Y5 o h—a 13
14
WHOB 312 " o i e
sey T aav 8EIS WL
O
veu wod\| o f——@Iav) »
AS+
o O cid
i 19 i I8 w [—iavy e
3 st
= M_. .9 a4 i S-S 'OId UV43a 335
ON9 10 1D 1D i
004 za
el T vLSWL -y .
100 V1Va © £ L 22 5 XIS o
3113880 %ei-6ly 8 20 12 9
e 9 & @) &
BIXITALINW (42, o
NI Viva aav 8E1SvL
viva © —o
o 3113SSVD ERRY o |——<@aw) us
) O CiH
- N \ Ju @D
] ol g
[91 4 o 6-S 'O1d Wv13a 338
aND 097 aNDz S, SO ..
an [—(L9) v2ST0L N9 o fe<eavy
s a0 |- 3 LR 8 [ore<iav) ¢ L z3 3 f—<0s Y or
2» (V) « s (510 T 3)
(seswe € i maCd P E e
€ L 9 €8IS LGZSIWL ~
& QD] = z z o 1 o |—Gaw»
en (50 22N ak = 2 £ ¢
¢} @
v (VD—~t— ez m ' 5| 9N o TH L1 q Zaciswe |2 ‘
14
oy nei-tv * £ —<vav)
I . muo_ - 51 1NO 3WVD Wl SE 9l §s q 2 g4 ¥
ON|— sifeifeile 399141 1Qd ¢
- s Y351 10 DX e al._.
9-ev ONp— 74 297 b5 Ag+
! ek 338 Wvd ' ilotf 6] & gl = vy £] 2 [9
3 s S A i 2200 ZMS IMS OMS ;
qot g e} 00} H 3
S t 7 T N visfe : wt AND |
- 8 az LUN vy (1) m Ll gpy U NV 157 ! =9 2 A b—» AG+
- ¢ egy 28 9IA F— AG OB L, o ZNY ; 7 oz 9}
1sesw [z 01 : s T NNOO € : o s G ¢ 108
@D (@D I [petivar] CSTAOACE] o7 » 2 Y G
0q =
POt | 71 S rraditd] vk mmw%H o0t wE(%z« oI v % "eszsre Gavd »
o QVO—— A oz o —C0a) v o b A Tt 1S 914 300N S3uIH (ZhiD—~d &2 8 |>—Cav)
98 o | - oa _onPw MNW_MH vy OF o f— £99S 914 2 39vd (9-vi4 20 74 v én
v @D i@ + e |“0T oo e 1S 91 [300m xin @Eridediz M|
ano oo [o 1353w ano | T T MA— 0704 N3O O3AIA S af—~—<0aY) ¢
= WY WOHS g] : 3] - o oL 00N 1xaL (Fridq @ ke
ASH 03HOIWN = 8 4
HOL1D3INNOD H300030a SS3uaav
e G2 OHVOEAIN ase !

'
1
1
1
'

150

18 74L502
4 v rRoM b 74LS11
FROM {am)- cz Vee SYSTEM (COLOR REF 813 e
6 1 1
SYSTEM 36 TM = FIG.S3 [1222, color
9 RST
FIG. 53 LOP: - © R e B, BURS
2 o 4 — 740551
rrom [VA Q@EIDH A Ve o c H5 i
15 3 2 (C13-6) TO C12-14
Cgmg ve (Biz14 A2 Ll P 0 4 (01314) e 42/?65
fese \VC(@IZTHas AS 03 L — —— SELECT
" DLO 124 as oo SR—AE cgﬁh&? B 7aL551 FIG. -6
18 8 12 (2
DL AS%HAr? 05 G T 54 Tl .
194 a6 CE G114 2,613
5 20 2| 7‘&.‘53011 . | 7]
FROM =1y 1313, 82 1 08 ot/ s
LATCHED DLa)—2H 48 ' e D ‘ cia
iN
DF.:G': A%'E GNO H B GND 74586 \\:Z
ilidy
FIG. 58 —_— Y e A e g N 74L.508 .32
- = = o = (1:4)
iar 15 B11 did
DLe T] HOR BLANKING
4
DL7
- 741802
. 2 555
v B3cursor | =
FLASHER X
w
c o e 2
2K 3.3M OMpF = oY 2 Gt
T;s S-SFO 47pF m 27pH
oF L L
FROM | ve (67213 21108 5 vee = = =
14
COUNT | Ho (B14-1)—] 100
FIG. S-4 @__IQ- ne 7418257
1
EGNDZA ZC 10A 1A 118 10D 2D ZB s |s
—p rsi_[_s < 9 [2 {3 |6 [raf7 p2 s["%a D2 L
- Qa3 =
Decoosn FM HIPES Eran)— L 4
FiG. s-10 MODE =D " o' a0
FROM cP
SYSTEM D, of . 74LS194
TIME {LD194 » - so
FIG. 8-3 10) S
G. S 7 cP 11{9 7T15 10 Q0 Qt Q2
3
DLO po S00SL St I:: I;Z ly; - T
4 V"‘V
DL} o1 B4 o bz sfooh BsTRE] -5V -5V ~12v
2 0274|_5194 P e vee R8-2.0€
5 Q2 0s W
R — ; A9 AUXILIARY
LATCHED o 03 A7-1.5K VIDEO
c ' 3¢ e s i
3
DATA 3 S o1
FIG. 5-8 DLd ost -) 0o 4 PIN MOLEX
OLs —- o1 Be ;—I 13 e
20 pe 52 5
OLe 027418194 | . 12 w 0 QF— A1t | R0 COMPOSITE
OL7 D3vee aND 97 ¢ ano B10 200 VIDEO
. 74L874 POT 27 out
e r g 2 1 = Kis
= = c } RCA TYPE
+5v B PHONE JACK
4
FROM (TEXT 12, _B13 L—r—\a 5 HIRES
ADDRRESS | MODE 7] Do —Uoo aoi—os asf—Hoo aol? L B11-6) ENABLE
DO 510 | MA 74502 B B8 B8 74L0m e
= MODE e I gp U MR 74LS 74LS 74LS wa ol
FROMSYNG | V2 174 114 irs FIG. S&
COUNT] va 74L811 g gz i
FIG. S-4 oo T9 & |9

FROM SYSTEM TIME
FiG. -3

RAS)

FIGURE S-11 VIDEO GENERATOR

151

e —— — T

{
a

LY
\ .
)
N
iy
{ ﬁ
f :'.
A O, |
| /| l “
/ f
" gt « B & 3
Y - ‘_: |
J ’
‘ ﬁg A
s |
- e,
{ ity f
[1] !'i
% j
L
\-'Q*!‘ i
i
i
fi e . /
WL, A
A "_J}tl"’
: G S ¥
| A\
‘ \ -
At ‘*
S B b
AT A ;'r Woai d }
: 2
" L " {
oy .
|
& " S -]
. | "
F A
And
L &y
5. B
e
] 8 T
3 b |
+ By e ;
R M
S5 - B] 8
LS - i
\,H- < : b\l‘
N
- :I\..
i,
- W
e
3
J
l -

T — ——— R

O bl BLE. T e e e

'-‘
K
¥
w
'
: 5
‘
5
e
<
I
T,
L ; T
/

10260 BANDLEY DRIVE
CUPERTINO, CALIFORNIA 95014 U.S.A.

TELEPHONE (408) 996-1010

|
—— b

